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Just as larger organisms face the constant threat of infection by pathogens,

so too do bacteria and archaea. In response, prokaryotes employ a diverse set of

strategies to simultaneously cope with their viral and physical environments.

Here I explore the ecology and evolution of the CRISPR adaptive immune

system, a powerful form of protection against viruses that is the only known exam-

ple of adaptive immunity in prokaryotes. CRISPR systems are widespread across

diverse bacterial and archaeal lineages, suggesting that CRISPR e�ectively defends

against viruses in a broad array of environments. Nevertheless, this defense system

is nearly absent in many bacterial groups, and in many environments. I focus on

understanding these patterns in CRISPR incidence and the ecological drivers behind

them.

First, I identify the ecological conditions that favor the adoption of a CRISPR-

based defense strategy. I develop a phylogenetically-conscious machine learning

approach to build a predictive model of CRISPR incidence using data on over 100



phenotypic traits across over 2600 species and discovered a strong but hitherto-

unknown negative interaction between CRISPR and aerobicity.

I then consider the multiplicity of CRISPR arrays on a genome, testing whether

or not selection favors redundancy in immunity. I use a comparative genomics

approach, looking across all prokaryotes to demonstrate that on average, organisms

are under selection to maintain more than one CRISPR array. I then explain this

surprising result with a theoretical model demonstrating that a trade-o� between

memory span and learning speed could select for paired `long-term memory� and

�short-term memory� CRISPR arrays.

Finally, I provide a theoretical examination of the phenomenon of immune

loss, speci�cally in the context of CRISPR immunity. In doing so, I propose an

additional mechanism to answer the perennial question: �How do bacteria and bac-

teriophage coexist stably over long time-spans?� I show that the regular loss of

immunity by the bacterial host can produce host-phage coexistence more reliably

than other mechanisms, pairing a general model of immunity with an experimental

and theoretical case study of CRISPR-based immunity.
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Preface

This dissertation contains an overview (Chapter 1), three research chapters

in manuscript form (Chapters 2, 3, and 4), and appendices to the chapters which

include all supplemental information (text, tables, and �gures) for the publications

on which these chapters are based. A single bibliography is provided at the end for

literature cited throughout the dissertation.

This dissertation is based on the following publications:

Chapter 2: Jake L. Weissman, Rohan M.R. Laljani, William F. Fagan, and Philip

L.F. Johnson. Visualization and prediction of CRISPR incidence in microbial

trait-space to identify drivers of antiviral immune strategy. The ISME journal,

2019. https://doi.org/10.1038/s41396-019-0411-2

Chapter 3: Jake L. Weissman, William F. Fagan, and Philip L.F. Johnson. Selec-

tive maintenance of multiple CRISPR arrays across prokaryotes. The CRISPR

Journal, 1(6):405-413, 2018. http://doi.org/10.1089/crispr.2018.0034

Chapter 4: Jake L. Weissman, Rayshawn Holmes, Rodolphe Barrangou, Sylvain

Moineau, William F. Fagan, Bruce Levin, and Philip L.F. Johnson. Immune

loss as a driver of coexistence during host-phage coevolution. The ISME Jour-

nal, 12(2):585-597, February 2018. https://doi.org/10.1038/ismej.2017.194
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Chapter 1: Introduction

1.1 Prokaryotic Antiviral Defense Systems

Viruses of bacteria and archaea severely impact their hosts' population and

evolutionary dynamics [2, 3]. In an ecological context, these viruses lead to the

release of important nutrients back into the environment [4] and may play a role in

maintaining microbial diversity [5, 6, 7]. In an evolutionary context, viruses drive

the evolution of host immune strategy, often leading to iterative co-evolutionary

dynamics [8, 9]. In the microbial world these two contexts are not distinct, with

demographic and genetic changes occurring at similar rates, making any separation

of scales infeasible. This is especially true at the interface of virus-host interactions,

where the set of host defense systems is diverse and fast-evolving [10].

Prokaryotic antiviral defense systems range in complexity from crude mem-

brane modi�cations that prevent viral attachment, all the way to CRISPR (clustered

regularly interspaced short palindromic repeats) adaptive immune systems, which

are able to record �memories� of past infections in order to speci�cally target those

viruses in the future [10, 11]. In between these extremes lies a great deal of strate-

gic diversity, including restriction-modi�cation and prokaryotic Argonaute systems

which degrade viral DNA, altruistic abortive-infection systems which kill the host
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cell upon infection, and an ever-growing set of recently-discovered, mechanistically

diverse novel defense-systems [12, 13]. This strategic diversity is combinatorial,

where many organisms employ multiple strategies [14], or even multiple seemingly-

redundant versions of the same strategy [15]. Additionally, microbes can rapidly

swap-out strategy sets when defense-related genes are lost and gained via horizon-

tal gene transfer. These transfers occur frequently, making defense genes one of

the most labile classes of genes [16], and often leading to a great deal of immune

diversity even among closely related sets of strains [6, 17].

The apparent complexity of microbial antiviral defenses immediately leads us

to a number of pressing questions: In the face of such incredible functional diversity,

is there any discernible link between an organism's ecology and its immune strategy?

Why would an organism employ more than one defense system, especially in cases

where those systems appear to be redundant? Considering how frequently defense

genes are gained and lost, what are the implications of these evolutionary dynamics

on the ecological dynamics of host and virus communities? These questions form

the core of this dissertation, motivating, respectively, Chapters 2, 3, and 4. As my

focus I take the ecology and evolution of CRISPR immunity, described in detail

below, expanding to antiviral defense systems in general where appropriate.

1.2 CRISPR, What is it?

CRISPR is a powerful form of protection against viruses and other mobile ge-

netic elements that is the only known example of adaptive immunity in prokaryotes.
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CRISPR systems can rapidly acquire novel and highly speci�c immune �memory�

and then use this memory to degrade viral genetic material [18, 19]. In general,

these systems are composed of two parts:

• The CRISPR array serves as a repository for the immune memories acquired

from viruses. These genomic loci consist of variable numbers of short (∼ 30bp)

conserved repeat sequences (�repeats�) interspaced with short variable regions

(∼ 30bp) called �spacers� [18, 20], preceded by a �leader� sequence which is

important for array transcription and the integration of novel spacers [19, 20,

21, 22, 23, 24]. Each spacer is an individual immune memory, corresponding

to a matching target on a viral genome or some other mobile genetic element

(the �protospacer�; although self-targeting is also possible, e.g., [25, 26, 27]).

In fact, the �rst hints that CRISPR might be an adaptive immune system were

that many of these spacers matched known viral sequences [18]. Importantly,

CRISPR immune memory is encoded on the host genome, meaning it will be

vertically transferred along a host lineage [28, 29].

• The CRISPR-associated ( cas) genes serve as the machinery used to acquire

spacers and subsequently target viruses and are typically located adjacent to

the CRISPR array on the genome [20, 30].

Immunity proceeds in three stages:

1. During acquisition Cas proteins cut out a piece of viral DNA and integrate

this short sequence into the host genome at the leading end of the CRISPR

array as a novel spacer [19, 23]. Spacers are inserted progressively at the
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leader end, creating a linear history of infection along the array as the host

encounters novel viral species [24, 31]. All CRISPR systems share the same

core acquisition genes, cas1 and cas2, though the acquisition process may

di�er in some details between systems (with some systems using additional

acquisition proteins [30], and some even aacquiring spacers from RNA [32]).

2. Arrays are then transcribed and processed into short CRISPR-RNA (crRNA)

molecules, which associate with the Cas targeting machinery and surveil the

cell for their corresponding protospacer [33, 34, 35, 36, 37].

3. Finally, if the crRNA-Cas complex �nds its matching protospacer, the target

is degraded [19, 34, 35].

For a caricature of this process see Fig 1.1. More details on the subtleties of CRISPR

biology will be provided in each chapter as needed, but this general picture should

su�ce for the time being. For the CRISPR initiate or layperson, I recommend our

review of CRISPR immunity for Frontiers Young Minds, which is targeted towards

young readers (ages 8-12) but should be comprehensible to a general audience [1].

Finally, I must note that the discovery of CRISPR, now over a decade ago

[18, 38], has generated great interest among biologists, who have repurposed the

programmable targeting speci�cty of CRISPR-associated (Cas) proteins to create

novel genome-editing tools [39, 40]. Here I will focus on the natural distribution and

evolution of these systems, happily avoiding any discussions of applications for the

remainder of this dissertation (fair warning for those who opened this text looking

for genome editing wisdom� there is none to be found here).
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Figure 1.1: Outline of CRISPR immunity. Spacers are acquired from viral genetic
material and then used to guide proteins to degrade those target sequences in the
future. I note that many details are ommitted in this simple cartoon, and some
CRISPR systems work somewhat di�erently [30]. I provide further details on the
more subtle subtle aspects of CRISPR immunity as needed in each individual chap-
ter. This �gure is adapted from Weissman et al. [1].
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1.3 The Distribution of CRISPR Among Prokaryotes

For the biologist interested in studying the ecology and evolution of microbial

immune strategy using a comparative framework, CRISPR exists in something of

a sweet-spot. Some defense systems are extremely common among microbes, such

as restriction-modi�cation systems which are nearly ubiquitous [41], while others

are extremely rare, such as the BREX and DISARM systems which are present in

< 10% of sequenced prokaryotic genomes [42, 43]. CRISPR, on the other hand is

present in about half of sequenced bacterial genomes (∼ 40%, though much more

common in archaea; [20, 44, 45, 46, 47, 48, 49]), and because it is frequently hori-

zontally transferred and lost [16, 50, 51], its distribution among species likely cannot

be explained by shared evolutionary history alone. In fact, CRISPR is found across

the prokaryotic tree (Fig A.1), in both bacteria and archaea and even in members

of the Cadidate Phyla Radiation who were thought to largely disfavor this immune

system [52, 53, 54]. Additionally, organisms di�er greatly in both the number of

CRISPR systems they encode on their genomes [15, 55] and the number of spacers

included in any given CRISPR array [56, 57, 58], implying that the relative impor-

tance of CRISPR as a primary line of defense against viruses varies greatly between

organisms. Thus we might glean some insight into what factors drive CRISPR's

distribution by comparing the characteristics of taxa that tend to favor or disfavor

CRISPR immunity.

More broadly, CRISPR provides a tractable model for the evolution of mem-

ory where memories are discrete, observable objects (spacers). The heterogeneous
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incidence of CRISPR across species suggests that memory is not always adaptive.

In fact, the core questions of my dissertation can be re-framed in the context of the

evolution of memory: Under what environmental conditions can we expect memory

to evolve (Chapter 2)? What processes result in the evolution of short or long-term

memory, together or in isolation (Chapter 3)? What dynamics occur in an antag-

onistic system (i.e., host-virus) when memory is lost (Chapter 4)? Incidentally, I

was �rst drawn to this system while thinking about spatial memory in the context

of animal movement, realizing that the immediately observable states of CRISPR

memory are easily represented with theoretical treatments, in contrast to the many

abstractions required to model animal memory.

What, then, is known about the distribution of CRISPR systems among

prokaryotes? CRISPR incidence varies consistently along certain environmental

gradients. For example, surveys of public genomic databases show that CRISPR sys-

tems are far more prevalent in thermophiles than in mesophiles [44, 45, 46, 47, 48, 49].

Very recently, a survey of CRISPR immune diversity in the oceans revealed that the

total number of immune �memories� associated with CRISPR increases along a depth

gradient [59], which agrees with my own observation that the incidence of CRISPR

immunity increases with decreasing metabolic oxygen requirement (see Chapter 2;

[49]).

What mechanisms can explain such environmental trends? Theoretical work

has supported the hypothesis that if the local viral community is very diverse, then

a memory-based system like CRISPR will not be advantageous [47, 48], because an

individual cell is unlikely to encounter the same virus twice. Similarly, the presence

7



of viral anti-CRISPR proteins will strongly adversely a�ect the adaptive advantage

of having this system [60].

It is also possible that having an active CRISPR system is simply too costly

in some environments. CRISPR incurrs costs via self-targeting (i.e., autoimmunity;

[25, 27, 61]), expression [62], and lost opportunities for bene�cial horizontal gene

transfer (e.g., of antibiotic resistance genes [51]). The frequency of viral infection

can in�uence the favorability of CRISPR by altering cost structures, as expression

of these systems is often very costly but inducible, unlike membrane modi�cations

which are generally constitutive but possibly less costly [63]. Costs will also vary

based on the competitive environment, with recent work showing that CRISPR

is favored in competitive environments that constrain the evolution of cell surface

molecules (making intracellular immunity the only option for antiviral defense; [64]).

Alternatively, I and others have suggested that the abiotic environment may

impact selection for or against CRISPR immunity more directly (via negative in-

terference with certain DNA repair pathways [49] or via constraints on membrane

evolution [65, 66, 67]). Thus we are left with a complex set of potential drivers of

immune strategy, where the abiotic environment, local viral community, and host

community may all play a role. Determining the ecological drivers of microbial

immune strategy, it seems, is no easy task.
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1.4 Outline of Dissertation

Just as larger organisms face the constant threat of infection by pathogens,

so too do bacteria and archaea. This work focuses on these interactions, and how

prokaryotes employ a diverse set of strategies to simultaneously cope with their viral

and physical environments.

More speci�cally, my dissertation explores the ecology and evolution of the

CRISPR adaptive immune system, a powerful form of protection against viruses that

is the only known example of adaptive immunity in prokaryotes [18, 19]. CRISPR

rapidly incorporates novel and highly speci�c immune �memory� and then uses this

memory to degrade sel�sh genetic elements such as bacteriophage and plasmids

[19]. CRISPR systems are widespread across diverse bacterial and archaeal lin-

eages, suggesting that CRISPR e�ectively defends against viruses in a broad array

of environments [30, 45, 68]. Nevertheless, this defense system is nearly absent in

many bacterial groups [52], and in many environments [44, 45, 46, 47, 48, 49, 59].

In this dissertation I focus on understanding these patterns in CRISPR incidence

and the ecological drivers behind them.

In my second chapter I identify the ecological conditions that favor the adoption

of a CRISPR-based defense strategy [49]. I develop a phylogenetically conscious

machine learning approach to build a predictive model of CRISPR presence/absence

across over 2600 species using a large microbial trait database. I �nd evidence for

a strong negative interaction between CRISPR and DNA repair processes in the

cell. It seems that tradeo�s may constrain the evolution of memory in microbes,
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which contrasts with other work that implicates the pathogenic environment and

local competition as determinants of the adaptiveness of CRISPR immune memory.

My third chapter focuses on the multiplicity of CRISPR arrays on a genome,

testing whether or not selection favors redundancy in immunity [15]. Around 20% of

sequenced prokaryotic genomes have more than one CRISPR array. While immune

diversity likely reduces the chance of pathogen evolutionary escape, it remains puz-

zling why many prokaryotes also have multiple, seemingly redundant, copies of the

same type of immune system. Adapting population genetic models to build a neu-

tral model of gene content evolution, I demonstrate that on average, prokaryotes are

under selection to maintain more than one CRISPR array. I explain this surprising

result with a theoretical model demonstrating that trade-o�s between memory span

and learning speed can favor paired �long-� and �short-term memory� arrays.

In my fourth chapter I provide a theoretical examination of the phenomenon of

immune loss, where it has been shown that CRISPR systems can lose functionality

at a high rate [69]. In doing so, I propose an additional mechanism to answer the

perennial question: �How do bacteria and bacteriophage coexist stably over long

time-spans?�. In well-mixed host-phage systems we typically expect to see a run-

away evolutionary arms race, ultimately leading to the extinction of one species.

Nevertheless, in many systems, host and pathogen coexist with minimal coevolu-

tion. I show that the regular loss of immunity by the bacterial host could produce

host-phage coexistence more reliably than other tradeo�-based mechanisms, pairing

a general model of immunity with an experimental and theoretical case study of

CRISPR-based immunity.
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Chapter 2: Visualization and prediction of CRISPR incidence in mi-

crobial trait-space to identify drivers of antiviral immune

strategy

2.1 Abstract

Bacteria and archaea are locked in a near-constant battle with their viral

pathogens. Despite previous mechanistic characterization of numerous prokary-

otic defense strategies, the underlying ecological drivers of di�erent strategies re-

main largely unknown and predicting which species will take which strategies re-

mains a challenge. Here, we focus on the CRISPR immune strategy and develop

a phylogenetically-corrected machine learning approach to build a predictive model

of CRISPR incidence using data on over 100 traits across over 2600 species. We

discover a strong but hitherto-unknown negative interaction between CRISPR and

aerobicity, which we hypothesize may result from interference between CRISPR

associated proteins and non-homologous end-joining DNA repair due to oxidative

stress. Our predictive model also quantitatively con�rms previous observations of

an association between CRISPR and temperature. Finally, we contrast the envi-

ronmental associations of di�erent CRISPR system types (I, II, III) and restriction
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modi�cation systems, all of which act as intracellular immune systems.

2.2 Introduction

In the world of prokaryotes, infection by viruses poses a constant threat to con-

tinued existence (e.g., [70]). In order to evade viral predation, bacteria and archaea

employ a range of defense mechanisms that interfere with one or more stages of the

viral life-cycle. Modi�cations to the host's cell surface can prevent viral entry in

the �rst place. Alternatively, if a virus is able to enter the host cell, then intracellu-

lar immune systems, such as the clustered regularly inter-spaced short palindromic

repeat (CRISPR) adaptive immune system or restriction-modi�cation (RM) innate

immune systems, may degrade viral genetic material and thus prevent replication

[11, 17, 18, 19, 38, 71]. Despite our increasingly in-depth understanding of the mech-

anisms behind each of these defenses, we lack a comprehensive understanding of the

factors that cause selection to favor one defense strategy over another.

Here we focus on the CRISPR adaptive immune system, which is a par-

ticularly interesting case study due to its uneven distribution across prokaryotic

taxa and environments. Previous analyses have shown that bacterial thermophiles

and archaea (both mesophilic and thermophilic) frequently have CRISPR systems

(∼ 90%), whereas less than half of mesophilic bacteria have CRISPR (∼ 40%;

[44, 45, 46, 47, 48]). Environmental samples have revealed that many uncultured

bacterial lineages have few or no representatives with CRISPR systems, and that

the apparent lack of CRISPR in these lineages may be linked to an obligately sym-

12



biotic lifestyle and/or a highly reduced genome [52]. Nevertheless, no systematic

exploration of the ecological conditions that favor the evolution and maintenance

of CRISPR immunity has been made. Additionally, though these previous results

appear broadly true [72], no explicit accounting has been made for the potentially

confounding e�ects of phylogeny in linking CRISPR incidence to particular traits.

What mechanisms might shape the distribution of CRISPR systems across

microbes? Some researchers have emphasized the role of the local viral commu-

nity, suggesting that when viral diversity and abundance is high CRISPR will fail,

and thus be selected against [47, 48, 63]. Others have focused on the tradeo� be-

tween constitutively expressed defenses like membrane modi�cation and inducible

defenses such as CRISPR [63]. Yet others have noted that hot, and possibly other

extreme environments can constrain membrane evolution, necessitating the evolu-

tion of intracellular defenses like CRISPR or RM systems [65, 66, 67]. Many have

observed that since CRISPR prevents horizontal gene transfer, it may be selected

against when such transfers are bene�cial (e.g. [51, 73]). More recently it has

been shown that at least one CRISPR-associated (Cas) protein can suppress non-

homologous end-joining (NHEJ) DNA repair, which may lead to selection against

having CRISPR in some taxa [74]. In order to determine the relative importances

of these di�erent mechanisms, we must �rst identify the habitats and microbial

lifestyles associated with CRISPR immunity.

Here we aim to expand on previous analyses of CRISPR incidence in three

ways: (1) by drastically expanding the number of environmental and lifestyle traits

considered as predictors using the combination of a large prokaryotic trait database
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and machine learning approaches, (2) by incorporating appropriate statistical cor-

rections for non-independence among taxa due to shared evolutionary history, which

has not always been done, and (3) by simultaneously looking for patterns in RM sys-

tems, which will help us untangle the di�erence between environments that speci�-

cally favor CRISPR adaptive immunity versus DNA-degrading intracellular immune

systems in general (RM and CRISPR).

2.3 Methods

2.3.1 Data

For a schematic outlining the entire data compilation process see Fig A.2. For

a list of all visualizations, predictive models, and statistical tests see Appendix A.1.

2.3.1.1 Trait Data

We downloaded the ProTraits microbial traits database [75] which describes

424 traits in 3046 microbial species. These traits include metabolic phenotypes, pre-

ferred habitats, and speci�c behaviors like motility, among many others. ProTraits

was built using a semi-supervised text-mining approach, drawing from several online

databases and the literature. All traits are binary, with categorical traits split up

into dummy variables (e.g. oxygen requirement listed as �aerobic�, �anaerobic�, and

�facultative�). For each trait in each species, two �con�dence scores� in the range

[0, 1], are given, corresponding to the con�dence of the text mining approach that a

particular species does (c+) or does not (c−) have a particular trait.
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We derived a single score (p) that captured the con�dences both that a species

does and does not have a particular trait. Assuming we want our score to lay in the

interval [0, 1], such a score should be zero when we are completely con�dent that a

species does not have a trait, one when we are completely con�dent that a species

has a trait, and 0.5 when we are completely uncertain whether or not a species has

a trait (i.e., equally con�dent that it does and does not have the trait). In the

following formula, c+
c++c−

captures the relative con�dence that a species does rather

than does not have a trait, which we then scale by the overall maximal con�dence

(so that as overall con�dence decreases the score shrinks towards 0.5)

p =
1

2
+

(
c+

c+ + c−
− 1

2

)
×max(c+, c−). (2.1)

Many of the scores are missing for particular species-trait combinations (18%),

indicating situations in which the text mining approach was unable to make a trait

prediction. Our downstream analyses do not tolerate missing data, and so we im-

puted missing values using a random forest approach (R package missForest; [76]).

There is a set of summary traits in the ProTraits dataset that were created de-

novo using a machine learning approach, as well as a number of traits describing

the growth substrates a particular species can use. We removed both summary and

substrate traits from the dataset for increased interpretability (post-imputation; 174

traits remaining).

We note that the authors of ProTraits also used genomic data to help them

infer trait scores, though we found that the exclusion of this data does not a�ect

15



our overall outcome (Appendix A.2).

2.3.1.2 Genomic Data and Immune Systems

For each species listed in the ProTraits dataset we downloaded a single genome

from NCBI's RefSeq database, with a preference for completely assembled reference

or representative genomes. See Appendix A.3 for a con�rmation that our results are

robust to the resampling of genomes. A number of species (333) had no genomes

available in RefSeq, or only had genomes that had been suppressed since submission,

and we discarded these species from the ProTraits dataset.

CRISPR incidence in each genome was determined using CRISPRDetect [77].

Additionally, data on the number of CRISPR arrays found among all available

RefSeq genomes from a species were taken from Weissman et al. ([15]).

We downloaded the REBASE Gold database of experimentally veri�ed RM

proteins and performed blastx searches of our genomes against this database [78, 79].

The distribution of E-values we observed was bimodal, providing a natural cuto�

(E < 10−19).

To assess the ability of a microbe to perform non-homologous end-joining

(NHEJ) DNA repair we used hmmsearch to search the HMM pro�le of the Ku pro-

tein implicated in NHEJ against all RefSeq genomes (E-value cuto� of 10−2/number of genomes;

Pfam PF02735; [80, 81, 82]). We also used the annotated number of 16s rRNA genes

in each downloaded RefSeq genome as a proxy for growth rate and the annotated

cas3, cas9, and cas10 genes as indicators of system type [83]. Where available as
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meta-data from NCBI, we also downloaded the oxygen (1949 records) and temper-

ature requirements (1094 records) for the biosample record associated with each

RefSeq genome. The NCBI trait data was used exclusively for building Fig 2.4 and

the analyses implicating Ku in the CRISPR versus oxygen association.

2.3.2 Phylogeny

We used PhyloSift to locate and align a large set of marker genes (738) found

broadly across microbes, generally as a single copy [84, 85]. Of these marker genes,

67 were found in at least 500 of our genomes, and we limited our analysis to just this

set. Additionally, eight genomes had few (< 20) representatives of any marker genes

and were excluded from further analysis. We concatenated the alignments for these

67 marker genes and used FastTree (general-time reversible and CAT options; [86])

to build a phylogeny (Fig A.3). In order to analyze the e�ect of tree uncertainty on

our phylogenetic regressions, we bootstrapped our dataset using seqboot and built

a new tree from each replicate.

2.3.3 Visualizing CRISPR/RM Incidence

The size of the ProTraits dataset, both in terms of number of species and

number of traits, and the probable complicated interactions between variables ne-

cessitate techniques that can handle complex, large scale data. To visualize the

structure of microbial trait space and the distribution of immune strategies within

that space we made use of two unsupervised machine learning techniques, princi-
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pal component analysis (PCA, prcomp() function in R) and t-distributed stochastic

neighbor embedding (t-SNE, perplexity = 50 and 5000 iterations using Rtsne() func-

tion in Rtsne R package, otherwise default parameters, perplexity varied in Fig A.4;

[87, 88]).

PCA is a well-used technique in ecology that allows us to reduce the dimen-

sionality of a dataset for e�ective visualization in two-dimensional space. Essentially,

we collapse our trait dataset into two or three composite traits and observe whether

species with a particular immune strategy tend to vary systematically in terms of

where they fall in this �trait space�. A newer variant of this approach, t-SNE, per-

forms a similar process, but unlike PCA allows for non-linear transformations of

trait space. Therefore, local structure and non-linear interactions between traits in

high dimensional space are preserved by t-SNE but often not captured by PCA [87].

On the other hand, t-SNE axes are less easily interpreted precisely because they

represent non-linear rather than linear combinations of variables.

2.3.4 CRISPR/RM Prediction from ProTraits

In order to predict the distribution of CRISPR and RM systems, we applied a

number of supervised machine learning approaches to our dataset (see Fig A.5 for a

�ow-chart describing the logic behind our model choices). In order to obtain accurate

estimates of model performance, we initially set aside a portion of the data as a test

set to be used exclusively in model assessment after all models were constructed

(no �tting to this set). Because of the underlying evolutionary relationships in the
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data, we chose a test set that is phylogenetically independent of our training set.

Alternatively, if we were to draw a test set at random from the microbial species

we would risk underestimating our prediction errors due to non-independence of the

training and test sets [89]. We chose the Proteobacteria as a test set because they

are well-represented in the dataset (1139 species), ecologically diverse, and highly

heterogeneous in terms of CRISPR incidence (Fig A.1). The remaining phyla were

used to train our models.

First we built a series of linear models to classify species by immune strategy

(CRISPR present or absent) using logistic regression. We had a large number of

predictor variables (100+), which necessitated a model-selection approach in order

to build a reasonably (and optimally) sized model. We used a forward selection

algorithm to select the optimal set of predictors for each model size, with mean

squared error under cross validation (CV) as our optimality criterion. We then

selected model size by comparing BIC among these optimal models (i.e., selecting

the model with the lowest score).

Similar to choosing a test set, care must be taken when performing CV on

phylogenetically-structured data. CV assumes that when the data is partitioned

into folds, each of these folds is independent of the others. If we draw species at

random from a phylogeny, this assumption is violated, since the same hierarchical

tree-structure will underlay each fold. Therefore, it is better to perform �blocked�

CV than random CV [89], wherein folds are chosen based on divergent groups on

the tree (e.g. phyla). If each group has diverged far enough in the past from the

others, we can consider these folds to be essentially evolutionarily independent in
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terms of trait evolution (see Fig A.6 for a conceptual example). Therefore blocked

CV is essentially a non-parametric method (i.e., no explicit evolutionary model)

to account for the non-independence arising from the shared evolutionary history

between species. We use both random and blocked CV to build models. We clus-

tered the data into blocked folds using the pairwise distances between tips on our

tree (partitioning around mediods, pam() function in R package cluster, �ve folds

so that k = 5; [90, 91]). A key assumption we make here is that our folds can

be taken as independent from one another (i.e. no e�ect of shared evolutionary

history). Since these clusters correspond roughly to Phylum-level splits, and since

CRISPR and other prokaryotic immune systems are rapidly gained and lost over

evolutionary time [16], we are comfortable making this assumption. We also re-

peated this analysis using phylogenetic logistic regression to more formally correct

for phylogeny (R package phylolm; [92, 93]). Phylogenetic logistic regression is a

more powerful method since it �ts an explicit model of trait evolution, although it

relies on the assumption that traits evolve according to the chosen model and can

give misleading results otherwise.

Stepwise methods for variable selection, such as those used above (i.e., for-

ward subset selection), are simple, computationally feasible, and easy to implement

and interpret, but perform poorly when variables in the dataset covary with one

another (i.e. multicollinearity; [94, 95]). As it so happens, the trait data used here

exhibit strong multicollinearity (R package mctest; [96, 97]). Therefore, we sought

out methods that deal well with this type of data, speci�cally partial least squares

regression (PLS; [94]). Brie�y, PLS combines features of PCA and linear regression
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to �nd the linear combination of predictors that maximizes the variance of the data

in the space of outcome variables. We use a variant of PLS, sparse partial least

squares discriminant analysis (sPLS-DA), where the �sparse� refers to a built-in

variable selection process in the model-�tting algorithm and �discriminant analysis�

refers to the fact that we are focused on a classi�cation problem (i.e., presence vs.

absence of a particular immune strategy; we used tune.splsda() perform 5-fold cross

validation, repeated 50 times, to select the optimal number of components n to in-

clude and splsda() to perform variable selection and model selection simultaneously

given n as an input; functions in R package mixOmics; [98, 99]).

We also attempt to ameliorate the e�ects of shared evolutionary history on our

PLS model by using a philosophically similar approach to our blocked CV method

above. Multivariate integrative (MINT) sPLS-DA is a variant of PLS that can ac-

count for systematic variation between groups of data when those groupings are

known (e.g., our phylogenetically-blocked folds from above). It was originally devel-

oped for use in situations where multiple experiments testing the same hypothesis

could show systematic biases from one another. In our case, the history of prokary-

otic evolution is our experiment, and deep branching lineages are our replicates. We

apply MINT sPLS-DA to the data, using the same blocked folds we used for CV

(we used tune.mint.splsda() to perform 5-fold blocked cross validation to select the

optimal number of components n to include and mint.splsda() to perform variable

selection and model selection simultaneously given n as an input; functions in R

package mixOmics; [99, 100]).

While regression provides easily interpretable trait weights and is computa-
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tional e�cient, in order to capture higher-order relationships between microbial

traits we needed more powerful methods. Random forests (RF) are an attractive

choice for our aims since they produce a readily-interpretable output and can in-

corporate nonlinear relationships between predictor variables [101]. We built an RF

classi�er on our training data from 5000 trees (otherwise default settings in R pack-

age randomForest so that the number of variables tried at each split is the square

root of the total number of predictors; [102]). To prevent �tting to phylogeny, we

took an ensemble approach which was similar in philosophy to our blocked CV and

MINT sPLS-DA approaches above. Using the phylogenetically blocked folds de-

�ned above we �t �ve individual forests, each leaving out one of the �ve folds. We

then weighted these forests by their relative predictive ability on the respective fold

excluded during the �tting process (measured as Cohen's κ; [103]). We predicted

using our ensemble of forests by choosing the predicted outcome with the greatest

total weight.

2.4 Results

Below, we associate speci�c microbial immune strategies with a diverse list of

microbial traits. The traits span a range of scales including aspects of habitat (e.g.

�aquatic�), morphology (e.g., �coccus�), and physiology (e.g., �heterotroph�) [75].

While this variety of scales poses a modeling challenge to traditional approaches

including linear regression, machine learning algorithms provide an elegant means of

integrating such multi-scale traits in a statistically rigorous predictive framework. In
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particular, we apply algorithms that excel at identifying both linear and non-linear

combinations of traits with high predictive ability. For a systematic comparison of

the output of our predictive models, discussed individually below, please see Figs

A.7 and A.8.

2.4.1 Visualizing CRISPR Incidence in Trait Space

We visualized CRISPR incidence in microbial trait space using two unsuper-

vised algorithms to collapse high-dimensional data (174 binary traits assessed in

2679 species; see Methods) into fewer dimensions. Both methods revealed clear

di�erences between the placement of CRISPR-encoding and CRISPR-lacking or-

ganisms in trait space, despite the fact that no explicit information about CRISPR

was included.

First, principal components analysis (PCA) of the trait data reveals several

previously recognized patterns of microbial lifestyle choice and CRISPR incidence.

The �rst principal component (17% variance explained) corresponds broadly to an

axis running from host-associated to free-living microbes (Table 2.1), as observed by

others [104, 105]. CRISPR-encoding and CRISPR-lacking microbes are not di�er-

entiated along this axis (Fig A.9). We see CRISPR-encoding and CRISPR-lacking

organisms beginning to separate along the second (10% variance explained) and

third (7% variance explained) principal components (Fig 2.1). The second com-

ponent roughly represents a split between extremophilic species typically living in

low-productivity environments and mesophilic, plant-associated species (Table 2.1).
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Optimal growth temperature appears to be an important predictor of CRISPR in-

cidence, as previously noted by others [47, 48]. The third component is not as

easy to interpret, but appears to indicate a spectrum from group living microbes

(e.g. bio�lms) to microbes that tend to live as lone, motile cells (Table 2.1). That

CRISPR is possibly favored in group-living microbes is not entirely surprising, con-

sidering the increased risk of viral outbreak at high population density, and that

some species up-regulate CRISPR during bio�lm formation [106].
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Figure 2.1: Organisms with CRISPR separate from those without in trait space.
The second and third components from a PCA of the microbial traits dataset are
shown, where each point is a single species. CRISPR incidence is indicated by color
(green with, orange without), but was not included when constructing the PCA. No-
tice the separation of organisms with and without CRISPR along both components.
Marginal densities along each component are shown to facilitate interpretation. See
Fig A.9 for the �rst component.
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Second, we visualized the trait data using t-distributed stochastic neighbor

embedding (t-SNE), which is a nonlinear method that can often detect more sub-

tle relationships in a dataset (Fig 2.2; [87]). This method reveals a clustering of

CRISPR-encoding microbes in trait space, further emphasizing that microbial im-

mune strategy is in�uenced by ecological conditions. Because the axes of t-SNE plots

are not easily interpretable, we mapped the top weighted traits from the PCA above

(Table 2.1) onto the t-SNE reduced data (Fig A.10). Surprisingly, the most clearly

aligned trait with CRISPR-incidence is having an obligately anaerobic metabolism.
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Figure 2.2: Organisms with CRISPR partially cluster in trait space away from those
without. Two dimensional output of t-SNE dimension reduction of the microbial
traits dataset are shown, where each point is a single species (same dataset as in
Fig 2.1). CRISPR incidence is indicated by color (green with, orange without), but
was not included when performing dimension reduction. The axes of t-SNE plots
have no clear interpretation due to the non-linearity of the transformation.
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2.4.2 Predicting CRISPR Incidence

The above unsupervised approaches (i.e. uninformed about the outcome vari-

able, CRISPR) revealed that CRISPR incidence appears to be impacted by other

microbial traits. In order to more formally characterize these patterns, and exploit

them for their predictive ability, we applied several supervised prediction methods

(i.e. trained with information about CRISPR incidence) methods to the complete

trait dataset.

Unlike traditional statistical techniques focused on assigning p-values to par-

ticular input variables, with our machine learning approach we assessed model per-

formance in terms of predictive ability. For unbiased error estimates, we chose

an independent �test� set to withhold during the model �tting process and to be

used only during model assessment. We consider e�ective prediction of CRISPR

incidence in this independent dataset as support that our model encodes real infor-

mation about how di�erent microbial traits in�uence the ecological advantages of

the CRISPR system. We then examined the structure of these models, and which

variables play an outsize role in their performance, in order to select candidate

traits associated with CRISPR incidence. Importantly, we chose the Proteobacteria

as our test set because they represent a phylogenetically-independent group from

our training set (see Methods).

All models we implemented showed improved predictive ability over a null

model only accounting for the relative frequency of CRISPR among species (Co-

hen's κ > 0; Table 2.2), indicating that there is some ecological signal in CRISPR
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incidence, though overall predictive performance was not overwhelming. Of these

models the random forest (RF) model ranked highest, and did reasonably well

(κ = 0.241). The percent incidences of CRISPR in the training (56%) and test

sets (36%) are considerably di�erent, which may have been di�cult for these mod-

els to overcome. It is also possible that the Proteobacteria vary systematically from

other phyla in terms of ecology and immune strategy, making them a particularly

di�cult (and thus conservative) test set. Nevertheless, the trait data clearly held

some information about CRISPR incidence. We will primarily focus here on the RF

model since it performed best, but see Appendix A.4 for further discussion of the

performance of our other models.
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While each of our models revealed a distinct set of top predictors of CRISPR

incidence, there was broad agreement overall (Table A.1 and Figs 2.3, A.11, and

A.12). Keywords indicating a thermophilic lifestyle (e.g. thermophilic, hot springs,

hyperthermophilic, thermal springs) appeared across all models as either the most

important or second most important predictor of CRISPR incidence. Keywords re-

lating to oxygen requirement (e.g. anaerobic, aerobic) also appeared across nearly

all models as top predictors, excluding only the two worst performing models (Ta-

ble A.1). In the case of the RF and sPLS-DA models, oxygen requirement was

always one of the top three predictors, and often the top predictor of CRISPR inci-

dence (Figs 2.3, A.11, A.12, and A.13). Other predictors that frequently appeared

across model types included termite hosts (host_insectstermites), the degradation

of polycyclic aromatic hydrocarbons (PAH; metabolism_pahdegrading), freshwater

habitat (knownhabitats_freshwater), and growth as �laments (shape_�lamentous).

In general, the sPLS-DA, MINT sPLS-DA, RF, and RF ensemble models agreed

with each other rather closely. Finally, we built an RF model using only traits

related to temperature range, oxygen requirement, and thermophilic lifestyle (hot

springs, thermal springs, hydrothermal vents). This temperature- and oxygen-only

RF model outperformed all non-RF models (κ = 0.191). These traits alone appear

to hold the majority of information about CRISPR incidence in the dataset.

As an additional check that these candidate traits versus CRISPR associa-

tions are real and not due to some irregularity in our dataset, we downloaded meta-

data available from NCBI. We were able to reproduce the result that thermophiles

strongly prefer CRISPR (92% with CRISPR as opposed to 49% in mesophiles, Fig
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Figure 2.3: Importance of top ten predictors in the RF model of CRISPR inci-
dence using the ProTraits predictors. The mean decrease in accuracy measures the
reduction in model accuracy when a variable is randomly permuted in the dataset.
The Gini impurity index is a common score used to measure the performance of
decision-tree based models (e.g. RF models). Brie�y, when a decision tree is built
the Gini impurity index measures how well separated the di�erent classes of out-
come variable are at the terminal nodes of the tree (i.e., how �pure� each of the
nodes is). The mean decrease in Gini impurity measures the estimated reduction in
impurity (increase in purity) when a given variable is added to the model. These
importance scores are useful to rank variables as candidates for further study, but in
themselves should not be taken as statistical support or e�ect sizes similar to those
seen in linear regression. RF models may include non-linear combinations of vari-
ables, and therefore the contribution of any one variable is not as easily interpreted
as with a linear model, a drawback of this approach. See Fig A.14 for all predictor
importances.

2.4a; [47, 48]). Though we have too few genomes categorized as psychrotolerant

(35) or psychrophilic (14) to make any strong claims, these genomes seem to lack

CRISPR most of the time, suggesting that CRISPR incidence decreases continu-

ously as environmental temperatures decrease [46]. We were also able to con�rm

that, in agreement with our visualizations and predictive modeling, aerobes disfavor

CRISPR immunity (34% with CRISPR) while anaerobes favor CRISPR immunity

(67% with CRISPR, Fig 2.4b). This is true independent of growth temperature,

with mesophiles showing a similarly strong oxygen-CRISPR link (Fig A.15). Over-
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all, both oxygen (χ2 = 254.04, p < 2.2 × 10−16, categories with < 10 observations

excluded) and temperature (χ2 = 98.86, p < 2.2 × 10−16, categories with < 10

observations excluded) had signi�cant e�ects on incidence (for breakdown see Fig

2.4).
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Figure 2.4: Temperature range and oxygen requirement are strong predictors of
CRISPR incidence. Trait data taken from NCBI. (a) Thermophiles strongly fa-
vor CRISPR immunity, while mesophiles appear ambivalent. (b) Anaerobes favor
CRISPR immunity, while aerobes tend to lack CRISPR and facultative species fall
somewhere in between. (c) CRISPR and the Ku protein are negatively associated in
aerobes but not anaerobes. Error bars are 99% binomial con�dence intervals (non-
overlapping intervals can be taken as evidence for a statistically signi�cant di�erence
at the p < 0.01 level). Total number of genomes in each trait category shown at the
bottom of each bar. Categories represented by fewer than 10 genomes were omitted.
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Following previous suggestions that CRISPR incidence might be negatively

associated with host population density and growth rate [47, 48, 63], and that this

could be driving the link between CRISPR incidence and optimal temperature range,

we sought to determine if growth rate was a major determinant of CRISPR inci-

dence. The number of 16s rRNA genes in a genome is an oft-used, if imperfect,

proxy for microbial growth rates and an indicator of copiotrophic lifestyle in general

[107, 108, 109]. While CRISPR-encoding genomes had slightly more 16s genes than

CRISPR-lacking ones (3.1 and 2.9 on average, respectively), the 16s rRNA gene

count in a genome was not a signi�cant predictor of CRISPR incidence (logistic re-

gression, p = 0.05248), although when correcting for phylogeny 16s gene count does

seem to be signi�cantly positively associated with CRISPR incidence (phylogenetic

logistic regression, m = 0.06277, p = 6.651× 10−5), the opposite of what we would

expect if growth rate were driving the CRISPR-temperature relationship (though

the e�ect was not consistent across bootstrapped trees; Table A.2).

As a secondary con�rmation of the link between oxygen and CRISPR, we

examined metagenomic data from the Tara Oceans Project [110], and found that

across a large set of ocean metagenome samples CRISPR prevalence was inversely

related to environmental oxygen concentration (Appendix A.5).

We also attempted to predict the number of CRISPR arrays in a genome

given that that genome had at least one array, though this attempt was entirely

unsuccessful (Appendix A.6).
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2.4.3 Predicting CRISPR Type

Each CRISPR system type is associated with a signature cas targeting gene

unique to that type (cas3, cas9, and cas10 for type I, II, and III systems respec-

tively). There are many species in the dataset with cas3 (605), but relatively few

with cas9 (160) and cas10 (222), suggesting that the traits correlated with CRISPR

incidence probably correspond primarily to type I systems (the dominance of type I

systems has been noted previously [30]). We mapped the incidence of each of these

genes onto the PCA we constructed earlier (see Fig A.9 and Table 2.1), and found

that cas9 separates from cas3 and cas10 along the �rst component (Fig 2.5a).

Broadly, this indicates that type II systems are more commonly found in host-

associated than free-living microbes, the opposite of the other two system types.

We built an RF model of cas9 incidence, with the Proteobacteria as the test

set. Because our training set had so few cases of cas9 incidence (10% of set), we

performed strati�ed sampling during the RF construction process to ensure rep-

resentative samples of organisms with and without cas9. Surprisingly, despite the

extremely small number of organisms with cas9 in the training and test sets (160

and 58 respectively), this model was accurately able to predict type II CRISPR in-

cidence and had some discriminative ability (Accuracy = 93.0%, κ = 0.164), though

it missed many of the positive cases (TPR = 0.172). This model also suggested

that a host-associated lifestyle seems to be a major factor in�uencing the incidence

of type II systems, with many of the top-ranking variables in terms of importance

corresponding to keywords having to do with the split between host associated and
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Figure 2.5: Type II CRISPR systems appear to be more prevalent in host-associated
microbes. (a) The cas targeting genes associated with type I, type II, and type III
systems (cas3, cas9, and cas10 respectively) mapped onto the PCA in Fig A.9.
Organisms without any targeting genes were omitted from the plot for readability.
Recall from Table 2.1 that PC1 roughly corresponds to a spectrum running from
host-associated to free-living microbes. (2) A variable importance plot from an RF
model of cas9 incidence. Observe that keywords related to a host-associated lifestyle
appear many times.
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free-living organisms (Fig 2.5b).

2.4.4 NHEJ, CRISPR, and Oxygen

Recently, Bernheim et al. [74] demonstrated that the type II-A CRISPR sys-

tem interferes with the NHEJ DNA repair pathway, leading to an inverse relation-

ship between the presence of type II-A systems and the NHEJ pathway in microbial

genomes. We hypothesized that this negative relationship between CRISPR and

NHEJ might be more widespread across system types. We also hypothesized that

this could explain the negative relationship between CRISPR and aerobicity we ob-

serve, since reactive oxygen species produced during aerobic respiration can induce

double-strand breaks, thus selecting for the presence of NHEJ repair in aerobic or-

ganisms [111, 112]. We use the presence of Ku protein as a proxy for the NHEJ

pathway, since this protein is central to the pathway.

There was a clear interaction between the presence of Ku and aerobicity on the

incidence of CRISPR (Fig 2.4c, using aerobicity meta-data from NCBI for this and

below analyses). Using our full set of RefSeq genomes, we found a weak negative

association between CRISPR and Ku incidence overall (Pearson's correlation, ρ =

−0.012; χ2 = 15.015, p = 1.067× 10−4), but restricting only to aerobes the negative

association between Ku and CRISPR was much stronger (Pearson's correlation, ρ =

−0.250, p = 9.109 × 10−16), whereas in anaerobes it was nonexistent (ρ = −0.023,

p = 0.704). This pattern was consistent when correcting for phylogeny (Appendix

A.7), and was true for both type I and III systems individually, though was not
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signi�cant for type II systems of which there were fewer in the dataset Fig A.19.

Similar to our CRISPR analysis, we used PCA and an RF model to �nd if and

where Ku-possessing organisms clustered in trait space. We found that the NHEJ

pathway clusters strongly in trait space (Fig A.17), and is favored in soil-dwelling,

spore-forming, aerobic microbes, consistent with expectations of where NHEJ will

be most important (Fig A.18; [111, 112]).

2.4.5 Predicting RM Incidence

So far, our analyses have not distinguished if temperature and oxygen predict

whether a microbe has an intracellular immune system that degrades DNA in gen-

eral, or whether these traits are speci�c to CRISPR adaptive immunity. We tested

these two possibilities by building an RF model of restriction enzyme incidence using

the same strati�ed sampling approach that we used for CRISPR system type. This

model showed decent predictive ability (κ = 0.317). However, the correlation be-

tween variable importance scores for the CRISPR and restriction enzyme RF models

was low (Fig 2.3 vs. Fig A.21; Pearson's correlation, ρ = 0.169 for mean decrease

in Gini Impurity Index, ρ = −0.0487 for mean decrease in accuracy; also Figs A.7

and A.8). This result implies that RM systems have di�erent traits determining

their incidence than do CRISPR systems (also note PCA plot, Fig A.20). When

we directly tested for an association with temperature and oxygen we also found

that the number of restriction enzymes was, unlike CRISPR incidence, negatively

associated with an anaerobic lifestyle (m = −4.53877, p = 2 × 10−16, phylogenetic
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linear regression), and only marginally signi�cantly associated with a thermophilic

lifestyle (m = 1.51063, p = 0.03779, phylogenetic linear regression). These results

were consistent across bootstrapped trees (Table A.3).

2.5 Discussion

We detected a clear association between microbial traits and the incidence of

the CRISPR immune system across species. We found that two predictors were es-

pecially important for predicting CRISPR incidence, thermophilicity and aerobicity.

The links between these two traits and CRISPR were con�rmed with annotations

from NCBI, and in the case of aerobicity with metagenomic data from the Tara

Oceans Project (Appendix A.5; [110]). The relationship between temperature and

CRISPR is well known [44, 45, 46], but we lend further support here by formally

correcting for shared evolutionary history in our statistical analyses using both para-

metric and non-parametric approaches.

Previous theoretical models predict that CRISPR will be selected against in

environments with dense and diverse viral communities [47, 48], since hosts are less

likely to repeatedly encounter the same virus in such environments. These models

in turn predict that in high-density host communities CRISPR will not be adaptive,

since high host density leads to high viral diversity [47, 48], and that this might

explain why potentially slow-growing thermophiles favor CRISPR immunity (as op-

posed to copiotrophic mesophiles). Our results show a marginal positive association

between growth rate and CRISPR incidence, and that group-living microbes seem
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to favor CRISPR immunity, calling these prior viral diversity and density based

explanations into question. Additionally, our analysis suggests that psychrophilic

and psychrotolerant species disfavor CRISPR more strongly than mesophiles, which

is not clearly explained or predicted by hypotheses based on host density.

We suspect that another factor could be a�ecting the degree of viral diversity

that a host encounters, so that viral diversity is high in colder environments and

low in hotter ones. Di�erences in dispersal limitation among viruses could lead

to lower immigration rates in hot environments, as viral decay rates may be low

at lower temperatures and high at higher temperatures [113], though this is highly

speculative. We note that host dispersal rates are unlikely to a�ect the viral diversity

seen by a host on average unless most of the host population is dispersing, an

unrealistic expectation.

Surprisingly, we �nd that oxygen requirement appears to be just as important

of a predictor of CRISPR incidence as temperature, and that this pattern is inde-

pendent of any e�ect of temperature. Possibly, this association can be explained

by inhibitory e�ects of CRISPR on NHEJ DNA repair. Type II-A CRISPR sys-

tems have been shown to directly interfere with the action of the NHEJ DNA repair

pathway in prokaryotes [74]. Reactive oxygen species are produced during aerobic

metabolism and can cause DNA damage [111], making NHEJ potentially partic-

ularly important in aerobes. Thus, if CRISPR interferes with the NHEJ repair

pathway, and this pathway is important in aerobes, we would expect CRISPR in-

cidence to be inversely related to the presence of oxygen. Our data showed a clear

interaction between aerobicity and the NHEJ machinery in determining CRISPR
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incidence that suggests that the link between CRISPR and aerobicity may be medi-

ated by the presence of the NHEJ pathway (Fig 2.4c). The Cas proteins share many

structural similarities with proteins implicated in DNA repair, and in some cases

prefer to associate with DSBs, and it is perhaps unsurprising that they appear to

broadly inhibit the NHEJ pathway whose proteins may be competing for substrate

[114]. Nevertheless, the evidence supporting this hypothesis is only preliminary.

The negative interaction between CRISPR and Ku should be experimentally con-

�rmed in type I and type III systems. Additionally, our repair versus immunity

tradeo� hypothesis could be tested using an experimental evolution setup in which

organisms with CRISPR are exposed to DNA damage.

The link that we propose between aerobic metabolism and NHEJ repair is

somewhat tenuous. Reactive oxygen species are thought to directly produce single

strand breaks which are most often converted to double strand breaks during cell

growth, the precise time when repair may be possible via homologous recombination

due to the presence of multiple genome copies. That being said, reactive oxygen

species can lead to double strand breaks during stationary phase when damage is

spatially clustered on the genome [115, 116], when cells experience speci�c types

of starvation that lead to vulnerable single-stranded DNA gaps [117, 118], or when

ROS occurs in conjunction with other damaging agents including cyanide [119] and

irradiation [120, 121, 122]. Furthermore, while NHEJ certainly will be important

during stationary phase, its relevance during growth is unknown. The pathway

itself does appear to be more prevalent in environments with oxygen (Figs A.17 and

A.18). Nevertheless, we have no ability to assess causality presently, and the strong
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interaction between Ku and aerobicity on CRISPR incidence we observed could be

the result of some other, as yet unrevealed driver. For example, NHEJ is thought to

be important for desiccation resistance [123, 124], and many organisms facing this

speci�c threat are likely to be aerobic.

As an alternative to our NHEJ hypothesis, could patterns in viral diversity

explain the relationship between aerobicity and CRISPR incidence? The viral-decay

hypothesis we proposed to explain the enrichment of thermophiles with CRISPR

does not make sense in this context, since we might expect viruses to decay more

readily in the presence of oxygen rather than under anoxic conditions. It is unclear

to us why the viruses of anaerobes would be more dispersal limited. Nevertheless, if

the viral communities infecting anaerobes were shown to be less diverse than those

infecting aerobes this could also explain the increased incidence of CRISPR among

these organisms.

We found no strong link between the incidence or number of RM systems on a

genome and a thermophilic or anaerobic lifestyle, suggesting that the major drivers

of CRISPR incidence are indeed CRISPR speci�c, consistent with our viral-diversity

and NHEJ-inhibition hypotheses.

We were also able to show that CRISPR types vary in in terms of the environ-

ments they are found in, with type II systems appearing primarily in host-associated

microbes. This phenomenon could be due in part to phylogenetic biases in the

dataset, but our use of a phylogenetically independent test set lends credence to the

overall trend. We have no clear mechanistic understanding of why cas9 containing

microbes tend to favor a host-associated lifestyle. Nevertheless this result may have
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practical implications for CRISPR genome editing, since it has recently been found

that humans frequently have a preexisting adaptive immune response to variants of

the Cas9 protein [125]. We note that type I and III systems do not appear to have

a strong link to host-associated lifestyles.

While our dataset spanned a broad phylogenetic range (with some notable

exceptions such as the Candidate Phyla Radiation [126]), we had a limited number

of microbial traits, which may have obscured some important CRISPR-trait asso-

ciations. With the number of microbial genomes in public databases constantly

expanding, so too should e�orts to provide metadata about each of the organisms

represented by those genomes. At least part of the problem lies in the lack of a uni-

versally accepted controlled vocabulary for microbial traits (similar to that provided

by the Gene Ontology Consortium [127]), although some admirable attempts have

been made [128, 129]. This would both facilitate the construction of more expansive

trait databases, and would help deal with the issue of comparing traits that span

many di�erent scales.

The ecological drivers of microbial immune strategy are likely as diverse as

the ever-increasing number of known prokaryotic defense systems [13, 42]. The

exploratory, database-centered approach we take here can be complemented by tar-

geted studies examining shifts in immune strategy across environmental gradients

(e.g., Appendix A.5) to provide a more �ne-grained understanding of how microbial

populations adapt to their local pathogenic and abiotic environments. Ultimately,

experimental manipulations will provide the power to fully validate proposed mech-

anisms behind ecological patterns in immune strategy.
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Chapter 3: Selective maintenance of multiple CRISPR arrays across

prokaryotes

3.1 Abstract

Prokaryotes are under nearly constant attack by viral pathogens. To protect

against this threat of infection, bacteria and archaea have evolved a wide array

of defense mechanisms, singly and in combination. While immune diversity in a

single organism likely reduces the chance of pathogen evolutionary escape, it remains

puzzling why many prokaryotes also have multiple, seemingly redundant, copies of

the same type of immune system. Here, we focus on the highly �exible CRISPR

adaptive immune system, which is present in multiple copies in a surprising 28%

of the prokaryotic genomes in RefSeq. We use a comparative genomics approach

looking across all prokaryotes to demonstrate that, on average, organisms are under

selection to maintain more than one CRISPR array. Given this surprising conclusion,

we consider several hypotheses concerning the source of selection and include a

theoretical analysis of the possibility that a tradeo� between memory span and

learning speed could select for both �long-term memory� and �short-term memory�

CRISPR arrays.
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3.2 Introduction

Just as larger organisms must cope with the constant threat of infection by

pathogens, so too must bacteria and archaea. To defend themselves in a given

pathogenic environment, prokaryotes may employ a range of di�erent defense mech-

anisms, and oftentimes more than one [11, 12, 17]. While having multiple types

of immune systems may decrease the chance of pathogen evolutionary escape [130],

having multiple instances of the same type of system is rather more puzzling. Here

we explore this apparent redundancy in the context of CRISPR-Cas immunity.

The CRISPR-Cas immune system is a powerful defense mechanism against

mobile genetic elements such as viruses and plasmids, and is the only known example

of adaptive immunity in prokaryotes [45, 131]. This system allows prokaryotes to

acquire speci�c immune memories, called �spacers�, in the form of short viral genomic

sequences which they store in CRISPR arrays in their own genomes [18, 19, 38].

These sequences are then transcribed and processed into short RNA fragments that

guide CRISPR-associated (Cas) proteins to degrade matching foreign DNA or RNA

[19, 132, 133]. Thus the CRISPR array is the genomic location in which memories

are recorded, while the Cas proteins act as the machinery of the immune system.

CRISPR systems appear to be widespread across diverse bacterial and ar-

chaeal lineages, with previous analyses of genomic databases indicating that ∼ 40%

of bacteria and ∼ 80% of archaea have at least one CRISPR system [53, 68, 134].

These systems vary widely in cas gene content and targeting mechanism, although

the cas1 and cas2 genes involved in spacer acquisition are universally required for
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a system to be fully functional [19, 68]. Such prevalence suggests that CRISPR

systems e�ectively defend against phage in a broad array of environments. The

complete story seems to be more complicated, with recent analyses of environmen-

tal samples revealing that some major bacterial lineages almost completely lack

CRISPR systems and that the distribution of CRISPR systems across prokaryotic

lineages is highly uneven [52]. Other studies suggest that particular environmental

factors can be important in determining whether or not CRISPR immunity is e�ec-

tive (e.g., in thermophilic environments [47, 48]). While previous work has focused

on the presence or absence of CRISPR across lineages and habitats, little attention

has been paid to the number of systems in a genome.

In fact, the multiplicity of CRISPR systems per individual genome varies

greatly, with many bacteria having multiple CRISPR arrays and some having mul-

tiple sets of cas genes as well (e.g., [56, 58]). CRISPR and other immune systems

are horizontally transferred at a high rate relative to other genes in bacteria [16],

meaning that any apparent redundancy of systems may simply be the result of the

selectively neutral accumulation of systems within a genome. Alternatively, some

microbes may experience selection for multiple sets of cas genes or CRISPR arrays.

We suspected that prokaryotes may be under selection to maintain multiple

CRISPR arrays, given that it is common for organisms across lineages to have mul-

tiple systems (as detailed below) and, in some clades, these appear to be conserved

over evolutionary time (e.g. [135, 136]). Because microbial genomes have a deletion

bias [137, 138], we would expect extraneous systems to be removed over time. Here

we construct a test of neutral CRISPR array accumulation via horizontal transfer
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and loss. Using publicly available genome data we show that the number of CRISPR

arrays in a wide range of prokaryotic lineages deviates from this neutral expecta-

tion by approximately two arrays. Thus we conclude that, on average, prokaryotes

are under selection to have multiple CRISPR arrays. We go on to discuss several

hypotheses for why having multiple arrays might be adaptive. Finally, we suggest

that a tradeo� between the rate of acquisition of immune memory and the span of

immune memory could lead to selection for multiple CRISPR arrays.

3.3 Methods

3.3.1 Dataset

All available completely sequenced prokaryotic genomes (all assembly lev-

els, bacteria and archaea) were downloaded from NCBI's non-redundant RefSeq

database FTP site ([139]) on December 23, 2017. Genomes were scanned for the

presence of CRISPR arrays using the CRISPRDetect v2.2 software [77]. We used

default settings except that we did not take the presence of cas genes into account in

the scoring algorithm (to avoid circularity in our arguments), and accordingly used

a quality score cuto� of three, following the recommendations in the CRISPRDetect

documentation. CRISPRDetect also identi�es the consensus repeat sequence and

determines the number of repeats for each array. Presence or absence of cas genes

were determined using genome annotations from NCBI's automated genome anno-

tation pipeline for prokaryotic genomes [83]. We discarded genomes that lacked a

CRISPR array in any known members of their species. In this way we only examined
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genomes known to be compatible with CRISPR immunity.

3.3.2 Test for selection maintaining multiple arrays

We detect selection by comparing non-functional (i.e., neutrally-evolving) and

functional (i.e., potentially-selected) CRISPR arrays. Since all known CRISPR

systems require the presence of cas1 and cas2 genes in order to acquire new spacers,

we use the presence of both genes on a genome as a marker for functionality of

arrays on that genome and the absence of one or both genes as a marker for non-

functionality (validated in Appendix B.1). This di�erentiation allows us to consider

the probability distributions of the number of CRISPR arrays i in non-functional

(Ni) and functional (Fi) genomes, respectively.

We start with our null hypothesis that in genomes with functional CRISPR

systems possession of a single array is highly adaptive (i.e. viruses are present and

will kill any susceptible host) but additional arrays provide no additional advantage.

Thus these additional arrays will appear and disappear in a genome as the result of

a neutral birth/death horizontal transfer and loss process, where losses are assumed

to remove an array in its entirety. This hypothesis predicts that the non-functional

distribution will look like the functional distribution shifted by one (Si):

H0 : Ni ≈ Si = Fi+1/

∞∑
j=1

Fj (3.1)

for i ≥ 0 (Si renormalized to account for loss of 0-array category).

We take two approaches to testing this hypothesis: one parametric from �rst
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principles and one non-parametric with less power but fewer assumptions. In our

parametric approach, we construct a stochastic model of neutral array accumulation

and �nd that both Ni and Si should �t a negative binomial distribution at equi-

librium (see Appendix B.2 for derivation). We calculate point maximum likelihood

estimates of the means of these �tted distributions (µ̂N and µ̂S). We expect that

µ̂S > µ̂N if more than one array is selectively maintained, and we bootstrap con�-

dence intervals on these estimates by resampling with replacement from our func-

tional and non-functional array count distributions in order to determine whether

the e�ect is signi�cant.

We also construct a non-parametric test for selection by determining at what

shift s the mismatch between Fi+s/
∑∞

j=s Fj and Ni, measured as the sum of squared

di�erences between the distributions, is minimized:

s? = argmin
s

∞∑
i=0

(
Ni − Fi+s/

∞∑
j=s

Fj

)2

. (3.2)

Under our null hypothesis s? = 1, and a value of s? > 1 implies that selection

maintains more than one array. Our parametric test is superior to s? because it can

detect if selection maintains more than one array across the population on average,

but not in all taxa, so that the optimal shift is fractional.

We note that the array accumulation process underlying these methods as-

sumes that CRISPR arrays are primarily lost all-at-once (e.g. due to recombination

between �anking insertion sequences [50, 140]) rather than through a process of

gradual decay due to spacer loss. Experimental evidence supports spontaneous loss
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of the entire CRISPR array [51], as do comparisons between closely related genomes

[50]. We discuss this assumption and provide evidence supporting spontaneous loss

in Appendix B.3.

3.3.3 CRISPR spacer turnover model

We develop a simple deterministic model of the spacer turnover dynamics

in a single CRISPR array of a bacterium exposed to n viral species (i.e., disjoint

protospacer sets; Appendix B.4). This model allows us to specify the strength of

priming (i.e., if a CRISPR array has a spacer targeting a particular viral species,

the rate of spacer acquisition towards that species is increased; [141, 142]) and a

functional form for spacer loss over time.

Using this model we can determine the optimal spacer acquisition rate given

a particular pattern of pathogen recurrence in the environment. If the optima for

distinct recurrence patterns do not overlap, it indicates that multiple arrays would

be required to simultaneously combat viral species with these distinct recurrence

patterns. For model analysis see Appendix B.4.

We consider two functional forms for spacer loss based on known features

of CRISPR biology. (1) The rate of per-spacer loss increases linearly with locus

length. This form is based on the observation that spacer loss appears to occur via

homologous recombination between repeats [31, 143, 144], which becomes more likely

with increasing numbers of spacers (and thus repeats). (2) The length of an array is

capped at some �xed �e�ective� number of spacers. This form is based on evidence
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Genome With CRISPR > 1 CRISPR > 1 signature > 1 type of
Set array arrays cas genes signature cas gene

Full dataset 44% 28% 5% 2%
Subsampled 40% 24% 9% 5%

Table 3.1: CRISPR array and cas multiplicity across prokaryotic genomes.

that mature crRNA transcripts from the leading end of the CRISPR array are far

more abundant than those from the trailing end, and that this decay over the array

happens quickly (most transcripts are from the �rst few spacers; [145, 146, 147]). We

analyze both models (Appendix B.4), though they give qualitatively similar results,

and so we focus on case (1) in the Results.

3.4 Results

3.4.1 Having more than one CRISPR array is common

Almost half of the prokaryotic genomes in the RefSeq database have at least

one CRISPR array, and around a quarter have multiple CRISPR arrays (Table 3.1).

In contrast to this result, having more than one set of cas targeting genes is not

nearly as common. We counted the number of signature targeting genes diagnostic

for type I, II, and III systems in each genome (cas3, cas9, and cas10 respectively

[30]). Only 5% of all genomes have more than one targeting gene. Of these cases,

about half correspond to cases of multiple types of targeting genes in the same

genome (Table 3.1).

Some species are overrepresented in RefSeq (e.g. because of medical relevance),

and we wanted to avoid results being driven by just those few particular species.
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We controlled for this bias by randomly sub-sampling 10 genomes from each species

with more than 10 genomes in the database and found broadly similar results (Table

3.1).

3.4.2 Selection maintains multiple CRISPR arrays

We leveraged the di�erence between functional and non-functional genomes,

within each of which the process of CRISPR array accumulation should be dis-

tinct (Fig 3.1 and Table B.1). Non-functional CRISPR arrays should accumulate

neutrally in a genome following background rates of horizontal gene transfer and

gene loss (see Methods). We constructed two point estimates of this background

accumulation process using our parametric model to infer the distribution of the

number of arrays. One estimate came directly from the non-functional genomes

(µ̂N , Fig 3.1(a)). The other came from the functional genomes, assuming that hav-

ing one array is adaptive in these genomes, but that additional arrays accumulate

neutrally (µ̂S, Fig 3.1(b)). If selection maintains multiple (functional) arrays, then

we should �nd that µ̂N < µ̂S. We found this to be overwhelmingly true, with about

two arrays on average seeming to be evolutionarily maintained across prokaryotic

taxa (∆µ = µ̂S − µ̂N = 1.09± 0.03). We bootstrapped 95% con�dence intervals of

our estimates by resampling genomes (Table B.1) and found that the bootstrapped

distributions did not overlap, indicating a highly signi�cant result (Fig 3.1(d)). To

control for the possibility that multiple sets of cas genes in a small subset of genomes

could be driving this selective signature, we restricted our dataset only to genomes

51



with one or fewer signature targeting genes (cas3, cas9, or cas10 [30, 68]) and one

or fewer copies each of the genes necessary for spacer acquisition (cas1 and cas2 ).

Even in this restricted set selection maintains more than one (functional) CRISPR

array, though the e�ect size is smaller (∆µ = 0.61± 0.02, Fig B.1).

In order to further con�rm our results we (1) subsampled overrepresented taxa

in the dataset, (2) performed phylogenetically-corrected tests to account for possible

evolutionary correlation in rates of horizontal gene transfer (HGT), (3) considered

the e�ects of potential physical linkage between cas genes and CRISPR arrays, (4)

looked for artifacts as a factor of genome assembly level, (5) considered the potential

e�ects of CRISPR immunity on rates of HGT [148], and, �nally, (6) merged arrays

with identical repeats to account for the potential formation of neo-CRISPR arrays

by o�-target spacer integration [149] as well as other array duplication events. In all

cases our qualitative result of selection (∆µ > 0) holds (Appendices B.5 and B.6).

Additionally, we explored the possibility that the CRISPR detection algorithm we

used could be biased and/or su�ering from a high rate of false positives, and found

our qualitative result did not change when using a higher score cuto�, restricting to

arrays with experimentally veri�ed repeat sequences, or using an alternative algo-

rithm (Appendix B.7).
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Figure 3.1: Selection maintains more than one CRISPR array on average across
prokaryotes. (a-b) Distribution of number of arrays per genome in (a) genomes
with non-functional CRISPR immunity and (b) genomes with putatively functional
CRISPR immunity. The tails of these distributions are cut o� for ease of visual
comparison (24 genomes with > 10 arrays in (a) and 498 genomes with > 10 arrays
in (b)). In (a) the black circles show the negative binomial �t to the distribution of
arrays in non-functional genomes. In (b) black circles indicate the negative binomial
�t to the single-shifted distribution (s = 1) and pink triangles to the double-shifted
distribution (s = 2). Note that the �t to the double-shifted distribution (pink
triangles in b) visually resembles the distribution of non-functional arrays shown
in (a). (c) We formally quantify the di�erence between the non-functional/shifted
function distributions and �nd an optimal shift of s? = 2. (d) The bootstrapped
distributions of the parameter estimates of µ̂S and µ̂N show no overlap with 1000
bootstrap replicates.
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3.4.3 A tradeo� between memory span and acquisition rate could select

for multiple arrays in a genome

We built a simple model of spacer turnover dynamics in a single CRISPR array.

We consider three patterns of viral residency in the environment corresponding to the

major threats prokaryotes are likely to face: (1) �background� viruses that coexist

with their hosts over long time periods [150], (2) periodic outbreaks of a particular

�transient� virus that enters and leaves the system [151], and (3) �novel� viruses

that a host has not previously encountered (see Methods and Appendix B.4). For

very high spacer acquisition rates, a host will be able to e�ectively defend against

all three types of viral species simultaneously, because the acquisition of immunity

will be nearly instantaneous (�short-term memory�/�fast-learning� in Figs 3.2 and

B.2). Such high rates are unrealistic due to physical constraints on the speed of

adaptation as well as the evolutionary constraint of autoimmunity (Appendix B.8,

[25, 27, 61, 152, 153]). CRISPR adaptation is rapid, but it is not instantaneous, and

infected but susceptible hosts will often perish before a spacer can be acquired [154].

This is precisely why the memory-like quality of CRISPR immunity is advantageous.

Our analysis also reveals a region of parameter space with low spacer acqui-

sition rates in which immunity is maintained towards both background and tran-

sient viruses (�long-term memory�/�slow-learning� in Fig 3.2(a)). The �long-term

memory�/�slow-learning� region of parameter space is separated from the �short-

term memory�/�fast-learning� region of parameter space by a �memory-washout�

region in which spacer turnover is high so that memory is lost but acquisition is
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Figure 3.2: Immune memory is maximized at intermediate and low spacer ac-
quisition rates, creating a tradeo� with the speed of immune response to novel
threats. (a) Phase diagram of the behavior of our CRISPR array model with two
viral species, a constant �background� population and a �transient� population that
leaves and returns to the system at some �xed interval. The yellow region indi-
cates that immunity towards both viral species was maintained. The green region
indicates where immune memory was lost towards the transient phage species, but
reacquired almost immediately upon phage reintroduction (tI < 10−5, where tI is
the time to �rst spacer acquisition after the return of the species to the system fol-
lowing an interval of absence). The light blue region indicates that only immunity
towards the background species was maintained (i.e., immune memory was rapidly
lost and tI > 10−5). Dark blue indicates where equilibrium spacer content towards
one or both species did not exceed one despite both species being present in the
system (Appendix B.4). (b) The tradeo� between memory span and learning speed.
The speed of immune response to the transient virus is plotted against the speed
of response to a novel virus to which the system has not been previously exposed
(so that there are no spacers targeting this virus), over a range of spacer acquisition
rates (µA ∈ [10−3.5, 1]), and letting the densities of transient and background viruses
be equal. The speed of immune response to a virus is de�ned as 1/(1 + t) where
t is time to �rst spacer acquisition (t = 0 if memory is maintained). The speed of
response to the novel virus is therefore 1/(1+tN) where tN is the time to �rst spacer
acquisition towards this virus. For speci�cs on calculating tI and tN see Appendix
B.4. Note that µA is the number of spacers expected to be acquired per viral particle
adsorbed to the host cell.
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not rapid enough to quickly re-acquire immunity towards the transient virus. This

sets up a tradeo� between the ability of a host to defend against both transient

and novel viruses, since the response time towards novel threats in the �long-term

memory�/�slow-learning� region of parameter space is slow (Fig 3.2(b)), but memory

of transient threats is lost if spacer acquisition rates are increased. Thus, in order to

maximize novel spacer acquisition and memory span simultaneously, a two-system

solution will be required.

Additionally, priming expands the �washout� region of parameter space, be-

cause high spacer uptake from background viruses will crowd out long term immune

memory (Fig B.3). This suggests that priming strengthens the learning vs. memory

tradeo� and makes a two-array solution more likely.

3.4.4 Selection varies between taxa and system types

A handful of species in the dataset were represented by a large number of

genomes (> 1000), with at least one each of functional and non-functional genomes.

We performed our test for selection on each of these species individually and found a

large amount of variation between species (Table B.2). Notably, genomes of Campy-

lobacter jejuni, Escherichia coli, and Salmonella enterica show evidence for selection

against having a functional CRISPR array (negative ∆µ), indicating that CRISPR

immunity is selected against on average in some groups of organisms. Previous work

has shown that CRISPR in E. coli and S. enterica appears to be non-functional as an

immune system under natural conditions [155, 156]. We had relatively few archaeal
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genomes (< 1% of dataset), but they showed a clear signal of selection maintaining

multiple arrays (∆µ = 1.05± 0.56, Fig B.4).

While we do not have direct information on system type for the majority of

arrays in our dataset, we can subdivide genomes into those containing the signature

cas targeting genes for type I, II, or III CRISPR systems (cas3, cas9, and cas10

respectively) as a proxy for system type [30]. The number of arrays per genome

di�ered signi�cantly among system types (Fig B.5), and the largest di�erence was

between genomes with class I targeting proteins which had around 2 arrays on

average (type I and type III, 2.10 and 1.96 respectively) and class II targeting

proteins which only had one array on average (type II, 1.05). We excluded genomes

with multiple types of targeting genes for this analysis.

We cannot run our test for selection directly on these subsets of the data, since

they exclude genomes without arrays or cas genes. Instead we classi�ed species into

types if the only observed targeting gene type among all representatives of that

species corresponded to a a particular type. Thus we can test for our signature of

selection among species that �favor� a particular type of CRISPR system. All types

showed a signature of multi-array selection (∆µ = 1.09±0.05, 0.62±0.02, 1.79±0.06

respectively). In particular type III �species� had an exceptionally strong signal, and

organisms in this group may be under selection to maintain three arrays.
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3.5 Discussion

3.5.1 Selection maintains multiple CRISPR arrays across prokaryotes

On average, prokaryotes are under selection to maintain more than one CRISPR

array. The number of CRISPR arrays in a genome appears to follow a negative bi-

nomial distribution quite well (Figs 3.1, B.1, B.6, and B.7), consistent with our

theoretical prediction. We note that, due to the large size of this dataset, formal

goodness-of-�t tests to the negative binomial distribution always reject the �t due

to small but statistically signi�cant divergences from the theoretical expectation.

Our test for selection is conservative to the miscategorization of arrays as

�functional� or �non-functional.� Miscategorizations could occur for several reasons

because preexisting spacers may continue to confer immunity, some CRISPR arrays

may be conserved for non-immune purposes (e.g. [155, 157]), and intact acquisition

machinery is no guarantee of system functionality. Our test is conservative precisely

because of such miscategorizations, as they should drive µ̂N and µ̂S closer to each

other. Selection against having a CRISPR array in non-functional genomes could

produce a false signature of multi-array selection, but this is unlikely because non-

functional arrays probably carry extremely low or nonexistent associated costs [158].

Our test for selection is also robust to false positive or negative array discovery

rates because it relies on relative di�erences between array counts in functional and

non-functional genomes, not their absolute values. The only problem could arise

if the discovery error rates were di�erent between the two categories; however, the

58



array detection process did not take functionality into account and we found only a

marginal di�erence in CRISPRDetect con�dence scores between the two groups (Fig

B.8). We further con�rmed this robustness to peculiarities of the detection algorithm

by changing our CRISPRDetect score threshold and comparing to the distribution

of arrays per genome in the independently-generated CRISPR Database (Appendix

B.7; [159]).

Finally, we note that µ̂N and µ̂S take on a range of values depending on

what subset of taxa/genomes is considered. This is to be expected as each set of

species will occupy a distinct environment in terms of both the rate of horizontal

gene transfer and the usefulness of CRISPR immunity. Nevertheless, our qualitative

signature of selection is robust to this quantitative variability.

3.5.2 Why have multiple CRISPR-Cas systems?

Possibly, multiple arrays could be selectively maintained even in the absence

of any �tness advantage if, by chance, each array acquired complementary spacer

content towards distinct viral targets. In type I and II systems, if arrays share

acquisition machinery then such complementarity is unlikely because priming will

ensure both arrays contain spacers towards any target encountered, meaning that

the content of the two arrays will be largely redundant [141]. Type III systems

are unprimed and have slow spacer acquisition rates [160], and therefore may be

maintained via spacer complementarity, perhaps explaining why species favoring

type III systems appear to experience selection maintaining three rather than just
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two CRISPR arrays. Even in type I and II systems, if each array is associated with

a separate set of spacer acquisition machinery, then cross-priming will be less likely

and complementarity could arise. Nevertheless, this does not explain the multi-array

conservation we see in genomes with only a single set of cas genes.

Therefore we are left with two broadly de�ned reasons why having multiple

CRISPR arrays might be adaptive: (1) multiple similar systems could lead to im-

proved immunity through redundancy and (2) multiple dissimilar systems could

allow specialization towards distinct types of threats.

In the case of similar systems, immunity could be improved by (a) an increased

spacer acquisition rate, (b) an increased rate of targeting, or (c) a longer time to

expected loss of immunity. Duplication of cas genes could increase uptake (a) and

targeting rates (b), but again this could not explain our results with a single set of

cas genes. Alternatively, duplication of CRISPR arrays could increase targeting (b)

by producing a larger number of crRNA transcripts or increase memory duration

(c) through spacer redundancy. However, the e�ectiveness of crRNA may actually

decrease in the presence of competing crRNAs [158, 161, 162], and spacer redun-

dancy across multiple arrays has little advantage over redundancy within a single

array (Appendix B.9). At a larger scale, redundancy of either arrays or cas genes

might be a form of bet-hedging against mutation-induced loss of functionality of the

CRISPR system [51, 69].

Alternatively, dissimilar systems could help defend against diverse threats.

Diverse cas genes may allow hosts to evade broadly-acting anti-CRISPR proteins

encoded by some viruses [60, 163]. Indeed, promiscuous type III Cas proteins are
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often encoded alongside type I systems and can cooperate to target phages that

have mutated to escape type I targeting [164]. Empirically, we see the inclusion of

genomes with multiple cas targeting genes increases the e�ect size of our test for

selection, suggesting these factors may play a role. However, these cas-diversity hy-

potheses cannot explain the signature for multi-array adaptiveness observed among

genomes with only a single set of targeting proteins. We note that we observed our

signature of selection on multiple arrays both when limiting our analyses to arrays

with identical (Appendix B.10) and dissimilar (Appendix B.6) repeat sequences.

Therefore selective maintenance of multiple arrays does not appear to be isolated

to genomes with arrays of the same type or di�erent types, but rather to be a much

more general phenomenon. Additionally, given the very small number of genomes

with multiple types of cas targeting genes in our dataset, it is unlikely that selection

for multiple types of systems is particularly widespread even if it does exist in some

cases.

We develop a hypothesis that diversity in spacer acquisition rate among ar-

rays could lead to selection for multiple arrays. Our theoretical model illustrates

how factors intrinsic to the mechanism of CRISPR immunity could create a trade-

o� between memory span and learning speed. Either the physical loss of spacers

due to homologous recombination or the e�ective loss of spacers due to di�erential

transcription along the array leads to a qualitatively similar result. In both cases,

rapid spacer uptake causes rapid spacer loss (either physical or e�ective), producing

the aforementioned tradeo�. A low acquisition rate system is unlikely to pick up

a spacer from a single viral exposure, but, over a long time-frame, it may acquire
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spacers from viruses that periodically reappear in the system. Additionally, recom-

bination between arrays [165] could potentially facilitate the passage of memories

between �fast� and �slow� arrays, allowing short-term memories to become long-term

ones.

While we do not have empirical evidence that rate variation drives the observed

signature of selection of multiple arrays, this hypothesis remains attractive since it

can explain the signature even in the absence of multiple sets of cas genes. Acquisi-

tion rates vary between arrays, even on the same genome [63, 150], and even when

those arrays share cas genes and have an identical or nearly identical repeat sequence

[166, 167]. We found no clear link between the diversity of repeat sequences and a

proxy for spacer acquisition rates (Appendix B.10). Further, we found indications

of selection even when restricting to arrays with identical repeats (Appendix B.10).

Thus the factors in�uencing acquisition rate appear to be idiosyncratic, perhaps

related to the genomic position of the CRISPR array.

When partial spacer-target matches exist, variability in spacer acquisition rates

among arrays will be largely irrelevant because priming will ensure rapid acquisition

of new spacers. On the other hand, when no match exists, either due to spacer loss

or the introduction of a truly novel viral species into the environment, primed spacer

uptake will not occur. Thus the rate at which a host encounters novel threats will

determine the importance of the baseline spacer acquisition rate. In environments

where novel viruses are frequently encountered, small di�erences in acquisition rate

can be important for host �tness, whereas in environments where host and virus pairs

consistently coevolve over time priming will be the more important phenomenon.
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Finally, our examination of immune con�guration is likely relevant to the full

range of prokaryotic defense mechanisms. In contrast to previous work focusing on

mechanistic diversity (e.g. [48, 63, 130, 152]), we emphasize the importance of the

multiplicity of immune systems in the evolution of host defense. As we suggest, a

surprising amount of strategic diversity may masquerade as simple redundancy.
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Chapter 4: Immune Loss as a Driver of Coexistence During Host-Phage

Coevolution

4.1 Abstract

Bacteria and their viral pathogens face constant pressure for augmented im-

mune and infective capabilities, respectively. Under this reciprocally imposed selec-

tive regime, we expect to see a runaway evolutionary arms race, ultimately leading

to the extinction of one species. Despite this prediction, in many systems host and

pathogen coexist with minimal coevolution even when well-mixed. Previous work

explained this puzzling phenomenon by invoking �tness tradeo�s, which can dimin-

ish an arms race dynamic. Here we propose that the regular loss of immunity by the

bacterial host can also produce host-phage coexistence. We pair a general model of

immunity with an experimental and theoretical case study of the CRISPR-Cas im-

mune system to contrast the behavior of tradeo� and loss mechanisms in well-mixed

systems. We �nd that, while both mechanisms can produce stable coexistence, only

immune loss does so robustly within realistic parameter ranges.
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4.2 Introduction

While the abundance of bacteria observed globally is impressive [126, 168,

169], any apparent microbial dominance is rivaled by the ubiquity, diversity, and

abundance of predatory bacteriophages (or �phages�), which target these microbes

[170, 171, 172, 173, 174]. As one might expect, phages are powerful modulators of

microbial population and evolutionary dynamics, and of the global nutrient cycles

these microbes control [168, 170, 172, 173, 175, 176, 177, 178, 179, 180]. Despite this

ecological importance, we still lack a comprehensive understanding of the dynam-

ical behavior of phage populations. More speci�cally, it is an open question what

processes sustain phages in the long term across habitats.

Bacteria can evade phages using both passive forms of resistance (e.g. receptor

loss, modi�cation, and masking) and active immune systems that degrade phages

(e.g. restriction-modi�cation systems, CRISPR-Cas) [71]. These defenses can incite

an escalating arms race dynamic in which host and pathogen each drive the evolution

of the other [8, 9]. However, basic theory predicts that such an unrestricted arms race

will generally be unstable and sensitive to initial conditions [181]. Additionally, if

phages have limited access to novel escape mutations, an arms race cannot continue

inde�nitely [182, 183, 184]. This leads to an expectation that phage populations

will go extinct in the face of host defenses [183].

While typically this expectation holds [e.g. 185], phages sometimes coexist with

their hosts, both in natural [e.g. 186, 187] and laboratory settings [e.g. 150, 181, 183,

188, 189, 190, 191, 192]. These examples motivate a search for mechanisms to explain
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the deescalation and eventual cessation of a coevolutionary arms race dynamic, even

in the absence of any spatial structure to the environment. Previous authors have

identi�ed (1) �uctuating selection and (2) costs of defense as potential drivers of

coexistence in well-mixed systems. Here we propose (3) the loss of immunity, wherein

the host defense mechanism ceases to function, as an additional mechanism. We

focus on intracellular immunity (e.g., CRISPR-Cas) in which immune host act as

a sink for phages rather than extracellular resistance (e.g., receptor modi�cations),

since the former poses more of an obstacle for phages and thus more of a puzzle for

explaining long-term coexistence.

Under a �uctuating selection dynamic, frequencies of immune and infective al-

leles in the respective host and phage populations cycle over time [193, 194, 195, 196].

That is, old, rare genotypes periodically reemerge because the dominant host or

pathogen genotype faces negative frequency dependent selection. Fluctuating se-

lection is likely in situations where host immune and phage infectivity phenotypes

match up in a one-to-one �lock and key� type manner [195], and there is evidence

that arms races do give way to �uctuating selection in some host-phage systems

[184]. Fluctuating selection cannot always proceed, though. When novel pheno-

types correspond to increased generalism we do not expect past phenotypes to recur

[195, 196] since they will no longer be adaptive. Such expanding generalism during

coevolution has been seen in other host-phage systems [197]. Thus the relevance

of �uctuating selection depends on the nature of the host-phage immune-infective

phenotype interaction.

Another possible driver of coexistence are costs incurred by tradeo�s between
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growth and immunity (for host) or host range and immune evasion (for phage)

[190, 198, 199, 200]. A tradeo� between immunity and growth rate in the host

can lead to the maintenance of a susceptible host population on which phages can

persist [183, 189, 190, 199, 201, 202]. Tradeo�s often imply a high cost of immunity

that does not always exist [e.g. 181], particularly in the case of intracellular host

immunity, as we show later.

Finally, in large host populations typical of bacteria, even low rates of immune

loss could produce a substantial susceptible host subpopulation, which, in turn,

could support phage reproduction and coexistence. Such loss of function in the host

defenses could be due to either mutation or stochastic phenotypic changes. Delbrück

[203] initially described this hypothesis of loss of defense via back-mutation in order

to challenge the evidence for lysogeny. Lenski [204] reiterated this hypothesis in

terms of phenotypic plasticity and noted that conditioning the production of a sus-

ceptible host population on a resistant one could lead to very robust, host-dominated

coexistence. More recently, Meyer et al. [205] presented an empirical example of

a system in which stochastic phenotypic loss of resistance leads to persistence of a

coevolving phage population.

We hypothesize that coexistence equilibria will be more robust under an im-

mune loss mechanism than under a tradeo� mechanism [204]. We build a general

mathematical model to demonstrate this point and then use a combination of ex-

perimental evidence and simulation-based modeling to apply this result to the co-

evolution of Streptococcus thermophilus and its lytic phage 2972 in the context of

CRISPR immunity.
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4.3 General Immune Loss Model

We begin with a general model that considers two populations of host (�de-

fended� with a functional immune system; �undefended� without) and one pop-

ulation of pathogen. Starting from classical models of bacteria-phage dynamics

[198, 206], we add key terms to capture the e�ects autoimmunity (i.e., a tradeo�),

immune loss, and the implicit e�ects of coevolution. This relatively simple model

allows us to analyze steady states and parameter interactions analytically. Later, we

examine the CRISPR-Cas immune system in detail and build a model with explicit

coevolutionary dynamics.

We examine the chemostat system with resources:

Ṙ = w(A−R)− evR

z +R
(D + U) (4.1)

defended host:

Ḋ = D

(
vR

z +R
− δφdP − α− µ− w

)
, (4.2)

undefended host:

U̇ = U

(
vR

z +R
− δφuP − w

)
+ µD, (4.3)

and phage:

Ṗ = P (δU(φuβ − 1) + δD(φdβ − 1)− w) , (4.4)

where parameter de�nitions and values can be found in Table 4.1 and rationale/references

for parameter values in Appendix C.1. However, we describe here the parameters
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of direct relevance to coexistence.

First, we allow for defended host to come with the tradeo� of autoimmunity

(α), which applies naturally to the CRISPR-Cas system examined later. While

autoimmunity could either decrease the host growth rate [207] or be lethal, we

focus on the latter as lethality will increase the stabilizing e�ect of this tradeo�

[26, 207, 208]. However, we also �nd similar general results when applying a penalty

to the resource a�nity or maximum growth rate of the defended host (Appendix

C.2, Figs C.1-C.8).

Second, we add �ow from the defended to undefended host populations repre-

senting loss of immunity at rate µ.

Finally, we model the e�ect of coevolution by allowing a fraction of even the

defended host population to remain susceptible (0 < φd ≤ 1). In a symmetric

fashion, even nominally undefended host may have secondary defenses against phage

(0 < φu ≤ 1).
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We analyze our model analytically as well as numerically to verify which equi-

libria are reachable from plausible (e.g., experimental) starting values (Appendix

C.3).

Assuming no phage coevolution (φd = 0), this model has a single analytic

equilibrium in which all populations coexist (Table C.1). In Fig 4.1, we explore

model behavior under varying rates of autoimmunity (α) and immune loss (µ).

Clearly when autoimmunity and loss rates surpass unity, defended host go extinct

in the face of excessive immune loss and autoimmune targeting. At the opposite

parameter extreme, we see coexistence disappear from the numeric solutions (Fig

4.1b) as phage populations collapse. This leads to a band of parameter space where

coexistence is possible, stable, and robust. In this band, autoimmunity and/or

immune loss occur at high enough rates to ensure maintenance of coexistence, but

not so high as to place an excessive cost on immunity. Crucially, this band is

much more constrained in the α-dimension, with autoimmunity restricted to an

implausibly high and narrow region of parameter space. This suggests a greater

robustness of coexistence under an immune loss mechanism even at low loss rates

(Fig 4.1, Figs C.2-C.8). To assess more directly the degree of robustness of each

driver of coexistence we can perturb our system and see its response. We move

our system away from equilibrium X̃ so that X ′ = X̃ exp (γ(Y − 1
2
)) where Y ∼

Uniform[0, 1], and then solve numerically using X ′ as our initial condition. Under

increasing levels of perturbation the system is less likely to reach stable coexistence,

speci�cally in the α-dimension, indicating that autoimmunity produces a far less

robust coexistence regime (Fig 4.1c-e, Figs C.2-C.8).
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Figure 4.1: Model behavior under variations in the rates of autoimmunity (α) and
CRISPR-Cas system loss (µ). Equilibria (Table C.1) derived from Equations 4.1-4.4
are shown in (a) where orange indicates a stable equilibrium with all populations
coexisting and defended host dominating phage populations, green indicates that all
populations coexist but phages dominate, and blue indicates that defended bacteria
have gone extinct but phages and undefended bacteria coexist. In (b) we �nd numer-
ical solutions to the model at 80 days using realistic initial conditions more speci�c
to the experimental setup (R(0) = 350, D(0) = 106, U(0) = 100, P (0) = 106).
In this case orange indicates coexistence at 80 days with defended host at higher
density than phages, green indicates a phage-dominated coexistence at 80 days, and
blue indicates that coexistence did not occur. Numerical error is apparent as noise
near the orange-blue boundary. We neglect coevolution and innate immunity in this
analysis (φu = 1, φd = 0). (c-e) Phase diagrams with perturbed starting conditions.
Numerical simulations with starting conditions (X(0) = [R(0), D(0), U(0), P (0)])
perturbed by a proportion of the equilibrium condition X(0) = X̃ exp (γ(Y − 1

2
))

where Y ∼ U [0, 1] and X̃ signi�es an equilibrium value to explore how robust the
equilibria are to starting conditions. A single simulation was run for each parameter
combination.
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If we add large amounts of innate immunity to undefended host (φu < 0.5), we

�nd phage-dominated coexistence for a wider range of α (Fig C.10). This result is in

line with the counterintuitive suggestion that higher immunity may increase phage

density by allowing the host population to increase in size [48]. However, secondary

defense has minimal e�ects for more plausible levels of protection (φu closer to 1).

In the case of phage coevolution (φd > 0), the equilibria still have closed

forms, but are not easily representable as simple equations and so are not written

here. When φd > 1
β
, defended host contribute positively to phage growth, eventually

shifting the coexistence equilibrium from host to phage dominance (Fig C.9).

4.4 A Case Study: CRISPR-Phage Coevolution

The CRISPR (Clustered Regularly Inter-spaced Short Palindromic Repeats)

prokaryotic adaptive immune system incorporates speci�c immune memory in the

form of short sequences of DNA acquired from foreign genetic elements (�spacers�)

and then uses this memory to target the corresponding sequences (�protospacers�)

during subsequent infections [18, 19, 38, 209]. CRISPR can lead to rapidly escalating

arms races between bacteria and phages [150, 210, 211], in which evolutionary and

population dynamics occur on the same timescale [150, 212, 213, 214].

CRISPR-Cas can quickly drive phages extinct in an experimental setting [185],

but in some cases long-term CRISPR-phage coexistence has been observed [150].

Previous theoretical and limited experimental work has explained short-term coexis-

tence through tradeo�s and spacer loss [215], and long-term coexistence by invoking
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continued coevolution via �uctuating selection [214] or tradeo�s with host switching

to a constitutive defense strategy such as surface receptor modi�cation [63, 216].

However, these previous hypotheses are insu�cient to explain simple coevolu-

tion experiments with Streptococcus thermophilus (type II-A CRISPR-Cas system)

and its lytic phage 2972 resulting in long-term coexistence [26, 150]. In these ex-

periments, bacteria are resource-limited and appear immune to phages, implying

they have �won� the arms race and that phages are persisting on a small susceptible

subpopulation of hosts. Deep sequencing of the same experimental system shows

dominance by a few spacers that drift in frequency over time, inconsistent with a �uc-

tuating selection dynamic [26]. Speci�cally, these results contradict the coexistence

regime seen in the Childs et al. [214, 217] model, wherein host are phage-limited

and the system undergoes a �uctuating selection dynamic. Thus either (1) costs

associated with CRISPR immunity or (2) the loss of CRISPR immunity is playing

a role in maintaining susceptible host subpopulations on which phages can persist.

In this system, the primary cost of a functional CRISPR-Cas system is au-

toimmunity via the acquisition of self-targeting spacers. It is unclear how or if

bacteria distinguish self from non-self during the acquisition step of CRISPR immu-

nity [25, 27, 61, 152, 153]. In S. thermophilus, experimental evidence suggests that

there is no mechanism of self vs. non-self recognition and that self-targeting spacers

are acquired frequently [27], which implies that autoimmunity may be a signi�cant

cost.

Outright loss of CRISPR immunity at a high rate could also lead to coex-

istence. The bacterium Staphylococcus epidermidis loses phenotypic functionality
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in its CRISPR-Cas system, either due to wholesale deletion of the relevant loci or

mutation of essential sequences (i.e. the leader sequence or cas genes), at a rate

of 10−4-10−3 inactivation/loss events per individual per generation [51]. Functional

CRISPR loss has been observed in other systems as well [143, 218].

Below we replicate the serial-transfer coevolution experiments performed by

Paez-Espino et al. [26, 150] and develop a simulation-based coevolutionary model

to explain the phenomenon of coexistence.

4.4.1 Experiments

We performed long-term daily serial transfer experiments with S. thermophilus

and its lytic phage 2972 in milk, a model system for studying CRISPR evolution

(see Appendix C.4 for detailed methods). We measured bacteria and phage densities

on a daily basis. Further, on selected days we PCR-ampli�ed and sequenced the

CRISPR1 and CRISPR3 loci, the two adaptive CRISPR loci in this bacterial strain.

From the perspective of density, phages transiently dominated the system early

on, but the bacteria quickly took over and by day �ve appeared to be resource-limited

rather than phage-limited (Fig 4.2a,b). This switch to host-dominance corresponded

to a drop in phage populations to a titer two to three orders of magnitude below

that of the bacteria. Once arriving at this host-dominated state, the system either

maintained quasi-stable coexistence on an extended timescale (over a month and a

half), or phages continued to decline and went extinct relatively quickly (Fig 4.2a,b).

We performed six additional replicate experiments which con�rmed this dichotomy
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between either extended coexistence (4 lines quasi-stable for > 2 weeks) or quick

phage extinction (2 lines < 1 week) (Fig C.11).

Sequencing of the CRISPR1 and CRISPR3 loci revealed the rapid gain of a

single spacer (albeit di�erent spacers in di�erent sequenced clones) in CRISPR1

followed by minor variation in spacer counts with time (Fig C.12), with CRISPR1

being more active than CRISPR3. We tracked the identity of the �rst novel spacer in

the CRISPR1 array over time. We found a cohort of four spacers that persisted over

time and were repeatedly seen despite a small number of samples taken at each time

point (less than 10 per time point; Table 4.2). Other spacers were sampled as well,

but this small cohort consistently reappeared while other spacers were only found

at one or two timepoints, indicating this cohort was dominating the system (Table

C.2). Such a pattern is inconsistent with a �uctuating selection hypothesis. Further,

we did not observe frequent spacer loss in the CRISPR1 or CRISPR3 arrays.
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Figure 4.2: Serial transfer experiments carried out with S. thermophilus and lytic
phage 2972 Bacteria are resource-limited rather than phage-limited by day �ve and
phages can either (a) persist at relatively low density in the system on long timescales
(greater than 1 month) or (b) collapse relatively quickly. These results agree with
those of Paez-Espino [150] where coexistence was observed in S. thermophilus and
phage 2972 serially transferred culture for as long as a year. Experiments were
initiated with identical starting populations and carried out following the same
procedure. In (c-e) we show that our simulations replicate the qualitative patterns
seen in the data, with an early phage peak, followed by host-dominated coexistence
that can either be (c) stable, (d) sustained but unstable, or (e) short-lived. Each plot
is a single representative simulation and simulations were ended when phages went
extinct. Note that experimental data has a resolution of one time point per day,
preventing conclusions about the underlying population dynamics (e.g., cycling),
whereas simulations are continuous in time.

77



S
p
a
c
e
r
ID

T
im

e
D

E
F

G
T
o
ta
l
in

C
o
h
o
r
t

T
o
ta
l
S
a
m
p
le
d
S
e
q
u
e
n
c
e
s

P
e
r
c
e
n
t
S
a
m
p
le
s
in

C
o
h
o
r
t

1
0

0
0

0
0

3
0

2
1

1
1

0
3

4
75

3
2

0
1

1
4

5
80

4
0

0
0

0
0

1
0

5
0

0
2

1
3

7
43

11
1

2
0

2
5

7
71

15
1

1
1

0
3

7
43

25
0

5
0

0
5

8
63

35
0

1
0

2
3

6
50

40
0

0
0

2
2

9
22

T
ab
le
4.
2:

Se
qu
en
ci
ng

da
ta

sh
ow

s
fo
ur

�r
st
-o
rd
er

sp
ac
er
s
th
at

pe
rs
is
t
as

a
hi
gh
-f
re
qu
en
cy

co
ho
rt

ov
er

ti
m
e.

Sa
m
pl
es

id
en
ti
�e
d

by
th
e
�r
st

no
ve
l
sp
ac
er

ad
de
d
to

th
e
ar
ra
y
as

co
m
pa
re
d
to

th
e
w
ild

-t
yp

e.
Se
e
T
ab
le
C
.2

fo
r
co
m
pl
et
e
sp
ac
er

dy
na
m
ic
s.

78



4.4.2 CRISPR-phage Coevolutionary Model

We next built a hybrid deterministic/stochastic lineage-based model similar to

an earlier model by Childs et al. [214, 217] that explicitly models the coevolutionary

dynamics of the CRISPR-phage system wherein bacteria acquire spacers to gain

immunity and phages escape spacers via mutations. Our simulations also replicate

the resource dynamics of a serial dilution experiment, wherein the system undergoes

large daily perturbations.

We model phage mutations only in the protospacer adjacent motif (PAM)

region, which is the dominant location of CRISPR escape mutations [150] to prevent

the possibility of spacer re-acquisition. This approach di�ers from previous models

which considered mutations in the protospacer region itself [e.g. 47, 48, 214] and

thus allowed for the possibility of spacer re-acquisition. We justify modeling only

PAM mutations with three arguments. First, the probability of spacer re-acquisition

will be quite low if there are many protospacers. Second, re-acquired spacers will

already have undergone selection for escape mutation by phage, and, assuming that

there are therefore diverse escape mutations in the phage population, these spacers

will thus provide limited bene�t to the host. Third, as we move away from the PAM

along the protospacer sequence, more substitutions are tolerated by the CRISPR

matching machinery [219], meaning that mutations farther away from the PAM will

be less e�ective at escaping immunity [220].
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We model population dynamics using di�erential equations for resources:

Ṙ =
−evR
z +R

(
U +

∑
i

Di

)
(4.5)

CRISPR-enabled bacteria with spacer set Xi:

Ḋi = Di

(
vR

z +R
− δ

(∑
j

(1−M(Xi, Yj))Pj

)
− α− µL

)
(4.6)

a pool of undefended bacteria with a missing or defective CRISPR-Cas system:

U̇ = U

(
vR

z +R
− δ

∑
i

Pi

)
+ µL

∑
i

Di (4.7)

and phages with protospacer set Yi :

Ṗi = δPi

(
U(βi − 1) +

∑
j

Dj(βi(1−M(Xj, Yi))− 1)

)
, (4.8)

and stochastic events occur according to a Poisson process with rate λ:

λ =
∑
i

λBi
+
∑
i

λPi
+
∑
i

λKi
(4.9)

which is a sum of the total per-strain spacer-acquisition rates:

λBi
= µbδDi

∑
j

Pj (4.10)
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total per-strain PAM mutation rates:

λPi
= µpβiδPi

(
U +

∑
j

(1−M(Xi, Yj))Di

)
(4.11)

and total per-strain PAM back mutation rates:

λQi
= µqβiδPi

(
U +

∑
j

(1−M(Xi, Yj))Di

)
. (4.12)

In this way each unique CRISPR genotype (Xi), de�ned as a set of linked

spacers sharing the same array, is modeled individually, as is each phage genotype

(Yi). As new spacers are added and new PAMs undergo mutation, new pairs of

genotypes and equations are added to the system. Host that have undergone immune

loss are modeled separately (U), as if they have no CRISPR-Cas system.

The function M(Xi, Yj) is a binary matching function between (proto)spacer

content of bacterial and phage genomes that determines the presence or absence of

immunity. We refer to the �order� of a host or phage strain, which is the number

of evolutionary events that strain has undergone, |Xi| or ns− |Yi| respectively. The

PAM back mutation rate µq describes the rate at which we expect a mutated PAM to

revert to its original sequence (assuming the mutation is a substitution). While back

mutation is not required to generate stable host-dominated coexistence, it greatly

expands the relevant region of parameter space because it allows phages to avoid the

cost we will impose on PAM mutations, discussed below, when those immune escape

mutations are no longer bene�cial. Recombination among viral strains could have a

similar e�ect by providing another route to an un-mutated or less mutated genome.
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Páez-Espino [150] suggest that recombination can produce stable host-dominated

coexistence, although we reject such diversity-driven hypotheses [e.g. 214] based on

our sequencing data.

We assume that the number of PAM mutations in a single phage genome is

constrained by a tradeo� with phage �tness, as this is necessary to prevent the total

clearance of protospacers from a single strain at high mutation rates. Increases

in host breadth at the species level generally come at a cost for viruses due to

pleiotropic e�ects [221]. More broadly, mutations tend to be deleterious on average

[e.g. 222]. It is reasonable to speculate that phages have evolved under pressure to

lose any active PAMs on their genomes, and thus that the persisting PAMs may

have been preserved because their loss is associated with a �tness cost.

The function

βi = −cβbase
ns
|Yi|+ βbase (4.13)

incorporates a linear cost of mutation into the phage burst size. See Table 4.3

for further de�nitions of variables, functions, and parameters in Equations 4.5-4.13.

Simulation procedures and rationale for parameter values, including phage genome

size, are detailed in Appendix C.3.
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4.4.2.1 Stable Host-Dominated Coexistence

Simulations with immune loss reliably produce extended coexistence within a

realistic region of the parameter space (Fig 4.3) thus replicating our experimental

results (Fig 4.2), and con�rming our qualitative results from the simpler determin-

istic model (Fig 4.1). We observed no simulations in which autoimmunity alone

produced stable coexistence. This agrees with our earlier numerical results from

the general model where unrealistically high rates of autoimmunity were required

to produce coexistence.

Similar to our experimental results, for a single set of parameters this model

can stochastically fall into either stable coexistence or a phage-free state (Fig 4.3).

The relative frequencies with which we see each outcome, as well as the distribution

of times that phages are able to persist, depend on the speci�c set of parameters

chosen. In particular, increasing the PAM back mutation rate will increase the prob-

ability of the coexistence outcome (Fig 4.4), although even in the absence of back

mutation the system will occasionally achieve stable coexistence. This dependence

on back mutation is caused by the combined e�ects of the cumulative cost we impose

on PAM mutations and the inability of phages to keep up with host in a continuing

arms race. In the early stages of the arms race it is optimal for phages to continue

undergoing PAM mutations as the most abundant available hosts are high-order

CRISPR variants, whereas once hosts are able to pull su�ciently ahead of phages

in the arms race it becomes optimal for phages to feed on the lower-density but

consistently available CRISPR-lacking host population (Fig C.13).

84



µL = 5e−4, α = 0

0

10

20

30

40

50

10 30 50 > 70

µL = 5e−4, α = 50µb

0

10

20

30

40

50

10 30 50 > 70

µL = 0, α = 0

0

10

20

30

40

50

10 30 50 > 70

µL = 0, α = 50µb

0

10

20

30

40

50

10 30 50 > 70

Time to Phage Clearance (Days)

F
re

q
u
e
n
c
y

Figure 4.3: Distribution of phage extinction times in bacterial-dominated cultures
with di�erent possible combinations of coexistence mechanisms. The peak at ≥ 75
corresponds to what we call stable coexistence (simulations ran for a maximum of 80
days). There is no signi�cant di�erence between the top two panels in the number
of simulations reaching the 80 day mark (χ2 = 2.8904, df = 1, p−value = 0.08911).
Back mutation was set at µq = 5× 10−9.
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Figure 4.4: Distribution of phage extinction times in bacterial-dominated cultures
with di�erent rates of PAM back mutation in phages (µq). The peak at 80 corre-
sponds to what we call stable coexistence (simulations ran for a maximum of 80
days). These results are shown for a locus-loss mechanism only (µL = 5 × 10−4,
α = 0). The histogram for µq = 5× 10−8 is omitted as it is nearly identical to that
for µq = 5 × 10−9, indicating that the height of the coexistence peak saturates at
high back mutation.

The adsorption rate, on a coarse scale, has an important e�ect on how the

model behaves (Fig C.14). At high values of δ where we would expect phages to

cause host extinction in the absence of CRISPR immunity (δ = 10−7) we see that

long-term coexistence occurs rarely, and is negatively associated with the phage

back mutation rate. In this case phages will rapidly consume the susceptible host

population and crash to extinction unless they have undergone PAM mutations that

lower their growth rate. This causes a reversal in the previous trend seen with back

mutation where the ability of phages to escape the costs of PAM mutation was

essential to their persistence. A decrease in the adsorption rate to a very low value

(δ = 10−9) leads to most simulations persisting in host-dominated coexistence until

the 80 day cuto�. Because both evolutionary and demographic dynamics occur
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much more slowly in this case, long term persistence does not necessarily imply

actual stability, as suggested by our and previous [150] experimental results in which

coexistence eventually ends. In general, lower adsorption rates lead to longer periods

of host-dominated coexistence and reduce the chance of phage extinction.

The failure of autoimmunity to produce coexistence warrants further investi-

gation. Upon closer examination, it is clear that in the early stages of the arms

race where CRISPR-enabled bacteria have not yet obtained spacers or been se-

lected for in the host population, phages are able to proliferate to extremely high

levels and greatly suppress the CRISPR-lacking host. Because autoimmunity as a

mechanism of coexistence relies on the continued presence of immune-lacking host,

it may not be able to function in the face of this early phage burst if susceptible

host are driven extinct. There is a possibility that very low locus loss rates that

reintroduce CRISPR-lacking bacteria but do not appreciably contribute to their

density combined with high rates of autoimmunity could maintain high enough den-

sity susceptible host populations to sustain phage. To investigate this possibility we

imposed a �oor of U > 1 and ran further simulations. Even with very high rates of

autoimmunity based on an upper limit of likely spacer acquisition rates (α = 50µb,

µb = 10−5) the susceptible host population does not grow quickly enough to su�-

ciently high levels to sustain phage (Fig C.15). Thus it is not early dynamics that

rule out autoimmunity but the insu�ciency of the mechanism itself for maintaining

large enough susceptible host populations.
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4.4.2.2 Transient Coexistence with Low Density Phage

While we do not observe stable coexistence in any case where there is not loss

of the CRISPR-Cas immune system, we did observe prolonged phage persistence

in some cases where µL = α = 0 (Fig 4.3) and in cases with autoimmunity only

(µL = 0). Phages were able to persist at very low density (∼ 10−100 particles/mL)

for as long as two months in a host-dominated setting without the presence of a

CRISPR-lacking host subpopulation (Fig 4.3, Fig C.16). It appears that in these

cases phages are at su�ciently low density as to have a minimal e�ect on their host

population and thus that host strain is selected against very slowly. Because the

phages have undergone many PAM mutations at this point they are unable to pro-

liferate rapidly enough between dilution events to have an easily measurable impact

on the host population. Essentially, phages delay their collapse by consuming their

host extremely slowly (Fig C.16). However, with an active locus loss mechanism

(i.e., µL > 0), we did not see this sustained but unstable coexistence occur, likely

because the undefended hosts would have driven the phage population to higher

levels and increased selection on the susceptible CRISPR variants.

4.5 Discussion

We paired a general model of immunity with a case study of the CRISPR

immune system to characterize and contrast the potential drivers of long-term host-

phage coexistence in well-mixed systems. We found that a tradeo� mechanism

does not lead to a robust coexistence equilibirum in the case of intracellular host
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immunity. We also ruled out coevolutionary drivers of coexistence in the S. ther-

mophilus-phage 2972 system based on a combination of our own sequencing data

and previous work on the same system [26]. Since some mechanism(s) must be pro-

ducing susceptible hosts on which phages can replicate, we are left with an immune

loss hypothesis as the best remaining explanation for our empirical results. Our

simulations showed that the addition of early coevolutionary dynamics alongside

immune loss replicates key features of our experimental results, including stochastic

switching between the possible outcomes of long term coexistence and rapid phage

clearance. Therefore we predict that that the CRISPR-Cas immune system is lost at

a nontrivial rate in S. thermophilus in addition to S. epidermidis [51], and possibly

other species.

With regards to CRISPR, while our experiments do not speak to the relative

importance of locus loss versus costly autoimmunity, our theoretical results reject

autoimmunity as a realistic mechanism of phage persistence. Our experimental

setup was in serial dilution, which subjects the culture to large daily perturbations,

ruling out any mechanism that does not produce a robust coexistence regime.

We emphasize that CRISPR immunity, and immunity in general, is still likely

costly [62]. Nevertheless, in cases of intracellular host immunity those costs are

insu�cient to drive continued phage persistence in the environment. Intracellular

immunity destroys phages rather than simply preventing phage replication. Thus

the threshold density of susceptible host for phage persistence is higher than in

systems where hosts have an extracellular defense strategy (i.e. receptor/envelope

modi�cation), meaning the cost of immunity must be higher. When hosts escape
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phage predation via receptor modi�cations, a growth-resistance tradeo� may lead

to coexistence.

Our sequencing results in the S. thermophilus system reject coevolutionary

mechanisms for coexistence. We can directly reject an arms race dynamic since

it predicts the rapid, continued accumulation of spacers, which does not occur in

our data. A �uctuating selection dynamic makes the more subtle prediction that

the frequencies of spacers in the population should cycle over time, with di�erent

spacers dominating at di�erent times. Even with relatively small sample sizes (<10

CRISPR loci sequenced per timepoint), we see a small cohort of spacers increase in

frequency early in the experiment and continue to be detected at later timepoints

(Table 4.2). These results are consistent with those of Paez-Espino et al. [26]

who performed deep sequencing with the same phage-host system and observed

dominant spacers that drifted in frequency over time. This continued detection and

dominance of particular spacers rules out strong �tness di�erences between these

spacers, which, in turn, contradicts the expectation of �uctuating selection that

�tnesses change over time. Our stochastic simulations agree, with coevolutionary

dynamics in the absence of loss or cost most often yielding rapid phage extinction

and only occasionally showing coexistence for over a month � but never exhibiting

sustained coexistence (Fig 4.3).

A similar model by Childs et al. [217] found that a �uctuating selection dy-

namic could lead to long term coexistence in a CRISPR-phage system when arrays

were �saturated�, in the sense that they were �lled to some preset maximum capac-

ity with spacers, which we do not observe in our experimental data. The fact that
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we see little expansion of the array suggests that hosts are completely immune to

phages, as rapid phage genome degradation inside the CRISPR-immune cells can

prevent further uptake of spacers [223].

While we conclude that immune loss plays a key role in our system, it is

not immediately clear why bacterial immune systems would lose functionality at

such a high rate. Our sequencing of the S. thermophilus CRISPR loci did not

reveal pervasive spacer loss events, indicating that immune loss is at the system

rather than spacer level. Perhaps in the case of CRISPR there is some inherent

instability of the locus, leading to high rates of horizontal transfer [50, 143, 218,

224, 225]. Jiang et al. [51] propose that CRISPR loss is a bet-hedging strategy

that allows horizontal gene transfer to occur in stressful environments (e.g., under

selection for antibiotic resistance). This proposal is consistent with evidence that

CRISPR does not inhibit horizontal gene transfer on evolutionary timescales [226].

A high rate of CRISPR loss and inactivation could produce pressure for bacteria

to frequently acquire new CRISPR-Cas systems through horizontal gene transfer,

perhaps explaining why strains with multiple CRISPR-Cas systems are frequently

observed, including S. thermophilus [56, 58]. This is consistent with a broader view

in which prokaryotic defense systems appear to be labile, having higher rates of gain

and loss than other genetic content [16].

While some clear anecdotes of immune loss exist [51, 205], other examples of

this phenomenon may have been missed because it is di�cult to detect. Phages will

quickly destroy any evidence of loss, and loss rates can be low while still a�ecting

population dynamics. Jiang et al. [51] go to great lengths to demonstrate loss in
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their system. Particularly with complex systems like CRISPR-Cas, a mutation in

any number of components can lead to inactivation, making loss hard to detect

from genetic screens. Phenotypic screens like those of Jiang et al. [51] require

the engineering of CRISPR spacer content and/or plasmid sequence as well as an

otherwise competent host.

Other paths to sustained coexistence between CRISPR-enabled hosts and

phages may also exist. There is a great diversity of CRISPR-Cas system types

and modes of action [30] and the particular mechanism of each system may lead to

distinct host-phage dynamics. That being said, our model of CRISPR evolutionary

dynamics is rather general, and we recovered similar qualitative results over a wide

range of parameter values apart from the S. thermophilus-speci�c parameter space.

Finally, our results show that the regular loss of immunity can sustain a viable

phage population, leading to the maintenance of selective pressure and thus keeping

immunity prevalent in the population overall. Even though long-term coexistence

with phages may not a�ect overall host population density, we suggest that, coun-

terintuitively, the periodic loss of individual immunity may drive the maintenance

of a high population immune prevalence.
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Appendix A: Supplemental Information For: �Visualization and pre-

diction of CRISPR incidence in microbial trait-space to

identify drivers of antiviral immune strategy�

A.1 Outline of Analyses

Visualizations

• CRISPR Incidence

� PCA (Figs 2.1 and A.9, Table 2.1)

� t-SNE (Figs 2.2, A.10, and A.4)

• CRISPR Type

� PCA (Fig 2.5)

• RM Incidence

� PCA (Fig A.20)

• Ku Incidence

� PCA (Fig A.17)
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Predictive Models (Proteobacteria Test Set)

Comparison of all predictive models in Figs A.7 and A.8

• CRISPR Incidence (Table 2.2, Appendix A.4, Figs A.7 and A.8)

� Logistic Regression with Forward Subset Selection and Random CV (Ta-

ble A.1)

� Logistic Regression with Forward Subset Selection and Blocked CV (Ta-

ble A.1)

� Phylogenetic Logistic Regression with Forward Subset Selection and Ran-

dom CV (Table A.1)

� Phylogenetic Logistic Regression with Forward Subset Selection and Blocked

CV (Table A.1)

� sPLS-DA (Fig A.11)

� MINT sPLS-DA (Fig A.12)

� Random Forest (Figs 2.3 and A.14)

� Random Forest Ensemble (A.13)

� Random Forest, no genetic information (Appendix A.2, Fig A.16)

• CRISPR Incidence With only Temperature and Oxygen as Predictors to Train

Model

� Random Forest
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• Number of CRISPR Systems

� Random Forest (regression; Appendix A.6)

• Type II CRISPR Incidence (cas9 )

� Random Forest (Fig 2.5)

• RM Incidence

� Random Forest (Fig A.21)

• Ku Incidence

� Random Forest (Fig A.18)

Phylogenetic Regressions

• CRISPR vs 16s rRNA count (also on bootstrapped trees; Table A.2)

• CRISPR vs Ku and Oxygen (also on bootstrapped trees, oxygen use from

NCBI metadata; Appendix A.7, Table A.4)

• Number of Restriction Enzymes vs Temperature (also on bootstrapped trees;

Table A.3)

• Number of Restriction Enzymes vs Oxygen (also on bootstrapped trees; Ta-

ble A.3)

Metagenomic Data

• cas1,2,3,9,10 Coverage vs Dissolved Oxygen (Appendix A.5, Fig A.23)
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Other

• CRISPR vs Temperature and Oxygen (NCBI metadata)

� Binomial con�dence intervals (Figs 2.4 and A.15)

� χ2 test

• Correlation between CRISPR and Ku

• Resampling genomes for CRISPR incidence (Appendix A.3, Fig A.22)

A.2 ProTraits Without Genomic Data

The ProTraits database, from which we take our trait data, combines vari-

ous �sources� of text-based and genomic information to make trait predictions [75].

While the inclusion of genomic sources of information considerably improves the trait

con�dence scores, some of these sources explicitly consider gene presence/absence,

and we worried it may lead to circularity in our arguments (e.g. if cas gene presence

were used to predict a trait, which was then used to predict CRISPR incidence).

Therefore we repeated our predictive analyses excluding the �phyletic pro�le� and

�gene neighborhood� sources in ProTraits. We took the maximum con�dence scores

for having and lacking a trait respectively across all other sources in the database

to produce a negative and positive trait score. We integrated these into a single

score as described in Methods. We then built an RF model of CRISPR incidence,

as this was the highest performing model on the complete dataset. This model had

comparable predictive ability (κ = 0.243). We also found similar predictors to when
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the full dataset was used (Fig A.16). A notable change is that termite host and

PAH degradation no longer appear as important predictors in the model.

A.3 Resampling Genomes

For our main analysis we sampled one genome from RefSeq per species to

assess CRISPR incidence, with a preference for completely assembled reference and

representative genomes. Often, CRISPR is lost by members of a species [51], and

incidence can vary among strains [227]. Therefore, we attempted to determine the

potential e�ects of our sampling process. In general, it is better to sample single

genomes to assess CRISPR incidence rather than averaging across all genomes for a

given species, since species are unevenly represented in RefSeq and thus the variances

in incidence between species will not be equal. A drawback of sampling is that it

throws away information, although strong trends should still be apparent if species

have consistent tendencies to either possess or lack CRISPR. In fact, for 84% of the

species in our trait dataset, the available genomes either all have or all lack CRISPR

(no within species variability). Thus, sampling should have relatively minor e�ects

on our outcome.

We veri�ed this by repeatedly resampling CRISPR incidences from the set of

all RefSeq genomes (previously determined in [15]). First we randomly resampled a

new genome with known CRISPR incidence for each species in the dataset, then we

split the data into training and test sets (using Proteobacteria again as the test set)

and built an RF model as in the main text. This process was repeated 1000 times,
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and the resulting κ values and top predictors are reported in Fig A.22. The results

of this analysis were consistent with our analysis in the main text.

A.4 Additional Models and Phylogenetic Corrections

In addition to the RF models described in the main text, we built several other

models (described in Methods). Here we discuss their performance. For the logis-

tic regression models, taking phylogeny into consideration, both via blocked cross

validation (CV) (κ = 0.168) and an explicit evolutionary model of trait evolution

(κ = 0.188), improved predictive ability relative to the phylogenetically-uninformed

models. When combined these two corrections appeared to con�ict with one an-

other (κ = 0.160). This is to be expected based on the di�erent ways these two

approaches deal with the problem of shared evolutionary history. Blocked cross val-

idation prevents over�tting to the underlying tree by leaving out contiguous portions

of the data during the �tting process (see Methods). Phylogenetic logistic regres-

sion assumes an explicit model of trait evolution and attempts to �t that model

to the data using a provided phylogeny. Because blocked CV leaves out chunks of

the tree, phylogenetic logistic regression is unable to �t to those missing pieces of

the tree, and thus the method's performance is reduced. In other words, blocked

CV and phylogenetic logistic regression can both improve model performance when

working with phylogenetically structured data, but combining these two approaches

is unlikely to work well.

Moving on to our partial-least squares models (see Methods), sPLS-DA per-
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formed better than all logistic regression models, indicating that multicollinearity

was likely a signi�cant hurdle for logistic regression with subset selection (even more

so than phylogenetic structure). Our cluster-based approach to phylogenetic cor-

rection (MINT) for sPLS-DA reduced overall predictive ability, but dramatically

improved the true positive rate of the prediction (TPR = 0.538), at the cost of

an increased false positive rate. In general there is always a tradeo� between false

positive and false negative rates, but it is unclear to us why MINT sPLS-DA set

its threshold for detection so low in this case. This is possibly an artefact from the

di�erences in CRISPR incidence between our training and test sets, where MINT

sPLS-DA learned to predict CRISPR presence at too low a threshold due to an

overly CRISPR-enriched training set.

The RF and phylogenetically-informed RF ensemble models had nearly iden-

tical performance. We note though, that the ensemble approach gave a much more

reliable estimate of predictive ability on the training set (mean κ = 0.258 predict-

ing on excluded clusters) than the internal estimate automatically generated by the

global RF model (out-of-bag estimate, κ = 0.441). In general, with phylogenetically

structured data the internal error estimates generated by an RF model will be mis-

leading, and the blocked cross-validation approach we employ is one way to correct

these estimates.
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A.5 CRISPR in the Tara Oceans Data

An alternative, and complementary approach to the one we took here is to

directly measure the change in prevalence of a particular immune strategy (e.g.

CRISPR) across environmental gradients using metagenomics. This approach has

its own pitfalls and will require its own solutions. For example, in complex communi-

ties it may be di�cult to link CRISPR proteins to particular genomes or organisms,

meaning that it will be di�cult to di�erentiate between changes in CRISPR preva-

lence due to di�erential gene content in the same set of organisms and changes in

prevalence due to shifts in community composition. The situation is further compli-

cated by the fact that many organisms have multiple CRISPR systems, or conversely

have partial and non-functional systems, and that CRISPR and other defense sys-

tems are extremely labile, being gained and lost frequently [15, 16, 51]. This makes

the metagenome assembly process signi�cantly more di�cult with respect to cor-

rectly mapping CRISPR to host. We also note that our current dataset integrates

microbial traits across many scales, whereas a metagenomic approach will only link

CRISPR prevalence to the coarsest scale of environmental parameters. Even consid-

ering oxygen, in many environments there is a possibility for extremely �ne-grained

variation that allows aerobes and anaerobes to live in close proximity (e.g. anoxic

sediments in wetlands aerated by plant roots). In other words, our approach in

the main text labels microbes as �is this�, whereas relating environmental gradients

to metagenomic data labels microbes as �lives here�, where �here� is by necessity

an average across the sample. A metagenomics approach links immune strategy to
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microbial traits indirectly via environment.

Nevertheless, metagenomics is an attractive alternative because it allows us to

analyze strategy shifts actually occurring in the environment. While it is beyond the

scope of the current study to perform extensive analyses of metagenomic datasets,

we wish to provide an encouraging example to motivate future work in what we

think is an exciting area. We used data from the Tara Oceans project [110], a

global study of the microbial communities in earth's oceans, as our case study. The

dataset consisted of a set of functional pro�les provided by Tara, in which reads

were mapped to particular orthologous groups (OG) using the KEGG orthologous

groups database, as well as environmental metadata for each sample [110]. We

identi�ed the OGs for cas1 and cas2 (universal CRISPR marker genes; K15342 and

K09951), cas3 (type I marker; K070012), cas9 (type II; K09952), and cas10 (type

III; K07016). We then normalized the coverage of each OG by total coverage in a

given sample, and paired this data with the dissolved oxygen concentration for each

sample.

Similar to our results based on ProTraits, we found a negative association

between oxygen and CRISPR (Fig A.23). We found a signi�cant negative correlation

between oxygen and cas1 (Pearson's product moment correlation, ρ = −0.1757433,

p = 0.00668), cas2 (ρ = −0.2254487, p = 0.0004696), cas3 (ρ = −0.1939399,

p = 0.002714), and cas10 (ρ = −0.4018567, p = 1.304 × 10−10). The relationship

between oxygen and cas9 was not signi�cant (ρ = −0.03446256, p = 0.5976). We

note that this data doesn't strictly represent an oxygen �gradient� since dissolved

oxygen content appears to be bimodal, with peaks corresponding to oxic and anoxic
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conditions (Fig A.23).

A.6 Number of CRISPR Arrays

Many prokaryotes have multiple CRISPR arrays, and this multiplicity is po-

tentially maintained by selection [15]. We sought to assess whether we could predict

the multiplicity of CRISPR arrays on a genome using our trait data. CRISPRDetect

identi�es individual arrays, so that our original dataset already included informa-

tion about array multiplicity as well as incidence. We excluded all species lacking

CRISPR so as not to confound the question of incidence (who has CRISPR?) with

multiplicity (how many CRISPR arrays do they have?). Random forests can be used

on continuous outcome variables (regression), and so we built a RF model using the

same procedure as in the main text, but with multiplicity rather than incidence

as the outcome variable. This model performs extremely poorly, with essentially

no predictive ability (MSE = 4.26, R2 = 0.008). The predicted and actual values

on the test set were barely signi�cantly correlated (Pearson's correlation, ρ = 0.09,

p = 0.048). This is not entirely surprising, as regression is generally more di�cult

that classi�cation. In other words, it is harder to predict whether an organism has

one, two, or three CRISPR arrays than it is to predict if it has CRISPR at all.

A.7 NHEJ-Oxygen Model

Using our annotations for Ku and the NCBI annotations for oxygen require-

ment (aerobes and anaerobes only, facultative organisms excluded) we compiled a
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set of 1473 genomes for which both pieces of information were available. We built

a phylogeny for these genomes using the method described in the main text. We

then built a phylogenetically corrected linear model with CRISPR incidence as the

binary outcome variable, Ku and aerobicity as binary predictors, as well as an inter-

action term (phylogenetic logistic regression, phylolm R package; [92, 93]). Ives and

Garland [92] recommend that when categories have small sample sizes (as does our

anaerobe with Ku category at 33 genomes) that p-values for phylogenetic logistic

regression are obtained via bootstrapping, although this method is more computa-

tionally intensive. We performed 1000 bootstrap replicates (the 'boot' option in the

phyloglm() function) to assess the statistical signi�cance of each term in the model.

We repeated this analysis with the cas3, cas9, and cas10 genes, which are diagnostic

of CRISPR system type, in order to see if any Ku-oxygen-CRISPR interaction was

type-speci�c.

Our bootstrapped p values for both Ku and Oxygen, as well as their inter-

action, were all below 0.001 (all bootstrapped coe�cients di�ered from zero in a

consistent direction across all replicates). These p-values di�ered from the maxi-

mum likelihood estimates generated from the phylogenetic logistic regression model

(notably, the interaction between Ku and oxygen was not signi�cant using these es-

timates, at p = 0.088164, though the e�ects of Ku 1.53×10−5, and oxygen 0.001183

remained signi�cant), though this should not be surprising as the behavior of these

estimates are not well characterized at low sample sizes and bootstrap estimates are

generally the favored approach [92].

For type I and III systems, the results were generally consistent. In the case of
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type I systems all model terms were signi�cant under bootstrapping (Ku p < 0.001,

oxygen p = 0.016, interaction p < 0.001) but when using p-values from the ML

estimate oxygen was not a signi�cant predictor of cas3 incidence (Ku p = 4.164 ×

10−10, oxygen p = 0.1138959, interaction p = 0.0004477). The same was true for

type III systems in terms of bootstrapped p-values (Ku p < 0.001, oxygen p = 0.039,

interaction p = 0.002) and those from the ML estimates (Ku p = 0.0002035, oxygen

p = 0.3048236, interaction p = 0.0014942). For type II systems only the e�ects

of Ku were signi�cant, and only in the bootstrapped case (Ku p = 0.005, oxygen

p = 0.052, interaction p = 0.0546), not for the ML estimates (Ku p = 0.1176, oxygen

p = 0.2542, interaction p = 0.7550).

For all of these phylogenetic regressions, results were consistent on 10 boot-

strapped trees (Table A.4).
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Logistic Regression

Random CV Blocked CV

temperaturerange_thermophilic (+) temperaturerange_thermophilic (+)

mammalian_pathogen_oral_cavity (+) mammalian_pathogen_oral_cavity (+)

knownhabitats_freshwater (+) metabolism_carbondioxide�xation (+)

ecosystemtype_marine (-) host_insectstermites (+)

pathogenic_in_mammals (-) ecosystemtype_geologic (+)

knownhabitats_hydrothermalvent (+) energysource_autotroph (+)

metabolism_carondioxide�xation (+) ecosystemsubtype_vagina (+)

host_insectstermites (+) metabolism_sulfuroxidizer (-)

shape_tailed (+) habitat_terrestrial (-)

knownhabitats_soil (-)

knownhabitats_creosotecontaminatedsoil (-)

energysource_heterotroph (-)

cellarrangement_tetrads (-)

ecosystemsubtype_vagina (+)

knownhabitats_insectendosymbiont (-)

ecosystemtype_thermalsprings (+)

habitat_hostassociated (+)

cellarrangement_singles (-)

Phylogenetic Logistic Regression

Random CV Blocked CV

knownhabitats_hotspring (+) knownhabitats_hotspring (+)

mammalian_pathogen_oral_cavity (+) mammalian_pathogen_oral_cavity (+)

host_insectstermites (+) host_insectstermites (+)

shape_�lamentous (+) shape_�lamentous (+)

oxygenreq_strictaero (-) oxygenreq_strictaero (-)

ecosystemtype_reproductivesystem (+) energysource_heterotroph (-)

mammalian_pathogen_respiratory_lundisease (-)

ecosystemtype_marine (-)

knownhabitats_hydrothermalvent (+)

ecosystemcategory_plants (-)

Table A.1: Predictors added to each logistic regression model during forward
selection (top to bottom in order of addition). Plus and minus signs indicate whether
a variable is positively or negatively associated with CRISPR incidence.
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Outcome Variable Bootstrap β16s p16s
CRISPR 1 0.05444265 0.0004987372
CRISPR 2 0.06871256 1.650863E-05
CRISPR 3 0.05602856 0.0003348601
CRISPR 4 -0.06244074 4.65824E-05
CRISPR 5 -0.06051718 7.066252E-05
CRISPR 6 -0.0656118 1.96243E-05
CRISPR 7 -0.06858516 9.275297E-06
CRISPR 8 -0.06523327 2.200228E-05
CRISPR 9 -0.06482068 2.414822E-05
CRISPR 10 0.06773283 1.521424E-05

Table A.2: Phylogenetic logistic regression of CRISPR incidence as predicted by 16s
rRNA count on 10 bootstrapped trees.

Outcome Variable Bootstrap βTemperature pTemperature

No. R Enzymes 1 1.46992099 0.04000844
No. R Enzymes 2 1.47619604 0.0395859
No. R Enzymes 3 0.05938679 0.67987639
No. R Enzymes 4 1.47619604 0.0395859
No. R Enzymes 5 1.49642946 0.03825504
No. R Enzymes 6 1.46992099 0.04000844
No. R Enzymes 7 1.46196112 0.04055124
No. R Enzymes 8 1.51134694 0.0373039
No. R Enzymes 9 0.0593766 0.67990236
No. R Enzymes 10 1.51134694 0.0373039
Outcome Variable Bootstrap βO2 pO2

No. R Enzymes 1 -4.5032905 4.775284E-35
No. R Enzymes 2 -4.5236085 3.343288E-35
No. R Enzymes 3 -0.9838951 1.133434E-08
No. R Enzymes 4 -4.5262046 3.194396E-35
No. R Enzymes 5 -4.540566 2.482726E-35
No. R Enzymes 6 -4.5216758 3.458622E-35
No. R Enzymes 7 -4.5195994 3.586961E-35
No. R Enzymes 8 -4.5446124 2.312513E-35
No. R Enzymes 9 -0.9838037 1.135213E-08
No. R Enzymes 10 -4.5419952 2.421222E-35

Table A.3: Phylogenetic regression of number of restriction enzymes as predicted
by temperature or oxygen on 10 boostrapped trees.
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Outcome Variable Bootstrap βKu pKu βO2 pO2 βInteraction pInteraction

CRISPR 1 -0.7776371 0.001 0.66532 0.001 0.8076997 0.001

CRISPR 2 -0.7762393 0.001 0.6650369 0.001 0.7553189 0.001

CRISPR 3 -0.7543548 0.001 0.6523729 0.001 0.7743154 0.002

CRISPR 4 -0.7475297 0.001 0.6470698 0.001 0.7970853 0.001

CRISPR 5 -0.7542887 0.001 0.6499091 0.001 0.7606847 0.001

CRISPR 6 -0.7750393 0.001 0.6560871 0.001 0.7523748 0.001

CRISPR 7 -0.752069 0.001 0.6479241 0.001 0.8017921 0.001

CRISPR 8 -0.7570104 0.001 0.6461722 0.001 0.7978345 0.001

CRISPR 9 -0.7931716 0.001 0.676406 0.001 0.7285855 0.001

CRISPR 10 -0.7782145 0.001 0.6634043 0.001 0.7725446 0.002

cas3 1 -1.309984 0.001 0.3429482 0.009 1.586328 0.001

cas3 2 -1.339081 0.001 0.3289939 0.007 1.582142 0.001

cas3 3 -1.304121 0.001 0.3257619 0.017 1.581483 0.001

cas3 4 -1.311048 0.001 0.2938582 0.011 1.590015 0.001

cas3 5 -1.333989 0.001 0.3291178 0.023 1.586987 0.001

cas3 6 -1.315037 0.001 0.3253995 0.008 1.585864 0.001

cas3 7 -1.308 0.001 0.2901924 0.014 1.58649 0.001

cas3 8 -1.325072 0.001 0.3139974 0.023 1.59048 0.001

cas3 9 -1.351763 0.001 0.3449322 0.007 1.590153 0.001

cas3 10 -1.328922 0.001 0.3384614 0.014 1.584191 0.001

cas9 1 -0.6166104 0.001 0.3386759 0.05 -0.3086753 0.536

cas9 2 -0.5713407 0.011 0.4218407 0.019 -0.3035605 0.538

cas9 3 -0.6371981 0.002 0.380116 0.04 -0.3139595 0.545

cas9 4 -0.2427449 0.05 1.0055809 0.025 -0.3538297 0.451

cas9 5 -0.598588 0.005 0.3807694 0.04 -0.304255 0.556

cas9 6 -0.6344803 0.006 0.4011055 0.02 -0.3178936 0.565

cas9 7 -0.6162547 0.01 0.3864871 0.017 -0.2999418 0.555

cas9 8 -0.6261813 0.002 0.3399736 0.059 -0.3096002 0.564

cas9 9 -0.6106022 0.006 0.4121876 0.011 -0.3016357 0.552

cas9 10 -0.5917813 0.003 0.381879 0.051 -0.3111323 0.523

cas10 1 -2.78319 0.001 0.338453 0.048 3.0924286 0.001

cas10 2 -2.76847 0.001 0.3371324 0.028 3.0689795 0.001

cas10 3 -0.735233 0.002 0.2797778 0.039 0.7382052 0.028

cas10 4 -1.209831 0.001 0.3202466 0.027 1.2494469 0.014

cas10 5 -2.927175 0.001 0.3800277 0.047 3.1038217 0.001

cas10 6 -2.750308 0.001 0.3269329 0.05 3.080121 0.001

cas10 7 -2.706733 0.001 0.3376516 0.032 2.9835339 0.001

cas10 8 -2.839044 0.001 0.3164233 0.064 3.116515 0.001

cas10 9 -1.944355 0.001 0.3521944 0.026 2.244925 0.002

cas10 10 -2.891364 0.001 0.3741208 0.03 3.1046525 0.001

Table A.4: Phylogenetic logistic regression of CRISPR incidence as predicted by Ku
and oxygen on 10 boostrapped trees. Bootstrapped p-values shown as discussed in
Appendix A.7
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No CRISPR

CRISPR

Figure A.1: Phylogeny generated from PhyloSift marker genes (as in Fig A.3).
Color indicates CRISPR incidence.

108



ProTraits NCBI's RefSeq 
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Figure A.2: Pipeline for generating trait and immunity dataset and matching phy-
logeny. See Methods for details.
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Figure A.3: Phylogeny generated from PhyloSift marker genes. Phylum indicated
by color, with taxonomic classi�cations taken from NCBI.
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Figure A.4: Repeated t-SNE decomposition of ProTraits data with CRISPR in-
cidence visualized for varied perplexity values. The CRISPR versus no-CRISPR
separation is somewhat less apparent for very high perplexity values.
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Figure A.5: Flowchart showing the decision-making process that would lead to the
various modeling approaches used here. Major considerations for each approach are
noted. See Methods for details on each approach.
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Figure A.6: A conceptual example of the di�erences between blocked and random
folds for cross validation. Cross validation (CV) relies on the assumption that folds
are independent from one another, but when species share an evolutionary history
this assumption is violated. By instead choosing folds based on phylogenetic groups
that have diverged from each other su�ciently far in the past, we can better avoid
the inclusion of phylogenetic signal in our model �t. In other words, in blocked CV
we attempt to choose �evolutionarily independent� folds.
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Figure A.8: Comparison of variable importance across predictive models. Pearson's
correlation between variable importance scores for all predictive models (CRISPR
incidence and otherwise) in the paper measured as % increase in node purity for
random forests and variable importance projections for PLS models; logistic regres-
sion models were excluded because importance is measured as rank - i.e. what order
the variable was added to the model. Note the high agreement between the mod-
els predicting CRISPR incidence, and some agreement with the model predicting
number of CRISPR systems. Also note that models predicting the incidence of RM
systems and Ku appear to have distinct predictors (these models performed well
at prediction tasks in the main text). �NoGeneInference� corresponds to the model
built in Appendix A.2.
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Figure A.9: Organisms with CRISPR do not separate from those without along
the �rst principal component of trait space. The �rst and second components from
a PCA of the microbial traits dataset are shown. CRISPR incidence is indicated
by color (green with, orange without), but was not included when constructing the
PCA. Marginal densities along each component are shown to facilitate interpreta-
tion. See Fig 2.1 for the third component.
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Figure A.10: Trait distributions over t-SNE reduced dataset. Each point is an
organism mapped onto our t-SNE decomposition of trait space. Instead of coloring
points by presence/absence of CRISPR as shown in Fig 2.2, we color each organism
by its score for selected microbial traits in our trait dataset (set of traits shown
chosen because they were highly weighted in our PCA). Recall that scores range
from zero (blue) to one (red). We note that, in a general sense, the region occupied
by anaerobic microbes appears to correspond to the densest regions of CRISPR
incidence in Fig 2.2.
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Figure A.11: Variable importance scores from sPLS-DA model for top 10 predictors
on the 5 components included in model. Variable importance scores generated by
the vip() function in the mixOmics package for R.
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Figure A.12: Variable importance scores from MINT sPLS-DA model for top 10
predictors on the single component included in model. Variable importance scores
generated by the vip() function in the mixOmics package for R.
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Figure A.13: Importance of top ten predictors in each of the �ve forests included
in the RF ensemble model, as measured by the mean decrease in the Gini impurity
index or accuracy when that variable is excluded from the respective forest. The
relative ranking of the top ten predictors does vary somewhat over the �ve forests,
but the set of top predictors is largely consistent across the forests.
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Figure A.14: Importance of all predictors in CRISPR RF model, as measured by
the mean decrease in the Gini impurity index or accuracy when that variable is
excluded from the respective forest. Note the elbow in the Gini importance ranking
after the �rst ten predictors.
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Figure A.15: The link between oxygen requirement and CRISPR incidence is
apparent even when sub-setting to only mesophiles. Error bars are 99% binomial
con�dence intervals. Total number of genomes in each trait category shown at the
bottom of each bar. Categories represented by fewer than 10 genomes were omitted.
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Figure A.16: Importance of top ten predictors in the RF model built excluding the
�phyletic pro�le� and �gene neighborhood� information sources from ProTraits, as
measured by the mean decrease in the Gini impurity index or accuracy when that
variable is excluded from the model.
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Figure A.17: The incidence of the Ku protein in trait space. PCA as in Figs 2.1
and A.9.
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Figure A.18: Importance of top ten predictors in the RF model of Ku incidence.
This model had high predictive ability (κ = 0.578).
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Figure A.19: CRISPR and Ku are negatively associated in aerobes but not anaer-
obes. Percentage of genomes with Cas proteins associated with a particular system
type. Error bars are 99% binomial con�dence intervals. Total number of genomes
in each trait category shown at the bottom of each bar. Of the 1047 genomes
represented here 253 have cas3, 61 have cas9, and 54 have cas10.

125



0.00
0.03
0.06
0.09

−10 0 10

PC1

de
ns

ity

●

−10

−5

0

5

10

−10 0 10

PC1

P
C

2

No Restriction Enzymes

Restriction Enzyme(s)

−10

−5

0

5

10

0.00 0.05 0.10 0.15 0.20

density

P
C

2

(a)

0.00
0.05
0.10
0.15

−10 −5 0 5

PC3

de
ns

ity

●

−10

−5

0

5

10

−10 −5 0 5

PC3

P
C

2

No Restriction Enzymes

Restriction Enzyme(s)

−10

−5

0

5

10

0.00 0.05 0.10 0.15 0.20

density

P
C

2

(b)

Figure A.20: The incidence of restriction enzymes in trait space. PCA as in Figs
2.1 and A.9.
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Figure A.21: Importance of top ten predictors in the RF model of restriction enzyme
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when that variable is excluded from the model.
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Figure A.22: Resampling genomes has little e�ect on our overall outcome. (a)
Distribution of κ values for 1000 RF models built with resampled datasets. Mean
(blue) and 95% CIs (red) indicated with vertical lines. (b-c) The proportion of
resampled datasets for which each predictor fell within the set of top 10 predictors
based on variable importance scores.
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Figure A.23: Functional pro�les for cas genes from Tara Oceans Project with cor-
responding oxygen metadata. Values for each cas gene shown are the coverage map-
ping to that orthologous group normalized by the total coverage in the metagenome.
Zero values for coverage plotted along x-axis in red (since data plotted on log scale).
Trend-lines plotted on log transformed data for ease of interpretation.
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Appendix B: Supplemental Information For: �Selective maintenance

of multiple CRISPR arrays across prokaryotes�

B.1 Validation of functional / non-functional classi�cation

Our power to detect selection depends critically on our ability to classify

genomes as CRISPR functional vs. non-functional. Functional CRISPR arrays

should, on average, contain more spacers than non-functional arrays [226]. Thus we

compared the number of repeats in CRISPR arrays in genomes with both cas1 and

cas2 present (�functional�, 16.01 repeats on average) to the number of spacers in

genomes lacking either or both genes (�non-functional�, 12.23 repeats on average)

and con�rmed that the former has signi�cantly more than the latter (t = −36.516,

df = 55340, p < 2.2 × 10−16; Fig B.9). This di�erence in length (3.80 repeats) is

not as large as one might expect, possibly because some systems are able to acquire

or duplicate spacers via homologous recombination [165] and arrays may have been

inherited recently from strains with active cas machinery. The mean array length

across the dataset was 15.12 repeats.
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B.2 Deriving the distribution of number of arrays per genome under a

neutral accumulation model

Recall our null hypothesis that in genomes with functional CRISPR systems

possession of a single array is highly adaptive (i.e. viruses are present and will kill

any susceptible host) but additional arrays provide no additional advantage. Thus

these additional arrays will appear and disappear in a genome as the result of a

neutral birth/death horizontal transfer and loss process, where losses are assumed

to remove an array in its entirety. This hypothesis predicts that the non-functional

distribution will look like the functional distribution shifted by one (Si):

H0 : Ni ≈ Si = Fi+1/
∞∑
j=1

Fj (B.1)

for i ≥ 0.

We begin by deriving a functional form for the distribution Ni from �rst prin-

ciples following a neutral process. If CRISPR arrays arrive in a given genome at a

constant rate via rare horizontal transfer events, then we can model their arrivals

using a Poisson process with rate η. Assuming arrays are also lost independently

at a constant rate, the lifetime of each array in the genome will be exponentially

distributed with rate ν. This leads to a linear birth-death process of array accumula-

tion, which yields a Poisson equilibrium distribution with rate λ = η
ν
. While this rate

might be constant for a given taxon, it will certainly vary across taxa due to di�erent

intrinsic (e.g. cell wall and membrane structure) and extrinsic factors (e.g. density
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of neighbors, environmental pH and temperature) [16]. We model this variation by

allowing genome j to have rate λj =
ηj
νj

and assuming λj ∼ Gamma(α, β), which

we pick for its �exibility and analytic tractability. This combination of gamma and

Poisson distributions leads to the number of arrays i in a random genome following

a negative binomial distribution Ni = NB(r, p) where r = α and p = β
1+β

.

Now we can �t this distribution to data to �nd maximum likelihood estimates

of r and p for the distribution of array counts in both the set of non-functional

genomes (Ni) and the set of functional genomes as shifted under our null hypothesis

(Si). This allows us to construct a parametric test of selection. We expect that

r̂N ≈ r̂S and p̂N ≈ p̂S under our null hypothesis (where subscripts correspond to

the distribution to which the parameters were �t). When our null hypothesis is

violated it should shift the means of these distributions. Therefore we estimate and

compare these means µx = pxrx
1−px , x ∈ {N,S}. We expect that µ̂S > µ̂N if more than

one array is selectively maintained, and we bootstrap con�dence intervals on these

estimates by resampling with replacement from our functional and non-functional

array count distributions in order to determine whether the e�ect is signi�cant.

B.3 Instantaneous array loss vs. gradual decay

There are two possible routes to complete CRISPR array loss: (1) an all-

at-once loss of the array (e.g. due to recombination between �anking insertion

sequences [50, 140]) and (2) gradual decay due to spacer loss. Previous experimen-

tal evidence supports route (1) spontaneous loss of the entire CRISPR array [51],
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as do comparisons between closely related genomes [50]. The distinction above is

important, because if CRISPR array loss were to occur primarily via route (2) grad-

ual decay, then functional genomes would have an intrinsically lower rate of array

loss than non-functional genomes. This is because in functional genomes spacer

acquisition would counteract spacer loss, reducing the rate of array decay, whereas

this compensation would not occur in non-functional genomes. This could lead us

to spuriously accept a result of selection maintaining multiple arrays.

If arrays were primarily lost via gradual decay, we would expect our data to

show a positive relationship between the number of arrays in a genome and the

average array length in a genome, because arrays experiencing more decay (either

due to increased spacer loss rates or reduced acquisition rates) should be shorter

and prone to eventual deletion. In functional genomes with the complete spacer

acquisition machinery (cas1 and cas2 ) this trend would be due to the higher proba-

bility of stochastically reaching a 0-spacers state in shorter arrays, and arrays will in

general be shorter in genomes with lower spacer acquisition rates. In non-functional

genomes that lack the complete spacer acquisition machinery, this trend would result

from di�erences in time since loss of acquisition machinery, where genomes that had

lost that machinery farther in the past would have both shorter arrays and fewer

arrays on average.

Overall we see no relationship between mean array length and array count in a

genome (linear regression, m = −0.001, p = 0.109, R2 = 5.55× 10−5). Surprisingly,

in functional genomes we �nd a slightly negative linear relationship between the

number of arrays in a genome and mean array length in that genome (m = −0.0081,
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p < 2 × 10−16, R2 = 0.0032). In non-functional genomes we see a slightly positive

relationship (m = 0.0054, p = 7.23 × 10−10, R2 = 0.0026). While both of these

relationships are signi�cant, they are extremely weak and probably spurious. This

lack of a clear relationship suggests that gradual decay is not the primary cause

of array loss. Nevertheless, because rates of spacer acquisition and loss and array

acquisition (via HGT) and loss are two somewhat easily confounded processes, this

evidence is not conclusive.

As an additional, more direct test of whether array decay or instantaneous

loss drives CRISPR array loss dynamics, we consider the di�erence in array length

between putatively �functional� and �non-functional� arrays. On average the pres-

ence of the Cas acquisition machinery leads to the addition of about 4 repeats to

a given array (Fig B.9). We expect short arrays, of approximately this length, to

be the most rapidly lost upon loss of array functionality. Thus, if array loss occurs

primarily through gradual decay, then our result of selection maintaining multiple

arrays would be driven primarily by short, functional arrays. By removing any

functional arrays below some threshold length from the dataset, we can test this

hypothesis. Even upon removal of all functional arrays less than 10 spacers long

from the dataset, we still observe a substantial signature of selection maintaining

multiple arrays (Figs B.10 and B.11). By design, this signature does weaken slightly

as the threshold length for functional arrays is increased, but this is to be expected

as the removal of arrays from the functional dataset must also decrease the di�er-

ence in mean number of arrays between the functional and non-functional datasets

(since no removals are made from the non-functional set). It is notable though,
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that this decrease in signal is small (especially when removing arrays < 6 spacers

long), demonstrating that the selective signal is not being driven primarily by short,

functional arrays.

B.4 Model Analysis

We develop a simple deterministic model of the spacer turnover dynamics

in a single CRISPR array of a bacterium exposed to n viral species (i.e., disjoint

protospacer sets). Let Ci be the number of spacers in the array that target viral

species i:

dCi
dt

= ai(t, Ci)︸ ︷︷ ︸
Acquisition

−µLli(C1, ..., Cn)︸ ︷︷ ︸
Loss

, (B.2)

ai(t, Ci) = µAvifi(t)g(Ci), (B.3)

where µL is the per-spacer loss rate parameter, li(C1, ..., Cn) is a function describ-

ing how spacer loss depends on the array length, µA is the per-infection spacer

acquisition rate, vi is a composite parameter describing the infection intensity in

the environment (viral density times adsorption rate), fi(t) ∈ [0, 1] is a function

describing the �uctuations of viral population i over time, and

g(Ci) =


1 Ci < 1

p Ci ≥ 1

(B.4)
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is a function determining whether or not the system is �primed� towards viral species

i (i.e., if a CRISPR array has a spacer targeting a particular viral species, the rate

of spacer acquisition towards that species is increased; [141, 142]), where p > 1 is

the degree of priming (see Table C.1 for summary of model parameters and units).

Using this model we can determine the optimal spacer acquisition rate given a

particular pattern of pathogen recurrence in the environment, fi(t). If the optima for

distinct recurrence patterns do not overlap, it indicates that multiple arrays would

be required to simultaneously combat viral species with these distinct recurrence

patterns.

We analyze the ability of the array to respond to three types of viral threats:

(1) �background� species representing the set of all viruses persisting over time in

the environment (fB(t) = 1), �transient� species that leave the system and return

after some interval of time (fT (t) ∈ {0, 1}), and �novel� species that have not been

previously encountered. Thus we can compare how CRISPR balances the need for

consistent immunity, long-term memory, and rapid adaptation (full analysis below).

We consider two forms for the function li based on known features of CRISPR

biology. (1) The rate of per-spacer loss increases linearly with locus length. This

form is based on the observation that spacer loss appears to occur via homologous

recombination between repeats [31, 143, 144], which becomes more likely with in-

creasing numbers of spacers (and thus repeats). (2) The length of an array is capped

at some �xed �e�ective� number of spacers. This form is based on evidence that

mature crRNA transcripts from the leading end of the CRISPR array are far more

abundant than those from the trailing end, and that this decay over the array hap-
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pens quickly (most transcripts are from the �rst few spacers; [145, 146, 147]). We

analyze both models below, though they give qualitatively similar results, and so

we focus on case (1) in the main text Results.

Primary Model: Array-Length-Dependent Spacer Loss

First we consider a version of the model above where the per-spacer loss rate

increases linearly with the total number of spacers in the array (i.e., physical loss

via homologous recombination):

dCi
dt

= ai(t, Ci)︸ ︷︷ ︸
Acquisition

−µLCi
n∑
j=1

Cj︸ ︷︷ ︸
Loss

, (B.5)

ai(t, Ci) = µAvifi(t)g(Ci), (B.6)

g(Ci) =


1 Ci < 1

p Ci ≥ 1

. (B.7)

That is, li(C1, ..., Cn) = Ci
∑n

j=1Cj. Parameter values can be found in Table C.1.

For the purposes of simplifying our analysis we consider the case where there

are two viral species in the system, one that persists at some background level

(�background� B, fB(t) = 1) and another that returns in sharp bursts at periodic

intervals (�transient� T , fT (t) ∈ {0, 1}).

This two-virus situation captures the con�ict between the ability to maintain
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immune memory of periodically recurring infections but also defend against ever-

present persisting viral enemies. We are interested in the time lag between the return

of virus T to the system and the development of host immunity. In the case where

memory is maintained during the absence of virus T the lag will be zero, otherwise

it will depend on the base spacer uptake rate (µA) and the relative densities of the

two viral populations.

We examine the time to reacquisition of immunity towards virus T using the

following procedure (Fig B.12). Note that for simplicity we let time have units of

virus return time (so that one unit of time equals the interval in which T is absent

from the system). Our method is as follows: (1) start the system at its equilibrium

state with both viral species present, (2) remove species T for a single unit of time

and track the decay of CT , and (3) return T to the system and calculate how long it

takes after this return for CT to exceed one (time to reacquisition of immunity, tI).

Let tI = 0 if CT remains above one despite the absence of T (i.e. no loss of immune

memory). In more detail:

1. Find the equilibrium of our system (C̃B, C̃T ) when T is present, assuming that

at the equilibrium state C̃B, C̃T ≥ 1. We have that

C̃B =
vB
√
µAp√

µL(vB + vT )
(B.8)

and

C̃T =
vT
√
µAp√

µL(vB + vT )
. (B.9)
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2. Use this equilibrium as an initial condition for a system where virus T has

been removed (where fT (t) = 0, so dCT

dt
= −µLCT (CT + CB)) and solve (nu-

merically) for the state of the system at time t = 1 assuming that T remains

absent (CT (1)). In practice we use the ode15s solver available in MATLAB

(2016a, MathWorks, Inc., Natick, Massachusetts, United States).

3. Find the time to reacquisition of immunity (tI such that CT (tI + 1) = 1) by

solving the unprimed system where we ignore loss (since no spacers yet exist

to be lost, loss should not be important). De�ne C∗T (t) so that

C∗T (t) = µAvT t+ CT (1). (B.10)

We are interested in tI where C∗T (tI) = 1, so that

tI =
1− CT (1)

µAvT
(B.11)

where CT (1) is the solution from step (2). This equation only holds if CT (1) <

1 (let tI = 0 otherwise). This time to reacquisition is our measure of �tness,

with a lower tI indicating lower �tness of the host. We de�ne some τ such that

if tI < τ we say immunity is maintained. Ideally, τ should be shorter than

the time it takes viruses to cause irreparable damage to an infected bacterium

after initial infection.

We can also use Eq B.11 to �nd the time of immune acquisition towards a

novel viral species (N) arriving in the environment. When no spacers towards that
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species are already contained in the CRISPR array (CN(0) = 0), the time to novel

acquisition is

tN =
1

µAvN
. (B.12)

Note that we assume here that the spacer loss rate does not e�ect dCN

dt
when CN < 1

in order to simplify our analysis. During analysis we let vN = vT for simplicity.

Alternative Model: Leader-End crRNA Processing

We are interested in having a hard cuto� on the array length in this version

of the model (corresponding to a �xed cap on the number of transcribed spacers).

Therefore, we consider an �e�ective� array of �xed length L and let Ci be the propor-

tion of the array taken up by spacers targeting viral species i (n total viral species,∑n
i=1Ci = 1). This model generally follows a form similar to that in Eqs B.2-B.4:

dCi
dt

= ai(t, Ci)− Ci
∑
j

aj(t, Cj) (B.13)

where,

ai(t, Ci) = µAvifi(t)g(Ci). (B.14)

We modify the de�nition of the priming function g to match the new scenario so

that

g(Ci) =


1 Ci <

1
L

p Ci >
1
L

(B.15)
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Observe that in Eq B.13 the �ow rate into and out of the system match so that the

overall number of e�ective spacers should not change (in this case li(t, C1, ..., Cn) =

Ci
∑

j aj(t, Cj) is also a function of t and we let µL = 1).

When fi(t) = 1 ∀i and we assume the system is primed towards all viruses,

then we have equilibrium

C̃i =
vi∑
j vj

. (B.16)

Let's return to our simple two-virus system with background (B) and transient (T )

viral species. We perform a three step analysis similar to the one used for the linear

spacer loss model above:

1. Concentrating on an interval where both viruses are present (fT = 1)

dCi
dt

=



µAvip− pµACi (vi + vj 6=i) Ci, Cj 6=i >
1
L

µAvi − µACi (vi + pvj 6=i) Ci <
1
L
, Cj 6=i >

1
L

µAvip− µACi (pvi + vj 6=i) Ci >
1
L
, Cj 6=i <

1
L

µAvi − µACi (vi + vj 6=i) Ci, Cj 6=i <
1
L

i, j ∈ {B, T}.

(B.17)

We derive the equilibrium spacer content, assuming that the system starts
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from a doubly primed condition so that

C̃i =



vi
vi+vj 6=i

1
L
< vi

vi+vj 6=i
< 1− 1

L

vi
vi+pvj 6=i

vi
vi+vj 6=i

< 1
L

pvi
pvi+vj 6=i

vi
vi+vj 6=i

> 1− 1
L

i, j ∈ {B, T}. (B.18)

2. We now focus on the dynamics of the system after the transient viral species

leaves (fT = 0) assuming the system starts from the equilibrium in Eq B.18.

The decay of spacers targeting the transient viral population will follow

dCT
dt

=


−µAvBpCT CT < 1− 1

L

−µAvBCT CT > 1− 1
L

. (B.19)

We can solve for CT (t) with the given initial condition so that

CT (t) =



(
vT

vT+vB

)
e−pµAvBt C̃T , C̃B >

1
L(

vT
vT+pvB

)
e−pµAvBt C̃T <

1
L
, C̃B >

1
L(

pvT
pvT+vB

)
e−µAvBt t ≤ tB, C̃B <

1
L(

pvT
pvT+vB

)
e−µAvB(tB+p(t−tB)) t > tB, C̃B <

1
L

(B.20)

where

tB =
− ln

(
(pvT+vB)(L−1)

pvTL

)
µAvB

. (B.21)

3. Let us assume that time is measured in units of viral return intervals so that
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the return time of the transient (T ) species is tI = 1. Then our goal is to �nd

CT (1), assess whether this value has dropped below 1
L
(immune loss), and if

so, �nd the time to immune reacquisition CT (tI − 1) = 1
L
. Let us de�ne a new

function C∗T (t) that tracks the re-acquisition of immunity after T returns to

the system so that C∗T (0) = CT (1) and, assuming no decay of spacers when

C∗T <
1
L
,

1

L
= C∗T (tI) = µAvT tI + CT (1). (B.22)

Then

tI =
1
L
− CT (1)

µAvT
(B.23)

and we have CT (1) from Eq B.20.

This model gives qualitatively similar results to those found with the primary model

(Fig B.2).

B.5 Con�rming selection

In order to further con�rm our result of selective maintenance of multiple

CRISPR arrays, we (1) subsampled overrepresented taxa in the dataset, (2) per-

formed phylogenetically-corrected tests to con�rm both that di�erential rates of

horizontal gene transfer (HGT) between species were not driving our results and

that the pattern of selection we observed was not isolated to any particular group,

(3) showed that potential linkage between cas genes and CRISPR arrays was not

producing the signature of selection we observed, and (4) demonstrated that the
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genome assembly level had no e�ect on our outcome. Additionally, (5) we discuss

why the potential e�ects of CRISPR on rates of HGT cannot account for the selec-

tion we see.

(1) Sub-sampling to reduce the in�uence of overrepresented taxa altered our

parameter estimates slightly, but did not change our overall result (sampled 10

genomes from each species with > 10 genomes, ∆µ = 1.13 ± 0.09, Fig B.6, Table

B.1). To control for the possibility that multiple sets of cas genes in a small subset of

genomes could be driving this selective signature, we restricted our dataset only to

genomes with one or fewer signature targeting genes and one or fewer copies each of

the genes necessary for spacer acquisition. Even in this restricted and subsampled set

of genomes selection maintains more than one (functional) CRISPR array, though

the e�ect size is smaller (∆µ = 0.18± 0.08, Fig B.7).

(2) The number of CRISPR arrays is positively related to the number of cas

genes in a genome (Fig B.13). Di�erential rates of horizontal gene transfer (HGT)

among species could produce an observed correlation between cas1 and cas2 pres-

ence and array count in the absence of selection. To control for this potentially

confounding e�ect we performed a species-wise parametric test. For each species k

we calculated a species-speci�c ∆µk = µ̂Sk
− µ̂Nk

and then bootstrapped the mean

of the distribution of these values (∆̄µ) to evaluate signi�cance. This test con�rms

a signature of multi-array selection (∆̄µ = 0.70 ± 0.14) despite low power due to

most species having few sequenced genomes. Additionally, in order to determine if

the signature of selection was con�ned to a particular set of clades, we mapped all

species-speci�c ∆µk values onto the SILVA Living Tree 16s rRNA tree [228]. Of
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the 623 species with at least one functional and one non-functional genome, 568

were represented on the tree. Positive and strongly positive (> 1) values of ∆µk

were distributed across the tree, indicating this phenomenon was not isolated to

a particular group (Fig B.14). Formal testing revealed no signi�cant phylogenetic

signal in the ∆µk values (K = 1.88 × 10−9, p = 0.604; [229, 230]). Brie�y, this

test for phylogenetic signal involves randomly permuting the underlying phylogeny

and comparing the �t of the observed trait data (in this case ∆µk) to these random

trees (test developed in [229] and implemented with the �phylosig� function in the

phytools R package [230]).

(3) Often CRISPR arrays and cas genes are collocated such that loss of one

may be linked to loss of the other. At equilibrium, the distribution of array counts

per genome will be una�ected by such collocation. To test this assumption directly,

we used regression to check if the minimum distance between CRISPR arrays and

cas genes in a genome drives the species-speci�c signature of selection, ∆µk (using

only completely assembled genomes). We saw a slight positive relationship between

CRISPR-cas distance and our signature of multi-array selection, the opposite of

what we would expect if linkage were driving our results (m = 3.163 × 10−7, p =

8.52× 10−6, R2 = 0.009937).

(4) Finally, to con�rm that assembly level had no e�ect on our conclusion, we

ran our parametric test restricted to completely assembled genomes in the dataset

(6263 genomes, ∆µ = 0.98± 0.09).

(5) CRISPR immunity may generically increase rates of horizontal gene trans-

fer [148], including transfer of CRISPR arrays themselves. Under our model of
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array accumulation, an increase in the rate of the arrival of new arrays in functional

genomes would certainly increase the mean of the distribution of arrays per func-

tional genome. Nevertheless, assuming only selection on a single array (our null

hypothesis), we would still expect this functional distribution to have negative bi-

nomial form shifted by one array (see Chapter 3 Methods and Appendix B.2). It is

clear from Fig 3.1(b) that the distribution must be shifted by at least two arrays in

order to resemble a negative binomial distribution.

B.6 Neo-CRISPR Arrays

O�-target spacer integration into the genome can spawn novel CRISPR arrays

in E. coli [149]. This could create a spurious signature of selection maintaining

multiple arrays using our test, since the production of �neo-CRISPR arrays� would

only occur in functional genomes. A simple way to control for this is to merge all

CRISPR arrays with identical consensus repeat sequences in a genome, thus remov-

ing any duplicates. Doing this, we �nd that the signature of multi-array selection

remains, albeit being somewhat less strong (∆µ = 0.46± 0.02). We were consider-

ably surprised that this signature of selection still remained after merging, since such

merging will also remove a large portion of arrays acquired through horizontal trans-

fer, assuming such transfers most often happen between closely related individuals.

In any case, while the production of neo-CRISPR arrays may be driving our result

in part, it cannot account for the overall signal. It is unclear if neo-CRISPR arrays

are commonly produced in bacteria via o�-target integration, though [149] found
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circumstantial evidence it may occur in two other species. The CRISPR system of

E. coli is not naturally active [231] and requires arti�cial up-regulation of the spacer

acquisition machinery, so that its dynamics may not be representative of CRISPR

systems at large. Nevertheless, this mechanism may explain the large number of

arrays found in some genomes (e.g., Clostridium di�cile genomes typically have

nine arrays; [135, 136]).

We note that this control also applies to any other potential array duplication

process, since repeat sequence should be preserved during duplication.

In both the case of neo-CRISPR arrays and other duplication events, we might

expect that the �new� array formed via o�-target integration or fragmentation of

a larger array would lead to second arrays that were shorter and potentially lower

scoring than the �rst. Comparing arrays in two-array genomes, we do not see this

pattern emerge (i.e., no negative correlation between arrays in terms of length or

score). In fact, in both cases we see slight positive correlations between arrays,

though with little explanatory value (Fig B.15).

B.7 Validation of CRISPRDetect array predictions

We ran our tests for selective maintenance of multiple arrays on the same

dataset excluding arrays with a CRISPRDetect score lower than 6 (double the de-

fault threshold). We found no qualitative di�erences in our results when we used

this increased detection threshold (∆µ = 1.00 ± 0.02). By default, CRISPRDetect

identi�es arrays with repeats matching experimentally-veri�ed CRISPR arrays as
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well as de novo repeats. If we restrict to only arrays with a positive hit on this list

we again found the same pattern (∆µ = 0.76± 0.03).

We also downloaded the set of CRISPR arrays and array-lacking genomes

available on the CRISPR Database [159]. This database uses an alternative algo-

rithm for array detection [232] and thus serves as an independent veri�cation of

our results. This dataset showed a clear signature of selection maintaining multiple

arrays (∆µ = 1.49± 0.17).

B.8 Autoimmunity Constrains Unprimed Spacer Acquisition Rates

Empirical evidence suggests that there is no self versus non-self recognition

mechanism in the CRISPR systems of Streptococcus thermophilus, a popular model

system for CRISPR research [27]. Thus any increase in spacer acquisition will also

increase the rate of autoimmune targeting. In the absence of viruses or once im-

munity has been established, we can model the growth of bacteria (B) experiencing

autoimmune targeting in a chemostat as

Ḃ = B

(
vR

z +R
− α− w

)
(B.24)

with resources (R)

Ṙ = w(A−R)− evR

R + z
B (B.25)

where µA is the spacer acquisition rate and α = 50µA is an estimate of the rate

of autoimmunity based of the relative genome sizes of S. thermophilus and its lytic
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phage 2972 [38, 233] (other parameters in Table C.2).

As shown in Fig B.16, there is little e�ect of autoimmunity on the equilibrium

density of bacteria for µA < 10−3, but after a point around µA = 10−2 there is a

rapid drop in density. This puts a theoretical cap on the maximum rate of spacer

uptake in our system and imposes a severe cost on spacer uptake rates greater than

10−2 given the parameters used here, based on the S. thermophilus system. Other

taxa do seem to exhibit some degree of self versus non-self recognition, but still

frequently incorporate self-spacers [25, 61, 153], suggesting that our general result

holds across taxa though the threshold is likely to be variable. We note that in Fig

B.16 even a 50% reduction in the rate of autoimmunity only shifts the threshold

spacer acquisition rate by a small amount. Additionally, although CRISPR may

provide a competitive advantage when viruses are present in the system, this ad-

vantage cannot help the host overcome the autoimmunity �cap� on acquisition rate

after which the population is no longer viable.

B.9 Bet Hedging Against Memory Loss

Spacer loss in the CRISPR array most likely occurs via homologous recombi-

nation of repeat sequences [31, 143, 144]. Thus the time to immune loss will increase

with the number of arrays targeting a particular viral species. Assuming that immu-

nity towards a given virus in a single array has an exponentially distributed lifetime

with expected value τ (i.e., time to loss of all spacers targeting that virus in that

array), in the absence of novel acquisitions the expected time to complete immune
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loss is τ
∑N

i=1
1
i
, where N is the number of arrays that initially target the virus in

question. Clearly, the advantage conferred in terms of memory span decreases with

each additional array, though this e�ect is important for the �rst few added arrays.

In fact, it is more appropriate to model the lifetime of individual spacers with an

exponential distribution such that the expected time to complete immune loss is

τs
∑n

i=1
1
i
, where n is the total number of spacers in all arrays and τs the expected

lifetime of each spacer. Note that we assume here that arrays are of comparable

length (so that spacer loss rates remain constant). Thus the relative advantage of

multiple arrays is further reduced in the case where each array can have multiple

spacers targeting the same virus, assuming that spacer loss rates are similar across

arrays (appropriate in the case of identical arrays near some equilibrium length).

If spacers vary in their e�ectiveness in attacking a viral target then we would

expect this to increase the relative payo� of a bet-hedging strategy since it will es-

sentially reduce the number of e�ective spacers in any given array. There is evidence

that spacers vary in their targeting e�ciency [234] in some systems. Nevertheless,

if a system experiences priming then it is extremely likely that a single array would

have many spacers towards the same target, making a bet hedging strategy less

likely.

B.10 No evidence for array specialization

In genomes with multiple arrays, the dissimilarity between consensus repeat

sequences of arrays in a single genome spanned a wide range of values (Levenshtein
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Distance, Figs B.17 and B.18), though the mode was at zero (i.e., identical consensus

repeats). When limiting our scope to only genomes with exactly two CRISPR ar-

rays, we saw a bimodal distribution of consensus repeat dissimilarity, with one peak

corresponding to identical arrays within a genome and the other corresponding to

arrays with essentially randomly drawn repeat sequences except for a few conserved

sites between them (S7D Fig). We also observed that among functional genomes,

the area of the peak corresponding to dissimilar repeat sequences was signi�cantly

higher than among non-functional genomes (χ2 = 61.432, df = 1, p < 4.582×10−15,

Fig B.17). This suggests that the observed signature of selection may be related to

the diversity of consensus repeat sequences among CRISPR arrays in a genome. On

the other hand, this enrichment of functional genomes with dissimilar arrays was

not observed in an independently-generated dataset, calling this result into ques-

tion (CRISPRdb [159], AppendixB.7, Fig B.18). Even when looking only at arrays

with identical consensus repeats, there is a clear interaction between functionality

and having multiple arrays, suggesting that selection maintaining multiple arrays is

present even in these cases (Fig B.19).

Finally, we sought to assess if this observed variability in repeat sequences

among arrays might have functional implications for CRISPR immunity, even when

arrays share a set of cas genes. One measure of system functionality is array length,

as we expect it to be correlated with the rate of spacer acquisition [226]. Therefore,

we determined whether the mean pairwise dissimilarity between array consensus

repeat sequences in a genome was associated with the variance of array lengths in

that genome. Array length was measured as the number of repeats in an array.
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In genomes with exactly two arrays, the mean pairwise distance between consensus

repeats within a genome was positively associated with the variance of the number

of repeats across arrays in a genome, but this relationship was poorly predictive,

not signi�cant considering multiple testing, and likely spurious (linear regression,

R2 = 0.002557, p = 0.0382).
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Bootstrap
Only ≤ 1 cas set Sub-sampled µ̂S µ̂N ∆µ 2.5% 97.5% s?

No No 1.56 0.46 1.09 1.07 1.12 2
No Yes 2.26 1.13 1.13 1.05 1.22 2
Yes No 1.05 0.45 0.61 0.59 0.62 2
Yes Yes 1.26 1.07 0.18 0.11 0.26 1

Table B.1: Test for selection maintaining multiple arrays applied to di�erent subsets
of the RefSeq data. See Figs 3.1, B.1, B.6, and B.7.

Species ∆µ

Staphylococcus aureus 1.15± 0.37
Klebsiella pneumoniae 0.76± 0.06

Shigella sonnei 0.72± 0.17
Listeria monocytogenes 0.67± 0.08

Mycobacterium tuberculosis 0.41± 0.05
Pseudomonas aeruginosa 0.35± 0.16
Campylobacter jejuni −0.12± 0.05

Escherichia coli −0.20± 0.04
Salmonella enterica −0.54± 0.06

Table B.2: Species speci�c values of ∆µ with bootstrapped 95% CIs.
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Figure B.1: Dataset restricted to genomes with one or fewer sets of cas genes
(one copy or less each of cas1, cas2, and a cas targeting gene). (a-b) Distribution
of number of arrays per genome in (a) non-functional genomes and (b) functional
genomes. In (a) the black circles show the negative binomial �t to the distribution of
arrays in non-functional genomes. In (b) black circles indicate the negative binomial
�t to the single-shifted distribution (s = 1) and pink triangles to the double-shifted
distribution (s = 2). (c) The optimal shift is where the di�erences between the two
distributions is minimized. (d) The bootstrapped distributions of the parameter
estimates of µ̂S and µ̂N show no overlap with n = 1000 samples drawn.
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Symbol De�nition Value
µA Unprimed Spacer Acquisition Rate varied Figs 3.2(a) and B.3, spacers

infection

µL Per-Spacer Loss Rate 10−2 1
spacers×time

vT Density Virus T×Adsorption 102 infections
time

vB Density Virus B×Adsorption 102 infections
time

, varied in Fig 3.2(a)
p Priming Factor 104, varied in Fig B.3

Table B.3: De�nitions of relevant variables and parameters for CRISPR array model.
�Infection� refers to the adsorption and injection of a phage into the host. Time is
in units of �viral return intervals� (i.e. the amount of time the transient phage is
absent from the system).

Symbol De�nition Value
e Resource Consumption Rate of Growing Bacteria 5× 10−7 µg/mL
v Maximum Bacterial Growth Rate 1.4 divisions/hr
z Resource Concentration for Half-Maximal Growth 1 µg/mL
w Flow Rate 0.3 mL/hr
A Resource Pool 350 µg/mL

Table B.4: De�nitions of relevant variables and parameters for autoimmunity model.
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Figure B.2: Alternative model results with array length cap agree qualitatively
with those of the primary model (p = 1 (no priming), L = 5, and vT = 100). Blue
signi�es memory washout (tI ≥ 10−5) and yellow signi�es immune maintenance
towards the transient virus, T (tI < 10−5).
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Figure B.3: Priming increases the region of memory washout and thus deepens the
memory span versus acquisition rate tradeo�. Phase diagram of the behavior of our
CRISPR array model with two viral species, a constant �background� population and
a �transient� population that leaves and returns to the system at some �xed interval
(Appendix B.4, Fig B.12). The yellow region indicates that immunity towards both
viral species was maintained. The green region indicates where immune memory
towards the transient viral species was lost, but reacquired almost immediately upon
viral reintroduction. The light blue region indicates that only immunity towards
the background species was maintained (i.e., immune memory towards the transient
viral species was rapidly lost but not rapidly reacquired). Dark blue indicates where
equilibrium spacer content towards one or both species did not exceed one despite
both species being present in the system. The parameter p is the priming factor
by which acquisition rate is increased when spacers towards a given target already
exist in the array.
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Figure B.4: Signature of multi-array selection in archaeal genomes. (a-b) Dis-
tribution of number of arrays per genome in (a) non-functional genomes and (b)
functional genomes. In (a) the black circles show the negative binomial �t to the
distribution of arrays in non-functional genomes. In (b) black circles indicate the
negative binomial �t to the single-shifted distribution (s = 1) and pink triangles to
the double-shifted distribution (s = 2). (c) The optimal shift is where the di�erences
between the two distributions is minimized. (d) The bootstrapped distributions of
the parameter estimates of µ̂S and µ̂N show signi�cant overlap with n = 1000 sam-
ples drawn. We note that the large majority of archaeal genomes had CRISPR arrays
and were also functional, making our approach less powerful. Further, if those few
non-functional genomes lost their cas spacer acquisition machinery recently, then
our power would be reduced even more because these genomes might still bear the
remnants of past selection. In general, as more archaeal genomes become available
in public databases we will have more power to search for selection using out test,
as currently there is an issue of small sample size overall.
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Figure B.5: Boxplots of array counts associated with genomes carrying a particular
type of cas targeting machinery. System type was determined by the type of cas
targeting gene found on the genome (genomes with no signature targeting genes
or multiple types are excluded). Outlier points for genomes with > 10 arrays not
shown for readability.
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Figure B.6: Dataset with subsampled genomes of overrepresented taxa. (a-b) Dis-
tribution of number of arrays per genome in (a) non-functional genomes and (b)
functional genomes. In (a) the black circles show the negative binomial �t to the
distribution of arrays in non-functional genomes. In (b) black circles indicate the
negative binomial �t to the single-shifted distribution (s = 1) and pink triangles to
the double-shifted distribution (s = 2). (c) The optimal shift is where the di�erences
between the two distributions is minimized. (d) The bootstrapped distributions of
the parameter estimates of µ̂S and µ̂N show no overlap with n = 1000 samples
drawn.
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Figure B.7: Dataset restricted to genomes with one or fewer sets of cas genes (one
copy or less each of cas1, cas2, and a cas targeting gene) with subsampled genomes
of overrepresented taxa. (a-b) Distribution of number of arrays per genome in (a)
non-functional genomes and (b) functional genomes. In (a) the black circles show
the negative binomial �t to the distribution of arrays in non-functional genomes. In
(b) black circles indicate the negative binomial �t to the single-shifted distribution
(s = 1) and pink triangles to the double-shifted distribution (s = 2). (c) The
optimal shift is where the di�erences between the two distributions is minimized.
(d) The bootstrapped distributions of the parameter estimates of µ̂S and µ̂N show
nearly no overlap with n = 1000 samples drawn.
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Figure B.8: Similar CRISPRDetect score distributions in non-functional and func-
tional arrays. Non-functional arrays have slightly higher scores (Wilcox rank-sum
test, p = 0.01254), although the e�ect size is marginal and statistical signi�cance
at this level is questionable after considering the number of tests conducted in this
study.
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Figure B.9: Arrays in functional genomes are longer on average than arrays in non-
functional genomes (t-test, p < 2×10−16). (a) Full dataset. (b) Data from genomes
with one or fewer sets of cas. (c) Functional genomes tend to have more repeats
on average in their CRISPR arrays than non-functional genomes (array length �rst
averaged over arrays in each genome, so each datapoint is a genome rather than an
array). (a,b,c) In blue is the distribution of mean array length in functional genomes.
In red (overlaid) is the distribution of mean array length in non-functional genomes.
Vertical lines with corresponding colors indicate the means of these distributions.
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Figure B.10: Short, functional arrays do not drive the result of our non-parametric
test for selection. The results for our non-parametric test for selection when remov-
ing all functional arrays shorer than (a) 4 repeats, (b) 5 repeats, (c) 6 repeats, (d)
7 repeats, (e) 8 repeats, (f) 9 repeats, and (g) 10 repeats. Note that in all cases the
test indicates selection maintaining two arrays.
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Figure B.11: Short, functional arrays do not drive the result of our parametric test
for selection. The results for our parametric test for selection when removing all
functional arrays shorer than a given threshold. Note that even when removing all
functional arrays less than 10 repeats long we still see a substantial signature of
selection maintaining multiple arrays, and that up to a threshold of 6 repeats this
signature is rather strong. By the nature of this test, ∆µ must decrease monotoni-
cally as the threshold increases (Appendix B.3).
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Figure B.12: Outline of model analysis. Hypothetical time-course of CT during the
departure and return of virus T from the system. Virus T leaves at time t = 0 and
returns at time t = 1. CT exceeds a value of one after viral reintroduction at time
1 + tI .
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Figure B.13: Relationship between the number of cas1 genes and the number of
CRISPR arrays in a genome.
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Figure B.14: Species-speci�c ∆µk values mapped onto the SILVA Living Tree 16s
rRNA Tree. In red are species experiencing apparent selection against having a
functional CRISPR array. In blue are species showing a strong signature of selection
for multiple arrays. Number of genomes is represented by tip size, and is a rough
indicator of power.
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Figure B.15: In two-array genomes there is a slight positive association in both
array score and array length between arrays within the same genome. (a) Most
array scores are centered around 8, but there is some positive association (linear
regression, m = 0.49, p < 2× 10−16, R2 = 0.2387). (b) A similar relationship holds
for length (linear regression, m = 0.39, p < 2× 10−16, R2 = 0.1458).
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Figure B.16: Equilibrium host density values from autoimmunity model (Appendix
B.8) over varying spacer acquisition rates. Curves end because for extremely high
α the equilibrium no longer exists if we restrict both host density and resource
concentration to be non-negative.
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Figure B.17: Pairwise distance between consensus repeats from arrays within a
genome (only genomes with two arrays shown). Distance calculated as Levenshtein
Distance between each pair divided by the length of the longest repeat in the pair.
(a) Non-functional genomes. (b) Functional genomes. genomes. The functional
genomes are enriched with dissimilar arrays (χ2 = 26.406, df = 1, p = 2.766× 10−7,
dissimilarity cuto� at 3 based on median across all two-array genomes). (c) The dis-
tributions of pairwise di�erences between arrays in functional genomes (blue, a) and
non-functional genomes (red, b) are overlaid alongside a distribution of distances
between random sequences with lengths drawn from the empirical distribution of
repeat lengths in the full dataset (gray). The green line indicates the bottom 0.1%
of this random (gray) distribution, which can be used as an alternative similarity
cuto� (χ2 = 54.653, df = 1, p = 1.505 × 10−13). (d) Same as (c) but with 4 bases
held constant across all repeats to simulate some degree of universal sequence con-
servation at one end of the repeat as observed among type II-A CRISPR systems
[235] (χ2 = 64.168, df = 1, p = 1.142 × 10−15). In (c,d) the simulated distribution
takes into account the overall frequency of each base across repeat sequences. His-
tograms drawn using default settings of hist() function in R (right-closed/left-open
intervals, except for the �rst interval which includes the lower bound, i.e. zero).
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Figure B.18: Consensus repeat diversity across datasets (CRISPRDetect left vs.
CRISPRdb right) in two-array genomes (a,b) and all genomes (c,d). (a) Pairwise
distance between consensus repeats from arrays within a genome (only genomes
with exactly two arrays shown). Distance calculated as Levenshtein Distance be-
tween each pair. Histogram drawn using default settings of hist() function in R
(right-closed/left-open intervals, except for the �rst interval which includes the lower
bound, i.e. zero). (b) The same as (a) for the CRISPR Database dataset. (c,d) Mean
pairwise distance between consensus repeats from all arrays in a genome, including
genomes with more than two arrays, for (c) the CRISPRDetect and (d) the CRISPR
Database datasets. While the distribution of pairwise-distances between repeat se-
quences in two-array genomes was approximately the same shape as that we observed
for both datasets, the relationship between diversity and functionality was reversed
in the CRISPR Database dataset, with non-functional genomes having more diverse
consensus repeats among their arrays (χ2 = 4.3952, df = 1, p = 0.03604). This
opposing result calls into question the potential link between selection on multiple
arrays and consensus repeat diversity observed in the CRISPRDetect data, though
this may be due to the smaller size of the CRISPR Database dataset.
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Figure B.19: Even restricting to arrays with identical consensus repeats, functional
genomes are more likely to have multiple CRISPR arrays. For each genome with
CRISPR we counted the incidence of each unique consensus repeat sequence and
retained only arrays with the most common sequence (choosing one at random
in the case of a tie, which has no e�ect on the outcome). We then plotted the
frequency of arrays per genome for this dataset, and found a clear excess of 2-array
vs. 1-array genomes in the functional category as compared to the non-functional
category (χ2 = 1475.9, df = 1, p < 2.2× 10−16).
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Appendix C: Supplemental Information For: �Immune Loss as a Driver

of Coexistence During Host-Phage Coevolution�

C.1 Parameter Values

For both our analytical and simulation models we attempt to constrain pa-

rameter values within realistic ranges where possible. Resource uptake parameters

(e, v, z) and burst size (β) are taken from Levin et al. [236], although they are

rough estimates in some cases. We let δ = 10−8 be our base value for the rate of

adsorption. Levin et al. [236] �t a model to data to estimate a value of δ = 10−7,

but they also incorporate a lag time, which we approximate by lowering δ tenfold.

C.2 Alternative Costs of Immunity

While autoimmunity represents one class of costs that may be associated with

prokaryotic immune systems (i.e. lethality via an additional death term), other cost

structures exist that may be applied to growth. Immune host may either su�er from

reduced resource a�nity (z) or maximal growth rate (v). Thus we can write the
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chemostat system with resources:

Ṙ = w(A−R)− evR

z +R
(D + U) (C.1)

defended host:

Ḋ = D

(
vdR

zd +R
− δφdP − α− µ− w

)
, (C.2)

undefended host:

U̇ = U

(
vuR

zu +R
− δφuP − w

)
+ µD, (C.3)

and phage:

Ṗ = P (δU(φuβ − 1) + δD(φdβ − 1)− w) , (C.4)

where we let

zd = czzu (C.5)

and

vd =
vu
cv
. (C.6)

so that the resource a�nity penalty, cz, and growth rate penalty, cv, describe the

costs applied to each aspect of host population growth respectively. It is possible

that alternative cost regimes are more capable of producing robust coexistence under

realistic parameter ranges than is autoimmunity (α).

Both alternative cost regimes can produce stable coexistence (Fig C.1), al-

though they are applied to a nonlinear term in the growth equations and thus

behave di�erently than autoimmunity (Fig C.2). We see that under realistic initial
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conditions immune loss can produce coexistence over a wider range of parameter

space than the other mechanisms, but all can do so over some range and the range

of values for µ and α are not easily comparable with the range for cz and cv (Fig C.3).

All mechanisms can produce coexistence with initial conditions perturbed away from

the equilibrium condition (Figs C.4-C.7), but only immune loss reliably produces

coexistence over any part of parameter space when very large perturbations to the

system occur (on the order of those expected with serial dilution; Fig C.7). We also

note that the condition we call coexistence in Figs C.4-C.7 is that both immune

hosts and phages are present at 80 days at a level likely to be detected experimen-

tally (density of 100/mL) which can be taken as the most general requirement for

coexistence. If we observe the distribution of outcomes of these simulations in Fig

C.8 we see that growth rate and resource a�nity costs tend to produce coexistence

regimes that are dominated by susceptible hosts even with more mild perturbations

(though still severe).

C.2.0.1 Simulation Parameters

The rate of loss of functionality in the CRISPR immune system of S. epi-

dermidis has been shown to fall in the range 10−4 − 10−3 losses per individual per

generation [51]. We choose to use a value in the middle of this range (µL = 5×10−4)

for our simulations. Similarly, based on the fact that there appears to be no self

vs. non-self recognition in the CRISPR system of S. thermophilus [27], and that

the genome of S. thermophilus is roughly 50 times the size of its lytic phage 2972
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[38, 233], the rate of incorporation of a self-spacer by the CRISPR system should be

approximately 50 times the spacer acquisition rate per adsorbed phage. Assuming

that incorporation of a self-spacer is instantaneously toxic and leads to unavoidable

cell death, we can take this value as our rate of autoimmunity (α = 50µb). This

gives us a value on the high end of possible α values, as it is possible that there

is self recognition that has not been observed experimentally or that the action of

autoimmunity can be delayed or avoided through spacer loss or corruption, as has

been found in some experiments [26, 51].

We set ns = 10 due to computational constraints, as small increases in cassette

length lead to a large increase in computational time. The experiments we compare

our models to saw small expansions of the CRISPR cassette (2-3 spacers) and our

system reaches either a phage-cleared or stable coexistence state where coevolution

is halted well before host have obtained the complete set of spacers. While the phage

genome has many protospacers (200+), in the S. thermophilus-phage 2972 system

the large majority of spacers come from a small subset of possible protospacers on the

phage genome (∼ 30), and thus our limited protospacer set may be an appropriate

approximation of reality [26]. Our value for the cost per PAM mutation (c) is set

arbitrarily, but is linked to the value we choose for ns. Our results are robust to the

value of this parameter (Fig C.17).

Childs et al. [214] uses a value of µp = 5× 10−7 for the protospacer mutation

rate in their model of CRISPR-phage coevolution. We choose to introduce newly

mutated strains at a population size of 100 individuals to eliminate the e�ects of

drift in our model and thus speed up our simulations, which requires a corresponding
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decrease in the mutation rate. Additionally, we choose to consider PAM mutations

only, and since the PAM region is considerably shorter than the protospacer itself,

this also warrants a decrease in mutation rate. Thus we reduce their parameter

estimate tenfold for use in our simulations (µp = 5 × 10−8). Similarly we reduce

previous estimates of the spacer acquisition rate (µb = 10−6) �vefold to account for

our introduction of novel strains at a higher population size [19, 210, 211, 214, 236].

We use an initial multiplicity of infection (MOI) of 1 phage per host corre-

sponding to experimental values. We simulated outcomes with an initial MOI of 10

to con�rm robustness to initial conditions (Fig C.20), as seen in previous experimen-

tal work [150]. Burst size (β) estimates for phage are imprecise. We ran additional

simulations at high and low burst sizes to con�rm that our qualitative results are

robust to changes in this parameter (Fig C.21).

C.2.0.2 Varying adsorption

Because we do not have a good estimate of the rate of adsorption in this system

[236], and because we choose to depress our adsorption rate as a compensation for

the lack of latent period in our models, we explore the response of our results to

large variations in δ (Figs C.14 and C.18).
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C.3 Analysis and Simulation Methods

C.3.0.1 Analysis

W found equilibria of our analytical model using Wolfram Mathematica (Ver-

sion 11.0, Wolfram Research Inc., Champaign, IL, 2016). We assessed stability by

linearizing the system around each equilibrium point via the Jacobian. We per-

formed robustness analysis by solving our system numerically using a variable order

method for sti� systems (MATLAB 9.0, The MathWorks Inc., Natick, MA, 2016;

ode15s) at 80 days from inital conditions described in Main Text Fig. 4.1.

C.3.0.2 Simulations

We solve our system numerically using a variable order method for sti� systems

(MATLAB 9.0, The MathWorks Inc., Natick, MA, 2016; ode15s), pausing the solver

to add strains due to spacer acquisition and PAM mutation events, and to perform

serial dilutions at 24 hour intervals. When we reach a serial dilution the resource

concentration is reset to its initial value and all populations are reduced by a factor

of 100. Spacer acquisition and PAM mutation rates are updated at the next strain

addition or dilution event or at a preset maximum update interval (1
2
hr) and used

to draw the time of next addition from an exponential distribution.

When an addition event occurs the type of event is drawn with each type's

probability being proportional to its calculated rate. We then draw the strain in the

population to serve as the base for the new strain, with the probability of choosing
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each strain proportional to its strain-speci�c acquisition, mutation, or recombination

rate. In the case of spacer acquisition a spacer is drawn with probabilities based on

the overall prevalence of each corresponding protospacer in the phage population.

In the case of PAM mutation or back mutation a protospacer is drawn uniformly

from the chosen strain's genome. In all cases new strains are added at a population

size of 100 individuals so that we focus only on strains that are able to establish

themselves and neglect drift to speed up computation. Accordingly we set µb, µp, and

µq lower than might otherwise be expected (see Appendix C.1). During simulations

we dynamically adjust our rates so as to avoid adding strains already present in the

system.

C.4 Experimental Methods

Powdered skim milk (Publix) was diluted in distilled water, 10gms/100ml

water. The suspension was autoclaved at 110◦C for 12 minutes. Three ml of the

milk was then put into 13mm x100mm glass tubes. Streptococcus thermophilus

(DGCC7710) were grown overnight in a broth, LM17 with added calcium [236]. To

initiate the serial transfer cultures, 30 µl of the overnight broth was added to the

tubes either alone or with the phage from an LM17 Ca lysate. The initial densities

of the bacteria and phage were estimated by serial dilution and plating on LM17Ca

agar for the bacteria and with LM17Ca soft agar for the phages (see [236]). Each day,

the cultures were vortexed to suspend the bacteria and phages (the milk fermented),

densities were estimated, and 30 µl of the cultures were transferred to fresh tubes
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with 3 ml milk. These cultures were serially passaged for the noted number of days,

with bacteria and phage densities estimated daily.

To test for bacteriophage immune mutants, periodically, single colonies from

the sampling plates were grown up on LM17 and used as lawns to test for their

sensitivity to the original phage and the phage in their respective cultures. For the

latter, LM17 lysates were made from single plaques taken from the sampled plates.

In this way, we were able to test for CRISPR escape mutants. For example, if the

bacteria from the culture appeared immune to the original phage, we would then

test for its sensitivity to phage from the serial passage culture. In this way, we

were able to follow some of the co-evolution that was occurring in the cultures, via

the acquisition of new spacers generating host and phage mutants evolving in these

cultures, for more details and more extensive consideration of this co-evolution see

[26, 150].
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(a) cv = 1 (b) cz = 1

Figure C.1: Equilibria with alternative costs of immunity. Model behavior under
variations in the immune system loss rate and (a) resource a�nity coe�cient or (b)
growth rate penalty. Equilibria derived from our equations in Appendix C.2 are
shown where orange indicates a stable equilibrium with all populations coexisting
and defended host dominating phage populations, green indicates that all popula-
tions coexist but phages dominate, light blue indicates that defended bacteria have
gone extinct but phages and undefended bacteria coexist, and dark blue indicates
that there is no stable equilibrium. We neglect coevolution and innate immunity
in this analysis (φu = 1, φd = 0) and do not consider the e�ects of autoimmunity
(α = 0).
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(a) (b)

(c) (d)

Figure C.2: Equilibria with each coexistence mechanism in isolation. Behavior of
coexistence equilibrium when (a) there is only CRISPR loss without autoimmunity,
(b) there is only autoimmunity without CRISPR loss, (c) there is only a cost applied
to resource a�nity (Appendix C.2), and (d) there is only a cost applied to maximum
growth rate (Appendix C.2). Notice that immune loss and autoimmune mechanisms
essentially act in the same manner, except that the loss mechanism produces a larger
phage population by �ushing extra susceptible bacteria into the system. This is
consistent with theoretical results showing that increasing resource availability in a
host-phage system increases phage rather than host populations [237]. The upper
bound of the x-axis in (a-d) represents the upper limit of the cost of immunity,
above which coexistence will not occur because immune host cannot survive.
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(a) (b)

(c) (d)

Figure C.3: Numerical solutions to model at 80 days with realistic initial conditions.
Numerical solutions to the alternative cost model (Appendix C.2) at 80 days using
realistic initial conditions more speci�c to the experimental setup (R(0) = 350,
D(0) = 106, U(0) = 100, P (0) = 106). Results only shown for cases in which
all three populations remained extant. Results in each panel correspond to each
mechanism in isolation.
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(a) (b)

(c) (d)

Figure C.4: Simulations of perturbed starting conditions (small perturbations). We
�nd numerical solutions to the alternative cost model (Appendix C.2) at 80 days with
starting conditions (X(0) = [R(0), D(0), U(0), P (0)]) perturbed by a proportion of
the equilibrium condition X(0) = X̃(1 + γY ) where Y ∼ U [0, 1] and X̃ signi�es an
equilibrium value to explore how robust the equilibria are to starting conditions. We
ran 50 simulations for each condition. We let γ = 0.1. Lines correspond to the left
axis and purple dots correspond to the right axis. Results in each panel correspond
to each mechanism in isolation.
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(a) (b)

(c) (d)

Figure C.5: Simulations of perturbed starting conditions (intermediate perturba-
tions). We �nd numerical solutions to the alternative cost model (Appendix C.2)
at 80 days with starting conditions (X(0) = [R(0), D(0), U(0), P (0)]) perturbed by
a proportion of the equilibrium condition X(0) = X̃(1 + γY ) where Y ∼ U [0, 1]
and X̃ signi�es an equilibrium value to explore how robust the equilibria are to
starting conditions. We ran 50 simulations for each condition. We let γ = 1. Lines
correspond to the left axis and purple dots correspond to the right axis. Results in
each panel correspond to each mechanism in isolation.

187



(a) (b)

(c) (d)

Figure C.6: Simulations of perturbed starting conditions (large perturbations). We
�nd numerical solutions to the alternative cost model (Appendix C.2) at 80 days with
starting conditions (X(0) = [R(0), D(0), U(0), P (0)]) perturbed by a proportion of
the equilibrium condition X(0) = X̃(1 + γY ) where Y ∼ U [0, 1] and X̃ signi�es an
equilibrium value to explore how robust the equilibria are to starting conditions. We
ran 50 simulations for each condition. We let γ = 10. Lines correspond to the left
axis and purple dots correspond to the right axis. Results in each panel correspond
to each mechanism in isolation.
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(a) (b)

(c) (d)

Figure C.7: Simulations of perturbed starting conditions (very large perturba-
tions). We �nd numerical solutions to the alternative cost model (Appendix C.2) at
80 days with starting conditions (X(0) = [R(0), D(0), U(0), P (0)]) perturbed by a
proportion of the equilibrium condition X(0) = X̃(1 + γY ) where Y ∼ U [0, 1] and
X̃ signi�es an equilibrium value to explore how robust the equilibria are to starting
conditions. We ran 50 simulations for each condition. We let γ = 100. Lines corre-
spond to the left axis and purple dots correspond to the right axis. Results in each
panel correspond to each mechanism in isolation.
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(a) (b)

(c) (d)

Figure C.8: Mean population size with perturbed starting conditions (intermediate
perturbations). We �nd numerical solutions to the alternative cost model (Appendix
C.2) at 80 days with starting conditions (X(0) = [R(0), D(0), U(0), P (0)]) perturbed
by a proportion of the equilibrium condition X(0) = X̃(1 + γY ) where Y ∼ U [0, 1]
and X̃ signi�es an equilibrium value to explore how robust the equilibria are to
starting conditions. We ran 50 simulations for each condition. We let γ = 10. Mean
population across all simulations (including cases of phage or host extinction) shown
by bold line and two standard deviations away from the mean are represented by
the thin lines. Results in each panel correspond to each mechanism in isolation.
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(a) φd = 0.01 (b) φd = 0.0131

(c) φd = 0.0132 (d) φd = 0.015

Figure C.9: Phase diagram of general model with phage coevolution. Phase di-
agrams of simple coevolutionary model behavior under variations in the rates of
autoimmunity (α) and CRISPR system loss (µ) over various coevolutionary scenar-
ios (φd). Values of φd were chosen so as to demonstrate the rapid shift that occurs
from host to phage dominated equilibrium as the infected fraction of defended host
increases. Orange indicates a stable equilibrium with all populations coexisting and
defended host dominating phage populations, green indicates that all populations
coexist but phages dominate, and blue indicates that defended bacteria have gone
extinct but phages and undefended bacteria coexist.
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(a) φu = 1 (b) φu = 0.5

(c) φu = 0.1 (d) φu = 0.05

Figure C.10: Phase diagram of general model with innate immunity. Phase diagram
of model behavior under variations in the rates of autoimmunity (α) and CRISPR
system loss (µ) for di�erent values of (φu). Orange indicates a stable equilibrium
with all populations coexisting and defended host dominating phage populations,
green indicates that all populations coexist but phages dominate, and blue indi-
cates that defended bacteria have gone extinct but phages and undefended bacteria
coexist.
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(a) Phage

(b) Bacteria

Figure C.11: Replicate serial transfer experiments. Densities of (a) phage and (b)
bacteria measured daily at serial transfer. All replicate experiments start with the
same conditions and strains as in the main text.
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Figure C.12: Mean sequenced order of host over time in serial transfer experiments
1 and 2. Sum over CRISPR1 and CRISPR3 loci.
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Figure C.13: Optimal host order for phages to infect over time. The optimal
host strain that is either currently infected by a phage strain or one PAM mutation
away from being infected. Optimality is de�ned in terms of population size times
the burst size of the phage strain that does or could infect that strain, so that the
balance between abundant host and mutation cost is taken into account. In (a)
we track the order of the �best� available host strain at any given point in a single
example simulation (Fig C.22), and in (b) look at the timing of the peak optimal
order across 100 simulations (Fig 4.4, µq = 5 × 10−9). Note that after the initial
arms race dynamic the best available host strain is the CRISPR-lacking host in
all simulations. The order of the best host strain peaks early on in all simulations
and then drops to zero (CRISPR-lacking), signifying an early end to the arms race
between host and phage.
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Figure C.14: E�ect on simulations of varied phage adsorption rates. Adsorption
rate has a profound e�ect on the outcome of host-phage interactions. At a high
adsorption rate (δ = 10−7) either phages or bacteria tend to go extinct early on in
the simulation, and phages are able to drive their host extinct approximately 50%
of the time (49/100 simulations for all back-mutation rates). We see a reversed rela-
tionship of time to extinction with µq from our base adsorption rate (δ = 10−8, Fig
4.4), although in general at a very high adsorption rate few simulations demonstrate
long-term coexistence as phage consume all host early on. This suggests that the
costs associated with PAM mutations are required to keep phage growth rate low
enough to prevent overconsumption of host, and indeed upon closer examination of
individual simulations it is clear that back mutations to lower phage orders precip-
itate phage collapse. In the lowest panel we demonstrate that coexistence in the
long term at high δ is associated with a high mean phage order over the course of
a simulation, while the opposite is true of our typical intermediate δ. At a low ad-
sorption rate (δ = 10−9) we see populations coexisting until the 80 day mark (max
simulation length) in almost all simulations.
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Figure C.15: Representative simulation with a �oor on the susceptible host
population and high autoimmunity. We let Bs > 1 ∀t and α = 5× 10−4.
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(a)

(b) (c)

(d) (e)

Figure C.16: Transient phage survival at low density Example of low-level phage
persistence due to slow evolutionary dynamics. Here we see that (a) in the absence
of the constant production of susceptible bacteria by CRISPR-enabled strains (i.e.,
µ = 0) phages are still able to paradoxically persist despite a clear advantage to
bacteria in the arms race and an absence of other sustaining mechanisms. In (b)
a small fraction of the CRISPR enabled bacterial population is maintained that
lacks spacers towards the infecting phages and in (c) we zoom in to show that this
population is declining due to this infection, but extremely slowly, implying this
coexistence is not stable in the long term. The number of bacterial strains that can
be infected by phages over time is shown in (d), and (e) shows how the richness of
phage and bacterial strains changes over time. Note that although the number of
bacterial strains increases asymptotically, after an initial spike the number of strains
that can be infected by phages drops dramatically to the single digits. This keeps
the overall phage population growth constrained (balanced by adsorption to immune
bacteria). In fact, over time phage act to suppress their own growth by negatively
infecting the competitiveness of their host (although this e�ect is so small that
phages can persist for an extended period of time seemingly stably). What looks
�at is actually monotonically decreasing. All parameters as in Main Text Table 4.3
and α = 0. 198
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Figure C.17: E�ect of changes in PAM mutation cost (c). Distribution of phage
extinction times in bacterial-dominated cultures with di�erent costs on PAM mu-
tation in phage (c). The peak at 80 corresponds to stable coexistence (simulations
ran for a maximum of 80 days). These results of for a locus-loss mechanism only
(µL = 5× 10−4, α = 0).
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(a) δ = 10−9 (b) δ = 10−8

(c) δ = 10−7 (d) δ = 10−6

Figure C.18: Phase diagram of general model with phage coevolution. Phase
diagrams of model behavior without coevolution or other forms of immunity (φd = 0,
φu = 1) under variations in the rates of autoimmunity (α) and CRISPR system loss
(µ) over various adsorption rates (δ). Orange indicates a stable equilibrium with
all populations coexisting and defended host dominating phage populations, green
indicates that all populations coexist but phages dominate, and blue indicates that
defended bacteria have gone extinct but phages and undefended bacteria coexist.
There is an apparent increase in the area of the coexistence region in which host
dominate as adsorption rate increases.
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Figure C.19: Equilibrium phage population during coexistence. Equilibrium pop-
ulation of phages when there is full coexistence over a range of α and µL values for
our general model without coevolution (φu = 1, φd = 0).
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MOI = 10, µq = 5e−8, µL = 5e−4, α = 0
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Figure C.20: Distribution of phage extinction times in bacterial-dominated cultures
with an MOI of 10. The peak at 80 corresponds to what we call stable coexistence
(simulations ran for a maximum of 80 days).
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Figure C.21: Distributions of phage extinction times in bacterial-dominated cul-
tures with various burst sizes. The peak at 80 corresponds to what we call stable
coexistence (simulations ran for a maximum of 80 days).
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(a) (b)

(c) (d)

Figure C.22: Representative example of a simulation demonstrating stable coexis-
tence under a loss mechanism (µL = 5×10−4, α = 0, µq = 5×10−9). In (a) we show
the archetypal shift from phage-dominance during an initial arms race to unstable
host-dominated coexistence where �uctuating selection dynamics are observed to
stable host-dominated predator-prey cycling of phages and CRISPR-lacking hosts
as seen in (d) where evolution ceases to occur. In (b) we see that a drop in mean
phage order leads to stable cycling and in (c) that this corresponds to a single phage
strain becoming dominant after previous cycling of strains. This corresponds to a
shift away from �uctuating selection dynamics. In (c) the colors specify di�erent
phage strains.
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