THaESIS REPORT
Ph.D.

Supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
the University of Maryland,
Harvard University,
and Industry

Ph.D. 92-11

Design and Implementation of Systolic
Architectures for Vector Quantization

by R.K. Kolagotla
Advisors: |J.F. Jd]d

Design and Implementation of Systolic

Architectures for Vector Quantization

by

Ravi K. Kolagotla

Dissertation submitted to the Faculty of the Graduate School
of the University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1992

Advisoi'y Committee:

Professor Joseph F. JaJ4, Chairman/Advisor
Associate Professor Nariman Farvardin
Assistant Professor K. J. Ray Liu

Assistant Professor Linda Milor

Professor Larry S. Davis

Abstract

Title of Dissertation: Design and Implementation of Systolic
Architectures for Vector Quantization

Ravi K. Kolagotla, Doctor of Philosophy, 1992

Dissertation directed by: Professor Joseph F. JaJa
Department of Electrical Engineering

Vector Quantization has emerged as an efficient data compression tool for
compressing speech and image data. We develop efficient systolic architecture
implementations of Tree-Search Vector Quantizers (TSVQ) and Finite-State Vec-
tor Quantizers (FSVQ). Our TSVQ architecture consists of a linear array of pro-
cessors, each processor performing the computations required at one level of the
binary tree. Encoding is performed in a pipeline fashion with each processor
generating a portion of the path through the tree. The final processor returns
the complete index. Data and control flow from processor to processor along the
pipeline and no global control signals are needed. The FSVQ architecture for
image coding consists of a linear array of TSVQ processors with each processor
operating on a separate column of the input image. The number of processors
needed depends on the latency of the TSVQ and is independent of the size of the
image. We also develop implementations of Scalar and Inverse Scalar Quantizers

for use in transform coding applications.

© Copyright by
Ravi K. Kolagotla

1992

Dedication

To HSIEN-HUA LEE

11

Acknowledgements

I would like to thank my advisor Professor Joseph F. JaJ4, for his guidance
and support. I had many valuable discussions with him and with Professors
Nariman Farvardin and K.J. Ray Liu. I am grateful for their help and advice. I
would also like to thank Professors Evaggelos Geraniotis, Hung C. Lin, Bernard
Menezes, Linda Milor, and Kazuo Nakajima for helping me in various ways
during my study at Maryland.

I learned many of my skills by interacting with several people at Maryland.
Special thanks go to Jagannathan Narasimhan for teaching me the basics of C,
to Gyorgy Fekete for getting me started as a UNIX! super-user, to Hsien-Hua
Lee for patiently answering all my hardware and system software questions, to
Haisong Cai for sharing many of his UNIX secrets with me, and to Steve Miller
for solving system problems that were too difficult for me.

Most of my research work was done as part of several group projects. Special
thanks go to Shu-Sun Yu for the innumerable discussions we had during the
course of the SQ and VQ projects, to Ching-Te Chiu for collaborating on the
DCT/DST project, to Xiaonong Ran for helping me with the TSVQ project, to
Yunus Hussain for helping me with the FSVQ project, to Todd Goodrich for the
discussions we had during the course of the DFT project, to John Baczewski for
helping me test my very first chip, and to Karl Thompson, and Wen-Bin Yang
for their help with the FM synchronizer project.

Several students, both past and present, have contributed directly or indi-

rectly to this thesis. I would like to thank Chaitali Chakrabarti, Shing-Chong

1UNIX is a registered trademark of UNIX System Laboratories, Inc.

111

Chang, Chieh-Yuan Chao, Jie Chen, Martin P. Farach, Ying-Min Huang, Vivek
Khuller, Sridhar Krishnamurthy, Rajiv Laroia, Chujen Lin, Jyh-Fong Lin, Po-
Yang F. Lin, Zhiming Lin, Sayed Naved, Madhura Nirkhe, Nam Phamdo, Raju
Prasannappa, Ravi Ramaswami, Ivan L. M. Ricarte, Chong-Suk Rim, Andrew
Robertson, Kwan-Woo Ryu, Sachidanandan Sambandan, Malathy Sethuraman,
Vishnu Srinivasan, Naoto Tanabe, Hao Tian, Amarendranath Vadlamudi, Vinay
Vaishampayan, Hsinshih Wang, Zhusheng Wang, and Sen-Jung Wei.

I would like to thank the University of California at Berkeley, Stanford Uni-
versity, Digital Western Research Laboratory, and Lawrence Livermore National
Labs for developing the excellent CAD tools without which this work would not
have been possible. I would like to thank Professor Chuck Sietz of CalTech for
developing the I/O pads we used on most of our chips.

Finally, I would like to thank Gail Belshay, Terry Clark, Sharon Dass, Ur-
sula Gedra, Olivia Goetz, Pam Harris, Matt Katsouros, Daw-Tung Lin, Yolanta
Stawski, Kim-Thu Tran, Maggie Virkus, and Tina Wong for making EE, SRC,
and UMIACS pleasant places to work for.

v

Contents

List of Figures vii
1 Introduction 1
1.1 Overview of VLSI Architectures 2
1.1.1 Simple and regular designs 3

1.1.2 Localized communications 3

1.1.3 Massive concurrency tiit .. 3

1.2 VLSI Implementation Techniques 4
1.3 Data Compression 5
1.3.1 Scalar Quantization 5

1.3.2 Vector Quantization 6

1.4 Main Contributions 9
1.4.1 Tree Search Vector Quantizers 9

1.4.2 Finite State Vector Quantizers 11

1.5 Thesis Organization 13

2 Basic Building Blocks 14
21 Multipliers. 14
2.1.1 Bit-Parallel Multipliers 15

2.1.2 Distributed Arithmetic Multipliers

2.1.3 Bit-Serial Multipliers 0

2.2 Data Conversion Hardware v o

3 Scalar and Inverse Scalar Quantizers
3.1 Definition e
3.2 Transform Coding oL
3.3 Architectures o o o
3.4 VLSI Implementation
4 Tree Search Vector Quantizers
4.1 Definition e
4.2 Single Node Processor
4.3 TSVQ Architecture
4.4 VLSI Implementation
4.5 Simulations e
4.6 Fabrication and Testing
5 Finite State Vector Quantizers
5.1 Definition e
5.2 Basic FSTSVQ architecture
5.3 FSTSVQ for speech and image coding
5.3.1 FSTSVQ for speech coding
5.3.2 FSTSVQ for imagecoding

5.4 Improvements to the FSTSVQ architecture

6 Conclusions

vi

25
25
27
28
30

33
33
35
38
40
41
43

45
45
47
48
48
49

33

55

List of Figures

1.1

2.1
2.2

2.3

24
2.5

2.6

3.1
3.2
3.3
3.4

Traversal of a binary tree of depth 4, and its mapping onto a linear

array of processors. 11

Logic diagram of the bit-parallel multipliercell. 16
Physical layout of the pipelined parallel multiplier for 12-bit num-
bers and 8-bit coefficients. Area of this module is 4364\ x 2913X. 17
Physical layout of the distributed array multiplier for 12-bit num-
bers and coefficients. Area of this module is 1292) x 1646X. . . . 19
Logic diagram of the bit-serial multipliercell. 20
Physical layout of the bit-serial multiplier for 20-bit numbers and
coeflicients. Area of this module is 936 x 1680A. 21
Architecture to convert line-scan image data into block-scan mode.
(a) 2-D array of cells. (b) Detail of cell R;; with k£ latches and

two multiplexers. Control signal ¢; switches the cell between hor-

izontal and vertical modes of operation. 24
Input-Output characteristicofa SQ with N =8.. 26
Scalar Quantizer block diagram. 29
Photograph of the SQ chip. Die size is 4.6mm x 6.8mm. 31
Photograph of the ISQ chip. Die size is 2.22mm x 2.25mm. . .. 32

vii

4.1

4.2

4.3

4.4

4.5

4.6

5.1

Detailed block diagram of each processor. Each processor’s READY
output must be connected to the GO input of its neighbor. Only
the most significant b bits of 3’ are applied to the processor. The
least significant b bits are set to zero internally.
Detailed diagram of the accumulator (a) Linear array of cells.
Input data is applied in a skewed fashion and carry is propagated
between cells. Reset is applied to the first cell and is propagated
down the array. Cellsin this array are reset in a staggered fashion.

(b) Detail of each cell. Solid circles are unit delay elements.

Systolic architecture for computing TSVQ. Each SNP adds its

partial index to the index data-path, and generates a control signal
to initiate processing by its neighbor down the tree. No global
control signals areneeded.o oo
TSVQ architecture using one SNP and recirculating registers. In-
put vector x must be recirculated d times, once for each level of
the binary tree.
Timing diagram of signal flow between processors for input block
size of 8 x 8. Dotted line shows the boundary between adja-
cent vectors. Coeflicient memory chips must have an access time
smallerthat £4.

Plot of the TSVQ processor chip. Die size is 7.9mm x 9.2mm. . .

Block diagram of the FSTSVQ processor. R is a unit delay el-
ement. The [log K] bits of s, are used as address bits for the
RAM. e

viii

37

39

40

42
44

5.2

3.3

5.4

5.5

Block-scan of an input image of size N x M. The internal state of

the FSVQ while quantizing vector X, depends on the quantized

outputs of vectors Xp_y, X, _y,and x _~_,.
k

n—%

(a) Dependency graph of the FSTSVQ for image coding for an
image of size N = M = 4k. Each circle represents the quantiza-

tion of one input vector. (b) Projection in the vertical direction.

Solid circles are unit delay elements.

Systolic architecture using -]Ig processors arranged as a linear array.
Input data blocks are applied to this array in a skewed fashion.
Detailed block diagram of processor P,. The current state s, =
(W NW

o s Sn " si') is composed of partial substates from the west and

northwest (from the previous processor), and the north (from pre-

vious computations in this processor). L.

X

32

Chapter 1

Introduction

Special purpose VLSI architectures are used to achieve the high throughput rates
and processing power required by real-time signal processing applications. Until
recently, general purpose computers were unable to provide the processing power
required for these applications. However, in the past few years, the computing
power of general purpose workstations has increased by two orders of magnitude,
while their cost remained relatively constant. The current generation of desktop
workstations have processing powers in excess of 100 MIPS [1]. Pipelining and
parallelism, once the exclusive domain of special purpose VLSI architectures, are
now routinely incorporated in general purpose ASICs and workstations [2, 3].
This naturally leads to the following question: of what possible use are special
purpose VLSI architectures?

While the processing power of general purpose workstations has increased
tremendously, their data throughput rates have only increased modestly to about
10 Mbytes/sec. Real-time applications require the sustaining of much larger
throughput rates. For example, HDTV generates about 70 Mbytes/sec of im-

age data. Special purpose VLSI architectures that are tailored for a particular

application, can balance the computational power with interprocessor data com-
munication to achieve real-time performance. Hence, special purpose VLSI ar-
chitectures will be used in the foreseeable future because of their high throughput
rates, and because of their ability to optimally balance the various components of
the architecture for a specific application. However, special purpose VLSI chips
have higher design and production costs because of their low volume. They are
used when the real-time performance requirements justify the cost involved.
Data compression is an important signal processing task that has been the
subject of extensive studies due to its many applications. The introduction
of ISDN in standard commercial workstations [1] and the development of global
standards for high speed data and video communications will make data compres-
sion even more important in the near future. This has led to the development of
several important lossy compression techniques such as predictive coding, block
transform coding, vector quantization, and sub-band coding. While a significant
amount of work has been done in the development and software implementation
of data compression algorithms, not much has been done in terms of real-time
hardware implementation of these algorithms [4, 5]. In this thesis, we develop ef-
ficient VLSI architectures for the real-time implementation of data compression

techniques.

1.1 Overview of VLSI Architectures

In this section we review the major properties of special purpose VLSI architec-

tures that make them attractive for various real-time signal processing applica-

tions [6, 7, 8, 9].

1.1.1 Simple and regular designs

Special purpose VLSI architectures can exploit the regularity and modularity of
the signal processing algorithms in order to achieve compact and efficient designs.
Architectures that are assembled using building blocks can be designed faster
at low cost. For example in the design of a parallel multiplier, it is sufficient
to design one unit cell and replicate it N? times, rather than design the entire

multiplier from scratch. Modular designs also reduce the chances of design errors

in the final VLSI chip.

1.1.2 Localized communications

Data communications between different modules on a chip and between chips is
very costly in terms of the area they occupy and the timing constraints they im-
pose on the speed of operation of the circuit. Special purpose VLSI architectures
that are optimally mapped from the underlying algorithm require significantly
less interconnections than a general purpose architecture that is not optimized
for a particular application. In mapping an algorithm to a special purpose ar-
chitecture interconnection length in both the data and control paths is one of

the major design constraints.

1.1.3 Massive concurrency

In real-time implementations, the processors must be capable of sustaining the
input data rate. In typical video applications, input data arrives word serially
at rates in excess of 50 Mpixels/sec. Special purpose VLSI architectures can

sustain this large input rate by using extensive pipelining and parallelism in

the design. Pipelining increases the data throughput rate at the expense of
an increased latency [10]. Latency is usually not a primary concern in signal
processing systems where feedback loops are not present. Parallelism allows
the processing of multiple data simultaneously at the expense of an increased
hardware area. If each processor is small and eﬂicient‘, VLSI technology allows

the design of complex chips with several processors in parallel.

1.2 VLSI Implementation Techniques

VLSI implementations can be broadly classified into full-custom and semi-custom
designs.

Full-custom designs use a polygon editor to directly modify the VLSI layout.
This is used in cases where the layout area and speed of operation are critical.
Memories and other modules that require numerous copies of the same basic
circuit are usually designed using full-custom techniques. Because of arraying;
any savings in the area of the basic circuit is magnified in the final layout.

In semi-custom designs, all the basic subcells are taken from a standard
cell library. They are assembled using placement and routing tools based on
a specified circuit schematic. This technique is best suited for the control and
other portions of the chip that are much easier to describe at a schematic level
and may undergo modification during the design cycle. Automatically placed
and routed modules use more area than manually designed ones. This can be a
major disadvantage in designs where chip area is at a premium.

The ideal approach is to manually design all critical modules and leave the

smaller time-consuming modules to the automatic place and route tools.

1.3 Data Compression

The goal of data compression is to reduce the channel capacity required for
transmission of signals and the storage capacity needed to store the signals.
Data compression also helps in making the best use of available storage and
channel capacities. Speech and images are two of the main sources of digital
data. Speech data is typicdlly generated at a rate of a few thousand samples
per second, while image and video data are generated at a rate of several tens of
millions of samples per second. Hence, any real-time hardware implementation

of data compression algorithms must be capable of processing input data at

video rates.

1.3.1 Scalar Quantization

Scalar Quantization (SQ) is a technique in which each input sample is repre-
sented by the index of the nearest quantization level from a predetermined set of
quantization levels. If the input is an analog signal, SQ is part of the Analog to
Digital (A/D) conversion process. In general, SQ allows the input to be in digital
form. Compression is achieved by using a coarse set of quantization levels such
that the number of bits required to represent the quaptization level is smaller
than the number of bits required to represent the original input signal.

A SQ is completely defined by its set of quantization and reconstruction
levels [11, 12]. Let zo,z1,...,zn be the ordered set of N + 1 decision levels and
Y1, Y2, .., YN be the set of N reconstruction or output levels. If the input signal
z, lies between z;_; and z;, the SQ encoder represents it with the index 7. This

index ¢ is stored or transmitted instead of the original signal z. An SQ decoder,

or an Inverse Scalar Quantizer (ISQ), transforms index ¢ into the reconstruction
level y;. The difference between the original signal z and its reconstruction level
i, 1s the quantization error.

The average error depends on the statistics of the input signal. Optimum

quantizers can be designed for various input probability distributions [13].

1.3.2 Vector Quantization

In SQ, each input sample is quantized independently. Adjacent input samples
from real world signal sources usually have a high degree of correlation. This
correlation can be exploited in a block structured data compression scheme, in
which an input data is segmented into blocks of equal size and the samples
in each block are quantized togethér. Vector Quantization (VQ) provides the
best performance among all block structured image coding schemes for a given
blocksize and bit-rate [4].

Given a k-dimensional input vector x, a VQ encoder chooses a reproduction
vector X from a predetermined set of N reproduction vectors that is closest to
the input vector relative to a certain distortion measure. The Euclidean distance
is the most commonly used distortion measure. The reproduction vectors, also
known as codevectors, are points in k-dimensional space. The input vector is
then represented by the index u of codevector X. This index, also known as the
channel symbol, is transmitted to the decoder. A VQ decoder maps this channel

symbol onto its corresponding reproduction vector from the codebook [14].

Full-Search VQ

The VQ encoder must compare the input vector with each reproduction vector
in the codebook. For a codebook consisting of N codevectors, the computational
complexity of the encoder is O(NNV) distance computations. For a k-dimensional
input vector, assuming Euclidean distortion measure, this involves ©(kN) mul-
tiplications and ©(kN) additions for each input vector. At video rates, this

becomes quite prohibitive even for modest values of k and N [15, 16].

Tree-Search VQ

Several techniques have been developed to reduce the encoding complexity of
VQs at the expense of an increased error between the original input vector and its
reconstructed output. Reduced complexity allows the design and implementation
of VQs for higher dimension vectors than is possible with full-search VQs.

In a Tree-Search VQ (TSVQ), the codebook is structured as a binary or
higher-order tree and the search for the nearest codevector for a given input
vector is performed in stages. At each level of the tree, the input vector is
compared with a few codevectors, and based on the results, the codebook search
space is reduced. This process is repeated until a leaf node is reached. The
input vector is then represented by the path taken through the tree by the
TSVQ encoder.

In addition to a reduced signal to noise ratio performance, a TSV(Q encoder

requires twice as much memory as a full-search VQ to store the codebook.

Multi-Stage VQ

A Multi-Stage VQ (MSVQ) encodes an input vector in successive stages [17].
Each stage of a MSVQ) is a full-search VQ with a small number of codevectors.
Unlike the TSVQ, in which each stage quantizes the input vector in a small
region of the codebook space, each stage in a MSVQ quantizes the error between
the input vector and the reconstructed output of the previous stage. The MSVQ
encoding process can be viewed as successive refinement, in which the input
vector is more accurately represented as the encoder proceeds down the tree.
MSVQ thus combines the low encoder complexity of a TSVQ with the smaller
storage requirements of a full-search VQ at the expense of a reduced signal to

noise ratio performance [18].

Predictive VQ

In a full-search VQ, each input vector is encoded independent of the neighboring
vectors. In real-world sources, neighboring vectors usually have a high degree
of correlation. Predictive VQ (PVQ) is a VQ with memory which makes use of
inter-vector correlation to predict the current input vector based on past outputs.
The difference between the actual input vector and its predicted value is then
quantized using either a full-search VQ or a TSVQ [19, 20, 21, 22]. Since the
error vector is constrained to lie in a smaller region‘ of k-dimensional space than
the input vector itself, it can be accurately represented with a smaller number
of bits. Alternately, for the same number of transmitted bits, a PV(}) provides

better signal to noise ratio than a full-search VQ.

Finite-State VQ

Finite-Stage VQ (FSVQ) is a VQ with memory in which the past outputs are
used to restrict the search space for the current input vector. The entire code-
book search space is divided into a set of states, with each state consisting of a
small set of codevectors. The current input vector is encoded using the codevec-
tors from one of these states. The current state of the FSVQ encoder depends on
the past outputs. FSVQ achieves the efficiency of a large rate VQ at a relatively

small rate.

1.4 Main Contributions

In this thesis, we develop efficient VLSI architectures for implementing Tree
Search Vector Quantizers (TSVQ) and Finite State Vector Quantizers (FSVQ)
in real-time. These architectures can be used in any speech or image compres-
sion application based on VQ. In this section, we describe both the TSV(Q and
FSVQ algorithms. We also describe the existing schemes for their hardware

implementation and give an overview of our architectures.

1.4.1 Tree Search Vector Quantizers

VQ codebooks are typically structured as trees to reduce the codebook search
'complexity and simplify hardware implementation. A Tree Search VQ (TSVQ)
has an O(log N) codebook search complexity compared to the O(N) complexity
of Full Search VQ. While Full Search VQ results in a better signal to noise
ratio performance than TSVQ, researchers have found that variable rate pruned

TSVQs outperform Full Search VQs of the same rate [23].

Existing schemes:

Several researchers have implemented TSVQs in hardware concurrently with
our work. TSVQ architectures were first proposed by Lookabaugh [24]. The
scheme to exploit binary Hyperplane testing [25] for generating efficient TSVQ
architectures was first proposed by Lookabaugh. Hardware implementations
were proposed by Yan and McCanny [26] and Wai-Chi Fang et.al. [27] which are
similar to our schemes. Yan and McCanny do not implement their architecture.
Wai-Chi Fang et.al. use parallel multipliers to implement a tree of depth 10
on one chip. In their scheme, memory is on chip for the first eight stages.
Additional memory for the last stages are off-chip. Their implementation uses
a comparator in each processor which is not necessary in our scheme. Pipelined
parallel multipliers have fewer logic elements between adjacent latches and are
thus faster than full parallel multipliers. More recently Markas et.al. [28] and

Madisetti et.al. [23, 29] have proposed TSVQ architectures.

Our contribution:

The computations performed by a TSVQ can be viewed as finding a path from
the root to a leaf in a binary tree. While traversing a binary tree, only one
node is encountered at each level. Hence, the computations at each level can be
performed by a single processor. Our architecture for the TSVQ encoder consists
of a linear array of processors [30]. A tree of depth d can be mapped onto a linear
array of d processors as shown in Fig. 1.1. Codebook values associated with each
processor are stored in off-chip memories.

The number of processors required for real-time implementation equals the

10

Figure 1.1: Traversal of a binary tree of depth 4, and its mapping onto a linear array of
processors.

depth of the tree and does not depend on the input vector dimension. In our
architecture all processors are identical and data flow between processors is reg-
ular and simple. Each processor performs the computations at one level of the
binary tree. It then adds its result to the partial index register and transmits
it the the next processor in the array. The complete path through the tree is
available from the last processor in the array. There is no global communication
between the processors. Variable rate TSVQs can easily be implemented using
this architecture by simply selecting the correct number of index bits at the

output of the last processor.

1.4.2 Finite State Vector Quantizers

Increasing the vector dimension for a given bit-rate improves the performance

of VQ. However, the resulting increase in complexity makes large vector dimen-
sion VQ or TSVQ impractical. Finite State VQ (FSVQ) is a class of VQ with

memory which makes use of correlation between neighboring vectors to improve

11

performance for a given vector dimension and bit-rate [31]. An FSVQ consists of
a super-codebook which contains a large number of codevectors and an internal
state which accurately represents a small region that contains the current input
vector. The quantizer codebook used for the current input vector depends on
past outputs. Thus, FSVQ achieves the performance of a large rate codebook at
a relatively small rate. Finite State TSVQ (FSTSVQ), which is a TSVQ with
memory, exhibits a better signal to noise ratio performance than a simple TSVQ,
while maintaining its O(log N) codebook search complexity. FSTSVQ can pro-
vide a better compression ratio than a TSVQ using about the same computation

and memory resources [4, 32, 33, 34, 35].

Existing schemes:

Shen and Baker have proposed a FSVQ for interframe and intraframe coding
[36]. They suggest a blend of classified VQ, PVQ, Product VQ and FSVQ for
improved signal to noise ratio performance. They suggest implementing the VQ
portion of this encoder with a custom VLSI chip set that requires a complex

control scheme [37).

Our contribution:

Our architecture for implementing an FSVQ encoder in real-time for image data
consists of a linear systolic array of processors. The number of processors needed
is .independent of the size of the image [38]. Each processor consists of a TSVQ, a
next state generator, and additional memory for storing the codebooks associated
with each state. This architecture can efficiently exploit the correlation between

the current input block and all of its nearest causal neighbors. Data flow is

12

regular and there are no global control signals.

1.5 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, we describe the
multiplier and other basic building blocks used in our VQ implementations.
We also describe the design and implementation of Scalar Quantizers (SQ) and
Inverse Scalar Quantizers (ISQ). In Chapter 3, we describe the design and VLSI
implementation of a systolic architecture for TSVQ. In Chapter 4, we develop
a systolic architecture for efficiently implementing FSVQ in real time for both

speech and image data. We summarize our results in Chapter 5.

13

Chapter 2

Basic Building Blocks

In this chapter we present some basic building blocks used in the TSVQ and
FSVQ designs. The multiplier and accumulator are two of the most funda-
mental blocks used in any signal processing application [39]. We also present
an architecture for converting line-scanned input image data into block-scanned

mode. The image architectures developed later operate on input image blocks.

2.1 Multipliers

Several different multiplier designs are available for digital signal processing ap-
plications. They offer trade-offs between speed and area complexity [40]. In this
section, we describe the pipelined parallel multiplier, the distributed arithmetic
multiplier and the bit-serial multiplier. We also describe VLSI chip designs that

incorporate these multipliers.

14

2.1.1 Bit-Parallel Multipliers

Parallel multipliers consist of a two-dimensional array of basic cells. Each cell
consists of a full adder and latches and computes a single partial product. The
complete product is obtained by accumulating the partial products generated
by each cell. The multiplier can be pipelined by adding delay elements between
the cells and applying the inputs in a skewed fashion [41]. Pipelining increases
the speed of operation of parallel multipliers by reducing the complexity of the
computations performed in each clock cycle. This is achieved at the expense of
an increased latency. We have used pipelined parallel multipliers as the basic
modules in both TSVQ and FSVQ. We have also used variations of these for
designing synchronizers and demodulators for FM sideband receivers. Fig. 2.1
shows the block diagram of each cell. A parallel multiplier is formed as a 2-D
array of these cells. Signals “ain” and “bin” are bits of the input numbers to be
multiplied. Signal “ain” flows vertically through the array and signal “bin” flows
horizontally through the array. Signal “sin” flows diagonally through the cells.
Carry input signal “cin” flows verticaily through the array. Each cell consists of
a full adder which adds the partial product (product of “ain” and “bin”) with the
partial sum input “sin” and the partial carry input “cout”. The output signals
“aout”, “bout”, “cout”, and “sout” are delayed and applied to the adjacent cells.

Fig. 2.2 shows the layout of a 12-bit by 8-bit multiplier.

2.1.2 Distributed Arithmetic Multipliers

In applications where an input number must be multiplier by a known constant,

the memory oriented distributed arithmetic multipliers can be used. They are

15

ain

bin

cin

sin

FA

aout

bout

cout

sout

Figure 2.1: Logic diagram of the bit-parallel multiplier cell.

faster and provide more accuracy than bit-parallel multipliers [42, 43]. They also
use a smaller chip area. The disadvantage with distributed arithmetic multipliers
is that for similar delay constraints, they scale exponentially with the word size.

Hence, fast distributed arithmetic implementations are feasible only for small

word sizes.

We implemented bit-parallel distributed array multipliers for multiplication
by known constants for use in a combined DCT/DST chip [44]. In this applica-
tion, the input number, z, is in 12-bit precisionv two’s complement binary, little
endian format. It is multiplied with two fixed coefficients ¢ and s to generate zc

and zs. Using the distributed arithmetic method, the input number,

10

T = Z2J$j - 211.’311,
0

can be represented as, z = a + 2°b, where,

5
a = ZijL'j,
0

16

e

AT R

el i)

Figure 2.2: Physical layout of the pipelined parallel multiplier for 12-bit numbers and 8-bit
coefficients. Area of this module is 4364A x 2913,

17

and
4 -
b = Z ZJ(IIJ' - 25$11.
0
Partial products ac, as, be, and bs are precomputed for all possible values of
a and b and stored in memories. Multiplication is achieved by first using the

appropriate input bits to address the memories. The values returned by the

memories are then added together to generate the correct products as follows,
rc = ac+ 2°bc,

and

zs = as + 2%bs.

Since the input is multiplied with two coefficients, the decoder circuitry can be

shared between the memories. Fig. 2.3 shows the layout of this multiplier.

2.1.3 Bit-Serial Multipliers

Bit-serial architectures offer numerous advantages over bit-parallel architectures.
Bit-serial architectures require a much smaller chip area and can be operated at
a much higher clock-rate [45]. Bit serial multipliers have been developed for
signed magnitude numbers [46] and for fully two’s complement numbers [47, 48].
In this section, we describe the pipeline multiplier developed for the Cascadable
Lattice FIR Filter. We modified the design in [47] to allow the coefficients to be
programmed off-line.

The bit-serial multiplier consists of a linear array of cells. The coefficient is
applied MSB first to the “bin” input during the coeficient load operation. After

the coefficient is loaded, the bits of the input signal are applied LSB first to the

18

[ABRI R PR e vaglon antanDas das liusains Yas Sigas! £ aa bfan G usggns s e fis O S RS

i
t| S
1 Gl
i FiEE
)
e -
1 It e

i Y navt (191 ag g n‘ b Do |
j T AL 1 ‘ T o i

AT e i = .

Figure 2.3: Physical layout of the distributed array multiplier for 12-bit numbers and coeffi-
cients. Area of this module is 1292\ x 1646

19

ain D D aout

bin ——= D bout

load L
MUX D ppout
ppin FA
rin D D rout

Figure 2.4: Logic diagram of the bit-serial multiplier cell.

“ain” input. The product is available at the “ppout” output. Fig. 2.4 shows the
block diagram of each cell. Each cell consists of a full adder and latches to store
the carry and sum bits. The sum is propagated to the neighboring cell and the
carry is used in the next computations performed in the cell. Two’s complement
multiplication is achieved by inverting the partial product input to the last cell
of the array. A separate control signal “rin” is propagated through the linear

array to indicate the start of the input number stream. Fig. 2.5 shows the layout

of this multiplier.

EIEEliE BB R R E R E R R E SRR

T R i 0 1 £ VT kiyiad]]
"o v (2t Y. y
e mh 6| - 1 AL g &l e [ol
AL REI RIS IBLEIGLE SN E QLA N E AR B L | R S
o 11 Y T =] g o I) o b] =il 2]
=iE Ty S8 N v B 4w g P 3

il s e) B ¥2] 9 a 1] m .,
- ‘ & . j g -
L i~ i Ahauds o i =

! X

i 4 "
| Iy] iy L il 1, IR L

L ..2,...« mm A ; a5 .‘ Bl ‘n.‘ ; u Nn ,
i dinzRifeny ..mﬂ B ks m .~ 172 1] RiME “xml

T EEIR) e e H R e R e e e E S
= ERE s R e e e e e

Figure 2.5: Physical layout of the bit-serial multiplier for 20-bit numbers and coefficients. Area

of this module is 936\ x 1680.).

2.2 Data Conversion Hardware

Input data is usually available in line-scan mode. Images are scanned pixel by
pixel from left to right and top to bottom. Image compression algorithms and -
architectures usually operate on blocks of data at a time. In this section, we
present a simple aréhitecture for converting line-scan mode data into the format
required by these architectures.

If the blocksize »is k x k, k adjacent lines of the input image need to be
stored. This is the minimum necessary for converting line-scanned data into
block-scanned mode. Fig. 2.6 shows the design of this module. In this scheme,
k lines of a line-scanned input image are stored in shift registers and transposed
into block-scan mode. An 2-D array of % x k shift registers, each of size k,
are used to hold these k lines. Multiplexers are used to switch the output of
register R;; between R;_,; and R;;_,. Initially, the outputs of register R;; are
connected to the inputs of register R;_1;, 2 < ¢ < % The outputs of register
R, ; are connected to the inputs of register R_Jkg ;—1- This configuration is shown
with solid arrows in Fig. 2.6(a) and is called the horizontal mode of operation.
Once the registers are filled with & lines of input, global control signals are
used to switch the multiplexers in every register. Now, the outputs of register
R;; are connected to the inputs of register R;;_;. This configuration is shown
with dashed arrows in Fig. 2.6(a) and is called the vertical mode of operation.
During the next k% clock cycles, data is flushed out of these registers in block-
scan mode. The last row of cells is treated differently. It is switched back from
vertical to horizontal mode after k£ clock cycles and stays in the horizontal mode

of operation for Nk — k clock cycles. The remaining rows stay in the vertical

22

mode of operation for k* clock cycles and in the horizontal mode of operation
for Nk — k? clock cycles. Using this procedure, the next set of k lines can be

applied to this module while the current set of k lines are being flushed out.

X1 X2

Xy
k
X X
¥4 X4z ¥
1 I |
[l ! 1
R Rzyl . . . ~——] R;_f_,l
Prd -7 Prd
/// —~ // //
7 ;7 7
Ry k-1 Rog-1 = S = Ry
= —7 =
C,ﬂf line-scan
Ry Ro e . . . - Ru’k fee—— |
\ input
B A b
hr hr L
(a)
to R,‘,j_]_
A

M M

to Ri_1j; ~=——UHkF -+« 42{1}qU e from Hiy1,;
X X
i

(b) from R,',j.{.]_

Figure 2.6: Architecture to convert line-scan image data into block-scan mode. (a) 2-D array
of cells. (b) Detail of cell R; ; with k latches and two multiplexers. Control signal c; switches
the cell between horizontal and vertical modes of operation.

24

Chapter 3

Scalar and Inverse Scalar Quantizers

Scalar Quantization (SQ) is a technique of representing an analog or digital
signal with a lower precision digital approximate. This results in lossy data
compression of input signals. If the input is a sequence of symbols, each input

symbol is quantized independently [4, 13].

3.1 Definition

A 5SQ is completely defined by its set of quantization and reconstruction levels
[11]. Let zo,z1,...,zn be the set of N + 1 decision levels and y1,ys,...,yn be

the set of NV reconstruction or output levels. These points are ordered such that,
<< <Yy < <yny < znN.

The input-output characteristic of this SQ is a staircase function as shown in
Fig. 3.1.

If the input signal z, lies between z;_; and z;, the SQ encoder represents it
with the index ¢. The number of bits needed to uniquely specify the index i is

log, V. This index ¢ is stored or transmitted instead of the original signal =. If

25

-+ Ys

T v
T) Tg T7
1 1 1 i 1 !
T T T T T T

T U3

T ¥2

T 0N

Figure 3.1: Input-Output characteristic of a SQ with N = 8.

26

the input z is an analog signal, it is first quantized using an Analog to Digital
(A/D) converter and the digital output of the A/D converter is then compressed
using the SQ described above.

An SQ decoder, or an Inverse Scalar Quantizer (ISQ), transforms index ¢ into
the reconstruction level y;. The difference between the original signal = and its
reconstruction level y;, is the quantization error.

The necessary conditions for optimality in the mean squared error sense are:

e Nearest Neighbor Condition: For a given ISQ, the SQ is a nearest
neighbor mapping. Given the reconstruction levels y1,ys, ..., yn, the op-

timal values for the decision levels are

2 = (i +2yi+1)

e Centroid Condition: For a given set of decision levels zg, z1, ..., Zn, the
optimal reconstruction level y; is the centroid of the interval (z;-1, z;) with

respect to the input probability density.

Optimal SQ and ISQ can be designed based on the statistics of the input

signal using the Lloyd-Max algorithm [49, 50].

3.2 Transform Coding

In a transform coding system an input image or speech signal block is first trans-
formed using a linear transformation, such as the 2-D Discrete Cosine Transfor-
mation (DCT), to remove inter-pixel correlation within the block. The transform

coefficients are then quantized using scalar quantizers. In general each transform

27

coefficient is assigned a different scalar quantizer for optimum performance. The
total number of index bits for the block is divided among the different scalar

quantizers depending on the statistics of the associated transform coefficients.

3.3 Architectures

In this section we discuss various architectures for the implementation of Scalar
and Inverse Scalar Quantizers. We consider both an individual SQ and a set of
SQs for a transform coding system.

Given an input sample z and a set of decision levels zo,21,...,2n5, a SQ
returns the index of the interval the input lies in. A straightforward way is to
compare the input sample with each of the V decision levels. This can be done
either serially using one comparator or in parallel using N comparators. The
parallel version is shown if Fig. 3.2. The architecture consists of a linear array
of comparators. Comparator C; compares the input z with the decision level
z; and returns either a “zero” or a “one” depending on which is bigger. These
outputs are applied to a linear array of AND gates. If the output of AND gate
A; is a “1”, then the input lies in interval “i”.

For large values of N, the chip area required for N comparators becomes
prohibitive. SQ can also be implemented as a table lookup operation using
either ROMs or PLAs. The input signal z is applied as the input to the decoder
circuitry and the index of the correct decision level is returned by the ROM. The
chip area required for table lookup depends on the statistics of the input image
and the size of N. For large values of IV, this approach may use less area than

the comparator scheme.

L) —>»
C1
°
(L‘,_l —
Cio1
°
T; —= a®
C; A; D;
Tip] — ™
Ciy1
.
TN =] mee2ed
Cn-1

Figure 3.2: Scalar Quantizer block diagram. -

29

3.4 VLSI Implementation

In this section we describe the design and implementation of SQ and ISQ chips
for an adaptive image compression system [51]. In this system, the input image
1s segmented into blocks each of size 8 x 8 pixels and each block is transformed
using a 2-D DCT chip. The transform coefficients are applied to the SQ chip
for quantization. The index bits are transmitted over a satellite channel. The
receiver consists of an ISQ followed by an Inverse 2-D DCT chip.

We implemented both the SQ and ISQ chips using the_ table lookup procedure
described in the previous section. Both chips were fabricated using MOSIS 2um
N-well fabrication process. Figs. 3.3 and 3.4 show plots of the fabricated SQ and

ISQ chips respectively. Both chips have been exhaustively tested at 20 MHz.

30

| 138} -7 % | Rk

.8r8p J ydasop
e[joBe[oy ey

YIAZLINVND ¥VTIVOS

Figure 3.3: Photograph of the SQ chip. Die size is 4.6mm x 6.8mm.

31

Figure 3.4: Photograph of the ISQ chip. Die size is 2.22mm x 2.25mm.

32

Chapter 4

Tree Search Vector Quantizers

A Tree-Search Vector Quantizer (TSVQ) is a VQ with a structure imposed on
its codebook. This structure reduces the complexity of the encoding operation,
or for the same complexity, achieves a significantly better signal to noise ratio

performance.

4.1 Definition

At each stage of a binary TSVQ, the input vector is compared with two code-
vectors. Based on this comparison, one of the two branches is chosen and the
codebook search space is reduced in half. This process is repeated until a leaf
node is reached.

Let x = (z1,...,zr)T represent the L-dimensional input vector, and c1 =
(e11,---,e1,0)T, and ez = (cg1,---,¢2,1)T represent the two vectors in the code-
book of a given node. The processing performed at each node is reduced to

testing the condition:

d(x,¢c1) > d(x, c2), (4.1)

33

where d(x, ¢1), and d(x, c2) are the distortion measures. For the general case of

the weighted mean-squared error distortion,
d(x,¢;) = (x — ¢;)TW(x — ci.), i=1,2,
where W is the weighting matrix. Equation (4.1) can be expressed as:
(x—c1)TW(x—c1)— (x—c2)TW(x—c2) >0 (4.2)

If equation (4.2) is satisfied, the input vector x is closer to codeword cz. Other-

wise X is closer to ¢;. We expand equation (4.2) to obtain [15]:

L
; {ajz;}+68 >0 (4.3)

where a = (aq,...,ar) = 2(c2 —¢1)TW, and 8 = c1TWey - c2TWes. For the
special case of the mean-squared error distortion measure, W = I, and hence
aj = 2(cyj — c1,5), and B = Ti(cF; = c2).

Instead of using the raw codebook online, we can determine these o and 8
coefficients off-line and store them in memory chips. Some applications use a
weighting matrix W(x) that depends on the input vector x. Equation (4.3) is
still valid in this case, but a preprocessor is needed to compute the a and j
coefficients in real-time. The same simplification can be derived for the case of
the Itakura-Saito distortion measure as well [26].

This algorithm is based on Binary Hyperplane Testing [25]. Directly imple-
menting equation (4.1) requires 2(L? + L) multiplications, 2(L? — 1) additions
and L*+ L words of memory storagé, while implementing equation (4.3) requires

only L multiplications, L additions, and L + 1 words of memory storage.

34

4.2 Single Node Processor

The Single Node Processor (SNP) performs the computations stated in equa-
tion (4.3). Its output is a ‘0’ if equation (4.3) is satisfied and a ‘1’ otherwise. The
SNP contains of a parallel multiplier [41] pipelined at the bit-level, a pipelined
accumulator, an index register and a counter. We do not need a comparator unit
in the processor. The most significant bit (MSB) of the accumulated products
directly represents the processor’s output.

Fig. 4.1 shows a block diagram of the SNP. Input data is skewed and all
internal operations are performed in a bit-skewed word-parallel mode. The mul-
tiplier takes two b-bit numbers a; and z;, and a 2b-bit number B’, and returns
a 2b-bit number p; = a;z; + . We define #' = §/L and add it during each
of the L multiplication steps. This can be done without any additional hard-
ware and eliminates the need for a comparator unit to compare the accumulated
sums with 8. The bits of p; = pj 2, Pj26-1,-- ..,p’j,l are available in a skewed
fashion, least significant bit (LSB) first. The latency of the multiplier depends
on the bit position; it is b for the LSB bit p; 1, and 3b for the MSB bit p; 2. The

accumulator must have a precision of
n = 2b+ [log L]

bits, to prevent overflow when L 2b-bit numbers are added together. The output

of the multiplier is sign extended by [log L] bits and is directly applied to the

accumulator.
The accumulator consists of a linear array of cells, and operates on skewed
input data as shown in Fig. 4.2. Each cell consists of a full adder and three

latches. Carry is propagated to the neighboring cell and sum is stored within

35

b Pipelined b Data b
“ —tta X
Multiplier Latch

Product } 2b

:
I
§
1
1
I

GO —
: Reset —— . READY
! Control {
: Accumulator ___7__% Address
: d+[L] 1
| 1
[msb dy '
l !
i d d i

Py u —59-] Index data-path w : P ou

l l
! i
b o e o e e e e e o e - = - — - . - —— — "]

Figure 4.1: Detailed block diagram of each processor. Each processor’s READY output must
be connected to the GO input of its neighbor. Only the most significant b bits of 3’ are applied
to the processor. The least significant b bits are set to zero internally.

36

Sampled” p; >
Intergal}y_ PLmmss :
. TSP
P3,n L~~~ .
P2,n . N ~~ D12 .
(MSB) p1,n D3,j pL2 ~<_ P11
-\\‘\:\ . P2,j . pL_,l——_—T
. N RN 4 N P32 .
TSl Vector
: Tl P22 P31 mterval
. . S~ P12 P21
. . . Tso P1,1(LSB)l
L/R GND
An 4 A Aol
Ready o . Reset

Ci+1 =

Rj1

(b)

Figure 4.2: Detailed diagram of the accumulator (a) Linear array of cells. Input data is applied
in a skewed fashion and carry is propagated between cells. Reset is applied to the first cell and
is propagated down the array. Cells in this array are reset in a staggered fashion. (b) Detail
of each cell. Solid circles are unit delay elements.

37

the cell. The accumulator computes

L
Jj=1

and returns the sign of A. The sign of A is available at the carry output pin
of the last cell in the accumulator array. It is denoted by L/R in Fig. 4.2. A
Reset signal is generated once every L clock cycles. Reset is propagated along
the array and each cell is reset in turn. This allows the next set of L numbers to
be accumulated immediately after the last number of the current set is applied
to the accumulator. The latency of the accumulator is n + L clock cycles. This
is the number of clock cycles between the time p; ; is applied to cell A; and the

time L/R is ready at cell A,. Hence, the latency of each processor is
b+n+L=3b+[logL]+L.

For example, if the word size b = 8, and the vector dimension L = 64, we have

a latency of 94 clock cycles.

4.3 TSVQ Architecture

The computations performed by a TSVQ can be viewed as finding a path from
the root to a leaf in a binary tree. While traversing a binary tree, only one
node is encountered at each level. Hence, the computations at each level can be
performed by a single processor. A tree of depth d can be mapped onto a linear
array of d processors as shown in Fig. 1.1.

Fig. 4.3 shows the architecture of a TSVQ using d Single Node Processors

(SNPs). The coefficients necessary for each SNP’s computations are stored in

38

RAM RAM . e RAM

b b b b b
X eI o <= X
GO —a B P > ... —= P;; —= READY
e e e 00— A= U
1 2 d-1 d

Figure 4.3: Systolic architecture for computing TSVQ. Each SNP adds its partial index to the
index data-path, and generates a control signal to initiate processing by its neighbor down the
tree. No global control signals are needed.

memories and will in general depend on the distortion measure used. Proces-
sor SNP; adds the results of its computations to a partial index datapath and
generates a Go signal to initiate processing by processor SN P;4y. This Go sig-
nal is used to reset the accumulator in processor SN P,y;. The final processor,
SNP,;_y, returns the complete index u. The size of the memory is different for
different processors. The first processor needs a memory of L 4 1 words to store
B’ and the L components of a;. Processor SN P4 needs twice as much memory
as processof SNP;. The last processor needs a memory of 2¢~1(L + 1) words.
The throughput of this scheme is one L-dimensional \;ector per L clock cycles.
A TSVQ can also be built by using one SNP and recirculating the input data d
times as shown in Fig. 4.4. In this case, the RAM must have an additional [log d]
address bits to identify the level of the tree that is currently being processed.

Adjacent input vectors must be separated by the latency of the TSVQ,

LTSVQ =dLsnp = d(b +n+ L) (4-.4)

The throughput in this case is one L-dimensional vector per Lrgsvg clock cycles.

39

RAM

d—1+ [log L] + [logd]] 3b

MUX f—rt x

Go i SNP ——== Ready

0 —>= mux

Figure 4.4: TSVQ architecture using one SNP and recirculating registers. Input vector x must
be recirculated d times, once for each level of the binary tree.

For a tree of depth d = 8, and a vector dimension of L = 16 (which corresponds

to a bit rate of 0.5 bpp), we have Lysvg = 352 clock cycles.

4.4 VLSI Implementation

The detailed block diagram of each processor is shown in Fig. 4.1. Each pro-
cessor consists of a pipelined parallel multiplier, a bit-level accumulator, a data
vector register, a partial index register, and a local control unit. The multi-
plier computes a X b + ¢, and can process a different set of inputs each clock
cycle. The products are output in skewed fashion, LSB first, every clock cycle.
A bit-level accumulator adds these partial products in bit-serial fashion. The
MSB of the accumulated partial products represents the processor’s partial in-
dex. One of the advantages of this architecture is the absence of any comparator
unit. We don’t need a comparator because the multiplier can perform addition

without any extra hardware. Hence we can directly implement equation (4.3) in

40

hardware. .It is not necessary to add any correction terms to the accumulator’s
output. The control unit keeps track of each input block of size k x k pixels
and sends a reset signal to the accumulator once every k* clock cycles. The
reset signal propagates through the accumulator and each of its cells resets in
succeeding clock cycles. This scheme allows for the next block of skewed partial
products to be accumulated immediately after the last block is applied to the
accumulator. Input block sizes of 4 x 4 or 8 x 8 pixels can be quantized by this
processor. An external control signal is used to select between these two modes.

A separate datapath is used to propagate the partial index through the
pipeline. Each block of input vectors has a partial index tag associated with
it. This partial index moves along with the input synchronously. An address
for the off-chip RAM is generated from this partial index and the output of the
on-chip counter. There are 8 pins in the index data path. This allows for trees of
depth up to 8 to be easily constructed using these processors. These processors

can also be used, together with some external logic, to build trees of depth larger

than 8.

4.5 Simulations

This TSVQ implementation consists of one processor for each level of the
tree. Interconnection and data flow between processors is simple and requires no
global control signals. Fig. 4.5 illustrates the timing of all local signals between
processors for the case when the block size is 8 x 8. The system requires a two
phase non-overlapping clock. Two phase clocks avoid race conditions and permit

simple logic level design. The latency time of each processor is 100 clock cycles.

41

(Y U S Y VY o W
o SO
P;_ counter 1 100001)Llooomj(100011 ¥ 100100 ¥

Pio1 u { \
|

READY / \
D G G SR G |
P; counter >< 111110)L 111111 X 000000 W(000001 }(

P; Adr block j — 1 —L block j

L@!tA

Code vectors —X ags, B’ X ags, B :X ag, X o, 8 X

"

Figure 4.5: Timing diagram of signal flow between processors for input block size of 8 x 8.
Dotted line shows the boundary between adjacent vectors. Coefficient memory chips must
have an access time smaller that ¢ 4.

42

This includes the 64 cycles needed to read each block. If the block size is 4 x 4,
the latency per processor is 52. Each processor generates a READY signal when
its computation is completed. This READY signal also indicates the start of the
delayed input vector and its partial index. This signal is used by the neighboring
processor to reset its control unit. The partial index is also used as an address

for the coefficient memory.

4.6 Fabrication and Testing

We have implemented a Single Node Processor using MOSIS’ 2um N-well process
on a 7.9mm x 9.2mm die [30]. Each processor contains 25,000 transistors and
has 84 pins. The processors have been tested at 20 MHz. These processors can
operate on either 4 x 4 or 8 x 8 blocksizes. Fig. 4.6 shows a plot of the fabricated
chip.

This chip was tested using a IMS HS 1000 tester using 500 randomly gener-
ated test vectors. It was found to be fully functional at a frequency of 20 MHz.
This chip has been designed using scalable ground rules. Fabricating at 0.8um

will result in an operating speed of 50 MHz.

43

. n"nﬁn.h.l»-

4

"pye ,._u__.ﬂ_ ,_,_,HHF % _____

44

Figure 4.6: Plot of the TSVQ processor chip. Die size is 7.9mm x 9.2mm.

Chapter 5

Finite State Vector Quantizers

Finite State VQ (FSVQ) is a class of VQ with memory which makes use of cor-
relation between neighboring vectors to improve performance for a given vector
dimension and bit-rate [31]. An FSVQ consists of a super-codebook which con-
tains a large number of codevectors and a finite state machine. Each state in
an FSVQ represents a small region of the super-codebook. The current state of
the FSVQ encoder depends on past outputs. By restricting the codebook search
space to a small region for each input vector, FSVQ achieves the performance

of a large rate codebook at a relatively small rate [32].

5.1 Definition

Given an input vector x, a VQ encoder chooses a reproduction vector X from
a predetermined set of reproduction vectors (or codevectors) that is closest to
the input vector relative to a certain distortion measure. The input vector is
then represented by the index u of codevector X. This index, also known as the

channel symbol, is transmitted to the decoder. A V(Q decoder maps this channel

45

symbol onto its corresponding reproduction vector from the codebook.

In a finite state VQ (FSVQ), performance is improved by exploiting the corre-
lation between neighboring vectors. An L-dimensional K-state FSVQ is specified
by a state space S = {1,2,..., K}, an initial state so, and three mappings [31}:

(1) o : R* x § — N : finite-state encoder,

(2) B: N x 8 — A : finite-state decoder,

(3) f: N xS — S : next state function.

Here, N = {1,2,...,N} is the finite channel alphabet of size N and A is the
reproduction space. Given a sequence of L-dimensional input vectors {X,},
the FSVQ encoder determines the sequence of reproduction vectors {%X»}, the

sequence of channel symbols {u,}, and the sequence of states {s,} according to:
Up = a(Xn,8,), n=0,1,...,

inzﬂ(unasn)a n=0,1,...,
Snt1 = f(Un,8), n=0,1,....

Given the initial state and the channel symbol sequence, the FSVQ decoder
can track the state sequence, because the next state depends only on the present
state and the output channel symbol. The set of reproduction vectors C =
{B(u,1),u € N}, is the codebook associated with state I; obviously, A=UE c.

An FSVQ can be interpreted as a set of K VQs, one VQ associated with
each state, and a finite state machine which selects one of these VQs to encode

the given input vector. Similarly, an FSTSVQ can be interpreted as a set of K
TSVQs.

46

[log K

RAM ¢ 7
Sn

R
d—1+ ['log L] + ﬂogd] 4 1 3b Sn—-1| Next State
Generator

L b
* Xn41 * Xp MUX ! X
Go —={ SNP |—= Ready
[u
0 —nd MUX ,/ i va R un_l

r d d

Figure 5.1: Block diagram of the FSTSVQ processor. R is a unit delay element. The [log K
bits of s, are used as address bits for the RAM.

5.2 Basic FSTSVQ architecture

Given a sequence of L-dimensional input vectors {x,}, we are required to gener-
ate a sequence of channel symbols {u,}, and a sequence of states {s,}. Since the
next state of the FSTSVQ depends on the present state and the current output
channel symbol, the encoding of vector x,41 cannot start until the encoding of
vector X, is complete. One TSVQ processér, together with additional hardware
for generating the next state information, is sufficient to build an FSTSVQ.
Fig. 5.1 shows a block diagram of the FSTSV(Q) processor. The next state
function module determines s, given u,_; and s,_1, and can be implemented by
a simple table lookup using a PLA. This state information is stored in register
R and is also used to choose the right codebook for quantizing vector x,. A
memory of total size Qd(L + 1)K words is needed. Channel symbols u,, are d bits

wide.

47

5.3 FSTSVQ for speech and image coding

In this section we describe how our FSTSVQ architecture can be used for speech
and image coding applications. The general architecture presented above can
directly be used for speech coding. For image coding applications, we define a
2-D extension of FSTSVQ and describe a systolic array architecture for efficient

hardware implementation.

5.3.1 FSTSVQ for speech coding

In speech coding applications, an L-dimensional vector is formed from a group of
L adjacent speech samples. The resulting sequence of vectors {x,} is quantized
to obtain the output sequence of channel symbols {u,}. The architecture of the
general FSTSVQ described above can directly be used for speech coding appli-
cations. Adjacent speech samples are separated by the latency of the FSTSVQ

quantizer,

Lrstsvg = Lrsvg + Lnsa, (5.1)

where Lysg is the latency of the next state generator. The next state generator
is implemented as a simple table lookup and Lsyp = 1 clock cycle. For a tree
depth of d = 4 and a vector dimension of L = 8, Lrsrsvg = 141. If speech
waveforms are sampled at 8 KHz, this architecture running at a clock speed of
0.14 MHz can quantize them in real-time. If FSTSVQ is used to quantize speech
LSP parameters with an update rate of 22.5 msec, a clock speed of less than 5

KHz is required.

48

5.3.2 FSTSVQ for image coding

In image coding applications, an input image of size N X M pixels is partitioned
into blocks each of size k x k pixels as shown in Fig. 5.2. Each block is interpreted

as a vector of dimension L = k2. A block-scan of the input image frame generates

. . NM/k? . .
a sequence of L-dimensional vectors {X,},=;/ . Unlike the 1-D case, each input

vector has more than one adjacent preceding neighbor. For efficient encoding

of an input vector x,, it is essential to exploit its correlation with the adjacent

vectors in the north (x

ok), west (Xn_1), and northwest (x,,_ x _y) directions. In

turn, vector x,, affects the state of the FSTSVQ while quantizing vectors x, 41,
Xpy X, and Xpp Xy

The current state s, associated with vector x,, is defined as a three component

w NW
n"sn

vector s, = (¥, sVW N

N .
" SnSh , and s, are the substates associated

), where s

with vectors x,_1, X Xy, and X, X respectively. The next state generator

n—

determines these substates according to:

'SnW = fl(un—lasn—l), (52)
SnNW = fz(un_%_l,sn_%_l), (5.3)
Sizv = f3(un—LZ-7sn_1_Z-), (54)

where f1, f2, and f3 are the three next state functions.

Equations (5.2), (5.3), and (5.4) suggest the data dependency graph shown in
Fig. 5.3(a). Each node in this figure represents the quantization of a vector that
corresponds to a block of the image. The arcs indicate precedence constraints be-
tween various quantizations. Computations that can be performed concurrently
are shown between dashed lines. Projecting this graph in the vertical direction

leads to a simple linear array structure as shown in Fig. 5.3(b).

49

Xn-1 Xn

k2

N

Figure 5.2: Block-scan of an input image of size N x M. The internal state of the FSVQ while
quantizing vector x, depends on the quantized outputs of vectors x,_1, X, _ X, and x,,_ Ny

50

(b)

Figure 5.3: (a) Dependency graph of the FSTSVQ for image coding for an image of size
N = M = 4k. Each circle represents the quantization of one input vector. (b) Projection in
the vertical direction. Solid circles are unit delay elements.

51

uﬂ+1 U9
: UK 12 .o
unN
- L) k
U
k
. . . =
Pl P2 Pu
. . . e k
X1 . .
XX X2 .
. X . .
F+2 .
XN
. . k
X 2N
XN(M . *
E(E-1)+1 .
T -1+)
XM

k2

Figure 5.4: Systolic architecture using -I;L processors arranged as a linear array. Input data
blocks are applied to this array in a skewed fashion.

Consider a linear array of % processors as shown in Fig. 5.4. The % blocks of
a given row are applied to these % processors in a skewed fashion. Each processor
quantizes the blocks in its column, one at a time. Processor P, quantizes x,,
Xp4 &y Xpp2i and so on.

Fig. 5.5 shows the detailed block diagram of each processor. The TSVQ unit
consists of a SNP and recirculating registers. The next state generator uses the

previous state Sp_ X and channel symbol Un_x to generate the partial substates

52

s:ff_ Ny sﬂ"{, and sY. Substates SZV_ Ny and 5n+1 are propagated to processor
P,.;. Substate s is used, together with s! and s'" from processor P,_i, to
generate state s,. The total number of states is K* and the memory size is
2¢(L 4+ 1)K? words.

For certain applications, the correlation in the northwest direction is ignored
to simplify the codebook design process. The current state is then defined as a
two component vector s, = (5%, sY), and the total number of states is K2. The
architecture presented above can be used for these applications by modifying the

next state generator and ignoring the s¥" signal path in Fig. 5.5. The memory

size requirement reduces to 2¢(L + 1) K? words.

5.4 Improvements to the FSTSVQ architec-
ture

The systolic architecture presented above uses % processors. The latency of
the FSTSVQ unit for quantizing one input vector is Lpsrsvg as defined in
equation (5.1). Since input data is usually available in line-scan mode, vector
Xp X is separated from vector x, by Nk clock cycles. Hence, each processor

is idle for Nk — Lrsrsvg clock cycles in this scheme. This idle time can be

reduced if each processor is used to process | | adjacent blocks. Hence,

LFSTSVQ

only %/{ e ;\; ’;vqj = I'L—F—SM—Q-] processors are needed in the linear array. For a
blocksize of 4 x 4 pixels and a tree depth of d = 8, 22 processors are needed in
the linear array. Note that the number of processors is independent of the size

of the image. It depends only on the blocksize and the latency of the FSTSVQ

processors.

53

n-— 1,%--}-1
CaaN s nN -
(from Pp_1) W | Nw o (o Pata)
n n+1
R = S
h Mog K1y & fllogK]
s 3 I-]O% K-l R Sn-ft Next State
n ! Generator
RAM

3b d—1+ [log L] + [log d]

TSVQ Un R d u
, noi
Xn
Xt

Figure 5.5: Detailed block diagram of processor P,. The current state s, = (%, shW sN)is

composed of partial substates from the west and northwest (from the previous processor), and
the north (from previous computations in this processor).

The d bits of the channel symbol u, are computed sequentially. The next
state generator determines the partial next states for the neighboring vectors
based on this symbol and the current state. If the next state functions are
restricted to depend only on the first few bits of the channel symbol, their com-
putations can be partially overlapped with those of the SNP processor. This

pipelining increases the throughput of this architecture.

94

Chapter 6

Conclusions

Data compression is an indispensable tool used to make efficient use of avail-
able channel capacity and storage resources. Real-time implementations of data
compression algorithms make compressioﬁ feasible for video signal processing
and other high speed data communications of the future.

In this dissertation, we have presented efficient systolic architectures for the
real-time implementation of Tree-Search and Finite-State Vector Quantizers.
The TSVQ architecture uses identical processors at each level of the binary tree.
The architecture is fully pipelined, and latency is 100 clock cycles per processor
when the block size is 8 x 8 pixels. These processors have been fabricated using
2pm N-well. The processor chips have been thoroughly tested and found to be
fully functional at a frequency of 20 MHz. Fabrication at the state of the art
0.6pum technology will result in a 70 MHz speed of operation.

We have developed systolic architectures for computing FSTSVQ in real-time
on speech and image data. The speech coding architecture uses one processor,
and has an average throughput of L/Lpsrsvg samples per clock cycle. An

implementation at 0.14 MHz can quantize speech data sampled at 8 KHz in real-

i)

time. The image coding architecture uses a linear array of [ﬂi,;il'l processors
and has a throughput of 1 pixel per clock cycle. At 30 frames/sec, the pixel
rate for 1024 x 1024 images is 31.5 Mpixels/sec. An implementation at 31.5
MHz can quantize 1024 x 1024 size images in real-time. HDTV images have
a typical pixel rate of 70 Mpixels/sec. These FSTSVQ architectures fabricated
using 0.6um technology will be capable of providing the throughput necessary
to implement image compression for HDTV applications.

We have also implemented Scalar and Inverse Scalar Quantizer chips for use
in transform coding applications.

During the course of designing these architectures, we have developed sev-
eral basic modules that have been successfully used in other signal processi.ng
applications. Our parallel multiplier and accumulator units have been used to
develop synchronizer and demodulator chips for FM sideband demodulation.
Our bit-serial multiplier designs were used to implement cascadable lattice FIR
filters, and our distributed arithmetic multipliers have been successfully used in

implementing unique DCT/DST architectures.

56

Bibliography

[1] M. Cappel, “Viking finds land,” SunWorld, p. 13, June 1992.
[2] K. Marrin, “SPARC scales up,” SunWorld, pp. 82-88, July 1992.

[3] C. Peterson'jgj. Sutton, and P. Wiley, “iwarp a 100-MOPS, LIW micropro-

cessor for multicomputers,” IEEE Micro, p. 26, June 1991.

[4] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Kluwer Academic Press, 1992.

[5] N. Nasrabadi and R. King, “Image coding using vector quantization: A

review,” IEEFE Trans. Commun., vol. COM-36, pp. 957-971, Aug. 1988.
[6] S. Y. Kung, VLSI Array Processors. Prentice Hall, 1988.

[7] C. Chakrabarti, VLSI Architectures for Real-Time Signal Processing. PhD
thesis, University of Maryland, 1990.

[8] R. J. Offen, VLSI Image Processing. McGraw Hill, 1985.

[9] H. T. Kung, “Why systolic architectures?,” IEEE Trans. Computers,
pp. 37-46, Jan. 1982.

[10] J. P. Hayes, Computer architecture and organization. McGraw-Hill, 1988.

57

[11]

A. Gersho, “Principles of quantization,” IEEE Trans. Circuits Syst.,
vol. CAS-25, pp. 427-436, July 1978.

A. Gersho, “On the structure of vector quantizers,” IFEE Trans. Infor.

Theory, vol. IT-28, pp. 157-166, Mar. 1982.

N. S. Jayant and P. Noll, Digital coding of waeforms: principles and appli-

cations to speech and video. Prentice Hall, 1984.

Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantization
design,” IFEE Trans. Commun., vol. COM-28, pp. 84-95, 1980.

G. Davidson, P. Cappello, and A. Gersho, “Systolic architectures for vec-
tor quantization,” IEEFE Trans. Acoust., Speech, Signal Processing, vol. 36,

pp- 1651-1664, Oct. 1988.

S. Panchanathan and M. Goldberg, “A systolic array architecture for image

coding using adaptive vector quatization,” IEEE Trans. Circuits Syst. Video

. Tech., vol. 1, pp. 222-229, June 1991.

[18]

[19]

B. Juang and A. Gray, “Multiple stage vector quantization for speech cod-
ing,” in Proc. IEEFE Int’l. Conf. on Acoustics, Speech and Signal Processing,
pp. 597-600, 1982.

P. A. Ramamoorthy, B. Potu, and T. Tran, “Bit-serial VLSI implementation

of vector quantizer for real-time image coding,” IEEE Trans. Circuits Syst.,

vol. CAS-36, pp. 1281-1289, Oct. 1989.

V. Cuperman and A. Gersho, “Vector predictive coding of speech at 16

kbits/s,” IEEE Trans. Commun., vol. COM-33, pp. 685-696, July 1985.

33

[20]

[21]

[22]

[23]

[26]

P. Chang and R. M. Gray, “Gradient algorithms for design predictive vector
quantization,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-
34, pp. 679-690, Aug. 1986.

E. A. Riskin, Variable Rate Vector Quantization of Images. PhD thesis,
Stanford Univerity, May 1990.

S. S. Yu, R. K. Kolagotla, and J. F. JaJ4, “VLSI architectures and imple-

mentation of predictive tree-searched vector quantizers for real-time video

compression,” Tech. Rep. SRC TR 92-48, University of Maryland, 1992.

R. Jain, A. Madisetti, and R. L. Baker, “An integrated circuit design for
pruned tree-search vector quantization encoding with an off-chip controller,”
IEEE Trans. on Circuits and Systems for Video Technology, pp. 147-158,
June 1992.

T. Lookabaugh, “Architectures for tree structured vector quantization.”

Unpublished work, May 1987.

D. Y. Cheng and A. Gersho, “A fast codebook search algorithm for nearest-
neighbor pattern matching,” in Proc. IEEE Int’l. Conf. on Acoustics, Speech
and Stgnal Processing, pp. 265-268, 1986.

M. Yan and J. McCanny, “A bit-level systolic architecture for implementing
a VQ tree search,” Journal of VLSI Signal Processing, vol. 2, pp. 149-158,
Nov. 1990.

59

[27]

[29]

[30]

[31]

W. C. Fang, C. Y. Chang, and B. J. Sheu, “Systolic tree-structured vector

quantizer for real-time image compression,” in VLSI SIgnal Processing IV

(K. Yao, ed.), Nov. 1990.

T. Markas, J. Reif, W. Elliot, and E. Elliot, “Memory-shared parallel archi-
tectures for vector quantization algorithms.” Private communication, Nov.

1991.

A. Madisetti, R. Jain, R. L. Baker, and R. Dianysian, “Architectures and
integrated circuits for real time vector quantization of images,” in Proc.
IEEE Int’l. Conf. on Acoustics, Speech and Signal Processing, pp. V-677-
680, 1992.

R. K. Kolagotla, S.-S. Yu, and J. F. JaJ4, “VLSI implementation of a tree

searched vector quantizer,” IEEF Trans. Signal Processing, Apr. 1993.

J. Foster, R. M. Gray, and M. O. Dunham, “Finite-state vector quantization
for waveform coding,” IEEFE Trans. Infor. Theory, vol. IT-31, pp. 348-359,
May 1985.

Y. Hussain, Design and Performance Evaluation of a Class of Finite-State

Vector Quantizers. PhD thesis, University of Maryland, 1992.

R. Aravind and A. Gersho, “Image compression based on vector quantiza-
tion with finite memory,” Optical Engineering, vol. 26, pp. 570-580, July
1987.

60

[34]

[35]

[36]

[41]

[42]

Y. Hussain and N. Farvardin, “Variable-rate finite-state vector quantization

of images,” in Proc. IEEE Int’l. Conf. on Acoustics, Speech and Signal

Processing, 1991.

Y. Hussain and N. Farvardin, “Variable-rate finite-state vector quantiza-
tion and applications to speech and image coding,” IEEE Trans. Signal
Processing, Feb. 1993.

H. H. Shen and R. L. Baker, “A finite state/frame difference interpolative
vector quantizer for low rate image sequence coding,” in Proc. I[EFE Int’l.

Conf. on Acoustics, Speech and Signal Processing, pp. 1188-1191, 1988.

R. Dianysian and R. Baker, “A VLSI chip set for real time vector quan-
tization of speech sequences,” in Proc IFEE Intl. Symp. Circuits System.,
pp. 221-224, May 1987. '

R. K. Kolagotla, S.-S. Yu, and J. F. J&Ja, “Systolic architectures for finite-

state vector quantization,” in Proc. Int’l Conf. App. Specific Array Proces-
sors, 1992.

R. J. Higgins, Digital SIgnal Processing in VLSI. Prentice Hall, 1990.

G. K. Ma and F. J. Taylor, “Multiplier policies for digital signal processing,”
IEEE ASSP Magazine, vol. 7, pp. 6-20, Jan. 1990.

J. V. McCanny and J. G. McWhirter, “Completely iterative, pipelined mul-
tiplier array suitable for VLSI,” IEE Proc., vol. 129, pp. 40-46, Apr. 1982.

S. A. White, “Applications of distributed arithmetic to digital signal pro-

cessing: A tutorial review,” IEEE ASSP Mag., pp. 4-19, July 1989.

61

[43]

[44]

[49]

[50]

M. T. Sun, T. C. Chen, and A. M. Gottlieb, “VLSI implementation of a
16 x 16 discrete cosine transform,” IEEE Trans. Circuits Syst., pp. 610-617,
Apr. 1989.

C. T. Chiu, R. K. Kolagotla, K. J. R. Liu, and J. F. JaJa, “VLSI im-
plementation of real-time parallel DCT/DST lattice structures for video

communications,” in IEEE Workshop on VLSI Signal Processing, 1992.

S. G. Smith and P. B. Denyer, Serial-Data Computation. Kluwer Academic,
1988.
L. B. Jackson, J. F. Kaiser, and H. S. McDonald, “An approach to the

implementation of digital filters,” IEEE Trans. Audio and Electroacoustics,
pp. 413-421, Sept. 1968.

R. F. Lyon, “Two’s complement pipeline multipliers,” IEEE Trans. Com-
mun., pp. 418-425, Apr. 1976.

G. L. Baldwin, B. L. Morris, D. B. Fraser, and A. R. Tretola, “A modular,
high-speed serial pipeline multiplier for digital signal processing,” IFEE J.
Solid-State Circuits, p. 400, June 1978.

S. P. Lloyd, “Least squares quantization in PCM.” Unpublished Bell Labo-
ratories Technical Note. Published in the March 1982 special issue on quan-

tization of the IEEE Trans. Information Theory, 1957.

J. Max, “Quantizing for minimum distortion,” IRE Trans. Inform. Theory,

vol. IT-6, pp. 7-12, Mar. 1960.

62

[51] J. F.JaJ4 and T. Chiang, “A prototype VLSI system for data compression.”
Final Report, MIPS Project, 1991. '

63

