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The effects produced in an image by cast shadows can be quite complex, es-

pecially when light comes from all directions. This makes it difficult to recover the

illumination from a scene and recognize objects from the images. In this paper, we

show that such images can be well approximated using much simpler lighting repre-

sented by a combination of low frequency spherical harmonics, and a small number

of directional sources. Therefore, the illumination of the scene can be recovered by

summing the spherical harmonic lighting and a small number of directional light

sources. To demonstrate the effectiveness of the proposed method, we have suc-

cessfully tested it by using sets of synthesized images rendered by directional light

sources or environment maps with different objects.
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Chapter 1

Introduction

When a scene is illuminated from all directions, shadows abound. Each light

direction produces a different set of cast and attached shadows. These shadows

create rich and complex images. In this paper, we consider shadows cast by en-

vironment maps in which lighting intensity varies as a function of direction, but

does not vary spatially. For Lambertian objects we show that the shadows cast

by environment maps are not as complex as they might seem, if we measure their

complexity in terms of the number of parameters needed to capture the lighting that

produces them. In particular, we show that shadows cast by environment maps can

be approximated using a combination of diffuse lighting, described with low order

spherical harmonics, and a small number of directional lights.

There has been a series of work aimed at understanding the complexity of

the set of images produced by Lambertian objects lit by environment maps. [1, 2]

show that when we ignore all shadows, the images of a Lambertian scene lie in a

three-dimensional linear subspace in the space of all images. [3] make use of this

result in rendering. [4] consider attached shadows, which occur when a surface

faces away from a light. They show that with attached shadows, the set of images

produced by a Lambertian scene forms a convex cone that has non-zero volume in

the space of all images. However, they, and also [5], provide empirical evidence that
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this space is well-approximated by a low-dimensional linear subspace. [6, 7] explain

this analytically by showing that Lambertian reflectance acts as low-pass filter on

the environment map. This implies that the set of images produced by a convex

Lambertian object is well approximated by the images produced by lighting that

consists of nine, low-frequency spherical harmonics. So the set of images produced

by a convex Lambertian object is approximately nine-dimensional. [8] shows that

the fact that only some surface normals will face a camera reduces this dimension

further.

These results do not consider cast shadows. Recently, [9] analyzes some canon-

ical situations in which shadows are cast. The set of images produced by a scene

with cast shadows can be of much higher dimension, although [9] provides some

empirical evidence that in many cases this dimension does not grow too rapidly.

Some methods have been proposed to recover illumination distributions from

images. [14] proposes a framework to accomplish photo-realistic view-dependent

image synthesis from a sparse image set and a geometric model. It uses residual

images to estimate a rough approximation of the illumination and introduces a

Torrance-Sparrow reflection model to refine the result. [17] presents two methods

for recovering the light source position from a single image without the distant

illumination assumption. [15] extracts much more accurate multiple illumination

information from the shading of a sphere. These works haven’t dealt with cast

shadows specifically. The complexity of determining lighting grows dramatically

when we must account for cast shadows. The method that is most closely related

to our work is [10]. In [10], they demonstrate the effectiveness of using occluding
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information of incoming light in the estimation of the illumination distribution of

a scene. They use adaptive sampling to avoid dense sampling of the illumination.

Since they use a shadow image to estimate the radiance distribution, the pixels in

the shadow have to be known beforehand and it is hard to do this automatically in

many situations. Moreover, it cannot handle the non-convex object which will cast

shadows on itself.

To overcome their shortcomings, we take a different approach to measure the

complexity of cast shadows in this thesis. We represent images using a basis and

images produced by single, directional light sources. We show that the effects of cast

shadows can be represented sparsely in this basis, using a small number of directional

light sources. Therefore, the illumination of the scene can be recovered by adding a

certain number of directional sources to the spherical harmonic lighting. This leads

to a representation that has few parameters, although it is not low-dimensional.

This thesis is organized as follows: In Chapter 2, we describe the basic shadow

concepts and the spherical harmonic analysis on the Lambertian model we assume

for the objects. Shadow concepts such as the umbra and the penumbra, attached

and cast shadows are introduced and examples are given to illustrate the difference

between them. Examples are also given to show the rich information provided by

cast shadows. A spherical harmonic representation of Lambertian objects is briefly

reviewed and its shortcomings are shown by a simple example using images with

prominent cast shadows.

In Chapter 3, we begin with a simple example to illustrate this. We show that

the effects of cast shadows may not be well approximated by any low-dimensional
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representation. However, when only a few directional light sources illuminate a

scene, they may be compactly represented, while a large number of directional

sources do not produce strong shadows. Then we present a simple model of this

situation that we can analyze. We derive a bound on the possible effects of cast

shadows that are not captured by representing light with low-frequency harmonics

and a few directional light source. Using one directional light source reduces this

bound by half, and further light sources decrease the bound by the square root of

the number of sources. Next, we briefly review several algorithms designed to ei-

ther find the best directional sources or approximate the images with cast shadows.

Finally, we propose a fast and accurate multiscale search algorithm to find the best

directional sources, and we give some comments.

In Chapter 4, we conduct numerous experiments on synthesized data to test

the validity of our assumptions and apply our proposed algorithm to illumination

recovery. We evaluate the performance of several algorithms and our proposed

algorithm in terms of processing time and accuracy.

Finally, conclusions and future perspectives are drawn in Chapter 5.

4



Chapter 2

Spherical Harmonic Analysis of Lambertian Objects with shadows

2.1 What are the Shadows?

The first step in the development of efficient tools for recognizing objects with

shadows in digital images and image sequences is an understanding of how shadows

appear in images and what is peculiar to them. Shadows are crucial for human

perception of the 3D world.

The darkest part of a shadow is the umbra. A point P of the scene is considered

to be in the umbra if it is completely blocked by the object causing the shadow, i.e.

it doesn’t receive any light form the light source. If the light is partially blocked,

hence P can view a part of the light source, it is in the penumbra. The union of the

umbra and the penumbra is the shadow, the set of points for which at least one point

of the light source is occluded. Objects that hide a point from the light source are

called occluders. Figure 2.1 (a) shows the generation of umbra and penumbra. Area

light sources emit light to the receiver and some lights are blocked by the occluder.

The blue part in the penumbra on the receiver can only see part of the light source,

while the red part in the umbra cannot see anything from the light source. The

umbra and penumbra structure is clearly visible in figure 2.1 (b).

Shadows are categorized as two types:

• attached shadows or self shadows, that occur when a surface faces away from
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(a) (b)

Figure 2.1: Umbra and penumbra generation. Area light sources, as the line source

in (a), generate penumbra where the light is only partially obstructed by the shadow

casting object. The umbra and penumbra structure is clearly visible in (b).

a light source.

• cast shadows, that occur when an intervening part of an object blocks the

light from reaching a different part of the surface.

For convex objects, only attached shadows occur. Attached shadows are easily

modeled, since they depend only upon the local geometry of the surface which is

the normal direction of the point on the surface. On the other hand, cast shadows

are caused when an entirely different region of the surface intersects the path from

the light source to the point. Since they are dependent on the global geometry of

the surface, cast shadows are more complex to model. Figure 2.2 (a) illustrates the

generation of attached and cast shadows. An example of attached and cast shadows

in real life is given in figure 2.2 (b). The left side of the cat condo, which faces away

from the light source, is in the attached shadow. The cat condo casts a hard shadow

6



on the background.

(a) (b)

Figure 2.2: Examples of attached and cast shadow. The generation of attached and

cast shadow is illustrated in (a). (b) gives an example of attached and cast shadows

in real life. The left side of the cat condo, which faces away from the light source,

is in the attached shadow. The cat condo casts a hard shadow on the background.

Shadows provide a strong source of information about the shape of surfaces,

which we now illustrate with a concrete example.

Shadows help to understand relative object position and size in a scene. In

figure 2.3 (a), we are unable to determine the position of an object in space without

a cast shadow, whereas on the other three images we understand that it is more and

more distant from the ground.

Shadows can also provide information about the shape and geometry of a

complex occluder. From the shadow cast on the ground in figure 2.4 (a), we can see

the occluder is a man on a racing horse. We can also tell there is a pin sticking in

the ground from 2.4 (b).
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(a) (b)

(c) (d)

Figure 2.3: Shadow provide information about the relative positions of objects.

We cannot determine the position of the wooden dog from shadowless image (a),

whereas on the other three images we understand that it is more and more distant

from the ground.

2.2 Lambertian Model

We assume that a surface exhibits Lambertian reflectance, which states that

light falling on it is reflected equally in all directions and the brightness of the surface

is the same to an observer regardless of the observer’s angle of view. In figure 2.5

(a), the light falling on the Lambertian surface is reflected equally in all directions

and appears the same to the viewer from any viewing direction. The bidirectional
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(a) (b)

Figure 2.4: Shadow provide information about the shape and geometry of the oc-

cluder.

reflection distribution function(BRDF) for a Lambertian surface is known to be a

constant. Under the Lambertian law, the intensity of a point p is calculated by

taking the dot product of the surface normal and lighting direction (see figure 2.5

(b))

I(p) = n(p) · l (2.1)

If the image of a Lambertian object has no shadows, the set of all images under

all lighting conditions is a 3-dimensional space. For any lighting direction l, it can

be represented by 3 non-coplanar basis lighting directions {l1, l2, l3}. Given that n

is the surface normal of a surface point, the image brightness value of the point is

I(p) = n(p) · l = n · (a1l1 + a2l2 + a3l3) = a1n(p) · l1 + a2n(p) · l2 + a3n(p) · l3 (2.2)

The brightness value of a surface point is a linear combination of the brightness

value of the same point under 3 fixed, independent illuminations.
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(a) (b)

Figure 2.5: Lambertian surface and law. In (a), the light falling on the Lambertian

surface is reflected equally in all directions and appears the same to the viewer from

any viewing direction. According to Lambertian law, the intensity of a point is the

dot product of surface normal and lighting direction as in (b).

2.3 Spherical Harmonic Analysis

Problems arise when the point is in the attached shadow. The angle between

the surface normal and the lighting direction is obtuse (n(p) · l < 0), so space for

the set of images under all lighting conditions is no longer 3-dimensional. Basri and

Jacobs [6] show that it is very close to 9D linear subspace using spherical harmonic

analysis. It is analogous to Fourier analysis, but on the surface of sphere. With a

spherical harmonic representation, low frequency light means light whose intensity

varies slowly as a function of direction. The image formation is analogous to the

convolution of the lighting function with a cosine function. The reflectance function

acts as a low-pass filter with 99.2 percent of its energy in the first nine components.

In the following, we briefly review the spherical harmonic analysis for attached

shadows. We denote lighting direction and surface normal using unit vector ul and
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vr, respectively. According to Lambert’s law, if a light ray of intensity l coming from

direction ul reaches a surface point with albedo ρ and normal direction vr, then the

intensity, i, reflected by the point due to this light is given by

i = ρl(ul)max(ul · vr, 0) (2.3)

If we fix the lighting and ignore ρ for now, we can write

r(vr) =

∫

S2

k(ul · vr)l(ul)dul (2.4)

where k(u · v) = max(u · v, 0). The reflected light on a point is a function of surface

normal alone. Intuitively, it can be regarded as a convolution of k and l.

The surface spherical harmonics are a set of functions that form an orthonor-

mal basis for the set of all functions on the surface of the sphere. Any piecewise

continuous function f on the surface of the sphere can be written as a linear com-

bination of an infinite series of harmonics. Specifically, for any f ,

f(u) =
∞∑

n=0

n∑
m=−n

fnmYnm(u) (2.5)

where fnm is a scalar value, computed as:

fnm =

∫

S2

f(u)Y ∗
nm(u)du (2.6)

The first nine spherical harmonics which are a function of space coordinates
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(x, y, z) are:

Y00 = 1√
4π

Y10 =
√

3
4π

z

Y e
11 =

√
3
4π

x Y o
11 =

√
3
4π

y

Y20 = 1
2

√
5
4π

(3z2 − 1) Y e
21 = 3

√
5

12π
xz

Y o
21 = 3

√
5

12π
yz Y e

22 = 3
2

√
5

12π
(x2 − y2)

Y o
22 = 3

√
5

12π
xy

(2.7)

where the superscripts e and o denote the even and odd components of the har-

monics, respectively. Ynm = Y e
n|m| ± iY o

n|m|. Figure 2.6 shows the first nine spherical

harmonics.

Figure 2.6: The first nine spherical harmonics.

Both the lighting function l, and Lambertian kernel k, can be written as sums
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of spherical harmonics. Denoted by

l =
∞∑

n=0

n∑
m=−n

lnmYnm (2.8)

the harmonic expansion of l, and by

k(u) =
∞∑

n=0

knYn0 (2.9)

Note that since k(u) is circular symmetric about the north pole, so

∫

S2

k(u)Y ∗
nm(u)du = 0,m 6= 0 (2.10)

According to the Funk-Hecke theorem, the harmonic expansion of the re-

flectance function r can be written as:

r = k ∗ l =
∞∑

n=0

n∑
m=−n

(αnlnm)Ynm (2.11)

where α =
√

4π
2n+1

kn.

The first few coefficients of Lambertian kernel are

k0 =
√

π
2
≈ 0.8862 k1 =

√
π
3
≈ 1.0233

k2 =
√

5π
8
≈ 0.4954 k4 = −

√
π

16
≈ −0.1108

k6 =
√

13π
128

≈ 0.0499 k8 = −
√

17π
256

≈ −0.0285

(2.12)

Figure 2.7 is a graph representation of the first 9 coefficients and the cumulative

energy of the Lambertian kernel. Because the Lambertian kernel k acts as a low-

pass filter, the high-frequency components of the lighting have little effect on the

reflectance function. We achieve a low-dimensional approximation to the reflectance

function by truncating the sum in (2.11).

r = k ∗ l =
∞∑

n=0

n∑
m=−n

(αnlnm)Ynm ≈
N∑

n=0

n∑
m=−n

(αnlnm)Ynm =
N∑

n=0

n∑
m=−n

lnmrnm (2.13)
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where rnm is given by

rnm = k ∗ Ynm = αnYnm (2.14)

(a) (b)

Figure 2.7: A graph representation of the first 9 coefficients and the cumulative

energy of the Lambertian kernel.

Using this analysis, we can efficiently represent the set of images of objects

seen under varying illumination. Let pi denote the ith point on the surface of object.

Let ni and ρi denote the surface normal and albedo of pi, respectively. Then, the

image Ii of pi is:

Ii = ρir(ni) = ρi

∞∑
n=0

n∑
m=−n

lnmrnm =
∞∑

n=0

n∑
m=−n

lnmbnm(pi) (2.15)

where bnm(pi) = ρirnm(ni) is the harmonic image. We can see any image is a linear

combination of harmonic images.

We recognize objects by comparing a new query image to the linear subspace

of images that correspond to each model in turn. Given an image I, we seek the

distance from I to the space spanned by the basis images. Let B denote the basis

images. Then we seek a vector a that minimizes ||Ba − I||. Every column of B

contains one harmonic image bmn. This shows very good results for face recognition.
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If there are cast shadows in the image, the dimension of the linear subspace

spanned by the set of images under varying illuminations can be very large. To see

the impact of cast shadows on object recognition, we consider a simple example.

In figure 3.1, two boxes have the same width and height, but different thickness.

They appear the same to the viewer from the front. We can’t differentiate them

without considering cast shadows on the ground. By applying recognition with

nine harmonics, we obtain wrong recognition results. This encourages us to develop

another algorithm which can handle images with significant cast shadows.

(a) (b)

Figure 2.8: Images of two boxes. The only difference is the thickness. They can

only be differentiated by their shadows cast on the ground.
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Chapter 3

Analysis of Images with Cast Shadows

3.1 An Example

To strengthen our intuitions, we consider a very simple example of a scene

consisting of a flat playground with an infinitely thin flag pole. We view the scene

from directly above, so that the playground is visible, but the flag pole appears

only as a negligible point. Suppose the scene is illuminated by an arbitrary set of

directional lights of equal intensity that each have an elevation of 45 degrees. In this

case, the intensity of the lighting can be described as a one-dimensional function of

azimuth. A single directional light illuminates the playground to constant intensity

except for a thin, black shadow on it. The entire set of lights can cause shadows

in multiple directions. None of these shadows overlap, because the pole is infinitely

thin.

Now consider the linear subspace spanned by the images that this scene can

produce. We first consider the set of images that are each produced by a single

directional source. All images are nonnegative, linear combinations of these. We

represent each image as a vector. The principal component of these images will

be the constant image produced in the absence of cast shadows; since each shadow

is infinitely thin, the non-shadowed part dominates each image. Suppose we then

project each image into the space orthogonal to this principal component. We get

16



(a) (b)

Figure 3.1: Images of a flat playground with a thin flag pole. (a) is rendered with

only single directional source, while (b) is rendered with 2 directional sources. (b)

has two shadows, but each shadow only has half the intensity of the shadow in (a).

an image that is near zero, except for a large negative component at the shadow. All

these images have equal magnitude, and are orthogonal to each other. Therefore,

they span an infinite-dimensional space, and PCA will produce an infinite number of

equally significant components. A finite-dimensional linear subspace cannot capture

any significant fraction of the effects of cast shadows.

But, let’s look at the images of this scene differently. A single directional

source produces a single, black shadow. Two sources produce two shadows, but each

shadow has half the intensity of the rest of the playground, because each shadow is

lit by one of the lights. The more lights we have the more shadows we have, but

the lighter these shadows are. Intuitively, we expect many very light shadow to be

less important perceptually than a few dark ones. In this paper we will measure

the magnitude of an image, or the magnitude of the error in an approximation by

the root mean square (RMS) value of each pixel, that is, the norm of the image.
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With this measure, we can quantify our intuition by pointing out that the norm of

the difference between a shadowed image generated with N sources and a constant

image will be proportional to
√

N( 1
N

)2, and so it will decrease in proportion to
√

N .

Now, suppose we approximate any possible image using one image of constant

intensity, and a small number of images that are each produced by a directional

source. If the actual image is produced by a small number of directional sources,

we can represent its shadows exactly. If the image is produced by a large number

of directional sources, we cannot represent the shadows well with a few sources, but

we do not need to, because they have only a small effect.

3.2 Analysis

We now analyze an idealized model of cast shadows. This model will not

hold for every possible scene, but we argue that it captures significant properties of

common situations. We make several key assumptions. First, we assume that all

images produced by a single, directional source will have a significant component in a

common, low-dimensional linear subspace. This is motivated by the fact that images

without shadows are known to be well-approximated by a low-dimensional subspace,

and shadowed portions of the scene will typically be relatively small. Second, we

assume that the norm of the image will be proportional to the number of directional

sources and their intensity. This assumption can be false. For example, if each

source illuminates a single, separate pixel with an intensity of 1, then an image

with N sources will have a norm of
√

N . However, we claim that both assumptions
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are reasonable for many situations in which cast shadows appear, and are worth

investigating. We note that these assumptions are true for the example of the flag

pole discussed in the previous section.

We will analyze the case of a scene illuminated by a finite number of directional

light sources, N . We let Ik denote the image that would result when the scene is

illuminated by just light source k, normalized so that ||Ik|| = 1. The actual image,

then, is a nonnegative combination of these single-source images, that is:

I =
N∑

k=1

akIk (3.1)

for ak ≥ 0. We will use the notation: A ≡ ∑N
k=1 ak. We also assume, without loss

of generality, that the single-source images are ordered so that a1 ≥ a2 ≥ ... ≥ aN .

Each single-source image can be described as having some component in a

common, d-dimensional subspace, , and some component orthogonal to this space.

We write this as:

Ik = α~ck + β~rk (3.2)

where ~ck is a unit vector in the subspace , and ~rk is a unit vector orthogonal to this

subspace. We make the simplifying assumption that α is constant for all images

produced by a single, directional source. We will also assume that < rk, rj >= 0

for k 6= j. We relax these assumptions later. Because Ik is normalized, we have

α2 + β2 = 1.

Now we approximate I using the linear subspace and m images generated with

single directional sources, I1, I2, ..., Im. Note that these are the m images that play

the biggest role in creating I. Let Īm be the best approximation to I that we can
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generate from a linear combination of these images and the subspace. We have:

Īm =
N∑

k=1

akα~ck +
m∑

k=1

akβ~rk (3.3)

We can measure the quality of this approximation by looking at the angle, θ, between

I and Īm. We have:

||I||sinθ = ||I − Īm|| (3.4)

At this point we make use of the assumption that ||I|| ∝ A. This is our second key

assumption, that the magnitude of the image grows proportionally with the sum of

the intensity of light falling on the scene. Then we have:

sinθ ∝ ||∑N
k=m+1 akβ~rk||

A
=

β(
∑N

k=m+1 a2
k)

1
2

A
(3.5)

The value of θ will vary depend on the distribution of the ak values. Of course, θ can

be as small as zero when ak = 0 for k > m, in which case our sparse approximation

perfectly captures the lighting. We now want to understand how badly a sparse

approximation can do. This is described by the maximum possible value of θ, and

we want to see how this depends on the choice of m.

To get at this issue, we consider the maximum possible value that can be

obtained by the right-hand side of Equation 3.5. First, we note that for any fixed

value of am, which is the least influential light source used in our approximation,

this expression will be maximized when a1 = a2 = · · · = am. This minimizes the

effect of the lights used in the approximation, and maximizes the effect of the rest of

the lights. So this expression is maximized when
∑N

k=m+1 a2
k is maximized subject

to
∑N

k=m+1 ak = A − mam and 0 ≤ ak ≤ am for k > m. This maximum occurs
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when the leading coefficients, am+1, · · · have the maximum possible value, and all

other coefficients are 0. That is, the right-hand side of (3.5) is maximized when

am+1, · · · , am+p = am for some choice of p. That is, we must find p to maximize:

√
pa2

m

(m + p)am

=

√
p

m + p
(3.6)

Taking the derivative with respect to p and setting it to zero shows that this is

maximized when p = m. This tells us that in the worst case, for an image generated

by any set of directional light sources, we have: a1 = a2 = · · · = a2m, a2m+1 = · · · =

aN = 0. Substituting this into Equation 3.5 we have:

sinθ ∝ β
√

m

2m
=

β

2
√

m
(3.7)

To summarize, we have considered the angle between an image and an approximation

to it based on a low-dimensional subspace and a sparse set of m directional light

sources. For a simplified model of this situation, we have shown that maximum

possible value of the sine of this angle will decrease at the rate of 1√
m

. For example,

if we use one directional source in our approximation (m = 1), the worst case for

us will be when there are two, equal intensity directional sources. In this case, we

capture half of the difference between the image and our low-dimensional subspace

using one source. Four directional sources guarantee that we will capture 3
4

of the

effect, and so on.

We have made a few, critical assumptions to arrive at this conclusion. First

of all, our derivation assumes that the vectors describing the effects of cast shadows

for each source, ~rk, were all orthogonal. We can derive the same result without this

assumption. First, we define Īk to be the component of I that is orthogonal to the
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low-dimensional linear subspace and the images produced by the first k sources. We

reorder the light sources so that < a1~r1, Ī0 >≥< ak~rk, Ī0 > for any k > 1. (Note

that when the ~rk are orthogonal this amounts to the ordering we use above, in which

a1 ≥ ak). Then we rewrite the remaining images expressing only their component

orthogonal to Ī1, so that each ~rk is orthogonal to this space, and each ak represents

the magnitude of each image orthogonal to Ī1. Next, we reorder the remaining

sources so that < a2~r2, Ī1 >≥< ak~rk, Ī1 > for any k > 2. We continue this process

until all the sources are accounted for. We can then apply our initial derivation to

this representation of the images.

A second simplifying assumption appeared in our use of a single β value for all

images. In reality, we expect β to vary somewhat from image to image, as the effect

of cast shadows varies. For example, we know that there will be no cast shadows

when the light direction is the same as the camera direction, while a light near the

horizon may produce long prominent shadows. We expect that this variation will

not be too great, and that it will suffice to use an average β value in our predictions.

A more critical assumption in our derivation was that ||I|| will be approxi-

mately A. Intuitively, we expect that the image produced by each directional source

will lie mostly in a low-dimensional linear subspace, and that as we sum together

the components of these images in that subspace, the magnitude of the resulting

image will grow with the number of images. This occurs when images from different

directional sources are not orthogonal, but are highly correlated. It can be seen that

this is exactly true for the example of the flag pole in the playground. In general,

one can construct images with cast shadows and different directional sources that
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are orthogonal; our approach rests on the conjecture that in most situations, when

a Lambertian scene is lit by a large number of directional sources, the images will

not tend to be orthogonal.

On the other hand, for example, this assumption would not be true for the non-

Lambertian effects produced by a mirrored ball. In that case, each directional source

lights a different point on the ball, and these images are orthogonal. Consequently,

our sparse representation of an image should be appropriate only for situations in

which images due to different directional sources are highly correlated.

3.3 Several Algorithms

From the previous derivation, we arrive at the conclusion that an image with

cast shadows can be well approximated using a combination of low frequency spheri-

cal harmonics, and a small number of directional sources. So the problem is reduced

to finding the directional sources which can best approximate the image. There are

several algorithms proposed to either find the best directional sources (indirect) or

approximate the images with cast shadows (direct). In the following, we categorize

them to be direct and indirect algorithms and briefly review and analyze each of

them.

3.3.1 Indirect Algorithms

1. Brute-force search: First, we define Īk to be the projection error of I projected

on the low-dimensional linear subspace and the images produced by the first k
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sources. We reorder the light sources so that < a1~r1, Ī0 >≥< ak~rk, Ī0 > for any

k > 1. (Note that when the ~rk are orthogonal this amounts to the ordering we

use above, in which a1 ≥ ak). Then we rewrite the remaining images expressing

only their component orthogonal to Ī1, so that each ~rk is orthogonal to this

space, and each ak represents the magnitude of each image orthogonal to Ī1.

Next, we reorder the remaining sources so that < a2~r2, Ī1 >≥< ak~rk, Ī1 > for

any k > 2. We continue this process until all the sources are accounted for.

Brute-force search is the most time consuming of all algorithms. At each step,

it has to check all the candidate directional sources to see if they satisfy the

minimum error approximation. The complexity depends on the number of

points uniformly sampled on the surface of the upper hemisphere n and the

number of directional sources m we want to find. The number of search steps

to find the best m directional sources is O(mn). Brute-force search guarantees

that it will find the best directional source at each step, but the number of

search steps is proportional to the number of candidate solutions and grows

very quickly as the number of candidate directional sources increases.

2. Simulated Annealing: The optimization technique simulated annealing is ap-

plied to avoid the cost of brute-force search by directing the search success-

fully. It reduces the search time by orders of magnitude. The original version

of simulated annealing has been applied to segmentation and noise reduction

of degraded images [11]. Simulated annealing was chosen because of its abil-

ity to avoid terminating at local minima and to keep searching for the global
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minimum. Simulated annealing is analogous to the annealing process for met-

als, wherein the material is raised to a high temperature and then gradually

cooled, allowing the atoms to settle into their most desirable states.

In our case the desirable end state is the best directional sources, and atomic

motion due to thermal energy is simulated by a randomization routine which

allows ’uphill’ acceptances of states with probability controlled by the temper-

ature parameter. Parameters of the simulated annealing process are: starting

temperature T , rate of cooling L (measured in iterations at each tempera-

ture), and cooling schedule α (change in temperature, T ′ = αT , after each set

of iterations, L). These parameters directly affect the run time of simulated

annealing.

Simulated annealing is outlined as follows:

(a) Initialize temperature T = T0.

(b) Find the best m directional sources p1, p2, · · · , pm out of 65 uniformly

sampled sources using brute-force search .

(c) On the grid uniformly sampled 3871 points on the surface of a hemisphere,

we obtain the energy function Ei and Eij for each point pi and its 5 nearest

neighbors pij, where i = 1, 2, · · · ,m and j = 1, 2, · · · , 5. If e−
(Ei−Eij)

T >

random[0, 1), then keep pi, otherwise, replace pi with its corresponding

nearest neighbor pij.

(d) Keep going until reaching the maximum number of iteration.
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(e) Keep reducing the temperature T by T ′ = αT and go to step 3 until

reaching the lowest temperature.

Simulated annealing can reduce computational cost by a certain amount, but

it depends on the rate of cooling and might take a long time to converge.

Ideally, it will lead to a globally optimal solution as long as the cooling rate

is small enough.

3.3.2 Direct Algorithms

3. Semidefinite programming(SDP):[12] applies semidefinite programming to per-

form a constrained optimization to quickly and accurately solve the non-

negative linear combination of spherical harmonics. It has been successfully

applied for the specular object recognition on both synthetic and real data by

better separating the correct and incorrect models. Their SDP algorithm is

summarized as follows:

(a) First, spherical harmonic images are obtained by rendering the 3D objects

with each individual harmonic lighting.

(b) Second, these harmonic images are vectorized and stacked as columns of

a matrix M . The resulting image is described as Ma which is the product

of spherical harmonic images M and coefficient vector a.

(c) Third, given the query image r = I + noise, a is found by minimizing
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||Ma− r|| subject to TL(a) ≥ 0. where

TL(a) =




a0 a1 · · · an

a−1 a0
. . .

...
. . . . . . a1

a−n a−1 a0




(d) Fourth, compute the QR decomposition of the matrix M . The problem

is reduced to: solve the size (L+1)2 problem: mina ||Ra−QT r||2 subject

to TL(a) ≥ 0. This kind of problems are called semidefinite programming

(SDP) problems.

(e) Finally, the problem is solved as: mina q subject to

1 + q ≥




1− q

Ra−QT r




and TL(a) ≥ 0. It’s solved in MATLAB using SDPT3 and YALMIP

packages.

SDP is designed to approximate high frequency signals which cannot be cap-

tured by the 9D spherical harmonics. It works well on specular objects such

as a shiny rubber ball and a ceramic shaker using harmonics up to 10th order.

Since images with cast shadows generally have a lot of high frequency signals,

it still misses a certain amount of information which is contained in higher

order harmonics.

4. Non-Negative Linear: [4] has shown that the set of images of an object pro-

duced by nonnegative lighting is a convex cone in the space of all possible
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images. Given an image I, we attempt to minimize ||Ha − I|| subject to

a >= 0 where H is the matrix whose columns are directional source im-

ages. If we densely sample the illumination distribution, it makes the solution

exceedingly expensive in terms of processing time and storage requirements

because of the high dimensionality of the matrix H formed by point source

images.

3.4 Multiscale Search Algorithm

We propose a multiscale search algorithm to find the best directional sources.

It employs an s scale nearest neighbor search from the coarsest level to the finest

level. It achieves a good balance between processing time and accuracy.

The multiscale search algorithm is summarized as follows (see Figure 3.2).

1. First, we find the best m out of 65 sources at the coarsest level using a brute-

force search algorithm.

2. For each m directional sources, we check the k nearest neighbors in a finer

level and pick the one which has the smallest angle between the approximated

image and the query image.

3. We go to a finer level and repeat step 2, until we reach the finest level.
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Figure 3.2: Best directional source is selected by comparing it with its 5 nearest

neighbors on each level.

3.5 Comments on Multiscale Search Algorithm

First, the search for nearest neighbor is conducted on the surface of the hemi-

sphere. Therefore, practically speaking, there are no ’boundary’ points, that is, we

can always find a certain number of nearest neighbors for every point no matter

where the point is located.

Second, the number of search steps only depends on the number of scales s

and point light sources m when the number of nearest neighbors k is given. Thus,

the total number of search steps is s · k ·m + O(mn0), where O(mn0) is the number

of exhaustive search steps at the coarsest level with n0 images. This is much less

than the number of exhaustive search steps O(mn) where n is the number of images

at the finest level which is 3871 in our experiment.

Third, in the brute-force search algorithm, we find the best directional source
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of all the candidate sources first. Then, we find the best one out of the rest of the

sources, and so on. Therefore, the best directional sources are ranked according to

their importance. Whereas for the multiscale search algorithm, this is only true at

the coarsest level and it no longer holds for the finer levels. That is, the order of

the importance of the best directional sources at the finest level is changed. That’s

why we see a smooth curve in the brute-force search rather than some abrupt drops

in the multiscale search.
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Chapter 4

Experiments

We have conducted numerous experiments on synthesized data to test the

validity of our assumptions and applied our proposed algorithm to illumination

recovery. We evaluate the performance of several algorithms and our proposed

algorithm in terms of processing time and accuracy.

4.1 Testing the Validity of Assumptions

We now present experiments to test the validity of our assumptions. We will

check three things. First, for a given scene we can assess the empirical values that

occur for α and β. Second, we can measure the extent to which the magnitude of an

image is proportional to the magnitude of the sum of the light sources. And third,

we can evaluate our prediction that as we use more directional light sources, the

maximum possible error in our approximation will be bounded by β
2
√

m
.

To implement our approach we must choose a low-dimensional linear sub-

space to approximate the set of images that a scene will produce. We use a nine-

dimensional subspace generated by rendering images of the scene, including their

cast shadows, using lighting that consists of zero, first, and second order spherical

harmonics. [6, 7] have shown that this subspace will approximate a scene’s image

well in the absence of cast shadows, so it seems a reasonable choice. A reasonable
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Figure 4.1: Sample images of two scenes, each generated with a single, directional

source.

alternative would be to render the scene ignoring cast shadows. We would expect

that ignoring cast shadows would lead to a less accurate subspace, but it can be

computed analytically from the scene’s surface normals, without ray tracing.

We have experimented using numerous scenes. We show two in Figure 4.1.

Results were very similar for all scenes, so for the sake of brevity we only report

results for the scenes in Figure 4.1. Using the POV-Ray ray tracer we generate

directional images, each using a single directional light source. We obtain directions

by uniformly sampling the upper hemisphere. Using these images, we numerically

integrate to compute nine images of the scene, each with lighting consisting of a

single spherical harmonic.

We first consider the variation that occurs in β for each image. Our analysis

used the simplifying assumption of a constant β, but we know that in reality β will

vary. For the scene in Figure 4.1-left we find that β has a mean value of 0.1970 with

a standard deviation of 0.0524, and minimum and maximum values of 0.0751 and

32



0.4136. For the scene in Figure 4.1-right we find that β has a mean value of 0.1507

with a standard deviation of 0.04, and minimum and maximum values of 0.0830 and

0.2721. So there is real, but not extremely large variation in β. To predict the effect

of using more directional sources to approximate the image we use a value of β that

is an average of the β values for each light source, weighted by the magnitude of the

image that light source produces.

Second, we test our prediction that ||I||| ∝ A. We do this for sets of k images

in which k varies from two to sixteen. For each k we render k images with randomly

chosen light sources. We normalize each image to unit length, and then measure the

magnitude of the image we get by summing these images. We repeat this experiment

one hundred times for each k. On average, we find that ||I||
A

has a mean value of

.96 for k = 2, .95 for k = 3, .94 for k = 4, 5, .93 for k = 6 to 15, and .92 for

higher values of k up to 32. These numbers all have a standard deviation of about

.05. This supports our contention that we can expect the magnitude of an image

of a Lambertian scene to grow proportionately to the sum of the magnitude of the

individual images produced by each light source; in fact we find that ||I|| is quite

close to A.

Finally, our key prediction is that we can represent an image using a harmonic

subspace of images and m images rendered with directional light sources so that the

error in this representation will be no more than β
2
√

m
(or β for m = 0). Of course,

the error can be much less than this, and as little as zero. We test this first using

images generated with directional light sources. We expect well distributed light

sources to be the most difficult to approximate. For each value of these images, we
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approximate the image with a linear subspace and m directional sources, allowing

m to vary from zero to ten. We select the light sources with a greedy algorithm,

adding a light source by selecting the directional sources that most improves our

approximation.

Before we look at the approximation results, we examine the effect of image

size and sampling error. There are 4 scales used in our experiments. They are 65,

249, 977, and 3871 uniform samples on the surface of a hemisphere from coarsest to

finest.

We did the experiment to find the best directional sources at different image

sizes. We want to find an image size that is as small as possible while maintaining

accuracy. We conducted numerous experiments on different scenes and two results

are reported in Table 4.1. From the tables, we can see 60× 80 is the best image size

in terms of processing time and accuracy. Therefore, we will use images with size

60× 80 to do all the rest of the experiments.

To examine how sampling affects the final result, we conducted experiments on

many scenes. First, we randomly pick 100 directions from the surface of a hemisphere

and render an image with each single point source. Second, for each point, we pick

points which have angles to this point linearly spaced from 1◦ to 3◦ and generate

images rendered with these point sources. The reason we choose the angle from 1◦

to 3◦ is that the average angle between the nearest points from the 3871 uniform

samples on the surface of a hemisphere is 2.2◦. The figures illustrating the angle

between the two point source images vs. the angle between the two point light

sources are shown in Figure 4.2. We can see the error in degrees can be as much as
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Image Size Index of Directional Source Image

40x30 16 71 84 160 226 21 97 138 130 172

80x60 160 21 226 5 16 71 97 84 67 172

160x120 160 71 16 226 21 5 97 172 67 78

320x240 160 71 226 16 21 97 5 172 140 84

(a)

Image Size Index of Directional Source Image

40x30 5 3 209 164 138 152 226 128 221 136

80x60 5 3 209 164 152 138 57 128 221 136

160x120 5 3 209 164 152 138 57 128 221 136

320x240 5 3 209 164 152 138 57 128 221 136

(b)

Table 4.1: Best directional source images at different image size. The scenes are

from sample images.
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Figure 4.2: The angle between the two point source images vs. the angle between

the two point light sources. The scenes are the same as in Figure 4.1.

2.8◦ considering that the angle between the real point source and the approximated

point source can be as much as 1.1◦ at the worst case. So when we compare the

experimental error with the prediction error, we have to take the sampling error

which is around 2.8◦ into account.

We plot the approximation results in Figure 4.3. The horizontal axis shows,

m, the number of directional sources used to approximate an image. The vertical

axis shows the error in this approximation, in degrees. The red and magenta dashed

lines show our prediction and the prediction compensated with sampling error about

the maximum possible error in this approximation, respectively. The line with blue

stars shows the actual error that we encounter for a different image. In general,

the fewer directional sources that are used to approximate an image, the more error

there will be. The actual error is slightly bigger than the prediction error, but

less than the prediction error taking the sampling error into account. Figure 4.3-

top and down show the image with buildings and teacup rendered with 3 and 8
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directional sources, respectively. In the figure, we can see the predicted error in this

approximation provides a good upper bound on the actual error we see. While we

only show results for two scenes, the predicted maximum possible error bounded

the true approximation error for all scenes and lighting conditions with which we

experimented.

4.2 Illumination Recovery

We estimate the illumination by adding 9D spherical harmonic lighting with

a small number of directional sources. Figure 4.4 shows the improvement of the ac-

curacy obtained by increasing the number of directional sources. The vertical axis

represents the error in degrees compared with the image rendered with the approx-

imated lighting. The horizontal axis represents the number of directional sources

used for estimation. The small picture right next to the plot shows error distribu-

tions in the synthesized image. Darker and whiter color represents larger error in a

pixel value. The image on the right corner shows the illumination distribution from

which it is approximated. We see that the error keeps decreasing as we add more

directional sources. In the figure, we can see that the error is cut by 26% when we

add 20 directional sources.

4.3 Performance Evaluation

We evaluate the algorithms we mentioned in the previous section in terms of

their accuracy and computational cost. All the algorithms were run in MATLAB
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Figure 4.3: Each blue star shows the error that occurs in approximating a different

image with linear subspace and a set of directional sources. The red and magenta

dashed lines show our prediction and the prediction compensated with sampling

error about the maximum possible error in this approximation, respectively.

38



Figure 4.4: The improvement of the accuracy by adding directional sources. From

the plot in the figure, we can clearly see that the accuracy improves gradually as

we increase the number of the directional sources. The image is rendered with 8

directional sources.
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7.1. The computer used was a 2.00GHz Pentium 4 with 1.5GB RAM.

Figure 4.5 evaluates different algorithms to approximate the image with cast

shadows in terms of accuracy and computational cost. In Figure 4.5 (a), it shows

the approximation error in degrees vs. the number of directional light sources and

(b) shows the computational cost. Not to our surprise, brute-force search achieves

the best approximation results, but it requires a huge amount of processing time.

We only test NNL using 249 images due to the unacceptable processing time if we

go to higher level which has 977 images. It doesn’t have good results due to the

small number of directional source images we test. SDP works well on this case.

It requires the least processing time while achieving good results. The multiscale

algorithm is the runner-up in both processing time and accuracy. It’s difficult to

tell which is a better choice between SDP and the multiscale algorithm in this case.

Next we run a similar test using nine environment maps provided by [18], from

high dynamic range light probe images. Again, we measure the error and processing

time that occur in approximating images rendered with these environment maps

using a small number of directional sources. Again, the multiscale algorithm obtains

good results in terms of accuracy and processing time in Figure 4.6. While we only

show results for one scene, the multiscale algorithm shows good results for all scenes

and lighting conditions with which we experimented.
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Figure 4.5: Comparison of different methods to approximate the image with cast

shadows. The scene is rendered with 8 directional sources.

41



0 5 10 15 20
0.5

1

1.5

2

2.5

number of directional sources

er
ro

r 
in

 d
eg

re
es

 

 

Multiscale Method
Bruteforce Search 
 from 3871 images
SDP
NNL from 249 images

(a)

0 1 2 3 4 5
0

500

1000

1500

2000

2500

different algorithms

co
m

pu
ta

tio
na

l c
os

t i
n 

se
co

nd
s

 

 

Multiscale Method
Bruteforce Search 
 from 3871 images
SDP
NNL from 249 images

(b)

Figure 4.6: Comparison of different methods to approximate the image with cast

shadows. The scene is rendered with an environment map.
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Chapter 5

Conclusions and Future Work

In this thesis, we have presented a new method for estimating the illumination

distribution from images with cast shadows using directional source images. By

using images rendered with single directional source, we can approximate the illu-

mination distribution for the images having significant cast shadows. Moreover, we

compared our proposed algorithm with some other algorithms to show superiority

of our algorithm.

We conducted experiments on synthesized data and showed the effectiveness

and robustness of our proposed algorithm. For future work, more experiments with

real data have to be conducted.
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