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From Jello to mayonnaise to silly putty to biological cells, our world is replete with “soft 

matter” – materials that behave as soft, deformable solids or highly viscoelastic liquids. 

Living systems, in particular, can be thought of as extremely sophisticated ‘soft’ 

machines, with each cellular unit representing a touchstone for the functional potential of 

soft materials built via self-assembly. Drawing inspiration from biology, we blueprint 

soft biomaterial designs which rely upon self-assembly to achieve enhanced functionality. 

As opposed to complex synthesis schemes often used to develop improved biomaterials, 

we take an ‘easy’ approach by allowing relatively simple molecules orchestrate 

themselves into advanced machines. In this dissertation, we describe four separate “soft” 

systems, all constructed by self-assembly of amphiphilic molecules under designed 

and/or triggered conditions in aqueous media. These systems revolve around a common 

theme: the structural tandem of (1) vesicles and (2) biopolymers, and the resulting 

interactions between the two. Our blueprints show promise in several important 

biomedical applications including controlled drug release, tissue engineering, and wound 

care. 

 



In the first part of this study, we blueprint a biopolymer gel that entraps pH-sensitive 

vesicles. The vesicles are formed by the self-assembly of a single-tailed fatty acid 

surfactant. We show that the gel has pH-responsive properties imparted upon it via the 

embedded vesicle nanostructures. Specifically, when the gel is brought in contact with a 

high pH buffer, the diffusion of buffer into the gel disrupts the vesicles and transforms 

them into micelles. Accordingly, a vesicle-micelle front moves through the gel, and this 

can be visually seen by a difference in color. The disruption of vesicles means that their 

encapsulated solutes are released into the bulk gel, and in turn these solutes can rapidly 

diffuse out of the gel. Thus, we can use pH to tune the release rate of model drug 

molecules from these vesicle-loaded gels into the external solution.  

 

In the second part, we have blueprinted hybrid biopolymer capsules containing drug-

loaded vesicles by means of a one-step self-assembly process. These capsules are called 

“motherships” as each unit features a larger container, the polymer capsule, carrying a 

payload of smaller vesicular containers, or “babyships,” within its lumen. These 

motherships are self-assembled via electrostatic interactions between oppositely charged 

polymers/surfactants at the interface of the droplet. Capsule size is simply dictated by 

drop size, and capsules of sizes 200-5000 µm are produced here. Lipid vesicles, i.e. the 

babyships, are retained inside motherships due to the diffusional barrier created by the 

capsule shell. The added transport barrier provided by the vesicle bilayer in addition to 

the capsule shell provides sustained drug release from the motherships. Furthermore, this 

one-step drop method allows for the rapid synthesis of soft materials exhibiting structural 

features over a hierarchy of length scales, from nano-, to micro- to macro-.  



Thirdly, we have therapeutically functionalized biopolymer films by simply passing a 

solution of vesicles over the film surface. We deposit films of an associating biopolymer 

onto patterned solid substrates. Subsequently, these polymer films are able to 

spontaneously capture therapeutically-loaded vesicles from solution; this is demonstrated 

both for surfactant as well as lipid vesicles (liposomes). Importantly, it is verified that the 

vesicles are intact – this is shown both by direct visualization of captured vesicles (via 

optical and cryo-transmission electron microscopy) as well as through the capture and 

subsequent disruption of drug-filled vesicles. Such therapeutically-functionalized films 

may be of use in the treatment of chronic wounds and burns. 

  

Lastly, we have demonstrated that the addition of a certain biopolymer transforms a 

suspension of whole blood into a gel. This blueprint is inspired from previous research in 

our group on the biopolymer-induced gelation of vesicles, which are structurally similar 

to cells. Upon mixture with heparinized human whole blood, this amphilic biopolymer 

rapidly forms into an “artificial clot.” These mixtures have highly elastic character, with 

the mixtures able to hold their own weight upon vial inversion. Moreover, the biopolymer 

shows significant hemorrhage-controlling efficacy in animal injury models. Such 

biopolymer-cell gelation processes are shown to be reversed via introduction of an 

amphiphilic supramolecule, thus introducing the novel concept of the “revesible 

hemostat.” Such a hemostatic functionality may be of large and unprecedented use in 

clinical the treatment of problematic hemorrhage both in trauma and routine surgeries. 
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Chapter 1 

Introduction and Overview 
 

 

1.1  Problem Description and Motivation 
 
. 

In the current age of micro- and nanotechnology, there is a great deal of interest in 

making structures, machines, and robots at smaller scales.3 While processing techniques 

for metals or plastics are well-established at the macroscale (e.g., > 10 cm), the same 

techniques can be difficult to implement at smaller scales. For example, the machining or 

molding of a small (~ 5–10 mm) robot made of metal or plastic is not an easy task. This 

problem has an important context particularly within the field of nanomedicine. The 

popularized vision of nanomedicine is to create nano-sized robots, “nano-bots,” which 

patrol through the body, responding to environmental cues to repair tissue and cure 

disease when and where required.4 Despite the fact that such an intriguing and ambitious 

goal has driven an enormous amount of research over the past 20 years,5 it is important to 

take a step back and carefully consider some of the key points Edward Purcell made in 

his popular 1977 article “Life at Low Reynold’s Number.”6 Purcell emphasized that 

everything at the nano-scale essential becomes “sticky,” and, as such, it is very difficult 

to design hard nanoscale mechanical structures which move and function in a manner 

uniquely independent from Brownian motion. In plainer terms, building a robot is hard 

enough….building a robot to operate within a world of sticky, slimy, and grimy “muck”  

approaches the impossible.  
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In this context, it is useful to look to nature for inspiration to our nano-machine 

blueprints, as opposed to simply down-sizing successful macro- or micro-mechanical 

designs. Nature’s equivalents to crawling mini-robots are creatures such as geckos, 

earthworms, and ants. It is worth noting that these creatures are generally “soft”, i.e., they 

are not hard like metal or plastic, but gooey and pliable like jello or silly putty. Rather 

than building hard nano-bots to achieve a rigid endpoint, a more sensible approach would 

be to learn the inner-workings and conditions of these soft biological systems and, 

subsequently, build structures which complement or cleverly manipulate them in 

therapeutically beneficial ways.  

An excellent system to first study as a means to improved nanomaterial design is 

the biological cell. No machinery in the history of mankind has ever come close to 

rivaling its complex set of functionalities and wonderfully robust design. The cell is truly 

a ‘soft machine’ which is able to perform such tasks as rapidly build AND dissemble rods 

and trusses (actin filaments, intermediate filaments, microtubules), periodically replenish 

its outer shine (synthesis and transport of phospholipids to cell membrane), and reliably 

respond to myriad electrical and molecular signals from the external environment 

(Na+/K+ membrane-associated ion channels). These cellular processes occur via self-

assembly (i.e. they are thermodynamically driven, ∆G < 0 ) with in  a soft environment. 

Note that from a materials characterization standpoint, the cell is not a bag of water, but 

rather a lump of jello. Understanding how the cell’s machination works within this 

‘squishy’ and ‘sticky’ environment is key to making progress in almost any given sub-

discipline of nanomedicine including targeted delivery of drugs or genes, controlled 

release, tissue repair and engineering, and wound healing. 
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1.2 Proposed Approach 

We take inspiration from biology to build self-assembled materials which are able 

function as soft machines for improved therapies in nanomedicine. In this dissertation, we 

explore the integration of polymers with vesicles as a route to creating new and useful 

classes of soft materials. Vesicles, of course, are reminiscent of cells in a few key ways: 

(1) they have a very similar bilayer structure to cell membranes, (2) they have an aqueous 

core which can hold proteins and/or small molecules and (3) they are able to split/fuse 

based on particular environmental cues.7-8 Additionally, the cell uses actual nano-scale 

~100 nm vesicles to transport molecules into and out of the cell. The polymers used in 

our studies are reminiscent of many of the structural polymers which interact with cell 

membranes and assist in the assembly and transport of vesicles within cells. 

Using these 2 key ingredients, (1) vesicles and (2) biopolymers, we blueprint 

self-assembled systems in which the polymer plays an active role in creating a carrier or 

matrix for the vesicles. The resulting hybrid structures impart increased stability, or 

functional restraint of the self-assembled vesicles. Conversely, the vesicles impart 

enhanced functionality to the biopolymer. Such “easy” approaches to building materials 

involve dialing up conditions and environmental triggers such that vesicles and 

biopolymers build and/or disassemble themselves within aqueous environments. Hence, 

these approaches are not labor intensive. However, we are indeed able to achieve high-

levels of functionality from these systems simply by understanding and appropriately 

manipulating the factors which drive key self-assembly events. Four specific classes of 

such systems are investigated. These are depicted in Figure 1.1 and briefly described 

below. 
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Figure 1.1. Overview of the Four Blueprinted Self-Assembled Soft Systems. (a) 
Controlled-Release Jello: pH-Sensitive Vesicles within Biopolymer Gels, (b) 
‘Mothership’ Drug Carriers: Biopolymer Capsules Containing Vesicles; (c) Band-Aids 
for Chronic Wounds: Biopolymer Films Capturing Vesicles; (d) Self-Assembled 
Hemostats: Associating Biopolymers Gelling Vesicles/Cells 
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1.2.1 pH-Sensitive Vesicles within Biopoylmer Gels 

Vesicles which undergo a self-assembled transition into micelles upon increase in pH will 

be embedded within a gelatin gel. Here, we anticipate that a biopolymer gel network will 

form “around” a solution of vesicles, without disrupting the vesicles (Figure 1.1a). The 

presence of intact vesicles would presumably enhance the functionality of the gel by 

protecting encapsulated molecules and providing a sustained release of model drug. 

Presence of intact vesicles within the gel will be tested by a few different experimental 

methods. Next, a high pH-buffer solution will be placed in contact with the gel. As the 

high pH buffer diffuses into the gel, we will track the movement of a vesicle-micelle 

front through the gel as a function of time, and we will also explore the types of vesicle-

micelle patterns created by varying the gel geometry and the buffer-gel contact points. 

Lastly, we will attempt to characterize the vesicle-to-micelle transitions within the gel by 

packaging dye molecules within the vesicles and attempting to use pH as a trigger for 

their release.  The experimental design and complementing results for this system are 

explained in detail in Chapter 3. 

 

1.2.2 Vesicles Loaded into Biopolymer Capsules 

Next, we plan to entrap vesicles inside microcapsules made from biopolymers. We call 

these structures “motherships” as smaller containers, i.e. “babyships,” are protected 

within a larger container until degradation of the mothership capsule shell. Motherships 

are formed when droplets of a cationic biopolymer solution mixed with vesicles are 

added to a solution of anionic biopolymer or surfactant.5-7 A physical crosslinking occurs 

at the interface of the drop, leading to an interfacial shell (Figure 1.1b) and this shell 
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protects the contents of the drop from external stimuli. Capsule size is determined solely 

by the size of the drop and can be varied from a few millimeters to a few microns. Our 

goal is to trigger the release of vesicles by tailoring the capsule surface to degrade in 

response to specific pH transitions. Also, we hope to develop structures displaying 

features on hierarchy of length scales (from macro to micro to nano) using this single-

step drop method by placing micro-scale mothership capsules containing nano-scale 

vesicles within macro-scale capsules.  Details on the results of this proposed approach are 

explained in Chapter 5.  

 

1.2.3  Vesicles Captured Onto Biopoylmer Films 

A challenging problem in materials science is the ability to anchor “soft” biomolecular 

nanostructures such as vesicles to “hard” surfaces such as gold. For our 3rd blueprint, we 

approach a simple method to accomplish this kind of anchoring using an amphiphilic 

biopolymer as an soft “interconnect”. The polymer is hydrophobically-modified chitosan 

(hm-chitosan), which is obtained by covalently attaching alkyl tails to the backbone of 

chitosan. We plan to electrodeposit films of hm-chitosan onto microscale gold cathodes 

formed by lithography on a silicon wafer. Such hm-chitosan films could potentially 

capture drug-loaded vesicles from solution (Figure 1.1c). If the vesicles remain strongly 

bound to the films, a method of therapeutically functionalizing the film with multiple 

agents which are protected from degradation would be achieved in a quick one-step 

process. We envision such films being used for protection and controlled release of drug 

to accelerate the healing of chronic wounds of diabetics and burn victims. Additionally, 
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the immobilized vesicles could also be use for biosensing applications. The results of this 

approach in explained in Chapter 5.     

 

1.2.4 Gelling Cells  with Biopolymers 
 

Lastly, we blueprint a system involving biopolymers and cells, instead of vesicles. The 

ability to rapidly self-assemble into a flow-impeding barrier on demand is an ideal feature 

of hemostat, i.e. a material which controls hemorrhage. Indeed, the self-assembly of 

fibrinogen into fibrin, the hemostatic “plug” which is naturally observed in mammalian 

organisms in response to bleeds, is a rapid process regulated by a highly nuanced cascade 

of previous events. Here, we aim to achieve an equally effective set of coordinated via 

interactions between hm-chitosan and the blood hematocrit. We anticipate based on 

previous work done in our lab with vesicles the biopolymer will form an “artificial clot,” 

via interaction of hydrophobes and the hydrophobic bilayers of the blood cells (Figure 

1.1d). In this way, the biopolymers would act as bridges between adjacent cells, thus 

forming an elastic 3-dimensional network with the cells themselves acting as physical 

crosslinks. Additionally, we plan to utilize the amphiphilic supramolecule, α-cyclodextrin 

(CD), which is a barrel-shaped molecule featuring a hydrophobic interior, so as screen 

the hydrophobic interactions and, in this way, reverse the mechanism of gelation. 

Detailed explanations of the designed experimental and results on such “reversible 

hemostats” are given in Chapter 6. 
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1.3 Significance of this Work 

  

The studies described in this dissertation are potentially significant from two different 

standpoints: (a) they provide fundamental insight into self-assembly processes, such as in 

biological systems; and (b) the studies provide a foundation for new therapeutic concepts 

in the field of nanomedicine. 

 

Firstly, from a scientific standpoint, the interactions between vesicles and 

biopolymers are crucial to the behavior of cell membranes and membrane-bound 

organelles within a cell. As is well known, every biological membrane consists of a 

combination of lipids as well as biopolymers (proteins or polysaccharides) either 

spanning the membrane or tethered on one side of the membrane. Our studies on cells 

mixed with amphiphilic biopolymers presented in Chapter 6 can certainly provide some 

immediate “hands-on” insights into these sorts of interactions. Additionally, our 

controlled release studies in Chapters 3 (gels) and 4 (capsules) can potentially give 

indirect information on vesicle-polymer interaction at the nano-scale. Chapter 4 gives 

some important scientific insights into building hierarchical structures via self-assembly 

which have interesting implications for biomimetic organelles, cells or tissues. 

Furthermore, the results shown on the interactions between ‘soft’ vesicles and ‘hard’ 

surfaces as discussed in Chapter 5 is of fundamental importance in the physical sciences.  

 

From the standpoint of utility, all four systems display either proof-of-concept 

level or immediate application to an existing biomedical need. The vesicle gels and 
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vesicle-loaded capsules described in this dissertation may be useful for controlled release 

applications. Compared to vesicles alone, the above vesicle-bearing hybrid materials 

present some benefits. For starters, the stability of vesicles is enhanced by embedding 

them in the soft biopolymer matrix. Moreover, the presence of an additional transport 

barrier enables a slower and more extended rate of release for molecules encapsulated in 

the vesicles. As an added benefit, encapsulation within vesicles may also help in 

maintaining the bioactivity of drugs and proteins.9 Vesicles may also be useful as storage 

depots for hydrophobic drugs that cannot be loaded otherwise into gels or capsules. 

Finally, we will show that it is relatively easy to confer targeting capabilities (either by 

magnetic fields or via antibodies) to the capsules, in comparison to the vesicles.   

 

The vesicles on biopolymer films may also be useful in controlled release, but 

more specifically for the application to chronic wound treatment. Biopolymer films 

presented in Chapter 5 can be fabricated in a variety of sizes. As such, we can envision a 

larger macro-sized film functionalized with therapeutically-loaded vesicles that can 

completely cover up a chronic wound or burn injury. The vesicles would provide 

protection and sustained release of the therapeutics, while the anti-microbial chitosan film 

both prevents fluid exudation and bacterial invasion. These films would also allow for 

ample oxygen transfer to the injury during administration, which is very important for the 

outcome of the underlying tissue. 

 

Amphiphilic biopolymers for the gelation of cells have an immediate utility in 

hemorrhage control. Chapter 6 presents some important in vitro and in vivo work on these 
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materials for treating bleeding injuries. The material used in those studies, hm-chitosan, 

is very low cost, and it achieves similar efficacies to hemostats 3 orders of magnitude 

higher in cost. Furthermore, the use of cyclodextrin in that work as an “anti-clotting” 

complement system offers a functionality which no other hemostatic material has 

achieved. The reversibility of this system via self-assembly is highly clinically significant 

for two key reasons. First, it allows for the surgeon treating the patient to easily clean out 

the hemostatic material and identify the injury under controlled circumstances so as to 

plan the optimal regimen of treatment for the patient for full recovery. Secondly, the anti-

clotting aspect of the system provides a mitigation against unwanted clotting, a problem 

which is a major concern for any new hemostat undergoing clinical trials.  
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Chapter 2 

Background 

 

In this chapter, we describe some of the basic properties of vesicles, associating 

polymers, and biopolymers. We then briefly describe the techniques that we will use to 

study these resulting “soft” systems, specifically: rheology, neutron scattering, and cryo-

TEM. The aspects discussed here are of a general nature; literature dealing with more 

specific aspects are discussed in the Introduction sections of succeeding Chapters 3-6. 

 

2.1 Vesicles and Liposomes 

Vesicles are self-assembled capsules formed in water by lipids, surfactants, or 

block copolymers.10-11 The molecules that form vesicles are amphiphilic, with a 

hydrophilic head (depicted as a blue sphere in Figure 2.1) and hydrophobic tail(s) (shown 

in red). The shell of the vesicle is a bilayer (ca. 2-5 nm in thickness) of these amphiphilic 

molecules, with the hydrophilic heads on both sides of the bilayer and thereby exposed to 

water, while the hydrophobic tails inside the bilayer are shielded from water. A vesicle 

can be considered to form by the folding of amphiphilic bilayers, as shown in Figure 2.1. 

Vesicles with only a single bilayer (or lamella) are called unilamellar vesicles (ULVs), 

while vesicles with several concentric bilayers are called multilamellar vesicles (MLVs) 

and these are also referred to as “onions”. 
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The folding of bilayers into vesicles tends to occur only when the bilayers are 

present at low concentration; at high concentrations, bilayers form a lamellar phase.10 The 

tendency for bilayers to fold is driven by a desire to minimize contact of the hydrophobes 

with water at the bilayer ends. Also, the formation of many vesicles from a single 

extended bilayer sheet increases the entropy of the system. Nevertheless, it is useful to 

remember that, at equilibrium, the amphiphiles usually exist as a lamellar phase; so, the 

vesicle state is often of limited stability. In other words, given sufficient time, vesicles 

will get disrupted and form a dilute lamellar phase. An important exception to this rule 

exists in the case of mixed surfactants, where vesicles can exist as equilibrium 

structures.12 

 

Vesicles formed from lipids are referred to as “liposomes”. The term lipid usually 

refers to amphiphiles that have a biological origin and typically, such molecules have two 

hydrophobic (acyl) tails. Lipid bilayers constitute the membranes found at the boundary 

Figure 2.1.  The structure of vesicles formed by the self-assembly of amphiphiles. 
The vesicle is formed by the folding of an amphiphilic bilayer that is about 2-5 nm in 
thickness. 
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of every living cell as well as many intracellular organelles. The classification of lipids is 

done based on their headgroup type –  for example, phospholipids have a phosphate 

moiety in their headgroup. Among the phospholipids, the phosphatidylcholines or 

lecithins are a common variety. Lipids tend to have a very low solubility in water because 

they have two hydrophobic tails. As a result, an organic solvent is usually employed in 

preparing lipid vesicles.  

 

The tendency of lipids to form bilayers or vesicles can be rationalized from the 

geometry of these molecules. Generally speaking, the role of molecular geometry in 

dictating the self-assembly of amphiphiles can be understood by a term called the critical 

packing parameter or CPP, which is defined as follows: 13  

 tail

hg

CPP a
a

=    (2.1) 

where ahg is the effective area of the amphiphile headgroup and atail is the average area of 

the amphiphilic tail. Amphiphilic molecules having atail ≈ ahg, i.e., CPP = 1, tend to 

assemble into bilayers or vesicles (Figure 2.2). Note that the shape of these molecules 

resembles that of a cylinder. In contrast, molecules with a larger headgroup area than tail 

tend to favor curved structures, specifically micelles. A CPP of ⅓ corresponds to 

spherical micelles while a CPP of ½ corresponds to cylindrical (rodlike or wormlike) 

micelles. 

 

 In addition to lipids (2-tailed amphiphiles), mixtures of single-tailed amphiphiles, 

one cationic and the other anionic, can also form vesicles.12 The formation of such 

“catanionic” vesicles can also be understood via the CPP concept (Figure 2.2). In this 
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case, each individual surfactant molecule resembles a cone because of the electrostatic 

repulsion from its headgroup. When mixed together, however, the cationic and anionic 

headgroups mutually mitigate their repulsive electrostatic effects, leading to a significant 

reduction in headgroup area. The combination of these molecules thus resembles a 

cylinder, and consequently leads to vesicle structures. Interestingly, these surfactant 

vesicles tend to spontaneously form when the two individual surfactants are mixed. 

Moreover, the vesicles are indefinitely stable, which suggests that they may actually be 

equilibrium structures. 
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Figure 2.2. Schematic illustration of the formation of vesicles by self-assembly of 
amphiphilic molecules in water. Due to their cylindrical geometry, lipids, which are two-
tailed amphiphiles, can form vesicles in aqueous solution upon folding of lipid bilayers 
into spheroid structures represented in the cartoon above. Also, pairs of fatty acid 
surfactants can collectively take on a cylindrical geometries and, thus, form vesicles in 
the same way as lipids. 
 

Vesicles can also be formed from single surfactants in some rare cases.14-15 Single 

ionic surfactants usually form micelles, but in the case of fatty acids and their soaps, 
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vesicles can form over a limited pH range around the pKa of the acid.15 Fatty acids are 

among the simplest types of amphiphiles that exist and there is speculation that their self-

assembly into vesicles could have occurred in pre-biotic earth, eventually culminating in 

the origin of life.14 The mechanism for vesicle formation from fatty acids is not fully 

understood; however, it is significant that vesicles form only at intermediate pH values at 

which the acid is partially ionized. Thus, fatty acid molecules in vesicles tend to exist as 

pairs of ionized and unionized molecules, and presumably such pairs self-assemble into 

structures exhibiting geometries required to form bilayers (see Figure 2.2).       

       

 

2.1.1 Vesicle Preparation from Lipids 

 As mentioned, lipids are insoluble in water and at equilibrium they tend to form a 

lamellar phase. Therefore, preparation of lipid vesicles calls for the use of an organic 

solvent and some input of energy.1,11 First, the lipid(s) are dissolved in an organic solvent 

such as chloroform. Thereafter, the solvent is removed by evaporation to yield a dry lipid 

film. This film is then hydrated by adding water (or a buffer solution) at a temperature 

above the gel-to-liquid crystal transition of the lipid (Figure 2.3a). The solution is gently 

stirred during this process and the result is the formation of large multi-lamellar vesicles 

(MLVs) in solution. To convert the MLVs to unilamellar vesicles (ULVs), the lipid 

solution is either sonicated or extruded through a polycarbonate filter of given pore size. 

Sonication tends to produce small unilamellar vesicles (15 – 50 nm in diameter), whereas 

extrusion is typically used to produce unilamellar vesicles with a diameter on the order of 

100 nm (Figure 2.3a). 
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While the above methods yield nanometer-sized vesicles, it is also possible to 

obtain giant unilamellar vesicles (GUVs, or giant vesicles in short) that are several 

microns in diameter.2 Giant vesicles can be seen directly by optical microscopy, typically 

in phase contrast mode. A popular method to form giant vesicles in the size range 5 – 200 

µm is by electroformation (Figure 2.3b). This involves application of an AC voltage 

across lipid-coated electrodes spanning a water-filled chamber. In this process, the giant 

vesicles break off from the lipid film and their size is controlled by the AC voltage and 

frequency.  

. 
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Figure 2.3. Preparation of unilamellar lipid vesicles of various sizes: (a) small or 
large vesicles (20 nm – 200 nm); 1 (b) giant vesicles by electroformation. 2 
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2.2 Associating Polymers 

 The term associating polymer refers to a water-soluble polymer that has an 

amphiphilic character.16 Typically, the polymer backbone is hydrophilic, while 

hydrophobic groups are either present at the ends of the chain (this is called a telechelic 

structure) or the hydrophobes are tethered by chains to the polymer backbone (this is 

referred to as a comb-graft structure). Associating polymers have been synthesized by 

attaching hydrophobes to a range of water-soluble polymers, including polyethylene 

oxide (PEO) and polyacrylamide (PAAm) as well as to biopolymers such as cellulose and 

chitosan.16-17 We will work with chitosan-based associating polymers in this study.  

When added to water, hydrophobes on the polymer associate or self-assemble in 

Figure 2.4. Archiecture of a telechelic associating polymer and the structures formed 
by its self-assembly in aqueous solution 

NETWORK 
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much the same way as surfactant hydrophobes.16,18 In analogy to the micelles formed by 

surfactants, polymer association is believed to result in “flower micelles” (shown in 

Figure 2.4 for the case of the telechelics), with hydrophobes from many chains present at 

the center of these micelles. Note that at low polymer concentrations, there is significant 

intra-polymer association, while at higher concentrations, there is a shift to inter-polymer 

associations. Thus, at high polymer concentrations, the flower micelles function as 

crosslinks in a transient network, thereby enhancing the solution viscosity. For high 

molecular weights, the polymer will both associate as well as entangle with other chains. 

 

2.3 Biopolymers 

Macromolecules of biological origin fall broadly under three classes: polypeptides 

or proteins; polynucleotides; and polysaccharides.19 For the purposes of this study, we 

will focus on polysaccharides. The polysaccharide that is of especial interest to us is 

chitosan and we describe its properties below in more detail. The common theme with the 

chosen biopolymers is their ability to render viscosity to water by forming entangled 

networks or gels.       

 

2.3.1 Gelatin 

Gelatin is protein produced by the partial hydrolysis of collagen extracted from the bones 

and connective tissues of animals such as cattle, pigs and horses. The natural molecular 

bonds between individual collagen strands are broken down into a form that rearranges 

more easily. Gelatin forms a solution of high viscosity in water, which sets to a gel upon 

cooling, and its chemical composition is similar to that of its parent molecule collagen.19 
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The same triple helical Gly-X-Y domains abundant in collagen fibers, where X is 

typically proline and Y is typically hydroxyproline, form the physical crosslinks below 

the phase transition temperature of 32°C which cause gelatin to form an elastic gel in 

water.  

 

2.3.2 Chitosan 

Chitosan is a linear polysaccharide obtained by the deacetylation of chitin.20 

Chitin, in turn, is a natural polysaccharide that constitutes the hard exterior shell of 

insects and crustaceans. Among biological polymers, chitin is next only to cellulose in 

abundance. However, while chitin is insoluble in water, its deacetylated derivative, 

chitosan, is water-soluble under acidic conditions (pH < 6.5). Under these conditions, the 

amine groups along the chitosan backbone are ionized and chitosan acts as a cationic 

polyelectrolyte. Note that chitosan is strictly a copolymer of mostly D-glucosamine (β-

(1,4)-2-deoxy-2-amino-D-glucopyranose) sugars and a few of the N-acetyl-D-

glucosamine (β-(1,4)-2-deoxy-2-acetamido-D-glucopyranose) sugars from the parent 

chitin. The structures of these sugars are shown in Figure 2.5. 
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Current scientific and technological interest in chitosan is motivated by a number 

of factors. 20 First, chitosan is a biocompatible and biodegradable polymer. It is one of the 

few cationic biopolymers, and as a result, it can interact with anionic cell membranes. 

Second, chitosan confers anti-bacterial properties to substrates. As a result, chitosan finds 

application in tissue regeneration, artificial skin constructs, wound dressings and sutures, 

drug delivery, antibacterial coatings, and bioseparation membranes.20-24 Third, there is an  

 

Figure 2.5. Structures of the parent sugars in (a) chitin and (b) chitosan. The N-
acetyl-D-glucosamine sugar in chitin is deacetylated to give the D-glucosamine sugar 
in chitosan. 
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environmental benefit to using chitosan since the parent chitin is usually obtained 

from food-processing wastes (e.g., crab, shrimp or lobster shells). For these reasons, there 

is ample interest in chitosan and many researchers have also attempted to modify the 

parent polymer to confer it unique properties. 22,25-27 One such modification is to attach 

hydrophobic groups to chitosan, and this is discussed below.  

 

 

2.3.3 Chitosan Modification 

Chitosan can be modified easily due to its amine groups as well as its primary and 

secondary hydroxyls. Modifications have been done to improve chitosan solubility in 

water, to increase its chelating ability, and to modify its antibacterial effect.17,22,28 Our 

particular interest is in attaching hydrophobic groups to the chitosan backbone to alter its 

association behavior in water. The synthesis of hydrophobically-modified chitosan 

(hm-chitosan) is rather straightforward and can be performed under mild conditions.17 

The procedure involves reacting the chitosan with an n-alkyl aldehyde and a typical 

recipe is described below. In the process, the amine (NH2) groups are converted into 
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Figure 2.6.  Structure of hydrophobically-modified chitosan (hm-chitosan) with C12 
hydrophobic tails. 
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NH-R groups, where R is the n-alkyl moiety. The structure of hm-chitosan containing C12 

hydrophobic tails is shown in Figure 2.6. Note that this is a comb-graft type of 

associating polymer. 

 

A typical procedure for synthesizing hm-chitosan with C12 tails involves the 

following steps.17-18 First, n-dodecyl aldehyde is added to an acidic chitosan solution in a 

water-ethanol mixture, followed by addition of sodium cyanoborohydride. The molar 

ratio of aldehyde to chitosan monomer(s) is fixed at a certain value (e.g. 2.5%). The 

reaction yields the hm-chitosan, which is then precipitated by raising the pH and adding 

ethanol. Next, the precipitate is purified by washing with ethanol followed by deionized 

water. The final hm-chitosan precipitate is re-dissolved in acetic acid solution and the 

concentration is recalibrated. This solution tends to be viscous due to associations 

between the hydrophobes (this is a qualitative indication that the synthesis has been 

successful). The degree of hydrophobic substitution in the final product can be compared 

to the value expected from stoichiometry using 1H NMR.  

 

Hydrophobically modified chitosans with n-alkyl pendant chains can also be 

synthesized by alternate routes, e.g., by reacting with alkyl carboxylic acids,29 or alkyl 

acid anhydrides,30 or alkyl acid chlorides.31 High substitution levels (> 10%) have been 

reported via the acid chloride method. These alternate routes are not attempted in the 

present study. 
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2.3.4 Gellan Gum 

Gellan Gum is a polysaccharide produced extracellularly by a microorganism 

(Pseudemonas elodea); it is a straight-chain heteropolysaccharide and it is constituted of 

a repeating unit of four monosaccharide molecules, i.e. glucose, glucuronic acid, glucose, 

and rhamnose, thus have one carboxyl group in the repeating unit. This carboxyl group 

allows the biopolymer to carry a negative charge in aqueous media. A schematic of the 

biopolymer is shown below: 

 

 

Figure 2.7. Structure of Gellan Gum 
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2.4 Cyclodextrins 

 

 

 

 

 

 

 

Figure 2.8. Truncated cone-shaped conformation of β-CD.32 

 Cyclodextrins (CDs) are cyclic oligosaccharides containing D-(+) glucopyranose 

units attached by α-(1,4) glucosidic bonds, as shown in Figure 2.7.33They are rigid, 

truncated cone-shaped structures, with an internal cavity of size 5 to 8 Å depending upon 

the number of glucopyranose units. The wide side of the truncated cone is bordered by 

the secondary hydroxyl groups (2-OH and 3-OH), while the primary hydroxyl groups 

(6-OH) are on the narrow side.  The molecule is stiffened by hydrogen bonding between 

the 2-OH and 3-OH groups around its outer rim. Note that all hydroxyl groups are located 

on the outside of the molecular cavity, thereby making the outer surface hydrophilic. On 

the other hand, no hydroxyl groups are located in the inner cavity, which is thus 

hydrophobic. CDs thus have hydrophilic outer surfaces and hydrophobic inner cavities. 

Because of their unique structure, CDs can form host-guest inclusion complexes with 

various hydrophobic guest molecules or hydrophobic parts of these molecules.32-38 Note 
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that the bonding between the CD and the guest is through non-covalent interactions. 

Table 2.1 lists the properties of the three naturally occurring CDs, which are labeled α-, 

β-, and γ-CDs.39 These natural CDs are produced from starch by enzymatic degradation. 

In our research, we will use CDs to create new TR fluids, as described in Chapter 5. 

 

Type of CD Number of 
glucose units 

Cavity diameter 

Å 

Molecular 
Weight 

Solubility in 
water (g/L) 

α 6 4.7-5.3 972 145 

β 7 6-6.5 1135 18.5 

γ 8 7.5-8.3 1297 232 
 

Table 2.1. Properties of the three naturally occurring cyclodextrins. 
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2.5 Characterization Technique – I: Rheology 

 
Rheology is formally defined as the study of flow and deformation in materials.40 

Rheological measurements provide important information on soft materials, specifically 

on the relation between microstructure and macroscopic properties. These measurements 

are typically performed on a rheometer (Figure 2.9) under steady or dynamic oscillatory 

shear. Typical geometries used in rheometers are the cone-and-plate, the parallel plate, 

and the concentric cylinder or Couette. 

 

Figure 2.9.  Photograph of the Rheometer RDA-III strain-controlled rheometer being 
operated in a cone-and-plate geometry. 
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In steady shear rheology, the sample is subjected to a constant shear-rate γ  (e.g. 

by applying a continuous rotation at a fixed rate on a rotational instrument), and the 

response is measured as a shear-stress σ. The ratio of shear-stress σ to shear-rate γ  is the 

(apparent) viscosity η. A plot of the viscosity vs. shear-rate γ  is called the flow curve of 

the material.  

 

In dynamic or oscillatory rheology, a sinusoidal strain 0 sin( )tγ γ ω= is imposed 

on the sample. Here, γ0 is the strain-amplitude (i.e. the maximum applied deformation) 

and ω is the frequency of the oscillations. The sample response will be in the form of a 

sinusoidal stress 0 sin( )tσ σ ω δ= +  which will be shifted by a phase angle δ with respect 

to the strain waveform. Using trigonometric identities, this stress waveform can be 

decomposed into two components, one in-phase with the strain and the other out-of-phase 

by 90°: 

 0 0sin( ) cos( )G t G tσ γ ω γ ω′ ′′= +   (2.2) 

  where G′  = Elastic or Storage Modulus   

 and G″ = Viscous or Loss Modulus                 

 

 The elastic modulus G′ is the in-phase component and provides information about 

the elastic nature of the material. Since elastic behavior implies the storage of 

deformational energy, this parameter is also called the storage modulus. The viscous 

modulus G″, on the other hand, is the out-of-phase component and characterizes the 

viscous nature of the material. Since viscous deformation results in the dissipation of 
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energy, G″ is also called the loss modulus. For these properties to be meaningful, the 

dynamic rheological measurements must be made in the “linear viscoelastic” (LVE) 

regime of the sample. This means that the stress must be linearly proportional to the 

imposed strain (i.e., moduli independent of strain amplitude). In that case, the elastic and 

viscous moduli are only functions of the frequency of oscillations ω, and are true material 

functions. A log-log plot of the moduli vs. frequency, i.e. G′(ω) and G″(ω), is called the 

frequency spectrum or dynamic mechanical spectrum of the material. Such a plot 

represents a signature of the material microstructure.  

 

 The important advantage of dynamic shear is that it allows us to characterize 

microstructures without disrupting them in the process. The net deformation imposed on 

the sample is minimal because the experiments are restricted to small strain amplitudes 

within the LVE regime of the sample. As a result, the linear viscoelastic moduli reflect 

the microstructures present in the sample at rest. This is to be contrasted with steady 

shear, where the material functions are always obtained under flow conditions 

corresponding to relatively drastic deformations. We can therefore correlate dynamic 

rheological parameters to static microstructures, and parameters under steady shear to 

flow-induced changes in microstructure. 
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2.6 Characterization Technique – II:  
      Small Angle Neutron Scattering (SANS) 
 

Scattering techniques are invaluable probes of the micro- and nanostructure in 

soft materials.41 The basic principle underlying all scattering techniques is that the 

intensity of scattered radiation is a function of the size, shape, and interactions of the 

“particles” present. For aqueous systems, small-angle neutron scattering (SANS) is the 

technique of choice because contrast between the “particles” and the solvent can be easily 

achieved by switching H2O with D2O. Also, the incident radiation in SANS is composed 

of neutrons having a wavelength ~ 7 Å, and as a result, SANS is useful in probing size 

scales on the order of a few nm. SANS experiments require a nuclear reactor to generate 

neutrons and we are fortunate to have one of the premier SANS facilities in the world 

close to UMD at NIST in Gaithersburg, MD.  

 

The basic geometry of a SANS experiment is illustrated in Figure 2.10. Neutrons 

emitted from a nuclear reactor are selected at a particular wavelength and wavelength 

spread using a velocity selector, collimated by several lenses, and passed through a 

sample chamber. The neutrons scattered by the sample are collected on a 2-D detector. 

This 2-D data is corrected and placed on an absolute scale using calibration standards. It 

Figure 2.10.  Schematic of a SANS experiment. 

θ 
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is then converted into a plot of scattered intensity I vs. scattering or wave vector q by 

spherical averaging. The wave vector q is related to the scattering angle and wavelength 

by: 41  

 4 sin
2

q π θ
λ

 =  
 

 (2.3) 

Here, λ  is the wavelength of the incident radiation and θ  is the scattering angle. Thus, q 

can be considered an inverse length scale, with high q corresponding to small structures, 

and vice versa.  

 

 The SANS intensity I(q) from a structured fluid containing np particles per unit 

volume can be expressed in the following manner:41 

 p( ) ( ) ( )I q n P q S q= ⋅ ⋅  (2.4) 

where P(q) is called the form factor and S(q) the structure factor. P(q) is the scattering 

that arises from intraparticle interference, which is a function of the particle size and 

shape. S(q) arises from interparticle interactions and thereby reflects the spatial 

arrangement of particles in the sample. When the particles are in dilute solution or are 

non-interacting, the structure factor S(q) → 1 and the SANS intensity I(q) can then be 

modeled purely in terms of the form factor P(q). Different expressions exist for the form 

factor P(q) for various particle geometries. By fitting the appropriate P(q) to the SANS 

data, one can obtain the characteristic sizes of the particles present. 
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2.7 Characterization Technique – III: Dynamic Light Scattering (DLS) 
 

 Static scattering techniques such as SANS provide important information about 

the quiescent structure in complex fluids. Dynamic scattering techniques have a  

complementary role in that they probe structural relaxations and dynamics. In particular, 

dynamic light scattering (DLS) probes the Brownian motion of particles in the fluid. This 

method can give a reliable estimate of particle size under certain limiting conditions. In a 

DLS experiment, the fluctuating intensity of light scattered from the sample is recorded at 

a certain angle θ. The fluctuations are then correlated to yield the intensity 

autocorrelation function g(2)(q,τ) vs. the correlation time τ:42 

  (2)
2

( , ) ( , )
( , )

( , )
I q t I q t

g q
I q t

τ
τ

+
=  (2.5) 

Note that in light scattering, the definition of the wave vector is slightly modified as: 

 4 sin
2

nq π θ
λ

 =  
 

 (2.6) 

where n is the refractive index of the medium. The relevance of q in DLS is that 

structural relaxations are probed over length scales on the order of q–1.  

 

The measured intensity autocorrelation function g(2)(q, τ) can be converted into an 

electric field autocorrelation function g(1)(q, τ) through the Siegert relation: 

  
2(2) (1)( , ) 1 ( , )g q f g qτ τ= +  (2.7) 

Here, f is an adjustable parameter called the coherence factor that depends on the 

instrument geometry. For a dilute solution of monodisperse spherical particles, the 
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electric-field autocorrelation function is a single exponential whose time decay is 

determined by the translational diffusion coefficient of the particle D: 

  ( )(1) 2( , ) expg q Dqτ τ= −  (2.8) 

From the measured diffusion coefficient, the particle size can be obtained by the Stokes-

Einstein equation: 

  B

h6
k TD

Rπη
=  (2.9) 

where kB is the Boltzmann constant, T the absolute temperature and η the viscosity of the 

solvent (assumed to be a Newtonian liquid). The size obtained from DLS is the 

hydrodynamic radius Rh. The hydrodynamic size is the bare particle size along with any 

solvation layer.    

 

2.8 Characterization Technique – IV:  
      Cryo-Transmission Electron Microscopy (Cryo-TEM) 
 

 While scattering techniques provide indirect information about the nanostructure 

in a sample, an alternate technique that would allow direct visualization of the structure 

in real space would be extremely useful. Transmission electron microscopy (TEM) can 

potentially reveal structural detail with sub-nanometer resolution. However, the use of 

TEM for self-assembled fluids and soft materials is problematic. For imaging under TEM, 

the solvent must be completely removed, and the process of solvent removal can alter or 

destroy fragile structures such as micelles and vesicles. Also, to achieve contrast, 

structures usually have to be stained with heavy metal salts – again, the staining process 

might degrade the structures present.  
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 The above deficiencies of conventional TEM techniques have led researchers to 

develop an alternative that is particularly suited for aqueous nanostructured fluids. This 

technique is called cryo-TEM, and it involves the rapid freezing of the aqueous sample 

such that the water is vitrified instead of forming ice crystals. In the process, the 

structural details are preserved, and the sample can be imaged under conventional TEM 

at low electron doses. Sample preparation for cryo-TEM is conducted using a controlled  

environment vitrification system (CEVS), illustrated in Figure 2.11. In the CEVS, the 

sample is equilibrated at conditions of controlled temperature and humidity prior to 

plunge vitrification. First, a drop of the sample is placed on a holey carbon film supported 

on a TEM grid. A filter paper is then used to blot the drop, so as to create a thin film of 

the sample spanning the grid holes. The grid is then plunged into the cryogen, liquid 

ethane, thereby rapidly vitrifying the sample. Subsequently, the grid has to be transferred 

to the electron microscope in a dedicated cold stage. Typically, the grid is maintained at  

–170°C at all times, to ensure that there is no formation of ice crystals nor condensation 

of atmospheric water.  

As with any other technique, care has to be taken in interpreting cryo-TEM data. 

One frequent source of artifacts is that the sample blotting process (used to spread a thin 

film) involves a substantial amount of shear. This shear may distort the structures present, 

and one has to take this into account while interpreting images. Despite these artifactual 

concerns, cryo-TEM has now developed into a powerful tool for directly probing the 

structures of various complex fluids. A variety of self-assembled structures including 

micelles, vesicles and liquid crystalline phases have been successfully imaged by cryo-
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TEM. Also, the use of cryo-TEM in biology has provided unique insights into 

phenomena such as endocytosis and vesicle fusion. 

 

 

 

 

 

Figure 2.11.  Photograph of the controlled environment vitrification system (CEVS) 
used for sample preparation in cryo-TEM. The schematics on the left show the 
various steps in the process. 
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Chapter 3 

Biopolymer Gels Containing pH-Sensitive Vesicles  

 
The results presented in this chapter have been published in the following journal article: 

Matthew Dowling, Jae-Ho Lee, and Srinivasa R. Raghavan, “pH-Responsive Jello: 

Gelatin Gels Containing Fatty Acid Vesicles”Langmuir, 25 (15)

 

, 8519-8525 (2009). 

3.1 Introduction 
 

In recent years, there has been immense interest in creating smart materials, i.e., 

materials that can change their properties in response to external stimuli such as light, 

temperature, pH, or biological targets.43-46 In particular, stimuli-responsive polymer 

hydrogels have attracted much attention, and a stimulus of interest in this context has 

been pH.43-45 Polymers having ionizable groups (acid or base) tend to form gels with 

pH-responsive swelling properties. Such gels generally tend to be swollen when the 

groups are ionized, while they revert to a collapsed or shrunken state when the same 

groups lose their charge. Examples include gels of poly(acrylic acid), poly(methacrylic 

acid) etc. and their copolymers, and these have proven attractive for controlled release 

and drug delivery applications.43-45   

 

An alternate way to impart pH-dependent properties to polymer gels is by 

embedding pH-responsive nanoparticles or nanostructures in their interior.46 In this 

scenario, the polymeric framework itself is unaffected by pH (e.g., there is no change in 

the degree of gel swelling with pH). This approach may be attractive for a variety of 
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reasons. For instance, one may wish to modulate the release of a drug from a gel while 

maintaining a constant gel volume. Secondly, by embedding nanostructures, 

pH-responsiveness can be conferred to materials that by themselves do not have such 

properties. For example, consider hydrogels of gelatin and poly(N-isopropyl acrylamide) 

(NIPAAm).44,47 Both gels have thermoresponsive properties: gelatin gels melt upon 

heating while NIPAAm gels shrink when heated beyond a critical temperature. While 

these polymers are workhorses in many applications, they are not pH-responsive (at least 

not at moderate pH values). One could modify the chemistry of these polymers to make 

the gels pH-sensitive, but that is generally a tedious process. The addition of 

nanostructures to impart pH-responsiveness is generally a much simpler alternative.   

 

In this study, we explore the addition of pH-responsive vesicles into gelatin gels 

and investigate the resulting vesicle-gel hybrids. Unlike “hard” nanoparticles, vesicles (or 

liposomes) are “soft” self-assembled structures formed from lipids or surfactants.48 

Unilamellar vesicles of ca. 100 nm diameter can be essentially considered as 

nanocontainers, with a bilayer membrane enclosing an aqueous core.48-50 Vesicles thus 

have the ability to encapsulate hydrophilic solutes in their core, and for this reason they 

are of great interest for drug delivery applications.48-50 In the present context, we are 

interested in embedding vesicles within a polymer hydrogel network. Vesicle-gel hybrids 

have been investigated in the past by several researchers.51-56 The motivation for past 

studies has been the use of these hybrid materials in tissue engineering or drug delivery. 

For example, drug delivery from a vesicle-loaded gel has been shown to occur in a 

prolonged manner compared to that from either the vesicles themselves or the bare gel 
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alone.51-56 To our knowledge though, pH-responsive vesicles have not been combined 

with hydrogels previously – this is the first study to explore such a combination.            

 

The pH-responsive vesicles we have chosen to examine are those made from 

sodium oleate (NaOA), the sodium salt of a single-tailed fatty acid, oleic acid. It has been 

known for many years that fatty acids can self-assemble into unilamellar vesicles at pH 

values close to their pKa.14-15,57-59 Fatty acid vesicles have been investigated particularly 

by researchers in the field of prebiotic chemistry – these researchers believe that fatty 

acids and by extension their vesicles may have been components in the prebiotic soup of 

ancient earth (indeed, fatty acids have even been isolated from meteorites).14,58-59 In the 

present study, we exploit the well-known pH-dependence of fatty acid self-assembly.15,57  

For example, NaOA forms vesicles at a pH around its pKa of 8.3, but these vesicles 

transform into spherical micelles at pH values much higher than the pKa, e.g., at pH > 10 

(see the phase diagram in Figure 1).57 We were interested to see whether such a pH-

induced vesicle-to-micelle transition would occur even if the NaOA vesicles were 

entrapped within a gel. As the results in this paper show, this is indeed the case. The 

above concept can be extended to other pH-dependent vesicles (e.g., those formed from 

certain lipids60). Also, instead of gelatin, a variety of polymer and biopolymer-based 

hydrogels can also be used as the matrix for the vesicles.45,61 

 

Finally, it is worthwhile to discuss some applications for gels loaded with pH-

responsive vesicles. An obvious one would be in pH-controlled release of hydrophilic 

solutes.43-45 Consider solutes encapsulated within the vesicles, which in turn are loaded 
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into a gel. If such a gel is immersed in an aqueous bath, the solute will slowly diffuse out 

of the gel. We can then use the pH in the bath to modulate the solute release rate. For 

example, at a pH corresponding to intact vesicles, the solute will face two barriers to 

transport, one from the vesicle bilayer and the other from the gel matrix.51-56 On the other 

hand, consider a pH at which the vesicles are disrupted into micelles: in this case, the 

solute will only face resistance from the gel matrix and should therefore be able to diffuse 

out faster. In our studies, we have tested the above concept using a dye, calcein, as a 

model solute, and our findings confirm a pH-tunable release rate.         

 

A vesicle-loaded gel could also serve as a simplistic model for a functional organ, 

with the vesicles as the cellular component and the gel as the extracellular matrix.45,62 

The overall functionality of an organ depends on the ability of cells to communicate with 

neighboring cells.62 Cells of different types may be localized at different parts of the 

organ,  e.g. they may be organized into distinct layers, with their location being strongly 

correlated with cellular function. In this context, it is useful to be able to dictate the 

spatial organization of vesicles within a gel, i.e., to have only certain regions filled with 

vesicles while adjoining regions would not contain any. We show that pH-responsive 

vesicles offer one way to accomplish such a design: specifically, we demonstrate how 

vesicle-to-micelle transitions can be achieved in localized regions within a gel. This 

opens up the prospect of creating a “biomimetic organ” by placing pockets of vesicles 

loaded with specific molecules at prescribed locations within a gel matrix.   

 

 



 40 

3.2 Experimental Section 

Materials. Sodium oleate (NaOA) (note: oleate = C18 chain with a 9-cis unsaturation) 

was purchased from TCI. Gelatin (Type A, from porcine skin, ~ 300 Bloom), calcein, 

Triton-X100 and Tris-base were purchased from Sigma. Carbonate buffer solution 

(potassium carbonate-potassium borate-potassium hydroxide) corresponding to a pH of 

10 was purchased from Fisher Scientific. All experiments were performed using 

deionized (DI) water. 

 

Preparation of Vesicles and Vesicle-Loaded Gels. 1 wt% (32.8 mM) NaOA was 

dissolved in DI water by heating for 2-3 h at 65ºC. The pH of the solution was then 

adjusted to ~ 8.5 by dropwise addition of 1 M HCl. In order to generate unilamellar 

vesicles of consistent size, the vesicle solution was subjected to 5 freeze-thaw cycles, 

followed by passing the sample 10 times through a 100 nm polycarbonate membrane 

using the Mini-extruder® (Avanti Lipids). To prepare vesicle-loaded gels, an NaOA 

vesicle solution of given concentration was combined with a warm (50°C) solution of 

gelatin, with the overall pH adjusted to 8.5 using 1 M NaOH. The resulting mixtures were 

cooled to room temperature to form the vesicle-loaded gels. Further details are discussed 

in the Results section.  

 

Dynamic Light Scattering (DLS). DLS was used to characterize the sizes of vesicles in 

solution. A Photocor-FC light scattering instrument with a 5 mW laser source at 633 nm 

was used at a scattering angle of 90°. A logarithmic correlator was used to measure the 
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intensity autocorrelation function. The hydrodynamic size of the vesicles was extracted 

from the data using the Stokes-Einstein equation.   

 

SANS. SANS measurements were made on the NG-3 (30 m) beamline at the National 

Institutes of Standards and Technology (NIST) in Gaithersburg, MD. Samples were 

prepared in D2O and studied at 25°C in 2 mm quartz cells. The scattering spectra were 

corrected and placed on an absolute scale using calibration standards provided by NIST. 

Data are shown for the absolute intensity I versus the scattering vector q = (4π/λ)sin(θ/2), 

where λ is the wavelength of incident neutrons and θ is the scattering angle.  

 

Controlled Release Experiments. NaOA vesicles were combined with 15 mM calcein 

dye. To separate unencapsulated dye, the vesicle-dye mixture was passed through a 

Sephadex G-50 size-exclusion chromatography (SEC) column. The vesicle fraction (with 

encapsulated dye) was collected and used in preparing the vesicle-loaded gels. To 

examine the release of dye, 4 g of aqueous buffer solution was added above 6 g of gel in 

the headspace of the containing vials. The concentration of calcein in the buffer was 

measured by UV-Vis spectrometry (Cary Bio 50) as a function of time. Release 

experiments were also done with a control gel (no vesicles). The dye concentration in the 

control gel was kept identical to that in the vesicle-loaded gel.  To determine the latter, 

2 mL of the vesicle fraction from SEC was combined with 50 µL of 10% Triton-X100 

detergent, thereby disrupting the dye-loaded vesicles and releasing the dye into the bulk 

solution. The dye absorbance (and thereby concentration) could then be measured 

accurately by UV-Vis, and this concentration was used in preparing the control gel.     
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3.3 Results and Discussion 

Creation of Vesicle-Loaded Gelatin Gels. We first describe the creation of vesicle-

loaded gelatin gels by blending NaOA vesicles and gelatin. We will also address the 

stability of the vesicles within the gels. As mentioned in the Introduction, NaOA vesicles 

are made by adjusting the pH of an NaOA solution. The variation in NaOA solution 

structure as a function of pH is depicted in Figure 3.1, which is an equilibrium titration 

curve. To obtain this data, increasing amounts of 1 M HCl were added to a micellar 

solution of NaOA at pH 10 and the samples were studied by visual observations and light 

scattering. Phase assignments were done in accordance with our observations and these 

are fully in accord with the phase diagram reported previously for oleate solutions by 

Cistola et. al.57 Photographs of selected samples corresponding to different regions in the 

phase diagram are shown in Figure 3.1.  
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Figure 3.1. Photographs and titration curve for 1% NaOA at 25°C. Increasing amounts of 
1 M HCl are added to a micellar solution of NaOA (pH 10) and the corresponding 
solution pH at equilibrium is shown in the plot. Structural assignments are done in 
accordance with Ref. 10. Photographs of samples corresponding to different regions of 
the plot are shown above. 
 

 

Let us consider the data starting from the origin. At high pH (9.5 or above), 

NaOA forms solutions of spherical micelles and these samples are colorless and 

transparent, as shown by the photograph. As concentrated HCl is added, the solution pH 

drops from about 9.5 to 7.0, a range that spans the pKa of NaOA (which is 8.3). Samples 

in this pH range (interval BC on the plot) are homogeneous and have a strong bluish 

color, as shown by the photograph. These samples are vesicle solutions and the bluish 
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hue is a manifestation of light scattering from the vesicles (Tyndall effect). With further 

decrease in pH, the NaOA samples become unstable and inhomogeneous due to the 

formation of an oil phase (undissociated NaOA). The low pH samples are turbid, milky 

emulsions of the oil and water phases, as seen from the photograph.  

 

The aspect to note from Figure 3.1 is the continuous and reversible transition from 

NaOA micelles at high pH (> 9.5) to NaOA vesicles at moderate pH (~ 8.3). The 

mechanism for this transition (which occurs for all long-chain fatty acids) has been 

discussed in a number of studies and the central factor is believed to be the change in the 

degree of ionization of the fatty acid.15,57 At high pH, the carboxylate groups on NaOA 

are fully ionized and the headgroups of the amphiphile thus bear a strong negative 

charge. The repulsions of these headgroups lead to the formation of spherical micelles. 

Because the micelle size is only around 5 nm, the solutions scatter light weakly and 

therefore appear transparent. When the pH is lowered to a value close to the pKa, 

approximately half the NaOA groups are no longer ionized. The charge may then be 

considered to be shared by two adjacent fatty acid molecules, one ionized and the other 

unionized: i.e., the molecules are effectively paired into dimers.15,57 The net amphiphile 

geometry then becomes conducive to formation of vesicles rather than micelles. The 

vesicles typically range from 50 to 150 nm in diameter (much larger than the micelles), 

and therefore the solutions scatter light strongly, leading to the bluish color.  

 

Having ascertained the pH-sensitive nature of NaOA vesicles, we now proceed to 

discuss their encapsulation within gelatin gels (Figure 3.2). For this purpose, we first 
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made a 1 wt% NaOA solution at a pH of 8.3 and extruded the vesicles through 100 nm 

pores to finally obtain vesicles of an average diameter around 100 nm. We then made a 

solution of 10 wt% gelatin in DI water and adjusted its pH to 8.3. Both the gelatin and 

NaOA solutions were warmed to 50°C and then mixed in a 1:1 ratio by weight. As is 

well-known, gelatin undergoes a sol to gel transition when cooled below 35°C.47 Upon 

cooling to room temperature, we obtained a bluish gelatin gel, as shown by the 

photograph in Figure 3.2c, with an overall concentration of 5 wt% gelatin and 0.5 wt% 

NaOA vesicles. Note that gelatin gels not containing vesicles are colorless (Figure 2a), so 

the bluish color of the gel in Figure 3.2c is a visual indication that vesicles are indeed 

intact in the gel. This is further discussed below. Figure 3.2 depicts the microstructure of 

the vesicle-gel: it consists of vesicles entrapped in a 3-dimensional network of gelatin 

chains. The crosslinks in the gelatin gel are known to be triple helical domains where 

three adjacent chains are linked together.47  

 

Figure 3.2. Photographs and schematics of (a) gelatin gel; (b) NaOA vesicles; (c) gelatin 
gel loaded with NaOA vesicles. The gelatin gel is a 3-D network of gelatin chains, with 
chain segments connected into triple helices at the crosslink points. When vesicles of 
diameter ~ 100 nm are entrapped in the gelatin gel, the initially colorless gel assumes a 
bluish hue due to light scattering from the vesicles. 
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How can we be sure that the vesicles are intact in the gel? One should note that  

stable encapsulation of vesicles in gels has already been demonstrated in a number of 

earlier studies.51-56 In the present case, we cannot do a DLS experiment with the vesicle-

loaded gel itself because the Stokes-Einstein formulation applies only for vesicles in a 

liquid medium. However, we can put the thermoreversibility of gelatin gels to use here. 

Specifically, we can heat the gelatin gel till it melts (~ to ca. 45°C) and becomes a sol and 

then check for the vesicle size in the sol by DLS. This can be compared with the DLS 

results on an NaOA vesicle solution at 45°C. For 0.5% NaOA vesicles in a 5% gelatin sol 

at 45°C, we measured a mean radius of 46 ± 3 nm from DLS. In comparison, for 0.5% 

NaOA vesicles at the same temperature with no gelatin added, we obtained a similar 

mean radius of 44 ± 1 nm. These results point to the presence of intact NaOA vesicles in 

gelatin gels. Incidentally, both the vesicle-gel and its corresponding sol retain the bluish 

hue of the original vesicle solution.  

 

In addition to DLS, we have also conducted small-angle neutron scattering 

(SANS) experiments at room temperature on both NaOA vesicle solutions and gelatin 

gels containing NaOA vesicles. Figure 3.3 shows a plot of the scattered intensity I vs. 

wave-vector q for two samples: 0.5% NaOA vesicles and the corresponding vesicle gel 

made with 5% gelatin. In both cases, the data follow a slope of –2 at low to moderate q, 

which is a qualitative indication for the presence of bilayered structures (vesicles).63 By 

plotting the above data on cross-sectional Guinier plots (not shown),64 we can extract the 

thickness of the vesicle bilayer, which is found to be 3.2 ± 0.2 nm in both cases. Further 

modeling of the SANS data to compare vesicle sizes is beyond the scope of this paper 
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because, for the vesicle-gel, one would need to account for the contribution from the 

gelatin network to the scattering intensity. In any case, the SANS data are clearly 

consistent with the presence of vesicles inside the gel. It is also worth mentioning that in 

addition to NaOA vesicles, we have also been able to encapsulate phospholipid-based 

giant unilamellar vesicles (GUVs) in gelatin gels. These vesicles have diameters 

exceeding 10 µm and so their presence in the gel is easily confirmed using phase-contrast 

and fluorescence microscopy (data not shown).  

 

Figure 3.3.  SANS data at 25°C for 0.5% NaOA vesicles at pH 8.3 (circles) and a 5% 
gelatin gel loaded with 0.5% NaOA vesicles (squares). In both cases, the intensity I 
follows a slope of –2 at moderate q, which is characteristic of scattering from vesicles.  
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Inducing Vesicle-Micelle Transitions Within Gels. The above data confirm that NaOA 

vesicles can be entrapped within gels. The next question is whether these vesicles still 

retain their pH-responsive properties. To test the pH response of the vesicle-gels, we 

initially did the following experiment. We placed a 5% gelatin gel loaded with 0.5% 

NaOA vesicles in a vial and filled the headspace above the gel with a pH 10 buffer 

solution (Figure 3.4). Initially, the entire gel had the bluish color characteristic of 

vesicles. Within 1 h, we could observe that a portion of the gel closest to the buffer 

solution had cleared up – it was no longer bluish. As time progressed, the clear front 

advanced through the gel and by about 9 h, almost the entire volume of the gel had 

become clear. We also did a control experiment with a pH 8.3 buffer instead of a pH 10 

buffer – in this case, no perceptible visual changes were observed in the gel over more 

than 48 h. These results imply that in the case of the pH 10 buffer the diffusion of the 

buffer into the gel disrupts the vesicles and transforms them into micelles. Due to the 

weaker light scattering of micelles, the micellized region of the gel shows up as 

practically clear. Incidentally, the photographs in Figure 4 were taken after removing the 

buffer solution from the vial headspace – this was necessary to clearly visualize the gel in 

the vial. Also, the vial is shown inverted in all the photographs – this is to indicate that 

the gelatin gel retains its integrity and mechanical strength during the pH-induced 

transition (there is no change in gel volume either).    
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Figure 3.4.  Movement of micellar front within a vesicle gel due to diffusion of pH 10 
buffer. The buffer is introduced into the headspace above the gel at time zero. As the 
buffer diffuses into the gel, NaOA vesicles in the gel are converted into NaOA micelles, 
as indicated by the change in a portion of the gel from bluish to colorless. As time 
progresses, the micellar front travels deeper into the gel, indicating that more of the 
vesicles are converted into micelles. After 9 h, the micelle region covers most of the gel. 
The plot on the right shows the interface position (measured from the top of the vial) as a 
function of time. The line through the data is a fit to eq 1. 
 

  

 The above result is reproducible and can be replicated in other geometries (see 

below). More quantitative results were gathered from a second experiment in the same 

vial geometry and are shown in the right-hand panel of Figure 3.4. In this case, the 

vesicle-gel was loaded in a cylindrical vial of diameter 7 mm and up to a height of 19 

mm. The remaining volume of the vial was filled with pH 10 buffer. The setup was 

monitored by a camera over the duration of the experiment. From photographs at 

different instants of time, we were able to monitor the movement of the micelle-vesicle 

front (i.e., the interface between the micelle-rich and vesicle-rich regions) within the gel. 

The data (Figure 4) follow the classic diffusive scaling with t .65-67 In other words, the 
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progression of the front is apparently limited by the rate of diffusion of buffer into the 

gel; in comparison, the vesicle-to-micelle transition occurs much faster.  

 

We can then model the time-dependent position of the vesicle-micelle interface 

h(t) by the 1-dimensional diffusion equation:66       

                                               Dthth 2)( 0 −=                                                    (3.1) 

where D is the diffusivity of the buffer and h0 is the position at t = 0 (which equals the 

total height of the gel). By fitting this equation to the data in Figure 3.4, we obtain a 

diffusivity D of 4.2 × 10–5 cm2/s for the buffer (hydroxide) ions from the external bath 

into the gelatin gel. This value is quite comparable to the bulk diffusivity of hydroxide 

ions in water (5.6 × 10–5 cm2/s).68 In other words, the ions diffuse in the gel much like 

they would in water; this is not surprising since the hydrated size of the ions should be 

much smaller than the mesh size of the gel. The latter value is estimated from the 

literature to be about 5 nm for a 5% gelatin gel.69-70   

   

We have seen from Figure 3.3 that it is possible to create a cylindrical gel with 

different microstructures over different regions. For example, half of the cylinder could 

contain vesicles and the other half micelles. If the gel is removed from the buffer solution 

and stored separately, this “pattern” is retained for several days. Similar patterning can 

also be done with gels of other geometries. For example, we made a vesicle-loaded gel 

(5% gelatin, 0.5% vesicles) into a spherical ball, 41 mm in diameter. This ball was then 

immersed in a bath of pH 10 buffer. As the vesicle-micelle front moved radially inward, 

the vesicles in the outer shell were transformed into micelles whereas the core remained 
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intact. This is evident from Figure 3.5 (top panel) where we see the clear micellar shell 

surrounding the bluish vesicle core. With increasing time, the shell becomes thicker and 

eventually the entire gel contains only micelles. Thus, we can easily create core-shell 

patterns with a vesicle core of given size surrounded by a micellar shell.  

 

Figure 3.5. Patterning of vesicle gels by inducing localized vesicle to micelle transitions. 
(Top panel): core-shell structure with a vesicle-rich core surrounded by a micelle-rich 
shell. This is accomplished by immersing a spherical gel (41 mm diameter) in a pH 10 
buffer. The photographs correspond to increasing incubation times in this buffer solution. 
(Bottom panel): gel in a petri dish with micelle-rich regions created at discrete points. 
This was done by sticking straws into the gel and subsequently filling the straws with the 
pH 10 buffer. The photographs again correspond to increasing times and show the 
expansion of the micelle-rich regions as the buffer diffuses into the gel.    
 

 

Another patterning experiment was carried out with the above vesicle-gel in a 

Petri dish of diameter 90 mm and with the gel thickness being ~ 10 mm. We then stuck 6 

drinking straws loosely into the gel at several locations. The straws were then filled with 
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pH 10 buffer. As the buffer diffused into the gel, the regions surrounding the straws 

became clear, indicating that the vesicles in those regions had been converted into 

micelles. This is shown in Figure 3.5, bottom panel. The clear regions are roughly 

circular in cross-section, and as time progresses, the circles grow radially outward from 

the straw positions. Eventually, the clear regions merge with one another and at this stage 

most of the vesicles in the gel have been transformed into micelles. Variations of the 

above experiments can be used to create more complex patterns. As mentioned in the 

Introduction, an ability to create gels containing pockets of vesicles at precise locations 

within the bulk structure could have applications in areas such as tissue engineering.  

 

One comment needs to be made regarding the reversibility of the transition, i.e., 

back from micelles to vesicles. While a vesicle to micelle transition can be readily 

induced by high pH buffer, the vesicles cannot be subsequently re-formed in the gel if it 

is brought into contact with a low pH buffer. The reason has to do with the mesh size of 

the gel, which was estimated above to be ~ 5 nm. Vesicles of NaOA are thus large 

enough to be trapped within the gel mesh, but spherical micelles of NaOA, which have a 

size around 4-5 nm can “leak” out of the gel and into the external buffer, thereby 

depleting the NaOA in the interior of the gel. Moreover, for vesicles to be re-formed 

within the gel matrix, several micelles will need to approach and fuse: again, the mesh is 

too dense to facilitate such fusion. To re-form vesicles, one would thus have to melt the 

gel and then combine it with NaOA at the appropriate pH.    
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Controlled Release from Vesicle-Gels. Finally, we study the controlled release of a dye 

(calcein) from vesicle-loaded gels and we examine whether the release kinetics are 

influenced by pH. First, Figure 3.6 compares the release of dye from a control gel (no 

vesicles) and from a vesicle-loaded gel, both containing the same amount of dye. In this 

experiment, the pH of both the gel and the external solution is at 8.3. In the case of the 

vesicle-gel, the dye is encapsulated in the vesicles before the vesicles are embedded in 

the gel (i.e., most of the dye is inside the vesicles at time zero). Figure 3.7 shows that the 

vesicle-gel releases dye at a slower rate than the control gel. The slower kinetics are 

evidently due to the additional transport barrier presented by the vesicle bilayers, which 

the dye molecules must first traverse before releasing into the gel and thereafter into the 

external solution. Similar results have been found in other studies.51-56  

 

Figure 3.6. Release profiles of calcein dye from a gelatin gel and from a vesicle-loaded 
gelatin gel. In the case of the vesicle-gel, the dye was encapsulated within the vesicles, 
which were then embedded within the gel. The data show a slower release of dye from 
the vesicle-gel relative to the control gelatin gel. After 10 h, Triton X-100 detergent was 
added to the external solution for both samples (this point is marked by the arrow). The 
detergent diffused in and disrupted the vesicles, which lead to an increase in the rate of 
dye release.  
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Figure 3.6 also shows the effect of Triton X-100 detergent on the release profiles. 

This detergent is known to disrupt vesicle bilayers and thereby convert vesicles into 

micelles.56 We added Triton to the external solution at the 10 h mark. This had no 

significant effect on dye release from the control gel, but the release curve from the 

vesicle-gel shows a sharp increase in slope. Evidently, the Triton molecules diffuse into 

the vesicle-gel and disrupt the vesicles, causing the encapsulated dye to spill out into the 

external gel and thus exit the gel at a faster rate; similar results have been reported 

previously.56 Eventually, the vesicle-gel release profile catches up with that from the 

control gel (4 h after Triton addition). The overlap of the two curves confirms that the 

two gels contain approximately the same overall amount of dye. The Triton experiment is 

also an indirect proof for the existence of intact vesicles in the vesicle-gel. In addition, 

the experiment shows how the release rate from a vesicle-gel can be tuned by addition of 

certain molecules to the external solution.  

   

  We now discuss the effect of external pH on the calcein release profiles. The 

results are shown in Figure 3.7, where data from three experiments are displayed. Two of 

these are identical to those in Figure 3.6, namely a control gel (no vesicles) and a vesicle-

loaded gel. For these two cases, both the gel and the external solution are at a pH of 8.3. 

Comparing the results, again the vesicle-gel releases dye much more slowly than the 

control gel, consistent with the data in Figure 3.6. The third case is the vesicle-gel placed 

in contact with a pH 10 buffer at time zero: in this case, the release rate is higher 

compared to the same gel at pH 8.3. This result agrees with our expectations and is 

similar to the effect of Triton in Figure 3.6. We expect the pH 10 buffer to diffuse into the 
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vesicle-gel and transform the vesicles into micelles, as shown earlier by the moving front 

in Figure 3.3. In turn, the dye encapsulated in the vesicles will be released into the gel 

matrix and these molecules would no longer have to contend with the vesicle bilayer as a 

transport barrier. This explains the net faster release of dye molecules out of the gel. In 

effect, the dye release kinetics for the pH 10 case gradually begins to resemble that of the 

control gel (i.e., a gel with no vesicles). Figure 3.7 thus conceptually demonstrates the 

use of pH as a trigger to accelerate the release rate of dye from our vesicle-gels. 

 

Figure 3.7.  Tunable calcein release from a vesicle-loaded gel based on the pH of the 
external solution. The control is a gelatin gel surrounded by a pH 8.3 buffer and in this 
case (red circles), the dye is released rapidly. The same gel loaded with vesicles releases 
dye much more gradually at pH 8.3 (green hexagons): in this case, the vesicles are intact 
and the vesicle bilayer thus presents a transport resistance. On the other hand, if the same 
vesicle-loaded gel is placed in contact with pH 10 buffer, the dye release is more rapid 
(blue triangles): in this case, the high pH converts the vesicles into micelles, thereby 
eliminating the transport resistance due to the vesicle bilayers. All the data are fit to eq 2 
and the fit parameters are shown in Table 1.  
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The dye release curves in Figure 3.7 can be quantitatively treated using the 

following equation due to Peppas:65-67  

                                                nt kt
M
M

=
∞

                                                  (3.2) 

where Mt /M∞ is the fractional dye release, k is a rate constant, and n is an exponent 

characteristic of the transport mechanism. This equation is only valid for short times such 

that Mt /M∞< 0.6. Fits of eq 2 to the data are shown in Figure 3.7 and the fit parameters 

are shown in Table 3.1 (in all cases, the quality of the fit was very good, with R2 > 0.99). 

The exponent n is determined to be 0.49 for the control gel and 0.53 for the vesicle-gel at 

pH 8.3; both are close to the value of 0.5 expected for Fickian diffusion in a slab 

geometry.66 For the vesicle-gel at pH 10 the value of n is 0.45. The slight discrepancy in 

this case is probably because two processes are occurring simultaneously: the vesicles 

being disrupted into micelles and thus releasing dye into the gel, and the free dye in the 

gel diffusing out into the solution. Note that the rate constant k is highest for the control 

gel and lowest for the vesicle-gel with intact vesicles (pH 8.3). The acceleration of dye 

release due to the increase in pH is reflected in a 50% increase in the magnitude of k 

(from 0.2 at pH 8.3 to 0.3 at pH 10).    

 

Sample k n 
(1) Gel, no vesicles 0.4 0.49 
(2) Vesicle gel, pH 8.3 0.2 0.53 
(3) Vesicle gel, pH 10 0.3 0.45 

 

Table 3.1. Parameters obtained by fitting eq 2 to dye release curves in Figure 7. 
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3.4 Conclusions 

We have shown that nanoscale vesicles of NaOA can be entrapped within gelatin 

hydrogels. The resulting vesicle-gel hybrids exhibit the pH-responsive properties of the 

NaOA vesicles. Specifically, when exposed to a pH 10 buffer, the vesicles within the gel 

become transformed into micelles. Vesicle disruption can be done in a controlled manner 

at specific locations within a gel. Gels can thus be “patterned” to have vesicle-rich and 

micelle-rich domains in predetermined arrangements. The utility of entrapping pH-

responsive structures within the gel is in the area of controlled release of hydrophilic 

solutes. We show that the release of calcein dye out of a vesicle-gel into the external 

solution is accelerated when the solution pH is raised to 10. This increase is attributed to 

a pH-induced vesicle to micelle transition within the gel, which reduces the transport 

resistance to dye diffusion.    
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Chapter 4 

Biopolymer Capsules Containing Vesicles: 

“Motherships” for Controlled Drug Release  

 
 
4.1 Introduction 
 

Two major classes of drug delivery vehicles are (1) microcapsules and (2) 

liposomes. Polymer microcapsules, which can range from a few µm to >1,000 µm are 

particularly interesting due to the wide range of packaging, targeting, and tunable release 

mechanisms they offer.71 However, they are often avoided during pharmaceutical 

formulation as many methods of preparing them involve heat or organic solvents, which 

may destroy labile therapeutic molecules.72-73 These common, yet labor-intensive and/or 

drug damaging methods of microcapsule synthesis include layer-by-layer polymer 

deposition (involving burning or harshly dissolving away an inorganic core),74 oil-in-

water emulsion polymerization,75 and organic solvent evaporation.76 In addition to the 

directly negative potential effects on the drug payload during processing, it can be 

difficult to develop uniformly sized populations of microcapsules, resulting in 

unpredictable drug release and biodistribution profiles.77  

 

Liposomes, the other major class of drug carrier, are generally much smaller in 

size at ~100 nm. These structures have also been suggested for numerous drug delivery 

applications, especially those involving the targeting and uptake of the liposome directly 

into cells.78-79 These self-assembled spheroid structures, with lipid bilayers reminiscent of 
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cell membranes, are excellent for packaging a wide range of therapeutic molecules and 

are highly biocompatible. While PEGylation technology has greatly improved the 

parenteral administration of liposomes,80 these structures still face unfavorable 

destabilization due to absorped proteins from the bloodstream or from roaming 

phospholipases in soft tissue applications. 81 

 

Hybrids of these 2 structures, i.e. capsules containing vesicles, are attractive 

because they may potentially retain the advantages of both, while simultaneously 

mitigating some of the disadvantages of each separately. For example, capsules may 

protect vesicles from external stimuli, such as low or high pH, and from destruction by 

biological “watchdogs,” e.g. macrophages. Conversely, vesicles may extend the 

functionality of capsules, since they are generally more effective at encapsulating 

hydrophobic drugs (such as many anti-cancer formulations)82-83 than the capsules 

themselves. Finally, the combination of transport resistances from the vesicle bilayer and 

the capsule shell can again prolong the release of encapsulated drug.  

 

In recognition of this potential, such hybrid structures have been synthesized in a 

number of previous studies. The Langer group were the first to show that vesicles could 

be trapped within alginate microcapsules and that dye encapsulated in the vesicles could 

be released slowly under certain conditions.84 Subsequent studies from the same group 

showed that micro-encapsulated vesicles could extend the in vivo drug release time and 

minimize immune responses.85 The concept of “vesicles in capsules” has been used 

thereafter by other researchers. 86-88 Cohen et al. encapsulated vesicles into alginate-PLL 
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capsules.88 Additionally, Feng et al have demonstrated stable liposome-in-microsphere 

structures which are able to achieve sustained release of drug.89 

 

More recently, Dhoot et al. have studied the effect of crosslinking ions on release 

rates of fluorescein-isothiocyanate labeled bovine serum albumin (FITC-BSA) from 

vesicle-loaded alginate capsules.90 A rapid initial burst of the FITC-BSA protein was 

observed when alginate beads were ionically crosslinked with Ca2+, Al3+, and Ba2+. The 

release rate of the protein was found to differ based on the type of ions used in generating 

the capsules.   Additionally, Ramadas et al. have used vesicle-loaded alginate-chitosan 

capsules for oral delivery of insulin.91 These capsules were able to deliver insulin to the 

intestine without undergoing degradation in the acidic environment of the stomach. This 

example hints at the oral drug delivery administration route as very relevant clinical niche 

for these vesicle-in-capsule formulations. The capsule shell can serve as a protective 

barrier for the vesicles and their encapsulated contents against the harsh gastrointenstinal 

environment while en route to the bloodstream via the intenstine.  

 

In this study, we also create biopolymer capsules containing liposomes, here 

through a mechanism of self-assembly. Liquid mixtures of liposomes and chitosan, a 

cationic biopolymer, are added dropwise into solutions of anionic biopolymer, gellan 

gum, or surfactant, sodium dodecylbenzene sulfonate (SDBS). Spherical capsules are 

formed immediately due to electrostatic interaction between the positively and negatively 

charged structural molecules at the droplet interface. We call these biopolymer capsules 

containing vesicles “motherships,” as these larger containers are able to retain smaller 
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intact containers, i.e. “babyships,” within their lumen. An overview of this type of soft 

structure is shown in Figure 4.1. Note that we can create small micro-sized capsules 

(~200 µm) by means of employing an electric field beneath a 200 µm nozzle, or we can 

simply drop chitosan/liposome solution out of a standard pipet and create macro-, or 

“over-the-counter” sized capsules. To our knowledge, no one has produced chitosan-

gellan or chitosan-SDBS capsules containing liposomes. 
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Figure 4.1. Formation Chitosan ‘mothership’ capsules containing vesicles. Capsules 
are formed by dropping a positively-charged amphiphilic biopolymer mixed with vesicles 
(~100 nm in size) into a solution of negatively charged SDBS surfactant or negatively 
charged gellan gum biopolymer. Spherical capsules are formed instantaneously. Capsule 
size is dictated by droplet size and sizes can range from ~100 µm (micro) to 10,000 µm 
(macro) 

 



 63 

Although many advantages of the combined properties of vesicles and capsules 

have already been reported in the literature, here we aim to reiterate some of those 

advantages while extending the potential use of hybrid systems in two key ways. The first 

is that we explore the ability of these motherships to conduct controlled or triggered 

release of the vesicles themselves,92 which is a largely unexplored subtopic within the 

field of drug delivery. Why is controlled release of vesicles potentially high impact from 

a therapeutic standpoint? As a first example scenario outlined in Figure 4.2, these 

capsules could be useful for cancer therapy by injecting or implanting them in the vicinity 

of tumor tissue. An anti-angiogenic drug could be packaged within the lumen of the 

capsule, whereas a cytotoxic cancer drug could be contained within the vesicles. The 

anti-angiogenic drug would be released first and subsequently slow or stop the growth of 

new blood vessels into the tumor tissue.93 Secondly the capsule would degrade, releasing 

the drug-loaded vesicles into the blockaded tumor tissue, locally destroying the diseased 

cells. As a further example, neural circuits are largely dependent upon the triggered 

release of vesicles carrying neurotransmitters within the neuronal synapse.94 Creating 

structures that would allow for triggered release of vesicles may provide a way to build 

high-level circuitry within soft, ‘squishy’ environments, much like the brain. Of course, 

these sorts of advances may give important insights on neurodegenerative diseases that 

involve hindered neuronal signal transmission (e.g. Multiple Sclerosis, Parkison’s 

Disease).95-96 
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Figure 4.2. Schematic of Chitosan ‘mothership’ capsules attacking a tumor. In step 
(1), the microcapsule “motherships” would be docked at the tumor site using antibodies 
or magnetic targeting and thereafter release one drug from the capsule lumen (e.g. an 
anti-angiogenic drug). In step (2), capsule shell would become ruptured due to enzymatic 
degradation, and “babyship” vesicles carrying cytotoxic drug would escape freely into the 
tumor  tissue. 
 

The second extension upon the vesicle-within-capsule concept presented here is a 

vesicle-within-(small)capsule-within-(large)capsule concept. These latter structures are 

built by the exact same one-step drop method, but instead, utilizing nozzles of different 

sizes to put smaller capsules containing vesicles within larger sized capsules, and hence 

provide a simple means of assembling materials display important structural features over 

a hierarchy of length scales. What advantages or insights could these kinds of hierarchical 

structures present? Certainly in biology, there are many examples of systems exhibiting 

important features over a hierarchy of length scales. Cells contain hundreds of smaller 

enclosed structures within their membrane including, the nucleus, endosomal vesicles, 

lysosomal vesicles, mitochondria, etc. Interestingly, an encapsulation system containing 

biological components, such as enzymes, proteins and detoxicants, was originally 
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proposed in 1964 by Chang et al as an “Artificial Cell.”97 As a next generation of this 

original theory, the hierarchical capsules shown here could potentially serve as much 

more advanced cellular mimics. By the described one-step drop procedure, a pre-

designed fleet of containers, e.g. one medium-sized capsule containing DNA (nucleus), 

~30 smaller capsules stuffed with ATP (mitochondria), and hundreds of vesicles packed 

with digestive enzymes (lysosomes), could all be housed within one large capsule. Such a 

structure could be prepared in just minutes using only elementary lab hardware. 

 

 

4.2 Experimental Section 

Materials. Acetic acid, sodium dodecyl benzenesulfonate (SDBS), n-dodecyl aldehyde, 

sodium cyanoborohydride, 5,6-Carboxyfluorescein (CF), Triton X-100, rabbit IgG 

(tagged λ = 600 nm emission) and anti-rabbit IgG (tagged λ = 520 nm emission), 

glutaralehyde (40% in water) and chitosanase from streptomyces griseus were all 

purchased from Sigma-Aldrich chemicals. L-α-phosphatidylcholine (PC) was purchased 

from Avanti Polar Lipids, Inc. The magnetic nanoparticles (γ-Fe2O3) were purchased 

from Alfa Aesar. Their size was specified to be 32 ± 18 nm, and their average surface 

area was 42 m2/g. Magnets were obtained from United Nuclear. All experiments were 

performed using 18.2 MΩ DI Water.  

 

Chitosan. Chitosan of medium molecular weight (190-310K) and Brookfield viscosity of 

286 cps was obtained from Aldrich. The reported degree of deacetylation was about 80%, 

and this has been verified by NMR (Supplemental Info). The chitosan backbone is thus 
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mostly composed of D-glucosamine [β-(1,4)-2-deoxy-2-amino-D-glucopyranose] sugars, 

with a small fraction of N-acetyl-D-glucosamine [β-(1,4)-2-deoxy-2-acetamido-D-

glucopyranose] sugars as well. Chitosan is pH-sensitive as a result of its amine groups 

and is soluble only under acidic conditions, that is, at a pH < 6.5. We have used 0.2M 

acetic acid to control the pH in chitosan solutions.98 Chitosan acts a cationic 

polyelectrolyte under these conditions. 

 

Gellan Gum. Gelrite® Gellan Gum (FW 1,000,000) was obtained from Sigma. Gellan 

gum is a water-soluble negatively charged polysaccharide with a repeating 

tetrasaccharide unit consisting of two residues of D-glucose, one residue of L-rhamnose, 

and one residue of D-glucuronic acid. All units are joined by α-1,3 glycosidic bonds.  

 

Synthesis of Hydrophobically-Modified Chitosan (hm-Chitosan). We attached n-

dodecyl tails to chitosan by reacting the amine groups with n-dodecyl aldehyde. The 

procedure follows that reported in the literature.99 Briefly, it involves the addition of 

aldehyde to an acidic solution in a water-ethanol mixture, followed by addition of sodium 

cyanoborohydride. The molar ratio of aldehyde to that of the chitosan monomer(s) was 

fixed at 5% in this study. The hm-chitosan was precipitated by raising the pH and adding 

ethanol, and the precipitate was purified by washing with ethanol followed by deionized 

water. The final hm-chitosan precipitate was redissolved in acetic acid solution, and the 

concentration was recalibrated.  
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Preparation of Capsules: In general, capsules were formed by dropping liquid mixtures 

of liposomes and chitosan (‘feeders’) into solutions of either negatively biopolymer 

(Gellan Gum) or surfactant (SDBS). The size of the capsule is dictated by droplet size. 

Macro-sized capsules (1000 – 5000 µm) were made by dispensing chitosan/liposome 

solution from either a 22G needle via syringe, or by a large aperature fluid transfer pipet. 

Smaller capsules (200, 400 µm) were made using a Nisco Engineering Encapsulator Unit 

(Norway) with the following settings: voltage 6.5 kV, flow rate 20 mL/hr, 0.2 or 0.4 mm 

(accordingly) needle diameter, needle distance from gellan or SDBS bath 1.3 cm. 

Chitosan-SDBS Capsules. Chitosan (0.5 wt%) was mixed with PC liposomes (0.5 wt %) 

as the feeder. This feeder was loaded into a syringe and dispensed via 22G needle into a 

free-standing solution of 2.5 wt% SDBS. Capsules were allowed to incubate in SDBS 

solution for 2 min, after which the SDBS solution was dumped from the vial while the 

capsules were retained via strainer. Capsules were then washed 3× with 10 ml of DI 

water so as to remove any excess SDBS. In another sample preparation, hm-chitosan (0.5 

wt%) was used to form the capsules instead of unmodified chitosan.  

Chitosan-Gellan Capsules. This method of capsule formation largely follows that of 

Yamamoto el al.100-101 Chitosan (1.5 wt%) was mixed with PC liposomes (0.5 wt%) as 

the feeder. This feeder was also loaded into syringe and dispensed via 22G needle into a 

heated solution of gellan gum (60°C) under stirring. Capsules were allowed to incubate in 

gellan gum solution for 30 min, after which the gellan was dumped from the vial while 

the capsules were retained via strainer. Capsules were then washed 3× with 10 ml of DI 

water so as to remove any excess gellan. After resuspension in buffer solution, the 

capsules were kept under light stirring. 
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Lipsome Preparation. Liposomes were prepared by an extrusion method, as 

recommended by the manufacturer (Avanti Polar Lipids). Briefly, dried films of the lipids 

were hydrated under moderate stirring, freeze-thawed 5 times, and then passed through 

two double-stacked polycarbonate membrane filters (100 nm pores) using a Lipex 

pressurized extrusion system.  Dye-filled liposomes were prepared in DI water from PC 

(20 mM) and CF (20 mM) and purified of free CF using the Sephadex G-50 column. 

 

Optical Microscopy. The Zeiss Axiovert 135 TV inverted microscope equipped with the 

Motic Image Plus imaging system has been used for optical microscopy (bright-field). 

Capsules were imaged with a 2.5X objective.  

 

Dynamic Light Scattering (DLS). DLS was used to characterize the sizes of vesicles in 

solution. A Photocor-FC light scattering instrument with a 5 mW laser source at 633 nm 

was used at a scattering angle of 90°. A logarithmic correlator was used to measure the 

intensity autocorrelation function. The hydrodynamic size of the vesicles was extracted 

from the data using the Stokes-Einstein equation.   

 

Fluorescence Microscopy. Photomicrographs of fluorescent electrodeposited materials 

were taken by a fluorescence stereomicroscope (MZFLIII, Leica) equipped with a digital 

camera (Spot 32, Diagnostic Instruments). To observe primary IgG antibody fluorescence, 

the filters were chosen with an excitation wavelength of 560 nm (bandwidth of 40 nm), 

and an emission filter of 610 nm. To observe secondary anit-IgG antibody fluorescence, 



 69 

the microscope was set with an excitation wavelength of 480 nm (bandwidth of 40 nm) 

and a long-pass emission filter at 510 nm.  

 

Release Profiles. Lipid vesicles were combined with 25 mM CF dye. To separate 

unencapsulated dye, the vesicle-dye mixture was passed through a Sephadex G-50 size-

exclusion chromatography (SEC) column. The vesicle fraction (with encapsulated dye) 

was collected and used in preparing the vesicle-loaded capsules. Note that in these 

experiments, “macrocapsules” approximately 5 mm in diameter were used so as to allow 

easy collection of external aqueous media. To examine the release of dye, 4 g of 

phosphate buffer solution (pH 7.4) was added to the capsules after washing. The 

concentration of CF in the external buffer solution was measured by UV-Vis 

spectrometry (Cary Bio 50). A control gel (no vesicles) was prepared using an amount of 

CF equal to that in the encapsulated vesicles. To determine the latter, 2 mL of the vesicle 

fraction from SEC was analyzed by UV-Vis after the vesicles were disrupted by adding 

50 µL of Triton-X100.    

 

Enzymatic Degradation of Capsules. Chitosanase was added to a Petri dish containing 

several chitosan-gellan capsules at a concentration of 0.125 units/ml in acetate buffer 

solution (pH 5). Capsules were then observed under phase contrast microscopy for up to 

5 days. Control capsules in acetate buffer solution (pH 5) with no enzyme added were 

also observed. 
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Targetability of Capsules 

Magnetic Capsules. Chitosan (0.5 wt %) and liposomes (0.5 wt%) were mixed with 0.1% 

wt γ-Fe3O4 nanoparticles and subsequently dropped into anionic surfactant or biopolymer 

solution. Capsules were then moved within stagnant fluid in a vial using a large magnet, 

and then against a flowing aqueous stream within Silicone tubing connected to a pump.   

Antibody Conjugation. Primary IgG antibody was added in excess to chitosan-SDBS 

capsules in phosphate buffer solution (pH 7.4) until mild stirring. 100 µl of 

glutaraldehyde solution was then added to the buffer media under increased stirring. 

Reaction was allowed to take place for 20 min. The buffer solution was then drained from 

the vial according to the straining procedure described above. Capsules were washed 3× 

with PBS and then resuspended in PBS. Fluorescence microscopy was used to detect the 

presence of antibody on the capsule surface. IgG-capsules were then incubated with a 

secondary antibody, anit-IgG, for a period of 30 min. Capsules again washed according to 

the above procedure, and imaged in with Fluorscence microscopy. 

 

4.3 Results and Discussion 

In Figure 4.3, release profiles of model drug, carboxyfluorescein (CF), from these 

mothership structures are shown. Figure 4.3a shows that chitosan-gellan motherships 

impregnated with drug-loaded liposomes (red circles) display a sustained release of drug. 

In contrast, chitosan-gellan control capsules with the same amount of drug freely 

dispersed inside the capsule lumen shows a classic “dosage dumping” release profile 

(blue circles).  This result is explainable by the additional transport resistance provided 

by the liposome bilayer in the motherships. While drug inside the control capsules must 



 71 

only cross 1 barrier, i.e. the capsule shell, the dye inside the motherships must cross two: 

(1) lipid bilayer and (2) capsule shell. At 3.25 h, a detergent molecule Triton X-100 was 

added to the external buffer and a spike in dye release for mothership capsules is 

observed for the remainder of the 4 timeframe. This result gives two key insights into the 

experiment. Firstly, it demonstrates that the liposomes existed intact inside the 

motherships. Triton X-100 is molecule which rapidly disrupts intact vesicles into mixed 

micelles, henceforth spilling the contents of the vesicle core into external solution. Thus, 

the spike in release implies that intact vesicles were broken and the newly escaped drug 

molecules take on a “dosage dumping” release profile similar to that observed for the 

control capsules. Secondly, the experiment demonstrates that adequate control capsules 

which contain an approximately equal amount of dye to the mothership capsules were 

properly produced. 
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Figure 4.3. Controlled Release of Dye from ‘Mothership’ Capsules. In (a), a sustained 
release is observed for chitosan-gellan capsules impregnated with carboxyfluorescein-
loaded liposomes (red circles). Chitosan-gellan control capsules with dye freely dispersed 
inside the capsule lumen shows a “dosage dumping” release profile (blue circles). 
Addition of Triton X-100 at 3.25 h shows a spike in dye release for “mothership” 
capsules, indicating vesicle intactness. In (b), chitosan-SDBS capsules impregnated with 
CF-loaded liposomes show (blue circles) show a similar release profile to control 
capsules containing no liposomes (yellow triangles), suggesting potential liposome 
rupture during capsule formation. In contrast, hm-chitosan capsules formed in SDBS 
while retaining liposomes, shows a sustained release over a 2 hour interval. 
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Figure 4.3b shows the release profile of CF from motherships constructed with 

SDBS surfactant instead of anionic biopolymer. Unexpectedly, the chitosan-SDBS 

motherships impregnated with CF-loaded liposomes (blue circles) show a similar release 

profile to control capsules containing no liposomes (yellow triangles). This result 

suggests potential liposome rupture during capsule formation. Such an outcome is 

feasible considering high enough concentrations of SDBS molecules are able to rupture 

liposomes into mixed micelles. Previous work on a similar polyelectrolyte-surfactant 

system describes the resulting structures as ‘gel beads,’ and suggests that the surfactant 

quickly diffuses into the entire polyelectrolyte droplet.102-103 While our own optical 

microscopy of these capsules displays a distinct “shell” structure of the capsule distinct 

from the lumen, it is probable that a large number of surfactant molecules infiltrate the 

droplet core prior to rigid shell formation. In contrast, relative to the unmodified 

chitosan-SDBS motherships, hydrophobically modified (hm)-chitosan motherships 

formed in SDBS while retaining liposomes show a sustained release over a 2 hour 

interval. This could potentially be explained by a delayed diffusion of SDBS into the 

capsule core due to association with the hydrophobic grafts along the chitosan backbone. 

This experiment gives some interesting insight into the process of formation of these 

polyelectrolyte-surfactant complexes, although it also suggests that they are unsuitable 

carriers of lipid vesicles. 

 

 

Figures 4.4 and 4.5 outline the potential targetability of these structures via 

magnetic nanoparticles and antibodies, respectively. In Figure 4.4, magnetically targeted 
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‘mothership’ capsules via encapsulated γ-Fe3O4 nanoparticles show their magnetic 

properties in response to a bar magnet. Figure 4.4a displays a magnet collecting a pile of 

capsules onto the side of the vial. Indeed, this magnet can be used to rapidly move the 

capsules to any location within the stagnant fluid. Furthermore, as shown in Figure 4.4b, 

these magnetically-loaded motherships are able to be pulled against a fluid flow within a 

tube using the magnet. This level of crude targetability is an efficient payoff relative to 

the simple preparatory work of mixing in the nanoparticles along with the liposomes in 

the feeder solution prior to capsule formation.  

 
 

 
Figure 4.4. Magnetically targeted ‘mothership’ capsules via encapsulated ferrite 
nanoparticles show their magnetic properties in response to a bar magnet. (a) magnet 
placed near capsules in a vial (b) magnet placed next to a tube in which the capsules are 
flowing along with the fluid (water) from left to right. 
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Figure 4.5. Antibody targeted ‘Motherships. (a) Fluorescently tagged primary IgG 
antibody (emission 600 nm) is covalently conjugated to the surface of a Chitosan-SDBS 
“mothership’ capsule as shown by fluorescence micrograph. After incubation with a 
secondary anti-IgG antibody and subsequent rinsing, fluorescent signal at 520  nm is 
observed, indicating that a significant amount of primary surface IgG is actively available 
for “lock-and-key”binding. 
 

Figure 4.5 demonstrates a targetability proof-of-concept via the attachment of 

fluorescently-labeled mouse IgG antibodies onto the surface of mothership capsules. The 

synthesis here exploits the plentiful surface amine groups provide by the chitosan 

molecules. Glutaraldehyde is used as a bifunctional linker, which non-specifically 

crosslinkes moieties bearing amine groups. By adding in glutaraldehyde to a stirring 

mixture of antibody and capsules, many antibodies become attached to the capsule 

surface. This linkage is confirmed via fluorescence microscopy (Figure 4.5a) as a 

uniformly bright red color is observed on the capsule after thorough washing. 

 
To demonstrate functionality of the newly conjugated antibodies, capsules were 

brought incubated for 20 min with a secondary antibody specific for IgG (FL-anti-mouse-
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IgG). After washing several times with buffer, the capsules were examined under 

fluorescence microscopy as shown in Figure 4.5b. After incubation with a secondary anti-

IgG antibody and subsequent rinsing, fluorescent signal at 520  nm is observed, 

indicating that a significant amount of primary surface IgG is actively available for “lock-

and-key” binding, although not with the same level of uniformity observed for the 

primary antibody. This result suggests that a significant amount of the primary antibody 

is available for binding and hence applicable for targeting applications. Of course, a 

remaining portion of the primary antibody is not available for binding, which is not 

surprising given the crude, non-specific nature of glutaraldehyde chemistry involved.  

.  

Next, we explore the triggered rupture of these motherships via enzymatic degradation. 

Figure 4.6a displays a phase micrograph of an intact chitosan-gellan mothership, 

approximately 5 mm, in size prior to addition of chitosanase. After enzyme is added to 

the surrounding media, the progression of mothership degradation over time is shown in 

Figure 4.6b. At 1 hour, little effect is shown on the capsule shell, i.e. the effect of the 

enzyme is not immediate. However, after a period of 2 days the capsule shell has clearly 

shriveled, presumably due to loss of mechanical integrity. Furthermore, after a period of 

5 days, the capsules are completely broken and pieces of shell debris are observed 

floating in the sample. After 7 days, the debris is fully dissolved and clear solution 

produced. It is important to note that after this 7 day period, the solution scatters light 

from structures measured at approximately ~100 nm in size by dynamic light scattering 

(DLS). These structures are presumably intact vesicles, as they closely match the DLS 

measurements of the same vesicles prior to addition to the feeder solution. Control 
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capsules to which no enzyme was added show no degradation after the same time period 

of 5 days. Also, it is worth noting that the chitosanase cannot degrade chitosan capsules 

formed with SDBS, most likely due to protein denaturing caused by the surfactant.  

 

Figure 4.6. Enzymatic Degradation of ‘Mothership’ Capsules. (a) Phase contrast 
micrograph of Chitosan – Gellan capsules formed by standard drop method via 22G 
syringe needle; (b) 1h, 2d, and 5d micrographs of chitosan-gellan capsule after addition 
of 10 units/ml of chitosanase in external buffer solution. Capsule appears almost wholly 
degraded after the studied 5 day interval. Note that the chitosanase cannot degrade 
chitosan capsules formed with SDBS. 
 

Lastly, we were interested in building hierarchical structures by placing smaller 

capsules within larger capsules, again employing the same one-step drop method. A 

schematic of this kind of structure is shown in Figure 4.7. By a simple one-step self-

assembly process, structures displaying a hierarchy of length scales, from nano (i.e. 

vesicles), to micro (microcapsules), to macro (large capsules) can be produced. These 

structures have the capability to package a wide variety of molecules and targeting agents 

either on their surface, or within their multi-level lumens. Presumably the release of each 

of the molecule would differ based upon their original location within the hierarchical 

structure. 
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Figure 4.7. Schematic of hierachical nano-micro-macro ‘motherships.’ By a simple 
one-step self-assembly process, structures displaying a hierchary of length scales, from 
nano (i.e. vesicles), to micro (microcapsules), to macro (large capsules) can be produced. 
These structures can package a wide variety of molecules and targeting agents either on 
their surface, or within their multi-level lumens. 
 

In Figure 4.8, small chitosan SDBS capsules were formed by the standard drop 

method via 22G syringe needle. After incubation, capsules were removed from SDBS 

solution and placed into a fresh chitosan solution. Chitosan solution containing capsules 

was uptaken by a wide-aperture fluid transfer pipet as a new feeder and dispensed 

dropwise into a solution of SDBS, thus forming capsule-within-capsule structures. As 

shown in the micrographs, various numbers of smaller capsules can be placed within 

these larger capsules. Note that we can create the same sorts of capsule-within-capsule 

structures with chitosan-gellan, although the inner capsules tend to lose some shell 

integrity due to pressure from the chitosan in the capsule lumen. Of course, the advantage 

with the chitosan-gellan system is that we can successfully place intact nanostructures, 

i.e. vesicles, within the inner capsule lumens.  
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Figure 4.8. Phase Microscopy (2.5×) of Capsules-within-capsules. Small Chitosan 
SDBS capsules were formed by the standard drop method via 22G syringe needle. After 
incubation, capsules were removed from SDBS solution and placed into a fresh chitosan 
solution. Chitosan solution containing capsules was uptaken by a wide-aperture fluid 
transfer pipet and dispensed dropwise into a solution of SDBS, thus forming capsule-
within-capsule structures. 
 

Lastly in Figure 4.9, we study the release of dye from capsules-within-capsules 

using the chitosan-SDBS system. Release of CF dye from smaller capsules packaged 

with larger capsules (red circles) is significantly sustained over a 30 period relative to the 

same number of small capsules freely dispersed in aqueous buffer (blue circles). This is 

expected since the dye molecules experience an added transport barrier of the large 

capsule shell. Similar results are observed for chitosan-gellan capsules-within-capsules 

confirming a proof of concept for controlled release from these hierarchical structures.  
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Figure 4.9. Release of dye from capsules-within-capsules. Release of 
carboxyfluorescein dye from smaller capsules packaged with larger capsules (red circles) 
is significantly sustained over a 24 period relative to the same number of small capsules 
freely dispersed in aqueous buffer (blue circles). 
 

4.4 Conclusions 

We have shown that “mothership” capsules with hierarchical structural features can be 

formed by adding droplets of a feeder solution consisting of liposomes and chitosan, a 

cationic biopolymer, into a solution of anionic biopolymer (gellan gum) or surfactant 

(SDBS). The resulting structures are spherical capsules; assembly is achieved via 

electrostatic interactions between oppositely charged polymers/surfactants at the interface 

of the droplet. Capsule size is simply dictated by drop size. Chitosan-gellan motherships 

are able to sustain model drug release due via intact liposomes carrying the drug within 

the capsule. In contrast, liposomes within chitosan-SDBS motherships disrupt quickly; 

this disruption process can be slowed by the covalent addition of hydrophobes to the 

chitosan backbone prior to capsule formation. The potential for targetability of 
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motherships was confirmed by (1) by dispersing γ-Fe3O4 nanoparticles within the capsule 

lumen and (2) attaching IgG antibodies to the capsule surface, a significant portion of 

which are available for binding secondary antibody. Chitosan-gellan motherships can be 

degraded by the addition of the enzyme chitosanase; complete degradation occurs over a 

7 period, with intact vesicles present in the remaining solution post-degradation. Finally, 

hierarchical capsule-within-capsule structures can be produced with either chitosan-

SDBS or chitosan-gellan systems. Dye release from smaller capsules entrapped within 

larger capsules undergo sustained drug of a 30 h period.  
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Chapter 5 

Vesicle Capture on Patterned Surfaces Coated 

with Amphiphilic Biopolymers  

 
 
5.1 Introduction 
 

Vesicles (or liposomes) are self-assembled “nano-containers” formed by lipids or 

surfactants in aqueous solution.104 These structures are ~ 100 nm in size and comprise an 

aqueous core and a lipid bilayer. The aqueous core can be used to encapsulate 

hydrophilic molecules such as drugs, proteins, or genes, while hydrophobic and 

amphiphilic substances can be integrated into vesicle bilayers.104 Few, if any, other 

nanostructures demonstrate this level of versatility as carriers of useful payloads. 

Accordingly, vesicles have been explored and exploited for a myriad of applications, 

including targeted drug delivery, gene transfection, imaging agents, biosensors, food 

science, and cosmetics.105  

 

Recently, there has been new-found interest into the capture of vesicles on solid 

substrates, as opposed to vesicles in solution.106 The motivation for such studies includes: 

(a) fundamental aspects, e.g., related to vesicles as biological models for adherent 

cells;107-109 as well as (b) applied aspects related to the fabrication of biosensors or 

modified biomaterials.110-113 In this context, it is to be noted that vesicles usually fuse or 

rupture into flat bilayers upon approaching a solid surface.114 This highlights the inherent 

disconnect between the “soft” nature of vesicles and the “hard” nature of solid surfaces. 
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However, it is often desirable to capture intact vesicles on surfaces.115-121 If vesicles were 

intact, their internal volume would be available for entrapping biomolecules, drugs, or 

fluorescent molecules, which could be useful for sensor and immunoassay applications. 

In addition, proteins embedded in vesicle bilayers are expected to more closely mimic 

their in vivo function compared to the same proteins in supported planar bilayers.116,122  

 

Previous attempts to capture intact vesicles on surfaces have employed DNA 

tethering,115-117 covalent binding to gold or polystyrene,118-119 or biotin-streptavidin 

linking schemes.120-121 These methods generally involve labor-intensive experimental 

procedures and expensive reagents. Furthermore, spatial and temporal control of vesicle 

capture (i.e., onto specific areas of a given surface at a given time) cannot be easily 

achieved by these methods. A greater level of control could be advantageous for many 

applications – for example, vesicle capture at predetermined locations (e.g., “vesicle 

arrays”) could facilitate the development of new biosensors.116    

 

In this study, we explore a simple and inexpensive method to capture vesicles 

onto solid surfaces with a high degree of spatio-temporal control. Our method exploits 

two sets of key results from our laboratories over the past several years. The first is the 

ability to electrodeposit the biopolymer chitosan onto patterned surfaces using electrical 

signals.123-126 Chitosan is a widely available cationic biopolymer that has a pH-responsive 

character (pKa ~ 6.0) – i.e., it transforms from a soluble to an insoluble form upon 

increasing pH above ca. 10. Accordingly, chitosan films can be deposited on cathode 

surfaces upon application of a current due to the high local pH near this electrode.123-125  
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Here, we extend the electrodeposition scheme to a derivative of chitosan that is 

functionalized with hydrophobic tails (Figure 5.1). We term this derivative as 

“hydrophobically modified chitosan”, or hm-chitosan for short.99 Previously, we have 

studied the interaction between hm-chitosan and vesicles in solution.99,127-128 The key 

result was that the hydrophobes from this amphiphilic biopolymer tended to insert into 

the hydrophobic bilayers of vesicles, thus transforming the vesicle solution into a “vesicle 

gel”, with the vesicles now serving as junction points in a network. Here, we show that 

the affinity for vesicles also extends to hm-chitosan films. When a surface coated with 

hm-chitosan is exposed to a solution of vesicles, the film captures vesicles simply via non-

covalent interactions between the vesicles and the polymer hydrophobes (see schematic 

in Figure 5.1). Thus, hm-chitosan can act as a “soft” interconnect between vesicles and a 

hard surface such as a gold electrode.126 Moreover, our ability to selectively deposit hm-

chitosan in predesigned patterns, as shown in Figure 5.1, allows us to create 

corresponding patterns of immobilized vesicles.   
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Figure 5.1. Schematic showing the spatiotemporal capture of vesicles using hm-chitosan. 
The structure of hm-chitosan as well as a schematic of its chain are shown in the top left. 
The chain has a hydrophilic backbone shown in blue and pendant hydrophobes (C12 tails) 
that are shown in red. In step (1), thin films of hm-chitosan are electrodeposited onto gold 
cathodes that are patterned on a silicon chip. Next, in step (2), the chip is incubated with a 
solution of vesicles. Intact vesicles become spontaneously anchored onto the polymer 
films. The inset shows the likely mechanism for such anchoring, which is via non-
covalent interaction between the hydrophobes on the polymer and vesicle bilayers.  
 

 

It is worth emphasizing certain features of our approach as well as some potential 

applications. Our approach (Figure 5.1) involves deposition of hm-chitosan followed by 

capture of vesicles on the surfaces of these films. The advantage is that the vesicles 

remain accessible to the external environment, which facilitates their use as sensors. (The 

accessibility of vesicles is more problematic if the vesicles are simply co-deposited with 

the polymer, as has been done earlier.129) We will also present several pieces of evidence 

to show that the vesicles are indeed intact, i.e., they are not being ruptured into flat lipid 

bilayers within the hm-chitosan film. Thus, the payload within the vesicles is expected to 

remain available for future use. The latter aspect is important in considering potential 

applications for vesicle-polymer hybrid films in drug delivery or wound healing. For 



 86 

example, in the case of chronic-wound healing, macroscopic films of hm-chitosan could 

be therapeutically functionalized with vesicles housing several types of growth factors 

(i.e., proteins that promote wound healing). These films could then be used to cover 

chronic wounds while protecting them from exudation or infection (chitosan is known 

also for its anti-bacterial properties). In turn, the controlled release of the growth factors 

from the vesicles attached to the films would enhance and sustain the wound-healing 

process. Note also that the bioactivity of growth factors is likely to be maintained when 

they are within vesicles; in contrast, growth factors embedded directly within polymer 

films may lose some of their activity.130 In sum, vesicle-polymer hybrids can have 

interesting applications, and the present study shows how these materials can be readily 

assembled via non-covalent hydrophobic interactions.  

 

 

5.2 Experimental Section 

Materials. Chitosan of medium molecular weight (190-310K) and Brookfield viscosity 

of 286 cps was obtained from Sigma-Aldrich. The reported degree of deacetylation was 

about 80%. Chitosan is soluble only under acidic conditions (pH < 6.5) and here it was 

dissolved in 0.2 M acetic acid. The phoshpolipids L-α-phosphatidylcholine (PC) and 

biotinylated phosphatidylethanolamine (PE-biot), and the fluorescent lipid 1'-dioctadecyl-

3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI) were purchased from Avanti 

Polar Lipids. The surfactants cetyltrimethylammonium tosylate (CTAT), sodium dodecyl 

benzenesulfonate (SDBS), and Triton X-100, the dye 5,6-carboxyfluorescein (CF), and 

the reagent n-dodecyl aldehyde were purchased from Sigma-Aldrich. Streptavidin bound 
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to fluorescein isothiocyanate (FITC-streptavidin) and the succinimidyl ester of CF (NHS-

fluorescein) were purchased from Fluka. All experiments were performed using distilled-

deionized (DI) water.  

 

Synthesis of Chitosan Derivatives. The hm-chitosan was synthesized by attaching 

n-dodecyl tails to the chitosan backbone via reaction with n-dodecyl aldehyde. The 

procedure has been reported in our earlier paper99 and follows that described in the 

literature.17,98,131 The degree of hydrophobic substitution follows the reaction 

stoichiometry and in this study it was fixed at ca. 2.5 mol% of the available amine groups. 

Fluorescently-labeled chitosan and hm-chitosan were synthesized by reacting the 

polymers with NHS-fluorescein, as previously reported in the literature.124  

 

Vesicle and Liposome Preparation. Both surfactant vesicles and lipid vesicles 

(liposomes) have been used in this study. Catanionic surfactant vesicles12,132 were 

prepared by mixing 0.7 wt% of the cationic surfactant CTAT and 0.3 wt% of anionic 

surfactant SDBS (~ 2:1 molar ratio) in DI water and gently stirring overnight. Dye-filled 

catanionic vesicles were prepared by combining 1 mM of CF with the CTAT/SDBS 

mixture, followed by separation of vesicles from free dye using a Sephadex G-50 column 

(from Roche). Liposomes were prepared by an extrusion method, as recommended by the 

manufacturer (Avanti Polar Lipids). Briefly, dried films of the lipids were hydrated under 

moderate stirring, freeze-thawed 5 times, and then passed through two double-stacked 

polycarbonate membrane filters (100 nm pores) using a Lipex pressurized extrusion 

system.  Dye-filled liposomes were prepared in DI water from PC (20 mM) and CF (15 
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mM) and purified of free CF using the Sephadex G-50 column. Fluorescently labeled 

liposomes were prepared in DI water by combining the lipid PC (13 mM) with trace 

amounts (13 µM) of the fluorescent lipid DiI. For the streptavidin binding assay, 

biotinylated liposomes were prepared by combining PC and PE-Biotin in a molar ratio of 

9:1, with a total lipid concentration of 1 wt%. Vesicle sizes in all cases were measured 

using a Photocor-FC dynamic light scattering (DLS) instrument.   

 

Preparation of Giant Unilamellar Vesicles (GUVs). The GUVs were prepared by 

electroformation, as described in the literature.133-134 The lipids (1 mg/mL) and DiI (7.7 

µg/ml) were dissolved in chloroform. One drop of this solution (5 µL) was deposited 

onto the conducting side of an indium tin-oxide (ITO)-coated glass slide. The solvent was 

removed first under desiccation for 1 h, and then freeze-drying for 3 h. A chamber was 

then made by creating an O-ring out of Seal-Ease and then pressing a second ITO-coated 

slide, conducting side facing downward, above the original slide. The chamber was 

hydrated with a solution of 100 mM sucrose in DI water via injection needle through the 

Seal-Ease; after injection, the needle was removed and the hole closed by Seal-Ease. 

Alligator clips were connected to both glass slides as well as a function generator (BK 

Precision 10 MHz Sweep/Function Generator 4017) via a BNC connector. An electric 

field of AC 1.5 V at 10 Hz was applied for 2 h at 55°C; the frequency was then dropped 

to 1 Hz for an additional 50 min. The fluid in the chamber now consisted of GUVs. 

Electrodeposition. Electrodeposition was performed on “chips” fabricated from silicon 

wafers with deposited micropatterns of gold (Figure 5.2). Fabrication procedures have 

been described in detail in our earlier papers.123-125 Electrodeposition was performed by 
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negatively biasing a specific lead on the chip while it was partially immersed in an 

aqueous solution containing 1 wt% of either chitosan or hm-chitosan at a pH ~ 5. A DC 

power supply (model 6641C, Agilent Technologies) was used to supply a constant 

current to the chip and counter electrode over a 2 min period. Photomicrographs of 

fluorescent electrodeposited materials were taken by a fluorescence stereomicroscope 

(MZFLIII, Leica) equipped with a digital camera (Spot 32, Diagnostic Instruments). To 

observe CF or FITC fluorescence, the microscope was set with an excitation wavelength 

of 480 nm (bandwidth of 40 nm) and a long-pass emission filter at 510 nm. To observe 

DiI fluorescence, the filters were chosen with an excitation wavelength of 560 nm 

(bandwidth of 40 nm), and an emission filter of 610 nm. In all cases, Image J1.34S 

software from NIH was used to analyze images and quantify fluorescence intensity.  

 

Cryo-TEM. C-FLAT holey carbon grids with a hole size of 1.2 µm were purchased from 

Electron Microscopy Sciences. Grids bearing hm-chitosan and surfactant vesicles were 

plunged into liquid ethane (–183°C) using a Gatan CryoPlunge3, so as to form vitrified 

specimens and thereby preserve any molecular assemblies present. The samples were 

thereafter imaged on a JEOL-2100 LaB6 TEM at liquid nitrogen temperature. 
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5.3 Results and Discussion 

Vesicle Capture on hm-chitosan Films. The first step in our approach involves 

electrodeposition of hm-chitosan films onto gold electrodes. These films are then to be 

used to capture vesicles. In the context of vesicle capture, it is useful to compare 

hm-chitosan with the native chitosan (no hydrophobes). Electrodeposition of native 

chitosan was first demonstrated in our laboratories in 2002;123 the present study is the 

first to extend this capability to hm-chitosan. For our initial studies, we used the two-

electrode chip shown in Figure 5.2. As mentioned earlier, the chip substrate is a silicon 

wafer, on which gold electrodes are deposited in a specific pattern. We then conducted 

sequential electrodeposition of hm-chitosan and chitosan (both tagged with the green 

fluorescent dye, NHS-fluorescein) on the left and right electrodes, respectively. This was 

done as follows: first, the right electrode was connected to the power supply and the other 

unconnected while the chip was immersed in a solution of chitosan. The connections 

were then switched (only left electrode connected) and the chip was immersed in a 

solution of hm-chitosan. After deposition, the electrodes were disconnected from the 

power supply, and the chips were rinsed several times with DI water. Figure 5.3 (top) 

shows the results of the experiment: the green color on both electrodes in the two 

fluorescence images indicates successful deposition of both hm-chitosan and chitosan.  
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Figure 5.2. Photograph of micropatterned chips used in this study. The leads and 
electrodes are formed by depositing gold on a silicon wafer using lithographic techniques. 
On the left is a 2-electrode chip and on the right a 6-electrode chip. A US penny is shown 
for size comparison.  
 

Next we examined the relative capabilities of hm-chitosan and chitosan to capture 

vesicles from solution. These experiments were conducted with both surfactant vesicles 

as well as lipid vesicles (liposomes). The catanionic surfactant vesicles (70/30 

CTAT/SDBS, total 1 wt%) had an average diameter around 120 nm, as measured by DLS. 

The liposomes of PC were made by extrusion through 100 nm membrane filters and had 

an average diameter around 110 nm from DLS. Both the vesicles and the liposomes were 

tagged with the fluorescent lipid DiI, which incorporates into the bilayer membranes of 

the above structures. Note that DiI exhibits a red fluorescence, i.e., a distinct color 

compared to the green signal from the chitosan and hm-chitosan. We incubated the chip 

on the left with surfactant vesicles and the one on the right with the liposomes, both for 

10 min. The chips were then rinsed three times with DI water to remove weakly adsorbed 

structures and then imaged under the fluorescence microscope using red filters. The 
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resulting images (Figure 5.3, bottom) show a significantly higher red fluorescent signal 

from the hm-chitosan side compared to the chitosan-side – and this is the case for both 

the surfactant vesicles and the liposomes. These results show that hm-chitosan is 

considerably more effective at capturing vesicles than chitosan. We believe this is 

because hydrophobes from hm-chitosan chains can get inserted into vesicle bilayers 

through non-covalent hydrophobic interactions (as depicted in Figure 5.1). Such 

interactions enable a tight anchoring of the vesicles to the polymer film.  

 

 

 



 93 

 

Figure 5.3: Comparison of hm-chitosan (H) and chitosan (C) films in terms of their 
ability to capture vesicles. Top images: Green-filtered fluorescence micrographs showing 
deposition of NHS-tagged hm-chitosan on the left electrode and NHS-tagged chitosan on 
the right electrode of a two-electrode chip. The chips are then incubated with vesicles for 
10 min, followed by rinsing with DI water. Bottom images: Red-filtered fluorescence 
micrographs showing the presence of DiI-tagged vesicles on the electrodes. The results in 
(a) (left-column) are obtained with catanionic surfactant vesicles, while those in (b) 
(right-column) are obtained with liposomes. In both cases, the vesicles are anchored 
preferentially to the hm-chitosan film than to the chitosan one.  
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The superior effectiveness of hm-chitosan in capturing vesicles is a robust result and this 

is further proven by experiments with varying vesicle incubation times. For these 

experiments, surfactant vesicles were used and the time of chip incubation in the vesicle 

solution was varied from 5 to 10 to 20 min. All other experimental variables, including 

rinsing times and image exposure time were kept constant. The results in Figure 5.4 show 

an increase in red fluorescence from the hm-chitosan electrode with increasing incubation 

time – the increase is quite significant between 5 and 10 min and slight between 10 and 

20 min. In all cases, the signal from the hm-chitosan side dwarfs that from the chitosan 

side. Similar results were obtained for macroscopic films of chitosan and hm-chitosan 

simply dried onto glass slides and incubated with tagged surfactant vesicles for various 

time intervals (data not shown). These results suggest that vesicle capture on hm-chitosan 

proceeds by surface diffusion of vesicles until they connect with free hydrophobes from 

the polymer, whereupon the vesicles get strongly bound. As the free hydrophobes get 

used up, fewer vesicles are able to bind strongly and the binding capacity of the film 

becomes saturated. 
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Figure 5.4: Variation in the extent of vesicle capture based on the time of chip incubation 
with a vesicle solution. Hm-chitosan (H) and chitosan (C) are deposited on the left and 
right electrodes, respectively. The chip is incubated with a solution of surfactant vesicles 
for different lengths of time and then imaged by fluorescence microscopy. The images 
are red-filtered fluorescence micrographs showing DiI-tagged vesicles on the electrodes. 
A constant exposure time of 20 s at the excitation wavelength was used to obtain each 
image. The results show increasing capture of vesicles on the H side and negligible 
capture on the C side. 
 

 

Intactness of Captured Vesicles. Next we tackle the question of whether the vesicles 

captured on hm-chitosan films are intact or whether the red fluorescent signal reflects 

fragments of vesicle bilayers. Figure 5.5 is a first piece of evidence to demonstrate 

intactness of vesicles. In this case, we prepared a solution of fluorescently tagged giant 

unilamellar vesicles (GUVs) of phospholipids. Optical microscopy (not shown) revealed 

that the GUVs ranged in size from 10 to 50 µm, which is typical of GUVs made via 

electroformation. We then incubated a chip bearing hm-chitosan in the GUV solution for 

10 min, rinsed the chip and observed it under a fluorescence microscope. Note the red 

fluorescent “hot spots” on the hm-chitosan film – these are shown at two different levels 
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of magnification in Figures 5.5. The spot sizes compare well with the sizes of GUVs and 

therefore it is likely that the spots correspond to intact GUVs. Thus, large microsized 

GUVs are shown to remain intact when immobilized on an hm-chitosan film.  

 

 

Figure 5.5: Immobilization of giant unilamellar vesicles (GUVs) on an hm-chitosan film. 
After 10 min incubation with DiI-tagged GUVs, multiple red-fluorescent ‘hot spots’ 
appear on the electrode bearing hm-chitosan. A zoomed-in image of a ‘hot-spot’ shows 
an intact GUV of ca. 20 µm diameter. 
 

Returning to the nanosized vesicles and liposomes, we present evidence to show that 

these are also captured intact by hm-chitosan. In this experiment, we prepared liposomes 

containing the hydrophilic dye CF. We ensured that the dye was present only inside 

liposomal cores; free (unencapsulated) dye was removed via size-exclusion 

chromatography, as described in the Experimental Section. The biopolymers were left 

untagged for this experiment to avoid overlap with the green fluorescence from the CF. 

Again, hm-chitosan was deposited on the left electrode and chitosan on the right. The 

chip was then incubated with the CF-filled liposomes followed by rinsing with DI water. 

At this stage, Figure 5.6a shows a strong green signal only on the hm-chitosan side, 
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implying that the liposomes preferentially attached there. The only alternate explanation 

is that the fluorescence comes from free CF dye stuck to the hm-chitosan, i.e., that the 

liposomes had already been disrupted. To rule out this possibility, we added the detergent 

Triton X-100 into the solution above the chip. This detergent is known for its ability to 

disrupt liposomes into mixed micelles, whereupon dye in the liposomal cores would be 

released into solution (this is illustrated by the schematics in Figure 5.6). After detergent 

addition and subsequent rinsing, Figure 5.6b shows that the green signal has vanished 

from the hm-chitosan film. The loss of signal after detergent treatment necessarily 

implies that the liposomes were initially intact on the hm-chitosan surface in Figure 5.6a.  
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Figure 5.6: Evidence for intact capture of liposomes on hm-chitosan films. (a) Green-
filtered fluorescence image showing preferential binding of liposomes (filled with the 
hydrophilic dye CF) to the hm-chitosan (H) side relative to the chitosan (C) side. The 
chip is then exposed to the detergent Triton X-100 and rinsed. The detergent disrupts the 
liposomes into micelles, as shown by the schematics, and the encapsulated dye is thus 
released and washed away. (b) Fluorescence image of the rinsed chip shows nearly 
complete loss of fluorescent signal, confirming disruption of originally intact liposomes.  
 

Further evidence for the intact capture of nanosized surfactant vesicles is provided 

by cryo-TEM. For these experiments, we deposited hm-chitosan directly on holey-carbon 

TEM grids. These grids were then incubated with surfactant vesicles, followed by a 

rinsing step with DI water to remove weakly adsorbed vesicles. The rinsed grids were 
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maintained in an aqueous environment at room temperature. These grids were then 

prepared in the usual way for cryo-TEM (see Experimental Section) by plunging into 

liquid ethane. Observation of the vitrified specimens showed the presence of numerous 

spherical structures of 100-150 nm diameter (Figure 5.7). These are evidently the 

surfactant vesicles and they all seem whole – no breaks or holes can be found on the 

vesicle shells. Thus, once again, the vesicles appear to have been captured intact.     

 

 

Figure 5.7: Cryo-TEM image of vesicles on an hm-chitosan film. The hm-chitosan was 
deposited on the TEM grid and then used to capture surfactant vesicles from solution. 
The image shows numerous spherical objects of ~ 100–150 nm diameter, which are 
presumably intact vesicles.  
 

 

Spatiotemporal Control of Vesicle Capture.  We now demonstrate the capability to 

create specific microscale patterns of vesicles on the chip. Towards this end, we used two  

6-electrode chips with a view towards engineering two specific patterns of vesicles.  On 

one chip we deposited hm-chitosan (H) and unmodified chitosan (C) in an alternating 

pattern, i.e., HCHCHC, on the 6 electrodes (Figure 5.8a). After incubating the film with a 

solution of DiI-tagged surfactant vesicles, the red signal indicative of vesicles is observed 
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only on the hm-chitosan (H) electrodes (Figure 5.8b). Next, on the other chip, we 

deposited the polymers in an ‘outside-inside’ pattern, i.e., HCHHCH (Figure 5.8c). 

Incubation of the chip with the same tagged vesicles again results in a red signal only on 

the hm-chitosan (H) electrodes (Figure 5.8d). Thus, in both cases, pre-determined 

patterns of vesicles were successfully created. Such patterning can be easily extended to 

more complex designs and with finer resolution. Previous work with chitosan has 

indicated the resolution limits of electrodeposition to be on the order of 1 µm.124 We view 

this work as a step towards the construction of “vesicle arrays” that could prove to be a 

useful tool for probing the properties of biomolecules such as membrane proteins.  

 

Figure 5.8: Patterning of vesicles on 6-electrode chips. (a) NHS-tagged hm-chitosan (H) 
and chitosan (C) are electrodeposited in an alternating pattern, HCHCHC. (b) Following 
contact with DiI-tagged surfactant vesicles and rinsing, the red fluorescence indicative of 
vesicles is found only on the H electrodes. (c) H and C are electrodeposited in an 
‘outside-inside’ pattern, HCHHCH. (d) Once again, DiI-tagged surfactant vesicles are 
found anchored only on the H electrodes. 
 

Accessibility of Captured Vesicles. Lastly, for immobilized vesicles to be useful in 

biosensing or binding assays, the vesicles should be able to access ligands from the 

external solution. To evaluate this aspect, we studied the interaction between surface-
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bound biotinylated liposomes and streptavidin in the surrounding solution. The 

experiment is depicted schematically in Figure 5.9a. Biotinylated liposomes were 

prepared by combining PC and PE-biot in a molar ratio of 9:1. These liposomes were 

then contacted with a chip bearing hm-chitosan (H) and chitosan (C) films on adjacent 

electrodes. The chip was then rinsed with DI water and exposed to a solution containing 

fluorescently tagged streptavidin, a protein that non-covalently binds to biotin with 

extremely high specificity. The results show a significantly higher fluorescent signal from 

streptavidin on the hm-chitosan electrode than the chitosan electrode (Figure 5.9b). The 

signals are quantified in the plot shown in Figure 5.9c – the fluorescence is 

approximately 6 times higher on the hm-chitosan  side (9.3 ± 0.8 gray value) relative to 

the chitosan side (1.6 ± 0.3 gray value) . The high signal on the hm-chitosan side is 

evidently due to the binding of streptavidin to the biotinylated liposomes captured on that 

film. The binding of streptavidin to the chitosan side is not zero presumably because 

streptavidin (a negatively charged protein) can bind non-specifically to the positively 

charged chitosan. Nevertheless, this is an encouraging result because it does confirm the 

ability of immobilized vesicles to sense reporter molecules from the surrounding 

environment.  
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Figure 5.9: Protein sensing via vesicles anchored to an hm-chitosan film. (a) Schematic 
of the experiment: biotin-decorated liposomes are first immobilized, then the chip is 
contacted with the fluorescently labeled protein, FITC-streptavidin. The binding of the 
protein is then detected by fluorescence microscopy. (b) Fluorescence image showing a 
strong signal from the hm-chitosan (H) electrode compared to the chitosan (C) electrode. 
The strong signal is indicative of protein binding to the biotins on the anchored liposomes. 
(c) Analysis of the intensities in (b). The average gray values for each electrode area are 
listed above the corresponding regions. 
 

5.4 Conclusions 

We have shown that vesicles and liposomes can be captured on electrodeposited films of 

hm-chitosan. Hm-chitosan is significantly superior in its capability for vesicle capture 

compared to unmodified chitosan, which implies that vesicle capture on hm-chitosan is 

promoted by the non-covalent binding of polymer hydrophobes to the hydrophobic 

interiors of vesicle bilayers. We have presented a range of evidence to show that the 

vesicles bound to hm-chitosan are intact structures. The evidence includes direct 

visualization of captured vesicules – by optical microscopy in the case of microscale 

GUVs and by cryo-TEM in the case of nanoscale vesicles. Additionally, key indirect 
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evidence for vesicle intactness comes from a study on dye-filled vesicles – upon 

detergent treatment, a loss of fluorescence from the film is observed, which can only be 

attributed to the detergent-induced disruption of intact vesicles. We have also confirmed 

the ability of biotinylated vesicles bound to hm-chitosan to conjugate with the protein 

streptavidin from the surrounding solution. A particular utility of using hm-chitosan as a 

“soft” interconnect between “hard” surfaces and vesicles is the prospect of creating 

patterns of immobilized vesicles. It is straightforward to electrodeposit hm-chitosan in a 

variety of predesigned patterns with micron-scale resolution; subsequently, vesicles can 

be readily captured on the patterned regions without the need for further chemistry (i.e., 

solely by non-covalent hydrophobic interactions). The simplicity of this approach should 

make it attractive for researchers to create new biosensors and bioassays using vesicles.  
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Chapter 6 

Gelling Blood with an Amphiphilic Biopolymer: A 

Route to Improved Hemorrhage Control 

 

6.1 Introduction 

The blood coagulation cascade is an enormously complex orchestration of small 

molecules, proenzymes, proteins and cells that ultimately results in the self-assembly 

(“polymerization”) of fibrinogen molecules into an elastic fibrin network.135 Fibrinogen 

is a small globular protein, and its assembly into fibrin chains is catalyzed by the protein 

thrombin. The fibrin network forms the hemostatic “plug” or the physical barrier that 

prevents further loss of freely-flowing blood from the site of injury. The coagulation  

cascade is effective at arresting blood loss from small wounds, but when the injuries are 

severe, such as gunshot or knife wounds suffered by soldiers in the battlefield, alternate 

tools and strategies are required for the achievement of hemostasis.136-137 Additionally, 

there are many types of coagulopathic conditions (hemophilia, Von Willebrand disease, 

liver disease) that require medical treatment even for minor bleeding.138-140 

 

Although the need for better hemostats has existed throughout human history, it 

was not until the mid-twentieth century that major advances in the field began to develop 

beyond standard cotton gauze or torniquets. During World War II, fibrin-based materials 

(glues, foams, adhesives) were some of the first proposed materials for advanced 

hemorrhage control.141 These products generally contain extremely high concentrations 
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of fibrinogen and thrombin, which work to mimic the final stages of the natural 

coagulation cascade. Early versions of these materials often demonstrated negative side 

effects such as immunogenic responses or disease transmission;142 however, improved 

processing techniques allowed for a great deal of the advancement in fibrin-based 

hemostats in the early 1990s.143-144 The approach during that period began to shift toward 

a dry powdered mixture of human fibrinogen and thrombin packed onto a solid bandage 

backing.145 By firmly pressing this dressing onto a bleeding injury, the bandage instantly 

forms a strong fibrin seal at the point of injury as bodily fluid brings the powder into 

solution in high concentration. Despite the efficacy of the fibrin sealant (FS) bandage, 

practical issues have severely limited its contributions to trauma medicine. Specifically, 

human fibrinogen and thrombin are highly expensive molecules that are scarce in supply. 

As such, they are extremely costly and largely unable to meet clinical demand.141,146 

 

Over the last decade, a myriad of other solutions have been posed to the problem 

of severe hemorrhage.147-148 Many of these employ biomolecules involved in the clotting 

cascade (e.g.  factor VIIa, Factor VIII, factor XIII, prothrombin complex concentrates). 

Unfortunately, these approaches remain costly and some have been shown to evoke 

immunogenic responses.149 Other solutions involve materials that work by means other 

than self-assembly. First in this category are powders (zeolite or mineral) that rapidly 

absorb fluid and, as a result, concentrate clotting factors at the site of injury.150 Secondly, 

there are bandages (chitosan, cellulose, gelatin) that help to either initiate clotting, absorb 

fluid, provide backpressure against flow of blood, or some combination thereof. However, 

all of these lower-cost solutions have drawbacks of either inadequate effectiveness or 
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dangerous side effects (e.g. tissue/nerve damage and embolism).151-152 Furthermore, they 

all have demonstrated a great deal of user variability, particularly in uncontrolled 

environments where they are most needed.152  

 

One research group, Ellis-Benhke et al., has employed the concept of self-

assembly, independent of the natural coagulation cascade, in order to achieve 

hemostasis.153 They used an amphiphilic synthetic peptide (RADA16) which is able to 

quickly self-assemble into nanofibers upon their introduction into biological solution.154 

While this system has only displayed efficacy in small animal models, the benefits of 

using a self-assembled material are displayed clearly in their study. Allowing the material 

itself to build a hemostatic barrier in a “bottom-up” fashion, from nano- to macro-scale, is 

an approach likely to eliminate the user variability that plagues other proposed solutions 

to hemorrhage control.152 Of course, for practical application, such a material should be 

low cost and easily produced, which are challenging issues for these synthetic peptides.  

 

In this Chapter, we describe the use of an amphiphilic biopolymer that can 

transform liquid blood into a gel, and thereby serve as a hemostatic sealant even for 

severe wounds in large animals. The native biopolymer is chitosan, which is a material 

already of great interest in the field of wound care due to its inherent anti-microbial 

properties,155-156 its biocompatibility157 and wide availability from natural sources.158 We 

modify the backbone of chitosan with a limited number of hydrophobic tails (2.5 mol % 

of available amines), so as to create a ‘comb-graft’ associating polymer that remains 

soluble in water (schematic in Figure 6.1). While native chitosan has been used in several 
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applications as a hemostatic material,159-162 this hydrophobic modification greatly 

enhances the capability of chitosan to control hemorrhage. Like fibrinogen 

polymerization and nanofiber assembly via the RADA16 peptide, the mechanism of 

action for this hydrophobically-modified (hm) chitosan also occurs via self-assembly; 

however, in this case, the blood cells take an active role in the formation of gel networks, 

as opposed to passively filling space in between actively polymerizing chains. Based on 

our previous work on hm-chitosan with vesicles99 (self-assembled nano-containers, which 

can be conceptualized as ‘empty’ cells), we hypothesize that the networks are formed by 

insertion of the hydrophobes into cell bilayers and subsequent bridging of cells by the 

biopolymer. This hypothesis is outlined in Figure 6.1. We probe the hemostatic 

mechanism of hm-chitosan via studies on blood using dynamic and steady-shear rheology, 

and by application to small (murine) and large animal (porcine) injury models.   

 

 

 
Figure 6.1. Schematic of hydrophobically-modified (hm)-chitosan as a self-
assembling hemostat. When adding hm-chitosan to a whole blood cell suspension, the 
resulting mixture self-assembles into a 3-dimensional network. This self-assembly is 
driven by insertion of hydrophobes into blood cell membranes and the subsequent 
physical crosslinking of adjacent cells. 
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6.2 Experimental Section 

Materials. Chitosan of medium molecular weight (190-310K) and Brookfield viscosity 

of 286 cps was obtained from Sigma-Aldrich. The reported degree of deacetylation was 

about 80%. Chitosan was dissolved in 0.15 M D-Lactic Acid (LA) so as to mimic 

physiological ionic strength. D-Lactic Acid and sodium cyanoborohydride were 

purchased from Sigma-Aldrich. 4-octadecylbenzaldehyde and α-cyclodextrin were 

purchased from TCI International. Hank’s Balanced Salt Solution (HBSS) was purchased 

from Lonza. BD Vacutainers® were purchased from Becton Dickinson.  

 

Synthesis of Chitosan Derivatives. The hm-chitosan was synthesized by attaching 

benzene-n-octadecyl tails to the chitosan backbone via reaction with 4-

octadecylbenzaldehyde. The same procedure, but instead using a dodecylaldehyde as the 

reactant, has been reported in our earlier paper99 and it also follows those described in the 

literature.17,98,131 The degree of hydrophobic substitution follows the reaction 

stoichiometry and in this study it was fixed at ca. 2.5 mol% of the available amine groups. 

The degree of hydrophobic substitution follows the reaction stoichiometry and in this 

study it was fixed at ca. 2.5 mol% of the available amine groups.  

 

Manufacture of hm-chitosan Sponges. 0.5 wt% hm-chitosan in 0.15 M Lactic Acid was 

poured into trays of dimensions 10 cm (length) × 10 cm (width) × 4 cm (height). Trays 

were filled only up to 2 cm in height with polymer solution. Samples were then frozen to 

-40°C in a pilot-scale freezed drier, and then placed under vacuum of 50 µbar for a period 

of 5 days in order to remove all water. After drying, a Tegaderm® medical tape backing 
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was placed on the back side of the sponges for unhindered compression of the sponge 

during surgery. 

 

Obtaining Blood. 5 human subjects volunteered to have 20 ml of blood drawn by 

registered nurse at the University of Maryland School Medicine. Subjects were healthy 

adults ranging age from 20 to 40 years of age (4 males, 1 female). 10 ml intervals of  

blood were drawn into BD Vacutainers® containing 143 USP units of Sodium Heparin. 

The protocol was approved by the Institutional Research Board (IRB) at the University of 

Maryland.  

 

Rheology of Chitosan-Blood Mixtures: Steady and dynamic rheological experiments 

were performed on a Rheometrics AR2000 stress-controlled rheometer. A cone-and-plate 

geometry of 40 mm diameter and 4° cone angle was used and samples were run at 

physiological temperature 37°C. Dynamic frequency spectra were obtained in the linear 

viscoelastic regime of the samples, as determined by dynamic strain sweep experiments. 

 

Murine Injury Models. Surgical procedures were approved by the Institutional Animal 

Care and Use Committee of the University of Maryland. Fasted male Long-Evans rats (n 

= 15, 250–275 g; Harlan, Indianapolis, IN) were anesthetized (60 mg/kg ketamine and 7.5

mg/kg xylazine given IP) and allowed to breathe air spontaneously. Animals were 

maintained under pathogen-free conditions in 12 h diurnal cycles, with water and food ad 

libitum. Animal rooms were kept at 21±3 °C with several changes of air per hour. All 

husbandry and animal procedures were in accordance of humane animal handling 
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practices under the guidance of the Unit for laboratory Animal Medicine at the University 

of Maryland School of Medicine. At the end of each procedure, all animals were 

humanely sacrificed by ketamine administration.  

 

Using a scalpel, the femoral vein was transected and allowed to bleed for 30 

seconds, after a unilateral groin incision was made over the femoral canal. Exposure and 

isolation of at least 1 cm of the femoral vein was performed. 1 ml of test material was 

then be dispensed onto 5 randomly selected animals via syringe (with 22 G needle) after 

wiping away excess blood from the site of injury via cotton gauze. Bleeding time was 

measured via stopwatch with the start time corresponding to the application of sample 

and end time corresponding to visual observation of halted bloodflow. Test materials 

studied were (1) Saline Buffer, (2) 0.5 wt% Chitosan and (3) 0.5 wt% hm-chitosan. 

 

Pig Injury Models. 3 Yorkshire crossbred swine, age 2.5 months and weighing 39.6 kg-

42.8 kg, were used. A veterinarian screened all animals. Animals were allowed free 

access to water and to commercial food, which was withheld the night before the study. 

All animals were maintained in an Association for Assessment and Accreditation of 

Laboratory Animal Care International–accredited facility, and all experimental 

manipulations were performed in accordance with the National Research Council’s Guide 

for the Care and Use of Laboratory Animals. The protocol was approved by the 

Institutional Animal Care and Use Committee. The swine were anesthetized with 6 

mg/kg of Telazol (Fort Dodge Animal Health, Fort Dodge, IA, USA) and 0.01 mg/kg of 

glycopyrrolate intramuscularly. They were intubated and placed on mechanical 

ventilation at a tidal volume 12 mL/kg, a rate of 10 respirations per minute, and 100% 
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oxygen. Anesthesia was maintained using isoflurane and ventilatory parameters were 

maintained to attain an end-tidal pCO2 of 40 mm Hg. 

 

The animals underwent midline laparotomy, and a unilateral groin incision was 

made over the femoral canal. Exposure and isolation of at least 5 cm of the femoral artery 

was performed. Using a 4.4 mm aortic punch, the femoral artery was punctured and free 

bleeding was allowed for 45 seconds. Blood loss was collected by suction for this period 

and was designated pretreatment total blood loss. Dry hm-chitosan sponges (bandages 

were cut to optimal sizes for wound approach) were applied via 2 min direct compression 

onto the injury site. Animals were observed under anesthesia for 180 minutes, at which 

point they were then be euthanized with Pentobarbital IV 100-200 mg/kg.   
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6.3. Results and Discussion 

 

Figure 6.2. Comparison of the native and hydrophobically-modified polymers with 
regard to their physical influence on blood. In (a), photographs show hm-chitosan at 
0.25 wt% mixed with heparinized human whole blood (50 wt %) is able to hold its 
weight upon test tube inversion, whereas unmodified chitosan at 0.25 wt% mixed with 
heparinized human whole blood (50 wt %) remains as a liquid. A cartoon of the proposed 
“bridging” effect of hm-chitosan on blood cells is shown above the left photograph; a 
contrasting schematic of unmodified chitosan mixed with blood is above the right 
photograph. In (b), steady shear rheology displays a dramatically increased (~O(105)) 
zero-shear viscosity of the hm-chitosan-blood mixture (red circles), relative to both hm-
chitosan (0.25 wt%) with no blood (cyan hexagons) and chitosan-blood (yellow triangles) 
controls. In (c), dynamic rheology of the hm-chitosan blood mixture (G’, closed red 
circels, G” closed green triangles) is that of gel-like elastic material which relaxes slightly 
over time, whereas rheology of the unmodified chitosan/blood mixture (G”, open green 
triangles, G’, open red circles) is that of a viscous sol 
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Results on Gelling Blood. Figure 6.2 compares hm-chitosan and unmodified chitosan 

with regard to their affect on a heparinized (14.3 units/mL) suspension of human whole 

blood. First, we note that visual observation of these samples show the blood mixed with 

hm-chitosan holds it own weight upon vial inversion (Figure 6.2a). A similar visual  

result has been observed in a mixture of citrate-stabilized blood and a polyethyleneoxide 

(PEO) polymer modified with cholesterol groups at either end.163 In contrast, unmodified 

chitosan at the same concentration mixed with heparinized human whole blood (50 wt %) 

remains as a freely flowing liquid. A cartoon of the proposed “bridging” effect of hm-

chitosan on blood cells is shown above the left photograph; a contrasting schematic of 

unmodified chitosan mixed with blood is above the right photograph. In Figure 6.2b, 

steady shear rheology displays a dramatic (~ million-fold) increase in the zero-shear 

viscosity of the hm-chitosan-blood mixture, relative to both hm-chitosan (0.25 wt%) with 

no blood (cyan hexagons) and chitosan (0.25 wt%)-blood (yellow triangles) controls.  

 

In Figure 6.2c, dynamic rheology gives us information about the microstructure of 

these samples. Note that the key parameters given by dynamic rheology are the elastic 

modulus, G’ (i.e. the elastic or solid like character of the material) and the viscous 

modulus, G”, (i.e. the viscous or liquid-like character of the material). Both moduli are 

measured as a function of oscillatory shear frequency, and as a result, give us information 

about the viscoelastic character over a wide range of timescales. Dynamic rheology of the 

hm-chitosan blood mixture is that of a gel-like elastic material with G’ higher than G” 

over the range of practical frequencies (100 rad/s to 0.1 rad/s) and with both moduli 

showing a weak frequency dependence. No crossover of G’ and G” is observed, 
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indicating that the sample does not relax over long time scales (this is consistent with the 

sample-spanning network structure shown in Figure 6.2a).164-165 In contrast, rheology of 

the unmodified chitosan/blood mixture (G”, open green triangles, G’, open red circles) is 

that of a viscous sol. That is, in this case, G” exceeds G’ over the frequency range and 

both moduli are strong functions of frequency.  

 

 

 
Figure 6.3. Time-to-gelation of hm-chitosan/blood mixtures. In (a), a time-sweep of 
an hm-chitosan (0.25%)/blood (50%) mixture displays the characteristics of an elastic 
material (G’ [red triangles] > G” [green triangles]) over the studied interval of 11 min. 
G’ > G” immediately at t = 0 min for this sample. In (b), unmodified chitosan 
(0.25%)/blood (50%) mixture shows that the sample remains as a viscous sol (G” [green 
triangles] > G’ [red triangles]) over the same interval. Lastly, in (c), a sample comparison 
in a rat femoral vein injury model demonstrates that hm-chitosan (HM-CS) solution 
(0.5%) significantly decreases bleeding time relative to saline buffer (SAL) and native 
chitosan (CS) solution  (0.5%) controls. 
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In Figures 6.3a and 6.3b, we probe the issue of time to gelation. This is again a 

rheological comparison between hm-chitosan/blood and chitosan/blood mixtures using a 

time sweep at a constant frequency of 10 rad/s. The experiments were done by mixing a 

given polymer and blood and quickly loading into the rheometer. For the hm-

chitosan/blood mixture, G’ exceeds G” immediately at t = 0, and thereafter there is a 

small increase in G’ over the studied time interval of 11 min. In contrast, the 

unmodified/blood mixture displays much lower values of G’ and G”, with G” exceeding 

G’ throughout the studied time interval of 11 min. This suggests that hm-chitosan gels 

blood rapidly upon application. It also highlights the fact that the hydrophobes grafted to 

the chitosan backbone significantly enhance the hemostatic ability of the polymer. 

 

Results from Animal Injury Models. Figure 6.3c displays a bleeding time study on a 

minor injury model in a small animal. Femoral vein injuries were created in Long-Evans 

adult rats (n = 5 per sample) via scalpel. Bleeding times were measured for all injuries. 

All materials were applied to the injury via a 22 G needle syringe. One mL of a saline 

control achieved hemostasis in 50 ± 4 s; an equal volume of an unmodified chitosan 

control (0.5 wt%) showed a similar time to hemostasis of 47 ± 3 sec. In contrast, 1 mL of 

an hm-chitosan solution, also at 0.5 wt%, achieved hemostasis in a period of 4.5 ± 0.6 sec. 

The hm-chitosan was also able to control bleeding from a porcine femoral vein injury in a 

comparable period of time (5.6 ± 0.7 s). Hence, this amphiphilic chitosan displays 

promise over unmodified chitosan as a hemostat for minor wounds in animals.  
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In order to treat high-pulsatile injuries in large animals, we produced freeze-dried 

bandages of this hm-chitosan. 150 mL of a 0.8 wt% hm-chitosan solution was prepared 

and then cast into a plastic container of dimensions 4” × 4” × 0.5”. The solution was 

frozen at –40°C and vacuumed at 50 × 10-6 mbar for several days.  Similar bandages of 

unmodified chitosan have been used commercially, particularly for US troops in the 

conflicts in Iraq and Afghanistan.146,166 While these unmodified chitosan bandages 

generally provide adequate initial first aid, they fail to maintain hemostasis for a period of 

longer than 1.6 h, and they allow secondary bleedings to occur.167 This is likely due to 

loss of tissue adhesion during the studied timeframe as the bandages become saturated 

with liquid blood, thus displacing key electrostatic interactions between chitosan and soft 

tissue.  

 

We have performed an evaluation of the effectiveness of the hm-chitosan 

bandages on a pig femoral artery injury model (n = 3). Figure 6.4 displays photographs 

from a representative application of the bandage to a femoral artery puncture (4.4 mm 

punch), which is fatal within 15 minutes left untreated. Figure 6.4a displays the blood 

pooling with the open cavity after puncture, Figure 6.4b displays the application of the 

bandage, Figure 6.4c displays the bandage successfully halting bleeding after 2 min of 

compression, and Figure 6.4d shows the arterial puncture successfully clotted after 

removal of the bandage (3 h after application). All pigs survived for the duration of the 

experiment, after which they were euthanized according to protocol. In sum, the bandage 

was highly effective at treating a severe bleeding injury in pigs, no secondary bleedings 

occurred during the studied timeframe, and no toxicity was observed.  
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Figure 6.4. Application of an hm-chitosan sponge to a porcine femoral artery 
puncture. In (a) the injury was created in the femoral artery, resulting in high-pulsatile 
flow. An hm-chitosan is then applied to the injury in (b) by direct compression. After 2 
min of compression, the bandage is observed in (c) to be attached to the wound site and 
providing hemostasis. The bandage is removed after 180 min (d) with no rebleeding 
during the studied interval.  
 

 
We believe that a dual effect is occurring during the use of the hm-chitosan 

bandage on severe injuries. First, the hm-chitosan that comes in direct contact with the 

blood dissolves slightly, and in turn, helps gel the blood in the manner highlighted in 

Figure 6.2a. Because the blood in the vicinity of the bandage gets gelled, it does not soak 

up the bandage readily, and the gelled blood presumably acts as a barrier to blood loss 

through the puncture. (This is similar to the postulated action of solid fibrin bandages, as 

discussed in the Introduction.) Secondly, the parts of the bandage that come in direct 

contact with the tissue are able to adhere much more strongly to the tissue than an 

unmodified chitosan bandage. Indeed, in vitro tissue adhesion studies have shown that 

increasing the level of hydrophobic modification along the chitosan backbone enhances 

the peel strength of the chitosan in a linear fashion (data not shown). The improved 
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adhesion decreases the likelihood of bandage delamination and thereby the possibility of 

secondary bleeding. We believe the improved adhesion of hm-chitosan to tissue may also 

be a consequence of hydrophobic interactions between polymer hydrophobes and the 

underlying tissue cells.  Although these hydrophobic interactions are non-covalent and 

hence weak individually, they sum up to a significantly large interaction over the entire 

surface area of the tissue. As such, the bandage acts like a nano-scale Velcro material in 

its interaction with soft tissue, i.e. it adheres strongly due to many nano-scale interactions, 

but yet it can be conveniently removed with no damage to underlying tissue or nerves 

since each individual interaction is weak.  

 
Probing the Mechanism for Blood Gelling. In order to probe the mechanism of gel 

formation, we separated blood plasma from the hemotacrit via centrifugation. The cells 

were resuspended in an equal volume of Hank’s Balanced Salt Solution and then mixed 

with hm-chitosan. Figure 6.5 shows the dynamic rheology of 0.25% hm-chitosan with 

50% diluted blood cell suspension. The rheology mirrors that of the whole blood mixed 

with the same concentration hm-chitosan quite closely, with G’ > G” over the entire 

range of frequencies. Also, it is observed visually that the mixture, like whole blood, 

holds its own weight upon vial inversion. In contrast, the mixture of 0.25% hm-chitosan 

with 50% diluted plasma shows G” > G’ over the range of frequencies, and visually 

appears to flow freely. This set of results shows that the cells play a key role in the 

gelation process.  
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Figure 6.5. Dynamic rheology of hm-polymer mixed with separated blood 
hematocrit and plasma. The hm-chitosan concentration is maintained at 0.25%. 
Hematocrit was resuspended in isotonic buffer after centrifugation; plasma was removed 
and stored for use. Visual observation of an hm-chitosan-hemotacrit mixture shows that 
the sample can hold its weight upon vial inversion, whereas an hm-chitosan-plasma 
mixture flows freely as a viscous liquid. Dynamic rheology confirms the visual evidence, 
as the hematocrit mixed with polymer (G’ [closed red circles] and G”[closed green 
circles]) is that of a gel-like elastic material which relaxes slightly over long times. In 
contrast, the rheology of the plasma mixed with polymer (G’ [open red triangles] and 
G”[open green triangles]) is close to that of a sol-gel transition.  
 

Reversal of Blood Gelling. While new hemostatic technologies have advanced rapidly 

over the past 15 years, there always exists a concern of undesired embolism formation 

from a new hemostat. In our probing of the mechanism of blood gelation via hm-chitosan, 

we have incidentally discovered a means of mitigating concerns of blood vessel 

embolization. Cyclodextrins (CDs) are a class of supramolecules known for their ability 

to modulate hydrophobic interactions between associating polymers.33,38 CDs are 
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biologically safe molecules often used frequently in foods, pharmaceutical excipients, etc. 

Of the three major cyclodextrins (CDs), (1) α-CD, (2) β-CD, and (3) γ-CD, it is α-CD that 

shows a strong affinity for single-tailed hydrophobes. In a rheological study previously 

reported from our group, all three cyclodextrins were added to aqueous solutions of 

telechelic polyethylene oxide with single tailed n-alkyl grafts on either end.168 The α-CD 

decreased the viscosity of the polymer solution much more rapidly than the other two CD 

species. α-CD has also been used in several other  studies as a viscosity reducer for 

associating biopolymers. This phenomenon is thought to occur due to the molecular 

architecture of the α-CD. α-CD is a barrel shaped supramolecule; the exterior of the 

barrel is very hydrophilic, allowing solubility in water, whereas the center of the barrel is 

hydrophobic. The diameter of the barrel is 5.4 Å, which in contrast to that of β-CD and 

γ-CD, is optimal for associating with single-tailed alkyl chains. In this way, the barrels 

are able to “cap” the hydrophobes along the backbone of the polymer, and hence screen 

their hydrophobic interactions from one another, in effect reducing the apparent viscosity 

of a bulk solution of hydrophobically-modified polymer. 

 

Because of α-CD’s ability to eliminate hydrophobic interactions among 

neighboring polymer chains, we hypothesized that given enough concentration of α-CD 

in solution, this supramolecule would be able to displace existing interactions between 

the hydrophobes and the bilayers of blood cell membranes. A schematic of this α-CD 

“screening” hypothesis is shown above in Figure 6.6a. The key concept here is that the 

addition of α-CD in aqueous media to an hm-chitosan/blood gel, triggers a “self-

disassembly” of the elastic 3-dimensional network into a freely flowing fluid. In Figure 
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6.6b, dynamic rheology confirms this hypothesis as a hm-chitosan (0.25%)/blood (50%) 

displays gel-like characteristics with G’ exceeding G” for the studied range of 

frequencies, whereas the same mixture hm-chitosan (0.25%)/blood (50%) with 3 wt% 

α-CD included displays the rheology of a freely-flowing liquid, with G” exceeding G’ 

over the range of frequencies and significantly lower moduli values.  

 

 

 
Figure 6.6. Reversal of blood-gelation via α-cyclodextrin (CD). In (a), a cartoon of α-
CD displays its supramolecular barrel-shaped structure, with hydrophobic core and 
hydrophilic exterior. A schematic hypothesis shows that by adding these molecules 
together with hm-chitosan-blood mixtures, the samples become liquefied due to 
“capping” of hydrophobes by the α-CD molecules. In (b), dynamic rheology confirms 
this hypothesis as a hm-chitosan (0.25%)/blood (50%) displays gel-like characteristics 
(G’ [closed red circles] and G”[closed green triangles]), whereas a hm-chitosan 
(0.25%)/blood (50%)/α-CD (3%) mixture displays the rheology of a freely-flowing liquid 
(G’ [open red circles] and G”[open green triangles]).  
 

The results of this experiment have two important implications. The first is a 

practical one. That is, this gelation process, or “artificial clotting,” is reversible by the 
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addition of a low-cost, biocompatible molecule, α-CD. This is a key mitigation against 

embolization potentially caused by this system. Although neither dangerous clotting nor 

toxicity were observed during our animal studies, it is useful to have the capability to 

reverse the action of a hemostatic agent. The second implication is a further insight into 

the mechanism of gelation. Because the α-CD has been show to negate the interaction of 

the hydrophobes within associating biopolymer solutions in water, we can conclude that 

the hydrophobes must play an important role in the blood gelation process. 

 

6.4. Conclusions 

We have shown that the amphiphilic biopolymer, hm-chitosan, can act as an 

effective hemostatic agent. It has the ability to transform whole liquid blood into a gel, 

and it quickly stops bleeding from both minor and severe injuries in small and large 

animals. The parent polymer, chitosan, is itself commercially used as a material for 

hemostatic bandages, presumably because of its cationic nature and anti-microbial 

properties. However, chitosan does not change the physical character of liquid blood, i.e., 

a mixture of chitosan and blood remains a sol. In contrast, the addition of hm-chitosan 

converts liquid blood into an elastic gel with a sufficient yield stress so as to hold its 

weight in an inverted tube. The gelling mechanism evidently arises due to the 

hydrophobes on the hm-chitosan chain; we postulate that the hydrophobes anchor in 

blood cell membranes and thereby bridge the cells into a 3-dimensional network. The 

cells are thus active components (nodes or junction points) in the network rather than 

being physically trapped in a polymer mesh. The gelling ability of hm-chitosan is similar 

to that of fibrin-based sealants, but at a much lower cost and wider availability. A further 
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unique aspect of hm-chitosan is that its gelling effect on blood can be reversed by 

addition of supramolecule α-CD. The reversal occurs because α-CD molecules sequester 

the hydrophobes and prevent them from attaching to blood cells. In sum, we suggest that 

amphiphilic biopolymers (hydrophobes attached to a hydrophilic backbone) represent a 

revolutionary paradigm in hemostatic technologies. 
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Chapter 7 

Conclusions and Recommendations 

 

7.1. Conclusions 

The goal of building nano-machines for improving human health from the nano-

scale upward is a noble and ambitious one. Progress in the area of nanomedicine will 

hinge upon a fundamental understanding and embracing of the soft and “sticky” 

environment which exists at the biological nano-scale. Taking inspiration from the cell as 

the ultimate “soft machine,” one which is able to work beautifully at the nano-scale, we 

have blueprinted 4 self-assembled soft-material systems which display advanced 

functionalities with applications in the areas of controlled drug delivery, tissue 

engineering, and wound care.  

 

 We have shown that nanoscale vesicles of NaOA can be entrapped within gelatin 

hydrogels. The resulting vesicle-gel hybrids exhibit the pH-responsive properties of the 

NaOA vesicles. Specifically, when exposed to a pH 10 buffer, the vesicles within the gel 

become transformed into micelles. Vesicle disruption can be done in a controlled manner 

at specific locations within a gel. Gels can thus be “patterned” to have vesicle-rich and 

micelle-rich domains in predetermined arrangements. The utility of entrapping pH-

responsive structures within the gel is in the area of controlled release of hydrophilic 

solutes. We show that the release of calcein dye out of a vesicle-gel into the external 
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solution is accelerated when the solution pH is raised to 10. This increase is attributed to 

a pH-induced vesicle to micelle transition within the gel, which reduces the transport 

resistance to dye diffusion.    

 

 We have shown that “mothership” capsules with hierarchical structural features 

can be formed by adding droplets of a feeder solution consisting of liposomes and 

chitosan, a cationic biopolymer, into a solution of anionic biopolymer (gellan gum) or 

surfactant (SDBS). The resulting structures are spherical capsules; assembly is achieved 

via electrostatic interactions between oppositely charged polymers/surfactants at the 

interface of the droplet. Capsule size is simply dictated by drop size. Chitosan-gellan 

motherships are able to sustain model drug release due via intact liposomes carrying the 

drug within the capsule. Chitosan-gellan motherships can be degraded by the addition of 

the enzyme chitosanase; complete degradation occurs over a 7 period, with intact vesicles 

present in the remaining solution post-degradation. Finally, hierarchical capsule-within-

capsule structures were produced with either chitosan-SDBS or chitosan-gellan systems.  

 

 We have shown that vesicles and liposomes can be captured on electrodeposited 

films of hm-chitosan. Hm-chitosan is significantly superior in its capability for vesicle 

capture compared to unmodified chitosan, which implies that vesicle capture on 

hm-chitosan is promoted by the non-covalent binding of polymer hydrophobes to the 

hydrophobic interiors of vesicle bilayers. We have presented a range of evidence to show 

that the vesicles bound to hm-chitosan are intact structures. The evidence includes direct 

visualization of captured vesicules – by optical microscopy in the case of microscale 
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GUVs and by cryo-TEM in the case of nanoscale vesicles. Additionally, key indirect 

evidence for vesicle intactness comes from a study on dye-filled vesicles – upon 

detergent treatment, a loss of fluorescence from the film is observed, which can only be 

attributed to the detergent-induced disruption of intact vesicles.  

 

Finally, we have shown that hm-chitosan, an amphiphilic biopolymer, can act as 

an effective hemostatic agent. It has the ability to transform whole liquid blood into a gel, 

and it quickly stops bleeding from both minor and severe injuries in small and large 

animals. The parent polymer, chitosan, does not change the physical character of liquid 

blood, i.e., a mixture of chitosan and blood remains a sol. The gelling mechanism 

evidently arises due to the hydrophobes on the hm-chitosan chain; we postulate that the 

hydrophobes anchor in blood cell membranes and thereby bridge the cells into a 3-

dimensional network. A further unique aspect of hm-chitosan is that its gelling effect on 

blood can be reversed by addition of supramolecule α-CD. The reversal occurs because 

α-CD molecules sequester the hydrophobes and prevent them from attaching to blood 

cells.  

 

7.2. Recommendations for Future Work 

Spatio-temporal control of the transition of fatty acid vesicles to micelles with the 

gels presentated in Chapter 3 would have some interesting implications. For example, we 

could make potential build different gelatin gel “sections” adjacent to one another that 

contain different types of model drugs. It would be nice to have a way to selective choose 

when to release a certain kind of drug into a surrounding buffer solution. This would be 
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feasible with a spatiotemporal pH-trigger. There is a commercially available photobase 

generator called MGC which produced OH- ion upon UV irradition.169 By incorporating 

this molecule into the bilayer of the vesicles prior to embedding them within the gels, we 

could subsequently use UV lasers to point at different spots within the gels where we 

want a vesicle-to-micelle transition to occur. A schematic of MGC generation of 

hydroxide ion is show in figure 5.1 below: 

 

Figure 7.1. Photolysis of MGC, a photobase generator (PBG). Upon UV irradiation, the 
molecule dissociates and releases OH–.  

 

The “mothership” systems described in Chapter 4 have some interesting 

implications with regard to developmental biology or origin of life studies. For example, 

a water-soluble glycol chitosan could be dissolved in cell culture media along with a 

suspension of cells, for example, Human Umbilical Vein Endothelial Cells (HUVECs). 

Another set of capsules could contain a suspension of proteins, Vascular Endothelial 

Growth Factor. This would allow us to do very simple, but intriguing experiments where 

we could take one capsule containing cells and another capsule containing growth factor, 

then place the two within the same capsules via the one-step drop capsule-within-capsule 

method described in Chapter 4. It is possible that the cells may be able to escape their 

capsule and form a primitive blood vessel in the vicinity of the VEGF capsule. This 
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hypothelial scenario expresses the type of isolated signaling that can take place during 

embryo formation or tumor growth. More generally, a range of different packaging and 

release experiments could be done with these systems, and many could yield interesting 

results. 

 

We remain on the subject of growth factors with regard to future work on the 

vesicle-biopolymer films described in Chapter 5. Certain growth factors, such as platelet-

derived growth factor (PDGF) and epidermal growth factor (EGF), have been show to 

accelerate the healing of chronic wounds, however their bolus administration can be 

problematic and costly.170 The vesicle hm-chitosan films provide a simple way to 

therapeutically functionalize the films with both of these growth factors, and presumably 

would release the factors in a sustained fashion in aqueous media. (1) Proteins could be 

packaged inside the vesicles, (2) the vesicles could then be attached to the films, (3) and 

the films could then be removed from the electrodes and (4) finally placed in buffer so as 

to test the release of protein. Additionally, it would be worth making these films with the 

active component inside the vesicle and try out the films on chronic wounds in diabetic 

mice, relative to unmodified chitosan controls and bolus PDGF. Any progress in that 

regard could be very exciting. 

 

With regard to the use of amphiphilic polymers for gelling blood, many more 

experiments can and should be tried. It would be instructive to try out a range of 

amphiphilic polymers, e.g. hm-alginate, hm-gelatin, hm-hyaluronic acid, etc., on the 

blood samples to determine if there are a few samples that work particularly well with 
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regard to gel strength and gelation time. These “winners” could then move on to small 

and large animal studies in head-to-head tests with fibrin-based products which dominant 

much of the clinical hemostat space. Of course, more large animal studies should be 

completed for the bandages that were presented in pig models in Chapter 6 and some key 

controls should be tested in those models. On a grander scheme, it would interesting to 

try to correlate the rheology of a given hemostat mixed with heparinized blood in vitro 

with the performance of the hemostat in important in vivo bleeding models. Because 

rheology experiments are much less expensive than animal studies, the existence of any 

positive correlation between in vitro and in vivo could be very valuable. 

 

Lastly, it would be interesting to develop an hm-chitosan which is able to dissolve 

in cell culture media at pH 7.4, so that it could potentially gel healthy soft tissue cells. In 

this way, the hm-chitosan could function as a useful delivery vehicle for cells used as 

therapeutics (e.g. stem cell therapy for damaged heart tissue). “Cellular therapy” refers to 

the use of cells themselves as therapeutic agents, as opposed to small molecules or 

proteins as the sole active agent. A major drawback in the field of cellular therapy is lack 

of effective delivery mechanisms for the cells, and an associating biopolymer could 

potentially fill this void.171 
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