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TWO-COLOR LASER FILAMENTATION   
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Directed By: Professor Kiyong Kim 

Institute for Research in Electronics and Applied 
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The main focus of this dissertation is intense terahertz (THz) generation using 

two-color laser mixing in air plasma. In this scheme, the fundamental and second 

harmonic of an ultrashort pulsed laser are combined and focused into air to create a 

gaseous plasma, which produces an intense THz pulse in the far field. To understand 

the generation process, we have developed a two-dimensional (2-D) plasma current 

model. Using this model, we have simulated the conditions for optimal THz 

generation and verified them experimentally. A full control of THz output is 

demonstrated by varying the phases and polarization states of the input laser pulses. 

We have studied how the generated THz energy scales with various focal 

lengths and input laser energies up to 60 mJ. For high enough energy inputs, the 

resulting THz saturates. This arises from inefficient laser energy coupling into the 

plasma, which results from plasma-induced laser defocusing in filamentation. We 

have overcome the saturation effect by elongating the filaments and achieved 7 µJ of 

  



THz energy with 60 mJ laser energy. This provides a conversion efficiency of 10-4 

from optical to THz energy. 

In addition, we have investigated high-power THz generation in two-color 

laser filamentation with terawatt (TW) lasers including a 0.5 TW, 1 kHz repetition 

(rep) rate system, as well as, 2 TW and 30 TW systems, both operating at 10 Hz rep 

rate. In particular, our 1 kHz rep rate THz source can provide high-energy (>1 µJ), 

high-average power (>1 mW), intense (>1 MV/cm), and broadband (0.01~60 THz) 

THz radiation via two-color filamentation in air. Based on our observed scaling law, a 

~30 TW laser can produce >0.1 mJ of THz radiation with multi-gigawatt (GW) peak 

power in ~1.5 m long filamentation. 

We have also studied various THz detection methods covering a broad range 

of THz frequency bands. We observe our THz source produces extremely broad 

electromagnetic (EM) radiation ranging from radio-micro waves to infrared 

frequencies, confirmed by our complementary THz detection methods. This source 

could be a useful tool for broadband linear and nonlinear THz spectroscopy.  
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Chapter 1 : Introduction and overview 
 
 
 

1.1 Introduction to high power laser systems  

 
Since the first Ruby laser was demonstrated by Maiman at Hughes Research 

Laboratories in 1960 [1], the rapid progress on lasers has provided incredible benefits 

to scientific research and industrial areas. We continue to discover how surprisingly 

small and powerful lasers can be. On a daily basis, many of us are using very compact 

lasers such as diode lasers in DVD/CD players and laser pointers. As a laser spans 

from millimeter-size to football field size like the National Ignition Facility, the laser 

power varies from ~1 mW to 100 kW in continuous wave (CW). When we include 

pulsed lasers, it can provide much higher peak power. 

Surprisingly, over the last several decades, the record peak power has 

increased by more than ten orders of magnitude [2].  Starting from free running CW 

lasers, the Q-switching, mode-locking and chirped pulse amplification (CPA) 

techniques have made huge breakthroughs in increasing laser peak power [3]. In 

parallel, broadband gain media have been studied and applied for mode-locking and 

CPA techniques. For example, titanium-doped sapphire (Ti:sapphire) crystals, 

researched by Moulton as a gain medium at 660 - 986 nm have been utilized as a 

main driver in femtosecond (1 fs = 10-15 s) laser development [4].   

Such progress has led to achieving petawatt (1015 W) scale laser power in 

various laboratories around the world [5]. And now even many university laboratories 

have tabletop-size terawatt (1 TW= 1012 W) or sub-TW laser systems which can 

 1 
 



 

provide extremely strong electric fields, far exceeding the atomic Coulomb field seen 

by electrons in the ground state of atoms. For instance, laser intensities of 3 × 1016 

W/cm2 routinely achieved by sub-TW laser pulses focused within tens of micrometers 

can provide ~5 × 109 V/cm. Nowadays such laser intensities (1016 ~ 1018 W/cm2) are 

readily obtained with compact tabletop laser systems.     

As a result of the laser development, many new scientific areas of discovery 

are now open to us—ultrafast optical science, attosecond science, laser fusion, direct 

laser acceleration, and laser-based THz science which is of interest in this dissertation.  
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1.2 Introduction to terahertz (THz) science 

 

1.2.1 THz science 

Terahertz (1 THz = 1012 Hz) science is a study of electromagnetic radiation 

covering the region of the spectrum between infrared and microwave: typically, 30 

µm ~ 3 mm in wavelength or 0.1 ~ 10 THz in frequency as shown in Fig. 1.1. For 

instance, 1 THz corresponds to 300 µm in wavelength, 4.1 meV in photon energy, 

and 1 picosecond (1 ps = 1 × 10-12 s) in period.  Traditionally, THz is known as too 

high frequency to be generated by solid-state devices; the wavelength is too long for 

any thermal devices to emit the radiation effectively. Because of this lack of adequate 

THz sources, this region has been dubbed as the THz gap [6] [7]. To resolve this, 

there have been two approaches for practical THz generation, up-conversion and 

down-conversion. In the microwave communities, efforts have been made to up-

convert the frequency from multi-GHz to THz. On the other hand, photonics 

scientists have been struggled with achieving THz frequencies by down-conversion 

for many decades.   
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Figure 1.1 Electromagnetic radiation from radio waves to X-rays in 
wavelength and frequency (adapted and redesigned from BRLABS  [8]). 

 

1.2.2 THz application  

Various THz applications can be found from pure science to industry [9]. For 

instance, many molecules have rotational and vibration absorption spectra at THz 

frequencies, and hence broadband THz time domain spectroscopy (THz-TDS) 

techniques provide a convincing tool for chemical scientists [10] [11]. Another 

interesting field is non-invasive THz imaging, as THz can propagate through papers 

and plastics without ionizing materials unlike X-ray  [12].  For security purposes, one 

can develop a detection system which can image inside of postal boxes or envelopes 

and even identify unknown materials by using THz spectroscopic finger 

prints [13] [14]. In addition, THz pump-probe experiment and nonlinear THz study 

can provide a material’s unique properties such as the transient dielectric 

constant [15–18]. As shown in the examples above, the generation of intense THz 

radiation is of considerable interest in many academic and industrial areas [19–23].  
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1.2.3 Conventional femtosecond laser techniques for THz pulse generation 

Despite a wide range of applications and needs, there have not been many 

suitable sources for THz study. However, there has been notable progress in 

developing tabletop THz pulse sources by utilizing femtosecond lasers. Examples 

include ultrafast photoconductive antenna and optical rectification in nonlinear 

crystals, which are two widely adopted techniques in the THz community. 

First, in the photoconductive antenna scheme, an ultrashort laser pulse 

illuminates onto the gap between two electrodes deposited on a semiconductor 

substrate such as LT-GaAs and InP. This rapidly generates photo-carriers  [24] as 

shown in Fig. 1.2. The photo-excited carriers (electrons and holes) are then 

accelerated by the external biased field (VDC in Fig. 1.2), and this current surge emits 

THz radiation in the far field. 

 

Figure 1.2 THz generation using a biased photoconductive antenna 
illuminated by an ultrashort pulse. 

In this scheme, the generated THz field is typically described by  [25],  

2
0

1 ( )
4THz

A J tE
c z tπε

∂
=

∂ ,
    (1-1) 
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where A is the gap area illuminated by the laser source and z is the distance from the 

source to the detection point. As shown in Eq. (1-1), the THz yield depends on the 

substrate properties and electrode size/design. Although there have been interesting 

reports on maximizing the THz yield using large area photoconductors, the output is 

relatively small compared to other methods including optical rectification or two-

color laser mixing in air  [26] [27].  

 

The other method widely used with femtosecond lasers is optical rectification 

in non-centrosymmetric crystals such as ZnTe, GaP, and GaSe. The process can be 

described by the second order nonlinear susceptibility, expressed by [7] [28], 

2
0

2 2 1 2 1 2[cos( ) cos( ) ]
2

nl EP t tχ ω ω ω ω= − + +
.           (1-2) 

 

Figure 1.3 THz generation by ultrashort laser pulse in a nonlinear crystal 
via optical rectification. 

The first term in Eq. (1-2) is related to THz radiation. Optical rectification 

process is considered as a difference frequency mixing between two spectral 

components (ω1 and ω2) within a broadband femtosecond pulse. Here the effective 

nonlinear coefficient, χ(2), and phase matching condition in the crystal determine the 

overall THz yield [17]. In particular, lithium niobate (LiNbO3) crystals with tilted 
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pulse front excitation provides extremely high THz energy, 125 µJ per pulse (current 

record), using this optical rectification process [29].   

 

 

1.3 THz generation using two-color laser mixing in plasma 

Compared to ultrafast photoconductive antennas in semiconductors or optical 

rectification in nonlinear crystals, two-color laser mixing provides intense and 

broadband THz pulses [30]. For example, optical rectification in LiNbO3 crystals 

provides radiation spectra only up to 1.5 THz despite its intense radiation [29]. By 

contrast, two-color laser mixing is reported to provide ultra-broadband radiation up to 

200 THz  [30] . The source also produces extremely low frequency radiation (<0.01 

THz). Basically, this produces electromagnetic (EM) radiation ranging from radio-

microwave to near infrared frequencies. This provides an attractive characteristic for 

broadband spectroscopic studies, and thus strong THz pulse generation via ultrafast, 

two-color laser focusing in air has attracted considerable attention for broadband THz 

spectroscopy, THz imaging, and nonlinear THz studies [30–54]. 

 

 

1.3.1 Mechanisms of laser induced ionization  

As our femtosecond laser readily ionizes ambient air molecules, it is useful to 

describe some basics of photoionization mechanisms before discussing our 

photocurrent model for THz pulse generation. Figure 1.4 shows two dominant 
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ionization processes, multiphoton and tunneling ionization at laser intensities of 1012 - 

1015 W/cm2.  

 

 

Figure 1.4  Laser induced ionization in (a) multiphoton and (b) tunneling 
models where Ui is the ionization potential energy of the atom (courtesy: 
K. Kim [55]). In multiphoton ionization, multiple photons are 
simultaneously absorbed to excite bound electrons to a continuum state. 
In the case of tunneling ionization, the bound electrons tunnel through 
the Coulomb barrier suppressed by an external electric field and then 
become freed.   

Conventionally, photoionization process can be characterized by the Keldysh 

parameter γk, described by  [55], 

/ 2 i
k i p

tU U
T

γ = =                             (1-3) 

where Ui is the ionization potential energy of an atom or ion, Up is the laser 

ponderomotive potential energy, 2 2
24p

e

e EU m ω= , ti is the ionization time and T  is the 

laser oscillation period given by T= 2π/ω  [56,57]. For γk >>1, the ionization is 

dominated by the multiphoton process whereas the tunneling process is dominant for 

γk <1. In terms of laser intensity, the multiphoton process is responsible for relatively 

low laser intensities <1012 W/cm2, whereas tunneling ionization is responsible for 
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~1014 W/cm2. For our laser system providing intensities of 1013 ~1015 W/cm2, 

tunneling ionization is found to be the dominant ionization process. 

 

 

1.3.2 Photocurrent model for THz radiation in two-color mixing  

In the two-color THz generation scheme, an ultrashort laser’s fundamental 

and its second harmonic pulses are focused together in air, which radiates THz pulses. 

Two competing models have been proposed to explain the generation mechanism,  

four-wave mixing  [31]  and the photoionization process [34]. Analogous to optical 

rectification in nonlinear crystals, the four wave mixing process can be seen as an 

effect by the third order nonlinearity in air χ3(Ω = ω + ω − 2ω) [31]. On the other 

hand, one can view the same process as a photocurrent surge, similar to the previous 

photoconductive antenna scheme.  

Here we introduce and describe the photocurrent model and its simulation 

results [47–49]. A femtosecond laser pulse’s fundamental (ω) and its second 

harmonic (2ω) pulses co-propagate and co-focus to ionize air molecules. The 

combined laser field EL at the focus can be expressed as,  

2( ) cos( ) ( ) cos(2 )LE E t t E t tω ωω ω θ= + + ,    (4-1) 

where Eω(t) and E2ω(t) are the amplitudes of the fundamental and the second 

harmonic fields, respectively, θ is the relative phase between Eω(t) and E2ω(t) at the 

focus. At the focal volume, tunneling ionization occurs by the combined laser field, 
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and the ionization rate can be simplified as for a hydrogen atom in a static DC 

field  [58],
 
 

 

2( ) 4 exp
( ) 3 ( )
a a

a
L L

E Ew t
E t E t

ω
   

= −   
    ,  (2-4) 

where EL(t) = |EL| is the combined laser field amplitude at the focus, Ea = 5.14 × 109 

V/cm is the atomic field, and ωa = 4.134 × 1016 s-1 is the atomic frequency. In our 

simulation, we used the Ammosov-Delone-Krainov (ADK) tunneling ionization 

rate [56] instead of Eq. (2-4).  Although the ADK model has been introduced mainly 

for noble gases, it also works well for structureless atomic-like molecules such as 

neutral N2 (the primary constituent gas of atmospheric air).  

Once we know the electron density, one can calculate the local plasma current 

density given by  [49]  

( ) ( , ) ( )′ ′= −∫ d eJ t ev t t dN t ,     (4-2) 

where dN(t′) is the density of free electrons produced by the laser field in the interval 

between t′ and t′ + dt′, and vd(t, t′) is the drift velocity of those electrons at t. 
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Figure 1.5 Simulation results of the free electron density (black line) and 
photocurrent (blue line) induced by a femtosecond laser pulse (red line) 
for (a) single-color with Iω= 1 × 1014 W/cm2 and (b) two-color mixing with 
Iω= 9 × 1013 W/cm2 and I2ω= 1 × 1013 W/cm2 and θ = π/2. 

For example, Figure 1.5 shows the simulated electron density (black line) and 

plasma current (blue) induced by a femtosecond laser pulse (red line) for single-color 

and two-color mixing cases. We use Iω= 1014 W/cm2 for single-color ionization and 
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Iω= 9 × 1013 W/cm2 , I2ω= 1 × 1013 W/cm2 and θ = π/2 (relative phase) for two-color 

ionization. Note that single color ionization provides simply an oscillating current 

(see Fig. 1.5(a)) with a net current of zero. By contrast, two-color ionization yields a 

directional net current whose magnitude is greatly sensitive to the relative phase 

between the fundamental and second harmonic fields. In this case, we used θ = π/2 

(see Fig. 1.5(b)). This directional current surge which occurs on the timescale of the 

laser envelope (or photoionization) emits THz radiation ETHz ∝ dJ(t)/dt in the far 

field [47–50]. For laser pulse duration of <100 fs, this process can generate 

electromagnetic radiation from 1-10 THz. 

 

  

1.4 Summary of dissertation 

The main focus of this dissertation is intense terahertz (THz) generation using 

two-color laser mixing in air. This chapter introduces THz science and conventional 

tabletop THz pulse sources and also describes the photocurrent model for two-color 

laser based THz radiation.  

In chapter 2, the one-dimensional plasma current model is expanded to two-

dimensional (2-D) to take into account two-color laser fields with arbitrary 

polarization. Using the 2-D model, the conditions for optimal THz generation have 

been simulated and experimentally verified. Here, various laser parameters such as 

the relative phase of two-color laser pulses, the azimuth and tilt angle of the BBO 

(Beta Barium Borate) crystal, and the input laser pulse duration have been adjusted. A 
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full control of terahertz output is demonstrated and explained in the context of the 2-

D photocurrent model. 

In chapter 3, output THz yield versus laser energy is tested. We present our 

recent study on THz energy scaling and saturation in two-color mixing with using 

various focal length lenses and input laser energies up to 60 mJ. With a high power 

laser, THz yield saturation has been observed via transverse fluorescence imaging. 

We overcome the saturation effect by elongating the filaments and achieve 7 µJ of 

THz energy. 

Chapter 4 covers macroscopic effects in filamentation which govern THz 

output energy yields and radiation profiles in the far field.  We investigate high-power 

THz generation in two-color laser filamentation with terawatt (TW) lasers including a 

0.5 TW, 1 kHz repetition (rep) rate  system, as well as, 2 TW and 30 TW systems 

operating both at 10 Hz rep rate.  

Chapter 5 introduces various broadband THz detection methods. We find that 

THz radiation from two-color mixing in air provides extremely broad EM radiation. 

Here we characterize the radiation spectra at a broad range of frequencies covering 

radio-micro waves to infrared frequencies by complementary THz detection methods. 

Chapter 6 gives a conclusion and outlook for intense THz generation via two-

color laser mixing. Lastly, Appendix A details the laser system used in this 

dissertation, including a newly developed high-repetition-rate laser system enabled by 

cryogenic cooling. 
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Chapter 2 : Two-dimensional plasma current and optimized 
terahertz generation in two-color photoionization  
 

 

2.1 Introduction to two-color photoionization for THz generation 

Recently, THz generation via two-color laser mixing in air  [30–54] has 

attracted a considerable amount of interest due to its capability of producing 

broadband and high-power THz pulses  [47–49]. In this scheme, an ultrashort pulsed 

laser’s fundamental (ω) and its second harmonic (2ω) pulses are co-focused in air to 

ionize air molecules. From the laser-ionized plasma, strong THz pulse emission is 

observed. The nonlinearity responsible for such THz generation originates from rapid 

tunneling ionization and subsequent electron motion in a symmetry-broken electric 

field [47–49]. This photocurrent model  [47–49] can explain the microscopic origin of 

the third order nonlinearity χ(3) (generally all high order nonlinearities χ(n)) in THz 

generation via two-color photoionization.  

In our previous studies  [47–49], the plasma current model was simulated in 

the situation where ω is polarized in the same direction of  2ω polarization. 

Experimentally, this can be achieved by splitting off the orthogonally polarized 2ω 

pulse (type-I phase matching) and rotating its polarization to be parallel to the ω pulse 

polarization with a half-wave plate, and finally combining the two-color pulses with 

beam splitter for THz generation. This scheme was previously demonstrated in 

Ref  [35] and is useful for individually controlling laser parameters and/or 

polarizations of 2ω and ω pulse. However, the scheme is very sensitive to any phase 
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change due to mechanical vibration or air turbulence occurring in the split and 

combined beam path. For example, less than a few µm vibrations can effect a phase 

shift of ~2π, which can greatly affect the THz output. 

Because of its phase instability in the aforementioned splitting system, most 

two-color photoionization experiments adopt an all-in-line second harmonic and THz 

generation arrangement as shown in Fig. 2.1(a). In this scheme, the BBO (Beta 

Barium Borate) crystal needs to be azimuthally oriented such that the incoming ω 

field has a component parallel to the 2ω  field polarized in the extraordinary (ê) axis 

of the BBO crystal. In this case, the fundamental pulse becomes elliptically polarized 

after passing through the crystal whereas the second harmonic remains polarized 

along the extraordinary axis. This setting invokes two-dimensional (2-D) transverse 

electron currents for THz generation [38]. Previously, it was shown that the 

polarization and power of THz radiation are sensitive to the phase difference between 

the fundamental and second harmonic fields and also the azimuthal angle of 

BBO  [37,38]. 

In chapter 2, we develop a 2-D plasma current model to include full laser 

experimental parameters, which can ultimately control output THz yields and 

polarization. We also compare our 2-D model simulation results with experimental 

data in finding conditions for maximum THz generation.  
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2.2 Transverse 2-D photocurrent model and simulation 

Starting from 1-D photocurrent model  [47–49], we expand it to two-

dimensional by taking into account of transverse 2-D laser fields as shown in Fig. 

2.1(b). When a fundamental laser pulse passes through a birefringent BBO crystal, its 

amplitude can be decomposed into two orthogonal fields, Eωo and Eωe, polarized 

along the ordinary (ô) and extraordinary (ê) axes of the crystal, respectively. Here the 

second harmonic pulse produced by type-I phase matching is polarized along the ê 

axis. 

 
 

Figure 2.1 (a) Schematic of all-in-line second harmonic and THz 
generation. (b) Vector diagram for fundamental (Eω) and its second 
harmonic (E2ω) generation before the BBO crystal and at the front end of 
plasma filament. ô and ê  represent the ordinary and extraordinary axes 
of the BBO crystal, respectively. Eωo and Eωe, polarized along the ordinary 
(ô) and extraordinary (ê) axes of the crystal. 

 

Each field along the ordinary (ô) and extraordinary (ê) axes can be calculated by  

(a) 

(b) 
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where Eω and E2ω are the amplitudes of the fundamental (ω) and the second harmonic 

(2ω) fields, deff is the effective conversion coefficient of the BBO crystal from ω to 

2ω, and α is the angle between the incoming ω polarization (horizontal axis) and the ê 

axis [see Fig. 2.1(b)]. Then the combined laser field at the focus is expressed as  

 

2ˆ ˆ ˆcos( ) cos( ) cos(2 )L e oE E t E t E tω ω ωω ω ϕ ω θ= + + + +e o e ,          (2-2) 

with  ( ) /e on n l cω ωϕ ω= − ,  2 0( ) /n n d cω ωθ ω θ= − + ,                      (2-3) 

where φ is the phase retardation between Eωe(t) and Eωo(t), the projection components 

of  the ω field after passing through the BBO crystal of thickness l, nωo and nωe is the 

refractive index of the BBO crystal along the ô and ê axis, respectively. Also, θ is the 

relative phase between Eωe(t) and E2ω(t) as used in the previous reports  [47–49] , c is 

the speed of light in vacuum, d is the distance between the plasma and BBO crystal, 

nω and n2ω is the refractive index of air at ω and 2ω frequency, respectively, and θ0 is 

the phase difference right after the BBO crystal. In practice, θ can be varied by 

changing the distance to plasma, d  [47] , and φ can be controlled by tilting the angle 

of the BBO crystal and thus varying the optical path length l  in the BBO crystal (see 

Sec. 2.3 for details). 

From the 2-D laser field in Eq. (2-2), one can calculate the quasi-DC 

tunneling ionization rate given by  [58] ,
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2( ) 4 exp
( ) 3 ( )
a a

a
L L

E Ew t
E t E t

ω
   

= −   
    ,  (2-4) 

where EL(t) = |EL| is the combined laser field amplitude at the focus, Ea = 5.14 × 109 

V/cm is the atomic field, and ωa = 4.134 × 1016 s-1 is the atomic frequency. In our 

simulation, we used the Ammosov-Delone-Krainov (ADK) tunneling ionization 

rate [56]. Although the ADK model has been introduced mainly for noble gases, it 

also works well for structureless atomic-like molecules such as neutral N2 (the 

primary constituent gas of atmospheric air). From the ionization rate equation, the 

time-varying electron density Ne(t) can be computed with multiple degrees of 

ionization taken into account [49]. Here we ignore collisional ionization, plasma 

recombination, and electron attachment to neutral molecules, which is a valid 

assumption because those events occur much more slowly compared to the pulse 

duration <50 fs considered here  [59].  

Once the electron density is estimated from the ADK ionization rate, the 

plasma current density can also be obtained as 

∫ ′′−= )(),()( tdNttevtJ e
      and    

( ) ( / ) ( )
t

e Lt
v t e m E t dt

′
= − ∫ ,   (5) 

where dNe(t′) is the change of electron density in the interval between t′ and t′ + dt′, 

and ve(t, t′) is the velocity of those electrons at t. Now, one can consider 2-D 

transverse current density given by J⊥ = Joô + Jeê, where Jo and Je is the current 

density component along the ô and ê axis, respectively. This current density is the 

origin of THz radiation and its yield is expressed by the derivative of the current 

density as ETHz ∝ dJ⊥(t)/dt. Here, the two orthogonal current densities (Jo and Je) are 

always in phase in which θ and ϕ do not change over the entire pulse duration, and 
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this makes the far-field THz radiation linearly polarized. Here, the THz polarization 

angle is determined by the relative strength between Jo and Je. 

 

 

Figure 2.2  2-D plasma current producing linear fundamental field case; (a) 
φ = 0˚ α = 45˚, and θ = 90˚ (left) and elliptical fundamental field case; (b) φ 
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= 210˚, α = 55˚, and θ = 20˚ at peak laser intensities of Iω = 1014 W/cm2 at λω 

= 800 nm and I2ω = 0.8 × 1013 W/cm2 at λ2ω = 400 nm. Over one cycle of the 
fundamental field (-π < ωt < π) are shown the laser fields Eωe (red solid 
line), Eωo (red dashed line), E2ω (blue dotted line); ionization rate 
calculated by the total field (black dotted line) and electron drift velocities 
along the ô (red dashed line) and ê (red solid line) axes; plasma currents 
Jo (red dashed line) and Je (red solid line) along the ô and ê axis, 
respectively. The insets show the polarization diagrams of Eω (red line), 
E2ω (blue line), and ETHz (black line) for the two cases. 

 

Figure 2.2 shows selected simulation results of 2-D plasma current model for 

two different cases. In the first case, Fig. 2.2(a), both Eω and E2ω are linearly 

polarized with an angle of 45˚, which can occur when φ = 0˚ and α = 45˚. In this case, 

the total current density summed over one cycle is maximized at θ = 90˚. This also 

means that maximum THz radiation occurs at θ = 90˚, consistent with our previous 1-

D model [47]. The inset in Fig. 2.2(a) shows the polarization diagrams of all three 

waves, Eω, E2ω, and ETHz.  

In the second case, Figure 2.2(b), Eω is elliptically polarized (φ = 210˚, α = 

55˚) while E2ω is linearly polarized. In this case, the maximum THz yield occurs at θ 

= 20˚. The inset in (b) shows the angle of THz polarization with respect to those of 

the other two waves Eω and E2ω. Here, we note that the elliptical field case (b) 

produces almost four times higher THz fields compared to the linear polarization case 

(a). This suggests that linearly-polarized (but not parallel) two-color fields do not 

necessarily yield the maximal THz output in the all-in-line THz generation 

configuration. Thus, one needs to find the optimal φ, α, and θ parameters which 

maximize the THz output. 
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Figure 2.3 (a) Resulting |J⊥|2 (or THz yields) as a function of θ and α 
(degrees) for four different φ = 0˚, 45˚, 90˚, and 210˚. (b) In each 2-D 
simulation, the line which yields the local |J⊥|2 maximum at a fixed θ is 
selected and plotted as a function of α for |Jo|2 (line with circles), |Je|2 
(line with asterisks), and |J⊥|2 (solid line).  

 

Based on the 2-D photocurrent simulation, Figure 2.3 shows 2-D THz yield 

color map. The 2-D electron current density squared, |J⊥|2 (equivalently THz yield) is 

examined by varying all three simulation parameters (φ, θ, and α). Figure 2.3(a) 

shows |J⊥|2 as a function of θ and α for four φ values (φ = 0˚, 45˚, 90˚, and 210˚). For 

each 2-D plot |J⊥|2 (α, θ), the line which has a local maximum is selected and plotted 

as a function of α for |Jo|2, |Je|2, and |J⊥|2 (bottom). The maximum THz yield occurs at 

φ = 210˚, θ = 20˚, and α = 55˚. One should note that the maximum yield does not 

occur at θ = 90˚ anymore owing to 2-D photocurrents. In the case of φ = 210˚, the 

THz polarization angle is ~60˚ with respect to the ê axis as shown in Fig. 2.1(b). With 

φ = 90˚, the fundamental field Eω is circularly polarized and the resulting THz field is 

purely polarized along the ê axis [see Fig. 2.3 (b)]. 
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Figure 2.4 Optimal α and θ values maximizing THz output for a given φ 
value. It considers three maximum types: |Jo|2 (red dashed line), |Je|2 
(red solid line), and |J⊥|2 (blue solid line). This shows the total THz 
radiation (or |J⊥|2) peaks at φ = 30˚, 150˚, 210˚, and 330˚ and at α ~55˚. 

 

Figure 2.4 summarizes 2-D photocurrent simulation data and presents the 

optimal α and θ which maximize |Jo|2, |Je|2, and |J⊥|2 for varying φ value (0˚ ≤ φ < 

360˚). For instance, the total THz output (blue solid line) peaks at φ = 30˚, 150˚, 210˚, 

and 330˚ (see the last graph). At given φ angles, α and θ values maximizing the total 

THz yield are shown in the first and second graphs. For all cases, the maximum THz 

yield occurs at α ~ 55˚, and this agrees well with previous experimental reports 

employing all-in-line schemes  [34,38]. We also note that the optimal θ has a broad 

range of values depending on φ and whether the total or polarized (ô or ê) yield is 

calculated. 
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2.3 Experiment and simulation results 

The experimental setup for 2-D photocurrent study is shown in Fig. 2.5. A 

Ti:sapphire laser system delivering a 800 nm center wavelength, ~6 mJ, 25 fs pulses 

at a 1 kHz repetition rate (Legend elite USX, Coherent Inc.) is used to generate THz 

radiation.  

 
Figure 2.5 Schematic setup for THz generation and detection. The far-
field THz yield and polarization is measured with a pyroelectric detector 
combined with a wire-grid polarizer and filters (Teflon, HDPE, Sapphire, 
or Ge). THz output is controlled by varying the distant from BBO to 
filament (d), azimuthal angle of BBO (α), tilt angle of BBO (β), and tilt 
angle of lens (γ).  

 

The fundamental laser pulses (ω) are focused by a focusing lens (250 mm) 

and propagate through a 0.1-mm thick BBO crystal (type-I) which generates second 

harmonics. The fundamental (ω) and second harmonic pulses (2ω) co-propagate and 

ionize atmospheric air at the focus, generating THz radiation. A 5-mm thick silicon 

(Si) wafer is placed to block the optical pulses, whereas the THz radiation produced 

at the focal spot is collected and focused by two off-axis parabolic mirrors into a 

pyroelectric detector (SPI-A-62THZ, Spectrum detector Inc.). For low (<3 THz) and 
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high (<10 THz) frequency THz detection, an additional 1.5-mm thick Teflon, 1.5-mm 

thick high-density polyethylene (HDPE), 2-mm thick Sapphire, or 2-mm thick Ge 

filter is placed in front of the detector. For low-frequency (<3 THz) THz polarization 

detection, an optional wire-grid polarizer (G50x20, Microtech instruments, contrast 

>95:2 below 3 THz) with 50 µm wire spacing and 20 µm wire diameter is placed in 

front of the pyroelectric detector.   

We control the relative amplitude, Eωe/E2ω, by azimuthally rotating the BBO 

angle α, relative phase θ by moving the BBO position d, and phase retardation ϕ by 

tilting the BBO angle β. Furthermore, we change the filament length by tilting the 

focusing lens angle γ. 

 

2.3.1 Relative phase (θ or d) effect on THz yields 

The first experimental test is studying the effect of the relative phase (θ) on 

output THz yields.  Figure 2.6(a) shows the THz yield measured by a function of the 

BBO to focus distance d. As mentioned in the experimental setup, five lines were 

obtained with five different filters (Si, Ge, Sapphire, HDPE, or Teflon) placed in front 

of the pyroelectric detector. All five lines increase quadratically with decreasing d, 

and an additional oscillatory modulation occurs with a period of ~2.5 cm. This 

quadratic and oscillatory trend was previously reported [47] and consistent with the 

air dispersion term shown in Eq. (2-3)  [34]. However, distinct from previous electro-

optic (EO) based measurements  [34,38,47], the yield does not reach the bottom when 

the yields are minimal. This imperfect oscillatory behavior can be explained by the 2-

D plasma current model described in Section 2.2. As shown in our simulation result 
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in Fig. 2.6(b), the total THz wave can be considered as the superposition of two 

orthogonal THz fields polarized along the ordinary and extraordinary axes. The total 

yield curve (blue line) in Fig. 2.6(b) reproduces the experimental trend shown in Fig. 

2.6(a). It is important to note that the individual yields, |ETHz,o|2 (red dotted line) or 

|ETHz,e|2 (green dotted line) follow the complete oscillatory θ dependence, reaching the 

bottom at local minimum, agreeing with the previous EO-based 

measurements [34,38,47].  
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Figure 2.6 (a) Measured THz yield dependence on the relative phase (ϕ) 
obtained with various THz filters: Si (black solid line), Ge (blue dotted 
line), Sapphire (magenta line with circles),  HDPE (green line with x), and 
Teflon (red dashed line), in addition to the Si filter. Here, the Sapphire, 
HDPE, and Teflon signal are rescaled by a multiplication factors of 2, 4 
and 8, respectively.  
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Figure 2.7 (a) THz polarization angular map with three different positions 
of BBO crystal at 10 cm, 11 cm, and 12 cm. (b-c) Simulated THz yields 
with varying θ for the total (blue line), ô-polarized (red line with +), ê-
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polarized (green dotted line) THz yields. In the simulation, ϕ = 210˚ (or β 
≈ 1˚) and α= 55˚ are assumed. 

 

Figure 2.7(a) shows three polarization maps obtained with three different d (or 

θ) values , d = 10 cm, 11 cm, and 12 cm . It is shown that the THz polarization rotates 

with varying θ, which is consistent with the 2-D plasma current model and the 

previous reports  [37,38]. Because the THz yields along ê and ô axes are a function of 

θ, the THz polarization is rotating as the relative phase θ changes. The simulation 

results (Fig. 2.7(c)) show the total (blue line), ô-polarized (red line with +), ê-

polarized (green dotted line) THz yields with varying θ. With three different θ values, 

we can simulate the polarization condition shown in our experimental results. Thus 

our 2-D photocurrent model can be applied in describing the rotation of THz 

polarization.   

 

 

2.3.2 Azimuth (α) and tilt (β) angle effects on THz yields and polarization 

The azimuth α and tilt β angles of BBO crystal also affects THz output yield 

and polarization. To quantify those effects, THz yields are measured with varying α 

and β.  
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Figure 2.8 THz yields as a function of α angle at β = 0˚ (black line with +) 
and β = 1˚ (red line with o). Co-plotted is the second harmonic intensity 
(blue line). 

 
To evaluate the THz yield dependence on the azimuth angle α of BBO crystal, 

the output THz yield is measured over the azimuth angle α of BBO crystal. The blue 

line in Fig. 2.8 shows second harmonic generation from BBO, and it is maximized 

when the ω polarization is aligned with the ordinary axis of the BBO (i.e. α = 90), but 

that is not the case of maximum THz yield. The maximum THz occurs at α ≈ 50˚, 

consistent with the previous reports and very close to our simulation result  α = 

55˚  [35]. Figure 2.8 also shows that THz yield is varied with tilting angle β. To 

optimize the output THz yield, one needs to tune the BBO crystal. This is equivalent 

to controlling φ as mentioned in the simulation section. Figure 2.8 also shows the 

THz yield as a function of α at two tilt angles β = 0˚ (black line with +) and β = 1˚ 

(red line with o). It shows that β ≈ 1˚ provides the higher signal (60% more), which 

suggests that one needs to optimize φ, or practically β, to maximize the THz output. 
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Here, we estimate φ to be 268˚ and 210˚ at β ≈ 0˚ and 1˚, respectively, in our BBO 

crystal case.  

 

  

Figure 2.9 Simulated φ value (blue line) as a function of (a) the BBO 
effective thickness in µm and (b) β in degrees. Co-plotted in (b) is the 
second harmonic intensity (green dashed line) produced by type-I phase-
matching as a function of β.  
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Figure 2.9 shows how φ changes with the effective BBO thickness l or β 

under our experimental condition. In general, controlling φ by titling the BBO angle 

(β) is practically limited as it simultaneously affects the phase-matching condition in 

second harmonic generation. For example, Figure 2.9(b) shows the second harmonic 

intensity (green line) as a function of β. If β deviates more than ±2˚, the second 

harmonic conversion efficiency drops significantly, ultimately reducing THz output 

power. This limits the achievable φ value as π < φ < 2π (or equivalently 0 < φ < π), 

which is just good for a full control of φ but this naturally drops the THz output 

energy when the optimal β approaches ±2˚. This, however, can be overcome, if an 

optical waveplate is inserted before the BBO crystal and adjusted to control the tilt 

angle β separately. In addition, Figure 2.9(b) shows that the initial value of φ is ~268˚ 
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Figure 2.10 Fundamental (ω, red line), second harmonic (2ω, blue line 
with +), and THz (black line with circles) polarization maps obtained 
with rotating the polarization analyzer at β = 0˚ (a) and 1˚ (b). Unlike 2ω, 
ω polarization is depending on the tilt angle β. 

 

Figure 2.10 shows fundamental (ω, red line), second harmonic (2ω, blue line 

with +), and THz (black line with circles) polarization maps obtained while rotating 

the THz polarizer in front of the detector with two different angles β = 0˚ and 1˚. In 

this test, α ≈ 55˚ is selected and fixed. The polarization of fundamental is rotating as β 

changes from 0˚ to 1˚ and thus THz polarization also rotates. The results suggest that 

THz yield and polarization are highly depending on BBO crystal condition such as 

azimuthal angle and tilting angle as we predicted from the 2-D simulation.  
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2.3.3 Plasma filament length effect on THz yields 

The 2-D plasma current model described in Sec. 2.2 predicts linear THz 

polarization, but circular or elliptically polarized THz radiation is often observed 

experimentally. For instance, the polarization map shown in Fig. 2.10 indicates the 

THz wave is not perfectly linearly polarized but rather elliptically polarized. We 

believe this occurs because the transverse plasma current (thus THz polarization) 

direction gradually rotates with varying θ along the plasma filament (recall θ varies 

with d). Thus, the THz pulse produced at each point along the filament has different 

linear polarization and arrives at different times on the detection plane. Because the 

THz velocity is faster than the optical group velocity, the THz pulse produced at the 

entrance of filament arrives earlier than that produced at the end of filament  [60]. In 

addition, there is an instantaneous cross Kerr effect between ω and 2ω pulses 

occurring along the filament, which also rotates the plasma current and THz radiation 

direction. These two effects can produce elliptically or circularly THz polarization.  
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Figure 2.11 THz emission as a function of the BBO-to-plasma distance d 
with three different plasma lengths, 12 mm (line with +), 14 mm (line 
with circles), and 16 mm (line with squares) with (a) the Ge filter for high 
frequency (<10 THz) detection and (b) the Teflon filter for low frequency 
(0.1 ~ 3 THz) detection. 

Figure 2.11 shows the total THz yield with increasing d for three different 

plasma lengths,  12 mm, 14 mm, and 16 mm with two different filter sets: (a) Ge (<10 

THz) and (b) Teflon (0.1~3 THz)  [6,7]. Here, the filament length is adjusted by 

titling the lens normal angle as shown in Fig. 2.5. At both high and low THz 

frequencies, the longer the filament is, the more intense THz generation is produced 

as shown in Figs. 2.11. This implies that tilt-induced aberration increases the laser 
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spot size, possibly dropping the laser intensity in the filament, but its effect appears 

less significant compared to the plasma volume (length and/or radius) effect on THz 

generation. Here, the maximum enhancement factor is ~2.8 for the high THz 

frequency case. However, in the low THz case, the enhancement factor is ~1.4, and 

the yield even drops when the filament length reaches ~16 mm [Fig. 2.11(b)]. This is 

attributed to THz absorption in the plasma filament. It was previously shown that low 

frequency THz components start to saturate earlier than the higher frequency 

components [48]. We also note that the θ dependence is more dramatic with the low 

THz frequency case. We speculate that this may be attributed to certain effects which 

are not included in our model. For simplicity, we ignore many effects in filamentation, 

which include collective plasma oscillations, electron-ion and electron-neutral 

collisional effects, rescattering with parent ions, and any propagation effects [50] 

including self- and cross-phase modulation, spectral shifting and broadening, Kerr-

induced polarization rotation, phase- and group velocity walk-off between two-color 

fields. In particular, plasma oscillations and collisional effects greatly influence the 

low frequency components of THz radiation initially produced by plasma 

currents [61] .  

 

 

2.3.4 Study on the effect of the laser pulse duration 

As a supplementary study, the dependence of THz yields on input laser pulse 

durations is discussed in this section.  
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Figure 2.12 THz yield measurement as a function of input laser pulse 
durations with Teflon and Ge filters placed in front of the pyroelectric 
detector. 

 
Figure 2.12 shows the output THz yield as a function of input laser pulse 

durations. Here the laser pulse duration is adjusted by detuning the laser compressor 

and measured with a homemade single-shot autocorrelator.  It shows that for high 

frequency THz radiation, the signal peaks with the shortest pulse duration <40 fs and 

there are two more peaks occurring at negatively chirped 150 fs and at positively 

chirped 220 fs. However, for low THz frequencies, the peak at ~38 fs substantially 

drops, exhibiting three equivalent peaks. This trend is different from the previous 

report by Wang et al. [62]. This interesting three-peak feature may be explained in the 

plasma current model by including chirp-dependent second harmonic generation in 

the BBO crystal and plasma current generation. 
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2.4 Conclusion  

In this chapter, we describe the mechanism of 2-D plasma current generation 

and optimization of THz radiation in two-color photoionization. This is done by 

controlling the relative phase θ, BBO azimuth angle α, and tilt angle β. We show that 

these parameters can control many laser-THz properties including the laser (ω and 2ω) 

amplitudes, ellipticity of ω, phase retardation φ, phase delay θ, polarization and the 

intensity of THz, all consistent with our 2-D photocurrent model. Furthermore, we 

measure the THz yield dependence on the filament length. All these results verify the 

sensitivity of control parameters in generating intense THz radiation and will 

motivate further investigations. In addition, our semiclassical approach needs to be 

replaced by full quantum mechanical calculations, in particular when the quasi-static 

tunneling ionization regime becomes inapplicable [63]. 
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Chapter 3 : High power terahertz generation in two-color  
laser produced plasmas: THz yield scaling and saturation  
 
 
 
 

3.1 Introduction to high power THz generation  

Terahertz (THz) generation by two-color laser mixing in air plasma has 

attracted a considerable amount of interest owing to its capability of producing ultra-

broadband and high-power THz pulses [30–54]. In this schematic, the fundamental 

and second harmonic of an ultrashort pulsed laser are combined to ionize air 

molecules at the focus, which produces an intense THz pulse in the far field.  

Microscopically, this process originates from tunnel-ionized electrons moving 

in a non-symmetric two-color laser field. This creates a subpicosecond directional 

current surge with concurrent THz radiation [47–49]. Femtosecond laser pulses can 

create filaments ranging from a few centimeters to meters due to dynamic balancing 

between Kerr-induced laser self-focusing in air and plasma-induced defocusing [64–

68]. In this regime, macroscopic phase-matching becomes crucial for efficient THz 

generation. Recently, off-axis phase-matched THz generation was demonstrated with 

~70 mm long filamentation, and its mechanism is understood in the context of off-

axis constructive interference between the local THz waves emitted along the 

filament  [52].  

At the same time, it is of great interest to understand what limits THz output 

energy and how the yield can be optimized. In the previous chapter, we studied how 

laser parameters such as phase, amplitude, polarization, and ellipticity affect the 
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resulting THz yield [51]. In this chapter, we re-examine THz energy scaling and 

saturation in two-color filamentation with laser energies up to 60 mJ. In particular, we 

investigate laser energy coupling into filaments under various external focusing 

conditions, ultimately addressing a mechanism leading to THz yield saturation. 

 
 
 

3.2 Experimental setup  

 
Figure 3.1 Schematic of experimental setup.  A pyroelectric detector with 
various filters detects THz and transverse imaging with a CCD camera 
monitoring filament fluorescence. 

 

Figure 3.1 shows a schematic experimental setup for THz saturation study. A 

Ti:sapphire laser system which is capable of delivering 800 nm, ~70 mJ, 50 fs pulses 

at a 10 Hz repetition rate is used to generate THz radiation. Various neutral density 

(ND) filters are placed before the grating compressor in the laser system to control the 

laser pulse energy. The laser pulse is focused by a lens with focal length of f = 150 

mm, 200 mm, 250 mm, 1.0 m, 1.5 m, or ~4 m, and then propagates through a 0.1-mm 

thick BBO crystal (type-I) which generates a second harmonic. The fundamental and 

second harmonic pulses co-propagate and create a plasma filament at the focus, 
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generating THz radiation. Then the optical pulses are blocked by a 5-mm thick silicon 

(Si) wafer, while the generated THz radiation is being collected and focused by two 

off-axis parabolic mirrors into a 2 mm or 9 mm pyroelectric sensor (SPI-A-62THZ, 

Spectrum detector Inc., QS9-THZ-BL, Gentec-EO Inc). For f = 1.0 m, 1.5 m, and 4.0 

m focusing, a parabolic mirror with 20 cm diameter was used to collect and detect 

THz radiation. To detect different THz frequency ranges, an additional 1.5-mm thick 

Teflon (<3 THz), 1.5-mm thick high-density polyethylene (HDPE), or 2-mm thick 

germanium filter (<10 THz) is placed in front of the pyroelectric detector. A 

transverse optical imaging setup consisting of a lens, a color filter, and a charge 

coupled device (CCD) camera is also used to measure the plasma filament length and 

fluorescence (see Fig. 3.1 bottom). 
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3.3 Results and discussion 

 

3.3.1 Short filament experiments 

Figure 3.2 shows the measurements of the pyroeletric signal (THz yields) for 

a relative short filament (under 2 cm) as a function of increasing laser input energy. 

We use three different focal lens, (a) f = 150 mm, (b) f = 200 mm, and (c) f = 250 mm. 

In all cases, the THz output generally increases with laser energy in the low input 

energy regime. However, as the laser energy further increases, the output soon 

saturates and even decreases in certain cases. In addition, it shows different saturation 

curves for different focusing geometry. For instance, with f = 150 mm focusing, the 

yield starts saturating at ~35 mJ.  With f = 200 mm, it saturates at ~45 mJ. With f = 

250 mm, the signal continuously increases up to ~55 mJ, yielding more THz output 

energy compared to the shorter focusing cases. The maximum THz energy is 0.2 µJ, 

0.5 µJ, and, 0.8 µJ, with f = 150 mm, 200 mm, and 250 mm focusing, respectively. 

This shows the THz generation efficiency is greatly sensitive to the focal length of  

the lens, which is consistent with the previous observation [42].  
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Figure 3.2 THz energy measurement (Pyroelectric detector signal) with 
various THz filters (Si, Ge, HDPE , or Teflon)  as a function of  input laser 
energy with three different focusing lenses: 150 mm, 200 mm and 250mm. 
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Figure 3.3 Second harmonic generation (SHG) from the 100 μm thick BBO 
crystal pumped by 800 nm laser. 

Here, we note the observed THz saturation is not correlated with the SHG 

process occurring in the BBO crystal. Figure 3.3 shows the second harmonic 

generation (SHG) from a 100 μm thick BBO crystal. It shows an almost linear second 

harmonic yield even with high laser energy.  
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Figure 3.4  Filament fluorescence imaged by a CCD with increasing laser 
energy. Laser pulses enter from right to left. (Bottom) Total fluorescence 
intensity versus input laser energy with three focusing lenses, 150 mm, 
200 mm and 250 mm. 

Figure 3.4 shows filament fluorescence images as a function of laser energy 

obtained with different focusing lenses, 150 mm, 200 mm, and 250 mm. The bottom 

row shows the total fluorescence intensity integrated over the entire region of interest 

as a function of laser input energy. By analyzing the filament fluorescence images, 

we can study how the THz saturation is connected to the input laser energy and/or 

lens focal length conditions. Although it does not directly measure the electron 

densities or laser intensities, the filament fluorescence provides information as to how 

the laser pulse propagates with different lens-focusing and how its energy is coupled 

into plasma [59] [69] 

 .  
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In the low laser energy regime, it shows that filaments are formed at very 

close to the vacuum focus of the lens. However, with increasing laser energy, the 

filaments start appearing well before the vacuum focus due to Kerr-induced self-

focusing in air (moving to the right in the figures), also increasing their lengths. In 

this filamentation regime, self-focusing and plasma-induced defocusing play 

important roles in extending the filament length and simultaneously preventing the 

laser from reaching higher intensities [64–67] [70]. 

The bottom figures show the total fluorescence intensity integrated over the 

entire frame as a function of laser input energy. Interestingly, with the short focal 

lenses (150 mm and 200 mm), the measured fluorescence intensity strongly saturates. 

Overall, the trend matches well with the THz yield curves shown in Fig. 3.2. This 

indicates the saturation in THz generation is strongly correlated with the plasma 

filament condition. In the case of short focusing geometry (f =150 mm), a dense 

plasma is formed and strongly defocuses the high-energy laser pulse, which is evident 

from the saturated fluorescence signal. Here the laser energy is not effectively 

coupled into plasma, which results in less THz emission. This is why THz output 

strongly saturates with increasing laser input energy.   
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3.3.2 Long filament experiments 

 

 

Figure 3.5 Long filamentation experiment with pyroelectric detection. A 
~3 mm diameter aperture is placed and scanned to control the effective 
filament length 

To avoid ionization-induced defocusing with high input laser energy, we re-

distribute the incoming laser energy over elongated plasma with weak focusing. 

Figure 3.5 shows a modified experiment setup for long filamentation. We use the 

same laser system, the amplified Ti:sapphire laser delivering 800 nm, 60 mJ (fixed), 

50 fs pulses at a 10 Hz repetition rate. The femtosecond laser pulses are focused by a 

long focal length lens, f = 1.0 m, 1.5 m, or ~4 m. Here the effective filament length, 

leff, is controlled by scanning a ~3 mm diameter aperture, along the filament direction. 

It blocks the THz radiation emitted prior to the aperture (left side of the aperture in 

Fig. 3.5), while the THz waves generated behind the aperture (right side of the 

aperture) are collected and focused into the detector [52] . Due to the long filament 

length reaching up to 40 cm, a 20 cm size parabolic mirror is placed to collect and 

detect THz radiation. Here a 9 mm pyroelectric sensor (QS9-THZ-BL, Gentec-EO 

Inc) is used for THz detection. 
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Figure 3.6  THz yield scaling as a function of the effective filament length 
(leff) adjusted by a moving pinhole along the filament with lens focusing 
of  (a) 1 m, (b) 1.5 m, and (c) ~4 m (obtained with a combination of two 
lenses). 

 
Figure 3.6 shows the measured THz yield as a function of the effective 

filament length, leff, with f = (a) 1 m, (b) 1.5 m, and (c) ~4 m lens focusing with fixed 

input laser energy, 60 mJ. It shows that the THz output increases over hundreds of 

millimeters until it saturates at 100 mm, 150 mm, and 400 mm with f = 1 m, 1.5 m, 

and 4 m focusing, respectively. In the case of f = 4 m, the yield continuously 

increases up to 400 mm. This strongly supports the off-axis THz phase-matching 

mechanism in two-color filamentation, in which the total THz yield continuously 

increases with the filament length, well beyond the dispersion-induced dephasing 

length (~22 mm) [52]. However, when the filament is elongated too much, the 

maximum achievable THz energy decreases because the laser intensity drops well 

below the clamped level in extremely weak focusing. In addition, we observe that the 

THz yield with Si and HDPE filtering is always greater than that with Si and Teflon 
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filtering in the short focusing cases (see Fig. 3.2), but the trend reverses in the longer 

focusing (see Fig. 3.6). This is because we used a different parabolic mirror with a 

10-mm diameter hole, in addition to a different pyroelectric sensor (QS9-THZ-BL, 

Gentec-EO Inc) for the longer focusing. Because of the hole, a small fraction of 

higher frequency components were not collected effectively. 

 

Figure 3.7 Measured THz waveform and its corresponding spectrum 
measured via air-based coherent detection (ABCD) [45] with f = 150 mm 
and laser energy of ~15 mJ. 

Figure 3.2 shows additional experimental data showing the THz waveform 

and spectrum measured by an electric field induced second harmonic technique [20].  
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Figure 3.7(b) shows that two-color laser mixing in air can provide >10 THz 

bandwidth. Under our experimental condition (E ≤ 60 mJ), the optimal focusing 

occurs for f = 1 m. The maximum achieved THz energy is 7 µJ per pulse yielding 

conversion efficiency of 0.012%, very close to that achieved with much lower laser 

energy [55]. In particular, the measured energy is ~40 times larger compared to the f 

= 150 mm focusing case. However elongated filamentation results in increasing the 

spot size of THz radiation when refocused by parabolic mirrors alone. In this case, the 

focused spot radius scales as R ~ lftan(Θp), where lf is the filament length, Θp is the 

off-axis phase matching angle given by ( ) )cos 1 / (2Θ = − Γp dl . Here, ld is the 

dephasing length, over which the two-color phase difference changes from 0 to 

π  [52], and Γ is the THz wavelength.  For a ~7 cm long filament, the focused spot 

size is measured to be 1.5 mm at 1~3 THz  [52]. This refocusing problem, however, 

can be improved by collecting THz radiation with an axicon lens or mirror, and then 

focusing with an off-axis parabolic mirror. In this scheme, the focused THz field may 

reach ~50 MV/cm with 2× diffraction limited focusing at 10 THz, along with its 

ultrashort (<0.1 ps) waveform (see Fig. 3.7). 
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3.4 Conclusion 

In this chapter, we observe and explain the THz saturation effect in two-color 

laser filamentation. This saturation occurs mainly due to ionization-induced 

defocusing and laser intensity clamping in filamentation. In tight focusing geometries, 

this results in an ineffective coupling of laser energy into the plasma. To minimize 

such effects and thus improve the THz conversion efficiency, one can distribute the 

laser energy over a longer filament. 
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Chapter 4  Intense terahertz generation in two-color laser 
filamentation: energy scaling with terawatt laser system 
 

 

4.1 Introduction 

Strong terahertz (THz) pulse generation via two-color laser mixing in air has 

attracted considerable attention for ultrafast THz studies including broadband THz 

time domain spectroscopy, THz imaging, and nonlinear THz studies [30–54]. In this 

two-color scheme, an ultrashort laser’s fundamental and its second harmonic pulses 

are focused in air (or any gas) to create a gaseous plasma via multiphoton/tunneling 

ionization. This emits a THz pulse in the forward direction. Compared to solid-sate 

THz sources such as photoconduction in semiconductors  [24,26] or optical 

rectification in nonlinear crystals  [29,71–73], two-color laser mixing provides intense, 

broadband THz pulse [30].  In particular, optical rectification in lithium niobate 

(LiNbO3) crystals with tilted pulse front excitation provides extremely high THz 

energy (current record 125 µJ), but the radiation spectrum is mostly limited to <1.5 

THz [29]. By contrast, two-color laser mixing is reported to provide ultra-broadband 

radiation up to 200 THz  [30] as well as down to extremely low frequency radiation 

(<0.01 THz ) [48]. Basically, this produces electromagnetic (EM) radiation ranging 

from radio-microwave to near infrared frequencies. This provides an attractive 

characteristic for broadband spectroscopic studies. 

Microscopically, THz radiation in two-color mixing originates from ultrafast 

plasma current generation during tunneling ionization  [47–50] although there is still 
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a debate on the mechanism. Besides this microscopic picture, equally important is the 

macroscopic laser-THz propagation effect. This is strongly coupled with femtosecond 

laser filamentation in air. In general, filamentation occurs due to dynamic balancing 

between Kerr-induced beam self-focusing and ionization-induced beam 

defocusing [64–67]. This results in a long filament ranging from a few centimeters to 

several meters depending on the laser and gas parameters. This filamentation 

naturally governs the macroscopic process of THz generation, making the two-color 

mixing phenomenon more complex. Practically, this macroscopic effect determines 

the far-field radiation profile [52,74], polarization [53], and bandwidth [75], as well 

as THz energy scaling [48,52]. 

Previously, an off-axis phase-matching mechanism was proposed and 

demonstrated to show this macroscopic effect in two-color filamentation  [52]. We 

also showed that a long filament emits conical (donut-shaped) THz radiation peaked 

at 4–7˚ off from the forward axis depending the radiation frequency [52] [76]. 

However, this phase-matching condition was demonstrated for relatively short 

filaments (<7 cm) with laser energy limited to <5 mJ  [52]. In this chapter, we extend 

the study for much longer filaments with multi-terawatt (TW) laser systems. In 

particular, we test THz energy scaling in long filamentation (1 cm ~ 60 cm) with 2 

TW and 30 TW laser systems. Our scaling law predicts the THz peak power can 

approach multi gigawatt (GW) by creating about a meter long filament with a 30 TW 

laser system. 

In parallel, we have investigated high-average power THz generation at a 1 

kHz repetition rate. For this, we have developed and used a cryogenically-cooled 
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Ti:sapphire amplifier capable of delivering 15 mJ per pulse at 1 kHz. This produces a 

high-average-power (>1 mW) THz generation with >50 THz. Further enhancement 

toward 10 mW average power is also discussed. Finally, we discuss an issue 

associated with focusing conical THz radiation into a small spot size, which is of 

great importance for nearly all THz experiments. 

 

4.2 Macroscopic model for THz generation in two-color filamentation  

A schematic picture of two-color laser filamentation and simultaneous THz 

generation is shown in Fig. 4.1. A femtosecond laser pulse (ω) is weakly focused 

onto a frequency doubling crystal such as beta barium borate (BBO), which generates 

a second harmonic pulse (2ω). In this in-line scheme, the BBO crystal is often 

detuned from its optimal angle (ω polarization parallel to the ordinary axis of the 

crystal) in order to produce a ω-field component parallel to 2ω polarized along the 

extraordinary axis. In this scheme, ω becomes elliptically polarized after passing 

through the crystal due to the birefringence in BBO  [51]. Alternatively, the BBO 

crystal can be tuned at the right angle for type-I phase matching, which results in 

crossed polarization between ω and 2 ω. This polarization state, however, can be 

converted into co-linear by inserting an ultra-thin, dichroic half-wave plate just after 

the BBO crystal (not shown in Fig. 4.1). In this way, the two-color laser fields can be 

linearly polarized in the same direction. Assuming this is the case, the laser field EL at 

a point in the filament is expressed as  

 

2( ) cos( ) ( ) cos(2 )LE E t t E t tω ωω ω θ= + + ,    (4-1) 
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where Eω(t) and E2ω(t) are the amplitudes of the fundamental and the second 

harmonic fields, respectively, θ is the relative phase between Eω(t) and E2ω(t) at a 

distance d from the starting point of the filament. At the point, tunneling ionization 

occurs under the combined laser field and a plasma current arises from tunnel-ionized 

electrons. Here, the local plasma current density is given by  [49]  

 

( ) ( , ) ( )′ ′= −∫ d eJ t ev t t dN t ,     (4-2) 

 

where dN(t′) is the density of free electrons produced by the laser field in the interval 

between t′ and t′ + dt′, and vd(t, t′) is the drift velocity of those electrons at t. An 

ultrafast current surge at the point emits THz radiation in all directions, like dipole 

radiation from a point source, with the far field scaling as ETHz ∝ dJ(t)/dt. In the 

classical plasma current model, the far-field THz radiation peaks at θ = ±π/2, while 

minimal THz radiation occurs at θ = 0 [47]. The described plasma current model is 

also confirmed by numerical simulations [77]. 
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Figure 4.1 . Schematic of THz generation in two-color, femtosecond, 
laser filamentation in air. A microscopic plasma current (blue dotted 
line), produced by the two-color electric field (red solid line) via 
tunneling ionization, emits THz radiation in all directions. However, the 
far-field THz radiation profile shown on the detection plane is 
determined by macroscopic interference between the THz waves 
emitted from the local THz sources distributed along the filament. This 
provides an off-axis phase-matching condition, yielding conical THz 
radiation profiles. This macroscopic propagation effect also broadens the 
two-color laser and THz spectra via self-phase modulation and 
ionization-induced spectral blueshifts. 

The relative phase θ between the two-color laser fields, however, changes 

along the filament as,  
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2 0( ) /n n d cω ωθ ω θ= − + ,     (4-3) 

 

where nω and n2ω is the refractive index of air-plasma filament at ω and 2ω frequency, 

respectively, c is the speed of light in vacuum, and θ0 is the initial relative phase at 

the starting point of the filament. Here, the refractive index of weakly-ionized (Ne << 

Nc) air filament [78] is given by nfilament = nair + ∆nplasma + ∆nKerr, where 

( ) ( )-11
2 1plasma e cn N N iν ω∆ ≈ − + , Ne is the electron density, Nc is the critical density, 

and ν is the electron-ion collisional frequency which is negligible for the electron 

density of our interest (ν << ω). Because of this filament dispersion, the relative 

phase θ changes from 0 to π over a distance ld, where ( ) ( ) 1
22 ω ωλ −= −dl n n  is the 

dephasing length for ω and 2ω. Here, λ is the optical wavelength at ω. For pure (no 

plasma) atmospheric air (~1019 cm-3), ld = 25 mm at λ = 800 nm. For a filament with 

electron density of Ne = 1016 cm-3 in atmospheric air, ld = 22 mm. As this relative 

phase varies along the filament, the local THz amplitude and polarity also changes 

along the filament as shown in Fig. 4.1 (note the red oscillating curve along the 

filament). Because of this oscillating THz source polarity, far-field THz radiation is 

not simply emitted in the forward direction [79]. 

In general, the THz far field, E(r, Ω), is obtained by integrating the 

contributions from all source points distributed along the filament as  [52] ,  

 

( )   ''
3 ' ,

( ,Ω)
'

−Ω
∝

−∫
 THzi k

V

P e
E d

r rr
r r

r r ,     (4-4) 
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where ( ) ( ) ( ) ( )' ' ',Ω , sin ( ') exp Ωθ∝ Ω −
THg zP A z in k z i tr r is the nonlinear THz 

polarization, ( , )′∝ ΩA dJ dtr  is the local THz amplitude at frequency Ω, determined 

by the microscopic plasma current model [47–49]. At a distance far longer the 

filament length (|r − r′| >> |r′|), the far-field THz intensity profile is approximated 

as [52],  

( ) ( ) ( )( ) ( ) 22 2 222 1' 2 2
1 2 1 2 02

2 β  ( ), ,Ω , 2 cos 2
Ja lE r A

r
π κ κ κ κ θ π

β
 

Θ ∝ Ω + + +  
 

 r ,

 (4-5) 

 

where 1,2 1,2 1,2sin( )κ α α= , ( ) ( )1,2 2 cos 2α Γ = ± − Θ THz g dk l n l , ( )12 sinβ π λ−= Θa , 

Γ is the THz wavelength, and the last term in Eq. (4-5) represents circular diffraction. 

The third term in Eq. (4-5) provides a phase-matching condition for efficient THz 

generation. Here, maximum THz generation is achieved with α1,2 = 0. This provides 

the angle for phase matching, Θp, given by ( ) )cos 1 / (2Θ = − Γp dl  for weakly ionized 

plasma filaments (ng ≈ 1). The phase matching angle Θp can be also obtained from the 

condition necessary for constructive interference between two oppositely-polarized 

THz waves as shown in Fig. 4.1. This condition is satisfied when the path length 

difference becomes Γ/2, which provides the same phase matching angle. For example, 

a filament length of l = 70 mm, 1 THz radiation (Γ = 300 μm) peaks at Θ ~ 7° with a 

conical radiation profile as shown in Fig. 4.1. 
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The total THz yield obtained from the entire filament length is given by, 

( ) 2
si, n,ΩE r dΘ Θ Θ∫ . This scales quasi-linearly with the filament length  [52]. This 

implies that we can enhance the THz energy output by increasing the filament length 

while maintaining the local THz strengths is same. This condition remains valid for 

multi-filamentation. For example, two filaments separated by d (on the order of 

hundreds of micrometers) in the transverse direction would produce THz waves in 

phase and those two waves interfere destructively in the far field at an angle of 

1sin ( / (2 ))d dθ −= Γ . Compared with the phase matching angle,

1cos (1 / (2 ))p dl
−Θ = −Γ , θd at which destructive interference occurs due to multi-

filamentation is much greater than the phase matching angle Θd because of d << ld. 

Thus multi-filamentation plays little or no role in determining the far-field THz 

radiation profile. The total plasma volume, however, will contribute to the output 

THz yield. 
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4.3 Results:  THz energy scaling with high power laser systems 

 

4.3.1 THz energy scaling with a 2 TW laser operating at 10 Hz 

A 2 TW Ti:sapphire laser system capable of delivering 800 nm, 100 mJ, 50 fs 

pulses at a 10 Hz repetition rate is used for THz generation. The experimental setup is 

shown in Fig. 4.2(a). In addition to far-field THz measurements, a 5-mm-diameter, 

single-loop wire (B-dot probe) is used to monitor the near-field, low-frequency THz 

waveforms. Basically, this can probe the local THz amplitudes and polarities. 

Previously, it was shown that the B-dot signal is strongly correlated with far-field 

THz radiation  [48]. 
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Figure 4.2 (a) Experimental setup for B-dot probe and THz energy 
measurements. (b) Peak-to-peak B-dot signal as a function of its position d 
along the plasma filament.  

 

For B-dot measurements, ~50 mJ of laser energy is used to create >300 mm 

long filaments with f = 2 m focusing. A 0.1-mm thick BBO crystal (type-I) is placed 

in the beam path (~120 mm after the focusing lens) to generate collinear second 

harmonics. A B-dot probe is placed and scanned in the air plasma filament as shown 

in Fig. 4.2(a). A 0.5 GHz, 5 giga-sample/s oscilloscope is used to measure the 

(a) 

(b) 
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induced voltage across the ends of the B-dot coil. According to Faraday’s law, the 

induced voltage is given by V = − ⋅∫ B ds , where B (B-dot) is the time derivative of 

magnetic field, which arises from a transient current in the plasma according to 

Ampere’s law, JB 0
 µ=×∇ . Thus, the induced voltage (B-dot signal) represents the 

peak rate of electric current change where the probe is located  [67]. Here we note 

that the plasma current, produced by detuned type-I phase matching, is generally 

elliptical  [53]. This has a circular current component along the B-dot loop direction. 

To observe variations in the local plasma current with increasing filament length, the 

B-dot probe is scanned along the filament. As shown in Fig. 4.2(b), the B-dot signal 

(or local THz radiation) indeed oscillates with varying d (or θ) and the oscillation 

period is estimated to be ld ~ 20 mm. This corresponds to an electron density of Ne ~ 

1016  cm-3, consistent with other measurements  [59,80]. 
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Figure 4.3 (a) THz yield measured with a pyroelectric detector as a 
function of filament length made with 6 different focal length lenses. Four 
different transmission filters are used for THz detection at various bands 
(Si for <20 THz, Ge for <10 THz, HDPE or Teflon for 0.1~3 THz)  [7]. For 
clarity, the yields for HDPE and Teflon are multiplied by a factor of 2.  
Here, the laser energy is fixed at 60 mJ. The maximum THz energy is 7 µJ 
obtained with ~10 cm long filamentation. (b) THz yield as a function of 
the iris position for three filaments produced by f = 1 m, 1.5 m, and 4 m 
focusing. Here the iris blocks THz radiation emitted before the aperture, 
which controls the effective filament length. 

(b) 

(a) 
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We also examine THz energy scaling and saturation in two-color 

filamentation with laser energies up to 60 mJ. In particular, we investigate laser 

energy coupling into filaments under various external focusing conditions. Figure 

4.3(a) shows the THz energy output as a function of the filament length, varied from 

1 cm to 60 cm with several focal lengths: f = 15 cm, 20 cm, 25 cm, 100 cm, 150 cm, 

and 400 cm. Here the THz energy is measured with a pyroelectric detector with 

various THz filters (Si, Ge, HDPE, and Teflon). A silicon filter is used to block 

unwanted optical and infrared light. In addition to the Si filter, additional filters are 

used to characterize THz profiles at different frequency bands: a Germanium wafer is 

used to detect THz frequencies mostly at <10 THz, whereas a 3-mm thick Teflon 

window is used as a low pass filter to detect <3 THz. The yield increases with the 

filament length and peaks at 7 µJ with f = 100 cm focusing. With a focusing lens 

shorter than 100 cm, the input laser energy is not efficiently absorbed in creating a 

plasma filament, mainly due to strong ionization-induced defocusing  [54]. This leads 

to laser intensity clamping in filamentation  [64–67]  and thus sets the maximum laser 

intensity for THz generation in air. On the other hand, when focused with a lens 

longer than 100 cm, the laser energy starts to spread out over the filament. This drops 

the local plasma-current amplitude, consequently yielding less THz radiation. This 

trend is consistent with the previous report  [42] . 

We have also changed the effective filament length by scanning a pinhole 

aperture along the filament as shown in Fig. 4.2(a). The iris blocks the THz emitted 

before the aperture while not affecting the THz emitted after the aperture. Figure 

4.2(b) shows the measured THz energy as a function of the aperture position for 
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filaments made with three focal length lenses (f = 1 m, 1.5 m, 4 m). It shows that the 

total THz yield increases with the filament length, confirming off-axis phase-

matching up to ~50 cm long filamentation. 

    

 

4.3.2 THz generation from gaseous and clustered plasmas with a 30 TW, 10 Hz laser 

We have also used a 30 TW (35 fs, 1 J) Ti:sapphire laser system for THz 

generation. Here we have conducted experiments in a vacuum chamber [see Fig. 

4.4(a)]. In particular, we have tested gas/cluster jets for THz generation. An off-axis 

mirror (not shown) was used to focus incoming laser pulses onto elongated (~2 cm 

long) gas jets. Here, clusters—van der Waals-bonded aggregates of up to ~107 

atoms—are formed in a condensing supersonic nozzle flow into vacuum  [81] . In this 

experiment, two types of gas species, argon and nitrogen, are used. The emitted THz 

energy is collected by a parabolic mirror and focused into a pyroelectric detector. A 

silicon filter is placed in front of the detector.  
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Figure 4.4  (a) Experiment setup for THz radiation from monomers 
and/or clusters ionized by a femtosecond two-color pulse in a vacuum 
chamber. Argon clusters are formed in an elongated gas jet via adiabatic 
expansion of high pressure gas into vacuum. (b) THz yield from gaseous 
nitrogen jets as a function of laser energy at 200 psi backing pressure. (c) 
THz yields as a function of nitrogen gas and argon cluster targets with 
increasing backing gas pressure.  

 
Figure 4.4(b) shows THz output energy for nitrogen at 200 psi backing 

pressure and room temperature. The output yield increases with laser energy up to 

100 mJ but soon drops after 100 mJ. This saturation is attributed to strong THz 

absorption in dense plasma  [48] and/or plasma-induced laser defocusing in 

filamentation [54] as discussed in Chapter 3. Here, the scaling test was limited to 

<200 mJ because of severe material damage and strong supercontinuum generation in 
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the BBO substrate. Overall, the measured THz energy is much weaker than that 

obtained with the 2 TW laser in long filamentation. This is because the gas jet (or 

filament) length is limited to ~2 cm. Figure 4.4(c) shows THz yields as a function of 

gas backing pressure for nitrogen and argon. Both gases show strong saturations with 

increasing gas pressure, consistent with the previous reports  [39,49]. One interesting 

feature is that argon produces less THz energy compared to nitrogen. This contrasts 

with the previous result performed for gas-phase targets  [36,48], where argon 

provides a higher THz yield compared to nitrogen. This is because the current argon 

jets produce many more and larger clusters compared to nitrogen in our experimental 

condition. This implies that clusters are not an efficient target for THz generation in 

two-color photoionization. Although a large fraction of laser energy up to 90% can be 

absorbed in a gas of clusters, the emitted THz radiation may be vastly absorbed by 

local supercritical clustered plasmas. 

 

 

4.3.3 High average power THz generation with a 0.5 TW, 15 mJ/pulse, 1 kHz laser 

For high-peak and high-average power THz generation, we have developed 

and used a cryogenically-cooled Ti:sapphire amplifier. Figure 4.5(a) shows a 

photograph of our amplifier which delivers 800 nm, 15 mJ, 30 fs pulses at a 1 kHz 

repetition rate. A 6 mJ, ~150 ps (uncompressed) seed pulse from a commercial 

Ti:sapphire laser system (Legend Elite USX, Coherent Inc.) is amplified to 15 mJ in a 

5 mm × 5 mm × 5.5 mm Ti:sapphire crystal pumped by a frequency-doubled (527 nm) 

Nd:YLF laser (Evolution HE, Coherent Inc.) providing 45 W at 1 kHz. To minimize 
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thermal lensing in the gain medium caused by high-power pumping, the crystal rod is 

cooled down to ~60 K with a cryogenic refrigerator (PT-90, Cryomech Inc.). In order 

to avoid condensation at low temperature, the crystal rod is placed inside a vacuum 

chamber pumped down to 10-7~ 10-8 Torr with a turbo pump (V-81M) backed up by a 

scroll pump (Varian, Agilent Technology Inc.). The amplification operates in the gain 

saturation regime for energy stability. This provides ~18 mJ of uncompressed energy 

per pulse. We observe a small amount of spectral redshift in the amplification. This, 

in principle, can be improved by tilting the spectral flattening filter in the regenerative 

amplifier and slightly blue-shifting the seed pulse. After amplification, the pulse 

duration is compressed back to <30 fs in a grating-based compressor with 84% 

transmission efficiency. This provides ~0.5 TW peak power at 1 kHz. 
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Figure 4.5 (a) Photography of a homebuilt cryogenically-cooled 
Ti:sapphire amplifier capable of producing 15 mJ, 30 fs, 800 nm pulses 
at a 1 kHz repetition rate for high average power THz generation. (b) 
Measured THz output energy as a function of input laser energy with 
three different filter sets. For clarity, the yields for HDPE and Teflon 
are multiplied by a factor of 2 and 15, respectively.  The maximum 
THz energy is ~1 µJ/pulse at 1 kHz. (c) THz radiation spectrum 
measured by FTIR. 

 
 

Using the cryogenic amplifier system, we have generated THz radiation via 

two-color filamentation in air and tested THz energy scaling. The input laser energy 

is varied with a combination of a half wave plate and a thin film polarizer. The THz 

pulse is collected and focused by a pair of off-axis parabolic mirrors into a 

pyroelectric detector (SPI-A-62THZ, Spectrum detector Inc.). 
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Figure 4.5(b) shows measured THz output energy with increasing laser input 

energy. Three THz filters are used for detection at different frequency regions. The 

three lines in Fig. 4.5(b) show that the majority of radiation occurs at high frequencies. 

Note that the Teflon signal is rescaled by 15 times for clarity. In addition, the low 

frequency radiation (<3 THz) saturates quickly whereas the high frequency signal (Si 

filter) continues to increase with increasing input energy up to ~11 mJ, providing THz 

energy of ~1 µJ/pulse. 

Figure 4.5(c) shows a typical first-order interferometric field autocorrelation 

and the corresponding THz spectrum measured by Fourier transform infrared 

spectroscopy (FTIR) [48]. It shows radiation up to ~60 THz with input pulse duration 

of ~30 fs. Even broader bandwidth ranging up to >100 THz is reportedly achieved by 

using a shorter (<20 fs) pulse duration  [30,82]. In our case, the majority of radiation 

occurs at high frequencies and peaks at 22 THz. This source is capable of providing  

1 µJ/pulse, >60 THz pulses at 1 kHz and can be readily used for broadband nonlinear 

THz studies.  
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4.3.4 THz radiation profiles in long filamentation and refocusing 

 
The previous section shows that high-energy THz radiation can be produced 

by an elongated filament which naturally forms a line source. Due to off-axis phase 

matching in filamentation, the line source emits conical THz radiation. In this section 

we discuss such radiation profiles and in particular the issue of refocusing conical 

radiation into a small spot size. 

 
Figure 4.6 Experimental setup for measuring THz far-field radiation 
profiles. The pyroelectric detector (not shown) is raster scanned over 3.5 
cm × 5 cm on a screen at ~20 cm away from the filament. 

Figure 4.6 shows an experimental layout for measuring a THz radiation 

profile in the far field. With f = 1.5 m focusing with 5 mJ laser energy, a >7 cm long 

filament is produced. A pyroelectric detector mounted on a two-dimensional (2-D) 

motorized stage is raster scanned to measure the radiation profile. In addition, various 

THz transmission filters are placed to study high and low THz radiation profiles. The 

THz profile, obtained with a Teflon transmission filter, shows a donut-shaped 

structure. This off-axis radiation profile is attributed to the phase matching condition 

in long filamentation [52]. 
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Figure 4.7 THz ray tracing calculation of a ~7 cm long filament source. 

 
 

We also calculate and measure the profiles of THz radiation when refocused 

by a pair of parabolic mirrors. The measured minimum spot size is ~1.5 mm at 1~3 

THz frequencies. Unlike the conical radiation before the focusing, the refocused 

THz intensity is peaked on axis. This transition can be explained by ray-tracing 

under geometric focusing as shown in Fig. 4.7. The refocused profile is bell-shaped, 

favorable for real applications, but the spot size inevitably increases with the 

filament length when the radiation from a line source is collected and focused by an 

off-axis parabolic mirror alone.  In this case, the focused spot size scales as D ~ lf 

cos-1[1 −Γ/(2ld)], where lf is the filament length and Γ is the THz wavelength. For a 

~7 cm long filament with Θp ~ 5˚, the minimum spot size is calculated to be <1.5 

mm, which agrees well with our measurements. This implies that THz energy 
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benefits from long filamentation but not for THz refocusing. Ultimately, this affects 

the THz field strength at the focus. However, this refocusing problem can be 

corrected by collimating the far field THz radiation with an axicon lens. More details 

are presented in chapter 6.  

 

4.4 Conclusion 

In chapter 4, we have discussed intense THz generation and its theoretical 

limit in two-color laser filamentation, with an emphasis on the macroscopic 

propagation effect. Experimentally, we have used three TW laser systems (0.5 TW, 2 

TW, and 30 TW) to create a broad range of filament conditions. Our simulation and 

experimental results confirm scalable THz generation with increasing filament length. 

With our 2 TW system, we have produced ~7 µJ of THz energy with a 15 cm 

long filament at 10 Hz. Further enhancement to 100 µJ can be achieved in 1.5-m long 

filamentation with using a 30 TW laser. This can provide multi-GW peak power with 

a 100 THz bandwidth. In terms of high average power, our kHz system can currently 

provide 1 mW with ~1 µJ/pulse. The focused field strength is >1 MV/cm but can be 

enhanced up to ~100 MV/cm with ionization in a gas cell and axicon-based beam 

collimation. Due to this broadband and high-field strength, two-color laser 

filamentation will be a very useful source for broadband THz spectroscopy and strong 

THz field studies. 
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Chapter 5 :  Broadband THz radiation and detection  
 

 

 5.1 Introduction to THz detection 

The advantage of THz generation in air plasma lies in not only the output 

power, but also its ultra-broad spectrum bandwidth. To detect such broadband 

radiation, various complementary methods must be applied. Therefore, in this chapter, 

we introduce and discuss broadband THz generation in two-color laser mixing in air 

and its various THz detection schemes including electro-optic sampling, Fourier 

transform infrared (FTIR) detection, and electric field induced second harmonic 

(EFISH) detection. 

 
 

5.1.1 Electro-optic sampling 

Electro-optic sampling (EOS) measures the electric field of THz radiation in 

the time domain using the Pockels effect in an electro-optic crystal. The Pockels  

effect, P(2), and field induced susceptibility, χ(2)  in the crystal are given by  [7] [83], 

(2) (2)
0( ) ( ) E ( )j ij j

j
P ω ε χ ω ω=∑      (5.1) 

                       (2) (2)( ) ( , , ) E ( )ij ijk THz k THzk
χ ω χ ω ω= Ω Ω∑                                               (5.2)  

As one can see from eq. (5.2), the susceptibility is a function of an applied electric 

field. A greater THz electric field induces more birefringence in the nonlinear crystal, 

and thus the measured birefringence in the crystal can be converted into the THz field 

in the time domain [7]. 
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Figure 5.1 Two-color laser based THz generation and electro-optic 
sampling (EOS) detection. An optical pulse is focused onto a detection 
ZnTe crystal along with the THz pulse to be characterized. The probe 
pulse then goes through a quarter-wave plate (λ/4) and a Wollaston 
prism (WP) before being detected by balanced photodiodes.  

 
Figure 5.1 shows a typical EOS detection scheme for THz field measurements 

in the time domain. A THz pulse produced in air-plasma is collimated and focused 

onto a detection crystal such as ZnTe, by two off-axis parabolic mirrors. When the 

THz pulse induces transient birefringence in the ZnTe crystal, a linearly polarized 

probe pulse undergoes a birefringent phase retardation in the crystal and its 

polarization changes into elliptical. The birefringent phase retardation in the nonlinear 

crystal is given by  [7], 

3
41( )x y O THz

L Ln n n r E
c c
ω ωφ∆ = − =                         (5.3) 

where no is the refractive index at optical wavelength and r41 is the EO coefficient (= 

4 pm/V for ZnTe) [7]. After that, the elliptically polarized probe pulse passes through 

a quarter wave plate and Wollaston prism and then is detected by balanced 

photodiodes. The probe beam intensities measured by each photodiode are given 

by  [7], 
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0 (1 )
2x
II φ= −∆        and            0 (1 )

2y
II φ= + ∆ .                            (5.4) 

Finally, the balanced intensity is shown as, 

0b y x THzI I I I Eφ= − = ∆ ∝                                            (5.5) 

As we can see from Eq (5.5), the measure of the balanced photodiodes, Ib, is 

proportional to the birefringent phase retardation induced by the THz field, and thus 

the signal provides the THz electric field (waveform) in the time domain [7] [84]. 
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Figure 5.2 Experimental measurement with EOS detection in ZnTe. (a) 
THz yield in time and (b) Corresponding THz spectrum in a logarithmic 
scale. 

Figure 5.2 shows a typical THz waveform by EOS with a 1 mm-thick ZnTe 

crystal. The corresponding spectrum is obtained by a post Fourier-transform. Here, 

the radiation bandwidth is limited to 3 THz but can be further increased by using a 

thinner and/or different EOS crystal having higher THz absorption lines, such as GaP. 

 
 

 

5.1.2 Fourier transform infrared (FTIR) detection 

Despite its straightforward setup, EOS covers limited spectrum bandwidth 

which is highly dependent on THz absorption and optical-THz velocity walk-off in 

the detection crystal. For instance, a 1 mm-thick ZnTe crystal provides up to 3 THz at 
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optical probing with 800 nm (see Fig. 5.2). This prevents us from utilizing the full 

spectral bandwidth that our source can generate. 

 

 
Figure 5.3 Two-color laser based THz generation and Michelson-type 
THz interferometery with Fourier transform infrared (FTIR) detection. 
The interference measured by a pyroelectric detector is Fourier 
transformed to retrieve the THz spectral information in the frequency 
domain. 

 

For higher bandwidth detection, Michelson-type THz interferometery can be 

utilized for Fourier transform infrared spectroscopy (FTIR, see Fig. 5.3) [40] [48]. 

The THz pulses to be measured are split and recombined by a pellicle beamsplitter 

and then they interfere with a relative phase set by the optical path length difference 

between the two arms. The interference measured by a pyroelectric detector is Fourier 

transformed to frequency-domain for THz spectral intensity information (see Fig. 5.4). 

Although this FTIR does not directly provide THz waveforms, the detection 
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bandwidth is not limited by the optical probe duration as in the electric field induced 

second harmonic (EFISH) method which will be discussed in the next section. With 

FTIR our measurement in Fig. 5.4 shows THz radiation up to 60 THz.  

 
 

 

 
Figure 5.4 Experimental measurement of broadband THz detection. (a) 
THz autocorrelation in time and (b) the corresponding THz spectral 
intensity in a logarithmic scale. 
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5.1.3 Electric field induced second harmonic detection 

One drawback of FTIR is that it does not provide the THz waveforms directly. 

Another method for broadband THz detection is using electric-field-induced second-

harmonic (EFISH) generation, also known as air-biased-coherent-

detection (ABCD) [45] [85]. In this scheme, the THz pulse to be measured is focused 

into air along with an ultrashort optical pulse, which produces an optical second 

harmonic of the incoming optical probe by the EFISH effect.  It can be considered as 

the reverse process of THz generation by two-color mixing in air, i.e., the change in 

second harmonic yield is proportional to the THz electric field to be measured at the 

focus  [45].  One big advantage of this technique is its capability of detecting THz 

waveforms directly (see Fig. 5.6). 

      

 
 

 
Figure 5.5 Two color laser based THz generation and electric-field-
induced second-harmonic (EFISH) detection scheme. The induced second 
harmonic is measured by a photomultiplier tube (PMT). 
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Figure 5.5 shows a typical EFISH detection setup. The THz pulses produced 

in air-plasma are collimated and focused by two off-axis parabolic mirrors. 

Simultaneously, the probe laser pulses pass through a pinhole in the last off-axis 

parabolic mirror and co-focus with the THz pulses. At the focus, the THz field 

induces a second harmonic (400 nm) of the probe beam (800 nm). The induced 

second harmonic is detected by a photomultiplier tube (PMT) with narrow-band 

interference filters placed in front.  
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Figure 5.6 Experimental measurement of broadband THz detection via 
EFISH detection. (a) Measured THz waveform, and (b) the corresponding 
THz spectral intensity in a logarithmic scale. 

Figure 5.6 shows experimental results for broadband THz radiation using 

EFISH. The detection bandwidth in this scheme is fundamentally limited by the probe 

pulse duration. We have measured THz radiation up to 30 THz, mainly limited by our 

stretched probe pulse width (> 30 fs) [86]. We note that Zhang et al. have reported 

THz detection up to 60 THz using much shorter laser pulses (< 20 fs) produced by 
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supercontinuum generation followed by  hollow-fiber-based pulse compressor in 

2011 [45].  

 

 

5.2 Summary for Broadband THz detection   

As we mentioned, two-color photoionization can generate EM radiation at an 

extremely broad range, covering from RF to extreme ultraviolets (EUVs). At first, an 

ultrafast photocurrent induced by two-color ionization creates EM radiation with a 

large bandwidth. Here the timescale for the current surge is much shorter than the 

laser pulse duration because tunneling ionization occurs mostly around the peak 

intensity. For a ~30 fs (FWHM) laser pulsewidth, for example, the total ionization 

duration can be as short as ~12 fs (FWHM). This supports EM radiation with a 

bandwidth of >80 THz. This radiation bandwidth is then further broadened and 

modulated by several mechanisms summarized in Fig. 5.7(a). 

 
 
 

 
Figure 5.7 (a) Mechanisms for broadband electromagnetic radiation 
generation in two-color photoionization and radiation spectra measured 

(a) 

(b) (c) (d) (e) 
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with the (b) B-dot probe, (c) EOS in ZnTe, (d) EFISH, and (e) FTIR 
techniques at broad frequency ranges. 

The laser spectrum broadens with propagation due to self-phase modulation in 

air, ionization-induced blueshifts and self-steepening of femtosecond laser pulses [87]. 

The broadened laser spectrum increases the THz bandwidth even further. The 

spectrum at 0.1-1 THz is strongly modulated by plasma oscillation and collisional 

effects. In addition, the plasma density of 1016 - 1017 cm-3 strongly affects THz 

absorption in the filament direction. The collisional process ultimately terminates the 

plasma current. However, a very slow ion current can arise, producing radiation down 

to 0.01 THz. This corresponds to RF and microwaves. At the other frequency end, 

broadband EUVs can be produced by optical high harmonic generation (HHG). In 

particular, two-color based HHG can produce both odd and even harmonics, also 

enhancing the overall yields. This HHG is strongly connected with THz generation as 

they both arise from coherent motion of electrons in tunneling ionization  [48,88].  

To detect such broadband radiation, various complementary methods must be 

applied. Figures 5.7(b-e) show a list of our THz detection schemes along with 

measured radiation spectra. For example, the B-dot probe detects extremely low 

frequency components such as RF and microwaves (see Fig. 5.7(b)). For THz 

detection at 0.1-3 THz, electro-optic sampling (EOS) with a 1 mm-thick ZnTe crystal 

was adopted to measure THz waveforms (see Fig. 5.7(b)). For even higher bandwidth 

detection, EFISH and FTIR can be used and their results are shown in Figs. 5.7(d) 

and (e) respectively. 
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Chapter 6 :  Summary and outlook for intense THz generation  
 
 
 
 

6.1 Summary for high energy THz generation in two-color laser mixing  

In this section, we summarize our work and discuss the outlook for high peak-

power THz generation and theoretical limits in two-color laser filamentation.  

 

 
Figure 6.1 THz output energy as a function of input laser energy with 
various air filament lengths (black squares). The straight line represents 
maximum achievable THz energy with a conversion efficiency of 10-4. A 
~1.5 m long filament made with 1 J can theoretically yield ~100 µJ THz. 
The ultimate THz output energy is limited to ~300 µJ by the group 
velocity walk-off between two-color laser pulses. Here the fundamental 
laser wavelength is assumed to be 800 nm. We note that the optical to 
THz conversion efficiency can be further increased with longer 
wavelength (1~4 µm) pumping for filamentation [89]. 
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Figure 6.1 summarizes THz energy scaling as a function of laser input energy. 

The black squares are our measurements obtained with various laser energy and 

filament length conditions. For a given energy value, there is a favorable filament 

length which yields the optimal THz conversion efficiency, 10-4. This is represented 

as the straight line in Fig. 6.1. For instance, 10 mJ of laser input energy will yield ~1 

µJ THz energy with an optimal filament length of ~2 cm, while 100 mJ of laser 

energy will require a >15 cm long filament to produce ~10 µJ THz energy. An input 

of 1 J energy, readily available with a 30 TW laser system, will yield 100 µJ of THz 

energy with an estimated filament length of ~1.5 m (red diamond in the figure). The 

corresponding peak power will approach multi-GW with a 100 THz bandwidth.     

The maximum achievable THz energy, however, is limited by the group velocity 

walk-off between two-color laser pulses. Due to air-plasma dispersion, two 50 fs 

pulses at 800 nm and 400 nm, for example, get separated in time as they propagate 

over ~4 m in air  [52]. This effect limits production to ~300 µJ THz energy, a 

theoretical limit in two-color filamentation in air if the walk-off is not compensated.  

 

 

6.2 Outlook for intense THz generation 

Long filaments require a large parabolic mirror for THz energy collection. In 

addition, THz refocusing is another issue, as discussed in chapter 4. One possible 

method which can reduce the filament length while keeping the same high-energy 

THz output is to increase the plasma filament volume in the transverse direction. 

Focusing two-color laser pulses with a cylindrical lens can create a plasma sheet as 
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shown in Fig. 6.2(a). For a laser input of 1 J, a plasma sheet of ~1 cm2 can be created. 

For THz collection and refocusing, a combination of a cylindrical mirror and a 

parabolic mirror can be used for tight focusing. 

 

 

 

Figure 6.2 (a) Proposed experimental setup for scalable THz generation in 
a 2-D plasma sheet using cylindrical lens focusing and recollection. (b) 
Simulated THz output energy as a function of the energy ratio of 2ω to ω 
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with the total energy fixed. The output peaks at ratio ~0.2 according to 
the microscopic plasma current model  [47]. 

 

 

For further THz energy scaling, the intensity of second harmonics needs to be 

increased. For example, Figure 6.2(b) shows a simulation result of THz output as a 

function of the ratio of the second harmonic intensity to the fundamental intensity, 

I2ω/Iω. According to the microscopic plasma current model, the output THz yield 

peaks at I2ω/Iω ≈ 20% with I2ω = 2 × 1013 W/cm2. In our experiments, the ratio is 

typically ~8%. This is partly because the frequency doubling crystal (BBO) is 

intentionally detuned from its optical angle. This scheme can be improved by using 

an ultrathin, dichroic half-waveplate right after the BBO crystal [46]. This allows us 

to optimize not only the efficiency in second harmonic generation with type-I phase 

matching but also the amplitude of plasma current at the focus with collinear two-

color fields. Also the ultrathin thickness minimizes the two-color walk-off and pulse 

stretching. In addition, more efficient crystals such as BIBO  [90] can be used to 

increase the conversion efficiency toward 20%. 

Finally, a gas cell can be used for further THz enhancement. Previous results 

show that gases with low ionization potential such as krypton or xenon can 

dramatically increase THz output energy [39,48,74]. However, as those gases can 

easily saturate the output signal, it is important to increase the filament length 

accordingly. Combined with the ultrathin waveplate technique, this can increase the 

conversion efficiency toward 10-3. For better refocusing, a conical lens (axicon) made 

of silicon or an axicon mirror can be used to collimate the conical THz emission. 
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Here we note that THz generation with axicon-based laser focusing was previously 

discussed  [61,91], but our scheme proposes using an axicon for THz beam 

collimation only, not for laser beam focusing as in Ref.  [61,91]. After collimation, a 

conventional off-axis parabolic mirror can be used for diffraction-limited refocusing. 

With our 1 kHz Ti:sapphire system capable of delivering 15 mJ/pulse, this gas cell 

method will produce 10 µJ/pulse at 1 kHz, corresponding to 10 mW average power, 

with a potential bandwidth of 100 THz. With an assumption of 100 fs THz pulse 

duration, the corresponding electric field at the focus will be 3 MV/cm with 

uncompensated refocusing (~1 mm diameter), while it will approach 100 MV/cm 

with diffraction-limited focusing (30 µm diameter). This source will be a very useful 

tool in high-power THz study including broadband nonlinear spectroscopy and 

imaging applications.  
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Appendix  A : Cryogenic-cooled Ti:sapphire multi-pass 
amplifier 
 

 

A.1 Introduction to our cryogenic-cooled amplifier 

 
The laser system used in this dissertation is an amplified Ti:sapphire laser 

system. Consisting of a Kerr-lens mode-locking oscillator (Micra, Coherent Inc.) and 

a regenerative amplifier (Legend Elite USX, Coherent Inc.), our pre-existing system 

can deliver 800 nm central wavelength, 60 nm bandwidth (FWHM), >5 mJ, 25 fs 

pulses at a 1 kHz repetition rate (see Fig. A.1(a)). For even higher energy experiments, 

we have designed and built an additional cryogenically-cooled double-pass amplifier, 

which delivers 800 nm, 15 mJ, 30 fs pulses at a 1 kHz repetition rate. In this chapter, 

we describe its design and operation in detail.  
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Figure A.1 (a) Diagram of our laser system consisting of an oscillator 
(Micra, Coherent Inc.), a regenerative amplifier (Legend USX, Coherent 
Inc.) and a cryogenic cooled double pass amplifier. Photography of our (b) 
regenerative amplifier and (c) double pass cryogenic amplifier. 

Figure A.1 shows a systematic diagram of our amplified Ti:sapphire laser 

system. A seed laser pulse of 5 nJ and >80 nm (FWHM) from the oscillator is 

stretched to ~150 ps prior to amplification and injected into the regenerative and 

single-pass amplifiers, yielding 6 mJ and 60 nm (FWHM). Then the amplified pulse 

enters an external cryogenically-cooled amplifier achieving ~18 mJ and 50 nm 

(FWHM). The laser pulse is then compressed back to ~30 fs in a grating-based pulse 

compressor, and finally delivers 15 mJ and 50 nm (FWHM) at a 1 kHz repetition rate.  

(a) 

(b) (c) 
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Figure A.2 Photography and optical layout of our cryogenically-cooled 
amplifier. The green line represents a pump laser beam (527 nm) and the 
red line represents a Ti:sapphire (800 nm)  beam path.  

Figure A.2 shows an optical path for the pump laser beam (527 nm) and 

amplified laser beam (800 nm) in the cryogenic laser system. The green line 

represents a pump laser beam (527 nm) path and the red line represents a Ti:sapphire 

(800 nm) beam path. The Ti:sapphire crystal in the amplifier is pumped by a 

frequency-doubled Nd:YLF laser (Evolution HE, Coherent Inc.), providing 45 mJ at  
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1 kHz repetition rate. The crystal is single-side pumped, while the transmitted pump 

energy is reflected back to the crystal for recycling. The amplification operates in the 

gain saturation regime for energy stability. The seed pulse is designed to pass through 

the gain medium twice to have the maximum gain efficiency (292% amplification).   

 

A.2 Cryogenic cooling system 

To minimize thermal lensing in the gain medium caused by unwanted residual 

heat from the high average power pumping, the Ti:sapphire crystal rod is cooled 

down to ~60 K with a cryogenic refrigerator (PT-90, Cryomech Inc.). The cryogenic 

refrigerator uses pure helium as a refrigerant gas in a closed-loop expansion cycle.  

Figure A.3 shows a photograph of the helium compressor.  

 
Figure A.3 Cryomech helium compressor for cryogenic cooling. 
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Figure A.4 (a) Vacuum chamber in the cryogenic amplifier housing a  
Ti:sapphire crystal along with its cryorefrigerator head. (b) 
Cryorefrigerator and its cold head (Crymech Inc.) (c) Zoom-in picture of 
the cold head and 5 mm × 5 mm × 5.5 mm Ti:sapphire crystal. 

(a) (b) 

(c) 
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Figure A.5 Cold head and rod mount cooling measured with T and K 
type thermostat sensors as a function of time. 

 
In order to avoid condensation at low temperature, the crystal rod is located 

inside a vacuum chamber (see Fig. A.4(a)) and pumped down to 10-7~ 10-8 Torr with 

a turbo pump (V-81M, Agilent Technology Inc.) backed by a scroll pump (Varian, 

Agilent Technology Inc.). Figure A.4 shows a photo of Cryomech’s cold head and a 

rod mount for the crystal in the vacuum chamber. The crystal rod is placed in between 

the two parts (upper and lower) of the rod mount along with indium sheets for good 

heat conductivity. Figure A.5 shows the temperature of the crystal rod as a function of 

time with cooling. The rod temperature drops to ~ 60 K, within 30 minutes.    
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A.3 Pump beam alignment and pulse delay setting   

To achieve maximum gain in the cryogenic amplifier, the pump laser has to be 

synchronized with the seed pulses. To control the pulse delay between the pump and 

seed pulses, we use a delay generator (BNC 575, Berkeley Nucleonics Corp.) which 

synchronizes the pump laser in the cryogenic system (Evo 2) with the other pump 

laser in the regenerative amplifier system (Evo 1). 

 

 

               
 

Figure A.6 (a) Delay generator and its connection diagram for 
synchronization between the pump and seed pulses.  Ti:sapphire crystal 
(b) without and (c) with laser pumping. 

Figure A.6 shows the delay generator and its connection diagram for 

synchronization. The desired setting for optimal pumping is as follows:  trigger 

(a) 

(b) (c) 
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(falling edge) and delay (800 ns with a width of 5000 ns). Figures A.6 (b-c) show a 

Ti:sapphire crystal without and with pumping.  

 
 

A.4 Grating based pulse compressor 

After amplification, the laser pulses are injected into a grating based 

compressor [3] [92]. Here, the pre-stretched pulses (18 mJ, ~150 ps) are compressed 

back to near its original pulse duration (15 mJ, 30 fs) with 84 % transmission 

efficiency.  

 

 
 

Figure A.7 Design and photography of a grating based compressor. The 
incident angle (φin) is 50.8 degrees. CG1 and CG2 are compressor gratings 
with 1500 g/mm.  
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A pulse from the oscillator is stretched into ~150 ps in the stretcher before 

being injected into the regenerative amplifier. In this pulse stretching, group delay 

dispersion (GDD) of ~2.13 × 106 fs2 is added to the pulse given by  [93],   

2 0.5
2(1 (4 ln 2 ( )) )chirped initial
initial

GDDτ τ
τ

= + ⋅ .          (A.1) 

 
In addition, the Ti:sapphire crystal rod in the regenerative amplifier adds 

additional GDD of ~1441 fs2 for a single pass. The pulse in the regenerative amplifier 

cavity undergoes 10 round trips, which results in ~28820 fs2 overall. The Ti:sapphire 

rods in the single-pass and double-pass amplifiers add additional ~2391 fs2. So the 

estimated total GDD is ~3.78 × 106 fs2, and third-order dispersion (TOD) is ~5.88  × 

108 fs3   

To compensate the accumulated GDD and TOD effectively, we calculated the 

grating separation length L using the following dispersion relationship,  [55] 

3/23
'' 2

2 2 1 ( sin )compressor in
L

c d d
λ λφ θ
π

−
 = − − −  

,  (A.2) 
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d
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d

λθ θ
πλφ φ

λ θ

 + −  = −
 − −  

 ,            (A.3) 

where L is the perpendicular separation between the two parallel gratings, θin is the 

incident angle, and d is the grating groove spacing, and λ is the central wavelength 

(800 nm). The required double grating separation (L) is ~ 26.5 cm with an incident  

angle (φin) of 50.8°  for our grating groove density of 1500 grooves/mm.  
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A.5 Output Beam measurement 

Figure A.8(a) shows a cryogenic cooled amplifier beam profile prior to pulse 

compression. The beam size is measured to be 1.5 mm × 1.5 mm (1/e2).  Figure A.8(b) 

shows the final laser beam profile on a white screen located 1-m away from the final 

compressor.   

 

 

 
Figure A.8 Cryogenic amplifier beam profile (a) before expansion and (b) 
on a screen located 1-m away from the laser system. 

(a) 

(b) 
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Figure A.9 Laser spectra after the oscillator (Micra), regenerative 
amplifier (Legend USX), and cryogenic amplifier.  

 
Figure A.10 shows measured laser spectra after the oscillator, regenerative 

and cryogenic amplifiers. The center wavelength after the cryogenic amplifier is 807 

nm (red-shifted) with a bandwidth of 55 nm. The small amount of spectral redshift, in 

principle, can be improved by tilting the spectral flattening filter in the regenerative 

amplifier and slightly blue-shifting the seed pulse. The pulse width is ~30 fs, 

measured with a single shot intensity autocorrelator. Thus, the system provides 15 mJ, 

30 fs pulses at 1 kHz repetition rate with a peak laser power of ~0.5 TW. 
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Figure A.10  Cryogenic-cooled double pass amplifier diagram   
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Table 1 Optical components for cryogenic cooled laser system 

# Optics 
MA1 45 deg, HR 800nm P, 1.5" diam., flat 
MA2 45 deg, HR 800nm P, 1.5" diam., flat 

3 0 deg, HR 800nm P, 1.0" diam., f = + 500 concave 
4 0 deg, HR 800nm P, 1.0" diam., f = - 75 convex 
5 Periscope kit 
6 45 deg, HR 800nm P, 1.0" diam., flat 
7 45 deg, HR 800nm P, 1.0" diam., flat 
8 45 deg, HR 800nm P, 1.5" diam., flat 
9 45 deg, HR 800nm P, HT 527nm, 2.0" diam., flat 
10 45 deg, HR 800nm P, HT 527nm, 2.0" diam., flat 
11 45 deg, HR 800nm P, 1.5" diam., flat 
12 45 deg, HR 800nm P, 1.0" diam., flat 
13 45 deg, HR 800nm P, 1.0" diam., flat 
14 45 deg, HR 800nm P, 1.0" diam., flat 
15 45 deg, HR 800nm P, 1.0" diam., flat 
18 0 deg, HR 800nm P, 1.0" diam., f = - 100 convex 
19 0 deg, HR 800nm P, 2.0" diam., f =  500 concave 
20 0 deg, HR 800nm P, 1.0" diam., flat 
21 Grating Compressor  
22 45 deg, HR 527nm P, 1.0" diam., flat 
23 Concave lens, AR 527nm, 1.0" diam., f = -100 mm 
24 Convex lens, AR 527nm, 1.0" diam., f = +250 mm 
26 45 deg, HR 527nm P, 1.0" diam., flat 
27 45 deg, HR 527nm P, 1.0" diam., flat 
28 Convex lens, AR 527nm, 1.0" diam., f = +500 mm 
29 Cryo vacuum chamber 
30 Convex lens, AR 527nm, 1.0" diam., f = +350 mm 
31 0 deg, HR 527nm P, 1.0" diam., flat 
33 Periscope kit 
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