
E�cient Language IndependentGeneration from LexicalConceptual StructuresNizar Habash, Bonnie Dorr and David TraumInstitute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20742phone: +1 (301) 405-6768fax: +1 (301) 314-9658fhabash,bonnie,traumg@umiacs.umd.eduWWW home page: http://umiacs.umd.edu/labs/CLIPAugust 30, 2001Abstract. This paper describes a system for generating natural-language sentencesfrom an interlingual representation, Lexical Conceptual Structure (LCS). The sys-tem has been developed as part of a Chinese-English Machine Translation system;however, it is designed to be used for many other MT language pairs and NaturalLanguage applications. The contributions of this work include: (1) Development ofa language-independent generation system that maximizes e�ciency through theuse of a hybrid rule-based/statistical module; (2) Enhancements to an interlingualrepresentation and associated algorithms for interpretation of multiply ambiguousinput sentences; (3) Development of an e�cient reusable language-independent lin-earization module with a grammar description language that can be used withother systems; (4) Improvements to an earlier algorithm for hierarchically mappingthematic roles to surface positions; (5) Development of a diagnostic tool for lexiconcoverage and correctness and use of the tool for veri�cation of English, Spanish,and Chinese lexicons. An evaluation of translation quality shows comparable per-formance with a commercial translation system. The generation system can alsobe straightforwardly extended to other languages and this is demonstrated andevaluated for Spanish.Keywords: Generation, Machine Translation, Interlingua, Lexical Conceptual Struc-ture, Language-Independent NLP1. IntroductionThis paper describes a system for generating natural-language sen-tences from an interlingual representation, Lexical Conceptual Struc-ture (LCS). The system has been developed as part of a Chinese-EnglishMachine Translation (MT) system; however, it is designed to be used formany other MT language pairs (e.g., Spanish and Arabic (Dorr et al.,1995)) and other natural language applications (e.g., cross-languageinformation retrieval (Dorr et al., 2000)).The contributions of this work include: (1) Development of a language-independent generation system that maximizes e�ciency through thec
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2use of a hybrid rule-based/statistical module; (2) Enhancements to aninterlingual representation and associated algorithm (Dorr, 1993b) forinterpretation of multiply ambiguous input sentences; (3) Developmentof an e�cient reusable language independent linearization module witha grammar description language that can be used with other systems;(4) Improvements to an earlier algorithm (Dorr et al., 1998) for hierar-chically mapping thematic roles to surface positions; (5) Developmentof a diagnostic tool for lexicon coverage and correctness and use ofthe tool for veri�cation of English, Spanish, and Chinese lexicons. Anevaluation of translation quality shows comparable performance witha commercial translation system. The generation system can also bestraightforwardly extended to other languages and this is demonstratedand evaluated for Spanish.We will provide an overview of LCS-based MT and then describeour interlingual representation. We will then examine the generationcomponent of our MT system in detail, followed by an evaluation ofdi�erent aspects of our system.2. Overview of LCS-based Machine TranslationOne of the major challenges in natural language processing is the abilityto make use of existing resources. Large di�erences in syntax, seman-tics, and ontologies of such resources create signi�cant barriers to theirusage in large-scale applications. A case in point is the wide range of\interlingual representations" used in machine translation and cross-language processing. Such representations are becoming increasinglyprevalent, yet views vary widely as to what these should be composedof, varying from purely conceptual knowledge-representations, havinglittle to do with the structure of language, to very syntactic represen-tations, maintaining most of the idiosyncrasies of the source languages.In our generation system we make use of resources associated with twodi�erent (kinds of) interlingua structures: Lexical Conceptual Struc-ture (LCS), and the Abstract Meaning Representations (AMR) usedat USC/ISI (Langkilde and Knight, 1998a). The two representationsserve di�erent but complementary roles in the translation process. Thedeeper lexical-semantic expressiveness of LCS is essential for languageindependent lexical selection that transcends translation divergences(Dorr, 1993a). The shallower yet mixed semantic-syntactic nature ofAMRs makes it easier to use directly for target-language realization.The use of two representations in generation mirrors the use of tworepresentations on the analysis side of the MT system, in which aparsing output is passed to a semantic-composition module; the target-mtj2.tex; 5/09/2001; 12:10; p.2



3language AMR is analogous to the source-language parse tree. (SeeFigure 1.) The Composition module takes the source-language parsetree and creates a deeper semantic representation (the LCS) usinga source-language lexicon. In generation, the Decomposition moduleperforms a reverse step that uses a target-language lexicon to createthe hierarchical word and feature structure, a \parse-like" AMR. Thelinearization module 
attens an AMR into a sequence of words. Becauseof the ambiguity inherent in all of the involved modules from the parserto the lexicons, multiple sequences are created. We use the statisti-cal Extraction module of the generation system Nitrogen (Langkildeand Knight, 1998a; Langkilde and Knight, 1998b) to select amongalternative outputs, using n-gram probabilities of target-language wordsequences.
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Figure 1. LCS-based Machine Translation3. Lexical Conceptual StructureLinguistic knowledge in the lexicon covers a wide range of informationtypes, such as verbal subcategorization for events (e.g., that a transi-tive verb such as \hit" occurs with an object noun phrase), featuralinformation (e.g., that the direct object of a verb such as \frighten" isanimate), thematic information (e.g., that \John" is the agent in \Johnmtj2.tex; 5/09/2001; 12:10; p.3



4hit the ball"), and lexical-semantic information (e.g., that spatial verbssuch as \throw" are conceptually distinct from verbs of possession suchas \give"). By modularizing the lexicon, we treat each information typeseparately, thus allowing us to vary the degree of dependence on eachlevel.The most intricate component of lexical knowledge is the lexical-semantic information, which is encoded in the form of Lexical Con-ceptual Structure (LCS) as formulated by Dorr (Dorr, 1993b; Dorr,1994) based on work by Jackendo� (Jackendo�, 1983; Jackendo�, 1990;Jackendo�, 1996). LCS is a compositional abstraction with language-independent properties that transcend structural idiosyncrasies. Thisrepresentation has been used as the interlingua of several projects suchas UNITRAN (Dorr, 1993a) and MILT (Dorr, 1997a).Formally, an LCS is a directed graph with a root. Each node isassociated with certain information, including a type, a primitive anda �eld. The type of an LCS node is one of Event, State, Path, Manner,Property or Thing. There are two general classes of primitives: closedclass (also called structural primitives, e.g., CAUSE, GO, BE, TO) andopen class primitives (also called constants, e.g., john+, reduce+ed,jog+ingly). Su�xes such as +, +ed, +ingly are markers of open classprimitives, signaling also the type of the primitive (thing, property,event, etc.). We distinguish between the structural primitive GO andthe constant go+ingly: the �rst appears in many lexical entries but thesecond appears only in speci�c lexical entries such as the one for the En-glish verb \go". Examples of �elds include Locational, Possessional,and Identificational. Structurally, an LCS node has zero or moreLCS children. There are three ways a child node relates to its parent:as a subject (maximally one), as an argument, or as a modi�er.An LCS captures the semantics of a lexical item through a com-bination of semantic structure (speci�ed by the shape of the graphand its structural primitives and �elds) and semantic content (speci�edthrough constants). The semantic structure of a verb is something theverb shares with a semantic verb class whereas the content is speci�c tothe verb itself. For example, all the verbs in the semantic class of \Run"verbs have the same semantic structure but vary in their semanticcontent (for example, run, jog, walk, zigzag, jump, roll, etc.). Semanticverb classes were initially borrowed from the classi�cation in EnglishVerb Classes and Alternations (EVCA) (Levin, 1993). Our LCS VerbDatabase (LVD) extends EVCA by re�ning the class divisions1 andde�ning the underlying meaning components of each class in the LCS1 Levin's original database contained 192 classes, numbering between 9.1 and 57;our re�ned version contains 492, with more speci�c identi�ers such as \51.3.2.a.ii".mtj2.tex; 5/09/2001; 12:10; p.4



5representation. LVD also provides a relation between Levin's classesand both thematic role information and hand-tagged WordNet synsetnumbers. The �rst public release of the LCS Verb Database is nowavailable for research purposes (Dorr, 2001).Consider the sentence John jogged to school . This can be fully rep-resented (except for features such as tense, telicity, etc.) as follows,roughly corresponding to `John moved (location) to the school in ajogging manner':(1) (event go loc(thing john+)(path to loc(thing john+)(position at loc (thing john+) (thing school+)))(manner jog+ingly))The lexicon entry for one sense of the English verb `jog' and thepreposition `to' are shown in Figure 2. These entries include the rootform of the word, its semantic verb class and word sense(s) from Word-Net (Fellbaum, 1998) (for the verbs), and most importantly, a RootLCS (RLCS) which is the uninstantiated LCS corresponding to theunderlying meaning of the word entry in the lexicon.The top node in the \jog" RLCS has the structural primitive GO inthe locational �eld. Its subject is marked with a \*"; star-marked nodesmust be �lled recursively with other lexical entries during semanticcomposition. The restriction on this particular LCS node is that the�ller must be of type thing. The number `2' in that node speci�es thethematic role: in this case, theme. The second and third child nodes arein argument positions �lled with the primitives FROM and TO. The num-bers `3' and `5' stand for source particle and goal particle respectively.The numbers `4' and `6' stand for source and goal. Figure 3 containsa list of variable numbers with their associated thematic roles. Thesecond argument in the \jog" RLCS is the substructure (to loc ...)that uni�es with the RLCS for the preposition \to". This secondaryRLCS itself has a star-marked argument that must be instantiatedwith a thing such as \school".The �eld :THETA_ROLES speci�es the set of thematic roles appear-ing in the RLCS entry. Theta roles preceded by an underscore (_)are obligatory; whereas roles proceeded by a comma (,) are optional.Parentheses indicate that the corresponding phrases must necessarilybe headed by a preposition. Sometimes the speci�c preposition is pro-vided inside the parentheses. The roles are ordered in a canonical orderthat re
ects their relative surface order: �rst available role is subject;second is object; etc. mtj2.tex; 5/09/2001; 12:10; p.5



6(DEFINE-WORD:DEF_WORD "jog":CLASS "51.3.2.a.ii":THETA_ROLES "_th,src(),goal()":WN_SENSE (01315785 01297547):LANGUAGE ENGLISH:LCS(event go loc (* thing 2)((* path from 3) loc (thing 2)(position at loc (thing 2) (thing 4)))((* path to 5) loc (thing 2)(position at loc (thing 2) (thing 6)))(manner jog+ingly 26)):VAR_SPEC ((3 :optional) (5 :optional)))(DEFINE-WORD:DEF_WORD "to":LANGUAGE ENGLISH:LCS (path to loc(thing 2)(position in loc (thing 2) (* thing 6))))Figure 2. Lexicon Entries for jog and toThe �eld :WN_SENSE links the entry to its corresponding Word-Net synset. The Lexicon entries use WordNet 1.6 senses (Fellbaum,1998; Miller and Fellbaum, 1991). The variable speci�cations (indicatedhere as :VAR_SPEC) assign the arguments headed by FROM and TO an:optional status. Other possible variable speci�cations that appear inour lexicon include :obligatory, :promote, :demote, :EXT (external),:INT (internal) and :conflated (see (Dorr, 1993a) for more details).The current English lexicon contains over 11000 RLCS entries suchas those in Figure 2 (see also Figure 8 later). These entries correspondto di�erent senses of over 4000 verbs. Figure 4 compares four of the nineRLCS entries for the verb \run". These entries are classi�ed by verbclass. Verb-classes are used as templates to generate the RLCS entriesof verbs in the class. For example, the lexical entry for \bake" in class26.3 would be identical to the top RLCS entry shown in Figure 4, exceptthat node 9 would instead contain the primitive bake+ed rather thanrun+ed.As described in (Dorr, 1993b), the meaning of complex phrases iscaptured through a composed LCS (CLCS). A CLCS is constructedmtj2.tex; 5/09/2001; 12:10; p.6



7# Thematic Role De�nition0 no thematic role assigned1 AG agent2 TH ,EXP ,INFO theme or experiencer or information3 SRC() source preposition4 SRC source5 GOAL(), PRED() goal or pred preposition6 GOAL goal7 PERC() perceived item particle8 PERC perceived item9 PRED identi�cational predicate10 LOC() locational particle11 LOC locational predicate12 POSS possessional predicate13 TIME() temporal particle preceding time14 TIME time for TEMP �eld15 MOD-POSS() possessional particle16 MOD-POSS possessed item modi�er17 BEN() bene�ciary particle18 BEN benefactive modi�er19 INSTR() instrumental particle20 INSTR instrument modi�er21 PURP() purpose particle22 PURP purpose modi�er or reason23 MOD-LOC() location particle24 MOD-LOC location modi�er25 MANNER() manner26 reserved for con
ated manner27 PROP event or state28 MOD-PROP event or state29 MOD-PRED() identi�cational particle30 MOD-PRED property modi�er31 MOD-TIME time modi�erFigure 3. Inventory of Thematic Roles(or composed) from several RLCS entries corresponding to individualwords. The composition process starts with a parsed tree of the in-put sentence and maps syntactic leaf nodes into RLCS entries whoseargument positions are �lled with other RLCS entries. For example,the two RLCS entries we have seen already can compose togetherwith the constants for \John" and \school" to give the CLCS for thesentence: John jogged to school, shown in (1). The star-marked node (*path from 3) is optional, and is left un�lled in this case. The sameRLCS could also be used to compose di�erent CLCS representationsmtj2.tex; 5/09/2001; 12:10; p.7



826.3 Verbs of Preparing(event cause (* thing 1)(event go ident (* thing 2)(path toward ident (thing 2)(position at ident (thing 2) (property run+ed 9))))((* for 17) poss (*head*) (* thing 18)))Example: John ran the store for Mary.Other verbs: bake boil clean cook �x fry grill iron mix prepare roast roll run wash ...47.7.a Meander Verbs (from to)(event go_ext loc (* thing 2)((* path from 3) loc (thing 2) (position at loc (thing 2) (thing 4)))((* path to 5) loc (thing 2) (position at loc (thing 2) (thing 6)))(manner run+ingly 26))Example: The river runs from the lake to the sea.Other verbs:crawl drop go meander plunge run sweep turn twist wander ...47.5.1.b Swarm Verbs (Locational)(event act loc (* thing 2)((* position [at] 10) loc (thing 2) (thing 11))(manner run+ingly 26))Example: The dogs run in the forest.Other verbs: bustle crawl creep run swarm swim teem ...51.3.2.a.i Run Verbs - (Locational,Theme only)(event go loc (* thing 2)((* path from 3) loc (thing 2) (position [at] loc (thing 2) (thing 4)))((* path to 5) loc (thing 2) (position [at] loc (thing 2) (thing 6)))(manner run+ingly 26))Example: The horse ran into the �eld from the barn.Other verbs:climb crawl 
y jog jump leap race run swim walk ...Figure 4. RLCS entries for \run" in 4 di�erent semantic verb classes(in combination with other RLCS entries) to produce sentences likeJohn jogged from home or John jogged from home to school.A CLCS can also be decomposed on the generation side in di�erentways depending on the RLCS entries from the target language. Figure 5uses a compressed graphic representation of LCS to visually comparethree di�erent decompositions in three languages of a single CLCS. TheCLCS generated can be paraphrased as John caused himself to go tothe inside of a room in a forceful mannermtj2.tex; 5/09/2001; 12:10; p.8
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Figure 5. Di�erent CLCS Decompositions into English, Spanish and ArabicThe input to the generation component is a text-representation of aCLCS in a format called longhand. It is equivalent to the form shownin (1), but makes certain information more explicit and regular (atthe price of increased verbosity). The Longhand CLCS can either be afully language-neutral interlingua representation, or one which still in-corporates some aspects of the source-language interpretation process.This latter may include grammatical features on LCS nodes, but alsonodes, known as functional nodes, which correspond to words in thesource language but are not LCS-nodes themselves, serving merely asplace-holders for feature information. Examples of these nodes includemtj2.tex; 5/09/2001; 12:10; p.9



10punctuation markers, coordinating conjunctions, grammatical aspectmarkers, and determiners.An important extension of the LCS input language is the in-placerepresentation of ambiguous sub-trees as a possibles node|denoted:possibles|which has the various possibilities represented as its ownchildren. For example, the following structure (with some aspects elidedfor brevity) represents a node that could be one of three possibilities.In the second one, the root of the sub-tree is a functional node, passingits features to its child, country+:(2) (:possibles(middle+ (country+ (developing+/p)))(functional (postposition among)(country+ (developing+/p)))(china+ (country+ (developing+/p))))It is important to point out that in our Chinese-English Translationproject, sentences were not quite as simple as the examples used sofar to explain the LCS approach. Figure 6 displays a CLCS from ourmachine translation system that was derived from the Chinese sentencein (3).(3) in cardinalizer 2121 session SEA-Singapore-Australiacentral-bank-organization chief seminar at ,chinese-peoples-bank deputy chief YinJieYan concerning "capital large-amount in
ux situation beneath macro economicpolicy DE agreement " issue express opinionsAt the 21st Southeast Asia-Singapore-Macao Central Bank Or-ganization Presidents' Symposium, vice president of the People'sBank of China Yin Jieyan expressed his opinion on "coordinationof macro-economic policy with a large capital in
ow"Figure 6 hides the ambiguity in the CLCS by only showing a singlepossibility when many occur. However, ambiguous nodes do indicatethe number of the possibilities through the small black boxes underthe node. For example, in Figure 6, the top node has four distinctpossibilities corresponding to the verbs issue, publish, and announcemtj2.tex; 5/09/2001; 12:10; p.10



11(two instances of the latter). The number of distinct possible CLCSrepresentations is 128. The average number of nodes per CLCS in thisexample is about 50. Compare these �gures to those for the examplein Figure 5: zero ambiguity, one CLCS, and ten nodes.
Figure 6. Large-scale CLCSThe rest of the examples in this paper will refer to the less complexCLCS for the Chinese sentence in (4).(4) US unilateral reduce China textile product export quotaThe United States unilaterally reduced the China textile exportquotaThe representation for this example is shown in (5) below, which roughlycorresponds to \The United States caused the quota (modi�ed byChina, textile and export) to go identi�cationally (or transform) to-wards being at the state of being reduced." This LCS is presentedwithout all the additional features, or type and function markers forsake of clarity. Also, it is actually one of eight possible LCS compo-sitions produced by the analysis component from the input Chinesesentence.(5) (cause (united_states+)(go ident (quota+ (china+) (textile+) (export+))(to ident (quota+ (china+) (textile+) (export+))(at ident (quota+ (china+) (textile+) (export+))(reduce+ed))))(with instr (*HEAD*) nil)(unilaterally+/m)) mtj2.tex; 5/09/2001; 12:10; p.11
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ow of informationbetween them. In the generation process, the �rst phase, Lexical Choice,uses language-speci�c lexicons that relate lexical items in the targetlanguage to their LCS representation. The output of this phase is atarget-language representation of the sentence in a modi�ed form ofthe Abstract Meaning Representation (AMR) interlingua called LCS-AMR. The second phase, Realization, �rst handles the linearization andmorphology to generate lattices of target-language sequences from theLCS-AMR and then statistically extracts preferred sequences using abigram language model. For linearization, we use our own language in-dependent linearization engine, Oxygen (Habash, 2000). As for the sta-tistical extraction (and morphological generation), we use the Nitrogengeneration system, from ISI (Langkilde and Knight, 1998a; Langkildeand Knight, 1998b).4.1. Lexical ChoiceThe �rst major component, divided into four pipelined sub-modules asshown in Figure 7, transforms a CLCS structure into an LCS-AMRstructure. This new representation is a modi�ed form of the AMRmtj2.tex; 5/09/2001; 12:10; p.12



13interlingua that uses words and features speci�c to the target language,and also includes syntactic and semantic information from the LCSrepresentation that is relevant for realization.4.1.1. Pre-ProcessingThe pre-processing phase converts the text input format into an inter-nal graph representation for e�cient access of components (with linksfor parents as well as children). This phase also removes extraneoussource-language features. For example, it converts the CLCS in (2)to remove the functional node and promote country+ to be one ofthe possible sub-trees. This involves a top-down traversal of the tree,including some complexities when functional nodes without children(which then assign features to their parents) are direct children ofpossibles nodes.4.1.2. Lexical AccessThe lexical access phase compares the internal CLCS form to the targetlanguage lexicon, decorating the CLCS tree with the RLCS entries oftarget-language words which are likely to match sub-structures of theCLCS. The matching between a given CLCS, and the target-languagelexicon is potentially a complex process, given the large amount ofstructural similarity between the entries of the lexicon. For example, thedi�erences between the RLCS entries for \run" and \bake" in class 26.6would only be distinguished by looking down 5 nodes deep from the root(c.f., Figure 4 and the discussion of verb-classes above). In a previousversion of the system, we represented the lexicon in a trie structure, sothat individual entries were only consulted at appropriate points in theCLCS tree-traversal. This still proved a fairly complex and ine�cientprocedure given the large amount of places that complex structures canbe embedded (e.g., complement events). Our current approach uses atwo phase process, in which RLCS entries are �rst located based onthe distinguishing information (e.g., run+ed vs. bake+ed) and thenplaced in the appropriate matching node (CAUSE) for later comparison.The lexical access process thus proceeds as follows. In an o�-linelexicon processing phase, each word in the target-language lexicon isstored in a hash-table, with each entry keyed on a designated primitivewhich would be a most distinguishing node in the RLCS. Informationis also kept about how deep from the root of the RLCS this primitive'snode is to be found. For example, the designated primitive for the RLCSentries corresponding to class 26.3 would be run+ed (or bake+ed), andthe depth would be 5. On-line decoration then proceeds in two stepprocess, recursively examining each node in the CLCS:
mtj2.tex; 5/09/2001; 12:10; p.13



14(6) (i) Look for RLCS entries stored in the lexicon under the CLCSnode's primitive(ii) Store retrieved RLCS entries at the node in the CLCS thatmatches the root of this RLCS (follow a number of parentlinks from the CLCS node corresponding to the depth of thedesignated primitive).Figure 8 shows some of the English entries matching the CLCS in(5). For most of these words, the designated primitive is the only node inthe corresponding LCS for that entry. For reduce, however, reduce+edis the designated primitive. When traversing the CLCS nodes in (5),this entry will be retrieved at the reduce+ed node in step (6)i; it willbe stored at the root node of (5) in accordance with step (6)ii.(:DEF_WORD "reduce":CLASS "45.4.a":THETA_ROLES "_ag_th,instr(with)":WN_SENSE (00154752 00162871 00163072 00163532):LANGUAGE ENGLISH:LCS (event cause (* thing 1)(event go ident (* thing 2)(path toward ident (thing 2)(position at ident (thing 2) (reduce+ed 9))))((* position with 19) instr (*head*) (thing 20))):VAR_SPEC ((1 (animate +))))(:DEF_WORD "United States" :LCS (thing united_states+ 0))(:DEF_WORD "China" :LCS (thing china+ 0))(:DEF_WORD "quota" :LCS (thing quota+ 0))(:DEF_WORD "with":LCS (position with instr (thing 2) (* thing 20)))(:DEF_WORD "unilaterally":LCS (manner unilaterally+/m 0))Figure 8. Lexicon entries
mtj2.tex; 5/09/2001; 12:10; p.14



154.1.3. Alignment/DecompositionThe heart of the lexical choice phase is the decomposition process. Inthis phase, we attempt to align RLCS entries selected by the lexicalaccess portion with parts of the CLCS, to �nd a covering of the CLCSgraph that satis�es the \full coverage constraint" of the original algo-rithm described in (Dorr, 1993b). Our algorithm di�ers from that in(Dorr, 1993b) in its inclusion of some extensions to handle the in-placeambiguity represented by the possibles nodes.The algorithm recursively checks whether CLCS nodes match cor-responding RLCS nodes coming from the lexical entries retrieved andstored in the previous phase. If signi�cant incompatibilities are found,the lexical entry is discarded. If all (obligatory) nodes in the RLCSmatch against nodes in the CLCS, then the rest of the CLCS is re-cursively checked against other lexical entries stored at the remainingunmatched CLCS nodes.A CLCS node matches an RLCS node, if the following conditionshold:(7) (i) The primitives are the same (or the primitive for one is awild-card, represented as nil)(ii) The types (e.g., thing, event, state, etc.) are the same (or nil)(iii) The �elds (e.g., identi�cational, possessive, locational, etc) arethe same (or nil)(iv) The positions (e.g., subject, argument, or modi�er) are thesame(v) All obligatory children of the RLCS node have correspondingmatches (recursively invoking this same de�nition) to childrenof the CLCSStar-marked nodes in an RLCS (nodes indicated with a \*", see alsodiscussion above) require not just a match against the correspondingCLCS node, but also a match against another lexical entry. Thus, in(5), the node (united_states+) must match not only with the cor-responding node from the RLCS for \reduce" in Figure 8 (* thing1), but also with the RLCS for \United States", united_states. Theresult is that some CLCS nodes must match multiple RLCS nodes.Subject and argument children are obligatory unless speci�ed as op-tional, whereas modi�ers are optional unless speci�ed as obligatory (seeFigure 2 for an example of an optional marking). In the RLCS for \re-duce" in Figure 8, the nodes corresponding to agent and theme (num-bered 1 and 2, respectively) are obligatory, while the instrument (thenode numbered 19) is optional. Thus, even though there is no matchinglexical entry for node 20 (\*"-marked in the RLCS for \with"), the mainmtj2.tex; 5/09/2001; 12:10; p.15



16RLCS for \reduce" is allowed to match, though without any realizationfor the instrument.A complexity in the algorithm occurs when there are multiple possi-bilities in a position in a CLCS. In this case, only one of these possibili-ties is required to match all the corresponding RLCS nodes in order fora lexical entry to match. In the case where some of these possibilitiesdo not match any RLCS nodes (meaning there are no target-languagerealizations for these constructs), these possibilities can be pruned atthis stage. On the other hand, ambiguity can also be introduced atthe decomposition stage, if multiple lexical entries can match a singlestructure.The result of the decomposition process is a match-structure indi-cating the hierarchical relationship between all lexical entries which,together, cover the input CLCS.4.1.4. LCS-AMR CreationThe match structure resulting from decomposition is then convertedinto the appropriate input format used by the Nitrogen generationsystem. Nitrogen's input, Abstract Meaning Representation (AMR),is a labeled directed feature graph written using the syntax for thePENMAN Sentence Plan Language (Penman 1989). A BNF structuraldescription of an AMR is shown in (8).(8) AMR = <concept> j (<label> / <concept> f<role> <AMR>g*)An AMR is either a basic concept such as jrunj, jjohnj or jquicklyjor a labeled instance of a concept that is modi�ed by a set of feature-value pairs. Features, or roles, can be syntactic (such as :subject) orsemantic (such as :agent). The basic notation / is used to specify aninstance of a concept in a non-ambiguous AMR.We have extended the AMR language to accommodate the thematicroles and features provided in the CLCS representation; the resultingrepresentation is called an LCS-AMR. To distinguish the LCS termsfrom those used by Nitrogen, we mark most of the new roles with thepre�x :LCS-. Figure 9 shows the LCS-AMR corresponding to the CLCSin (5), decomposed using the lexicon entries in Figure 8.The LCS-AMR in Figure 9 can be read as an instance of the conceptjreducej whose category is a verb and is in the active voice. The conceptjreducej has two thematic roles related to it, an agent (:LCS-AG) anda theme (:LCS-TH); and it is modi�ed by the concept junilaterallyj.The di�erent roles modifying jreducej come from di�erent origins. The:LCS-NODE value comes directly from the unique node number in theinput CLCS. The category, voice and telicity are derived from featuresmtj2.tex; 5/09/2001; 12:10; p.16



17(a7537 / |reduce|:LCS-NODE 6253520:LCS-VOICE ACTIVE:CAT V:TELIC +:LCS-AG (a7538 / |United States|:LCS-NODE 6278216:CAT N):LCS-TH (a7539 / |quota|:LCS-NODE 6278804:CAT N:LCS-MOD-THING (a7540 / |China|:LCS-NODE 6108872:CAT N):LCS-MOD-THING (a7541 / |textile|:LCS-NODE 6111224:CAT N):LCS-MOD-THING (a7542 / |export|:LCS-NODE 6112400:CAT N)):LCS-MOD-MANNER (a7543 / |unilaterally|:LCS-NODE 6279392:CAT ADV))Figure 9. LCS-AMRof the RLCS entry for the verb jreducej in the English lexicon. Thespeci�cations agent and theme come from the RLCS representation ofthe verb reduce in the English lexicon as well, as can be seen by thenode numbers 1 and 2, in the lexicon entry in Figure 8. The role :LCS-MOD-MANNER combines the fact that the corresponding AMR hada modi�er role in the CLCS and because its type is a Manner.We have additionally extended the AMR syntax in our system byproviding the ability to specify an ambiguous AMR as an instance-lessconglomeration of di�erent AMRs; this is achieved by means of thespecial role :OR. For example, a variant of the LCS-AMR in Figure 9in which the root concept is three way ambiguous would appear as in(9) (details below the root omitted).(9) (# :OR (# / |reduce| . . . ) mtj2.tex; 5/09/2001; 12:10; p.17



18 :OR (# / |cut| . . . ):OR (# / |decrease| . . . ))4.2. RealizationThe LCS-AMR representation is then passed to the realization module,which uses the Nitrogen approach to generation. The strategy used byNitrogen is to allow over-generation of possible sequences of target-language words from the ambiguous or under-speci�ed AMRs and thendecide amongst them based on bigram frequency. The interface betweenthe linearization module and the statistical extraction module is a wordlattice of possible renderings. The Nitrogen package o�ers support forboth subtasks, linearization and statistical extraction. Initially, we usedthe Nitrogen grammar to do linearization. But complexities in recastingthe LCS-AMR roles as standard AMR roles as well as e�ciency consid-erations (that will be discussed later in detail) compelled us to createour own linearization engine for writing target-language grammars,Oxygen (Habash, 2000).In this module, we force linear order on the unordered parts of anLCS-AMR. This is done by recursively calling grammar rules that cre-ate various phrase types (NP,PP, etc.) from aspects of the LCS-AMR.The result of the linearization phase is a word lattice specifying thesequence of words that make up the resulting sentence and the pointsof ambiguity where di�erent generation paths may be taken. Example(10) shows the word lattice corresponding to the LCS-AMR in Figure9.(10) (SEQ (WRD "*start-sentence*" BOS)(WRD "united states" NOUN)(WRD "unilaterally" ADJ)(WRD "reduced" VERB)(OR (WRD "the" ART)(WRD "a" ART)(WRD "an" ART))(WRD "china" ADJ)(OR (SEQ (WRD "export" ADJ)(WRD "textile" ADJ))(SEQ (WRD "textile" ADJ)(WRD "export" ADJ)))(WRD "quota" NOUN)(WRD "*end-sentence*" EOS))The keyword SEQ speci�es that what follows is a list of sub-lattices intheir correct linear order. The keyword OR speci�es the existence ofmtj2.tex; 5/09/2001; 12:10; p.18



19disjunctive paths for generation. In the above example, the noun `quota'is given a disjunction of all possible determiners since its de�niteness isnot speci�ed. Also, the relative order of the words `textile' and `export'is not resolved so both ordering possibilities are inserted into the lattice.Finally, the Nitrogen statistical extraction module evaluates the dif-ferent paths represented in the word lattice and orders the di�erentword renderings using uni- and bigram frequencies calculated based ontwo years of the Wall Street Journal (Langkilde and Knight, 1998b).Example (11) shows Nitrogen's ordering of the sentences extracted fromthe lattice in (10).(11) united states unilaterally reduced the china textile export quota.united states unilaterally reduced a china textile export quota.united states unilaterally reduced the china export textile quota.united states unilaterally reduced a china export textile quota.united states unilaterally reduced an china textile export quota.united states unilaterally reduced an china export textile quota.4.2.1. Linearization IssuesThe unordered nature of siblings under an LCS-AMR node compli-cates the mapping between roles and their surface positions, yieldingseveral interesting linearization issues. In this section, we look at someof the choices made for our English realizer for ordering linguisticconstituents.4.2.1.1. Sentential Level Argument Ordering Sentences are realizedaccording to the pattern in (12). That is, �rst subordinating conjunc-tions, if any, then modi�ers in the temporal �eld (e.g., \now", \in1978"), then the subject, then most other modi�ers, the verb (withcollocations if any) then spatial modi�ers (\up", \down"), then theindirect object and direct object, followed by prepositional phrases andrelative clauses. Nitrogen's morphology component was also used, e.g.,to give tense to the head verb. In the example above, since there wasno tense speci�ed in the input LCS, past tense was used on the basisof the telicity of the verb to give \reduced" in (10),(11).2(12) (SubConj ,) (TempMod)* Sub (Mod)* V (coll) (SpaceMod)* (IObj)(Obj) (PP)* (RelS)*2 See (Dorr and Olsen, 1996) and (Olsen et al., 2001) for a detailed study on theuse of telicity for tense and aspect realization.mtj2.tex; 5/09/2001; 12:10; p.19



204.2.1.2. Thematic Role Ordering Given the above general shape fora sentence, there is still an issue of which thematic role should bemapped to which argument positions. This situation is complicated bythe lack of one-to-one mapping between a particular thematic role andan argument position. For example, a theme can be the subject in somecases and it can be the object in others or even an oblique. Observecookie in (13).(13) (i) John ate a cookie (object)(ii) the cookie contains chocolate (subject)(iii) she nibbled at a cookie (oblique)To solve this problem, a thematic hierarchy is used to determinethe argument position of a thematic role based on its cooccurencewith other thematic roles. Several researchers have proposed di�erentversions of thematic hierarchies (see (Jackendo�, 1972; Carrier-Duncan,1985; Bresnan and Kanerva, 1989; Kiparsky, 1985; Larson, 1988; Giorgi,1984; Wilkins, 1988; Nishgauchi, 1984; Alsina and Mchombo, 1993;Baker, 1989; Grimshaw and Mester, 1988)).3 Ours di�ers from these inthat it separates arguments (e.g., agent and theme) from obliques (e.g.,location and bene�ciary) and provides a more complete list of thematicroles (30 roles overall, see Figure 3) than those of previous approaches(maximum of 8 roles).The �nal thematic hierarchy for arguments was extracted by ana-lyzing subcategorization information in the :THETA_ROLES �eld for allthe verbs in our English lexicon.(14) special case : ag {goal src ben} thext > ag > instr > th > perc > Everything ElseThus, in the case where a theme occurs alone, this role is mapped tothe �rst argument position. If a theme and an agent occur, the agent ismapped to �rst argument position and the theme is mapped to secondargument position. When an agent and theme occur with a third rolethat is either a goal, a source or a bene�ciary, a middle inversion isinvoked on the order. The pseudo-role ext is used when the :VAR_SPEC�eld in the lexical entry of a verb includes an :EXT marker indicatingthat the verb violates the normal thematic hierarchy. The ext markerrefers to an externally marked thematic role such as the perceivedJohn in Johnperc pleases Maryth. As for the ordering of obliques, allpossible permutations are generated. For the LCS-AMR in Figure 9,3 For an excellent overview and a comparison of di�erent thematic hierarchies see(Levin and Rappaport Hovav, 1996). mtj2.tex; 5/09/2001; 12:10; p.20



21the thematic hierarchy is what determines that the junited statesj is thesubject and jquotaj is the object of the verb jreducej. A more detaileddiscussion is available in (Dorr et al., 1998). We will return to discussthematic hierarchies later in this paper when evaluating English andSpanish realization.4.2.1.3. NP Modi�er Ordering In most cases, our input CLCS repre-sentations had little hierarchical information about multiple modi�ersof a noun. Our initial, brute force solution was to generate all permu-tations and depend on the existing statistical extraction (in Nitrogen)to decide amongst them. This technique worked well for noun phrasesof about 6 words, but was too costly for larger phrases (of which therewere several examples in our test corpus). We improved both the cost ofpermutation generation and the 
uency of the top choices by orderingadjectives within classes, inspired by the adjective ordering scheme in(Quirk et al., 1985). Our classi�cation scheme is shown in (15). Eachadjective in the target-language lexicon was assigned to one of theseclasses.(15) (i) Determiner (all, few, several, some, etc.)(ii) Most Adjectival (important, practical, economic, etc.)(iii) Age (old, young, etc.)(iv) Color (black, red, etc.)(v) Participle (confusing, adjusted, convincing, decided)(vi) Provenance (China, southern, etc.)(vii) Noun (Bank of China, di�erence, memorandum, etc.)(viii) Denominal (nouns made into adjectives by adding -al, e.g.,individual, coastal, annual, etc.)If multiple words fall within the same group, permutations are gener-ated for them. This situation can be seen for the LCS-AMR in Figure 9with the ordering of the modi�ers of the word jquotaj: jchinaj, jexportjand jtextilej. jchinaj fell within the Provenance class of modi�ers whichgives it precedence over the other two words. jexportj and jtextilej, onthe other hand, fell in the Noun class and therefore both permutationswere passed on to the statistical component. Without this ordering,more permutations would be given to the statistical component, which,in this case, would also get a less appropriate result: \Textile chinaexport quota" rather than \china textile export quota."4.2.2. Oxygen: Linearization ImplementationThe linearization module is basically an implementation of a set ofrules, a grammar, that governs the relative word ordering (syntax)mtj2.tex; 5/09/2001; 12:10; p.21



22and word form (morphology) of an LCS-AMR in the target language.We have used three di�erent linearization modules, each improving onproblematic aspects of the previous ones. We brie
y look at each ofthese in turn.4.2.2.1. Nitrogen Linearization The Nitrogen generation system pro-vides its own linearization module. The approach used in this moduleis a declarative one where a linearization engine performs on-line in-terpretation of a linearization grammar. The grammar is written ina special grammar description language that utilizes two basic opera-tions: recast and linearize. A recast transforms an AMR into anotherAMR based on features of the original AMR. One example of recastingis converting an AMR with thematic roles into an AMR with surfaceargument position through the use of a thematic hierarchy. The sec-ond operation, linearize, decomposes an AMR into linearly orderedconstituents, recursively applying the grammar to each. The grammardescription language provides tools for de�ning conditions on which tomake decisions to recast and/or linearize an AMR.The advantages of this declarative approach are reusability, easyextendibility and language independence. Its main drawback is speed.Another drawback for Nitrogen's linearization grammar is a limitedand in
exible grammar formalism: First, conditions of application arelimited to equality of concepts or existence of roles at the top levelof an AMR only. Second, recasting operations are limited to addingfeature-value pairs and introducing new nodes. And, �nally, there isno mechanism to perform range-unbounded or computationally com-plex transformations such as, for example, multiplication or division tocorrectly format numbers in the target language. The �rst two issuesnecessitate writing multiple rules and cascading information in orderto implement complex decisions, which in turn increases the size of thegrammar and furthur reduces the performance speed. The third issue issimply impossible to implement with the current formalism. A deeperlook at these issues is provided in (Habash, 2000).4.2.2.2. Procedural Linearization To contrast with Nitrogen's declar-ative approach to linearization, we look at procedural implementationsof linearization grammars. In these approaches, a programming lan-guage is used to implement the rules of the grammar. The main advan-tages of this approach are 
exibility, power and speed. Having accessto the full computing power of a programming language opens a lotof possibilities for e�cient implementation. It also frees the linearizer'sdesigner from the restrictions of a limited declarative grammar by pro-viding access to the operating system, databases, the web, etc. However,mtj2.tex; 5/09/2001; 12:10; p.22



23a major disadvantage of this approach is that the linguistic knowledgeis coupled with the program code. This hard-coding of grammar rulescan make the system rather redundant, di�cult to understand anddebug, non-reusable and language speci�c.4.2.2.3. Towards Improved Generation: A Hybrid Approach After ex-ploring both approaches in our system, we adopted a hybrid imple-mentation (declarative/procedural) that maximizes the advantages andminimizes the disadvantages of these paradigms. The result is thelinearization module Oxygen.Oxygen uses a linearization grammar description language to writedeclarative grammar rules which are then compiled into a programminglanguage for e�cient performance. Oxygen contains three elements: alinearization grammar description language (OxyL), an OxyL to Lispcompiler (oxyCompile) and a run-time support library (oxyRun). Ex-cept for Nitrogen's morphological generator submodule, all of the Oxy-gen components were built at our Lab. Target-language linearizationgrammars written in OxyL are compiled o�-line into Oxygen Lineariz-ers using oxyCompile (Figure 10).
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oxyCompileFigure 10. Oxygen Compilation StepOxygen Linearizers are Lisp programs that require the oxyRun li-brary of basic functions in order to execute (Figure 11). They takeAMRs as input and create word lattices that are passed to a statisticalextraction unit.
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24 This implementation maximizes the advantages and minimizes thedisadvantages inherent in the declarative and procedural paradigms.The separation of the linearization engine (oxyRun) from the lineariza-tion grammar (OxyL) combines in one system the best of two worlds:(1) the simplicity and focus of a declarative grammar with the powerand e�ciency of a procedural implementation; and (2) the e�ciencyof a resource-sharing implementation. Regarding this �rst point, theapproach provides language independence and reusability since needsof the target language are only addressed in its speci�c OxyL grammar.Regarding the second point, the separation of language-speci�c code(compiled OxyL) from language-independent code (oxyRun) is e�cient,especially when running multiple linearizers for di�erent languages atthe same time as in multilingual generation.Moreover, Oxygen's linearization grammar description language, OxyL,is as powerful as a regular programming language but with a focus onlinearization needs. This is accomplished through providing powerfulrecasting mechanisms for the most common needs of a linearizationgrammar and also by allowing embedding of code in a standard pro-gramming language (Lisp). This allows for e�cient implementation ofthe more language speci�c realization problems (e.g., number format-ting). OxyL linearization grammars are also simple, clear, concise andeasily extendible. An example of the simplicity of OxyL grammars is thereduction of redundancy. For example, the handling of :OR ambiguitiesin each phrase rule (see, e.g., (9)) is hidden from the linearization gram-mar designer and is treated only in the compiler and support library.For a detailed presentation of OxyL's syntax, see (Habash, 2000).Figure 12 presents a small OxyL grammar that is enough to linearizethe LCS-AMR in Figure 9. In this grammar, the user-de�ned recast op-eration &TH-order uses the OxyL special hierarchical recast operator,<! to recast a small hierarchy of (agent, instrument, theme, sourceand goal) into subject and object positions. Rules %S and %NP linearizethe di�erent LCS-AMRs associated with speci�c roles. For example,@subject refers to the LCS-AMR paired with the role :subject. How-ever, note that since @lcs-mod-thingmatches three roles (i.e. |china|,|export| and |quota|, an ambiguous LCS-AMR is created and all itspermutations are explored linearly. This is done at the engine level andis hidden from the user. A linearization can specify hard coded ele-ments such as the determiners in %NP. The rule :MainRule determineswhich phrase-level rule to apply by considering the category, i.e. partof speech, of the LCS-AMR instance. This is accomplished using theautomatically de�ned function @CAT, which returns the value associatedwith the �eld :CAT in the LCS-AMR. The sequence of ?? X -> Y -> Z
mtj2.tex; 5/09/2001; 12:10; p.24



25roughly corresponds to if X then Y else Z. The rule :MainRule isapplied recursively until no more LCS-AMRs exist.:Recast &TH-order(@this <! ((:subject :object) /(:lcs-ag :lcs-instr :lcs-th :lcs-src :lcs-goal))):Rule %S(-> (@subject (@inst +- past) @object @lcs-mod-manner)):Rule %NP(-> ((*or* "a" "an" "the") @lcs-mod-thing @inst)):MainRule((?? (&eq @cat V) -> (do %S (&TH-order @this))?? (&eq @cat N) -> (do %NP)-> (@inst))Figure 12. A Simple OxyL GrammarThe complete English Linearization grammar used in our system ismuch larger and more complex than the one shown in Figure 12. Itincludes 14 di�erent phrase structure rules and four user-de�ned recastoperations and it is about 300 lines of code long. The quality of theEnglish output produced is evaluated in section 6.5. Generation into Multiple LanguagesWhile most of the e�ort has been spent on generation into English,in the context of Chinese-English translation, there has been somework using these components for generation into other languages. Themain algorithms are all language independent, and retargeting the sys-tem for another languages involves only the following language-speci�cresources:� Target-language LCS lexicon: a set of RLCS entries linking targetlanguage words to lexical conceptual structures, as described inSection 3.� Target-language linearization grammar, in OxyL (see section 4.2.2).� Word n-gram statistics for the target language, for use by latticeextractor. mtj2.tex; 5/09/2001; 12:10; p.25



26In addition, the following pre-processing steps are also needed for cre-ating a generation system for the target language:� Hashing of target-language lexicon by \designated primitives", foron-line rapid retrieval (see section 4.1.2).� Running oxyCompile on the linearization grammar to create anoyxGen Linearizer for the target-language (see section 4.2.2).� Creation of a target-language n-gram database, for use by thestatistical lattice extractor.An important feature of a translation approach using an interlinguasuch as LCS is that the same grammar can be used for analysis andgeneration. Thus we already have a major component for a Chinesegeneration system. Likewise, large LCS lexicons also exist for otherlanguages such as Spanish and Arabic (Dorr, 1997a).We have also created a linearization component for Spanish, usinga simple OxyL Spanish linearization grammar. This grammar con-centrates on argument word order relative to the verb. It utilizes athematic hierarchy mapping that is very similar to that of English. Weavoided dealing with complex Spanish morphology by using the simple`near-future' construction (va a + INF). One example is alguienag va acolocar algoth en algogoal (someoneag will (is going to) place somethingthin somethinggoal). In addition to the lack of a complete phrase structurefor parts of speech other than verbs, the Spanish linearization grammardoesn't handle Pro-drop or clitics. In principle, both phenomena can behandled with a recast rule that would �re after the thematic hierarchyrecast. In the case of pro drop, it conjugates the verb and makes thesubject null. And in the case of clitics, it adds a clitic that matches thegender and number of the object.A similar but even less sophisticated linearization grammar was cre-ated to generate Chinese. A preliminary study showed some promisingresults as far as thematic hierarchy mapping. However Chinese seemsto require more complex linearization rules and post-lexical selectionmanipulations especially for obliques.We have not yet built an n-gram extractor for other languages.Preliminary evaluation of Spanish generation is given in Section 6.4.6. EvaluationThe evaluation of machine translation and natural language generationsystems is more of an art than a science. Evaluation of generationmtj2.tex; 5/09/2001; 12:10; p.26



27systems is di�cult, because the ultimate criterion is translation qual-ity, which can, itself, be di�cult to judge, but, moreover, it can behard to attribute speci�c de�cits to the analysis phase, the lexicalresources, or the generation system proper. A wide range of metricsand techniques have been developed over the last �fty years to assess`how good' a system is. Evaluation schemas vary in their focus fromaddressing the system's interface to system scalability, faithfulness,space/time complexity, etc. Another dimension of variation is humanversus automatic evaluation. Fully automatic evaluation, a task thatis AI-complete (i.e., encompassing all components of any system thatwould be deemed \intelligent"), is the ultimate goal in the �eld.4In (Church and Hovy, 1991), three categories of MT evaluation met-rics are described: system-based, text-based and cost-based. System-based metrics count internal resources: size of lexicon, number of gram-mar rules, etc. These metrics are easy to measure although they arenot comparable across systems. And their value is questionable sincethey are not necessarily related to utility.Text-based metrics can be divided into sentence-based andcomprehensibility-based. Sentence-based metrics examine the qualityof single sentences out of context. These metrics include Accuracy,Fluency, Coherence, etc. Typically, subjects evaluating sentences aregiven a description of the metric with examples and are asked to ratethe sentences on an x-point scale. These scales range from 3-point to100-point. Comprehensibility metrics measure the comprehension orinformativeness of a complete text composed of several sentences. Thesubjects are typically given questionnaires related to the processed text.Text-based metrics are much more related to utility than system-basedmetrics, but they are also much harder to measure. There are someautomatic text-based evaluation metrics that measure the amount ofpost-editing needed for a sentence given a gold standard. These arevariations on edit-distance, i.e., the number of deletions, additions ormodi�cations measured by words or keystrokes per page or sentence.These techniques are not necessarily related to utility, however; it wasrecently shown that the smarter tree-based edit distance might actuallycorrelate better to human judgement (Bangalore and Rambow, 2000).Cost-based metrics evaluate a system on how much money/time itsaves/costs per unit of text, say a page. These are secondary metricssince they depend on other metrics to evaluate how much post/pre-processing is necessary for a commercially functional system.4 For excellent surveys of machine translation evaluation metrics and techniques,see (Hovy, 1999; Hovy, 1999). mtj2.tex; 5/09/2001; 12:10; p.27



28Table I. Oxygen EvaluationProcedural Hybrid Declarative(Lisp) (Oxygen) (Nitrogen)Speed + 0 -Size 0 + -Expressiveness + + -Reusability - + +Readability/ - + -Writability6.1. Preliminary EvaluationsDi�erent aspects of our system were evaluated in previous papers. In(Dorr et al., 1998) and also in more recent work (Habash and Dorr,2001), the thematic hierarchy implementation proved successful andthe generation was demononstrated to be a diagnostic tool for �xing thelexicon, algorithmic errors, and inconsistencies in English and Spanishoutput.Another major evaluation addressed the general performance of theOxygen module (Habash, 2000). Oxygen was evaluated based on speedof performance, size of grammar, expressiveness of the grammar de-scription language, reusability and readability/writability. The evalua-tion context is provided by comparing an Oxygen linearization gram-mar for English to two other implementations, one procedural (usingLisp) and one declarative (using Nitrogen linearization module). Thethree comparable linearization grammars were used to calculate speedand size. Overall, Oxygen had the highest number of advantages andits only disadvantage, speed, ranked second to the lisp implementation(see Table I).The generation component has also been used on a broader scale,generating thousands of simple sentences | at least one for each verbsense in the English LCS lexicon, creating sentence templates to beused in a Cross-Language information retrieval system (Dorr et al.,2000).These previous evaluation e�orts have been fairly coarse-grained andsubjective. In the rest of this section, we report on both quantitativeand qualitative evaluations of the system in several dimensions: Trans-mtj2.tex; 5/09/2001; 12:10; p.28



29lation Quality, Coverage and Retargetability. Translation Quality canbe seen as a system depth evaluation whereas Coverage is a systembreadth evaluation. Retargetability focuses on the extendibility of thesystem to other languages.6.2. Translation Quality EvaluationThe generation system has been used as part of a Chinese-EnglishTranslation system focusing on a corpus of 10 newspaper articles fromXinhua (Chinese People's Daily). The articles included eighty sen-tences that our translation system was able to parse, compose intoLCS interlingua, and generate into English successfully. Although thenumber of sentences is small, some of them are quite complex, andrepresent a cross-section of the types of complex phenomena handled ina large-scale MT. To measure the translation quality of the system, weperformed two human evaluations: one for Accuracy (Fidelity) and onefor Fluency (Intelligibility). Both tests used a set of 25 sentences ran-domly selected from the 80 original Chinese sentences that completelypass our translation system. For comparison purposes, we also useda commercial Chinese-English translation system to translate thesesentences: Chinese-English Systran 3.0 Professional edition. Thus, weboth have absolute quality metrics and compare to state of the arttranslation.The test suite is a 2x2 grid: (Accuracy, Fluency) x (ChinMT, Sys-tran). The total number of subjects is 80, all of whom are nativespeakers of English. Each subject participated in only one of the fourpossible evaluations (e.g., ChinMT Accuracy or Systran Fluency) forall 25 sentences.5 The evaluation was performed online using a webinterface (see Figure 13).6.2.1. Accuracy EvaluationThis evaluation measures the Accuracy or Fidelity of the translationsystem, i.e., how well a system preserves the meaning of the originaltext whether the target language is 
uent or not. The subjects weregiven 25 pairs of sentences. Each pair consists of a human translationof the Chinese original and a machine translated version. Subjects wereasked to rate the translation accuracy on a 5-point scale (see table II).6A score of 5 is given where the content of the original sentence is fullyconveyed (might need minor corrections). A score of 1 is given where5 To avoid order bias that can result from degradation in subject performanceover time, each grid cell has two versions with di�erent sentence display: (1 to 25)and (13 to 25, 1 to 12)6 Loosely based on Nagao's 7-point scale for Fidelity (Nagao, 1989)mtj2.tex; 5/09/2001; 12:10; p.29



30
Figure 13. MT Evaluation Interface: AccuracyTable II. Accuracy Criteria5 contents of original sentence conveyed (might need minor corrections)4 contents of original sentence conveyed BUT errors in word order3 contents of original sentence generally conveyed BUT errors in relation-ship between phrases, tense, singular/plural, etc.2 contents of original sentence not adequately conveyed, portions oforiginal sentence incorrectly translated, missing mod�ers1 contents of original sentence not conveyed, missing verbs, subjects,objects, phrases or clausesthe content of the original sentence is not conveyed at all. An earlierpilot study indicated that subjects had a hard time with descriptions ofthe scale and preferred examples instead. Thus subjects were providedwith a table containing two manually constructed examples per score toillustrate the idea behind the scoring scheme (see table III). Figure 13mtj2.tex; 5/09/2001; 12:10; p.30



31displays a screen capture of the web interface showing the �rst threepairs of sentences in an Accuracy evaluation form.Table III. Accuracy Scale ExamplesOriginal Sentence (Human Translation)The United States unilaterally reduced China's textile export quotas.Machine Translation Score-united states reduced china's textile export quota unilaterally. 5-united states reduced china textile export quota unilaterally.-united states cut china quota export textile unilaterally down. 4-united states china quota export textile cuts down unilaterally down.-united states down to slash of a export textile Chinese the quotas. 3-some states united slash down reducingly down china textile of exportration.-beautiful folk slashed porcelain export on own way. 2-state reduce quota.-it cut. 1-china.6.2.2. Fluency EvaluationIn the 
uency evaluation, the subjects were given 25 machine translatedsentences. The purpose of this evaluation is to measure the Fluency (orIntelligibility) of the translation system. Subjects were asked to ratethe Fluency of machine translated sentences on a 5-point scale thatis loosely based on Nagao's intelligibility scale metric (Nagao, 1989).The scale ranges from 5 (clear meaning, 
uent sentence) to 1 (meaningabsolutely unclear, sentence not 
uent). Table IV details the criteriaused in measuring 
uency. We are aware that Fluency and Intelligibilityare not the same. What we were looking for is a composed metric thatincludes both. Table V describes the examples given to the subjects tohelp them understand and use the scale. The actual evaluation inputlooked like the examples provided in Figure 13 without the �rst column.mtj2.tex; 5/09/2001; 12:10; p.31



32Table IV. Fluency Criteria5 clear meaning, good grammar, terminology and sentence structure4 clear meaning BUT bad grammar, bad terminology or bad sentencestructure3 meaning graspable BUT ambiguities due to bad grammar, bad termi-nology or bad sentence structure2 meaning unclear BUT inferable1 meaning absolutely unclearTable V. Fluency Scale ExamplesMachine Translation Score-the united states unilaterally reduced china's textile export quotas.-the united states unilaterally reduced china textile export quotas. 5-united states cutted china export textile ration lonely.-united states reduce down china quota textile export. 4-united states reduce an quotas export textiling of the porcelain for theonly busy a decision.-a chinese ration united states cut it down. 3-states united unilateral cut an china textile speaks ration downwardlydown.-cause states go quotas to reduced. 2-beautiful folk remedy partage china exportation �lament on ownshaving.-alone cut it up rations alone. 16.2.3. Translation Quality Evaluation ResultsThe results of the evaluation are presented in table VI. The numberin each cell represents the average score given by all subjects on allsentences for each evaluation. ChinMT did slightly better than Systranbut the di�erence is statistically insigni�cant. Overall, the scores givenshow an average performance for both systems, glossed as follows: forAccuracy, contents of original sentence generally conveyed BUT er-mtj2.tex; 5/09/2001; 12:10; p.32



33rors in relationship between constituents (cf Table II) and for Fluency,meaning graspable BUT ambiguities exist (cf Table IV).Our system was able to perform as well as a commercial system thattook many person-years to develop. Systran 3.0 Professional EditionChinese-English MT system is the result of an estimated 20 person-years of work.7 It utilizes a large lexicon of 150,000 root stems, 6,000 ex-pressions, 1-2,000 Cantonese terms, 2500 Names, a 300,000 word safetynet lexicon (CETA dictionary) and an optional 2K military terms.Withthis coverage, the system's strength is in military, computer science, andelectronics domains.As for our system, it was developed over 6 person-years. The EnglishLCS lexicon includes about 12,000 entries, of which 9,500 are verbs and900 are prepositions. The remaining 1,200 are nouns and adjectives,which may be dynamically generated based on speci�c domain needs.Since our system is interlingual, all of its resources are readily ex-tendible for use with other languages for both Analysis and Generation.A case in point is a previous project for Language Tutoring using LCSresources was retargeted from Arabic to Spanish in 1/6th the time ittook to build the original project (Dorr, 1997b).6.2.4. Analysis of Translation Quality ResultsFor the most part, the Nitrogen strategy of over-generating transla-tion hypotheses coupled with selection according to bigram likelyhoods(Langkilde and Knight, 1998a), works very well. There are some di�cul-ties that can be seen as responsible for the average scores received. Onemajor issue is that, especially with the bigram language model's bias forshorter sentences, 
uency is given preference over translation accuracy.Thus, if there is some material that is considered optional (e.g., bythe decomposition process), and there are lattice entries both withand without this information, the extractor will tend to pick the pathwithout this information. While this technique is also very successfulat picking out more 
uent, terse formulations (e.g., \John went to thebank" rather than \John went to at the bank", or \convincing proof"rather than \proof having convincingness"), further work is needed toassess the right ratio of terseness vs informativeness. Also, bigrams areobviously inadequate for capturing long-distance dependencies, and so,if things like agreement are not carefully controlled in the symboliccomponent, they will be incorrect in some cases.7 This estimate is computed based on information provided through personalcommunication with Mr Dale Bostad from NAIC (National Air Intelligence Center),the agency that sponsored the development of this product.mtj2.tex; 5/09/2001; 12:10; p.33



34Table VI. Chinese-English Translation Quality ResultsLCS-based MT Systran 3.0 ProfessionalAccuracy 3.08 3.01Fluency 3.15 3.12Table VII. CLCS Test Corpus ExamplesClass Example2 someoneag wanted somethingth (to do somethingth)prop10.5 someoneag stole somethingth from somethingsrc for somethingben22.1.C someoneag mixed somethingth into somethinggoal29.1.B someoneth considered somethingperc (to be somepropertypred)mod�pred45.2.A someoneag folded somethingth with somethinginst55.1.C someoneth continued (to do somethingth)prop6.3. Coverage EvaluationFor this evaluation, a test corpus of 453 simple CLCS representationscorresponding to all LVD classes was constructed semi-automatically.8The size of the test corpus guarantees large-scale coverage over verbbehavior and thematic role combinations, which is exhaustive for ourpurpose. The CLCS representations were constructed by randomly se-lecting an LCS verb entry from each class from the English verb classand �lling all its argument positions with simple noun phrases (e.g.somethingth, someoneag, etc.) or simple subordinate clauses (e.g. (todo something)prop, (to be someproperty)mod�prop, etc.) Table VII showssome sample English sentences corresponding to the CLCS representa-tions in the test corpus.For this evaluation, statistical extraction was disabled to evaluatethe whole range of possible outputs generated by the system. For ex-ample, each of the two subclasses de�ning the dative alternations forthe verb send are expected to generate both alternations (i.e. John sent8 Currently, the number of classes in LVD is 492. But at the time of conductingthis evaluation, there were only 453 classes. mtj2.tex; 5/09/2001; 12:10; p.34



35a book to Paul and John sent Paul a book). Out of 453 input CLCSrepresentations, 25 failed the lexical selection process due to problemswith lexicon entries. In the remaining cases, the lexical selection processappropriately generated multiple sentences for each CLCS. All of thesecorrectly corresponded to various related alternations of the main verb.However, there were also cases of overgeneration resulting from preposi-tion under-speci�cation, which is inconsequential to our evaluation (e.g.go (to,toward,towards,to at,etc.) somewhere). The average number ofsentences generated per class was 4.6.3.1. Coverage Evaluation CriteriaThe results of generation were passed to a speaker of English who wasasked to mark sentences as being acceptable or not acceptable on threecriteria: (1) argument generation, (2) prepositional phrase generation,and (3) word order. Acceptable argument generation is de�ned as thegeneration of all arguments of the verb whether pure arguments orobliques. Acceptable prepositional phrase generation is de�ned as thegeneration of good proposition choices such as goal prepositions ver-sus source prepositions with an oblique goal and the generation of aprepositional object. Finally, acceptable word order is word order thatre
ects the correct relation of the arguments to the verb.6.3.2. Coverage Evaluation ResultsTable VIII displays the results of this evaluation. The �rst row repre-sents the number and ratio of classes that generated no correct outputfor each error criterion. Some classes generated both correct and in-correct outputs. These are counted as correct with the assumptionthat given a good statistical extractor, the correct answer would rankhighest. The second row is an estimate of the percentage of unsuccessfulgeneration of verb senses, where the raw class results are weighted bythe number of verbs in each class. On average each class contains 21verbs, but since some classes have more verbs in them than others, thissecond line seems a more appropriate measure to evaluate coverageover the full lexicon (estimating actual verbs covered rather than verbclasses). Another useful metric might be to normalize based on theprobability of occurrence of verbs, giving more weight to frequentlyoccurring verbs. But this is a much more complicated task becauseit requires a corpus that tags verb senses with their appropriate LCSstructures.The results of this evaluation are quite encouraging in that they showa high percentage of coverage over the LCS lexicon. Argument errorsand word-order errors were due to incorrect lexical entries. For example,in the case of word-order errors, speci�c realization information suchmtj2.tex; 5/09/2001; 12:10; p.35



36Table VIII. Coverage EvaluationN = 428 Argument Error Preposition Error Word Order ErrorClass-based 6 (1%) 53 (12%) 5 (1%)Verb-based 1% 9% 3%as :EXT was missing from some entries. This problem appeared inthree subclasses of class 41.3.1 (Simple Verbs of Dressing: don, do�and wear). In our lexicon, clothes, the object for all three verbs, isconsidered the theme and the subject of the sentence is the goal, sourceand location respectively. Fixing these cases is a matter of adding theappropriate piece of information in the lexicon. Preposition errors aremore severe in that complete entries for some prepositions were notfound in the lexicon. These errors will be �xed once the proper entrieshave been added. The generation system has thus been quite helpfulas a diagnostic tool for determining errors and inconsistencies in theLexicon.6.4. RetargetabilityFinally, we examine the generation system's language independence.For this evaluation task we used as input the same corpus of simpleCLCS entries developed for the coverage evaluation presented in theprevious section, however we replaced the English generation systemwith the Spanish one described in Section 5.For the purposes of this evaluation, statistical extraction was dis-abled because we do not have a Nitrogen bigram model for Spanishand because we wanted to examine the range of alternations produced.The results of the generation were passed to a speaker of Spanishto evaluate in a similar manner to the evaluation done for coverage.One extra criterion in this evaluation is a check on sense generationcorrectness, i.e., whether this Spanish verb is a proper translation ofthe English verb given the argument structure presented in the verbclass.As in the case of the English generation results presented in theprevious section, some of the Spanish sentences failed the lexical se-lection process due to problems with lexicon entries. However, therewere many more sentences that were produced, which should not havebeen generated in Spanish. In theory, the lexical selection process limitsthe number of choices using the LCS entry of the Spanish verbs. Butmtj2.tex; 5/09/2001; 12:10; p.36



37Table IX. Retargetability EvaluationN = 254 Argument Error Preposition Error Word Order ErrorClass-based 15 (6%) 85 (33%) 4 (2%)Verb-based 10% 44% 0%that process is only as good as the lexicon entries. In cases wherea bad sense is generated, the sentence involved is dropped from theevaluation. Most failures in Spanish generation are due to missingverb entries (29% of all input classes). Erroneous lexicon entries wereresponsible for another 10% of generation failures. And an additional5% of classes were dropped out of the evaluation because there was nocorrect sense output. As a result only 254 out of 453 classes (56%) havebeen evaluated on argument, preposition and word-order correctness.Table IX displays the results of this evaluation. The �rst row repre-sents the number and ratio of classes that generated no correct outputfor each error criterion. The second row represents the same ratiosincluding class verb count as weights.The Spanish output is not as clean as the English output: it hasmore overgeneration, more failures, and a higher error rate (except forword order errors). Argument errors are due to lexicon entries that wereincorrect or missing. Most of preposition errors were due to incorrectovergeneration resulting from extra incorrect entries which were addedto the lexicon automatically and were not manually checked.A recent analysis of the Spanish lexicon indicates that 160 out of453 semantic verb classes (about 35%) require re-veri�cation for in-consistencies that resulted during the process of porting the classesfrom English to Spanish. (See (Dorr, 1997a) for more details of theporting process.) However, the focus of this evaluation was not on thequality or coverage of Spanish in our system. It was on the ease ofextendibility of the system to another language. And given this crite-rion, this evaluation is quite positive since the amount of work that wasneeded was minimal: the Spanish lexicon already existed for analysispurposes and the OxyL grammar was created in a short period of time.Of course improving the quality of the system will need more work onboth frontiers: the lexicon and the linearization grammar. There willalso be a role to play in statistical extraction of best generated sentence,especially for cases of overgeneration that included both good and badresults. mtj2.tex; 5/09/2001; 12:10; p.37



38 7. Conclusions and Future WorkWe have presented a system for Natural Language generation fromLexical Conceptual Structures, including situating the generation sys-tem within a larger machine translation e�ort, as well as evaluationof some key components of the results. The system has been usedboth to generate very long, complex, multiply ambiguous sentences(outputs of Chinese to English Translations), as well as thousands ofsimple sentence templates (spanning the whole of the English verb andpreposition lexicons). Evaluation of the quality and correctness of bothmodes has been carried out, showing comparable translation qualitywith a commercial translation system. The generation system can alsobe straightforwardly extended to other languages, given appropriatetarget-language speci�c resources (lexicon and grammar), and this hasbeen demonstrated and evaluated for Spanish.As well as its utility for generating target-language sentences, thegeneration system also provides a crucial step in the development cyclefor analysis and lexicon resources. Changes to a current lexicon, bothextensions and corrections, which might be done either manually orusing an automatic acquisition method can be evaluated based on howthey will a�ect generation of sentences into that language. This hasbeen a valuable diagnostic tool for discovering both speci�c errors andlacunae in lexicon coverage.The biggest remaining step is a more careful evaluation of di�erentsub-systems and preference strategies to more e�ciently process veryambiguous and complex inputs, without substantially sacri�cing trans-lation quality. Also a current research topic is how to combine othermetrics coming from various points in the generation process with thebigram statistics, to result in better overall outputs.AcknowledgementsThis work has been supported, in part, by DOD Contract MDA904-96-C-1250 and NSF PFF/PECASE Award IRI-962910. The second authoris also supported by Army Research Laboratory contract DAAL01-97-C-0042, Logos Corporation, NSF CNRS INT-9314583, DARPA/ITOContract N66001-97-C-8540, and Alfred P. Sloan Research FellowshipAward BR3336. We would like to thanks Clara Cabezas and GinaLevow from the Computational Linguistics and Information ProcessingLab (CLIP) and Yi Ching Su from the Linguistics Department for theirhelp evaluating the system. We would also like to thank other membersof the CLIP lab for helpful conversations, particularly David Clark,mtj2.tex; 5/09/2001; 12:10; p.38
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