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The threat of climate change requires significant transitions across all U.S. economic 

sectors should a substantial reduction in greenhouse gas (GHG) emissions be achieved by 

2050. The U.S. electricity sector is the second-largest contributor to total emissions in the 

United States. This dissertation looks at entities that are the most likely to contribute 

towards the electricity grid transitions and the reasons why. The first essay finds that states 

with more aggressive electricity grid decarbonization policies require less adjustments to 

their electricity generation strategy on the event of federal intervention. Nationally, more 

aggressive policies ensure that the Federal government can impose less carbon taxes to 

obtain greater reduction of emissions from the electricity sector. The second essay finds 

that while most households own energy efficient appliances, they do not effectively control 

the temperatures of their equipment. The households that do use thermostats tend to be 

educated wealthy homeowners. The third essay finds that for several prosumers and utility 

combinations, there exists a valuation of distributed solar power generation that is 



amenable to both parties in terms of their economic benefits. These combinations are 

typically characterized by affordable systems, low leftover demand, and higher tariffs. 

Analyzing all three sets of actors, it is important to recognize that certain characteristics 

make some of them more suited to provide leadership in the U.S. electricity grid transition. 

While encouraging these actors to continue providing leadership in their relative segments, 

policymaking should also be concerned about incentivizing other actors to step up and play 

an important role in the transition process.  
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Chapter 1 

Introduction: Identifying the Players and their Roles in U.S. Electricity Sector 

Decarbonization 

Anthropogenic climate change has been considered as one of the greatest threats to 

mankind in the recent history with the increasing global trajectory of greenhouse gas 

(GHG) emissions considered a threat to human health, water and food security, economy, 

infrastructure, and national security(Mora et al. 2018). The United States is the second 

largest emitter of greenhouse gas (GHG) in the world, behind China(Boden, Marland, and 

Andres 2017). In the United States, the electricity sector is the second largest emitter of 

GHG, accounting for 28 per cent of the emissions in 2017, right behind transport, which 

overtook the electricity sector in emissions after 2016(US EPA 2015). Emissions from 

fossil fuels play a major role in GHG emissions(Janssens-Maenhout et al. 2017). More than 

60 per cent of the U.S. electricity comes from burning fossil fuels – coal, natural gas, and 

oil(“What Is U.S. Electricity Generation by Energy Source? - FAQ - U.S. Energy 

Information Administration (EIA)” n.d.). This share has declined slightly over the past 

decade(“EIA - Electricity Data” n.d.), with renewables displacing  some of the fossil fuel 

generation. Two other factors have contributed to the decline of electricity sector 

emissions. The first factor is the switching of fuels within the fossil fuel part of the mix, 

with coal being phased out in the favor of gas. In 2010, natural gas accounted for a third of 

the fossil fuel-based generation in the United States, and in 2019 it accounted for over 60 

per cent(“EIA - Electricity Data” n.d.). Natural gas also emits at a rate about 40-50 per cent 

lower than coal while being used for power generation in its life cycle(Weisser 2007).  The 

second factor is the near flattening of the electricity consumption growth. In 2010, the 
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utility scale facilities generated 4.125 TWh of electricity with no credible measurements 

of the small-scale generation. In 2019, the utility-scale generation dropped to 4,118 TWh, 

while the small-scale generators approximated to around 0.35 TWh of generation, bringing 

the total to around 4,138 TWh, or a mere 0.68 per cent growth over a ten year period(“EIA 

- Electricity Data” n.d.). Generation between 2001 and 2010 meanwhile increased by over 

10 per cent(“Electricity Data Browser - Net Generation for All Sectors (Filtered between 

2001 and 2010 - Comparing All Fuel Values under United States)” n.d.). This can be 

partially attributed to the increasing energy efficiency standards, especially in the 

residential and commercial segments of the electricity sector which dominate retail sales 

(Saundry 2019).  

In order to mitigate the impacts of global climate change however, the United States and 

its electricity sector however must become more ambitious in reducing GHG emissions. 

While the country was one of the front-runners in developing the Paris 

Agreement(Schreurs 2016) to reduce global GHG emissions in order to curb the rise in 

global temperature, the recent administration has decided to withdraw from the 

agreement(Zhang et al. 2017) bringing into question the long-term motivations of the 

federal government. The Paris Agreement targets of the United States, reducing GHG 

emissions by 26 to 28 per cent from 2005 levels by 2025 were not considered particularly 

ambitious to begin with (Peters et al. 2015), and by most estimates – the country is not on 

track to meet these targets without federal government intervention or substantial changes 

in state policies or economic circumstances(Greenblatt and Wei 2016) (Hultman 2020). 

While the present administration has seemingly abandoned the Obama Administration’s 

U.S. Mid Century Strategy (MCS) which called for 80 per cent GHG reduction from 2005 
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organizations that are involved in making regulations at the interstate level, e.g. the Federal

At  the  institutional  level,  the  U.S. Department  of  Energy is  in  charge  of  several  federal

protection of consumers from increased prices, failed at the Senate in 2009(Waxman 2009).

well  as ancillary  actions  such  as  subsidizing  clean  energy  technology  development, and

system and instruct utilities to meet certain percentage of generation from renewables as

Clean  Energy  and  Security  Act,  which  would  have created  a  nationwide  cap  and  trade

metering. A more direct proposal to control GHG emissions in the economy, the American

gas  emissions, increase  energy  efficiency  standards, and  require utilities  to  offer  net

provisions to incentivize shale gas production, promote technologies that avoid greenhouse

of  2005(Act  2005) which  in  terms  of decarbonization  of  the  electricity  grid – created

to the electricity sector - the most recent ones of significance being the Energy Policy Act

electricity usage). The U.S. federal government has passed four major regulations related

consumption  of  electricity directly  or  indirectly (See  Fig  1.1  for  a  Sankey  Diagram  of

sector – i.e.  entities  who  play  a  major  role  in  generation,  transmission,  distribution  and

This brings us to the question of identification of the major actors in the U.S. electricity

1.1 The Actors in the U.S. Electricity Sector

the MCS, let alone the net zero carbon one.

implausible that a business-as-usual scenario will enable the country to meet a target like

the  U.S.  electricity  sector  will  struggle  to  meet  even  the  Paris  targets,  it  is  highly

without significant federal help, the actions of the remainder of the actors participating in

scenario  by  2050  which  is  an  even  more  stringent target(Carper  et  al.,  n.d.).  Given  that

several  lawmakers  have tabled  a  bill  to move  the  U.S.  economy  to  a  net  zero  carbon

levels  by  2050(“United  States  Mid-Century  Strategy  for  Deep  Decarbonization”  2016),



Energy Regulatory Commission (FERC). However for electricity, FERC is mainly 

concerned with regulating the transmission and wholesale sale of electricity in interstate 

commerce (which it typically carries out through designated Independent System 

Operators and Regional Transmission Operators) and not overseeing the decarbonization 

of the grid(“FERC: About FERC - What FERC Does” n.d.). The U.S. Environmental 

Protection Agency (EPA) can issue economywide regulations towards the abatement of 

pollutants that can be considered harmful to public health, but the one policy designed to 

target power sector emissions, the Clean Power Plan (CPP) met its end at the hand of the 

Trump Administration(U.S. Environmental Protection Agency, n.d.). An “Affordable 

Clean Energy Rule” has replaced the CPP(US EPA 2019), but this is likely to increase 

emissions compared to a no-policy scenario(Keyes et al. 2019).  

As far as the electricity sector goes however, the states wield most of the power in directly 

regulating the utilities who are responsible for procuring, transmitting, and distributing 

electricity to the end-use consumers. Each state has a state electricity regulatory 

commission(“Regulatory Commissions” n.d.) responsible for regulating the utilities 

(which are generally natural monopolies) by approving costs, tariff, service quality, energy 

efficiency standards, and renewable energy standards(Wang and Liu 2018). State 

governments typically dictate state energy policies through legislations and use regulators 

to enforce these, e.g. California’s renewable portfolio standards (RPS)(“RPS Program 

Overview” n.d.). Certain states or groups of states have legislations regarding greenhouse 

gas emission reduction, either a hard cap or a market mechanism designed to achieve the 

cap. Examples include California’s Cap and Trade (Bang, Victor, and Andresen 2017), the 

Regional Greenhouse Gas Initiative (RGGI) which several northeastern states take part in 
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(Murray and Maniloff 2015), and caps from Washington(“Chapter 173-442 WAC:” n.d.) 

and New York(“NY State Senate Bill S6599” 2019).  A coalition of State Governors 

formed the U.S. Climate Alliance (“Inslee, New York Governor Cuomo, and California 

Governor Brown Announce Formation of United States Climate Alliance | Governor Jay 

Inslee” n.d.) in the aftermath of the Trump Administration’s withdrawal from the Paris 

Agreement, planning to meet the targets of the Agreement without federal support, which 

led to the America’s Pledge(Hultman et al. 2018) initiative. 

Utility-scale generation dominate the generation mix, accounting for more than 99 per cent 

of the generation mix(“EIA - Electricity Data” n.d.). Utilities who do not generate power 

themselves (vertically integrated) will buy from several independent power producers in 

the wholesale market.  Utility ownership is primarily public or cooperative based, but it is 

the investor-owned utilities that  supply more than 70 per cent of the electricity to the end-

users (“Investor-Owned Utilities Served 72% of U.S. Electricity Customers in 2017 - 

Today in Energy - U.S. Energy Information Administration (EIA)” n.d.).  Among the end-

use consumers, the most significant contributors are residential and commercial sectors, 

which account for three quarters of the total electricity consumption(Saundry 2019). With 

the falling price of rooftop solar modules(“Solar Industry Research Data” n.d.) and the 

advent of favorable net metering regulations (DSIRE 2019), there has been a significant 

growth in generation from rooftop PV system installations across the United States (“EIA 

- Electricity Data” n.d.), effectively turning some residential and commercial consumers 

into prosumers – those who both produce and consumer electricity(Miller and Senadeera 

2017). As far as actual end use goes, EIA estimates(“Use of Electricity - U.S. Energy 

Information Administration (EIA)” n.d.) that the residential sector uses about 14-15 per 
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systems.  State  utility  regulatory  commissions  are  not  explicitly  considered

PV  situation but  still  incentivizes  the  prosumers  to  deploy  the  rooftop  PV

additional output in a way that leaves the utilities no worse off than a no-rooftop

generation  to  the Utilities who must  compensate  the  prosumers  for  the

electricity expenditure by both reducing their retail usage and selling additional

iii. Prosumers (Chapter  4) who deploy  rooftop  PV  systems  in  order  to  reduce

order to reduce their electricity expenditure

ii. Households (Chapter 3) who purchase and use energy efficient appliances in

consequently the electricity generation mix at the state and national level.

overarching  policies  that  affect  GHG  emissions,  electricity  prices,  and

States and Federal Government (Chapter 2) who have the power to makei.

analyzing their issues, actions, and consequences (See Table 1.1 for summary) –

This dissertation concentrates on three sets of actors, each with a chapter of this dissertation

1.2 Actors and Actions of Interest

commercial sector.

thermostats(Huchuk, O’Brien, and Sanner 2018) are targeted towards the residential and

and  the  adoption  of programmable  energy  saving  measures  such  as2016)

efficiency initiatives, including the ENERGY STAR labeling program(Datta and Filippini

drivers)  account  for  nearly  half  of  the  electricity  use  in  the  energy  sector.  Most  energy

followed by  refrigeration, space  cooling, ventilation, and  lighting.  Motors  (machined

commercial  sector, the  biggest  use of  electricity  is  in  office  and  computer  equipment,

cent  energy  for  cooling  and  space  heating  each,  the  largest  contributors  to  the  mix.  For



among the actors analyzed, but they play a significant role in setting a tariff that 

ensures certain financial returns for both parties. 

For States and Federal Government, Chapter 2 of this dissertation looks at the impact of 

differently-oriented state electricity policies (States that are part of the Climate Alliance 

favoring more aggressive policies, while states that are outside it favoring more 

conservative policies) on the emission, electricity prices, and generation mix of the U.S. 

electricity grid regions. Grid regions are considered because states trade electricity within 

a particular grid region and most electricity policies are based on consumption which will 

at the very least include imports and exports within the grid region. It also helps in tracking 

the issues of leakage and re-shuffling(Bushnell and Chen 2009) that are generally 

considered prevalent in any type of greenhouse emission reduction process. The chapter 

also assumes that a future point, the Federal Government re-engages in GHG reduction 

policy by imposing an economy-wide carbon tax. The chapter then investigates whether or 

not aggressive state policies benefit the grid regions in terms of having to adjust less when 

the tax come in, and if aggressive state policies benefit the federal government in terms of 

having to impose a lesser amount of carbon tax or help achieve a higher national emission 

reduction in the electricity sector on a per dollar basis. 

For Households, Chapter 3 of the dissertation1 investigates the behavior of U.S. 

households from a nationally sampled survey of EIA(U.S. Energy Information 

Administration n.d.) regarding their approach on adopting energy efficient appliances and 

their strategies on using them. Many households tend to have at least one energy appliance 

 
1 Chapter 3 of the dissertation has been published on IEEE Transactions on Engineering Management as 
“Aggregate Household Behavior in Heating and Cooling Control Strategy and Energy-Efficient Appliance 
Adoption” with committee member Dr. Yueming “Lucy” Qiu(Sen and Qiu 2020). 
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but not all use their appliances in a manner that will lead to maximum energy savings. For 

space heating and cooling, the largest sources of electricity consumption in a residential 

setting, that means using programmable thermostats to control temperature rather than 

doing it manually (or not changing the temperature at all in response to weather conditions). 

This chapters classifies households on the joint behavior of appliance adoption and usage, 

and attempts to determine the demographic characteristics that are associated with each 

class of households. 

For Prosumers and Utilities, Chapter 4 of the dissertation analyzes the economics of 

rooftop PV systems for several prosumer-utility combinations, selected from a national 

database of rooftop PV installations(Barbose et al. 2019) in the United States. The proper 

compensation of solar power that is generated by the prosumers in excess of their 

consumption requirements and then sold to the utilities in a given billing period has been 

a source of major controversy across the United States with utilities pushing back against 

existing compensation regulations(Davies and Carley 2017). However, it is also true that 

given the expensive nature of the rooftop PV system and the retail structure faced by the 

prosumer, an appropriate amount of compensation is required to incentivize the growth of 

distributed generation, which can be significantly contribute towards meeting state level 

goals of renewable energy policy targets(Carley 2009). This chapter attempts to determine 

a valid range of solar compensations that are compatible with motivations of both the 

prosumers (ensuring they are paid back for their investment) and the utilities (ensuring that 

they are no worse off in terms of their energy costs compared to a no-rooftop PV scenario). 

The analysis also determines financial benefits of the prosumers, utilities, and the society 

as a whole (which gains from avoiding pollution-related expenses when distributed solar 
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generation displaces utility generation but loses out by partially subsidizing these 

statements through taxpayer expenses). Also analyzed are the major factors behind the 

ability to find a valid set of compatible tariffs for certain prosumer-utility combinations but 

not others. 

1.3 Common Themes 

In the analysis of the motivations and actions of these diverse sets of actors, the dissertation 

aims to find common themes across all the chapters. There are three common themes along 

which this dissertation tries to analyze the key research problems in each chapter. 

i. Documenting the effort of every actor in making the electricity grid more 

sustainable by decarbonization and reduction of electricity consumption. The 

states enact policies to promote renewable energy which reduces GHG 

emissions and to institute energy efficiency measures. The federal government 

imposes a carbon tax to reduce GHG emissions which directly decarbonizes the 

grid. The households reduce electricity consumption by purchasing and using 

energy efficient appliances. The utilities also are also able to reduce electricity 

purchase/generation by purchasing the excess energy from the prosumers, 

which also has the side effect of at least partially displacing electricity 

purchases from high-emitting sources. The latter creates social benefit through 

avoided cost of pollution, not only from GHG emissions, but also from the 

emission of local pollutants. 

ii. All three chapters are characterized by an analysis of joint actions within of 

between all groups of interest. In Chapter 2, the combined effort of states that 

are part of the Climate Alliance and those that are not determine how far can 
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the states alone help in the reduction of GHG emissions; and the interaction of 

state efforts with federal taxes determine how much emission reduction can be 

nationally achieved with varying level of state efforts and the impact of federal 

cost from the interaction. In Chapter 3, joint analysis of adoption and usage of 

energy efficient appliances households is undertaken to determine the share of 

households that are lagging in one or both, and the share of households that are 

excelling in both. In Chapter 4, a range of tariffs are identified that would jointly 

benefit both the prosumers and utilities, and the interaction of these benefits 

with the larger societal benefits.  

iii. In all three chapters, leaders and laggards are identified, that is the subset of 

actors that are the most effective in achieving their objectives and those that are 

the least effective. In addition, possible reasons why certain actors are leaders 

and others are discussed, with suggestions on improving the position of the 

laggards through policy. In Chapter 2, the analysis identifies grid regions that 

are effectively setting themselves up for a carbon tax imposition in the future, 

and those that have to significantly alter their emissions, pricing, and generation 

trajectory in response to a  tax. The analysis also attempts to illustrate the 

reasons why the leader states are successful, and the laggards are less so. In 

Chapter 3, the analysis classifies households that are excelling in both adoption 

and usage of appliances, and those that are lagging. The chapter then identifies 

demographic characteristics that are associated with leaders and laggards. In 

Chapter 4, the analysis identifies prosumer-utility combinations that are able to 

find a range of mutually aggregable compensations that also improve social 
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benefits, and the combinations that do not have the same outcomes. The chapter 

identifies characteristics of these combinations (e.g. cost, size of project, tariff 

structure) that are associated with leaders and laggards. 

1.4 The Key Questions: Specific and Overarching 

For the three chapters, we ask three specific research questions: 

 Chapter 2 asks Is it worthwhile for the states to pursue aggressive climate policies with a 

federal policy on the horizon in terms of minimizing their deviation from existing 

electricity sector outcomes once a federal policy is instituted? Will federal policymakers 

and the U.S. electricity grid benefit when every state pursues relatively more aggressive 

policies compared to existing ones? 

Chapter 3 asks How can household behavior in terms of adoption of energy efficient 

appliances and temperature control strategy of space heating and cooling equipment be 

jointly categorized? What are the factors associated with households being categorized into 

different behavioral groups? 

Chapter 4 asks for given prosumer-utility combinations, what are the valuations of 

distributed solar generation that make sense for both prosumers and utilities – such that 

utility cost of energy acquisition for the prosumer remain unaffected and the prosumers 

still receive enough compensation to ensure payback for the installed system within its 

lifetime? What explains the differences in these valuations between and within certain 

prosumer-utility combinations? 

Based on these three questions, and the common themes identified in the previous section, 

the following overarching questions are relevant to the dissertation as a whole. 
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1. Which actors are best positioned to contribute towards meeting objectives 

that would assist the transition of the U.S. electricity grid towards a 

sustainable future?  

2. What is the impact of joint actions by actors in accomplishing their 

objectives?  

3. What are the factors that make these actors better positioned than others in 

the same segment?  

4. What policy options can be used to assist actors that are lagging behind? 

1.5 Organization of the Remainder of the Dissertation  

The remainder of the dissertation is organized into three chapters analyzing the actions 

(analysis chapters) of the three different sets of actors and a concluding chapter that ties all 

the answers of the chapter-specific research questions to answer the overarching research 

questions. Each analysis chapter introduces the research topic, analyzes the existing 

literature, identifies potential gaps and demonstrates how the research question can address 

these gaps, provides methodological information and results that answers the research 

question, and closes with a discussion of the results, limitations, and avenues of future 

research. The dissertation also contains three separate Supplementary Materials sections 

each dedicated to one of the three analysis chapter which expands on the methods described 

in the relevant chapter and provides additional data and results that supplements the 

analysis of the chapters. References relevant to each chapter are self-contained.  

 

Table 1.1: Summary of Actors, Objectives, and Actions 
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Actor Objectives  Actions Chapter 

States and 

Federal 

Government 

Meet long-term 

economy wide GHG 

emission goals 

State policies and carbon taxes 2 

Households  Improve energy 

efficiency of appliance 

usage 

Purchase and usage of energy 

efficient appliances 

3 

Prosumers and 

Utilities 

Ensure positive effects 

from installation of 

distributed PV (DPV) 

system 

Prosumer: Installing a DPV 

system, choosing a tariff 

structure 

Utility: Setting solar 

compensation 

4 
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Figure 1.1: Sankey diagram of electricity output flow from source to generation sources to end-use 

 
Source: EIA Annual Electricity Data, 2018.  

Notes: IPP – Independent power producers (includes distributed generators); CHP – Combined heat and power generators; HVAC – 

Heating, ventilation, and air conditioning/cooling.  
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Chapter 2 

Policy payoff: Are Aggressive State Electricity Policies Beneficial in the Context of 

Federal Re-engagement? 

Arijit Sen, Nathan Hultman, Leon Clarke, and Gokul C. Iyer 

2.1 Introduction 

In order to mitigate the most significant impacts of global climate change,  195 nations 

including the United States adopted the Paris Agreement (“Agreement”) in the United 

Nations Framework Convention on Climate Change (UNFCC) on December 12, 

2015(“Historic Paris Agreement on Climate Change: 195 Nations Set Path to Keep 

Temperature Rise Well Below 2 Degrees Celsius | UNFCCC” n.d.). The President of the 

United States, Barack Obama was regarded as instrumental.  United States, the second 

largest emitter of CO2 and GHG in the world(Boden, Marland, and Andres 2017),  made 

commitments to reduce GHG emission by 26-28 per cent from 2005 levels by 2025 

(Schreurs 2016).  However, on June 1, 2017, the current U.S. President, Donald Trump 

announced the withdrawal of United States from the Agreement(“Statement by President 

Trump on the Paris Climate Accord” n.d.) citing the economic disadvantage the U.S. faced 

under the agreement. A bipartisan coalition committed to meeting the objectives of the 

Agreement was formed by governors of several U.S. states and territories, known as the 

United States Climate Alliance (USCA)(“Inslee, New York Governor Cuomo, and 

California Governor Brown Announce Formation of United States Climate Alliance | 

Governor Jay Inslee” n.d.). The Alliance currently represents 24 U.S. states (See Figure 

2.1), in total accounting for over 40 per cent of the national CO2 emissions in 
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2017(“Environment - U.S. Energy Information Administration (EIA) - U.S. Energy 

Information Administration (EIA)” n.d.).  

Figure 2.1: Climate Alliance States 

 

This research study asks -  are states with aggressive policies better equipped to meet long-

term U.S. GHG emission goals in the event of federal action? Does the Federal 

Government and Electricity sector benefit from more intensive aggregated state policies?  

To answer these questions, the study analyzes the interaction between different levels of 

state policy action and a possible federal re-engagement starting from 2025, with the 

assumption being that with a maximum of two terms of the Trump Administration 

concluding at the end of 2024,  a new administration will take up the challenge of emission 
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reduction and institute federal actions to meet nationwide reduction targets. Given the long-

term agenda of the USCA, it is also assumed that the member states will continue to 

aggressively pursue climate policies, and at a minimum the non-member states will not 

deviate from their current climate policy trajectories. The primary focus of the study is the 

electricity sector of the United States. Electricity accounted for 28 per cent of U.S. GHG 

emissions in 2017(US EPA 2015) and is the second largest contributor, behind transport. 

Electricity sector emissions have actually decreased substantially in the past two 

decades(“Monthly Energy Review – March 2020” 2020) primarily due to the changing 

generation mix that has resulted in more gas and renewable energy in the grid and the 

flattening of electricity consumption. That being said, a number of studies find that the 

power sector is likely to contribute the largest GHG reductions, at least in the near-term, 

,16 and thus the sector merits a deep dive in terms of the interaction effects of state and 

federal policies. 

2.1.1 Literature Review 

The literature in the context of analyzing federal and state policies generally tend to focus 

on either state or on federal policies, either downscaling or aggregating their impacts on 

the other. Some studies analyze the impact of federally imposed emission restrictions or 

carbon prices on subnational entities(McFarland et al. 2015; Cole et al. 2018; Rausch and 

Karplus 2014). Other studies suggest what subnational entities can achieve on an aggregate 

in terms of GHG emission reduction without analyzing differences at the regional 

level(Nathan Hultman 2020; Kuramochi et al. 2017).  Wiser et al. (2017)(Wiser et al. 2017) 

does both to some extent, with an analysis of an aggressive renewable portfolio standards 

(RPS) scenario deployment to meet the targets of the then-relevant Clean Power Plan (CPP) 
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and what benefits and costs that entails in terms of electricity prices, air quality 

improvement, GHG emission reduction, and water use reduction. These numbers are 

reported both at a regional and at the national level. There is a third strand of studies which 

qualitatively discusses the implications of state-federal policy interactions (Rabe 2008; 

Peterson and Rose 2006; Goulder and Stavins 2011), but does not explicitly answer the 

quantitative impact of such interactions.  

The literature surveyed does not answer the question whether or not the states that were 

already ahead of the curve in meeting their emission targets were better positioned in the 

more aggressive GHG reduction scenario in terms of their benefits and costs.  This is 

important in the context of understanding state-federal policy interaction as a positive 

answer is likely to induce the states to make more of an effort to step up their policies and 

a negative answer is likely to induce them to maintain or even reduce their policy efforts. 

This study analyzes the efforts of policy aggressive and conservative states in reducing 

GHG emissions in the electricity sector with and without federal intervention using 

integrated assessment modelling. It aims to determine whether or not the trajectory of state 

efforts alter significantly with federal intervention and how that alteration is related to the 

existing policy aggressiveness of the states concerned. We find that electricity grid regions 

comprised of policy aggressive states will not need to significantly alter the trajectory of 

their efforts in response to federal intervention which benefits them in terms of needing to 

not substantially alter the generation mix and face less price shocks in the marginal 

electricity prices at the wholesale market. 

2.2 Methodology (Overview) 
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2.2.1 Grid Region Classification 

The present study considers RPS as one of the state electricity policy, along with energy 

efficiency. We assume that other factors (“market factors”) that impact electricity sector 

emissions such as fuel prices, GDP growth rate, coal power plant retirement, generation 

technology costs, building electrification, and vehicle electrification are based on 

projections from external studies. While state-level policies are modelled, our results are 

reported at the national level and at the grid level (See Figure 2.2 for U.S. Grid Region 

Map as defined in the GCAM-USA). Electricity is heavily traded within a certain grid and 

as such electricity consumption-focused policies of some states will impact that the grid as 

a whole in terms of potential leakages and reshuffling(Bushnell and Chen 2009). If USCA 

members contribute to more than 50 per cent of greenhouse gas emissions to a particular 

grid, we term that grid as Policy Aggressive, otherwise the grid is known as Policy 

Conservative (See Table 2.1 for the designation of U.S. electricity grids into Policy 

Aggressive and Policy Conservative Grids based on 2017 CO2 emission data). We have 8 

policy conservative grids, and 7 policy aggressive grids with the former accounting for 

about two-thirds of the emissions. 

Figure 2.2: U.S. Grid Regions 
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Table 2.1:  Classification of Grids by Policy Aggressiveness 

Grid Region  Climate Alliance 

States 

Contribution 

to GHG 

emissions  

Grid Status 

Alaska None 

0% 

Policy 

Conservative 

California All 

100% 

Policy 

Aggressive 

Central East Michigan 

21% 

Policy 

Conservative 
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Central 

Northeast 

Illinois, Wisconsin 

71% 

Policy 

Aggressive 

Central 

Northwest 

Minnesota 

31% 

Policy 

Conservative 

Central 

Southwest 

None 

0% 

Policy 

Conservative 

Florida None 

0% 

Policy 

Conservative 

Hawaii All 

100% 

Policy 

Aggressive 

Mid-Atlantic Delaware, Maryland, 

New Jersey, 

Pennsylvania 99% 

Policy 

Aggressive 

New England Connecticut, Maine, 

Massachusetts, 

Rhode Island, 

Vermont 91% 

Policy 

Aggressive 

New York All 

100% 

Policy 

Aggressive 

Northwest  Montana, Nevada, 

Oregon, Washington 70% 

Policy 

Aggressive 

Southeast North Carolina, 

Virginia 22% 

Policy 

Conservative 
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Southwest Colorado, New 

Mexico 48% 

Policy 

Conservative 

Texas None 

0% 

Policy 

Conservative 

 

2.2.2 Overview of Analytical Tool 

The analysis of electricity sector trajectories in response to state and federal policy 

measures is undertaken through a modified version of the open-source integrated 

assessment model Global Change Assessment Model USA (GCAM-USA), known as 

GCAM-AP. The benefit of an integrated assessment model is that although we primarily 

focus on the electricity sector, the results reflect its interplay with other sectors as well, 

which is beneficial given that federal intervention in the context of our research is not 

sector-specific.  GCAM-USA has been used in the literature to analyze the sectoral impact 

of long-term climate targets in the United States(Iyer et al. 2017), analyze the impact of air 

pollutants at the state level(Shi et al. 2017), and water demand at a state level(Liu et al. 

2015). GCAM-AP has been used for the America’s Pledge series of reports(N Hultman 

and Calhoun 2018). GCAM-AP enhances the capabilities of GCAM-US by effectively 

aggregating the effects of different actions at the state-level to avoid double counting, while 

also being calibrated to the GCAM-USA baseline data. The version of GCAM-AP used in 

this study improves upon the original in two aspects. First, it extends the formulation till 

2050, and second – it adds an explicit Federal Re-engagement component rather than 

simply assuming that the states will increase their commitments in response to a Federal 
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re-engagement scenario. (See Methods and Supplementary Materials for additional 

details.) 

2.2.3 Overview of Scenario Design 

Six scenarios are analyzed starting from 2020 till 2050 (See Table 2.2 for summary, 

Methods section for details on scenario construction including explicit numerical 

assumptions for each of the parameters, and Supplementary Materials for additional 

clarifications). We assume that in 2020, all scenarios have the same starting point in terms 

of key input variables. Three of the scenarios are dependent on intensity of policy actions 

by both the USCA and the non-member states, as well as the degree to which market factors 

are favorable towards GHG emission reduction. We term the least ambitious of these 

scenarios as the “BAU” scenario and the most ambitious as the “High” scenario with the 

“Medium” scenario in between. Collectively we term them as the “Non-Tax Scenarios”.  

The three additional scenarios simply involve federal action on top of state policies and 

underlying market factors through the institution of a carbon price from 2025 till 2050. 

These scenarios are termed as “BAU + Tax”, “Medium + Tax”, and “High + Tax”. 

Collectively we term them as the “Tax Scenarios”. It is to be noted that “Tax” is merely 

used as a convenient shorthand, and the actual implementation of carbon price may be 

either a direct tax or some kind of a carbon market which determines a price of carbon. 

GCAM calculates the appropriate carbon price given an emission constraint for a certain 

time period calculated at five-year intervals starting from 2025 to 2050. The emission 

constraint for each time period is set using a using a linear emission cap from 2025 to 2050 

that ensures that the U.S. emissions from all economic sectors in 2050 is 80 per cent of the 

emissions of the 2005 level (Please see Section 6 and Table 2.4 for more details). The 2050 
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target is based on the U.S. Mid Century Strategy devised during the Obama 

Administration(Iyer et al. 2017) and is actually considered a conservative target given the 

recent push towards net zero GHG emissions by 2050 by some U.S. legislators(Carper et 

al., n.d.). However, as the literature suggests that U.S. will have trouble to meet the 2025 

Agreement target apart from the most optimistic scenarios(Nathan Hultman 2020), it 

makes realistic sense to set the more modest target for 2050. 

Table 2.2: Summary of Scenario Design 

Scenario  USCA Policy 

Aggressiveness  

Non-Member 

Policy 

Aggressiveness 

Market 

Conditions 

favorable to 

GHG 

Emission 

Reduction 

Carbon Tax 

Applied 

BAU  Low Low Low No 

Medium Moderate Moderate  Moderate No 

High  High High High  No 

BAU + Tax Low Low Low Yes 

Medium + Tax Moderate Moderate  Moderate Yes 

High + Tax High High High  Yes 

 

2.3 Results  
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For all the scenarios, this study analyzes the following outcomes at national and grid levels. 

At the national level, we look at the emissions from the electricity sector between 2020 and 

2050 and the carbon pricing (acting as a proxy for federal intervention) required to achieve 

those emission trajectories. At the grid level, we look at emission trajectories, electricity 

prices, and generation mix in terms of – i. Renewables to Fossil Fuel generation ratio in 

the grid and ii. CCS to Renewables ratio in the grid. The point of interest here is to compare 

the changes in these metrics both within and between grid regions in response to carbon 

pricing on the Non-Tax Scenarios.  

At the national level, more aggressive state policies make federal intervention easier, which 

can be interpreted as requiring lower carbon prices in order to achieve the 80% GHG 

reduction from 2005 level by 2050 (Figure 2.3). In 2050, the “High + Tax” scenario 

required the application of two thirds of the tax compared to the “Low + Tax” scenario in 

order to achieve the same economywide GHG outcome.   This is because the carbon price 

acts as a complementary measure to existing state policies and market factors. Even with 

the lower price levels, the more aggressive tax scenarios actually end up reducing more 

emissions in the electricity sector (Figure 2.4), which means that with higher level of state 

policy, the electricity sector takes the pressure of other sectors to contribute to GHG 

reductions. In 2050, the “High + Tax” scenario has a 30 per cent reduction of the emissions 

in the electricity sector compared to the “Low + Tax” scenario. It is also interesting to note 

that the most aggressive non-tax scenario, “High” has slightly lower emissions to that of 

the “Low +Tax” scenario till 2045, demonstrating the effectiveness of strong policies and 

market factors in the electricity sector even without a carbon tax. 

Figure 2.3: Carbon tax (Taxes in $2018/ tonne of carbon dioxide equivalent) 
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Figure 2.4: National Electricity Sector Emission Pathways (Emissions in million tonnes 

of carbon dioxide equivalent) 
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In all the federal intervention scenarios, Policy Aggressive Grids effectively take a 

leadership role in emission reduction and increasing the deployment of renewables in the 

electricity grid which means that while Policy Conservative Grids will have to make 

substantial adjustments, they have at least some cushion in terms of the work already done 

by the Policy Aggressive Grids. Additionally, because the Policy Conservative grids are 

marginally increasing their policy contributions in more aggressive non-tax scenarios, they 

are much better off than they would have been if they stuck to their BAU level of policy 

aggressiveness.  

 In terms of emission pathways, in the “High” scenario, the pathways of most Policy 

Aggressive Grids overlap with the “High + Tax” scenario indicating that the tax doesn’t 

change a whole lot in the electricity sector generation mix for these grids (Figure 2.5). New 

York is an interesting case where emissions pathways from every scenario, tax or non-tax, 
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practically overlap one another, indicating strong baseline policies. Meanwhile, for grid 

regions such as Florida, Texas, Southeast, there’s a clear divergence in the emission 

pathways of the non-tax scenarios and the tax-scenarios, with the best cases being some 

overlap of the “High” and “BAU + Tax” scenario emission pathways. This implies that 

these grid regions, in response to a carbon tax need to change their underlying generation 

mix more drastically than the Policy Aggressive grid regions. At an aggregate in 2050, 

there’s a 60 per cent difference in emissions in the “BAU + Tax” versus “BAU” scenario 

for Policy Conservative Grids compared to about 55 per cent for Policy Aggressive grids. 

Comparing “High + Tax” scenario to “High” scenario, the difference is 52 per cent for 

Policy Conservative grids compared to 38 per cent for Policy Aggressive grids.  

Figure 2.5: Emission by Grid Region 
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The changes in electricity prices also illustrates the insights gained from analyzing relative 

emission trajectory changes.   In response to a price on carbon, all grids will face a price 

shock, but the degree of shock is far lower in the Policy Aggressive Grids compared to the 

Policy Conservative Grids (Figure 2.6). The contrast is especially evident when we 

compare grid regions such as Florida and Southeast with regions such as New York and 

Mid-Atlantic. In both cases there exists a bunching of the non-tax scenario pathways and 

the tax scenario pathways, but in the former cases, there are no overlaps between the two, 

indicating a greater degree of price adjustments for the Policy Conservative Grids. On an 

aggregate, prices in the “BAU+Tax” scenario are higher than the BAU scenario in 2050 by 

58 per cent in the Policy Conservative Grids and by 38 per cent in the Policy Aggressive 
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Grids. For “High+Tax” versus High scenario, the increases are 25 per cent and 4 per cent 

respectively.  

Figure 2.6: Prices by Grid Region 

 

The underlying generation mix plays a major role in determining emissions and prices. 

Three aspects of the generation mix – share of renewables, share of fossil fuels, and share 

of CCS in the mix are analyzed in order to provide insight the level of adjustments states 

will have to make with the imposition of a federal policy. For most Policy Aggressive 

Grids, deployment of renewables tends to be higher in the non-tax scenarios compared to 

their respective tax scenarios due to some CCS being installed in the tax scenarios (Figure 

2.7). Examples include New York, New England and Mid-Atlantic. In most Policy 
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Conservative grids, there is a dramatic increase in renewables deployment in response to 

tax compared to the corresponding non-tax scenario, e.g. in Florida, Texas and Central 

Northwest. That being said, some Policy Conservative grids do well in deploying 

renewables in the “High” scenario, e.g. Southeast, Central East, and Southwest even if their 

efforts are lacking in the lower ambition scenarios. In 2050, the average share of 

renewables in a Policy Conservative Grid is about 55 per cent higher in the “BAU +Tax” 

case compared to BAU, and is only about 3 per cent higher for Policy Aggressive Grids. 

For “High+ Tax” case compare to High, the differences are 20 per cent and -2 per cent (i.e. 

renewables are deployed more in the High case than High + Tax) respectively.  

Figure 2.7: Share of renewables in the generation mix (excluding CCS) 
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Most Policy Conservative Grids will need to dramatically reduce their dependence on fossil 

fuels in response to a federal intervention compared to Policy Aggressive Grids  (Figure 

2.8). In 2050, the average share of fossil fuel in a Policy Conservative Grid is about 63 per 

cent lower in the “BAU +Tax” case compared to BAU, and is about 45 per cent lower for 

Policy Aggressive Grids. For “High+ Tax” case compare to High, the differences are 57 

per cent and 43 per cent respectively. It should however be noted that numerically, the 

average shares are much lower in Policy Aggressive Grids to begin with (30 per cent in 

BAU and 17 per cent in High compared to 77 per cent and 52 per cent for Policy 

Conservative Grids), so even a relatively high percentage reduction implies a relatively 

modest reduction as far as generation is concerned. 

Figure 2.8: Share of non-CCS fossil fuel in the generation mix 
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CCS is only deployed in GCAM when there is a direct financial incentive do so, which is 

provided by a direct pricing of carbon. The key takeaway from analyzing CCS share in the 

generation mix of various grid regions (Figure 2.9) is that Policy Conservative Grids (e.g. 

Texas, Florida, Central East) will tend to deploy more CCS than Policy Aggressive Grids 

(Mid-Atlantic, New England, Northwest). This is partially because of the already 

entrenched renewables generation portfolio in most Policy Aggressive Grids although as 

noticed earlier, CCS will displace some of the renewables at higher tax scenarios. Policy 

Conservative Grids also may find it effective to retrofit some of their existing fossil fuel 

fleet (which are generally more substantial than those in the Policy Aggressive Grids) with 

CCS in addition to installing renewables capacity, given the challenge of decreasing their 

fossil fuel generation at a much rapid rate compared to Policy Aggressive Grids. 
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Figure 2.9: Share of CCS in the generation mix (tax scenarios only) 

 

2.4 Discussion 

In determining whether policy aggressive grids are better off when federal intervention is 

introduced to reduce GHG emissions and if more aggressive state actions in general reduce 

the degree of federal intervention required, the results have a few implications. First, in 

general if the country as a whole is pursuing more aggressive policies even at a 

differentiated rate by states, it will lower the burden of federal action and increase the 

contribution that the electricity sector makes in lowering national emissions. Second, 

Policy Aggressive grids will have to adjust considerably less in terms of their generation 

pattern, prices, and emission mix in response to federal intervention. Thus, aggressive 
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policies at the state level make sense for benefits to the states themselves and the grid 

regions they are part of, in addition to the national context.  

The study has some limitations that can serve as future avenues of research. Firstly, state 

policies can be extended to sectors other than electricity and results of federal intervention 

can be analyzed on a per sector basis to determine which sectors share most of the reduction 

burden at the state level and at the federal level under different levels of state policy 

aggressiveness.  Secondly, we do not account for additional scenarios where the Policy 

Conservative Grids consistently “Free Ride”, i.e. never changes their contributions from 

the BAU level irrespective of what the Policy Aggressive Grids are doing. When a tax is 

applied on these free-rider scenarios, our hypothesis is that the policy conservative grids 

would have to do much more in terms of reducing emissions and face more price shocks 

than the scenarios where Policy Conservative Grids increase their own contributions as 

well. Thirdly, market factors play a significant role in determining the emission, price and 

generation pathways in our scenarios. The reason why the market factors were allowed to 

vary was to give us a sense of the “relatively pessimistic” and “highly optimistic” bound 

of scenarios that can exist without federal policy intervention, and our hypothesis is that 

every other possibility will be represented by pathways that fall somewhere in the middle, 

of which we modelled one (the Medium scenario). However, certain market factors such 

as coal power plant retirement economics (discussed in detail in Supplementary Materials) 

and cost of technologies do play a significant role in determining our outcomes of interest. 

This is especially true for Policy Conservative Grids which have substantial coal power 

generation capacity and in the absence of very aggressive policies even in the most 

aggressive scenarios, coal power shutdown and cost of competing technologies may have 
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a bigger role in determining generation mix (and consequently prices and emission 

trajectories) than policies alone. Additional scenarios can be constructed holding the 

market factors constant for different levels of policy aggressiveness. Fourthly, Detailed 

sensitivity analysis can also be done for each of the policy factors and market factors to 

determine which plays the biggest role in determining the outcomes of interest. Fifthly, the 

study can also be extended to add scenarios where federal intervention is applied and 

withdrawn at different time periods and withdrawn due to changes in political landscape 

instead of a straightforward implementation from 2025 to 2050. The relative 

aggressiveness of the intervention can also be altered based on recent political 

developments. Sixthly, From the current set of scenarios alone, the role of declining fossil 

fuel and increased CCS in tax scenarios can also be studied further in terms of determining 

the additional cost of retrofitting fossil fuel plants with CCS and the cost of stranded assets 

in Policy Conservative Grids in particular where there is significant fossil fuel generation 

reduction. The distributional impact of such costs can also be studied at the grid region 

level to determine potential economic ramifications of having or not having aggressive 

state policies when faced with significant federal GHG emission reduction mandates.  

This study highlights that states and market forces alone can achieve a great deal in the 

decarbonization of the U.S. electricity grid, but the final push towards a substantial impact 

in the long-term climate ambitions make federal directives necessary. However, it is also 

in the own interest of the non-Federal actors to make a significant contribution to the long-

term climate ambitions through their own actions to make the transition easier for the 

Federal government where the latter can play a supporting role instead of having to be the 

main architect of climate policy.  This has significant impact in terms of changes the 
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subnational entities must make to their electricity sector and the shocks they will face as 

well as determining the direct burden of the taxpayers under federal action. Pro-active 

actions of subnational entities will help themselves and help the United States in the longer 

run to efficiently achieve ambitious climate goals ensuring the long-term prosperity of all. 

2.5 Detailed Methodology 

This study analyzes six scenarios to determine whether or not policy aggressive states will 

have to face less adjustments to their electricity sector emissions, prices, and generation 

mix when a federal re-engagement in terms of carbon tax is introduced. A two-step 

analytical approach was used for modeling, largely following the methodology outlined by 

Hultman et al. (2020)(Nathan Hultman 2020). In the first-step termed as “Sectoral 

Analysis”, climate policies were translated into activity data using the Athena tool, e.g. the 

state-level renewable generation resulting from state and city renewable energy policies. 

The primary focus of this step was to aggregate state-level data without double counting 

and taking into account the most high impact actions in each sector GCAM-AP data served 

as the baseline for some parameters, e.g. energy efficiency – which is explicitly modelled 

as percentage change in electricity consumption reduction from the baseline. In the second 

step termed as “Economic Analysis”, results of the first step were converted into inputs 

for the GCAM-AP model (Please see Supplementary Materials for additional details in the 

case of both Sectoral Analysis and Economic Analysis). The electricity sector of GCAM-

AP consists of state-level representations of the U.S. electricity sector, accounting for 

different technologies with varying economic and technical attributes such as costs and 

capacity factors, vintages (years when plants became operational), and load segments. 

Market equilibrium is calculated over 5-year period intervals between 2020 and 2050 and 
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is achieved when the model finds a set of prices that creates equality of demand and supply 

in all markets. 

Apart from scenario parameters that were explicitly modified for this study (discussed 

below), assumptions regarding all other sectors such as agriculture, oil and gas production, 

hydrofluorocarbons, land use are used as is from the reference version of the GCAM-AP 

model (Please see Supplementary Materials for additional details).  

The discussion of scenario assumptions consists of two parts. Firstly, to clarify what 

“Low”, “Medium” and “High” mean for each of the parameters specified in Table 2.2 

(Please see Table 2.3 for a numerical summary) and Secondly, how these parameters were 

calculated. For additional details on these parameters and their calculations, please refer to 

Supplementary Materials. 

• Low  

o USCA Policies: This is the extension of current level of policies for USCA 

member states in terms of RPS and Energy Efficiency (EE) targets. Since 

these are percentage targets, we simply assume that these targets, if not 

currently set till 2050, will continue to apply till 2050 beyond the last policy 

date, e.g. if a state has a RPS of 35% set till 2030, we assume that 35% will 

be applicable from 2035 to 2050.  The USCA states contribute to 25% 

effective RPS of their total generation in this scenario in 2050. 

o Non-Member Policies: Same as USCA policies. This also means that states 

without a RPS/EE policy (Oklahoma) or states that have explicitly set a 

termination data for their RPS/EE policies (Ohio) will continue to have zero 

policy targets for the entirety of the model period or beyond the end date, 
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whichever is applicable. The non-member states contribute to 3% 

effective RPS of their total generation in this scenario in 2050. 

o Market conditions: 

▪ Coal Retirement: Based on profitability of plants between 2012-

2017 as calculated by BNEF(N Hultman and Calhoun 2018). We 

assume that beyond existing confirmed retirements, the plants with 

six years of consecutive losses shut down in 2025, five years of 

consecutive losses shut down in 2030, and so on, until only plants 

that have been consistently profitable between 2012 and 2017 

remain open in 2050. Our assumption is that the plants which have 

been unprofitable for many years are unlikely to turn a profit in the 

future given that the trend of coal power plant profitability has been 

consistently going downward. Coal power generation capacity at the 

end of 2050 is 38 GW, about 14 per cent of the present capacity. No 

new conventional coal capacity is constructed (as based on current 

evidence, there are no conventional coal-fired plants under 

construction in the United States). 

▪ Capital Cost: Capital cost trajectory between 2020 and 2050 is 

directly inputted from National Renewable Energy Laboratory 

(NREL)’s Annual Technology Baseline (ATB)’s 2019 version of 

“Low Improvement” costs(Vimmerstedt et al. 2019). 

▪ Fuel Prices: Fuel price (natural gas and crude oil) trajectory between 

2020 and 2050 is used from U.S. Energy Information 
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Administration (EIA)’s Annual Energy Outlook 2019(U.S. Energy 

Information Administration, n.d.). The Low Cost case is used. For 

natural gas, the Henry Hub spot prices are used. For Crude Oil, West 

Texas Intermediate Prices are used. 

▪ GDP Growth: Assumed at 2 per cent per year on an average, based 

on Congressional Budget Office’s 2019-2029 projections(U.S. 

Congressional Budget Office, n.d.). 

▪ Building Electrification: Based on NREL’s Electrification Future 

Study(Mai et al. 2018), about 300 TWh of electrification increase 

between 2020 and 2050.  

▪ Vehicle Electrification: Based on the same NREL study, assuming 

an increase of about 475,000 vehicles miles travelled on electric 

vehicles between 2020 and 2050. 

 

• Medium 

o USCA Policies: The USCA states contribute to 50% effective RPS of 

their total generation in this scenario in 2050. Doubling their existing 

commitments in such a way that any state already above this rate in terms 

of existing commitments will not have to increase their commitments, but 

states that have fallen short in terms of existing commitments will have to 

match the trajectories to the dominant states in the coalition. 

o Non-Member Policies: The non-member states contribute to 10% 

effective RPS of their total generation in this scenario in 2050. Same 
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principle of adoption as USCA states, although with a large number of non-

member states not having any RPS policies or that well below 10 per cent, 

most states will have to adopt the 10 per cent mark. 

o Market conditions: 

▪ Coal Retirement: Accelerate retirement by one period from 

Existing, i.e. by 2025 all plants with five years or more accumulated 

losses retire, by 2030 all plants with four years or more accumulated 

losses retire and so on. In 2050, every conventional coal-fired power 

plant shut down. 

▪ Capital Cost: Capital cost trajectory between 2020 and 2050 is 

directly inputted from National Renewable Energy Laboratory 

(NREL)’s Annual Technology Baseline (ATB)’s 2019 version of 

“Medium Improvement” costs(Vimmerstedt et al. 2019). 

▪ Fuel Prices: Fuel price (natural gas and crude oil) trajectory between 

2020 and 2050 is used from U.S. Energy Information 

Administration (EIA)’s Annual Energy Outlook 2019(U.S. Energy 

Information Administration, n.d.). The Reference Case is used. For 

natural gas, the Henry Hub spot prices are used. For Crude Oil, West 

Texas Intermediate Prices are used. 

▪ GDP Growth: Assumed at 2 per cent per year on an average, based 

on Congressional Budget Office’s 2019-2029 projections(U.S. 

Congressional Budget Office, n.d.). 
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▪ Building Electrification: Based on NREL’s Electrification Future 

Study(Mai et al. 2018), about 500 TWh of electrification increase 

between 2020 and 2050.  

▪ Vehicle Electrification: Based on the same NREL study, assuming 

an increase of about 975,000 vehicles miles travelled on electric 

vehicles between 2020 and 2050. 

• High 

o USCA Policies: The USCA states contribute to 75% effective RPS of 

their total generation in this scenario in 2050. A linear increase in 

commitments over medium results in effectively all states contributing at or 

close to 75% RPS mandate individually. 

o Non-Member Policies: The non-member states contribute to 25% 

effective RPS of their total generation in this scenario in 2050. This 

brings non-member states in terms of contributions to the “Low” policy 

contribution of the USCA states. 

o Market conditions: 

▪ Coal Retirement: Accelerate retirement by one period from 

Medium, i.e. by 2025 all plants with four years or more accumulated 

losses retire, by 2030 all plants with three years or more 

accumulated losses retire and so on. In 2045, every conventional 

coal-fired power plant shut down. 

▪ Capital Cost: Capital cost trajectory between 2020 and 2050 is 

directly inputted from National Renewable Energy Laboratory 
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(NREL)’s Annual Technology Baseline (ATB)’s 2019 version of 

“High Improvement” costs(Vimmerstedt et al. 2019).  

▪ Fuel Prices: Fuel price (natural gas and crude oil) trajectory between 

2020 and 2050 is used from U.S. Energy Information 

Administration (EIA)’s Annual Energy Outlook 2019(U.S. Energy 

Information Administration, n.d.). The High Cost case is used. For 

natural gas, the Henry Hub spot prices are used. For Crude Oil, West 

Texas Intermediate Prices are used. 

▪ GDP Growth: Assumed at 2 per cent per year on an average, based 

on Congressional Budget Office’s 2019-2029 projections(U.S. 

Congressional Budget Office, n.d.). 

▪ Building Electrification: Based on NREL’s Electrification Future 

Study(Mai et al. 2018), about 800 TWh of electrification increase 

between 2020 and 2050.  

▪ Vehicle Electrification: Based on the same NREL study, assuming 

an increase of about 1.475 million vehicles miles travelled on 

electric vehicles between 2020 and 2050. 

Table 2.3: Comparison of Scenario Parameters 

Parameter  BAU Medium High 

USCA  Policy (% of generation in 

RPS) 

 25 50 75 
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Non-Members Policy (% of 

generation in RPS) 

 3 10 25 

Coal Retirement (GW remaining 

in 2050 vs 2020) 

 38/281 0/281 0/281 

Capital Cost (NREL assumptions 

used) 

 Low 

Improvement  

Medium High 

Improvement 

Fuel Price (Oil and Gas price in 

2020 vs 2050 – Oil in $2018/barre, 

Gas in $2018/MMBtu) 

 Oil: 69.72/ 

49.71 

 

Gas: 11/3.39 

 Oil: 69.72/ 

104.52 

 

Gas: 11/4.87 

 Oil: 69.72/ 

208.11 

 

Gas:  11/8.24 

GDP Growth (annual %)  2 2 2 

Building Electrification (TWh in 

2050 over 2020) 

 300 500 800 
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Vehicle Electrification (VMT in 

2050 over 2020) 

 475,000 975,000 1,475,000 

 

Carbon pricing application: Carbon pricing was calculated for each of the scenarios 

using the emissions trajectory between 2025 and 2050 outlined in Table 2.4. The 2005 

GHG emission in the United States was 7339 MTCO2e(US EPA 2017). We assume the 

2020 GHG emissions to be roughly below 15% that level, an optimistic projection based 

on preliminary 2019 emissions data(“Preliminary US Emissions Estimates for 2019” n.d.) 

which estimates a 12% reduction from 2005 level. For reference, the Agreement target was 

a 17% reduction from 2005 levels(Belenky 2015). The 2020 emission assumption is the 

starting point of the linear pathway of emission reduction, with an ending point of 80% 

GHG reduction from 2005 level in 2050.  

Table 2.4: Carbon tax emission trajectory 

Year Emission Cap (GHG in CO2e) 

2025 5,443 

2030 4,648 

2035 3,853 

2040 3,058 

2045 2,263 

2050 1,468 
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Chapter 3  

Energy Strategy: Aggregate household behavior in heating and cooling control 

strategy and energy efficient appliance adoption 

Arijit Sen and Yueming Qiu  

3.1 Introduction  

Energy efficiency has long been considered to be one of the most cost-effective way to 

reduce greenhouse gas (GHG) emissions [1], particularly in the residential sector which 

was responsible for around 20% of the total energy consumption in 2017 (U.S. Energy 

Information Administration (EIA) 2018). The residential sector has long been targets of 

policies and incentives to promote energy efficiency (Nejat et al. 2015). These include 

policies identifying appliances that would reduce long-term electricity consumption, and 

reduce the payback period of purchasing these appliances through financial incentives 

(Jones, Fuertes, and Lomas 2015). These appliances are termed as energy efficient 

appliances. Once a consumer purchases such an appliance, their energy usage behavior 

plays a significant role in determining the actual energy savings (Lopes, Antunes, and 

Martins 2012). Electricity consumption in general is influenced by a myriad of other factors 

(Kavousian, Rajagopal, and Fischer 2013) such as –  physical characteristics of the 

dwelling including type of building, house size, house age;  demographic characteristics of 

the occupants including income, race, gender, age distribution, and level of education. The 

distinction between appliances that are “always on” and those that operate in accordance 

with differing occupant behavior patterns is also important. There exists a fair bit of 

research on the linkage between occupant behavior and energy efficiency. Kavousian et al. 
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[6] notes that households who tend to buy energy efficient appliances are generally those 

with higher levels of consumption and tend to be wealthier. Income is considered as a 

potential factor for both higher level of consumption and the ability to buy higher priced 

energy efficient appliances. A meta study by Karlin et al. (Karlin et al. 2014) demonstrates 

two strong behavioral dimensions – curtailment and efficiency, with curtailment measures 

being easier to adopt but less effective on a longer time horizon compared to efficiency 

measures.  

The theory of occupant behavior and its relationship to energy efficiency can be used as a 

backdrop to formulate the research questions for this paper – How can household behavior 

in terms of adoption of energy efficient white goods1  appliances and temperature control 

strategy of space heating and cooling equipment be jointly categorized (white goods refer 

to large electrical appliances)? What are the factors associated with households being 

categorized into different behavioral groups?  

Following research parameters set up by Hong et al. (Hong et al. 2017), it is important to 

identify both technical and social factors of occupant behavior. From the technical side, 

adoption and usage must both be considered for relevant appliances, given the asymmetric 

impact of appliances such as heater and air conditioning on total energy usage (Santos et 

al. 2018) with rebound effects being a larger concern for such appliances (A. Greening, 

Greene, and Difiglio 2000). However, it is also to be noted that the way people use 

temperature control for heating and cooling can differ significantly among people given 

that effective use of thermostats is considered difficult (Meier et al. 2011). A number of 

 
1 White goods -  A class of consumer durables that includes washing machines, dishwashers, refrigerators, 
tumble-dryers, deep-freezers, and cookers; they are so named because they are usually finished in white 
enamel paint… (Oxford Reference) 
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studies report that thermostats in general are improperly utilized (Pritoni et al. 2015) (Peffer 

et al. 2011). If temperature setting of heating/cooling equipment and adoption of other 

energy efficient appliances are considered as joint variables of interest, statistical analysis 

(Liao, Farber, and Ewing 2015) (Gibbons and Wilcox-Gök 1998) can enable us to 

determine the share of households that are using energy efficient appliances but not using 

thermostats effectively versus those that are doing both.  

From a social perspective it is important to consider the factors that are closely associated 

with different behavioral patterns, e.g. demographics, household characteristics, or 

potential financial incentives (Abrahamse and Steg 2011). Patterns demonstrated through 

the behavioral classification and characterization process can be used to improve smart 

home demand response or demand management algorithms by providing data for better 

load segmentation and demand forecasting (Beaudin and Zareipour 2015) 

(Pipattanasomporn et al. 2014). The patterns can be used by policymakers to identify 

characteristics of households that have significant shortcomings in the adoption of energy 

efficient appliances and temperature control strategy. This information can be utilized to 

develop more effective targeting strategies on behavioral change.  (Fischer 2008) 

(Markandya, Labandeira, and Ramos 2015).  

The remainder of the paper is structured as follows. The next section of the paper looks at 

the relevant existing literature that informs the research question and relevant gaps. The 

paper then describes the dataset and methods to answer the research question, followed by 

the key results. A discussion section outlines how the key results of the paper can be used 

as valuable inputs to several engineering and policy problems regarding residential energy 

efficiency, concluding the paper. 
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3.2 Literature Review and Motivation 

Several studies look at the physical and social characteristics of households with regards 

to energy efficiency. A number of studies find that it is easier to undertake simple and 

short-term technical changes rather than long-term behavioral changes (e.g. buying an 

energy efficient appliance vs optimally setting up a thermostat) (Poortinga et al. 2003) 

(Karlin et al. 2014) (Pothitou, Hanna, and Chalvatzis 2016).  More in-depth studies into 

social and other demographic factors (Jones, Fuertes, and Lomas 2015) (Frederiks, Stenner, 

and Hobman 2015) find that statistically significant energy efficient behavior is often 

associated with better economic and housing situation, higher education, relatively young 

age, and urban residency. Utility incentives are generally strong predictors of energy 

efficient behavior (Alberini and Towe 2015) (Datta and Filippini 2016).   Behavioral 

intervention programs have been employed with varying degrees of success – and meta 

analyses of the literature finds that benefits often  tend to be short-term (Abrahamse et al. 

2005). That being said, regular feedback is a good way to  ensure that backsliding is 

minimized and long-term habits are formed (Allcott and Rogers 2014). The cost-

effectiveness of such programs tends to vary, with literature estimates ranging between 1.1 

cents per kWh to 47.9 cents per kWh per a 2018 meta study (Gillingham, Keyes, and 

Palmer 2018), although the authors find that the national average is around 2.8 cents per 

kWh in terms of net savings.   

A potential application of understanding occupant behavior with regards to efficient use of 

electrical appliances is the area of smart home demand management. This enables utilities 

and enrolled households to improve energy efficiency and lower the cost of energy 

consumption through two-way digital communications (Anvari-Moghaddam, Monsef, and 
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Rahimi-Kian 2015). Smart home demand management relies on effectively characterizing 

and forecasting energy demand on the basis of dwelling and socio-demographic 

characteristics (Vassileva, Wallin, and Dahlquist 2012) (Kavousian, Rajagopal, and 

Fischer 2013). The design of such a demand management system also requires 

understanding the usage pattern of different appliances which can be used to design 

effective pricing strategies (Zhou et al. 2016). This can help  schedule an application usage 

efficiently while minimizing user discomfort and cost (Barbato and Capone 2014) and 

maximizing demand response opportunities (Pipattanasomporn et al. 2014). There are 

however also concerns that smart home technologies “may reinforce unsustainable energy 

consumption patterns in the residential sector” and lock out low income and vulnerable 

consumers (Tirado Herrero, Nicholls, and Strengers 2018). In particular it has been found 

that a number of households which do have smart appliances are not effectively able to use 

them, e.g. improper use of programmable thermostats (Pritoni et al. 2015). 

Thermostat usage data has been used by several studies to gauge the effectiveness of 

thermostat use. Temperature setpoint and setback strategies both have significant impact 

on energy consumption (Huchuk, O’Brien, and Sanner 2018), especially in colder or humid 

climate (Moon and Han 2011). If the setpoint is only set slightly higher than what people 

generally do, significant reduction in energy consumption can be achieved (Kwong, Adam, 

and Sahari 2014).  Smart thermostats can be effective in saving more energy compared to 

manual operation (De Bock et al. 2017) (Lu et al. 2010) (Shann et al. 2017), however in 

the US context it has been found that most people do not use the advanced  features of their 

thermostats, which is somewhat related to their perceived complexity (Peffer et al. 2011) 

(Meier et al. 2011).  
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The current literature regarding appliance energy efficiency, household behavior and 

predictors have several gaps that this paper seeks to address. While there has been literature 

dealing with effect of having energy efficient appliances or usage pattern of appliances on 

consumption (Mansouri, Newborough, and Probert 1996) (Young 2008) (Sanchez et al. 

2008), there does not exist a lot of research that tackle the issue of identifying patterns of 

households which do purchase energy efficient appliances and engage in certain usage 

patterns jointly. There is research regarding household types and adoption of energy 

efficient appliances, but these do not provide a clear classification of households engaging 

in certain behavioral pattern compared to another. This paper also extends on several 

studies that does try to look at multiple parameters of interest such as knowing efficient 

appliances and purchasing them (Mills and Schleich 2010); or types, strategy and financial 

value of energy efficient measures adopted by households (Poortinga et al. 2003). 

Households are classified through the statistical procedure of Latent Class Analysis 

(“Latent Class Analysis” 2004). The factors that affect classification of a particular 

household into one category over another are then determined. Additionally, the paper 

contributes to the growing literature analyzing the U.S. Energy Information Administration 

(EIA)’s Residential Energy Consumption Survey (RECS) database as well as the Latent 

Class Analysis literature, which are discussed at greater detail in the next section. 

3.3 Data and Methods 

The EIA’s RECS 2015 dataset is utilized for this study. RECS is the only household level 

survey of a nationally representative sample of households which are asked questions 

regarding their energy consumption-related behavior and relevant socio-demographic 

information. This is known as the Housing Characteristics part of the RECS dataset (U.S. 
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Energy Information Administration n.d.). The households are selected through a multistage 

sampling process. Of the 12,753 households sampled, only 5,686 responded (“2015 RECS 

Technical Documentation” 2015). Note that information on the primary sampling unit is 

not available in the public database. The RECS dataset provides final sample weight, with 

the weight associated with each individual household adjusted for different probabilities of 

selection and rates of response. The final weight associated with each household is the 

number of households in the population the particular sample household represents. There 

is a total of approximately 118.2 million households in the US represented by the RECS 

dataset (“2015 RECS Technical Documentation” 2015).  

          3.3.1 Dataset and Research Questions  

The EIA RECS 2015 dataset has several peculiarities in the response variables which 

influenced the research questions, in addition to the pre-existing literature on the topic. 

Ideally, the classification process should have used adoption and usage data for all 

appliances considered, but since such data was not often available from the survey 

responses, several analytical choices were made. 

Adoption data on energy efficient space heating and cooling equipment is not available, 

unlike appliances such as washing machine, clothes dryer, refrigerator, and dishwasher. 

This means that temperature setting strategy is not only useful as an indicator of occupant 

behavior, but also as a proxy for adoption of space heating and cooling equipment. This is 

a distinct change from the 2009 version of the survey, where household adoption of these 

appliances was a survey question(“Residential Energy Consumption Survey (RECS) - Data 

- U.S. Energy Information Administration (EIA)” n.d.). There are a number of indirect 

variables in the 2015 survey that may give us better understanding of the type of heating 
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and cooling equipment owned such as presence of any thermostats, presence of 

programmable thermostats, and presence of smart thermostats. However, it’s not clear 

whether they are applicable to heating or cooling systems apart from specific variables on 

the presence of thermostats and programmable thermostats for central air conditioner.  

Non-space heating and cooling appliances do not have a lot of energy efficient usage 

related questions associated with them in the 2015 survey. The closest to this is the variable 

“Dishwasher cycle type used most of the time” in which “Energy Saver” is an option. 

However, unlike thermostats, the literature is relatively thin on the merits and demerits of 

various dishwasher cycle on energy efficiency compared to the actual work that gets done. 

One study (Finn, O’Connell, and Fitzpatrick 2013) uses a specific dishwasher model to 

assess demand side management option, but the cycle choices aren’t easily replicable to a 

generic dishwasher model. A second study (Richter 2011) looks at temperatures associated 

with cycle choices in general, but does not explicitly quantify the associated energy use. 

For this reason, the “Dishwasher cycle type used most of the time” is not a variable chosen 

in this study. 

Of the energy efficient appliance adoptions that are considered – water heaters are 

excluded, specifically because there is no usage information associated with water heaters 

in the survey responses. Residential Consumer End-Use Data from the same survey 

(“EIA’s Residential Energy Survey Now Includes Estimates for More than 20 New End 

Uses - Today in Energy - U.S. Energy Information Administration (EIA)” n.d.) shows that 

water heating is almost important in terms of share in total energy consumption (14%) as 

space heating (15%) and air conditioning (17%). As a result, the authors are of the opinion 
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that simply including adoption of energy efficient water heater as a reasonable proxy for 

energy efficient behavior was insufficient. 

Specific utility incentives were not available from the dataset, and the responses only 

pertained to generic incentives such as “Received utility or energy supplier rebate for new 

appliance or equipment” or “Received tax credit for new appliance or equipment”. This 

limited the analysis in terms of finding specific associations with household classifications 

and exact type of incentives received.  

Lastly, because the survey data is a snapshot of the sampled households at a given moment 

of time, the research question and the analysis could not consider the change in 

classification patterns or responses to incentives over time.  

            3.3.2 Variables  

The following variables are utilized from the survey. Most of the variables were 

reconstructed in order to simplify the analytical process and to provide more effective 

interpretation of the results. Summary statistics of the variables are presented in Table 3.1. 

                     3.3.2.1 Dependent Variables     

Unless specified otherwise, the first option for each variable is the base category. In Table 

3.1, the order of possible values is listed as Category 1-4 as applicable, following the order 

listed in this section. 

• Temperature setting strategy for cooling equipment (USEAC) – The survey has 

separate questions regarding “Central air conditioner household behavior” and “Most-

used individual air conditioning unit household behavior”. If a household was indicated 
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to have a central air conditioner, then responses to the first question were considered in 

constructing the variable. If a household was indicated to have window air conditioners 

(and NOT central air conditioners) then the responses to the second questions were 

considered in constructing the variable. The strategy options are: 

o Keep AC temperature unchanged 

o Manually change AC temperature (this includes turning the AC on and off as 

needed) 

o Program the thermostat to automatically adjust the temperature during the day 

and night at certain times 

o No Control over Temperature (this is typical in the case of apartment buildings 

where building management controls air temperature) 

• Temperature setting strategy for heating equipment (EQUIPMUSE): The survey has 

only one variable related to the temperature setting of heating equipment, “Main 

heating equipment household behavior”. The possible strategies are the same as the air 

conditioner case. 

• Adoption of non-cooling/heating energy efficient appliances (EFFICIENT): The 

responses regarding the adoption of several appliances are combined (energy efficient 

versions as denoted by presence of an Energy Star qualification) – namely refrigerators, 

clothes dryer, dishwashers, and clothes washers. This was done to reduce the number 

of dependent variables in the classification process and simplify the analytical process 

and provide more meaningful interpretations. From a purely statistical point of view, 
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having more indicators can improve the quality of the classification process (Wurpts 

and Geiser 2014). 

The possible options are 

o Adoption of zero energy efficient appliances, i.e. the household in question does 

not own an energy efficient version of any of the four appliances 

o Adoption of one or more energy efficient appliances, i.e. the household in 

question owns an energy efficient version at least one of the four appliances 

o Uncertain adoption of all applicable energy efficient appliances, i.e. the 

household in question is uncertain regarding the adoption of an energy efficient 

version for any of the four appliances 

3.3.2.2 Independent Variables   

The number of categories were condensed from the original RECS survey 

responses for easier computation, specifically in the case of categories that had 

a numerical value attached to it, e.g. year of house construction and income. 

Unless specified otherwise, the first option for each variable is the base 

category. In Table 3.1, the order of possible values is listed as Category 1-3 as 

applicable, following the order listed in this section.  

• Type of House (TYPEHUQ): Not a single-family home (i.e. apartment or mobile 

home)/ Single family home  

• Adoption status (KOWNRENT): Non-renter (i.e. owner or living without rent but not 

an owner)/ Renter 
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• Year of house construction (YEARMADERANGE): Before 1980/After 1980 

• Energy audit status (AUDIT): No Energy Audit/ Energy Audit taken place/ Uncertain 

audit status 

• Respondent gender (HHSEX): Female/ Male 

• Respondent race (HOUSEHOLDER_RACE): Non-White (includes mixed race)/White  

• Respondent education (EDUCATION): Below college education/ College educated or 

above 

• Household income (MONEYPY): Below $60,000 per annum/$60,000 per annum or 

higher 

• Incent (INCENT): Received no utility incentives/ Received at least one utility 

incentive/ Uncertain regarding receipt of utility incentives. 

The utility incentive responses considered are: rebate for new appliance or equipment, free 

recycling of old appliance, tax credit for new appliance or equipment, any other benefit or 

assistance. 

• Electricity payment responsibility (ELPAY): household not fully responsible for 

separate payment electricity/ Household fully responsible for separate payment for 

electricity 

• Number of household members (NHSLDMEM): Continuous variable – total number 

of household members. The summary statistics for this variable are specified in Table 

3.1. 
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Table 3.1 Summary Statistics for variables – categorical variables and number of 

households in possible categories (N=5686) 

Variable  Category 1 Category 2 Category 3 Category 4 

USEAC 2,030 2,127 781 748 

EQUIPMUSE 2,156 2,176 972 382 

EFFICIENT 1,753 3,519 414 - 

TYPEHUQ 1,455 4,231 - - 

KOWNRENT 3,928 1,758 - - 

YEARMADERANGE 2,895 2,791 - - 

AUDIT 4,630 458 598 - 

HHSEX 3,189 2,497 - - 

HOUSEHOLDER_R

ACE 3,189 2,497 - - 

EDUCATION 3,644 2,042 - - 

MONEYPY 3,147 2,539 - - 

INCENT 4,646 955 85 - 

ELPAY 328 5,358 - - 

Variable Mean Median Minimum Maximum 

67 



NHSLDMEM 2.577383 2 1 12 

 

3.3.3 Methods   

A schematic workflow diagram that outlines the methodological structure of the analysis 

is presented in Figure 3.1. Table 3.2 presents the structure of the multivariate probit model 

that is outlined in Figure 3.1. Further details on each of the methods can be found in the 

Supplementary Materials. 

Figure 3.1 – Schematic Workflow Diagram Outlining Methodological Approach  

 

Table 3.2 – Representation of the Multivariate Probit Model 

Multivariate 
Probit Model

•Determines whether or not behavioral patterns (appliance purchase and usage) share significant relationships. 

•Establishes a system of equations with three dependent variables.

•Each system pairs the adoption of EE appliance binary variable with two binary variables that tackle competing 
strategies for temperature control (one variable each for heating and cooling).

•If significant relationships are found between the behavioral patterns,  classification of households and 
association of independent variables with each group of households become an interesting exercise.

Latent Class 
Analysis

• Determines how many distinct classes of households can be found based on joint behavioral patterns.

•Jointly classifies households based on behavioral patterns regarding energy efficient appliance adoption and 
temperature control strategy. 

•The households are divided into several classes with each class having defining characteristics when it comes 
to both adoption and temperature control strategies that are seen among most members of a particular class.

•The optimal number of classes is selected based on statistical criteria for model selection such as AIC and BIC.  

Multinomial 
Logit Model

• Determines which independent variables are most influential with regards to households being classified into 
one class over another.

•This has significant policy relevance because it can help policymakers to determine what type of households to 
target in order to impact energy efficient appliance adoption and temperature control strategy.
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System  Dependent Variables 

(Binary) 

Independent Variables 

System 1 USEHEAT1 (Manual or 

Single Temperature in 

Heating vs Use of 

Programmable 

Thermostat) 

 

USECOOL1 (Manual or 

Single Temperature in 

Cooling vs Use of 

Programmable 

Thermostat) 

 

EFAPP (Adoption of 

zero/uncertain energy 

efficient appliances vs 

Adoption of one or more 

energy appliances)  

These variables are common 

for all dependent variables 

across all three systems 

 

TYPEHUQ 

KOWNRENT 

AUDIT 

HHSEX  

HOUSEHOLDER_RACE  

EDUCATION  

INCENT  

ELPAY  

NHSLDMEM 

System 2 USEHEAT2 (No Control 

of Temperature in vs 

Control of Temperature in 

Heating) 

 

USECOOL2 (No Control 

of Temperature in Cooling 

vs Control of Temperature) 

 

EFAPP (Adoption of 

zero/uncertain energy 

efficient appliances vs 

Adoption of one or more 

energy appliances) 

System 3 USEHEAT3 (No 

Thermostat Use in Heating 

vs Use of Programmable 

Thermostat) 

 

USECOOL3 (No 

Thermostat Use in in 

Cooling vs Use of 

Programmable 

Thermostat) 

 

EFAPP (Adoption of 

zero/uncertain energy 
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efficient appliances vs 

Adoption of one or more 

energy appliances) 

 

3.4  Results 

Multivariate probit model: The first system had reduced number of samples due to 

eliminating no-control households from USEAC1 and USHEAT1 variables, hence only 68 

draws were used. 

For all systems, marginal effects are reported, as these are easier to interpret in the case of 

a probit model.  The marginal effect with categorical independent variables can be 

interpreted as the change in odds of the household being part of the non-base category for 

all three dependent variables, given a change to a certain category for the categorical 

independent variable from the base category. The results are summarized in Table 3.3. 

Table 3.3 – Marginal Effects of independent variables on changing odds of the 

household being part of the non-base category for all three dependent variables, 

given the change to a certain category for the categorical independent variable from 

the base category 

Independent Variable  System 1 System 2 System 3 

Marginal Effect 

(Standard Error) 

TYPEHUQ_SINGLEFAMILYHOME 0.238** 

(0.073) 

0.019 

(0.065) 

0.301*** 

(0.075) 

KOWNRENT_RENTER -0.327*** 

(0.076) 

-0.192** 

(0.064) 

-0.303*** 

(0.068) 

AUDIT_AUDITED  0.117 

(0.095) 

-0.232** 

(0.084) 

0.079 

(0.091) 

AUDIT_UNCERTAIN -0.016 -0.255** -0.016 
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(0.0.84) (0.074) (0.072) 

HHSEX_MALE 0.127** 

(0.048) 

0.034 

(0.049) 

0.119** 

(0.044) 

HOUSEHOLDERACE_WHITE -0.037 

(0.066) 

-0.249*** 

(0.060) 

-0.069 

(0.058) 

EDUCATION_COLLEGE 0.276*** 

(0.052) 

0.070 

(0.056) 

0.230*** 

(0.050) 

MONEYPY_60K 0.305*** 

(0.053) 

0.158** 

(0.057) 

0.330*** 

(0.052) 

INCENT_RECEIVED1+ 0.158* 

(0.062) 

-0.052 

(0.067) 

0.125* 

(0.059) 

INCENT_UNCERTAINED 0.109 

(0.162) 

0.086 

(0.209) 

0.053 

(0.173) 

ELPAY_FULLYPAY  -0.106 

(0.121) 

-0.009 

(0.098) 

-0.194 

(0.132) 

NHSLDMEM -0.014 

(0.018) 

-0.001 

(0.019) 

-0.008 

(0.017) 

Note: * p<0.05; ** p<0.01; *** p<0.001 

For System 1 - Residents of single family homes, a male respondent to the survey, college 

educated respondent, a household with an income exceeding $60,000 per annum, and a 

household receiving one or more energy efficiency related utility incentives were more 

likely to be using thermostats for heating and cooling as well as adopt one or more energy 

efficient appliances, compared to using single/manual temperature control strategy and not 

having any energy efficient appliances (or be uncertain). However, being a renter decreased 

these odds. The relationships are generally in-line with what is seen in the literature, 

although with the respondent not necessarily being the head of the household, the gender 

and education link cannot be interpreted as strongly. 
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For System 2 – only income over $60,000 seemed to increase the odds of the household 

belonging to the control temperature/having an efficient appliance category, which makes 

sense given the link between income and energy consumption and affordability of 

expensive appliances. There are a large number of variables that seem to decrease the odds 

of the household belonging to the control temperature/owning an efficient appliance 

category – being a renter, doing a home energy audit, uncertain status of home energy 

audit, and the respondent being white. Being a renter makes sense from the empirical 

literature because rented houses often have their temperature controlled by management 

companies and there is limited opportunity to replace existing appliances or having 

uncertain audit status. There is little evidence to support the relationship between auditing 

and having no control over temperature/not buying an appliance and the respondent being 

white. 

For System 3 –results are similar to that of System 1, which suggests that adding back the 

no-control group does not impact the relationships of the independent variables to 

thermostat usage/efficient appliance adoption very significantly.  

Table 3.4: Correlation coefficients of the three dependent variables under three 

different tri-probit systems with standard errors in parentheses. 

System Correlation 

between Heating 

and Cooling 

temperature 

Correlation 

between Cooling 

strategy and EE 

appliance adoption 

(Standard errors) 

Correlation 

between Heating 

strategy and EE 

appliance adoption 

(Standard errors) 

72 



strategy (Standard 

errors) 

System 1  0.92*** (0.01) 0.06*** (0.01) 0.06*** (0.02) 

System 2  0.34*** (0.04) 0.08** (0.03) 0.01 (0.03) 

System 3 0.89*** (0.01) 0.07*** (0.02) 0.07*** (0.02) 

Note: * p<0.05; ** p<0.01; *** p<0.001 

An analysis of the three sets of correlation coefficients (Table 3.4) -1. between 

heating/cooling temperature control strategy; 2. Between heating temperature control 

strategy and EE appliance adoption; 3.  cooling temperature control strategy and EE 

appliance adoption suggests that, predictably households will have fairly similar heating 

and cooling temperature control strategies. However, there is low (albeit statistically 

significant) correlation between their heating or cooling strategy with appliance adoption. 

This suggests that households may be as a whole purchasing one or more energy efficient 

appliances but that does not necessarily inform their temperature control strategy.  

Latent Class Analysis Model: The AIC and BICs of 3-5 class models are presented in 

Table 3.5. Only the class specification with the lowest AIC/BIC is discussed in detail. 

Table 3.5 – AIC and BIC comparison for different LCA specifications 

Measure 3-Class 4-Class 5-Class 

AIC 34032 33912 33915 

BIC 34205 34144 34208 
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Endnote. AIC: Akaike Information Criterion; BIC: Bayesian Information Criterion. AIC 

and BIC are used to evaluate relative quality of statistical models, with lower values 

indicating lower information loss in the specification concerned. Please see Supplementary 

Materials for more details. 

The four-class model is the optimum one. The outcome of the model is summarized in 

Figure 3.2. 

Figure 3.2 – Summary of Four Class Specification of Household Energy Efficient 

Behavior 
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Note: All strategy and adoption numbers are in percentages. To be interpreted as 

percentage of households within a particular class engaging in a particular type of behavior.  

Effectively the four classes are largely separated based on temperature control behavior. 

Apart from Class 4 – most members of the other classes tend to own at least one energy 

efficient appliance. The manual (Class 1) and single temperature (Class 3) strategy 

households dominate the sample in terms of percentage of households being class 

members, which is in line with the literature. However, it is interesting to note that the 

programmable thermostat preferring class (Class 2) has a higher percentage of members 

owning one or more energy efficient appliance compared to that of Class 1 and Class 3, 

suggesting some link between high percentage of EE appliance adoption and exhibiting 

more sophisticated temperature control behavior. The joint categorization into one class 

alone isn’t enough to draw conclusive evidence. Class 4 is also interesting to analyze, and 

apart from the slight majority of its members not owning (or uncertain about owning) an 

energy efficient appliance – it is the only class where heating and cooling temperature 

behavior is split. About half of the members don’t have control over cooling strategy and 

there’s an even split between manual and single temperature strategy for heating. Much 

like Class 2, we can generally say that there seems to be a link between less-sophisticated 

temperature control strategy and low adoption percentage of energy efficient appliances. 

Multinomial Logit Model:  The model uses the four-class prediction for each household 

as the dependent variable, with Class 1 (Manual temperature strategy and EE appliance 

owning households) as the base class2. This means that the change in relative log-odds of 

 
2 Class 1 is chosen as the base case because it is the most common category. We want to estimate what 
are the characteristics which are related to a deviation from the norm, especially the case where 
households use thermostats and the case where households do not own any EE appliance/have no 
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being in Class X (where X ≠ 1) compared to Class 1 will increase/decrease by a certain 

value if moving from the base category of that independent variable to another category. 

In Table 3.6, only the independent variables which have a statistically significant relative 

log-odds of impacting a class change are reported (either positive or negative), along with 

the absolute numerical value of the odds in parentheses. A visual representation can be 

found in the Supplementary Materials. 

Table 3.6: Multinomial logit analysis of independent variables affecting the relative 

log-odds of membership of a behavioral class compared to the base behavioral class 

(Class 1) 

Membership 

change to 

Increased relative log-odds due 

to (odds specified in parentheses) 

Decreased relative log-odds due to 

(odds specified in parentheses) 

Class 2 TYPEHUQ_SFH (0.696)*** KOWRENT_RENTER (0.796)*** 

YEARMADE_1980+ (0.173)* HOUSEHOLDERACE_WHITE 

(0.265)* 

AUDIT_AUDITED (0.309)* - 

EDUCATION_COLLEGE 

(0.373)** 

- 

MONEYPY_60K (0.538)*** - 

 
control strategy. This is relevant from a policy perspective because potentially, these households can be 
targeted to improve thermostat usage/ promote EE appliance ownership. The reason why Class 2 (Owns 
EE Appliance/ Thermostat users) is not chosen as the base class is because we want to identify the 
characteristics that make the odds of not being in this class less likely (renters primarily), and potentially 
target these households for potential behavior change incentives. 
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INCENT_AVAILED (0.309)* - 

Class 3 HHSEX (0.130)* EDUCATION (0.481)*** 

Class 4 KOWRENT_RENTER (0.404)** TYPEHUQ_SFH (0.409)*** 

AUDIT_UNCERTAIN (0.384))* YEARMADE_1980+ (0.684)*** 

- EDUCATION (0.325)* 

- INCENT_AVAILED (0.476)* 

Notes: Class 1 – EE appliance owning manual temperature control class; Class 2 – EE appliance owning 

thermostat temperature control class; Class 3 – EE appliance owning single temperature class; Class 4 – Non-

EE appliance owning mostly no control/manual temperature control class 

The variables that are likely to increase the relative log-odds of being a part of Class 2 

(thermostat user/EE adoption) compared to Class 1 are residence in a single family house, 

living in a house made after 1980, completion of a home energy audit, college educated 

respondent, household income above $60,000 per annum, and use of at least one utility 

incentive. Renters and white respondents are likely to have decreased relative log odds of 

being a part of Class 2. By and large the results are comparable to the first system of 

multivariate probit equations, where the base class was Manual/Single temperature strategy 

households and the alternate class was thermostat users. The only differences are the 

statistical significance of audit status in the multivariate probit analysis and the significance 

of being a white respondent in the multinomial logit analysis. However, the impact of race 

or gender of the respondent on behavior cannot be measured properly if we do not know 

whether the respondent is the head of the household.  

Between Class 1 and Class 3 (Single temperature strategy/Efficient appliance owners) there 

are very few variables that can affect membership relative log-odds, which is to be expected 
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given the similarities in behavioral structure of the two classes. However, it does seem that 

gender of the respondent (being Male) and education level (College educated) impact the 

relative log-odds of membership, positively and negatively respectively. While the 

relationship with gender is hard to interpret, having at least a college-educated household 

member may mean that there is some influence of NOT switching from a more 

sophisticated strategy (actually changing the temperature, albeit manually) from a less 

sophisticated one (keep a single temperature).  

Changing relative log-odds of membership between Class 1 and Class 4 (limited control/no 

EE appliance adoption) is positive as a result of being renters and uncertain audit status 

and negative due to living in a single family home, living in a home constructed after 1980, 

having a college educated respondent, and availing an utility incentive. The results make 

intuitive sense, given that renters and households with little knowledge about audits are 

likely to be correlated with those who have limited control over setting temperature of their 

devices and not purchase any energy efficient appliance. It is also likely that those living 

in a single family home (typically not operated by management companies), newer house, 

having a college educated respondent, and availing an utility incentive are less likely not 

to buy an energy efficient appliance or not have control over temperature.  This compares 

somewhat favorably with the second system of multivariate probit equations, where no 

control of heating and cooling temperature strategy was the base case and having any type 

of control being the alternative case. There are two key differences. Variables that decrease 

the log-odds in the multinomial logit case are not found to be significant in the multivariate 

probit system. Additionally, variables such as Audit status positive and white respondent 

being not found significant in the multinomial logit analysis. These discrepancies can be 
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explained by the fact that the multivariate probit system looked at all possible alternatives 

to no control as the counterfactual while in the latent class analysis, the base class only 

comprises of manual temperature controlling households. 

3.5 Discussion 

The joint analysis implies that while the majority of the sampled households’ own energy 

efficient appliances, only a small percentage control temperature through thermostats, 

which in a residential setting can lead to significant energy savings. Therefore, adoption of 

one more energy efficient appliance is not highly correlated with a consistent temperature 

control strategy. The four-class categorization provides greater clarity in appliance usage 

even when adoption patterns are similar.  In incentivizing households to adopt more energy 

efficiency measures, policymakers should ensure both adoption and proper usage of energy 

efficient appliances. In determining whether households are using their appliances properly 

and helping households with regards to ease of use, engineering solutions such as smart 

meters and smart thermostats are likely to be useful. These provide information on the 

thermostat usage patterns of individual consumers for the thermostat manufacturers. 

The factors that are associated with the usage of programmable thermostats are – home 

ownership, single family home dwelling, higher income, college education, use of utility 

incentives and completion of a home energy audit; and one factor explicitly reducing the 

odds of use of thermostats or increasing the odds of not controlling the temperature is 

renting. These factors are also generally in line with households that in the literature are 

generally classified as “pro-environmental” (Abrahamse and Steg 2011) (Poortinga et al. 

2003). Renters meanwhile have been studied in the literature as a subgroup of interest when 
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it comes to energy efficient and stand out as a group when it comes to less effective energy 

efficiency outcomes (Davis, n.d.) (Bird and Hernández 2012).  

From the policy perspective, literature that has analyzed the issue of energy efficiency 

adoption shortfalls (Markandya, Labandeira, and Ramos 2015) assert that policies should 

be tailored based on the failures that are noted in the system. For example, if there are 

market failures such as imperfect information, policies to improve the quality of 

information to consumers should be developed and agents should be targeted as far as 

possible to improve efficiency of investments. Based on our results, we make the following 

observations. Firstly, a small percentage of population use the programmable features of 

thermostats and can be considered as the leaders in terms of effective usage of temperature 

control equipment. However, the question of whether they were using the thermostat 

properly was not asked in the RECS survey, but it is an important policy question that 

needs to be addressed. Secondly, this segment of the population tends to be educated and 

wealthy homeowners living in single family homes – factors that themselves are highly 

interconnected (e.g. education and wealth, wealth to home ownership, and preference of 

SFH in the case of home ownership). On the assumption that more people should use the 

programmable features of thermostats in order to improve energy efficiency, policies 

should be designed to target those households (or the laggards) which do not have factors 

that are associated with thermostat users – i.e. households that are low-income, apartment 

dwelling (or mobile home dwelling), renters with less than college level of education, and 

those who typically do not avail any utility incentives or complete home energy audit. High 

level information such as Energy Star labels do improve consumer awareness (Mills and 

Schleich 2010) but that does not necessarily help consumers who are low-income or have 
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other demographic issues that contributes to low regional ratings by organizations such as 

the American Council for an Energy-Efficient Economy (Murray and Mills 2011). Hence 

states, utilities and local authorities should consider additional level of policy support for 

consumers in their jurisdiction exhibiting these demographic characteristics. Motivational 

tools that have been generally used include nudge-style interventions such as home energy 

reports which do have positively demonstrated effect on welfare (Allcott and Kessler 

2015), improvement of information provision that is relevant to the demographics under 

consideration (Abrahamse et al. 2005), and setting incentive compatible contracts as well 

as financing options. Identifying the demographic characteristics of households that are not 

effectively exhibiting ideal energy efficiency behavior is also the first step towards for 

designing intervention trials to evaluate new policies. It can also be used to design more 

sophisticated consumption disaggregation techniques such as nonintrusive load monitoring 

to improve stakeholder decision-making (Carlson, Scott Matthews, and Bergés 2013). 

From an engineering perspective, the insights may improve in managing and forecasting 

demand for smart home energy management. Some appliances such as dryers, air 

conditioners and dishwashers may offer significant opportunity when it comes to demand 

response, so ascertaining the adoption and usage patterns of these appliances among 

households can be useful (Pipattanasomporn et al. 2014). When it comes to creating 

complex optimization algorithms for home energy management systems, well-being of 

consumers can be better modelled by understanding broad usage patterns and 

demographical trends of the target households (Beaudin and Zareipour 2015). Analysis of 

smart meter data through clustering techniques have shown that demographic patterns are 

powerful predictors of daily usage patterns of electricity which in turn can be used to 
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generate effective load profiles (McLoughlin, Duffy, and Conlon 2015). While not as 

extensive as daily or hourly data gathered from smart meters, the RECS dataset is extensive 

enough for predicting further patterns in the context of electricity usage and household 

behavior by using machine learning techniques such as clustering, and can be used to make 

further contribution to the existing literature (Tsanas and Xifara 2012) (Zhao and Magoulès 

2012). 
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     Chapter 4 

Pricing Prosumers: Can distributed solar tariffs jointly make sense for prosumers 

and utilities? 

Arijit Sen, Yueming Qiu, and Leon Clarke 

4.1 Introduction 

One of the key reasons behind the decrease of emissions in the U.S. electricity sector in the 

recent years(“Power Sector Carbon Dioxide Emissions Fall below Transportation Sector 

Emissions - Today in Energy - U.S. Energy Information Administration (EIA)” n.d.) is the 

increase of renewable energy-based electricity generation in the grid, particularly solar. 

Solar power generation from utility scale sources alone have increased by about 60 times 

between 2010 and 2019(“EIA - Electricity Data” n.d.). As defined by the U.S. Energy 

Information Administration (EIA) as “distributed … generation technologies produce 

electricity near the particular load they are intended to serve… being connected to the 

electricity grid and meant to directly offset retail sales”(“EIA - Distributed Generation in 

Buildings” n.d.). As per EIA’s 2018 Electric Power Annual report(“Electric Power Annual 

2018,” n.d.), over 1.2 TWh of electricity from net metered photovoltaic (PV) systems was 

sold back to the grid and in the same year, about 30 TWh of electricity was generated from 

small-scale facilities (which would include facilities that are not grid-connected as 

well)(“EIA - Electricity Data” n.d.). Small-scale residential and non-residential solar PV 

installations have increased from a little over 7 GW in 2014 (when they were first tracked 

by EIA) to around 20 GW in 2019(“Electric Power Annual 2018,” n.d.). This can be 

partially explained by the dramatic reduction of per watt installation costs(O’Shaughnessy 
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et al. 2019), estimated over $3.50 in 2014 but well under $3.00 in 2019, mostly due to 

falling hardware costs(“Solar Industry Research Data” n.d.). However, incentives such as 

the 30 per cent investment tax credit(“Residential and Commercial ITC Factsheets” n.d.) 

and the net metering provision afforded by main utilities are also regarded as key drivers 

for this growth(Eryilmaz and Sergici 2016). The analysis of compensation1 that can be 

afforded to rooftop PV installers2 is one of the key drivers of this paper. The most common 

form of compensation is net metering, the details of which are discussed in the next section.  

4.2 Net metering and the associated value of solar literature 

Net metering compensates the prosumers for the electricity sold back to the grid at the retail 

rate of electricity tariff, thus the effective or net consumption is electricity demanded 

(which is always at the retail rate) minus electricity sold. An example of how the 

mechanism works is illustrated as follows - 

Assume that a prosumer and a utility are contracted under a monthly billing cycle and that 

the prosumer only pays for the electricity that is bought from the utility. In a given month, 

assume that the demand of the prosumer is 1,000 kWh, a shade over the average household 

electricity consumption in the United States(U.S. Energy Information Administration 

(EIA) 2018), and the PV system installed by the prosumer is capable of generating 1,200 

kWh (about what a 8 kW system would generate in the month of July on a downtown San 

Diego rooftop per a PVWatts(“PVWatts Calculator” n.d.) simulation).  Then for this 

month, the 1,000 kWh of the 1,200 kWh generated can be used to completely offset the 

demand of the prosumer, and the remaining 200 kWh can be sold to the grid. Assume that 

 
1 termed by utilities and regulators the “Value of Solar”(9) 
2 henceforth termed as prosumers(10) – entities who both produce and consume electricity 
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the retail rate for the prosumer is 35 cents per kWh (considering only a single tier for 

simplification purposes), without the system they would have paid $420 to the utility. With 

the system and the excess electricity sold, the utility instead pays $70 to the prosumer.  

As of October 2019, 39 states in addition to the District of Columbia and a handful of 

territories have net metering rules in place(DSIRE 2019). However it also has come under 

a fair bit of controversy in the recent years, with one of the arguments of the utilities being 

that prosumers are overcompensated for their sale to the utility given that  

(a) it would cost the utility far less to buy the same amount of electricity from the 

wholesale market  (Szmolyan 2019); and 

(b) because the utility is buying electricity at the retail rate, there is no money to support 

the transmission and distribution expenses of the utility while selling this electricity 

to other consumers. Additionally, when selling excess electricity back to the grid, 

the prosumer is still making use of the transmission and distribution infrastructure 

which they are not being charged for (Brown and Sappington 2017).   

A phenomenon that has been discussed in the literature at some length is the possibility of 

a utility “death spiral”. The “death spiral” hypothesis suggests that because utilities lose 

money from net metering, it would have to raise its rates on the non-net metered prosumers 

to remain profitable, but this rate increase makes the economics of defecting more 

favorable to some of these non-not metered prosumers, which forces the utility to raise its 

rate further, ending up in a situation where the utility is driven out of business(Costello and 

Hemphill 2014). Quantitative examination suggests that while only extreme (and 

unrealistic) cases of grid defection and utility costs may actually lead to such a death spiral 

happening(Laws et al. 2017), it is well established that net metering will dent the 
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profitability of utilities(Janko, Arnold, and Johnson 2016) which will mean at least some 

rate increase for the non-metered households(Satchwell, Mills, and Barbose 2015) which 

has serious distributional concerns(Brown and Sappington 2017). In real-life, there has 

been a twofold response this on the utility and regulator side. First, there are some utilities 

and regulators who have come out against net metering and have decided to move on from 

the system(Davies and Carley 2017) . Second, there has been a growing number of 

regulator and utility sponsored “Value of Solar” studies which try to determine the optimal 

value of distributed solar from the utility point of view, taking an avoided cost approach – 

aggregating the avoided fuel, transmission, distribution, capacity, operation and 

maintenance, and environmental compliance costs from purchasing electricity from 

distributed PV sources rather than the wholesale market. Of note are studies by Institute of 

Self Reliance for the regulators in Minnesota(Farrell, n.d.) and Clean Power Research for 

Austin Energy(Rábago et al., n.d.) which demonstrated that the value of electricity 

purchased from prosumers lies between the wholesale and retail rates. Whether not value 

of solar studies adequately account for all costs and benefits for all parties while still 

incentivizing rooftop PV deployment is up for debate(O’Shaughnessy and Ardani 2020). 

However, the wholesale generation cost (or perhaps what the utility regards as the 

generation expenses in its retail bill) can be regarded as an effective floor in terms of 

compensation by the utility. 

The prosumer economics of net metering, specifically in response to changes by the utility 

to its tariff system has been discussed at length in the literature. Almost any deviation from 

the net metering status quo will dampen the benefits of the prosumer, such as two-part 

tariffs with a fixed customer charge or switch to a wholesale compensation structure (Laws 
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et al. 2017). The feedback effect from dampened benefits is likely to cause a decline in 

distributed solar PV adoption(Darghouth et al. 2016), although estimates vary on the 

magnitude of impact(Gagnon et al. 2017). Several studies have also attempted to come up 

with an optimal solar rate that would maximize the benefits of prosumers or utilities 

(Satchwell, Mills, and Barbose 2015) (Woo and Zarnikau 2017) (Singh and Scheller-Wolf 

2017) (Vaishnav, Horner, and Azevedo 2017). Optimistic estimates suggest that there 

should not be any changes in deployment of rooftop PV so long as the overage electricity 

is credited above the levelized cost of electricity (Comello and Reichelstein 2017).   

The literature in general does not do a good job in assessing the relative benefits of utilities 

and prosumers in response to different valuations of distributed solar generation and reports 

aggregated benefits from both parties or benefits for one party but not the other. As a result, 

the literature does not focus on valuations that might be beneficial for both parties, rather 

than simply focusing on maximizing combined benefits. For example, Singh and Scheller-

Wolf(Singh and Scheller-Wolf 2017)’s numerical examples which calculate combined 

financial welfare for the prosumer, non-adopter consumers, and utility, as well as the 

environmental welfare for the society  -only provides a combined number, and does not 

provide a breakdown of the winners and losers from various tariff arrangements. Janko et 

al. (Janko, Arnold, and Johnson 2016) consider at various penetration rates - utility revenue 

losses, optimal system sizes for prosumers, and electric rate increase required to cover 

losses, but does not discuss prosumer benefits changes. Laws et al. (Laws et al. 2017) focus 

on adoption/defection rates and the effective retail price at various solar compensation 

rates, but does not demonstrate what benefits are accrued by the prosumer and the utility 

at each of those compensation rates. Other studies cited in the previous paragraph tends to 

92 



focus on the benefits of either the utility (Woo and Zarnikau 2017) (Satchwell, Mills, and 

Barbose 2015)  or the prosumer (Darghouth et al. 2016) (Vaishnav, Horner, and Azevedo 

2017) (Comello and Reichelstein 2017) . 

4.3 Research Question 

The previous section identifies two major limitations of the literature – the lack of distinct 

quantification of prosumer and utility benefits in response to different valuations of 

distributed solar generation, and the tendency of the literature to either consider the utility 

or the prosumer when their benefits are distinctly quantified. The research questions are 

designed to address both issues. 

1. For the median prosumer3 served by an electric utility, what is a range of valuations of 

distributed solar generation that ensures that utilities do not pay excess cost to acquire 

energy from the prosumer and the wholesale market compared to a no distributed PV 

system case and that the prosumer still receive enough monetary benefits to ensure 

payback for the installed system within its lifetime?  

2. How are these valuations affected in response to a different utility retail tariff structure? 

3. What explains the differences in these valuations between median prosumers of 

different utilities? 

  

4.4 Methods 

 
3 A median prosumer is an artificially constructed household based on Tracking the Sun(Barbose et al. 
2019) database that has the average characteristics of all rooftop PV installations in a certain zip code that 
is served by a certain utility. In this study, each combination is denoted by the utility is served, e.g. if the 
zip code 93940 is served by Pacific Gas & Electric (PG&E), the prosumer-utility combination PG&E is a 
household that is a representative of all households in that zip code with a rooftop PV installation. 
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The research design involves finding an optimal valuation for distributed solar generation 

(VDSG) to solve the optimization problems for each median prosumer and retail utility 

tariff structure. Candidate VDSG values are defined in Table 4.1.  

Min VDSG 

such that P = (Es * VDSG – Ed * VRTP) – (Ed + Eg - Es) * VRTP – CO > 0 ……(1). 

and Max VDSG 

such that U = Em * VMEC – (Em – Es)* VMEC – Es * VDSG > 0…. (2) 

P and U are prosumer and utility benefits respectively. Prosumer benefit arises from 

savings in retail costs due to the installation of the PV system reducing consumption 

requirement compared to a no-PV situation as well as compensation received for excess 

solar generation. We assume that prosumer demand will remain unchanged over the years 

and is invariant of tariff structure alteration, which is unlikely to happen in real life. This 

assumption is made due to the static nature of the model and these feedbacks can be 

explored in future studies. A positive prosumer benefit ensures that the system cost is paid 

back for within its lifetime, assumed at 30 years. 

Positive utility benefit arises if the cost of purchasing energy from the wholesale market 

exceeds the valuation of distributed solar generation. Because of lack of transmission and 

distribution related cost data, utility benefits calculations are considerably stylized 

compared to real life. 

The various terms in the two equations are defined as follows: 

Es = Lifetime energy sold to the utility by the prosumer 
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Eg = Lifetime of energy generated by the solar PV system 

VDSG = Levelized Value of Distributed Solar Generation 

Ed = Leftover energy demanded by the prosumer from the utility 

VRTP = Levelized Value of Retail Tariff Price paid to the utility 

Ed + Eg - Es = Total energy demand in the case of a PV scenario (Leftover energy plus net 

solar generation  

CO = Cost of system including tax-payer funded incentives 

Em = Energy bought from the wholesale market in a no-PV scenario, equals Ed + Es 

VMEC = Levelized cost of energy bought from the market 

Em – Es = Leftover energy bought from the market in a PV scenario, equals Ed 

A valid minimum VDSG that solves (1) is the Floor (F). A valid maximum VDSG that 

solves (2), provided that a solution of (1) is not incompatible with the solution (2) is the 

Ceiling (C). If there exists a F that solves (1) and a C ≥ F4 that solves (2), then an optimal 

VDSG is any value between F and C, or F ≤ Optimal VDSG ≤ C.  

We also consider the societal benefit, which is the aggregate of the prosumer and the utility 

benefit, plus any air quality related benefit (defined as avoided healthcare cost due to 

improved air quality) from additional PV electricity in the grid assumed to replace an 

 
4 If C ≤ F, it means that the maximum that the utility can afford to pay without losing money does not 
meet the minimum compensation required by the median prosumer to pay off the system, i.e. the system 
would not be built. 
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equivalent amount of fossil-fuel based generation, minus the taxpayer expenses that are 

borne by the society when rooftop PV systems are subsidized. This is defined as: 

S = P + U + LCAPD * Es – I 

Where, LCAPD = Levelized cost of avoided pollution damage 

I = Tax-payer funded incentives for the system, typically at 30 per cent of the system cost. 

The society is said to benefit from a given valid valuation VDSG0, if for VDSG0,  S>0. 

Table 4.1: Details of candidate valuations of distributed solar generation  

VDSG name Explanation 

Net Metering (NM) Present value of retail rate 

Floor (F)* A rate that ensures a positive payoff for the 

prosumer. This is the minimum 

compensation necessary to ensure that the 

PV system is built. 

Ceiling (C)* A rate that imposes no additional energy 

costs to the utility compared to a no-

rooftop PV situation. This is the maximum 

compensation that the utility can afford 

without having to increase its tariffs for 

other consumers to compensate for excess 

energy payments. 
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Value of Solar (VoS) A rate that is calculated by existing studies 

for a given state or utility. Used for 

benchmarking purposes. 

* A 1 cent minimum is chosen because it is unlikely the fractions of a cent will be used as 

a payoff. 

4.5   Data  

Figure 4.1: Data selection process workflow 
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Data collection for this study followed a sequential process outlined in Figure 4.1. Details 

of the process is provided below. All calculations start from the year 2019, and then a 25-

year time consistent with the lifetime of a PV system horizon is analyzed. Values are 

reported as net present values (NPVs). Additional details can be found in Supplementary 

Materials. 

States

•Overlap of states that have publicly available Value of Solar studies and 
those represented in the 2019 Tracking the Sun dataset with valid zip codes 
and utility identifiers

•STATES: AR, AZ, CA, CT, MN, NY, OR, PA, TX

•Pollution volume data gathered at the state level from EIA eGRID database.

Utilities

•Within each state, determine two utilities with the highest number of 
prosumers, exceptions are for TX and OR which have VoS studies for one 
specific utility.

•A total of 16 utilities from 9 states. 12 of these utilities have a Time-of-Use 
tariff so a total of 28 tariff combinations are used

Prosumers

•The most frequently occurring zip code is chosen for each utility. Within 
that zip code, the median consumer is chosen whose system size, costs, and 
incentive data are used.

•The zip code is used to generate synthetic PV system generation data from 
NREL SAM, while HOMER Grid determines the closest available EIA TMY3 
synthetic “base” demand data.

•The zip code is used in the EASIUR Online Database to determine the 
location-specific cost of pollutants. EPA’s social cost of carbon (2017 
version) is used to value CO2.
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1. Identification of States and pollution volume data: System level data for a large section 

of rooftop PV installations across the United States can be obtained from the Tracking 

the Sun (TTS) database, updated annually by the Lawrence Berkeley National 

Laboratory (LBNL). This study uses the 2019 edition of the database, which tracked 

households till the end of 2018(Barbose et al. 2019). The states whose residential 

rooftop PV systems (our target group in this analysis) are tracked by the database 

include: Arizona, Arkansas, California, Connecticut, Delaware, Florida, 

Massachusetts, Maryland, Minnesota, New Hampshire, New York, Oregon, 

Pennsylvania, Texas, Vermont and Wisconsin. As a reference point of comparison, this 

study includes VoS VDSG for comparative purposes and not all of these states have 

VoS studies done by their regulators/utilities/ a third party. By using the VoS meta-

studies developed by ICF International(“The Hunt for the Value of Distributed Solar” 

n.d.) and SEIA(“Solar Cost-Benefit Studies” n.d.), we narrow down the states that have 

such studies with quantifiable VoS numbers and find commonalities with those in the 

TTS database. We find the following overlap: Arizona, Arkansas, California, 

Connecticut, Massachusetts, Maryland, Minnesota, New Hampshire, New York, 

Oregon, Pennsylvania, Texas and Vermont. Of these, households in Maryland and 

Vermont weren’t identifiable by zip codes (which are required for generating synthetic 

generation and demand patterns), so those two states were dropped. The three New 

England states had very similar characteristics in terms of their average sizes, costs and 

even utility tariff structure, and as a result only Connecticut was chosen – primarily due 

to the fact that it was the only state among the three with utilities having two different 

type of tariff structures (baseline and time-of-use). So the final tally of states considered 
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for this study ended up being: Arizona, Arkansas, California, Connecticut, Minnesota, 

New York, Oregon, Pennsylvania, Texas, and Vermont. For pollution-related 

calculations, state level power system pollution data (calculated at pound of CO2e, SO2, 

and Annual NOX per MWh) from U.S. Environmental Protection Agency (EPA)’s 

eGRID database was used(“EGRID2018 Summary Tables,” n.d.). PM2.5 data was 

collected at a grid level from a eGRID presentation as state level PM2.5 data is yet to 

be incorporated in the model(Cooley, n.d.).  

2. Identification of Utilities and tariff data: For each state, the aim was to identify two 

utilities which served prosumers with the most rooftop PV installations. In order to 

accomplish this, a simple frequency Table 4.2 with utility name was generated for each 

state. For the nine states, this resulted in the identification of 18 utilities. However, for 

Oregon and Texas, the Value of Solar studies were explicitly for a specific utility – 

Portland General and Austin Energy respectively, and hence only those utilities were 

considered for those two states, bringing the total to 16. For comparative purposes, two 

sets of tariffs were used for each utility, a baseline one (generally tiered with seasonal 

variations) and a time-of-use (ToU) one. Twelve out of the sixteen utilities offered a 

ToU tariff. The exceptions were: Carroll Electric (Arkansas), Minnesota Power 

(Minnesota), PECO (Pennsylvania), and Austin Energy (Texas). We assume that the 

retail rates escalate at the average rate of escalation between 2009 and 2018 at the state 

level, per EIA data(U.S. Energy Information Administration n.d.). We assume the 

energy cost of a utility to be the same as the generation charge which is present in utility 

bills, and that these costs escalate at the same rate as the tariff. Since transmission and 

distribution charges are also separately accounted for retail rate, we do not assume that 
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this is a part of the generation charge. Utilities will buy electricity from the wholesale 

market at a price that is generally better approximated by the locational marginal price 

(LMP)(“Wholesale Power Price Maps Reflect Real-Time Constraints on Transmission 

of Electricity - Today in Energy - U.S. Energy Information Administration (EIA)” n.d.). 

However, these tend to fluctuate wildly and as such obtaining a long-term prediction 

for these are problematic(“Wholesale Electricity Prices Were Generally Lower in 2019, 

except in Texas - Today in Energy - U.S. Energy Information Administration (EIA)” 

n.d.). Since utilities already explicitly specify a generation charge in their retail rate as 

a proxy for their energy costs, this study uses the same data as its proxy for utility 

energy costs. 

3. Identification of Zip code and demand/generation data: For each utility, a frequency 

table was created to identify the zip code which was associated with the greatest 

number of installations. These zip codes were then used to generate average system 

size, cost, and subsidy data creating a prosumer-utility combination. Some households 

have incomplete or missing subsidy data and, in these cases, the standard 30 per cent 

investment tax credit (ITC) reduction is assumed as the subsidy value. The TTS 

database does not have demand data associated with the households. Hence the zip 

code was also used to generate a synthetic hourly demand profile for the prosumer 

using the “Base” DOE TMY3 Load Profile data(“Index of 

/Datasets/Files/961/Pub/RESIDENTIAL_LOAD_DATA_E_PLUS_OUTPUT” n.d.). 

Almost always the actual zip code did not have a TMY3 Load Profile data associated 

with it, so the nearest location was used, as determined by analyzing the zip code 

concerned using Homer Grid(“OpenEI Load Profiles” n.d.). The synthetic hourly 
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generation profile for a rooftop PV system installed in a given zip code was determined 

using the default assumptions of the National Renewable Energy Laboratory (NREL)’s 

Solar Advisory Model (SAM)(Gilman et al. 2018). Table 4.3 and Figure 4.2 summarize 

the results obtained from Steps 2 and 3. Because synthetic demand is used, in several 

cases the median prosumer’s tends to generate more or less electricity than the demand 

calculated over the period of a year, where in real life the system will be appropriately 

sized. The appropriate sizing of the system (i.e. ignoring TTS data) is used as a 

sensitivity case.  More details on the actual tariffs can be found in Supplementary 

Materials. 

4. Calculating costs of pollution: The cost of carbon dioxide is estimated using EPA’s 

social cost of carbon from its Obama Administration days(US EPA n.d.). The 2020 

value with 3 % average discount rate is used, which estimates the cost of one metric 

ton of carbon dioxide in 2007 dollars at $42. The cost of local pollutants are calculated 

by zip code using the Estimating Air pollution Social Impact Using Regression 

(EASIUR) model(Heo, Adams, and Gao 2016). Dollar year, income year, and 

population year are all calculated as 2010. The marginal social cost data (measured in 

terms of $ per metric tonne) for the pollutants (PM2.5, SO2, and NOX) are gathered on 

a seasonal basis rather than an annual basis, accounting for monthly or hourly 

granularity in generation and demand data. Data is reported at four different altitudes, 

but the ground level data is selected given that we have little knowledge regarding the 

actual terrain conditions of an average household in the zip code with a rooftop PV 

system installed. All reported dollar values at converted to present day (December 
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2019) dollars using U.S. Bureau of Labor Statistics Inflation Calculator(“CPI Inflation 

Calculator” n.d.). 

5. Discount rate: A 4 per cent base discount rate is assumed. This rate is chosen on the 

basis of the peak long-term treasury interest rate over the last decade(Organization for 

Economic Co-operation and Development 1955).  

Table 4.2: List of States, Utilities, Zip codes, Tariff Structures, and Escalation Rate 

Utility State Chosen Zip 

code 

ToU Tariff Escalation Rate 

Entergy  AR  71909 Yes 0.7% 

Carroll Electric AR 72641 No 0.7% 

APS AZ 85383 Yes 1.8% 

Salt River Project AZ 85140 Yes 1.8% 

PG&E CA 95648 Yes 2.5% 

SCE CA 92563 Yes 2.5% 

Eversource Energy CT 6010 Yes 0.4% 

United Illuminating CT 6516 Yes 0.4% 

Xcel Energy MN 55406 Yes 2.7% 

Minnesota Power MN 55804 No 2.7% 

PSEG Long Island NY 11704 Yes 0.6% 
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Consolidated Edison NY 10562 Yes 0.6% 

Portland General Electric OR 97215 Yes 2.4% 

PPL Electric Utilities PA 17601 Yes 1.8% 

PECO PA 19426 No 1.8% 

Austin Energy TX 78701 No -1.0% 

 

4.6  Results 

We start by comparing the effective demand met (ratio of average annual generation to 

average annual demand) and the total system cost in Figure 4.2 to determine whether or 

not the most expensive systems are actually effective in meeting the requisite demand of 

the median prosumer.  We find that an expensive system does not ensure that more of the 

effective demand is met, owing to substantial variation in the per kW cost faced by median 

prosumers depending on their utilities. 

Figure 4.2: Comparison of System Cost vs Demand met through system  

104 



 

Notes: Primary axis – Percentage of Average Annual Demand met by system. Utilities 

arranged by ascending order of this percentage. Secondary axis – System cost for the 

median prosumer served by the utility. 

The correlation between the demand met by system percentage and system cost is -0.11, 

suggesting a weak inverse relationship, i.e. more expensive systems meeting less demand 

which is counterintuitive. The correlation between demand met by system percentage and 

system cost per kW is -0.69, suggesting a stronger inverse relationship. There are however 

caveats in interpreting these relationships, given the fact that a synthetic demand profile is 

used, and we have no way of knowing the actual demand pattern of the zip code associated. 

However, the system cost and system cost per kW data which are based on real life data, 

show considerable variations across utilities, and as such there is only a 0.36 correlation 

between the two, suggesting that while in general the more expensive system suggests a 

higher generation capacity, the relationship isn’t very strong. For example, a 3 kW system 
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at the Entergy service area costs about $19,000 on average, and at that price point, the 

PG&E service area zip code can install a system with a capacity of 6 kW. More expensive 

systems per dollar, inability of expensive systems to meet a higher share of effective 

demand, and low retail rates are often cited as some of reasons why distributed PV might 

not be financially viable for some consumers (Darghouth, Wiser, and Barbose 2016), and 

for preliminary analysis we see some of these factors present across the chosen sample of 

utilities. Utilities of interest are Carroll Electric (Ranked Highest in system cost but 13th 

highest in demand met) and PECO (Ranked second highest in system cost but 12th highest 

in demand met). On the flip side, utilities with a high rank in demand met but low rank is 

system costs include SCE (3rd and 16th respectively) and Minnesota Power (6th and 15th 

respectively). 

Figures 4.3 -4.5 summarizes the key findings for the base tariff (non-ToU) cases. In Figure 

4.3 we see the impact of different solar compensation mechanisms (bars on the primary 

axis) on the payback period of the installed PV systems (line). An, i.e. when an acceptable 

floor and ceiling compensation cannot be found, is denoted by an orange dot, and no 

payback is possible within 25 years of project lifetime. For benchmarking purposes, even 

if the VoS and Net Metering tariff correspond to an invalid payback period, the tariffs are 

still graphically plotted, but the payback period is denoted using an orange dot. Most 

utilities do have valid payback periods for all types of tariffs with the notable exceptions 

being the previously flagged Carroll Electric, as well as Entergy, Portland General, PPL, 

and Austin Energy. Cost issues aside for Carroll Electric, and to some extent for Austin 

Energy and Entergy as well, their low retail rate plays a major role in making the PV 

systems unprofitable, as there is not enough avoided cost in terms of retail energy demand 
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savings to justify the investment in the system, regardless of the compensation offered for 

solar generation. For Portland General, the system cost and effective demand met are both 

towards the lower end (ranked 3rd lowest and 2nd lowest respectively). However, along with 

a middling retail rate, per kW cost is among the highest (4th highest) which explains the 

relative ineffectiveness of the system in being economically unviable. For PPL, only the 

ceiling compensation rate leads to an invalid payback which means that the compensation 

obtained would be lower than the 10 cents floor tariff (which is the highest among all valid 

floor tariffs), suggesting that while the relatively expensive system (3rd most expensive in 

total, 6th in per kW) does a good job in meeting the synthetic demand load, the 

compensation required to make it cost-effective is incompatible with the energy cost 

component of the utility tariff. It is to be noted that the VoS component for PPL is 

considerably higher than the floor and even net metering, suggesting that there might be 

ancillary benefits for the utility other than saving on energy costs, although given the 

generic nature of VoS tariffs, this cannot be said with certainty. 

Figure 4.3: Solar Compensation and Payback period – Base Tariff 
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Notes: Primary axis (bar) – Compensation; Secondary axis (line) – Payback period. An 

orange dot indicates invalid payback period (which for Floor and Ceiling VDSG indicate 

invalid compensation). Value of Solar and Net Metering compensations are calculated for 

benchmark purposes even if there is no valid payback period within the 25-year lifetime of 

the project.  

Figure 4.4: Solar Compensation and Prosumer Benefits – Base Tariff 
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Notes: Primary axis (bar) – Compensation; Secondary axis (line) – Prosumer benefit. An 

orange dot indicates negative prosumer benefit (which for Floor and Ceiling VDSG 

indicate invalid compensation). Value of Solar and Net Metering compensations are 

calculated for benchmark purposes even if there no valid payback period at the end of the 

25-year lifetime of the project.  

Figure 4.5: Solar Compensation and Utility Benefits – Base Tariff 
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Notes: Primary axis (bar) – Compensation; Secondary axis (line) – Utility benefit. An 

orange dot indicates negative payback period (which for Floor and Ceiling VDSG indicate 

invalid compensation). Value of Solar and Net Metering compensations are calculated for 

benchmark purposes even if there is negative prosumer benefit at the end of the 25-year 

lifetime of the project.  

In general, floor compensation rates are very low, often not exceeding the minimum 

threshold of 1 cent indicating that consumers do not require much incentive in terms of 

solar generation compensation to invest in the system. This is driven by high retail rates 

for most utilities, far exceeding the national average retail rate of 11 cents(“State Electricity 

Profiles - Energy Information Administration” n.d.) in all but two cases with valid 
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compensation for every VDSG type (the two Minnesota utilities). The VoS tariff falls in 

between the floor and the ceiling in only 3 of the 11 complete cases, suggesting that most 

regulators believe that there is additional benefit to be gained by the utility than just avoided 

energy costs. Predictably, higher solar compensation means faster payback periods, so 

from a prosumer perspective, the net metering compensation for solar is the most suitable. 

Figure 4.4 summarizes the prosumer benefits, and as expected we see that higher 

compensation correlates with higher benefits. Once again, invalid compensation means that 

there is no prosumer benefit, as the system will be infeasible in such a case. In Figure 4.5, 

we see the utility benefits going largely in the opposite direction of the prosumer benefits, 

and in a large number of cases when VoS or net metering compensations are adopted, they 

are negative.  

Figure 4.6: Solar Compensation and Payback period – ToU Tariff 
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Notes: Primary axis (bar) – Compensation; Secondary axis (line) – Payback period. An 

orange dot indicates invalid payback period (which for Floor and Ceiling VDSG indicate 

invalid compensation). Value of Solar and Net Metering compensations are calculated for 

benchmark purposes even if there is no valid payback period within the 25-year lifetime of 

the project.  

Figure 4.7: Solar Compensation and Prosumer Benefits – ToU Tariff 
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Notes: Primary axis (bar) – Compensation; Secondary axis (line) – Payback period. An 

orange dot indicates invalid payback period (which for Floor and Ceiling VDSG indicate 

invalid compensation). Value of Solar and Net Metering compensations are calculated for 

benchmark purposes even if there is no valid payback period within the 25-year lifetime of 

the project.  

Figure 4.8: Solar Compensation and Utility Benefits – ToU Tariff 
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Notes: Primary axis (bar) – Compensation; Secondary axis (line) – Utility benefit. An 

orange dot indicates negative payback period (which for Floor and Ceiling VDSG indicate 

invalid compensation). Value of Solar and Net Metering compensations are calculated for 

benchmark purposes even if there is negative prosumer benefit at the end of the 25-year 

lifetime of the project.  

Moving on to ToU tariffs, the basic trends are unchanged. However, ToU seems to be 

associated with slightly faster payback periods and slightly higher net metering and ceiling 

tariffs (Figure 4.6, please see Supplementary Materials for details on ToU tariff structure). 

This indicates consumers are certainly better off if solar compensation was still at a net 

metering rate, and the utilities can afford to pay more before the avoided energy cost 
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equation becomes unfavorable to them. There are two important caveats. Firstly, it is likely 

that the demand pattern will change in response to a ToU tariff shift, and this cannot be 

replicated here as we are using synthetic demand. Secondly, we cannot generalize that a 

shift to ToU will be beneficial in terms of net metering and floor compensation because it 

is related to consumption pattern in these particular synthetic demand data points, and may 

not be applicable to the behavior of prosumers operating under ToU tariff. In Figures 4.7 

and 4.8, we see similar trends, i.e. slightly higher prosumer benefits at all tariff levels and 

slightly higher utility benefits at the ceiling tariff level. However, it is to be noted that a 

shift to ToU does not mean utilities producing invalid compensation results now produce 

valid results. For these several basic assumption changes were required, which are tackled 

in Section 7. 

Figure 4.9: Social Benefits – Base and ToU Tariff 
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Notes: A blank social benefit indicates absence of data (i.e. some utilities don’t have ToU 

tariff structure). A social benefit depicted with a line instead of a bar indicates an invalid 

social benefit, because for that prosumer-utility combination – any VDSG fails to generate 

a valid payback period for the prosumer, making the PV system infeasible.  

Figure 4.9 compares the compensation-invariant social benefit for all the utilities in the 

base tariff and the ToU tariff cases. Consistent with the prosumer and utility benefit 

observations we see that generally the society is better of under a ToU tariff, although 

United Illuminating and PPL seem to be exceptions. Once again, for invalid compensations 

– no social benefit is recorded, and these are represented by lines as compared to bars. 

Blank benefits are for utilities without ToU tariffs. The most interesting case here is that 
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Table 4.3: Results of selected sensitivity cases

the results of four of these 308 cases. The details of these cases are presented in Table 4.4.

analyzed in the Supplementary Materials section. In the main body of the paper, we present

for base tariff cases and 132 for ToU tariff cases). The results from every single case are

In total for the 16 utilities considered, a total of 308 sensitivity cases were simulated (176

cost and installed capacity in the zip code.

Re-sizing is done on the basis of the per kW cost obtained from the average system

which is applied by a number of state regulators(“State Net Metering Policies” n.d.).

is that generation from the system must not exceed 120 per cent of the annual demand,

synthetic demand rather than taking the size as given. The only limit applied to sizing

to  the  use  of  synthetic  demand  data,  we size  the  systems  in  accordance  with  the

• Optimal sizing: Recognizing the fact that there might be a size-demand mismatch due

to the long-term rate of return of S&P 500(Maverick n.d.).

• Discount rate: An alternate 7 per cent discount rate is chosen. This is roughly equivalent

/Datasets/Files/961/Pub/RESIDENTIAL_LOAD_DATA_E_PLUS_OUTPUT” n.d.)

Base demand(“Index  of

• Demand: Using Low and High demand from the TMY3 database that provided us with

For sensitivity purposes we alter the following parameters:

4.7 Key Sensitivities

by pollution avoidance benefits and combined utility and prosumer benefits.

system cost resulting in the society bearing a high subsidy burden which cannot be offset

of PPL, which has negative social benefits in both cases, driven by the highly expensive



State – 

Utility 

VDSG_Type Case Solar 

Compensation 

(cents per kWh) 

Payback 

Period 

(years) 

Prosumer 

Benefit 

($) 

Utility 

Benefit 

($) 

AR - Entergy  F Base INV INV INV INV 

AR - Entergy  F LD INV INV INV INV 

AR - Entergy  C Base INV INV INV INV 

AR - Entergy  C LD INV INV INV INV 

AR - Entergy  VoS Base 11.4 INV INV INV 

AR - Entergy  VoS LD 11.4 INV INV INV 

AR - Entergy  NM Base 8 INV INV INV 

AR - Entergy  NM LD 8 INV INV INV 

CA - PG&E F Base 1 9 24812 17953 

CA - PG&E F HD 1 9 28587 18838 

CA - PG&E C Base 17 6 43259 215 

CA - PG&E C HD 39 5 48109 67 

CA - PG&E VoS Base 14 7 39799 3541 

CA - PG&E VoS HD 14 9 31608 15933 

CA - PG&E NM Base 30 5 58247 -14196 

CA - PG&E NM HD 30 8 35237 12357 

NY - 

Consolidated 

Edison 

F Base 1 15 12433 15462 
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NY - 

Consolidated 

Edison 

F HDR 1 19 3797 11422 

NY - 

Consolidated 

Edison 

C Base 16 9 28159 342 

NY - 

Consolidated 

Edison 

C HDR 15 11 15284 686 

NY - 

Consolidated 

Edison 

VoS Base 30 7 42836 -13771 

NY - 

Consolidated 

Edison 

VoS HDR 30 7 27591 -10816 

NY - 

Consolidated 

Edison 

NM Base 23 8 35497 -6715 

NY - 

Consolidated 

Edison 

NM HDR 23 9 21848 -5448 

TX - Austin 

Energy 

F Base INV INV INV INV 

119 



TX - Austin 

Energy 

F OS 6 23 1771 -1532 

TX - Austin 

Energy 

C Base INV INV INV INV 

TX - Austin 

Energy 

C OS INV INV INV INV 

TX - Austin 

Energy 

VoS Base 9.7 INV INV INV 

TX - Austin 

Energy 

VoS OS 9.7 16 9704 -9161 

TX - Austin 

Energy 

NM Base 9 INV INV INV 

TX - Austin 

Energy 

NM OS 9 17 8204 -7718 

Notes: LD – Low Demand; HD – High Demand; HDR – High Discount Rate; OS – Optimal 

Sizing; INV – Invalid 

The following four cases are picked for illustrative purposes, all for base tariff structures: 

• Entergy – Low demand. This is the utility which faired the worst in terms of the system 

meeting its demand. The low demand case improves the demand met percentage to 55 

from 30. 

• PG&E – High demand. This is the utility which fairs among the best (86 per cent) in 

terms of the system meeting its demand and in terms of prosumer benefit, it is ranked 
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the highest. The high demand scenario reduces the demand met percentage to 55 per 

cent. 

• Consolidated Edison – High discount rate. Another highly profitable case for 

prosumers. The aim is to determine if higher discount rates reduce profitability 

significantly. 

• Austin Energy – Optimal sizing. A utility with poor demand met percentage (56 per 

cent), low compensation rates and middling cost. The aim is to determine whether re-

sizing the system is an effective technique to solve its issues. 

The results suggest that for these cases, re-sizing is the only technique that significantly 

alters the pathway for the utility compared to the baseline. Even with a demand reduction, 

Entergy is unable to generate valid compensations. PG&E benefits are reduced somewhat 

but not by any substantial amount (although the ceiling compensation goes up 

considerably). Discount rate changes does substantially impact the benefits for 

Consolidated Edison prosumers and the utility, but the system still remains profitable for 

all parties. Austin Energy meanwhile generates valid compensation values for the floor 

with resizing, although finding a ceiling compatible with the floor is still problematic, 

likely due to cheap electricity generation costs. However the VoS and NM tariffs produce 

valid results in terms of benefits, but it seems that the prosumer is largely the winner, which 

is interesting to note because Austin Energy is one of the few utilities that actually uses 

VoS as a compensation mechanism. This perhaps indicate that the utility makes avoided 

cost gains from elsewhere in the system. 

4.8 Discussion and Conclusions 
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There are several important policy lessons that can be learnt from the results of the stylized 

exercise. While utility and prosumer benefits tend to run in the opposite direction, the study 

establishes in most cases, valid ceilings and floors. Thus, the regulator has the option to 

pick a wide range of tariffs that will not leave the two parties worse off compared to a no 

rooftop-PV situation. Which tariff is picked depends on which side the regulator wants to 

favor. Ideally within the range of valid tariffs, a tariff that is exactly half-way down the 

middle will be picked or one will be picked to ensure relatively equitable benefits for both 

parties. The benchmark VoS values suggests that most utilities benefit significantly from 

factors other than avoided generation cost, although a direct comparison is probably 

inconclusive due to methodological differences in calculating the VoS values compared to 

values in this study. 

We also find that the most significant determinants behind the validity of various types of 

compensations are system cost relative to size, percentage of demand fulfilled, the relative 

comparison between system cost and demand met, and the retail rate. With systems that 

are highly expensive for its size, which in turns means that a prosumer may not be able to 

install an optimal size of it to consistently offset their demand requirements, let alone sell 

excess power to the grid it is highly unlikely that any reasonable rate of solar compensation 

will work. The retail rate plays a major role as well, with the expensive prosumer-utility 

combinations in New York and California demonstrating that with the ability to offset 

significant amount of their demand with rooftop PV generation is beneficial to the point 

only a minor solar incentive is required to make installation of the system worthwhile.  

A couple of caveats might be noted here – firstly, the use of synthetic demand may not be 

reflective of the actual demand conditions and secondly, since rooftop solar is considerably 
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less expensive now as compared to what the median prosumer faces (the median value of 

PV system cost based on TTS data for existing systems), a prosumer might not face 

significant cost issues which may ease some of the financial constraints even if the retail 

rate is not favorable. However, given the vast differences in per kW costs with the existing 

rooftop PV systems, it is unlikely that these differences have been completely resolved 

with falling rooftop PV system costs. This is because while hardware costs have fallen 

dramatically, the balance of system costs have not, and these “soft costs” may vary 

considerably between states or even between utility service territories, making rooftop PV 

still prohibitively expensive for some consumers(O’Shaughnessy et al. 2019). The 

combinations that were worst affected such as the two Arkansas utilities and Portland 

General are both characterized by high costs relative to demand met and low retail tariff. 

Since lower capital costs will affect every utility and prosumer while retail tariffs increase 

fairly slowly, it is unlikely that these utilities will be relatively better off in the future than 

they are now unless soft costs specific to their service area or state come down dramatically.  

Policy efforts should probably be concentrated on reducing these soft costs for new 

installations and helping out existing installers with cost-effective re-sizing. 

Expensive systems also mean greater burden on the society in terms of taxpayer-funded 

incentives, and this can ultimately offset or at the very least significantly reduce gains made 

by the prosumer and utility combined, even accounting for avoided pollution-related costs. 

This is precisely what happens in the case of PPL and even the Austin Energy sensitivity 

case with the resized system. Additionally, if generation is relatively inexpensive, then 

combined with low retail rates, and an expensive system, the Austin and the PPL case 

demonstrates that it may be hard to find a valid ceiling compensation for the utility as it 
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may be below the minimum required compensation for the prosumer in order to guarantee 

a positive payout from the system. 

This study can be extended to several future avenues of research. A dynamic model can be 

created that treats consumer response as endogenous. Which means we can model changing 

demand pattern in response to changes in tariff structure and compensation rates.  More 

zip codes and utilities can be added to make state-level comparisons easier. Alternate 

compensation methods can be used to determine the effectiveness of certain methods under 

various solar compensation values and other factors such as system cost, system size, and 

retail price. New installations beyond the TTS database can be added to simulate the benefit 

proposition of consumers facing substantially lower system cost, although a mechanism 

must be created to preserve regional differences in cost per kW, which will require updates 

beyond the hardware cost. Custom-made demand profiles can also be used for new 

installations rather than sticking to synthetic data from TMY3. On the utility side, better 

accounting of benefits might be possible by gaining more data on potential benefits and 

costs due to distributed solar, making sure that the ceiling compensation is a more accurate 

reflection of the Value of Solar. The utility/prosumer benefit model may also be extended 

by accounting for other grid connected components that help offset electricity consumption 

and sell energy to the grid, e.g. battery storage and EV charging. These can dramatically 

alter the Value of Solar proposition and constitutes an important future research direction. 
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Chapter 5 

Conclusion: Building on the Achievements of Leaders and Motivating Laggards 

through Policy Levers key to decarbonization  

The three previous chapters covered several entities in the U.S. electricity sector and their 

roles in grid decarbonization. In the process we have identified two distinct subset of 

entities (actors) that can be roughly classified as “leaders” or “laggards” based on their 

contribution to the specific objective outlined in each chapter. In order to summarize the 

outcomes of these chapters (The Three Essays) and how they answer the overarching 

questions answered in Chapter 1, this chapter is divided into five broad sections. The first 

section summarizes the actors and objectives analyzed, providing brief description of the 

outcomes and how certain subset of actors can be classified as leaders and laggards (Table 

5.1). The second section circles back to the research questions that were asked in The Three 

Essays and summarizes their answers. The third section reiterates the overarching 

questions asked in Chapter 1 and answers them, drawing from the combined insights of 

The Three Essays. The fourth and final section outlines future work that can be undertaken 

based on these insights and some general policy suggestions related to the decarbonization 

of the U.S. electricity grid. 

Table 5.1: Summary of Actors, Objectives, and Outcomes with Examples of Leaders 

and Laggards 

Chapter Actor Objectives  Outcomes  Examples 
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2 States 

(through 

Grid 

Regions) 

Institute state 

energy policies 

to set themselves 

up in case of a 

federal 

reengagement.  

Grid regions with 

states that are 

aggressive in setting 

decarbonization 

policies face less 

adjustment or shocks 

to their generation, 

price, or emission 

pathways (Leaders) 

compared to the 

states that are more 

conservative 

(Laggards) 

Leaders: New 

York, California, 

states in the 

Northwest Grid 

(Washington, 

Oregon etc.) 

 

Laggards: Florida, 

Texas, most states 

in the Southeast 

grid (Alabama, 

Tennessee etc.) 

3 Households  Purchase and 

effectively use 

energy efficient 

appliances  

Households that tend 

to be more educated, 

wealthier, and have 

their own single-

family home are 

likely to purchase and 

effectively use 

energy efficient 

appliances (Leaders) 

compared to other 

households that do 

own and energy 

efficient appliance 

but don’t tend to use 

them as effectively 

(Laggards) 

Leaders: 

Households 

consuming about 

15-20 per cent 

higher than average  

electricity 

 

Laggards: 

Households 

consuming at about 

or 2-5 per cent 

higher than average 

electricity 

4 Prosumers 

and 

Utilities 

Ensure positive 

effects from 

installation of 

distributed PV 

(DPV) system 

Prosumer-utility 

combinations that 

benefit typically have 

suitably sized 

systems, high enough 

retail and energy 

market costs, and 

cost-effective 

systems (Leaders) 

compared to those 

with undersized 

systems, low retail 

and market costs and 

overpriced systems 

(Laggards) 

Leaders: Specific 

prosumers and 

utilities analyzed in 

New York, 

California, 

Connecticut, 

Arizona, 

Minnesota.  

 

Laggards: Specific 

prosumers and 

utilities analyzed in 

Oregon, Texas, 

Arkansas. 
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5.1 Answering the Individual Research Questions 

The research questions associated with these chapters and how the analysis in the 

dissertation chapters answered these questions are discussed in this section. 

Chapter 2 asked – “Is it worthwhile for the states to pursue aggressive climate policies 

with a federal policy on the horizon in terms of minimizing their deviation from existing 

electricity sector outcomes once a federal policy is instituted? Will federal policymakers 

and the U.S. electricity grid benefit when every state pursues relatively more aggressive 

policies compared to existing ones?” 

Chapter 2 finds that based on the effect of federal pricing of carbon on grid level emission 

trajectories, electricity generation mix, and electricity prices, grid regions that constitute of 

states with aggressive electricity sector policies will see a lower deviation in these 

outcomes with respect to a policy-only case compared to grid regions that constitute states 

with conservative electricity policies. This translates to policy conservative grids needing 

to drastically alter their emissions pathway by significantly ramping up renewable-based 

generation and install (or retrofit) costly carbon capture and storage (CCS) solutions under 

federal pricing scenarios compared to policy-only scenarios, which results in considerable 

price shocks in the electricity market. Meanwhile, if all states pursue more aggressive 

policies compared to their existing ones (albeit at a differentiated rate, given that policy 

aggressive states are likely to contribute more), then the federal policymakers benefit in 

having to price carbon lower compared to a less aggressive policy scenario in order to reach 

the same economy-wide GHG trajectory. The U.S. electricity grid benefits with more 

aggressive state policies as it enables the grid to decarbonize more at a lower federal price 

compared to a set of less aggressive state policies. 
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Chapter 3 asked – “How can household behavior in terms of adoption of energy efficient 

appliances and temperature control strategy of space heating and cooling equipment be 

jointly categorized? What are the factors associated with households being categorized 

into different behavioral groups?” 

Chapter 3 finds that household behavior in terms of adoption of energy efficient appliances 

and temperature control strategy of space heating and cooling equipment can be roughly 

classified into four classes. Those households that own at least one energy efficient 

appliance and effectively use programmable thermostats to control their heating and 

cooling equipment only form about 15 per cent of the total sample. The two classes that 

own at least one energy efficient appliance but manually change their temperature/do not 

change it at all account for 75 per cent of the sample combined. A fourth class of 

households do not own an energy efficient appliance and tend not to control their heating 

and cooling equipment account for 10 per cent of the sample. The factors that tend to 

increase the odds of a household belonging to the programmable thermostat class over the 

classes favoring manual control/no change include higher education, owning a single 

family home, higher income, a newer house, and the completion of an energy audit of their 

house. 

Chapter 4 asked – “For given prosumer-utility combinations, what are the valuations of 

distributed solar generation that make sense for both prosumers and utilities – such that 

utility cost of energy acquisition for the prosumer remain unaffected and the prosumers 

still receive enough compensation to ensure payback for the installed system within its 

lifetime? What explains the differences in these valuations between and within certain 

prosumer-utility combinations?” 
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Chapter 4 finds that for most of the prosumer-utility combinations analyzed, a range of 

valuations that meet the minimum requirements of both the prosumer and utility can be 

obtained. The upper bound of these values (representing the requirement of the utility) 

exceed the default net metering rate in almost every case. The Value of Solar benchmark 

studies that are likely to be more accurate measures of utility benefit from distributed 

generation at an aggregate level tend to be higher than the upper bound as well. 

Prosumer-utility combinations for which valid valuations were obtained are characterized 

by many of the following parameters: high retail rate which ensures even at lower levels 

of compensation the prosumer has an incentive to install a rooftop PV system simply 

because of the electricity bill savings and the fact that high retail rates tend to correlate 

with higher energy costs which mean utilities will save on considerable energy costs when 

rooftop PV offsets some of the supply; and appropriately sized system with respect to 

demand as well as a moderate cost of the system on a per kW basis which reduces the 

financial burden of the prosumer. Lower system cost in total and on a per kW basis are also 

associated with higher societal benefits, ensuring that the avoided cost of pollution due to 

rooftop PV generated electricity exceeds the taxpayer burden the society has to bear by 

subsidizing the system. 

5.2 Answering the Overarching Research Questions 

The overarching research questions asked in Chapter 1 and their answers on the basis of 

the analysis in The Three Essays are discussed in this section. 

Which actors are best positioned to contribute towards meeting objectives that would 

assist the transition of the U.S. electricity grid towards a sustainable future?  
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States with aggressive electricity sector decarbonization policies and a Federal 

Administration willing to price emissions appropriately, households adopting and 

effectively using efficient equipment, and prosumers who are able to install rooftop PV 

cost effectively in utility service areas where the cost structure allows both parties to find 

common ground for a suitable solar compensation. A common thread is that the leaders 

are typically proactive and financially well-off members of their group.  

What is the impact of joint actions by actors in accomplishing their objectives?  

Joint action by Policy Aggressive and Policy Conservative states in terms of both being 

relatively aggressive with their policies will aid in lowering the price that has to be applied 

by the Federal Government. Joint action by households in terms of adoption and effective 

usage of energy efficient appliance can lead to more energy efficient consumption 

outcomes, although this cannot be ascertained without further analysis. Finally, the joint 

determination of a valid range of tariffs provide opportunities for the utility to increase 

their renewables portfolio and the prosumer to save on their electricity bill. Joint actions 

by all the actors help in achieving decarbonization objectives with greater 

effectiveness. 

What are the factors that make these actors better positioned than others in the same 

segment?  

Policy aggressiveness at the state level is generally tied to the track record of the state 

government, and generally speaking – liberal(Brown and Hess 2016), highly 

educated(Snyder, de Brey, and Dillow 2019)  and wealthier(Carley 2009). Chapter 2 shows 

that households are likely to be in the thermostat-usage class if they are wealthy and highly 
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educated. Empirically speaking, prosumers tend to be wealthier and more educated than 

non-adopters (Soskin and Squires 2013), while states with favorable cost structures for 

both parties overlap somewhat with the policy aggressive states discussed in Essay 1. As 

such – policy positions of government, average wealth and level of education seem to play 

a significant role in determining the subset of actors that are better positioned to 

decarbonize the grid. 

What policy options can be used to assist actors that are lagging behind? 

Given the enormity of the task at hand however, it is important that effective policy options 

are considered in order to improve the contribution of the laggards. At the state-level, 

highlighting the benefits of aggressive policies to the states themselves can be a good first 

option. Policy conservative states are often concerned with the distributional impact of 

aggressive policies(Mathur and Morris 2014), and these can be mitigated to an extent with 

direct federal support. More targeted regional policies may also be applied specifically to 

make the most polluting elements of a grid region unprofitable, but these are likely to come 

under legal scrutiny. At the household level, information, technical and financial assistance 

should be provided to households that adopt energy efficient appliances but stick to manual 

temperature control, given that these households consume electricity at or close to the 

national average and account for 75 per cent of the sample. This is however contingent on 

additional studies on the thermostat user class to determine if their usage has resulted in 

reduction of consumption. For prosumers and utilities, it is important not to undermine the 

non-adopters by ensuring that utility revenue remain neutral as a result of increased rooftop 

PV adoption. On cases where this cannot be accomplished, proper sizing of the system can 
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be ensured by financing retrofits, and cost of system on a per kW basis can be lowered by 

focusing on factors that impact soft costs(O’Shaughnessy et al. 2019). 

5.3 Future Work and Overall Approach to Grid Decarbonizations 

Several promising pathways of future research emerge from the results and analysis of this 

dissertation. First is a deeper dive into the demographic characteristics of states, prosumers, 

and utilities to empirically determine factors that affect grid decarbonization actions. 

Second is an in depth study of the households in Chapter 2 to determine to what extent 

their actions on adoption and usage of energy appliances can really drive national 

consumption of electricity to reduce per capita. A third strand of study can encompass other 

actors such as businesses, generators, manufactures, and installers and analyze their role in 

grid decarbonization and how it complements or competes with the goals of the actors 

discussed in this dissertation. A fourth strand of study can be an ambitious bottom-up 

analysis of all stakeholder actions (including households, utilities, and prosumers) and how 

enhanced actions can improve state policy outcomes and in turn improve national outcomes 

on cost effective grid decarbonization. 

Given the complexity of the U.S. electricity grid, no single entity, no matter what their 

authority can effectively compel all the stakeholders to act appropriately to meet top-down 

decarbonization targets. Clear directives and education about the consequences of a heavily 

carbon-dependent grid and the benefits of a decarbonized one in terms of factors that are 

important to the actors themselves should be prioritized. If and only if all stakeholders in 

the system buy into the importance of decarbonization, the U.S. electricity grid can 

effectively solve the problem of decarbonization transformation. 
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     Appendices 

Supplementary Materials for Policy payoff: Are Aggressive State Electricity Policies 

Beneficial in the Context of Federal Re-engagement? 

GCAM-AP analyzed six scenarios of decarbonization through state policies, market actions, and 

federal pricing implemented through carbon tax. 

These scenarios are: 

BAU – Where existing measures of state policies and market actions are extended till 2050 to 

determine grid region contribution to electricity sector emissions, electricity sector prices, 

electricity generation mix, and national aggregate of electricity sector emissions 

Medium – Slightly aggressive state policies and favorable market actions are assumed till 2050 

High – Highly aggressive state policies and favorable market actions are assumed till 2050 

BAU + Tax – A carbon tax implemented on top of the BAU scenario such that the U.S. economy 

meets its target of reducing 80 per cent GHG emissions from 2005 levels by 2050. 

Medium + Tax – A carbon tax implemented on top of the Medium scenario such that the U.S. 

economy meets its target of reducing 80 per cent GHG emissions from 2005 levels by 2050. 

High + Tax – A carbon tax implemented on top of the High scenario such that the U.S. economy 

meets its target of reducing 80 per cent GHG emissions from 2005 levels by 2050. 

A two-step analytical approach was used for modeling, largely following the methodology outlined 

by Hultman et al. (2020)(Hultman 2020) [Henceforth referred to as the America’s Pledge Study]. 

In the first step termed as “Sectoral Analysis”, climate policies were translated into activity data 

using the Athena tool, e.g. the state-level renewable generation resulting from state and city 
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renewable energy policies. The primary focus of this step was to aggregate state-level data without 

double counting and taking into account the most high impact actions in each sector GCAM-AP 

data served as the baseline for some parameters, e.g. energy efficiency – which is explicitly 

modelled as percentage change in electricity consumption reduction from the baseline. In the 

second step termed as “Economic Analysis”, results of the first step were converted into inputs 

for the GCAM-AP model.  

The methodology section of the main text described the components of the scenarios in detail. The 

supplementary section explains how certain assumptions for the components were reached and 

additional data tables that support the assumptions. The supplementary section focuses on Sectoral 

Analysis as the Economic Analysis component is largely similar to what has been described in the 

America’s Pledge Study. 

Sectoral Analysis: 

For sectoral analysis, the basic principles outlined by the America’s Pledge Study to aggregate 

data from plants, cities, businesses, and states without double counting were followed here. 

Changes were made to specific parameters of interest analyzed in the study (e.g. RPS and Coal 

Retirement) but other sectoral assumptions were imported as is and kept constant at the values 

equivalent to the Current Measures scenario of that study. By and large, an attempt was made to 

calculate the policy impacts of top-down targets at various levels, rather than attempting to 

quantify and aggregate granular measures that can contribute to top-down targets. This does mean 

some of the estimates are conservative, e.g. development of wind and solar capacity in excess of 

RPS targets isn’t as pronounced as it can be (although in GCAM-AP, the RPS targets are not rigid, 

and if it is economically efficient, renewables will be installed anyway, as is seen in a number of 

states under high policy scenarios). In some cases, it may make estimates slightly aggressive, for 
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example in coal retirement – where a strict economics-related retirement ruling may not be 

applicable given political or technical feasibility. For example, if the economics related rule shuts 

down a large number of baseload power plants in the state, which will have an destabilizing effect, 

and the rate of replacement by gas, CCS or renewables might not be economically feasible. 

We discuss the implementation of the following technical parameters:  

• RPS 

• Energy Efficiency 

• Coal Retirement 

• Handling Nuclear Power and Gas 

• Vehicle Electrification 

• Building Electrification 

• Technology costs 

• GDP Growth 

• Fuel price assumptions 

• Existing Emission Policies 

• Baseline assumptions for Non-CO2s (Methane, HFC, N2O)  

• Carbon Tax Implementation 

RPS:   The RPS analysis was simplified from the America’s Pledge Study in order to focus solely 

on state-level policies. As such any city or utility level policies that are already included in these 

numbers have been incorporated, but no additional efforts were made to incorporate city or utility 

level commitments. The baseline data of renewable portfolio standards till 2050 and their 

associated load projections are obtained from Lawrence Berkeley National Laboratory 
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analysis(Barbose 2019) and were applied to GCAM-AP to form the BAU scenario. Note that 

LBNL and GCAM-AP calculates the effective RPS which is somewhat different than the official 

state RPS targets due to the fact states are often inconsistent on including or excluding hydro or 

other clean technologies, and GCAM-AP assumes that these are not included. Additionally, 

GCAM requires targets to be specified on the basis of generation and RPS targets are almost 

always based on consumption, which meant that RPS targets had to be adjusted for generation 

figures at the grid level to account for potential leakages. On dividing up the generation from RPS 

in GCAM-AP into those from Policy Aggressive States and Policy Conservative States, we find 

that about 25 per cent of the Policy Aggressive States output comes from renewables and about 3 

per cent of the output of Policy Conservative States output comes from renewables. The optimistic 

target was that in the most aggressive scenario, Policy Conservative States would be able to match 

the generation mix of Policy Aggressive States in the BAU scenario with respect to renewables, 

i.e. 25 per cent. A straightforward linear increase is assumed for Policy Aggressive States as a 

whole, i.e. 50 per cent for the Medium scenario and 75 per cent for the High scenario. For Policy 

Conservative States the Medium Scenario assumption is 10 per cent, a round figure that is about 

as close to the High scenario target of 25 per cent as it is to the BAU scenario. 

It is a complex exercise to figure out how should each Policy Aggressive State contribute to the 

increase in the Medium and High scenarios, given that some were far ahead of the others in the 

BAU scenario to begin with (example Colorado’s contribution was about 21 per cent in 2050, 

while that of California was 65 per cent). Any state that was already exceeding 50 per cent 

commitment by 2050 was kept at that commitment level. It was then calculated from the GCAM 

electricity generation projections that every other state on an average would have to commit to 45 

per cent of renewable electricity generation by 2050. The rate of increase from the 2020 level to 
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the 2050 commitment is assumed to be linear. (Please see Table SM1.1 for RPS targets for every 

scenario by state).  It is a little bit more straightforward for the High case, as none of the states had 

an effective RPS of 75 per cent by the end of 2050 in the BAU scenario, so it simply required all 

states to achieve that target by the end of 2050. 

For the Policy Conservative States, many of them did not have RPS in the BAU case (only 7 did, 

one of them is the District of Columbia which is not part of the U.S. Climate Alliance but is 

radically different compared to most Policy Conservative States). One state, Ohio does have a RPS 

target presently but has decided to terminate its future commitments starting from 2027(Hall and 

Zoeller n.d.). Except DC, and New Mexico, none of the state targets exceeded 9.7 per cent. For 

the medium case, differential responsibilities were assigned to states based on where they were in 

the curve. DC and New Mexico were left alone, any state with an existing target was assigned to 

increase it to 15 per cent by 2050, and any state without a target in 2050 was assigned to increase 

it to 7.5 per cent by 2050. For High, DC and New Mexico were once again left alone, and every 

other state was assigned a target of 25 per cent, which brought the share of renewables in 

generation to approximately 25.3 per cent, rounded down to 25 per cent for our analysis. DC and 

New Mexico contributed 0.11 per cent and 2.37 per cent to the Policy Conservative State 

renewable energy generation mix respectively, demonstrating the lack of size of these states in 

relation to the others despite having high policy targets of their own . 
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Table SM1.1: RPS Targets by State and Scenario (Targets in percentage, `XY stands for the year 20XY, St. is State) 

St. RPS Existing Target (as share of 

generation) 

RPS Medium Target (as share of 

generation) 

RPS High Target (as share of 

generation) 

‘20 ‘25 ‘30 ‘35 ‘40 ‘45 ‘50 ‘20 ‘25 ‘30 ‘35 ‘40 ‘45 ‘50 ‘2

0 

‘2

5 

‘3

0 

‘35 ‘40 ‘45 ‘50 

A

K 

0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

AL 0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

A

R 

0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

AZ 6 9 9 9 9 9 9 6 9 9 9 10 12 15 6 9 12 15 18 22 25 

C

A 

35 47 65 65 65 65 65 35 47 65 65 65 65 65 35 47 65 65 65 65 75 

C

O 

21 20 20 21 21 21 21 21 28 35 43 50 58 65 21 30 39 48 57 66 75 

CT 11 16 21 21 21 21 21 11 17 23 28 34 39 45 11 22 33 43 54 64 75 

DE 40 50 52 52 52 52 52 40 50 52 57 57 58 65 40 50 52 58 57 58 75 

FL 0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

G

A 

0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

HI 20 20 27 28 49 70 70 20 20 27 28 49 70 70 20 20 27 28 49 70 75 

IA 1 1 1 1 1 1 0 1 3 5 8 10 13 15 1 5 9 13 17 21 25 

ID 0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

IL 9 13 14 14 14 14 14 9 13 19 25 31 37 45 9 13 24 35 46 57 75 

IN 0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

KS 0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

K

Y 

0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

LA 0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

M

A 

18 27 36 40 45 50 54 18 27 36 44 51 59 65 18 27 36 45 55 64 75 

143 



M

D 

27 40 51 51 51 51 51 27 40 51 57 57 58 65 27 40 51 59 67 73 75 

M

E 

25 42 64 64 65 65 66 25 42 64 64 65 65 66 25 42 64 64 65 65 75 

MI 7 8 8 7 7 7 7 7 13 19 26 32 39 45 7 18 29 41 52 64 75 

M

N 

24 26 26 26 26 26 26 24 31 37 44 51 58 65 24 32 41 49 58 66 75 

M

O 

6 10 10 10 10 10 10 6 10 10 10 11 13 15 6 10 10 10 13 16 25 

M

S 

0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

M

T 

5 5 5 5 5 5 5 5 12 18 25 32 38 45 5 17 28 40 52 63 75 

N

C 

8 10 10 10 10 10 10 8 14 21 27 33 39 45 8 19 31 42 53 64 75 

N

D 

0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

NE 0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

N

H 

4 6 6 6 6 6 6 4 6 8 10 11 13 15 4 8 11 15 18 22 25 

NJ 22 33 43 42 42 42 42 22 35 43 50 57 64 65 22 35 43 52 61 69 75 

N

M 

10 24 30 30 43 43 47 10 24 30 30 43 43 47 10 24 30 30 43 43 47 

N

V 

22 34 49 49 49 49 49 22 34 49 57 57 59 65 22 34 49 58 67 72 75 

N

Y 

27 44 62 62 62 62 62 27 44 62 62 62 62 65 27 44 62 62 62 62 75 

O

H 

4 6 0 0 0 0 0 4 6 8 9 11 13 15 4 6 9 13 16 20 25 

O

K 

0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

O

R 

10 15 20 26 28 28 28 10 16 21 26 28 28 45 10 21 32 43 53 64 75 
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PA 5 5 5 5 5 6 6 5 11 18 25 32 38 45 5 16 28 40 52 63 75 

RI 8 13 18 23 23 23 24 8 13 18 24 31 37 45 8 19 30 41 53 64 75 

SC 0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

SD 0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

TN 0 0 0 0 0 0 0 0 8 15 23 30 38 45 0 13 25 38 50 63 75 

TX 4 4 4 4 4 3 3 4 6 8 10 11 13 15 4 8 11 15 18 22 25 

UT 0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

V

A 

0 0 0 0 0 0 0 0 8 15 23 30 38 45 0 13 25 38 50 63 75 

VT 33 38 49 55 56 58 59 33 38 49 55 56 58 65 33 38 49 55 62 69 75 

W

A 

10 10 10 10 10 10 10 10 16 22 27 33 39 45 10 21 32 42 53 64 75 

WI 9 9 9 9 9 9 9 9 15 21 27 33 39 45 9 20 31 42 53 64 75 

W

V 

0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

W

Y 

0 0 0 0 0 0 0 0 1 3 4 5 6 8 0 4 8 13 17 21 25 

D

C 

20 52 87 100 100 100 100 20 52 87 100 100 100 100 20 52 87 100 100 100 100 
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Energy Efficiency (Buildings): Energy efficiency numbers are based on building energy efficiency 

resource standards from states. These policies establish energy savings targets for electricity that 

utilities and other regulated entities are required to achieve. Using historical data from EIA on 

commercial and residential electricity demand(“EIA - Electricity Data” n.d.), projections through 

2050 are made using GCAM’s growth trajectories to establish a no-policy baseline. Savings targets 

based on these projections are calculated on the basis of ACEEE’s 2018 State Energy Efficiency 

Scorecard(“The 2018 State Energy Efficiency Scorecard | ACEEE” n.d.).  

When extending the current policies till 2050, the BAU scenario resulted in 1.5 per cent reduction 

in electricity consumption compared to GCAM no-policy baseline by 2050 for Policy Aggressive 

States and 0.4 per cent for Policy Conservative States. In the Medium Scenario, these targets were 

increased to 3 per cent and 1 per cent respectively. In the High Scenario, these targets were 

increased to 5 per cent and 3 per cent respectively. For Policy Conservative States, the leap from 

0.4 per cent reduction to 1.5 per cent reduction following the logic of RPS target setting wasn’t 

deemed to be aggressive enough (only a 3.75-fold increase compared to 8.33-fold increase in RPS). 

Thus, the medium percentage reduction target of the Policy Aggressive States was chosen as the 

target in the High scenario for the Policy Conservative States. Similar to RPS, states that were 

already overachieving in BAU were not required to put additional effort in more aggressive 

scenarios. Tables SM1.2 and SM1.3 show the effective electricity reduction data (in EJ) for 

residential and commercial sectors respectively for the three policy scenarios. 
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Table SM1.2 – Residential Building Electricity Efficiency data by state and scenario (measuring EJ of electricity reduced from 

baseline through policy, ‘XY stands for year 20XY, St. = State) 

St. Residential – BAU Residential - Medium Residential - High 

‘20 ‘25 ‘30 ‘35 ‘40 ‘45 ‘50 ‘20 ‘25 ‘30 ‘35 ‘40 ‘45 ‘50 ‘20 ‘25 ‘30 ‘35 ‘40 ‘45 ‘50 

AK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AZ .00

2 

.01

2 

.02

4 

.02

4 

.02

4 

.02

4 

.02

4 

.00

2 

.01

3 

.02

5 

.02

6 

.02

7 

.02

8 

.03

0 

.00

2 

.01

3 

.02

5 

.02

7 

.03

3 

.03

8 

.03

6 

CA .01

0 

.03

2 

.06

5 

.06

5 

.06

5 

.06

5 

.06

5 

.01

0 

.04

1 

.07

0 

.08

4 

.09

9 

.11

4 

.09

7 

.01

0 

.05

1 

.08

0 

.10

1 

.12

1 

.14

1 

.12

9 

CO .00

2 

.00

6 

.01

0 

.01

0 

.01

0 

.01

0 

.01

0 

.00

2 

.00

8 

.01

1 

.01

4 

.01

6 

.01

8 

.01

6 

.00

2 

.01

0 

.01

3 

.01

6 

.01

9 

.02

3 

.02

1 

CT 0 .00

2 

.00

5 

.00

5 

.00

5 

.00

5 

.00

5 

0 .00

2 

.00

6 

.00

7 

.00

8 

.00

9 

.00

8 

0 .00

3 

.00

7 

.00

8 

.01

0 

.01

2 

.01

1 

DC 0 0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

.00

1 

DE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FL .00

1 

.00

4 

.00

4 

.00

4 

.00

4 

.00

4 

.00

4 

.00

1 

.00

4 

.00

4 

.00

5 

.00

5 

.00

5 

.00

5 

.00

1 

.00

4 

.00

4 

.00

5 

.00

6 

.00

7 

.00

6 

GA .00

2 

.00

4 

.00

6 

.00

6 

.00

6 

.00

6 

.00

6 

.00

2 

.00

4 

.00

7 

.00

7 

.00

7 

.00

7 

.00

8 

.00

2 

.00

4 

.00

7 

.00

7 

.00

9 

.01

0 

.01

0 

HI 0 .00

1 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

0 .00

1 

.00

2 

.00

3 

.00

3 

.00

4 

.00

3 

0 .00

2 

.00

3 

.00

3 

.00

4 

.00

5 

.00

5 

IA 0 .00

1 

.00

3 

.00

3 

.00

3 

.00

3 

.00

3 

0 .00

1 

.00

3 

.00

3 

.00

3 

.00

3 

.00

3 

0 .00

1 

.00

3 

.00

3 

.00

4 

.00

4 

.00

4 

ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IL .00

2 

.01

4 

.03

2 

.03

2 

.03

2 

.03

2 

.03

2 

.00

2 

.01

8 

.03

5 

.04

2 

.05

0 

.05

7 

.04

9 

.00

2 

.02

3 

.04

0 

.05

0 

.06

0 

.07

1 

.06

5 

IN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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KS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KY 0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 .00

1 

.00

1 

.00

1 

.00

1 

.00

2 

.00

2 

0 .00

1 

.00

1 

.00

1 

.00

2 

.00

2 

.00

2 

LA 0 0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

MA .00

2 

.00

9 

.01

7 

.01

7 

.01

7 

.01

7 

.01

7 

.00

2 

.01

2 

.01

8 

.02

2 

.02

6 

.03

0 

.02

5 

.00

2 

.01

4 

.02

1 

.02

6 

.03

1 

.03

7 

.03

4 

MD .00

4 

.01

4 

.02

5 

.02

5 

.02

5 

.02

5 

.02

5 

.00

4 

.01

8 

.02

7 

.03

2 

.03

8 

.04

4 

.03

7 

.00

4 

.02

2 

.03

1 

.03

9 

.04

6 

.05

4 

.05

0 

ME .00

1 

.00

3 

.00

5 

.00

5 

.00

5 

.00

5 

.00

5 

.00

1 

.00

4 

.00

6 

.00

7 

.00

8 

.00

9 

.00

8 

.00

1 

.00

5 

.00

6 

.00

8 

.01

0 

.01

1 

.01

0 

MI 0 .00

3 

.02

0 

.02

0 

.02

0 

.02

0 

.02

0 

0 .00

4 

.02

2 

.02

6 

.03

1 

.03

5 

.03

0 

0 .00

4 

.02

5 

.03

1 

.03

7 

.04

4 

.04

0 

MN 0 .00

3 

.00

7 

.00

7 

.00

7 

.00

7 

.00

7 

0 .00

4 

.00

8 

.00

9 

.01

1 

.01

3 

.01

1 

0 .00

5 

.00

9 

.01

1 

.01

4 

.01

6 

.01

5 

MO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NH 0 0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 0 .00

1 

.00

1 

.00

1 

.00

2 

.00

2 

NJ .00

5 

.02

2 

.03

5 

.03

5 

.03

5 

.03

5 

.03

5 

.00

5 

.02

9 

.03

8 

.04

5 

.05

3 

.06

2 

.05

2 

.00

5 

.03

6 

.04

3 

.05

4 

.06

5 

.07

6 

.07

0 

NM 0 .00

1 

.00

3 

.00

3 

.00

3 

.00

3 

.00

3 

0 .00

1 

.00

3 

.00

3 

.00

3 

.00

3 

.00

3 

0 .00

1 

.00

3 

.00

3 

.00

3 

.00

4 

.00

4 

NV 0 0 .00

2 

.00

2 

.00

2 

.00

2 

.00

2 

0 0 .00

2 

.00

2 

.00

3 

.00

3 

.00

2 

0 .00

1 

.00

2 

.00

3 

.00

3 

.00

4 

.00

3 

NY .00

4 

.01

7 

.03

1 

.03

1 

.03

1 

.03

1 

.03

1 

.00

4 

.02

2 

.03

4 

.04

1 

.04

8 

.05

5 

.04

7 

.00

4 

.02

7 

.03

9 

.04

8 

.05

8 

.06

8 

.06

2 
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OH .00

8 

.02

5 

.04

5 

.04

5 

.04

5 

.04

5 

.04

5 

.00

8 

.02

6 

.04

7 

.04

9 

.05

1 

.05

3 

.05

7 

.00

8 

.02

6 

.04

7 

.05

1 

.06

1 

.07

1 

.06

8 

OK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OR 0 .00

2 

.00

7 

.00

7 

.00

7 

.00

7 

.00

7 

0 .00

2 

.00

8 

.00

9 

.01

1 

.01

2 

.01

1 

0 .00

3 

.00

9 

.01

1 

.01

3 

.01

5 

.01

4 

PA 0 .00

8 

.02

0 

.02

0 

.02

0 

.02

0 

.02

0 

0 .01

0 

.02

1 

.02

6 

.03

0 

.03

5 

.03

0 

0 .01

3 

.02

5 

.03

1 

.03

7 

.04

3 

.04

0 

RI 0 .00

1 

.00

3 

.00

3 

.00

3 

.00

3 

.00

3 

0 .00

2 

.00

3 

.00

4 

.00

4 

.00

5 

.00

4 

0 .00

2 

.00

4 

.00

5 

.00

5 

.00

6 

.00

6 

SC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TN .00

1 

.00

3 

.00

5 

.00

5 

.00

5 

.00

5 

.00

5 

.00

1 

.00

4 

.00

5 

.00

6 

.00

8 

.00

9 

.00

7 

.00

1 

.00

5 

.00

6 

.00

8 

.00

9 

.01

1 

.01

0 

TX .00

4 

.01

8 

.03

6 

.03

6 

.03

6 

.03

6 

.03

6 

.00

4 

.01

9 

.03

7 

.03

8 

.04

0 

.04

1 

.04

4 

.00

4 

.01

9 

.03

7 

.04

0 

.04

8 

.05

6 

.05

3 

UT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

VA .00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

3 

.00

3 

.00

4 

.00

3 

.00

2 

.00

3 

.00

3 

.00

4 

.00

4 

.00

5 

.00

5 

VT 0 .00

1 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

0 .00

2 

.00

2 

.00

3 

.00

3 

.00

4 

.00

3 

0 .00

2 

.00

3 

.00

3 

.00

4 

.00

5 

.00

4 

WA .00

2 

.00

9 

.01

8 

.01

8 

.01

8 

.01

8 

.01

8 

.00

2 

.01

2 

.02

0 

.02

4 

.02

8 

.03

2 

.02

7 

.00

2 

.01

5 

.02

2 

.02

8 

.03

4 

.04

0 

.03

6 

WI 0 .00

3 

.00

9 

.00

9 

.00

9 

.00

9 

.00

9 

0 .00

4 

.00

9 

.01

1 

.01

3 

.01

5 

.01

3 

0 .00

5 

.01

1 

.01

4 

.01

6 

.01

9 

.01

7 

WV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tot

al 

.05

4 

.22

2 

.44

8 

.44

8 

.44

8 

.44

8 

.44

8 

.05

4 

.27

0 

.48

0 

.55

5 

.63

5 

.71

5 

.64

1 

.05

4 

.32

0 

.53

0 

.64

2 

.77

2 

.90

2 

.83

3 
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Table SM1.3 – Commercial Building Electricity Efficiency data by state and scenario (measuring EJ of electricity reduced from 

baseline through policy, ‘XY stands for year 20XY, St. = State) 

St. Commercial - BAU Commercial - Medium Commercial - High 

`20 `25 `30 `35 `40 `45 `50 `20 `25 `30 `35 `40 `45 `50 `20 `25 `30 `35 `40 `45 `50 

AK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AL 0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

.00

2 

0 .00

1 

.00

1 

.00

1 

.00

2 

.00

2 

.00

2 

AR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AZ .00

3 

.01

3 

.02

5 

.02

5 

.02

5 

.02

5 

.02

5 

.00

3 

.01

4 

.02

6 

.02

6 

.02

7 

.02

9 

.03

1 

.00

3 

.01

4 

.02

6 

.02

9 

.03

4 

.04

0 

.03

7 

CA .01

2 

.03

8 

.07

9 

.07

9 

.07

9 

.07

9 

.07

9 

.01

2 

.04

9 

.11

0 

.11

4 

.11

6 

.11

7 

.11

8 

.01

2 

.06

1 

.14

1 

.14

8 

.15

3 

.15

6 

.15

8 

CO .00

3 

.00

9 

.01

6 

.01

6 

.01

6 

.01

6 

.01

6 

.00

3 

.01

2 

.02

2 

.02

3 

.02

3 

.02

3 

.02

4 

.00

3 

.01

5 

.02

8 

.03

0 

.03

0 

.03

1 

.03

1 

CT 0 .00

3 

.00

6 

.00

6 

.00

6 

.00

6 

.00

6 

0 .00

3 

.00

9 

.00

9 

.00

9 

.01

0 

.01

0 

0 .00

4 

.01

1 

.01

2 

.01

2 

.01

3 

.01

3 

DC .00

1 

.00

2 

.00

3 

.00

3 

.00

3 

.00

3 

.00

3 

.00

1 

.00

2 

.00

3 

.00

4 

.00

4 

.00

4 

.00

4 

.00

1 

.00

2 

.00

3 

.00

4 

.00

5 

.00

5 

.00

5 

DE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FL .00

1 

.00

5 

.00

6 

.00

6 

.00

6 

.00

6 

.00

6 

.00

1 

.00

5 

.00

6 

.00

6 

.00

6 

.00

7 

.00

7 

.00

1 

.00

5 

.00

6 

.00

7 

.00

8 

.01

0 

.00

9 

GA .00

3 

.00

5 

.00

7 

.00

7 

.00

7 

.00

7 

.00

7 

.00

3 

.00

5 

.00

8 

.00

8 

.00

8 

.00

9 

.00

9 

.00

3 

.00

5 

.00

8 

.00

9 

.01

0 

.01

2 

.01

1 

HI 0 .00

2 

.00

4 

.00

4 

.00

4 

.00

4 

.00

4 

0 .00

2 

.00

5 

.00

6 

.00

6 

.00

6 

.00

6 

0 .00

3 

.00

7 

.00

7 

.00

7 

.00

8 

.00

8 

IA 0 .00

2 

.00

3 

.00

3 

.00

3 

.00

3 

.00

3 

0 .00

2 

.00

3 

.00

3 

.00

3 

.00

4 

.00

4 

0 .00

2 

.00

3 

.00

4 

.00

4 

.00

5 

.00

5 

ID 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IL .00

7 

.03

0 

.05

9 

.05

9 

.05

9 

.05

9 

.05

9 

.00

7 

.03

9 

.08

2 

.08

5 

.08

6 

.08

8 

.08

8 

.00

7 

.04

7 

.10

5 

.11

1 

.11

4 

.11

6 

.11

8 
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IN 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

KY 0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 .00

1 

.00

1 

.00

1 

.00

2 

.00

2 

.00

2 

LA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .00

1 

.00

1 

.00

1 

MA .00

4 

.01

5 

.02

7 

.02

7 

.02

7 

.02

7 

.02

7 

.00

4 

.01

9 

.03

8 

.03

9 

.04

0 

.04

0 

.04

0 

.00

4 

.02

3 

.04

8 

.05

1 

.05

2 

.05

3 

.05

4 

MD .00

4 

.01

4 

.02

6 

.02

6 

.02

6 

.02

6 

.02

6 

.00

4 

.01

8 

.03

6 

.03

7 

.03

8 

.03

9 

.03

9 

.00

4 

.02

3 

.04

6 

.04

9 

.05

0 

.05

1 

.05

2 

ME .00

1 

.00

4 

.00

6 

.00

6 

.00

6 

.00

6 

.00

6 

.00

1 

.00

5 

.00

9 

.00

9 

.00

9 

.00

9 

.00

9 

.00

1 

.00

6 

.01

1 

.01

2 

.01

2 

.01

2 

.01

2 

MI 0 .00

7 

.02

9 

.02

9 

.02

9 

.02

9 

.02

9 

0 .00

9 

.04

0 

.04

1 

.04

2 

.04

3 

.04

3 

0 .01

1 

.05

1 

.05

4 

.05

5 

.05

7 

.05

7 

MN .00

5 

.01

8 

.03

1 

.03

1 

.03

1 

.03

1 

.03

1 

.00

5 

.02

3 

.04

3 

.04

5 

.04

6 

.04

6 

.04

7 

.00

5 

.02

8 

.05

5 

.05

8 

.06

0 

.06

1 

.06

2 

MO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

MT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ND 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NH .00

1 

.00

3 

.00

5 

.00

5 

.00

5 

.00

5 

.00

5 

.00

1 

.00

3 

.00

5 

.00

6 

.00

6 

.00

6 

.00

7 

.00

1 

.00

3 

.00

5 

.00

6 

.00

7 

.00

8 

.00

8 

NJ .00

2 

.01

8 

.02

9 

.02

9 

.02

9 

.02

9 

.02

9 

.00

2 

.02

4 

.04

0 

.04

1 

.04

2 

.04

3 

.04

3 

.00

2 

.02

9 

.05

1 

.05

4 

.05

5 

.05

6 

.05

7 

NM 0 0 .00

1 

.00

1 

.00

1 

.00

1 

.00

1 

0 .00

1 

.00

1 

.00

2 

.00

2 

.00

2 

.00

2 

0 .00

1 

.00

1 

.00

2 

.00

2 

.00

2 

.00

2 

NV .00

3 

.01

0 

.01

8 

.01

8 

.01

8 

.01

8 

.01

8 

.00

3 

.01

3 

.02

5 

.02

6 

.02

7 

.02

7 

.02

7 

.00

3 

.01

6 

.03

3 

.03

4 

.03

5 

.03

6 

.03

7 

NY .01

7 

.05

7 

.09

5 

.09

5 

.09

5 

.09

5 

.09

5 

.01

7 

.07

4 

.13

3 

.13

7 

.14

0 

.14

2 

.14

3 

.01

7 

.09

0 

.17

0 

.17

9 

.18

5 

.18

8 

.19

1 
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OH .01

0 

.03

2 

.05

5 

.05

5 

.05

5 

.05

5 

.05

5 

.01

0 

.03

5 

.05

7 

.05

9 

.06

0 

.06

4 

.06

9 

.01

0 

.03

5 

.05

7 

.06

4 

.07

7 

.08

9 

.08

3 

OK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

OR 0 .00

3 

.00

9 

.00

9 

.00

9 

.00

9 

.00

9 

0 .00

4 

.01

2 

.01

2 

.01

2 

.01

3 

.01

3 

0 .00

5 

.01

5 

.01

6 

.01

6 

.01

7 

.01

7 

PA .00

3 

.01

4 

.02

8 

.02

8 

.02

8 

.02

8 

.02

8 

.00

3 

.01

8 

.03

9 

.04

0 

.04

1 

.04

2 

.04

2 

.00

3 

.02

2 

.05

0 

.05

2 

.05

4 

.05

5 

.05

6 

RI 0 .00

1 

.00

3 

.00

3 

.00

3 

.00

3 

.00

3 

0 .00

2 

.00

5 

.00

5 

.00

5 

.00

5 

.00

5 

0 .00

2 

.00

6 

.00

6 

.00

6 

.00

6 

.00

7 

SC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TN .00

1 

.00

3 

.00

5 

.00

5 

.00

5 

.00

5 

.00

5 

.00

1 

.00

3 

.00

7 

.00

7 

.00

7 

.00

7 

.00

7 

.00

1 

.00

4 

.00

9 

.00

9 

.01

0 

.01

0 

.01

0 

TX .00

5 

.01

9 

.03

7 

.03

7 

.03

7 

.03

7 

.03

7 

.00

5 

.02

1 

.03

8 

.03

9 

.04

0 

.04

3 

.04

6 

.00

5 

.02

1 

.03

8 

.04

3 

.05

1 

.05

9 

.05

5 

UT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

VA .00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

2 

.00

3 

.00

3 

.00

4 

.00

4 

.00

4 

.00

2 

.00

3 

.00

4 

.00

5 

.00

5 

.00

5 

.00

5 

VT 0 .00

2 

.00

3 

.00

3 

.00

3 

.00

3 

.00

3 

0 .00

3 

.00

5 

.00

5 

.00

5 

.00

5 

.00

5 

0 .00

3 

.00

6 

.00

6 

.00

7 

.00

7 

.00

7 

WA .00

2 

.01

0 

.01

9 

.01

9 

.01

9 

.01

9 

.01

9 

.00

2 

.01

3 

.02

7 

.02

8 

.02

8 

.02

8 

.02

9 

.00

2 

.01

6 

.03

4 

.03

6 

.03

7 

.03

8 

.03

8 

WI 0 .00

2 

.00

7 

.00

7 

.00

7 

.00

7 

.00

7 

0 .00

3 

.01

0 

.01

1 

.01

1 

.01

1 

.01

1 

0 .00

3 

.01

3 

.01

4 

.01

4 

.01

5 

.01

5 

WV 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

WY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Tot

al 

.09

2 

.34

1 

.64

8 

.64

8 

.64

8 

.64

8 

.64

8 

.09

2 

.42

7 

.84

9 

.87

7 

.89

6 

.91

6 

.93

5 

.09

2 

.50

4 

1.0

5 

1.1

1 

1.1

7 

1.2

3 

1.2

2 
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Coal Retirement: Coal retirement is based on economics, and all plants, regardless of their location, 

age, pollution level, and other factors must adhere to the economic principles. 

Plant data is collected from EIA (2018 version)(“Form EIA-923 Detailed Data with Previous Form 

Data (EIA-906/920)” n.d.) and supplemented by financial information from Bloomberg New 

Energy Foundation’s “Half of U.S. Coal Fleet on Shaky Economic Footing: 

Coal Plant Operating Margins Nationwide” research(Coglianese and Walters 2019).  The 

Bloomberg research provides long-run margins of coal-fired power plants between 2012 and 2017, 

with data collected at an hourly level. This margin is calculated based on the following parameters: 

• Revenue from sale of electricity at the power market 

• Cost of fuel acquisition  

• Cost of Operation and Maintenance (Variable Environmental related, Other Variable and 

Fixed) 

• Cost of environmental compliance (SO2 related) 

Consider an example case, On January 1st of 2012, the first unit of the AB Brown Power Plant 

generated 75,490 MWh of electricity and it used 35,343 tons of coal to do so. In the process it 

emitted 270 tons of SO2.  

Power revenue per MWh at the MISO (the market where the plant sold power to) at that day was 

$29. So, the plant made approximately $2.19 million in power sale revenue. 

For each MWh generated, the plant ran into variable operation cost of $2.8. It also must pay 

environmental compliance costs of $7.6. Additionally, each ton of SO2 generated has a penalty 

(removal costs) of approximately $0.6 per ton. These together cost the plant $783,145. 
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There is a fixed cost of operation for the plant at $897,350. 

For each ton of coal procured, the plant has to pay around $75 in fuel costs. The fuel costs total to 

around $2.67 million 

Therefore total revenue = $2.19 million 

Total cost = $2.67 million + 0.9 million + 0.78 million = $4.35 million (approx..) 

Long run margin = $2.19 million - $4.35 million = -$2.14 million (approximate) 

For every coal-fired power plant, we assume the retirement rules specified in Table SM1.4. 

Essentially, for a given year and scenario every plant that has suffered X or more years of losses 

will have to retire. For example, in Medium – we assume that in 2025, plants which have suffered 

5 or more years of losses will have to retire. Under the “Retire All” case, every coal plant retires. 

In BAU, only the present-day consistently profitable remain online after 2050. By design, every 

coal power plant retires in the Medium scenario by 2050, and the same happens in the High 

scenario by 2040.  

Additionally, any power plant due to retire anyway within 2030 based on Sierra Club data(“Coal 

Pollution In America | Beyond Coal” n.d.), regardless of their profitability status will also retire.  

Table SM1.4 – Rules of Retirement for Coal-Fired Power Plants 

Scenario 2025 2030 2035 2040 2045 2050 

BAU 6 yr loss 5 yr loss 4 yr loss 3 yr loss 2 yr loss 1 yr loss 

Medium 5 yr loss 4 yr loss 3 yr loss 2 yr loss 1 yr loss Retire All 

High 3 yr loss 2 yr loss 1 yr loss Retire All Retire All Retire All 
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A list of coal fired-power plant capacity remaining by year, scenario and state can be found in Table SM1.5 

Table SM1.5 – Remaining coal-fired power plant capacity by state and scenario. Capacity in GW. 2020 is the common starting 

point for every scenario. St. = State, Tot. = Total. XY under scenario names indicate year 20XY.  

St. 2020 BAU  Medium High 

25 30 35 40 45 50 25 30 35 40 45 50 25 30 35 40 45 50 

AL 6 3 3 3 3 2 0 3 3 3 2 0 0 3 2 0 0 0 0 

AR 5 5 2 2 1 1 1 2 2 1 1 1 0 1 1 1 0 0 0 

AZ 5 6 5 3 0 0 0 5 3 0 0 0 0 0 0 0 0 0 0 

CO 5 5 5 4 3 2 2 5 4 3 2 2 0 3 2 2 0 0 0 

CT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

DE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FL 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

GA 10 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

IA 5 5 3 2 2 2 1 3 2 2 2 1 0 2 2 1 0 0 0 

IL 12 15 13 13 12 8 5 13 13 12 8 5 0 12 8 5 0 0 0 

IN 15 13 6 3 3 3 0 6 3 3 3 0 0 3 3 0 0 0 0 
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KS 5 5 5 3 2 0 0 5 3 2 0 0 0 2 0 0 0 0 0 

KY 13 15 6 4 2 1 1 6 4 2 1 1 0 2 1 1 0 0 0 

LA 3 2 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 

MA 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 

MD 3 5 5 4 3 3 0 5 4 3 3 0 0 3 3 0 0 0 0 

MI 10 9 4 1 1 1 1 4 1 1 1 1 0 1 1 1 0 0 0 

MN 4 3 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

MO 11 11 9 5 4 3 2 9 5 4 3 2 0 4 3 2 0 0 0 

MS 2 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 

MT 2 2 2 2 2 2 2 2 2 2 2 2 0 2 2 2 0 0 0 

NC 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

ND 3 3 3 2 0 0 0 3 2 0 0 0 0 0 0 0 0 0 0 

NE 4 3 3 3 3 2 1 3 3 3 2 1 0 3 2 1 0 0 0 

NH 1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 

NJ 0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 0 0 0 

NM 3 3 2 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 
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NV 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NY 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 

OH 12 16 16 16 13 11 6 16 16 13 11 6 0 13 11 6 0 0 0 

OK 3 5 3 1 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 

OR 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

PA 13 13 13 11 9 6 3 13 11 9 6 3 0 9 6 3 0 0 0 

SC 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

SD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TN 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

TX 19 24 24 21 15 12 6 24 21 15 12 6 0 15 12 6 0 0 0 

UT 3 3 3 3 3 1 0 3 3 3 1 0 0 3 1 0 0 0 0 

VA 3 4 4 2 1 1 0 4 2 1 1 0 0 1 1 0 0 0 0 

W

A 

1 1 1 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 

WI 6 7 2 1 0 0 0 2 1 0 0 0 0 0 0 0 0 0 0 
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W

V 

12 13 13 13 10 6 3 13 13 10 6 3 0 10 6 3 0 0 0 

W

Y 

6 7 7 3 3 3 3 7 3 3 3 3 0 3 3 3 0 0 0 

Tot 234 226 170 130 100 73 38 170 130 100 73 38 0 100 73 38 0 0 0 
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Handling Nuclear Power and Gas: Baseline assumptions as per the America’s Pledge Study are 

adopted for nuclear power. As per these, 12.7 GW of at-risk capacity stay online due to actions 

from New York, Illinois, Connecticut, New Jersey, and Ohio. However, an additional 8.3 GW of 

other at-risk capacity does retire. A further assumption is that the Georgia Vogtle Units currently 

under development come online in 2020- 2021, adding 2.2 GW to the total U.S. fleet(“VOGTLE” 

n.d.). Unlike the America’s Pledge study, there are no plant-by-plant retirement assumptions for 

the advanced scenarios, as gas plants are allowed to compete on an economic basis within the 

GCAM market system with other technologies.  

Building and Vehicle Electrification: These were modelled at the state level however no explicit 

state policies were used. National assumptions from NREL’s “Electrification Futures Study: 

Scenarios of Electric Technology Adoption and Power Consumption for the United States”(Mai 

et al. 2018) were used. Data was utilized for residential and commercial sectors in the case of 

buildings. The national level building electrification potential (in additional EJ of electricity used 

by buildings due to electrification in various years/by scenario and segment) is presented in Table 

SM1.6 

Table SM1.6 Building Electrification – Changes to additional electricity used by buildings 

(in EJ) 

Sector US 

Electrificatio

n Scenario 

2020 2025 203

0 

203

5 

204

0 

204

5 

205

0 

Residential High 0.1 0.2 0.3 0.5 0.7 1.0 1.3 

Medium 0.1 0.1 0.2 0.3 0.5 0.6 0.8 
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Low 0.1 0.1 0.2 0.2 0.3 0.4 0.5 

Commercia

l 

High 0.0 0.1 0.2 0.3 0.5 0.7 1.1 

Medium 0.0 0.1 0.1 0.2 0.3 0.5 0.7 

Low 0.0 0.0 0.1 0.2 0.2 0.3 0.4 

 

For vehicle electrification, Vehicle Miles Travelled assumptions were used. It was assumed that 

nationally that up to 500,000 VMT would be electrified by 2050 in the BAU scenario, followed 

by 1 million VMT in the Medium scenario and 1.5 million VMT in the High scenario. Year-by-

year national data for three scenarios are provided in Table SM1.7. 

Table SM1.7 Electrification of national VMT by scenario and year 

Scenario 2020 2025 2030 2035 2040 2045 2050 

BAU 24,489  127,919  297,175  350,000  400,000  450,000  500,000  

Medium 24,489  150,000  300,000  450,000  600,000  800,000  1,000,000  

High 24,489  200,000  400,000  650,000  900,000  1,200,000  1,500,000  

 

Technology Costs: Capital cost of generation technologies vary across the three scenarios. Costs 

in the three scenarios correspond to different cost scenarios in NREL’s Annual Technology 

Baseline data for 2019(Vimmerstedt et al. 2019). The Medium cost corresponds to the Medium 

Scenario, the Low costs corresponds to the High scenario. ATB’s high costs are essentially 

constant costs after 2020, which seems unrealistic. So instead 2020 cost numbers are utilized along 

with GCAM’s cost improvement rate designed for low cost improvement scenarios(Muratori et al. 

2017). 
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In order to match the NREL technologies to GCAM technologies, the following assumptions were 

used: 

• 2020 cost is kept the same for all scenarios, by using the Medium ATB costs. 

• Battery costs is assumed to be four times that of ATB. This is because ATB reports costs 

for a 4 hour battery with 15 year lifetime. We assume a 8 hour battery with 30 year lifetime, 

more consistent with storage requirements and project lifespan of intermittent technologies 

in GCAM. 

• All data is assumed to be in 2017 dollars. 

• AC to DC conversion factor of 0.85 assumed for PV and Rooftop PV. 

• Overnight costs considered except for battery storage due to lack of data. Capex is 

considered for Battery. 

• Onshore Wind = TRG 5 resource group costs used.  

• Offshore wind cost = TRG 4 Fixed cost used. These costs correspond well with the existing 

GCAM costs. 

• Geothermal wind cost = Hydro Flash technology cost used. 

• CSP = Costs in $/kWe 

• NREL does not report CSP cost without storage 

• (marginal cost of storage reported in terms of $/kWh without clear indications on how 

much energy that system is expected to generate and over what period).  

• So existing GCAM proportion of intermittent/baseload CSP costs are taken to derive CSP 

intermittent costs 
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Supplementary  Materials for Energy Strategy: Aggregate household behavior in 

heating and cooling control strategy and energy efficient appliance adoption 

Further methodological details. 

Multivariate probit model:  The study uses the “triprobit” add-on of Stata(Terracol 2002) 

to undertake the analysis. Seventy-five draws (√5686 = 75.4) are used in this study due to 

the recommendation of the number of draws being roughly the square root of the sample 

size (Cappellari and Jenkins, n.d.). The add-on also allows the use of probability weighting, 

and the final sample weights from the database are used for this purpose. 

Triprobit estimates simulated maximum-likelihood three-equation probit models using the 

(Geweke-Hajivassiliou-Keane) GHK smooth recursive simulator.  The mathematical 

process is summarized in the notes of the author of the triprobit add-on (Terracol, n.d.).  

y1 = 1 if Xβ + ε1 > 0 

     = 0 otherwise              (1) 

y2= 1 if Zγ + ε2 > 0                                                                                                             

     = 0 otherwise                          (2) 

y3= 1 if Wθ + ε3 > 0 

     = 0 otherwise                                                                                                            (3) 

With, [

𝜀1
𝜀2
𝜀3
]   -> N (0, Σ)                                                                                                  

(4)              
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X, Z and W are the respective vectors of independent variables associated with these binary 

variables; β, γ, and θ are the corresponding coefficients; and ε1, ε2, ε3 are the error terms. 

Essentially, Xβ + ε1, Zγ + ε2, and Wθ + ε3, can be considered as specifications of 

continuous latent variables associated with y1, y2, and y3 (assume y*1 = Xβ + ε1, y*2= Zγ 

+ ε2, and y*3= Wθ + ε3). We assume that the binary variables take on the value 1 only if 

the value of the underlying latent variables are positive. 

Latent Class Analysis: LCA can be undertaken using sample weights within 

Stata(Pitblado 2017), however this led to convergence issues when using the dataset in the 

study. As a result, sample weights are not used – hence interpretation of the LCA results 

cannot be easily generalized to the entire population. For computational efficiency, the R 

package “poLCA” was used for Latent Class Analysis (Linzer and Lewis 2011). A short 

description of the process, following the poLCA documentation is provided below. 

Assume there are J polytomous categorical variables each with Kj possible outcomes, with 

each variable likely to have different number of possible outcomes indexed by j. Let the 

individuals to which these outcomes are attributable to be indexed by i= 1,…,N. Denote  

Yijk = 1 if the i-th individual gives the k-th response to the j-th variable,  

= 0 otherwise.    (5) 

The model approximates the observed joint distributions of the categorical variables as a 

weighted sum of a finite number R. This R is pre-determined and is known as the number 

of latent classes. Assume, πjrk being the class-conditional probability that an observation in 
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class r = 1,..,R produces the k-th outcome for the j-th variable. Further define pr as the prior 

probabilities of the latent class membership. 

We can define probability that an individual i of class r produces a particular set of J 

outcomes as: 

   (6) 

The probability density function can be defined as: 

  (7) 

Given estimates of pr and πjrk  that can be estimated from the model, we can determine the 

posterior probability that each individual belongs to each class, conditional on the observed 

values of the categorical variables, can be calculated as: 

   (8) 

 

The latent class model parameters are estimated by maximizing the following log 

likelihood function. 

 (9) 
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Three to five class models are evaluated and the optimal class number is chosen on the 

basis of goodness of fit criteria focusing on parsimony. The poLCA package calculates 

Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) 

automatically. Preferred models are those that minimize values of the BIC and/or AIC. 

Low AICs and BICs are represented by higher values of log-likelihood, lower number of 

estimated parameters and smaller number of total observations. Since across classes the 

number of observations are the same, most efficient fit in terms of number of classes is 

obtained by higher log-likelihood values and lower number of estimated parameters.   

The posterior probabilities for each household being assigned to a certain class are assigned 

to provide a class assignment to each household, which is then used in the following step. 

Multinomial Logit Model: Stata’s mlogit command is used for the analysis of the 

multinomial logit regression. A summary of the theoretical description of the model is 

described Greene (Greene 2003).  

Consider Y being a vector of categories for the dependent variable, with values ranging 

from Y1 to YJ, indexed as Yi
 denoting the choice for the ith individual in the dataset. If X 

denotes the set of explanatory variables, with xi being the vector of explanatory variable 

for the ith individual. 

The probability of ith individual picking the jth choice is denoted by: 

   (10) 
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The model as it stands in (1) in undetermined. A convenient normalization that solves the 

problem is β0 = 0. This leads to: 

  (11) 

From (2), if k=0, we can calculate log-odds ratios given by 

  (12) 

The denominator of the conditional probability equation remains unchanged, i.e. it is not 

affected by the choice of j. For notational convention, assume Prob (Yi = j | xi) can be 

written as pij. Therefore, taking the log on both sides, assuming Yi = j gives us ln(pij) = 

β’jxi. For a baseline Yi = k, the choice against which the odds of j is calculated, ln(pik) = 

β’kxi. Therefore ln(pij/pik) = xi ( β’j - β’k) =  xi  β’j  if k =0. 

Visual Representation of the Multinomial Logit Model Results: 

Chart SM2.1: Independent variables affecting log-odds of membership in Classes 2-

4 compared to Class 1. 
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Regional Breakdown of classes 

It is interesting to determine if there are regional factors that affect in which class 

households are classified. To accomplish this we compare the regional frequency tables for 

the entire dataset to those with the classes. Note that there are 10 regions under 

consideration, 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

New England 

Middle Atlantic 

East North Central 

West North Central 

South Atlantic 

East South Central 

West South Central 

Mountain North 

Mountain South 

Pacific 

Renter

Uncertain audit status

Single Family Home

House made after 1980

College educated or above

Utility incentive availed

Male respondent

College educated or above

Single Family Home

Income over $60k

College educated or above

Energy Audit Performed

Utility incentive availed

House made after 1980

Renter

White head of household

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Changing log odds of membership with respect to Class 1

Class 2 Class 3 Class 4
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Table SM2.2 Regional classification of household classes (depicted as percentage of 

class members from a certain region) and regional classification of the sample as a 

whole. Column totals add up to 100 per cent. 

Classification/ 

Regions (↓) 

1 2 3 4 Sample  

1 5.76% 4.35% 2.66% 5.75% 4.45% 

2 9.99% 10.37% 8.48% 9.93% 9.51% 

3 13.45% 17.06% 16.72% 8.89% 14.70% 

4 7.74% 10.14% 9.94% 5.23% 8.64% 

5 16.55% 17.50% 23.69% 10.63% 18.61% 

6 5.44% 2.56% 10.54% 3.14% 6.54% 

7 10.93% 9.25% 11.40% 4.70% 10.20% 

8 4.41% 6.35% 2.11% 5.40% 4.01% 

9 4.23% 5.91% 3.77% 3.48% 4.26% 

10 21.50% 16.50% 10.69% 42.86% 19.08% 

 

Apart from a few isolated cases, region does not seem a major predictor of household 

classification given relatively small deviations from the sample percentages. Notable cases 

include slight overrepresentation of Classes 2 and 3 and under-representation of Class 4 

for East North Central (Region 3); overrepresentation of Class 3 and under-representation 

of Class 4 for South Atlantic (Region 5); overrepresentation of Class 3 and under-

169 



representation of Class 2 and 4 for East South Central (Region 6); Class 4 is under-

represented in West South Central (Region 7) but heavily overrepresented in the Pacific 

(Class 10). 

These alone however are not strong indicators of any regional trends, and a full-fledged 

multilevel analysis is required to understand the regional implications, including variables 

that act as explanatory variables for the regions themselves such as income and weather 

conditions.  

Another useful way of looking at this is to determine the relative rank of regions in the 

classifications and compare this to the total sample, i.e. if for example Pacific is the 

dominant region in the sample, is this the case for the household classes as well. Results 

are presented in Table SM2.3 

Table SM2.3 Ranking of regional importance within class/sample 

Classification/ 

Regions (↓) 

1 2 3 4 Sample  

1 7 9 9 5 8 

2 5 4 7 3 5 

3 3 2 2 4 3 

4 6 5 6 7 6 

5 2 1 1 2 2 

6 8 10 5 10 7 

7 4 6 3 8 4 
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8 9 7 10 6 10 

9 10 8 8 9 9 

10 1 3 4 1 1 

 

Certain region-class combinations are more interesting than others, given that largely the 

sample rank is within 1 place higher or lower than the regional rank of a particular class. 

Class 4 stands out in most regional cases, following the trend of its percentage shares being 

quite different than the sample ones. This suggests that Class 4 households are not as well-

behaved in terms of regional distribution compared to the sample as a whole, with regions 

such as New England and Middle Atlantic (Regions 1 and 2) being of higher importance 

to Class 4 than the entire sample, and regions such as the two South Centrals and Mountain 

North (Regions 6,7 and 8) being of lower importance. Class 2, the thermostat user class 

also has some deviations in terms of ranking comparison, most notably in the Pacific 

(Region 10), but also in the two South Centrals and Mountain North. Pacific being 

relatively unimportant compared to the sample is a trend for Class 3 as well, along with 

deviations in East South Central and Middle Atlantic. These regions and households that 

adhere to certain characteristics can be interesting points of further study in analyzing 

whether regional characteristics influence household behavior or not.  
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Supplementary Materials for  Pricing Prosumers: Can distributed solar tariffs jointly 

make sense for prosumers and utilities? 

Data Analysis Techniques 

State level data 

1. Use the Tracking the Sun(Barbose et al. 2019) database to determine which states are 

represented: Arizona, Arkansas, California, Connecticut, Delaware, Florida, 

Massachusetts, Maryland, Minnesota, New Hampshire, New York, Oregon, 

Pennsylvania, Texas, Vermont and Wisconsin 

2. Determine which states have studies on VoS through meta studies(“The Hunt for the 

Value of Distributed Solar” n.d.) (“Solar Cost-Benefit Studies” n.d.) and find 

commonalities with the TTS states:  Arizona, Arkansas, California, Connecticut, 

Massachusetts, Maryland, Minnesota, New Hampshire, New York, Oregon, 

Pennsylvania, Texas and Vermont 

3. Disqualify the following states: 

a. Massachusetts: Similar in structure (synthetic demand/ utility tariff/ median 

household data) to the New England state Connecticut. Also doesn’t have two 

utilities with ToU Tariff, which Connecticut does 

b. Maryland: Households don’t have Zip code data. 

c. New Hampshire: Similar to Massachusetts 

d. Vermont: Similar to Maryland 

4. Admit one-utility states: Oregon (Portland General) and Texas (Austin Energy). This 

is because these two states have utility-specific VoS studies that are applicable to 

only these two utilities. 
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5. Pollution data: Pollution data in terms of pollution rate was obtained from eGRID 

database(“EGRID2018 Summary Tables,” n.d.). See Table SM3.1. 

Table SM3.1.1: Pollution data from eGRID 

State CO2e Annual 

NOx 

SO2 PM2.5 

AR 1219.14 0.69 1.60 0.02 

AZ 972.25 0.64 0.30 0.02 

CA 422.03 0.38 0.04 0.01 

CT 509.48 0.27 0.05 0.02 

MA 733.84 0.56 0.21 0.02 

MN 1003.11 0.71 0.56 0.04 

NH 305.82 0.28 0.16 0.02 

NY 418.68 0.23 0.09 0.01 

OR 314.16 0.27 0.09 0.01 

PA 788.84 0.44 0.66 0.02 

TX 983.66 0.61 0.90 0.02 

 

The EASIUR(Heo, Adams, and Gao 2016) database was the source of zip-code level 

pollution data. Ground data for annual pollution level was used to estimate marginal 

dollar value of local pollutant impact. Data is tabulated in Table SM3.1.2 

Table SM3.1.2 – Marginal dollar value of pollutant impact by utility (2010$/tonne) 

calculated from EASIUR Model. Data is at the zip code level. 
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Utility Spring Summe

r  

Fall Winter Unit Pollutan

t 

PPL 364000 402000 385000 437000 $/tonne PM2.5 

PPL 42600 46600 25100 27500 $/tonne SO2 

PPL 31000 15900 29300 38800 $/tonne NOX 

Portland General 443000 574000 359000 330000 $/tonne PM2.5 

Portland General 37800 37800 28000 18700 $/tonne SO2 

Portland General 15100 11000 28700 21200 $/tonne NOX 

PSEG 814000 689000 392000 491000 $/tonne PM2.5 

PSEG 94400 61200 21400 15900 $/tonne SO2 

PSEG 105000 32000 16900 24400 $/tonne NOX 

Xcel Energy 391000 430000 427000 581000 $/tonne PM2.5 

Xcel Energy 33700 31100 22200 30800 $/tonne SO2 

Xcel Energy 15000 6510 15500 42200 $/tonne NOX 

ConEd 722000 822000 611000 761000 $/tonne PM2.5 

ConEd 63300 64900 33200 18400 $/tonne SO2 

ConEd 52800 26100 56400 39900 $/tonne NOX 

Minnesota Power 127000 99200 83100 75600 $/tonne PM2.5 

Minnesota Power 70000 47300 12500 14400 $/tonne SO2 

Minnesota Power 21800 7690 3120 9030 $/tonne NOX 

United Illuminating 511000 533000 451000 525000 $/tonne PM2.5 

United Illuminating 68200 55700 31800 21700 $/tonne SO2 

United Illuminating 45900 17900 31900 35600 $/tonne NOX 
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Eversource 476000 523000 448000 535000 $/tonne PM2.5 

Eversource 60000 55200 30700 22000 $/tonne SO2 

Eversource 37800 14900 29500 38000 $/tonne NOX 

Salt River 71400 77400 94600 106000 $/tonne PM2.5 

Salt River 8020 7480 12700 19800 $/tonne SO2 

Salt River 1260 455 4680 9890 $/tonne NOX 

Carroll Electric 59800 62600 96000 90400 $/tonne PM2.5 

Carroll Electric 18200 21500 16400 24600 $/tonne SO2 

Carroll Electric 2800 1450 4970 10200 $/tonne NOX 

APS 183000 207000 194000 233000 $/tonne PM2.5 

APS 11700 8300 11200 16500 $/tonne SO2 

APS 2550 1400 6880 12100 $/tonne NOX 

Entergy 86300 79000 122000 120000 $/tonne PM2.5 

Entergy 20300 18600 14000 24800 $/tonne SO2 

Entergy 3160 1300 3340 11600 $/tonne NOX 

Austin Energy 173000 170000 200000 228000 $/tonne PM2.5 

Austin Energy 17100 13400 12200 33000 $/tonne SO2 

Austin Energy 4380 949 2040 11700 $/tonne NOX 

PECO 507000 543000 510000 586000 $/tonne PM2.5 

PECO 46300 52900 27800 23300 $/tonne SO2 

PECO 34500 14900 37300 39300 $/tonne NOX 

SCE 141000 153000 161000 180000 $/tonne PM2.5 

SCE 18100 18500 15800 26400 $/tonne SO2 
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SCE 6860 3300 8300 9050 $/tonne NOX 

PG&E 147000 157000 157000 168000 $/tonne PM2.5 

PG&E 21700 25200 20400 27100 $/tonne SO2 

PG&E 6510 4050 17900 24100 $/tonne NOX 

 

 

States to Zip codes 

1. For each state identify the utilities with the most number of installations. The 

Tracking the Sun database has utility-level information that can be filtered to do 

this. Pick the top two utilities, exceptions being Oregon and Texas for reasons 

discussed previously. 

2. For each utility, pick the zip code with the highest number of installations.  

3. Use TMY3 data (“Index of 

/Datasets/Files/961/Pub/RESIDENTIAL_LOAD_DATA_E_PLUS_OUTPUT” 

n.d.) to generate synthetic demand data by plugging in the zip codes into HOMER 

Grid (Energy 2018), which automatically finds the nearest TMY3 data point and 

synthetic hourly demand curve for one year. 

4. Check that the location for which the TMY3 demand curve was generated and the 

installation location zip code are indeed part of the same utility. If no, move to the 

next highest installation zip code and repeat Step 3. An example of this forcing us 

to change zip codes is for ConEd, where a Staten Island zip code was found with 

the highest number of installations. However, the nearest TMY3 demand data 
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from HOMER Grid was obtained for Newark, which had a different utility (PSEG 

New Jersey – not PSEG Long Island which is also analyzed in this study) 

5. From the finalized zip code, use all the available installation data within that zip 

code to generate a median household in terms of System Size and Installation 

Cost.  

6. Incentive data is not always available or incomplete in the database, and we 

assume that the prosumer obtained a 30 per cent Investment Tax Credit for the 

system in these cases. 

7. Create PV generation data for one year on an hourly basis using NREL 

PVWatts(“PVWatts Calculator” n.d.), by inputting the zip code and the system 

size information. Use the default PVWatts assumptions.  

8. Assume a 0.5% degradation of output for generating 25-year data. 

9. Assume demand stays flat, since we have no way of knowing how synthetic 

demand will change. We also assume that the same “year” chosen for the demand 

and the generation data repeats over and over again, so no leap years/ different 

holiday dates/ weather conditions have to be accounted for in order to simplify our 

models. This is primarily due to difficulty in estimating long-term demand changes 

from synthetic demand data where the underlying assumptions are difficult to 

replicate. 

10. Generate the final list of utilities, zip codes, installation size, installation cost, 

synthetic demand locations, Average demand data, and Average generation data. 

(Table SM3.2) 
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Table SM3.2 List of Selected Utilities and Zip Code with Cost, Size, Demand and Generation Information 

Utility  Synthetic 

Demand 

Location 

Installa

tion 

Size 

(kW) 

Installation 

Cost ($ - post 

incentives) 

Average 

Annual 

Demand 

(kWh) 

Average 

Annual 

Generation  

(kWh) 

Salt 

River 

Project 

Casa 

Grande 

6.7 22179.5 11986 12476 

Everso

urce 

Energy 

Hartford 

Brainard 

Field 

7.52 22195.6 8891 9103 

SCE Camp 

Pendleton 

5.04 15116.3 8088 8019 

PPL 

Electri

c 

Utilitie

s 

Lancaster  6.97 29281.5 8919 8615 

United 

Illumi

nating 

West 

Haven 

Tweed 

6.88 18694.2 8971 8401 

Minne

sota 

Power 

Duluth 3.48 15738.1 8974 8396 

APS Phoenix 

Deer 

Valley 

6.89 24299.8 12295 11147 

PG&E Beale 

AFB 

5.74 18665.5 9637 8283 

Xcel 

Energy 

Minneapo

lis St Paul 

5.19 18853.2 9235 6428 

180 



ConEd JFK 

Queens 

7.58 24022.6 12439 9352 

PSEG 

Long 

Island 

Islip Long 

Island 

6.91 24235.8 12334 9001 

Portlan

d 

Genera

l 

Portland 3.97 18019.2 7753 4131 

PECO Willow 

Grove 

6.5 30708.6 12299 7902 

Carroll 

Electri

c 

Harrison  5.74 32862.5 12973 7480 

Austin 

Energy 

Austin 

Mueller 

5.88 19745 14796 8243 

Enterg

y  

Hot 

Springs 

Mem 

3.17 19315.6 13490 4011 
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Additional Utility Data 

1. Utility tariffs are obtained from their respective websites. Residential tariffs were 

used. The following is a list of websites from which the tariffs were obtained. 

Tariffs are accurate as of November 2019: 

a. Entergy: https://www.entergy-

arkansas.com/userfiles/content/price/tariffs/eal_rs.pdf (Base) and 

https://www.entergy-arkansas.com/userfiles/content/price/tariffs/eal_rt.pdf 

(ToU) 

b. Carroll Electric: https://www.cecpower.coop/rates-service-charges 

c. APS: https://www.aps.com/-/media/APS/APSCOM-

PDFs/Utility/Regulatory-and-Legal/Regulatory-Plan-Details-

Tariffs/Residential/Service-Plans/PremierChoice.ashx (Base) and 

https://www.aps.com/-/media/APS/APSCOM-PDFs/Utility/Regulatory-

and-Legal/Regulatory-Plan-Details-Tariffs/Residential/Service-

Plans/SaverChoice.ashx (ToU) 

d. Salt River: https://www.srpnet.com/prices/home/basic.aspx (Base) and 

https://www.srpnet.com/prices/home/tou.aspx (ToU) 

e. PG&E: 

https://www.pge.com/tariffs/assets/pdf/tariffbook/ELEC_SCHEDS_E-

1.pdf (Base) and https://www.pge.com/en_US/residential/rate-plans/rate-

plan-options/time-of-use-base-plan/time-of-use-plan.page (ToU, B option 

chosen) 
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f. SCE: http://www.sce.com/regulatory/tariff-books/rates-pricing-choices 

(Base) and http://www.sce.com/residential/rates/Time-Of-Use-

Residential-Rate-Plans (ToU) 

g. Eversource: https://www.eversource.com/content/docs/default-

source/rates-tariffs/ct-electric/ct-electric-rates.pdf?sfvrsn=2d9afe62_30 

(All Rates) 

h. United Illuminating: https://www.uinet.com/wps/wcm/connect/b95cd00e-

f972-4d12-a99b-88f116ed57f7/UI-Tariffs-Effective-January-1-

2019.pdf?MOD=AJPERES&CACHEID=ROOTWORKSPACE-

b95cd00e-f972-4d12-a99b-88f116ed57f7-mw5Ld-e (All Rates) 

i. Minnesota Power: 

https://www.mnpower.com/CustomerService/ResidentialRates (All Rates) 

j. Xcel Energy: 

https://www.xcelenergy.com/staticfiles/xn/Regulatory%20&%20Resource

%20Planning/Minnesota/Me_Section_5.pdf (All Rates) 

k. ConEd: 

https://www.coned.com/_external/cerates/documents/elecPSC10/electric-

tariff.pdf (All Rates) 

l. PSEG: https://www.psegliny.com/aboutpseglongisland/ratesandtariffs/-

/media/A0FDA80A6FE44A45973922422E86BD9E.ashx (All Rates) 

m. Portland General: https://www.portlandgeneral.com/residential/power-

choices/basic-service (Base) and 
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https://www.portlandgeneral.com/residential/power-choices/time-of-use 

(ToU) 

n. PECO: 

https://www.peco.com/SiteCollectionDocuments/RateRResidentialService

.pdf (All Rates) 

o. PPL: https://www.pplelectric.com/-/media/PPLElectric/At-Your-

Service/Docs/Current-Electric-Tariff/master.pdf (All Rates) 

p. Austin Energy: https://austinenergy.com/ae/rates/residential-

rates/residential-electric-rates-and-line-items (All Rates) 

2. From the detailed tariff breakdowns, generation costs are obtained and these are 

used as proxy for utility energy procurement expenses. 

3. Growth rate of tariff and generation costs are expected to be equivalent 

4. Growth rates obtained from state level data of electricity retail price growth rate 

for the residential sector between 2009 and 2018 per EIA data(“Electric Power 

Annual 2018,” n.d.).  

5. A full table of utilities with tariff structure and growth rate is provided at Table 

SM3.3 (Utility, Tariff/Cost Escalation, Season, Tier and Time-of-day definition) 

Tables SM3.4 (Utility, Energy Cost breakdown) and Table SM3.5 (Utility, Tariff 

Structure)  

6. Explanation of table items: For Table SM3.3, Summer and Winter are typically 

defined by most utilities, and tiers and peak times will vary depending on the 

season. Tiered tariff (as is the case with most Base Tariff structure utilities) will 

generally consist of multiple tiers and each “/” indicates tier progression. If one 
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number is mentioned, then this is a 2-tiered tariff system, and anything excess of 

the specific number is considered to be the second tier. Any time that is not within 

the defined peak is generally considered off-peak, unless a Midpeak is defined 

(only for Portland General). There may be multiple peak times, in the morning 

and evening. Saturday, Sunday and Federal Holidays are generally off-peak 24 

hours, unless clearly specified (Portland General again). 

For Table SM3.4, generation costs recovered through retail prices are sometimes 

flat, but most often they’ll vary based on the applicable season, tier, and time-of-

day. Some utiltiies such as Consolidated Edison gives users the option to purchase 

energy from elsewhere. In these cases, the “default” generation cost is included, 

i.e. the generation cost the user would face if they chose not to exercise the 

option. NSGC for Southern California Edison stands for New System Generation 

Charge, which is a generation surcharge that is used by the utility to fund its 

generation projects. This is extremely low and is unlikely to reflect the actual 

energy procurement costs, but no further details are available for this utility.  

For Table SM3.5, the two minimums are the minimum charge a user must pay 

regardless     of actual generation. For base tariff, tariffs are organized into two 

columns for each season – the tariff for the first period, and the tariff for 

subsequent tiers. Like energy costs, tariffs are specified at $/kWh. The VoS tariff 

specified are the benchmarks obtained from literature (sources provided in Item 7 

of this section). Salt River Project uses an explicit generation credit for prosumers, 

and that tariff is used instead of the VoS tariff from literature. This is also the case 

from Austin Energy, which uses an explicit VoS tariff to credit prosumers.  
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Table SM3.3: Utility, Escalator, Season, Time of Day and Tier Definition 

Utility Escalat

or 

Summer (if defined, other 

months are Winter) 

Tier Cutoff Peak 

Time in 

Summer 

Peak 

Time in 

Winter 

Entergy  1% Jun - Sep 1500 1pm-8 

pm  

7a - 6 

pm 

Carroll 

Electric 

1% Not defined 100 NA NA 

APS 2% May - Oct  Upto 400/400-

800/800-

3000/3000+ 

3 pm to 

8 pm 

3 pm to 

8 pm 

Salt River 

Project 

2% May - Oct  2000 
  

PG&E 2% Jun - Sep 18.7/24.9 per day 

(Summer/Winter) 

3 pm to 

8 pm 

3 pm to 

8 pm 

SCE 2% Jun - Sep 18.3/12.6 per day 

(Summer/Winter) 

4 pm to 

9 pm 

4 pm to 

9 pm 

Eversource 

Energy 

0% Not defined NA 12 pm to 

8 pm 

12 pm 

to 8 pm 

United 

Illuminatin

g 

0% Jun - Sep NA 12 pm to 

8 pm 

12 pm 

to 8 pm 

Xcel 

Energy 

3% Jun - Sep NA 9 am to 

9 pm  

9 am to 

9 pm  

Minnesota 

Power 

3% Not defined Upto 400/400-

800/800-

1200/1200+ 

NA NA 

PSEG 

Long 

Island 

1% Jun - Sep 250 2 pm to 

7 pm  

2 pm to 

7 pm  

Consolidat

ed Edison 

1% Jun - Sep 250 10 am to 

10 pm 

10 am 

to 10 

pm 
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Portland 

General 

Electric 

2% May - Oct  1000 10 pm to 

6 am 

Summe

r  

 

Peak   

3 pm to 

8 pm;  

 

Midpea

k 6 am 

to 3 pm/ 

8 pm to 

10 pm;  

 

Winter  

 

Peak  

6 am to 

10 am 

and 

5 pm to 

8 pm;  

 

Midpea

k 10 am 

to 5 pm 

and  

8 am to 

10 pm;  

 

Saturda

y 

Midpea

k (All 
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seasons) 

6 am to 

10 pm 

PPL 

Electric 

Utilities 

2% Jun - Nov NA  2 pm to 

6 pm 

4 pm to 

8 pm 

PECO 2% Not defined NA NA NA 

Austin 

Energy 

-1% Not defined Upto 500/500-

1000/1000-

1500/1500-

2500/2500+ 

NA NA 

 

Table SM3.4 Utility and Energy Costs 

Utility Energy Cost ($/kWh) 

Entergy  0.07       

Carroll 

Electric 

0.07       

APS 0.067 (Summer/400 and under) 0.114 (Summer/400 to 800) 0.141 

(Summer/800 to 3000) 0.154(Summer/Excess of 3000) 0.198 (Summer/Peak) 

0.186(Winter/Peak)  0.064(Off-Peak) 

Salt River 

Project 

0.046 (Summer) 0.029 (Winter)      
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PG&E 0.118 (Basic) 0.201(Summer/ToU/Peak) 0.126(Summer/ToU/Off Peak) 

0.114(Winter/ToU/Peak) 0.0998(Winter/ToU/Off Peak)   

SCE 0.00697 (NSGC)       

Eversource 

Energy 

0.09414 (Basic) 0.08550(ToU/Off)  0.1205(ToU/Peak)     

United 

Illuminating 

0.1056 (Basic) 0.131 (ToU/Peak) 0.0961 (ToU/Off)     

Xcel Energy 0.103(Summer) 0.088(Winter)      

Minnesota 

Power 

0.07       

PSEG Long 

Island 

0.1       

Consolidated 

Edison 

0.1       

Portland 

General 

Electric 

0.063(Tier 1)/0.071(Tier 2) 0.124(Peak)/0.07(Mid Peak)/0.04(Off-peak)      

PPL Electric 

Utilities 

0.076       

PECO 0.061       

Austin 

Energy 

0.028/0.058/0.078/0.093/0.108 (For Tier 1 to Tier 5 of consumption) 

 

Table SM3.5 Utility and Tariff Structure 

Utility Basic 

Tariff 

Minimu

m  

Summer 

First Tier 

Tariff 

Summer 

Higher 

Tiered 

Tariffs 

Winter 

First 

Tier 

Tariff 

Winter 

Higher 

Tiered 

Tariff 

TOU 

Mini

mum 

VoS 

Tariff 

Entergy  8.4 0.074 0.096 0.07 0.052 13.81 0.114 

Carroll 

Electric 

29.5 0.127 0.108/0.105 0.127 0.108/0.105 NA 0.114 
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APS 15 0.112 0.159/0.186/

0.199 

0.109 0.109 13 0.16 

Salt 

River 

Project 

20 0.112 0.116 0.078 0.078 
 

0.0281 

(export 

credit) 

PG&E 10 0.236 0.297 0.236 0.297 10 0.13 

SCE 11 0.0951 0.15 0.0951 0.15 11 0.12 

Eversour

ce 

Energy 

10 0.214 0.214 0.214 0.214 10 0.17 

United 

Illuminati

ng 

13 0.265 0.265 0.251 0.251 13 0.17 

Xcel 

Energy 

10 0.103 0.103 0.088 0.088 10 0.11 

Minnesot

a Power 

8 0.074 0.098/0.121/

0.147 

0.074 0.098/0.121

/0.147 

NA 0.11 

PSEG 

Long 

Island 

13 0.083 0.105 0.083 0.105 13 0.19 

Consolid

ated 

Edison 

16 0.111 0.128 0.111 0.111 20.5 0.3 

Portland 

General 

Electric 

11 0.112 0.119 0.112 0.119 11 0.056 

PPL 

Electric 

Utilities 

18 0.095 0.095 0.095 0.095 18 0.22 

PECO 12 0.188 0.188 0.188 0.188 NA 0.2 

Austin 

Energy 

10 0.078 0.108/0.128/

0.143/0.158 

0.078 0.108/0.128

/0.143/0.15

8 

NA 0.097 
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7. Value of Solar study sources – The following VoS study sources were used. 

a. Arkansas: 

https://drive.google.com/file/d/0BzTHARzy2TINbHViTmRsM2VCQUU/

view 

b. Arizona: https://images.edocket.azcc.gov/docketpdf/0000168554.pdf 

c. California: http://drpwg.org/wp-content/uploads/2016/07/R1408013-et-al-

SCE-LNBA-Working-Group-Final-Report.pdf 

d. Connecticut: https://acadiacenter.org/wp-

content/uploads/2015/03/AcadiaCenter_GridVOS_Connecticut_March_20

15.pdf. This is a third-party study not authorized by the regulatory 

commission, which now has commissioned its own study 

(https://enerknol.com/connecticut-opens-proceeding-to-study-value-of-

solar/) undergoing analysis. 

e. Minnesota: https://ilsr.org/wp-content/uploads/2014/04/MN-Value-of-

Solar-from-ILSR.pdf 

f. New York: Value of Solar obtained through location specific (zip code) 

analysis using the New York State Energy Research and Development 

Authority Value Stack calculator (https://www.nyserda.ny.gov/All-

Programs/Programs/NY-Sun/Contractors/Value-of-Distributed-Energy-

Resources/Solar-Value-Stack-Calculator) 

g. Oregon: https://apps.puc.state.or.us/orders/2019ords/19-023.pdf 
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h. Pennsylvania (also includes New Jersey in the study): 

https://www.nj.gov/emp/pdf/cleanrenewablepower/MSEIA-Final-

Benefits-of-Solar-Report-2012-11-01(1).pdf 

i. Texas: https://ilsr.org/wp-content/uploads/2013/03/Value-of-PV-to-

Austin-Energy.pdf 

Benefits Analysis: 

Deep Dive into Prosumer Benefits: In the main text, we surmised that under any 

compensation system, Buy-All Sell-All (energy is bought and sold through separate 

transactions), Banking (excess energy is only bought at the end of multiple billing periods, 

not after each one, and any excess energy from one period can be used to reduce demand 

in the next period) and the one used in our analysis Net Generation (excess energy is bought 

at the end of one billing period and demand is zeroed out or reduced in every period 

depending on how much energy was produced in that period), Prosumer Benefit from the 

consumption and sales from the system will be the same IF solar compensation equals retail 

rate. Let’s recap that analysis. 

Assume there are two periods 1 and 2, with X1 and X2 being the respective demands and 

Y1 and Y2 being the respective generation, where Y1 > X1 and X2 > Y2.  

Assume retail rate and solar compensation equals to “r”.  

Then under net generation the total benefit to the prosumer = (Y1-X1)*r - (X2 – Y2)* r.  

Under banking, the total benefit = 0 - (X2 – Y2 – ( Y1 – X1))* r = (Y1-X1)* r – (X2 – 

Y2)*r.  
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Under buy-all, sell-all, the total benefit = (Y1+Y2)* r – (X1+X2)* r = (Y1 – X1)*r – (X2 

– Y2)*r.   

This case can be extended in a scenario with “r” as the retail rate and “s” as the solar rate 

where r>s,  

then under net generation benefit = (Y1-X1)*s – (X2-Y2)*r (NG1) 

Under banking, if we assume that X1 + X2 > Y1 + Y2, we have 

Banking benefit = 0 - (X2 – Y2 – ( Y1 – X1))* r = (Y1-X1)* r – (X2 – Y2)*r.  (BK1) 

If we assume X1 + X2 = Y1 + Y2, we have 

Banking Benefit =  0 (BK2) 

If we assume X1 + X2 < Y1 + Y2, we have 

Banking Benefit = 0 + (Y2 + (X1 – Y1) – X2) * s (BK3) 

Under Buy All, Sell-All, total benefit = (Y1+Y2)* s – (X1+X2)*r (BS1) 

Compare NG1, BK1, BS1 

Since (Y1-X1)* r > (Y1-X1)*s, because r>s, Clearly BK1 > NG1 

Note that BK1 can be re-written as: (Y1+Y2)*r – (X1+X2)*r 

Since (Y1+Y2)*r > (Y1+Y2)* s, Clearly BK1> BS1 

Re-arranging, NG1 we have: (Y1*s + Y2*r) – (X1*s + X2*r) 

While BS1 can be written as: (Y1*s+Y2*s) – (X1*r+X2*r) 

Since Y2*r > Y2*s, the first part of NG1> first part of BS1 

195 



Also since –X1*s less than -X1*r, the second part of NG1 < the second part of BS1   

Therefore, NG1>BS1 

Compare NG1, BK2, BS1 

We have established NG1>BS1 

By our assumptions, NG1 is positive for a valid analysis, so NG1 > BK2. 

Since Y1 + Y2 = X1 + X2, let’s assume Y1 + Y2 = X1 + X2 = Z. 

Then BS1 can be re-written as Z(s-r). This is clearly negative since r>s. Therefore, BK2> 

BS1 

Compare NG1, BK3, BS1 

We have established NG1> BS1 

BK3 can be re-written as (Y2-X2)*s + (X1-Y1)*s. 

We have assumed, Y1 > X1 and X2 > Y2. Hence BK3<0. So NG1>BK3. 

BS1 can be re-written as, (Y2*s – X2*r)- (X1*r -Y1*s). 

Since r>s, first part of BK3> first part of BS1, and since the second part is preceded by a 

minus sign in any case for BS1, BK3 > BS1. 

Therefore we have: 

BK1> NG1> BS1 

NG2 > BK2 > BS1 

NG3 > BK3 > BS1 
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Even under the first scenario, Banking may not prove to be the most beneficial strategy 

because utilities will typically offer to bank at a rate lower than the solar compensation 

usually offered(“Net Energy Metering (NEM) and Your Bill” n.d.), or have altogether 

eliminated this policy(“New Hampshire Utilities, Solar Companies File Rate Design 

Settlement Proposals” n.d.). That being said it is often not up to the user which policy they 

fall under, but net generation credited at a monthly basis seems to be the most popular 

option among the utilities.  

 

 

Sensitivity Analysis 

Each utility has 24 possible cases of analysis, 12 if there is no ToU tariff. These are: 

Tariff (2) * Demand (3) * Discount Rate (2) * Sizing (2 = Optimal/Default). 

The logic behind choosing 4 per cent and 7 per cent discount rate is explained in the main 

text. A list of demand scenarios for each utility is given in Table SM3.6. Table SM3.7 has 

a list of optimal sizes given each demand level, as well as the base sizes. 

Table SM3.6 – Demand Sensitivities 

Utility Base Demand 

(Average Annual 

kWh) 

Low Demand 

(Average Annual 

kWh) 

High Demand 

(Average Annual 

kWh) 

Entergy 13490 7217.371135 20415.15985 

Carroll 12973 7010.393592 19233.50509 
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APS 12295 5776.373809 20343.11777 

Salt River 11986 5626.845435 19866.26027 

PG&E 9637 4661.310606 15302.90061 

SCE 8088 4094.591417 8996.200741 

Eversource 8891 4329.369383 13525.49078 

United 8971 4367.977317 13835.14488 

Minnesota 8974 4435.657409 13683.77232 

Xcel 9235 4468.915866 14416.94049 

ConEd 12439 6765.977968 18183.11329 

PSEG 12334 6726.191019 17929.29389 

Portland 7753 3999.108033 10475.0598 

PECO 12299 6712.103704 17820.30128 

PPL 8919 4363.820409 13837.22552 

Austin 14796 7128.909192 26963.86981 

  

Table SM3.7 – Optimal Sizes for Each Demand Sensitivity and the Base Size (all in 

kW) 

Utility Base 

Size 

Optimal Size for 

Base Demand 

Optimal Size for 

Low Demand 

Optimal Size for 

High Demand 

Entergy 3.17 10.04 5.37 15.19 

Carroll 5.74 9.38 5.07 13.91 

APS 6.89 7.16 3.36 11.85 
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Salt River 6.7 6.92 3.25 11.47 

PG&E 5.74 6.29 3.04 9.99 

SCE 5.04 4.79 2.42 5.33 

Eversourc

e 

7.52 6.92 3.37 10.53 

United 6.88 6.92 3.37 10.67 

Minnesota 3.48 6.99 3.46 10.66 

Xcel 5.19 7.02 3.40 10.96 

ConEd 7.58 9.5 5.17 13.89 

PSEG 6.91 8.92 4.86 12.97 

Portland 3.97 7.02 3.62 9.48 

PECO 6.5 9.53 5.20 13.81 

PPL 6.97 6.8 3.33 10.55 

Austin 5.88 9.95 4.79 18.13 
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