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One of the challenges for nanomechanical devices is to understand the different

sources of noise and dissipation that act on such systems. In thermal equilibrium,

these noise sources all have the same temperature and are thus indistinguishable

from each other. It has been proposed, however, that the noise from electrons

scattering off impurities and boundaries in the nanoresonator can be driven above

the bath noise by applying a voltage across the resonator. The force acting on

the nanoresonator due to these collisions is predicted to be detectable with current

technology.

Here we describe experiments to measure this noise. Using a radio-frequency

single electron transistor to measure the effective temperature of a nanomechanical

mode, we have found that a) the mode temperature increases linearly with cur-

rent through the nanoresonator and b) the mode temperature follows the expected

temperature of the electron gas due to Joule heating.

We have not been able to identify the associated damping, however. Experi-



ments on aluminum based nanoresonators have failed to yield the expected increase

in dissipation at the crossover between the superconducting and normal states. We

are left to conclude that the nanomechanical mode is coupled to the electron gas,

but it is unclear whether this coupling is direct or the result of an intermediate

dissipative system that itself is heated by the electron gas.
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Chapter 1

Introduction

Over the last decade, the ability to fabricate mechanical structures with sub-

micron dimensions has provided a wealth of interesting physics to explore. One

such structure is the nanomechanical resonator, a suspended ”beam”, usually of

semi-conducting material, that is either clamped on both ends or with one end free

(cantilever). Currently, applications such as ultrasensitive force detection [1], signal

processing [2] and ultralow mass sensing [3, 4] are being explored for these devices.

In addition, it has been proposed that these devices be used in quantum information

processing systems [5, 6].

One aspect of nanomechanical resonators that affects all the applications men-

tioned above, and that is interesting physics in its own right, is the source of noise

and dissipation. Extrinsic souces of dissipation, such as gas damping [7], circuit

loading [8], and clamping losses [9] have been studied and are well understood. In-

trinsic dissipation, however, is much less well understood. While some work has

gone into understanding nanomechanical dissipation in terms of such processes as

thermoelastic losses [10] or defect motion [11], a comprehensive understanding of

the limits of nanomechanical quality factors (a quantity proportional to the inverse

of the dissipation) is still lacking.

The purpose of this thesis is to investigate a possible source of dissipation

1



in metallized nanoresonators: scattering of conduction electrons off impurities and

the resonator surface. This process is studied both in terms of the dissipation,

by measuring the quality factors of metallized nanoresonators, and the associated

fluctuations, by driving current through the metallic layer and observing the position

noise of the resonator.

1.1 Structure of the Thesis

The rest of this chapter will review the theory for nanomechanical resonators

undergoing flexural motion. It will also introduce the theory for electromechanical

noise in such systems. Chapter 2 describes the transduction mechanisms used to

read-out the nanoresonator’s position. Chapters 3 and 4 provide more detail on

the experimental methods used, including device fabrication and operation of the

read-out circuitry. Experimental results are presented in chapter 5 and discussed

in chapter 6. Finally, an appendix presents more data on the capacitive detection

technique.

1.2 Dynamics of a Nanomechanical Resonator

Here I show how a doubly-clamped beam subject to a transverse force can

be described by an equivalent mass-spring system (harmonic oscillator). Figure 1.1

illustrates the basic system: the nanoresonator is a doubly-clamped prismatic beam

of uniform cross section with width w (in the plane of the substrate), axial length

l and thickness h. The bare mass of the nanoresonator is thus m = ρAl where ρ is

2



Figure 1.1: Schematic of a doubly clamped beam showing
the axes convention used in the text. The beam’s axis lies
along the ẑ direction, with transverse bending motion in the
x̂ direction (in the plane of the substrate).

the density and A is the cross sectional area. For small displacements, where the

cross sectional area of the beam remain deformationless and perpendicular to the

beam’s axis, the Euler-Bernoulli theory gives the transverse motion of the beam as

being governed by [12]

ρA
∂2x

∂t2
+ µ

∂x

∂t
+ Y I

∂4x

∂z4
= f(t) (1.1)

with the boundary conditions that x and its derivative with respect to z at the

endpoints must be zero. The third term is the elastic restoring force, where Y

is the Young’s modulus (a measure of the stiffness), I = w3h/12 is the bending

moment1 and t is the time. The second term represents the damping, where µ is

the dissipation constant. A time varying force per unit length, f(t) = f0e
iωt, acting

in the x̂ direction has also been included.

1For metal coated resonators vibrating in the plane of the substrate, replace ρA by ρ1A1 +ρ2A2

and Y I by Y1I1 + Y2I2 where the indices refer to the two materials [13].
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To solve Eq. 1.1 I separate variables

x(z, t) = X(t)u(z) (1.2)

The spatial component, u(z), is known as the mode shape and describes the relative

displacement along the beam axis. With the convention that the midpoint of the

resonator lies at z = 0 it is given by [14]:

u(z) = N

[
cosh(η) cos

(
2ηz

l

)
− cos(η) cosh

(
2ηz

l

)]
(1.3)

In our experiments, we are concerned with the fundamental flexural mode, for which

the eigenvalue η is given by the first nonzero root of tan η = − tanh η, so η ' 2.365.

The normalization constant, N , is arbitrary. For our purposes, it is convenient to

set the normalization by requiring

∫ lD/2

−lD/2

u(z) dz = lD (1.4)

where lD is the length of the detector (either the gate for capacitive detection or the

SET island for RF-SET detection). The reason for choosing this normalization is

that it defines X as the average displacement of the nanoresonator over the length

of the detector, which is the measured quantity.

By inserting Eq. 1.2 into 1.1, mulitplying by u(z) and integrating over the

length of the nanoresonator, the time-dependent component, X(t) can be shown

4



[15] to satisfy

M

(
d2X

dt2
+

ω0

Q

dX

dt

)
+ KX = F (t) (1.5)

where ω0 =
√

K/M is the nanoresonator’s resonance frequency, Q = ω0M/µ is the

quality factor, which defines the linewidth of the resonance, and F (t) is the product

of the mode shape u(z) and the applied driving force f(t), integrated over the length

of the beam. The other coefficients in Eq. 1.5 are given by

M =
m

l

∫ l/2

−l/2

u2(z)dz ' 0.4m (1.6)

K = Y I

(
2η

l

)4 ∫ l/2

−l/2

u2(z)dz ' 201.3
Y I

l3
(1.7)

where the numerical values are given for a detector length one-tenth the length of

the nanoresonator, as was the case with our RF-SET based samples.

To solve for the frequency response, I again separate variables, inserting the

sinusoidal solution X(t) = X0e
iωt into Eq. 1.5 to find

X0(ω) =
F/M

ω2
0 − ω2 + iωω0

Q

(1.8)

For Q >> 1, this frequency response is the same as for a driven, damped one-

dimensional harmonic oscillator (i.e. mass-spring system) [14], with effective spring

constant K and effective mass M , such as shown in Fig. 1.2. On resonance, the

displacement is given by X0(ω0) = iFQ/K.
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Figure 1.2: The bending beam acts as a mass-spring system
with effective mass M and effective spring constant K. The
motion is driven by the force F (t). A force proportional to the
velocity with proportionality constant µ damps the motion.

1.3 Dissipation and Noise

Equation 1.8 tells us that a nanoresonator subject to a random fluctuating

force noise SF (in units of N2/Hz), with white spectral density, has a displacement

noise (in units of m2/Hz)

SX =
SF /M2

(ω2
0 − ω2)

2
+
(

ωω0

Q

)2 (1.9)

in the limit Q >> 1. Integrating over ω, we find the total displacement noise power

〈X2
0 〉 =

SF Q2

K2

ω0

4Q
(1.10)

6



Figure 1.3: Position noise power density as a function of
frequency. The area under the Lorentzian is the same as the
area in the red box, giving the effective bandwidth ω0/4Q.

Thus, we can write the integrated response as the response on resonance multiplied

by an effective bandwidth ω0/4Q (see Fig. 1.3).

Equipartition of energy requires that the integrated response have an energy

1

2
K〈X2

0 〉 =
1

2
kBT (1.11)

This equality allows us to write the force noise power spectral density as

SF =
4kBTMω0

Q
(1.12)

Equation 1.12 is an expression of the fluctuation-dissipation theorem [16] that

7



Figure 1.4: A resonator can be coupled to more than one
thermal bath. The resulting temperature, T , and quality fac-
tor, Q, of the mode are given in the text.

relates the fluctuating forces from a thermal bath at temperature T to the dissipation

(1/Q) that thermalizes the resonator mode to the bath. In practice, the resonator

mode may be coupled to several different baths, each with their own temperature

and associated dissipation. When there is more than one source of noise, the noise

powers are simply added together, so we can sum the force noise from each bath

according to Eq. 1.12

SF = 4kBMω0

(
T1

Q1

+
T2

Q2

+ · · ·+ Tn

Qn

)
(1.13)

where Tn and Qn are the temperature and quality factor associated with bath n.

The result is that the resonator mode equilibrates to a temperature

T = Q

(
T1

Q1

+
T2

Q2

+ · · ·+ Tn

Qn

)
(1.14)

where the net quality factor Q is given by

1

Q
=

(
1

Q1

+
1

Q2

+ · · ·+ 1

Qn

)
(1.15)
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Figure 1.5: The basic idea behind electromechanical noise.
Electron collisions impart momentum to the lattice. A voltage
bias, V , drives the noise out of equilibrium.

1.4 Electromechanical Noise

This thesis was motivated by a theoretical description of a particular form of

noise, known as electromechanical noise, given in a paper by Shytov, Levitov and

Beenakker (Phys. Rev. Lett., 88 (2002)). This noise is due to momentum transfer

between electrons in a diffusive conductor and the lattice as they undergo collisions

with impurities and surface boundaries. In their paper, they describe how this

momentum transfer, when applied to a suspended conductor (such as a nanowire

or metallized semiconducting nanoresonator), results in an effective transverse force

that gives rise to a bending mode in the device.

When the conduction electrons are in thermal equilbrium, electromechanical

noise is just one of many sources of dissipation that serve to thermalize the nanores-

onator to the bath. In order to distinguish the effect of electromechanical noise, it

must be driven out of equilbrium by establishing a voltage bias across the device to

raise the energy of the electrons, eV , above the bath energy, kBTb.

Shytov et al. first give an order of magnitude estimate for the momentum

transfer based on the mean scattering time for the electrons. They estimate that

only the NeV/EF electrons within a range eV of the Fermi energy EF contribute to

9



the noise, where N is the total number of conduction electrons. They then assume

that these electrons transfer a momentum ∆p = pF in a mean scattering time τ .

The full Fermi momentum, pF , is transferred to the lattice due to the elastic nature

of the collisions. With these assumptions, the mean-square momentum transfer in

a time t is given by

P × t =
NeV

EF

(∆p)
2

(
t

τ

)
= NmeV

(
t

τ

)
(1.16)

where me is the effective electron mass.

To get a more exact result, the authors take a semiclassical approach, starting

with the Boltzmann-Langevin equation

(∂t + v · ∇r + eE · ∇p + S) n = δJ (1.17)

for the distribution function n(r, p, t) with a fluctuating source δJ(r, p, t) and elastic

collision integral S. They find that the approximate momentum transfer to the

lattice in the transverse direction is reduced from the value given in Eq. 1.16 by a

factor of (`/L)2 where ` is the mean free path and L is the length of the conductor.

This reduction is a consequence of the fact that an electron being scattered back

and forth ends up alternatively transferring both positive and negative momentum

to the lattice and so many of the collisions tend to cancel each other out.

Applying their theory to the fundamental transverse mode of a doubly-clamped
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resonator, they find that the momentum transfer gives rise to a force noise (in N2/Hz)

given by

SF =
4

5
nepF

`A

L

∫ L/2

−L/2

LK(z) [g′(z)]
2
dx (1.18)

where ne is the density of conduction electrons, ` is the mean free path, A is the

cross sectional area of the conductor of length L with midpoint at x = 0 and g′(z) is

the first derivative with respect to z of the normalized mode shape. K(z) describes

the profile of electron energies across the conductor and for the theory considered

here, where eV >> kBTb and inelastic electron scattering is absent, K(z) is given

by

K(z) = (eV/L)z(1− z/L) (1.19)

Finally, Shytov et al. evaluate Eq. 1.18 to find the equivalent force noise

applied as a point force at the resonator’s center (by normalizing the mode shape

by its value at the center) and find

SF =
4

5
nepF

`A

L
× 0.83eV (1.20)

1.5 Noise at Finite Temperatures

So far, we have ignored the effect of the finite temperature of the bath on the

electromechanical noise. First, I note that at zero bias, the conduction electrons will

be in thermal equilibrium with the bath, and so the noise is found by replacing the

11



kernal K(x) in Eq. 1.18 with kBT . The result is

SF (V = 0) =
4

5
nepF

`A

L
× 4.87kBTb (1.21)

Note that this is only the equilbrium electromechanical noise and does not include

other, non-electronic, sources of noise from the bath. This result is also useful

in that we can apply it to Eq. 1.12 to find the dissipation associated with the

electromechanical noise [17]

1

Qem

=
4.87

5

nepF

Mω0

`A

l
(1.22)

=
4.87

5

p2
F

Mω0e2

1

R
(1.23)

The full expression for the electromechanical noise at finite temperature is

given by [18]

SF = 3.22

[
4

5
nepF

`A

L

]
kBTb + 0.83

[
4

5
nepF

`A

L

]
eV coth

eV

2kBTb

(1.24)

In Fig. 1.6, I plot Eq. 1.24 together with the eV >> kBTb approximation (Eq. 1.18),

with the terms in square brackets in Eq. 1.24 set equal to 1. The error becomes less

than 10% for eV/kBTb > 35.
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Figure 1.6: Comparison of electromechanical noise in zero
(black, dashed) and finite temperature (red, solid) cases.
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1.6 Thermalized Electrons

Another process we must include is inelastic electron scattering. In thin gold

films, electrons travel a distance on the order of 10 µm [19] before inelastically scat-

tering off another electron (electron-electron scattering). This is the same length as

our resonators, so it is not unlikely that such scattering occurs and that the electron

gas has a well-defined temperature determined by its connection to the bath and

the dissipated power due to the bias current. Another possible inelastic process,

electron-phonon scattering, will be considered at the end of this thesis.

Without electron-phonon scattering, the only way for the heat deposited into

the electron gas to flow to the bath is through diffusion of the conduction electrons.

At low temperatures, this heat flow is governed by the Wiedemann-Franz law [20],

which relates the thermal and electrical conductivities. For dissipated power P =

I2R into a wire of resistance R and length L, the temperature profile of the electron

gas is given by [21]

Te(z) = Tb

√
1 +

z

L

(
1− z

L

)
p′ (1.25)

where p′ = (PR)/(λT 2
b ) with λ ' 2.45 × 10−8 (the Lorenz number). The average

electron temperature is

〈Te〉 =
Tb

2

[
1 +

(
2√
p′

+

√
p′

2

)
arcsin

√
p′

4 + p′

]
(1.26)

Putting the above electron temperature profile into the theory for electromechanical
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Figure 1.7: Comparison of electromechanical noise for in-
teracting (green, upper curve) and non-interacting (red, lower
curve) electrons.

noise results in the force noise [18]

SF =
4.87kBTb

2

[
1 +

(
ν +

1

ν

)
arctan ν

]
(1.27)

where ν = (
√

3eV )/(2πkBTb). In Fig. 1.7, I plot SF /kBTb for both thermalized and

non-thermalized electrons (Eq. 1.24). It is apparent that heating of the electron gas

results in a small increase in the force noise.

Finally, I note that the electromechanical noise is very analagous to electrical

shot noise, which for a diffusive conductor has the same form as Eq. 1.24 or Eq. 1.27

for non-interacting electrons or interacting electrons, respectively. For eV >> kBTb
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this leads to the observed [19] reduction below the usual 2eI value by a factor of

1/3 in the former case and
√

3/4 in the latter.
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Chapter 2

Measurement Scheme

In our experiments, we seek to excite electromechanical noise fluctuations by

passing current through the metallic layer of a nanomechanical resonator. In this

chapter, I discuss the techniques used for detecting the position fluctuations induced

by the electromechanical force noise, starting with a capacitive displacement detec-

tion method. This method relies on the changing capacitance between the moving

metallized nanoresonator and a nearby gate electrode. This discussion then natu-

rally leads into a discussion of the other displacement detection method used, the

radio-frequency single electron transistor (RF-SET) displacement detector, where

the nanoresonator is capacitively coupled not to a simple gate, but rather a meso-

scopic tunneling device (the SET).

2.1 Capactive Detection

We used a capacitive detection technique for measuring dissipation in alu-

minum coated resonators in the normal and superconducting states. Application

of this technique to nano-electromechanical systems (NEMS) was one of the novel

accomplishments of this work. Below I describe the basic principles as they apply to

the main thesis, but Appendix A and [22] describe our findings about the technique

in more detail.
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2.1.1 The Challenge of Nanoscale Capacitive Detection

One perhaps obvious method for detecting the position of a macroscopic object

is to monitor the capacitance between it and a nearby electrostatic gate, such as in

Fig. 2.1. However, it has long been accepted [23] that this method is unsuitable for

nanoscale mechanical resonators due to the tiny capacitances involved. A typical

system, for instance, could be comprised of a resonator separated by a distance

d = 100 nm from a 1 µm gate, both with a 10 nm thick metal layer. In this case,

the equilibrium capacitance would be on the order of CNR = εA/d ' 1 aF, where

A is the 10 nm by 1 µm area of overlap between the beam and gate electrodes

and ε is the permittivity of free space. Nanomechanical resonator displacements

are typically less than 1 nm and thus the motional change in capacitance can be

expected to be less than 1%. This problem is further compounded by the fact that

the coaxial cables used to read out the signal have their own capacitance to ground,

on the order of 100 pF for a 1 m length of cable. This capacitance is in parallel with

the capacitance between the beam and gate, and thus any change in impedance due

to the beam’s motion will be masked by the much smaller impedance through the

larger cable capacitance.

2.1.2 Voltage-Biased Capacitive Detection

A solution to the above difficulty is shown in the inset to Fig. 2.1. Putting

a DC bias voltage VNR between the beam and gate changes the impedance be-

havior of the system dramatically. The technique described here is well known in

18



Figure 2.1: SEM micrograph of a metallized resonator with
a nearby metallized gate electrode for electrostatic actuation
and detection.
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the MEMS community and is used in lower frequency microelectromechanical fil-

ters [24]. The purpose of this section is to show the applicability of this technique

to nanoelectromechanical resonators and to explain the physics behind it.

To derive the appropriate impedance model for this system, we first consider

the dependance of the capacitance between the beam and gate on the beam’s dis-

placement. The capacitance per unit length is

C(x) =
εA

d + X
(2.1)

For small displacements, i.e. X/d << 1 we can write the above as

C(X) ' CNR

(
1− X

d
+

(
X

d

)2

− · · ·

)
(2.2)

where CNR is the capacitance when the beam is in its equilibrium position X = 0.

Now consider what happens when we apply both a static DC bias voltage,

VNR, between the beam and gate as well as a sinusoidal driving voltage Vs with

frequency ω. As X increases, the energy of the system changes as

U(X) = −1

2
C(X)V 2 (2.3)

= −1

2
CNR

(
1− X

d

)
(VNR + Vs cos ωt)2 (2.4)

Using F = −dU/dX, the force on the resonator is

F (t) = −1

2

CNR

d

(
V 2

s cos2 ωt + 2VNRVs cos ωt + V 2
NR

)
(2.5)
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The third term above is a static force that merely serves to shift the equilibrium

position of the resonator slightly. The first term (when expanded) is comprised

of another DC force and a force at twice the the applied driving frequency, ω,

both of which are small and can be ignored. Thus, the second term is the driving

term of interest. Since only the term linear in cos ωt is left, we can change to

using eiωt notation used in Chapter 1, with the usual convention that only the real

part is physical. Putting this force into Eq. 1.8, the absolute value of the average

displacement of the resonator is seen to follow

X0(ω) =
CNRVNRVs

dM

ω2
0 − ω2 + iωω0

Q

(2.6)

To detect the beam’s motion, we want to measure the change in impedance

due to the motional change in capacitance. To this end, I examine the current

flow through the device in response to the applied voltage Vs. Using q = CV , and

putting the above position response into the expression for the beam-gate capaci-

tance, Eq. 2.2, the charge on the gate is

q = CNR

(
VNR + Vse

iωt
)
− CNRVNRX0(ω)eiωt

d
(2.7)

where once again I have dropped the term at 2ω. Taking the time derivative of

Eq. 2.7 and using Eq. 1.8, I find the currents generated in the circuit

I = q̇ =

(
iωCNR − iω

C2
NRV 2

NR

Md2

1

ω2
0 − ω2 + iωω0

Q

)
Vse

iωt (2.8)
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Essentially, the change in time of the capacitance between the beam and gate

due to the beam’s motion requires that the charge on the gate also change in time

to maintain the DC bias VG = qCNR, thus sending currents through the device.

Examining Eq. 2.8 in light of I = V/R, I find that the impedance of the beam-

gate system is made up of two components in parallel, the equilibrium beam-gate

capacitance CNR, and a series RLC impedance due to the beam’s motion. This

nanoresonator effective impedance, referred to as the electromechanical impedance,

has equivalent lumped element circuit values given by

Lm =
d2M

V 2
NRC2

NR

(2.9)

Cm =
V 2

NRC2
NR

ω2
0d

2M
(2.10)

Rm =
d2Mω0

V 2
NRC2

NRQ
(2.11)

The equivalent circuit model for this system is shown in Fig. 2.2.

The utility of this circuit model lies in the fact that off resonance, the elec-

tromechanical impedance is very large due to Lm or Cm, so the total impedance

seen at the gate is determined by the much smaller parallel impedance 1/iωCNR. In

contrast, on resonance, Lm and Cm cancel, leaving only Rm. For typical nanores-

onator parameters (M = 1× 10−15 kg, Q = 20, 000, ω0 = 2π× 107 rad/s, CNR = 50

aF, d = 200 nm and VNR = 10 V), the electromechanical impedance is composed of

elements Lm = 160 H, Cm = 1.6 aF and Rm = 500 kΩ. Also, 1/ω0CNR ' 300 MΩ.

Thus, there is almost a three orders of magnitude decrease in impedance as we go

through the resonance, as illustrated in Fig. 2.3.
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Figure 2.2: Equivalent circuit model for beam and nearby
gate, showing the capacitance formed by the beam and gate
electrode, CNR, as well as the electromechanical impedance
due to the beam’s motion.
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Figure 2.3: Modeled impedance seen at gate coupled capac-
itively to a nanoresonator (parameters given in text).

24



Cm

Rm

Lm

CNR VsLTC
Cm

Rm

Lm

C VsLTCT

Figure 2.4: Equivalent circuit model including LC tank cir-
cuit (in red) used for impedance matching.

2.1.3 Impedance Matching

The impedance on resonance, Rm, is low enough that impedance matching to

50 Ω read-out electronics becomes practical. This matching can be accomplished

with a simple LC tank circuit as shown in Fig. 2.4

When the tank circuit resonant frequency, 1/LT CT , and the nanoresonator

resonant frequency, ω0, are equal, then the tank circuit transforms the electrome-

chanical impedance on resonance from Rm to

ZT (ω0) =
Z2

LC

Rm

(2.12)
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Figure 2.5: Impedance of same system as Fig. 2.3 when
coupled to a matching tank circuit.

where ZLC =
√

LT

CT
is the characterstic impedance of the tank circuit. For example,

with LT = 95 µH and CT = 2.7 pF, the impedance for the system described in the

previous section drops to about 70 Ω, as shown in Fig. 2.5. When measuring the

impedance with reflectometry, the improved matching greatly increases the contrast

between the reflection coefficients on and off resonance.

2.2 Radio-Frequency Single Electron Transistor Detection

The other displacement detector used in this thesis was the RF-SET. This

method was used for studying displacement noise in current biased gold coated

nanoresonators. As with the capacitive technique, the nanoresonator is capacitively
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coupled to the detector, but in this case the detector is a single electron transistor.

The technique relies on the near ideal charge sensitivity of the SET [25] to achieve

very high displacement sensitivity.

2.2.1 The Single Electron Transistor

The SET consists of a small conducting island connected via tunnel junctions

to two external electron baths known as the drain and source. A nearby gate

electrode is capacitively coupled to the island for biasing purposes (see Fig. 2.6 for

the layout). Charge flow through the device proceeds by sequential tunneling of

single electrons when two conditions are met [26]. First, the electrostatic energy

cost of putting another electron on the island, known as the charging energy

EC =
e2

CΣ

(2.13)

must be greater than the bath thermal energy kBT . Here, CΣ is the sum of the

capacitances of the junctions (C1 and C2) as well as the capacitances between the

island and the gate, CG, and between the island and the nanoresonator CNR
1. In

contrast to capacitive detection, here the small capacitance between the SET island

and the nanoresonator is helpful as we want CΣ to be small so as to increase the

charging energy. To further minimize thermal excitations, we also want the temper-

ature low, and so our experiments were performed with the samples in a dilution

1I will use the same variable for parameters such as CNR of VNR that describe coupling between
the nanoresonator and the detector, which can be either the gate or the SET. The meaning should
be clear from the context.
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drain
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island
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nanoresonator

VG

VNR

IDS

junction

Figure 2.6: Schematic of a nanoresonator coupled to an
SET, which consists of a conducting island connected to source
and drain electrodes through two tunnel junctions. Motion
of the nanoresonator modulates the current IDS through the
SET. A nearby gate electrode sets the bias point of the SET.

refigerator with base temperature of approximately 30 mK. The other condition for

sequential tunneling is that the resistance through the device be greater than the

resistance quantum, Rq = h/e2.

Under these conditions, current flow from drain to source, IDS, is suppressed

for small drain-source bias voltages, VDS. With no bias on the gate, current does

not begin to flow until VDS is raised high enough to overcome the charging energy,

i.e. VDS > e/CΣ. The region of suppressed IDS, illustrated in Fig. 2.7(a), is known

as the Coulomb blockade.

However, IDS can also be manipulated by application of a voltage, VG, to the
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(a) IDS vs. VDS (b) IDS vs. VG

Figure 2.7: Schematic illustrating the IV characteristics of
an SET.

gate electrode. If we increase VG, we increase the energy level of the state with

no additional electrons on the island while decreasing the energy level of the state

with one additional electron. The two states are degenerage when the gate voltage

corresponds to the charge of one-half an electron, allowing electrons to tunnel and

current to flow across the device. As the gate voltage is increased further, the energy

levels diverge again until current is stopped at a gate charge of one electron. The

cycle then repeats, with the conductance of the SET in the Coulomb blockade region

being periodic in VG with a period of 1e, as illustrated in Fig. 2.7(b).

2.2.2 The SET as a Position Detector

Once we understand how IDS is modulated by application of a voltage to the

gate, we can see how the SET can be used for displacement detection [27, 28]. The

nanoresonator is also capacitively coupled to the SET island and acts as a second,

moving gate electrode. As with capacitive detection, a DC bias voltage, VNR, is

kept between the nanoresonator and the detector, the SET. The displacement of the

29



nanoresonator varies the capacitance, CNR, between them thus varying the charge

bias point of the SET through the relation

q = CNR (X) VNR (2.14)

The current through the SET is thus modulated according to [29]

dIDS

dX
=

dIDS

dVG

dVG

dq

dq

dX

=
dIDS

dVG

1

CG

dCNR

dX
VNR (2.15)

where X is the displacement of the nanoresonator.

2.2.3 The Radio-Frequency Single Electron Transistor

Because the SET has a resistance through both junctions on the order of

100 kΩ it suffers from bandwidth limitations due to the ∼ 100 pF capacitance in

the cables used to bring signal out to room temperature electronics. To be able to

read-out nanomechanical resonances on the order of ∼ 10 MHz, we use an LC tank

circuit, the same as we do with capacitive detection, to transform the impedance

of the SET close to 50Ω and operate the device as a radio-frequency single electron

transistor (RF-SET) [28, 30]. This transformation allows us to use standard RF

reflectometry to measure the SET impedance.
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Chapter 3

Fabrication of Devices

In this chapter, I describe the steps taken to fabricate the devices used in the

experiments. For the noise measurements, a single electron transistor (SET) was

used for transduction and amplification of the mechanical motion. This SET was

made out of aluminum and operated below its superconducting transition temper-

ature, making it a superconducting single electron transistor (SSET). However, in

order for a bias current through the nanoresonator to generate electromechanical

noise, the nanoresonator had to be metallized with a diffusive metal. For these ex-

periments, we used a gold coating on the nanoresonator. Thus, the nanoresonator

and SSET had to be fabricated in separate lithography steps.

In contrast, the dissipation measurements utilized an aluminum coated res-

onator capacitively coupled to a nearby aluminum gate electrode, allowing both the

nanoresonator and detection device to be fabricated in a single lithography step.

3.1 The Wafer

The wafer used for fabrication consisted of a silicon substrate coated with

50 nm of low-stress silicon nitride Si3N4. These wafers were provided by NEMS

Exchange [31], who also fabricated the bond pads and tank circuits using the design

shown in Fig. 3.1. In house fabrication was performed in the 100 µm x 100 µm

31



Figure 3.1: Design of individual sample die as provided by
NEMS Exchange, showing the bond pads for connection to ex-
ternal circuitry as well as the coil inductor and interdigitated
capacitor that make up the tank circuit for the RF-SET. The
size of each sample is about 4 mm by 4 mm.

square writing area between the two tank circuits. The two tank circuits mean

that each die can accomodate two samples, which we usually fabricate as sharing a

common gate electrode.
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3.2 Defining the Nanomechanical Resonator

After receiving the diced wavers from NEMS Exchange, each sample for the

noise measurements was fabricated in three lithography steps. The first step was to

deposit the gold layer that defines the width and length of the nanoresonator. The

gold layer serves as a mask for when the nanoresonator is eventually freed from the

substrate (which does not occur until the last step, seeing as the nanoresonator is

the most fragile part of the sample). It also serves as the region through which the

bias current is sent to generate electromechanical noise and it is used to capacitively

couple the nanoresonator to the SET. A bilayer of e-beam resists (methacrylic acid

(MMA) and polymethyl methacrylate (PMMA)) is used to facilitate lift-off. The

steps for this part of the fabrication were as follows:

• The sample is cleaned by immersion in hot acetone. It is then further cleaned

with methanol and isoprobyl alcohol (IPA) and then blow dried with nitrogen

gas N2.

• The sample is then coated with a bilayer of e-beam resist used for pattern

writing in the scanning electron microscope (SEM). First, we spin copolymer

MMA:EL Thinner (1:1) at 3000 RPM for 1 minute. The sample is then baked

on a hot plate at 200◦ C for 5 minutes to cure the resist. The next layer, 950K

PMMA A-4, is spun at 5000 RPM for 1 minute and the sample is again baked

at 180◦ C for 1 minute.

• The sample is inserted into the SEM and exposed with the pattern shown in
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Fig. 3.2 (detail in Fig. 3.3). Note that though the figure shows the complete

drawing pattern, only the nanoresonator, gate and associated leads are exposed

in this step. The dose was 380 µC/cm2 for the resonator and 450 µC/cm2

for the leads and gate. The pattern is designed to give the nanoresonator a

nominal length and width of l = 10 µm and w = 170 nm, respectively. The

gate electrode has a nominal length of lG = 2 µm. Also, the gap between the

nanoresonator and the gate is approximately dG = 1300 nm.

• The resist is then developed by immersing the sample in MIBK (Methyl Iso

Butyl Ketone):IPA (1:3) for 40 seconds and then rinsing it in IPA for 40 seconds

followed by blow drying with N2. The sample is then put in an RIE for 10 s

of reactive ion etching with oxygen plasma to remove any residual resist from

the exposed areas.

• The metallic layer is then deposited using electron beam evaporation. A 20 nm

titanium adhesion layer is followed by 130 nm of gold.

• The remaining (non-exposed) resist is lifted off by immersion in hot acetone,

leaving the deposited metal in only the exposed areas.

3.3 Fabrication of the SET

The second lithography step is the fabrication of the single electron transis-

tor and associated leads. An SET is comprised of two tunnel junctions connected

to a central conducting island. In our case, the tunnel junctions are formed by
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Figure 3.2: SEM pattern showing the position of the
nanoresonator, SET and gate electrode. Detail is shown in
Fig. 3.3.

Figure 3.3: Detail of SEM drawing pattern around the
nanoresonator and SET. The green window is the etch area
for undercutting the beam.
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overlapping aluminum leads separated by a thin layer of aluminum oxide. Fabrica-

tion of the junctions is accomplished through the technique known as double-angle

evaporation [32, 33]. The complete recipe is as follows:

• The sample is cleaned of any residue from the previous step using acetone,

methanol and IPA and then blow dried with N2.

• E-beam resist, MMA 8.5:EL (1:1), is spun at 4000 RPM for 1 minute. The

second layer is 950K PMMA A-4 spun at 5000 RPM for 1 minute. A 5 minute

bake at 180◦ C follows each spin.

• In the SEM, the pattern for the SET and its leads shown in Fig. 3.2 and 3.3 is

exposed. The leads to the bond pads and island are exposed with 450 µC/cm2

and 350 µC/cm2, respectively. The junction leads are exposed with a 1.4 nC/cm

line dose and a 180 µC/cm2 area dose to form an undercut used for the double-

angle evaporation. The island is fabricated a distance d = 300 nm away from

the beam and has length lD = 1 µm.

• The sample is developed in MIBK:IPA (1:3) for 1 minute, rinsed in IPA for

30 seconds and then blow dried in N2. Any resist left in the exposed areas is

removed with a 12 s RIE oxygen plasma etch.

• Deposition of the aluminum for the SET is performed in a thermal evaporator

with a rotatable sample stage. The process is described below and illustrated

in Fig. 3.4.

– With sample at +10◦ to aluminum source, deposit 35 nm of aluminum
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Figure 3.4: Illustration of double-angle evaporation. The
green layer represents the Si3N4 that the SET is formed on.
The purple layer is the resist with the exposed pattern and
has been offset vertically for clarity. Two separate evapora-
tions (red and blue) of aluminum are done at complementary
angles so as to offset the pattern from one evaporation to the
next. An intermediate oxidation step creates the tunnel bar-
rier where the leads overlap.

at 0.5 nm/s.

– Introduce oxygen O2 at about 80 mTorr for approximately 2 minutes.

This step produces an aluminum oxide tunnel barrier on the order of 1

nm.

– Change sample orientation to -10◦ and deposit another 90 nm of alu-

minum.

• The rest of the resist is lifted-off in hot acetone.
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3.4 Freeing the Nanoresonator

The final step is to free the nanoresonator into a freestanding structure. To

do this, we used a dry undercut etch technique [13, 34, 35]. The advantage of using

a dry etch over a wet etch is that we do not have to worry about surface tension

snapping the beam. The steps are described below:

• The sample is cleaned again with acetone, methanol and IPA and blow dried

with N2.

• A single layer of PMMA 950K A7 is spun at 4000 RPM for 1 minute. The

resist is then cured by baking the sample on a hot plate for 5 minutes at

180◦ C.

• In the SEM, we expose an etch window around the nanoresonator using a

400 µC/cm2 dose.

• The sample is developed in MIBK:IPA (1:3) for 1 minute, rinsed in IPA for

30 seconds, and blow dried with N2.

• Finally, we undercut the nanoresonator in the RIE. The steps, illustrated in

Fig. 3.5, are listed below:

– Etch in CHF3 plasma for 2 minutes. This etch is anisotropic and re-

moves the nitride one either side of the resonator, exposing the silicon

underneath.
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dimension symbol size (nm)
beam length l 10000
beam width w 170

thickness of Si3N4 tSiN 500
thickness of Ti tTi 20
thickness of Au tAu 130

gate length lG 2000
SET island length lD 1000
beam-gate distance dG 1300
beam-SET distance d 300

Table 3.1: Relevant dimensions for noise measurement de-
vices.

– Next, etch with SF6, an isotropic silicon etch that etches underneath the

beam and frees it from the substrate.

– Lastly, use oxygen plasma for approximately 3 minutes to remove the

rest of the resist (optional).

From SEM observations of the area underneath the beam, we know that it is prob-

able that a thin ridge of Si hangs underneath the beam. Figure 3.6 shows a closeup

of a completed resonator + SET device. The important dimensions are summarized

in Tab. 3.1.

3.5 Devices for Dissipation Measurements

The devices used for dissipation measurements were fabricated in a similar

manner, except that they are optimized for capacitive detection and the nanores-

onator is coated with aluminum rather than gold. The gate electrode is longer and

positioned closer to the nanoresonator (100 nm) and since they are both made of

aluminum they are both made in the same lithography step. The aluminum was
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Figure 3.5: The undercut etch method for freeing the
nanoresonator. a) Cross sectional view of nanoresonator mask
(gold) on top of Si3N4 and Si substrate. Unshown areas to
the left and right are covered in resist and are not etched. b)
Anisotropic etch of Si3N4 to expose substrate. c) Isotropic
etch of Si to free the nanoresonator.
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Figure 3.6: SEM photo showing closeup of SET with nearby
resonator.
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dimension symbol size (nm)
beam length l 20000
beam width w 200

thickness of Si3N4 tSiN 500
thickness of Al tAu 130

gate length lD 12000
beam-gate distance d 300

Table 3.2: Relevant dimensions for dissipation measurement
devices.

deposited in a double-angle evaporation step, however, since these devices do have

SET’s (which are not utilized here). The dimensions are summarized in Tab. 3.2.
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Chapter 4

Methods

This chapter describes in more detail the operation of the RF-SET and the

capacitive detection circuit. I also describe the measurements used to extract the

nanoresonator parameters.

Experiments were performed with the samples thermally anchored to the mix-

ing chamber stage of a Oxford Kelvinox 400 dilution refigerator. We were able to

obtain a base temperature of approximately 30 mK, as measured by a RuO resis-

tance thermometer. The refigerator is mounted on an optical table with vibration

isolation and sits in a copper shielded room to shield from stray RF. The following

sections describe the operation of the position detection circuits.

4.1 Operation of the RF-SET

This section details how we operate the RF-SET for measurement of spectra

due to nanomechanical motion. Figure 4.1 provides a color-coded reference to the

various parts of the measurement circuit.

4.1.1 Reflectometry Circuit (Black/Solid Lines)

The impedance of the SET is measured through RF reflectometry. A 1 GHz

carrier signal is sent down to the device through a directional coupler. The reflection
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Figure 4.1: Circuit for RF-SET measurements of charge
noise due to current-induced position fluctuations of a
nanoresonator. The diagram is color coded to match the de-
scription of each part of the circuit in the text.
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coefficient of the return signal is given by

Γ =
RS −R0

RS + R0

(4.1)

where RS is the resistance presented by the SET and tank circuit and R0 is the

impedance of the radio frequency source (50 Ω). The reflected signal is amplified by

both a low temperature amplifier [36] and a room temperature amplifier [37].

As discussed in Chapter 2, IDS is dependant on both VDS and the charges on

the gate and the beam. The SET impedance is modulated at the frequency of these

signals, resulting in sidebands in the reflected power from the 1 GHz carrier. We mix

the reflected signal with the original carrier to recover these sidebands (homodyne

detection). The signal is split, with half the power going to lock-in amplifiers for

monitoring the signals applied to the gate (see below) and half going to a spectrum

analyzer (see Fig. 4.2) to observe the full bandwidth response of the SET to the

nanoresonator’s motion.

4.1.2 SET Biasing Circuit (Blue/Dashed Lines)

The gate bias, VG, and the drain-source voltage, VDS, are both controlled by

a DAQ card connected to a PC. The overall charge bias seen by the SET can vary

with time due to motion of charges in the sample substrate. To compensate for this

a feedback scheme is implemented. The current through the SET, IDS, is monitored

with a transimpedance amplifier with the voltage output sent to a PID controller.

The PID then adds a small correction to VG in order to keep IDS at a constant set
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Figure 4.2: Example of reflected power from RF-SET due
to nanoresonator’s motion as measured by the spectrum ana-
lyzer. Fit is Lorentzian. Data is thermal noise from sample 2
at 100 mK.
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value. Generally, the bias is set to a point of high current modulation, dIDS/dVG in

order to maximize the gain.

4.1.3 Charge Reference (Green/Dotted Lines)

In order to compare different mechanical spectra, a small AC voltage, VREF ,

is sent to the gate for charge gain calibration near the resonant frequency of the

mechanics. During a measurement, the sideband signal from the SET at this fre-

quency is monitored by an RF lock-in amplifier and the spectra are scaled by the

average gain.

It is useful to be able to know the charge signal on the gate due to the reference

signal. With a DC bias corresponding to an integer number of electrons on the gate,

the power in the sideband of the reflected response is approximately [38]

P = P0 sin (2π∆QG sin ωt) (4.2)

where ∆QG is the AC charge signal sent to the gate. Since this function is a sine of

a sine, it can be expanded as a series of Bessel functions

P = 2P0

∞∑
n=0

J2n+1 (2π∆QG) sin((2n + 1)ωt) (4.3)

We sweep the amplitude of VREF (proportional to ∆QG) and fit the amplitude

of the response to a first-order bessel function as in Fig. 4.3. From the first zero of

the fit we are then able to determine what voltage at the source corresponds to 1e
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Figure 4.3: Example of Bessel fit for reference charge cali-
bration. Data is for sample 3 with gate modulation at 10.5
MHz.

at the gate.

To reduce the effect of noise from the RF source, we sent a larger VREF than

needed and attenuated it where the signal entered the dilution refigerator. The

result of the bessel fit can be compared with QG = CGVG to find the attenuation

in the lines from the voltage source to the gate. Figure 4.4 shows the results of

charge calibration measurements at several frequencies for Sample 3, where the

added attenuation has been subtracted, leaving only the attenuation in the line.

Measurements performed for Samples 1 and 2 were within 2 dB of these values.
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Figure 4.4: Gate line attenuation vs. frequency measured
with sample 3. Each data set has been offset by the attenuator
value used where the signal enters the fridge, so the data here
shows the attenuation in the coaxial lines only.
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4.1.4 Beam Current (Red/Dot-Dashed Lines)

For the noise measurements, we need not only a way to measure the displace-

ment noise of the nanoresonator, but also a way to send current through the beam

to generate the noise. We already have a DC voltage on the nanoresonator, VNR,

for coupling to the SET, but this is of the order of several volts and if the beam

was grounded would produce currents that were much to high. So to generate the

noise, we use a 1 MHz AC current, IF , generated via an RF voltage source with a

1 MΩ resistor in series. Both VNR and IF are coupled to the nanoresonator through

a bias-tee on top of the dilution refigerator. On the other side of the beam is

a blocking-capacitor, that was tested at low temperatures and has a capacitance

of about 400 nF. This blocking capacitor acts as a short for the noise generating

current, but keeps the coupling voltage VNR from dropping across the device.

To know how much current is sent through the nanoresonator, I first measured

the attenuation from the voltage source to the point where the signal passes through

the 1 MΩ resistor and found -3.35 dB of attenuation. Before going into the fridge,

the signal passes through the bias-tee shown in Fig. 4.1 as well as a 2.5 MHz low-pass

filter. The insertion loss through these components was measured to be less than 0.2

dB. Finally, the signal is carried on a low frequency line in the dilution refigerator.

The attenuation at room temperature through this line at 1 MHz was measured to

be about -8 dB. However, this attenuation can be attributed to the 150 Ω of DC

resistance through the line, which includes an RF stripline for thermalization. I can

model the impedance of the line with a lumped-element circuit model as shown in
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Blocking capacitor

Sample package

Figure 4.5: Two RF-SET based devices mounted on the di-
lution refigerator sample stage. The blocking capacitors used
for the beam bias current are also shown..
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120 pF

300 nH150 Ω

Vin

Vout

Figure 4.6: Lumped-element circuit model for the line that
carries current down the to beam.

Fig. 4.6, where the 120 pF cable capacitance is chosen to fit the data and agrees

with the expected 30 pF/ft for stainless steel coaxial lines [39]. The inductance in

the model is chosen to give a characteristic impedance of 50 Ω.

The measured and modeled attenuation is shown in Fig. 4.7. With the beam

resistance being on the order of 30 Ω (see below), the cable capacitance of 120 pF

can be expected to shunt less than 5% of the current coming in at the top of the

fridge at 1 MHz.
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Figure 4.7: Measured (black) and modeled (red) attenuation
in beam line. Measured data is at room temperature.

4.1.5 Measuring the Gate and Nanoresonator Capacitances

To find the capacitances between the gate or nanoresonator and the SET,

we sweep the voltage on either electrode and monitor IDS, as shown in Fig. 4.8.

Since the current through the SET varies with the charge bias with a periodicity of

1e, we can find the capacitances through the relation e = C∆V , where ∆V is the

periodicity of IDS with respect to the applied voltage.

4.1.6 I-V Curves, Charging Energy and Gain

The I-V characteristics of the SET are measured by sweeping both VDS and

VG with a PC controlled DAQ card and measuring IDS with the transimpedance

amplifier. This data can be used to build up a conductance map such as shown in

Fig. 4.9.
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Figure 4.8: IDS versus (a) gate and (b) nanoresonator volt-
ages. Data from sample 1.
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2.
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Sample 1 Sample 2 Sample 3
CNR (aF) 29 31.2 30
CG (aF) 13.4 19.5 17.8
C1 (aF) 114 131 234
C2 (aF) 165 187 259
EC/kB (K) 2.89 2.52 1.72

Table 4.1: Sample capacitances and charging energies.

Because our SET’s are made out of aluminum, there are additional features

in the conductance map due to their superconducting nature. The plateau due

to the Coulomb blockade is widened by 8∆, where ∆ is the superconducting gap

energy. There are also higher order tunneling processes known as the Josephson

Quasiparticle (JQP) and Double Josephson Quasiparticle (DJQP) resonances [40].

These quasiparticle resonances can be used to determine the charging energy

of the SET. The DJQP resonances are separated by 4EC/e while the JQP resonances

are separated by 8EC/e. Alternatively, we can use the slopes of the quasiparticle

ridges to determine the junction capacitances, C1 and C2, as shown in Fig. 4.9 and

calculate the charging energy from Eq. 2.13.

While collecting the data for the conductance map, we also monitor the power

in the sideband due to the gate reference signal. Thus, we also have a measure of

the gain as a function of VG and VDS. The gain map is shown in Fig. 4.10.

The capacitances and charging energies of the three SET based devices are

summarized in Table 4.1.
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4.1.7 RF-Tank Circuit and SET DC Resistance

To characterize the properties of the RF measurement circuit, we measure shot

noise in the SET. The SET shot noise is white and given by eIDS. The resulting

power spectral density measured by the spectrum analyzer is then

P = GeIDSZ0
ω4

T

(ω2
T − ω2)

2 − (ωωT /QT )2
(4.4)

where ωT and QT are the center frequency and quality factor of the LC tank cir-

cuit, respectively, and G is the measurement circuit gain. An example is shown in

Fig. 4.11.

We increase IDS while measuring the noise power at the tank resonance, given

by

PN = G
(
kBTn + Q2

T Z0eIDS

)
(4.5)

Then from the slope and intercept we can find the measurement circuit gain and

noise temperature as in Fig. 4.12.

This measurement also gives us IDS versus VDS for biases well beyond the

Coulomb blockade from which we can find the SET DC resistance outside the

Coulomb blockade region. The tank circuit properties and SET resistances for all

three SET based samples are summarized in Table 4.2.
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Figure 4.11: Example of shot noise ring-up of tank circuit
from sample 1. VDS = 0.08 V.
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Sample 1 Sample 2 Sample 3
Tank Frequency (GHz) 1.168 1.1678 1.1704
Tank Q 10.2 9.2 10.3
RF Gain (dB) 70 72 71
Noise Temperature (K) 22 11.3 15
SET Resistance (kΩ) 85 78.6 34.7

Table 4.2: RF Circuit Properties.

4.1.8 Nanoresonator Characterization

For samples 2 and 3 we did noise thermometry measurements of the nanores-

onator position noise. At several different bath temperatures we measured the re-

flected power from the RF-SET at the mechanical resonance frequency. An example

is shown in Fig. 4.13, where the gate reference signal has been used to scale the noise

power in charge units, e2/Hz. This data provides a calibration to convert any posi-

tion noise to an equivalent mechanical mode temperature, Tn. The noise power for

sample 2 has an x-intercept consistent with zero. Sample 3, in contrast, intercepts

the x-axis near 22 mK.

In principle, the noise thermometry data can be used to find the effective mass

of the samples. First, we convert the noise from charge units to meters via

q2 =
C2

NR

d2
V 2

NRX2
0 (4.6)

Then we can find the mass from the slope of position noise vs. temperature in

Fig. 4.14 and equipartition of energy, Eq. 1.11. There is a factor of 10 difference

in the mass found for samples 2 and 3. These devices were fabricated to have the

same dimensions and I do not expect those dimensions to vary by more than 20%.
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noise floor has been subtracted and the 300 mK resonance
has been shifted up in frequency by 2 kHz.
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Figure 4.14: Mechanical noise thermometry of samples 2
and 3.

63



0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 00

2 0

4 0

6 0

8 0

1 0 0

<X
2 >ω

02  (µ
m2  (ra

d/s
)2 )

B a t h  T e m p e r a t u r e  ( m K )

1 . 5 5 ( 3 ) E - 1 0  T  -  1 ( 1 ) E - 1 2

M  =  8 . 9 E - 1 4  k g

(a) Sample 2

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0  J u n e  2 9 ,  2 0 0 7

 J u l y  5 ,  2 0 0 7

M  =  8 . 1 E - 1 5  k g

<X
2 > ω

02  (µ
m2 (ra

d/s
)2 )

B a t h  T e m p e r a t u r e  ( m K )

1 . 7 0 ( 5 ) E - 9  T  +  3 . 9 ( 8 ) E - 1 1

2 . 0 9 ( 6 ) E - 9  T  +  4 . 8 ( 7 ) E - 1 1
M  =  6 . 6 E - 1 5  k g

(b) Sample 2

Figure 4.15: Finding the effective mass of the nanoresonator
in samples 2 and 3 using the noise thermometry data from
Fig. 4.14.
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Sample 1 Sample 2 Sample 3
Frequency (MHz) 11.1 8.5 9.4
Resistance (Ω) 23 17.7, 29.9
Quality Factor 180,000 100,000 30,000
Effective Mass (kg) 1.8× 10−15 1.8× 10−15 1.8× 10−15

Table 4.3: Nanoresonator properties for RF-SET based sam-
ples.

Also, from the density of materials used and the nominal dimensions of the beams,

I expect the mass to be about 1.8× 10−15 kg. These differences lead me to conclude

that the noise thermometry data given here is not an accurate calibration of the

mass. A possible explanation for this discrepancy is given in the appendix. I will

use the first principles mass throughout the remainder of this thesis.

By monitoring the sideband of the reflectance from the SET at the frequency

of IF , we can also determine the resistance of the beam. Comparing this sideband

to the gate charge reference signal, we know the charge noise being produced at the

center of the beam. Then, since we know the capacitance between the beam and

the SET and we know how much current we are sending through the beam, we can

calculate the resistance, as in Fig. 4.16. This measurement was done for samples 2

and 3. The resistance of sample 3 appeared to fluctuate between two values.

Nanoresonator masses, resistances, resonant frequencies, and quality factors

are summarized in Table 4.3. The resistances of samples 2 and 3 are consistent with

measurements of sample 1 at 77 K (30 Ω) and sample 3 at 4 K (20 Ω).
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Figure 4.16: Beam resistance for samples 2 and 3.
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Figure 4.17: Schematic of measurement scheme for voltage
biased and impedance matched capacitive detection.

4.2 Capacitive Detection Device Operation

Capacitive detection for dissipation measurements was also performed using

reflectometry. The circuit diagram is shown in Fig. 4.17. A bias-tee allows for

bringing both the DC bias voltage, VNR, as well as the smaller AC driving voltage,

Vs, to the device. Then, using a network analyzer and directional coupler we perform

standard RF reflectometry on the device to monitor its impedance and thus detect

the resonator’s motion (see Appendix for further details).

4.3 Notes on Wiring

The desired values of the DC bias voltages were set by a PC controlled DAQ

card and sent into the shielded room through optical isolators. Near the input to the

fridge, they were divided by a factor of 100 to 1000 and then filtered. The filtering

consisted of both commercial low-pass RF filters as well as homemade pi-powder

filters [41] that provide more than 90 dB attenuation above 1 GHz. Inside the fridge,

67



these signals were carried by stainless steel coax down to the 1 K pot stage and then

copper lines to the sample. The lines were thermalized at the 4 K flange and passed

through powder filters at the 1 K pot and mixing chamber stages. The coupling

voltage between the nanoresonator and the gate or SET, VNR, was sent down to

the beam in the same manner, except that it was supplied by batteries inside the

shielded room.

RF signals entered the shielded room through DC blocks. The 1 GHz carrier

for RF-SET detection was attenuated by 20 dB, then carried by stainless steel coax

down to the 1 K pot stage. There, it was attenuated by another 20 dB before going

into the input of a directional coupler (see Fig. 4.1). From the coupled port of the

directional coupler, the signal was carried by niobium coax, the inner conductor of

which was thermalized at 1 K via a short length of microstrip transmission line.

The microwave carrier and VDS were combined via a bias-tee before being sent to

the sample via copper coax.
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Chapter 5

Results

This chapter details the results of our attempts to measure electromechanical

noise in nanomechanical resonators. I first discuss displacement noise measurements

on gold coated nanoresonators driven by a 1 MHz bias current. Then, I discuss

equilibrium dissipation measurements made on aluminum coated nanoresonators in

both the normal and superconducting states.

5.1 Data for Current Biased Gold Nanoresonators

5.1.1 Displacement Noise

Displacement fluctuations of the gold coated current biased nanoresonators

were measured using the RF-SET. Figure 5.1 shows the noise response of the three

nanoresonators to an applied bias current, in equivalent charge noise units.

Each plot also includes a linear fit to the data. Some points in samples 2

and 3 are not included in the fit (red) as they do not fit the overall trend. These

include points at low bias in sample 3 where the saturation to the bath tempera-

ture is evident and a few points at higher bias in both samples 2 and 3 where the

nanoresonator appeared to be undergoing some change, possibly being damaged by

the bias circuit.

I can convert the mechanical response spectra into equivalent mode tempera-
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Figure 5.1: Average integrated mechanical response in elec-
tron units vs. bias current.
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tures by integrating the area under each curve and using the linear relation between

integrated response and temperature found in the previous chapter as a calibration.

The mode temperature vs. bias current is plotted in Fig. 5.2. For sample 1 there

was no noise thermometry data taken, so the data is simply scaled so that the mode

temperature is 30 mK (the bath temperature for those measurements), for the lowest

bias current.

Superimposed on each mode temperature plot is the average temperature of

the electron gas in the conducting layer, as predicted by Eq. 1.26. The resistance

at 30 mK for sample 1 was not measured, so lines are drawn for R = 23 Ω, the

average resistance of samples 2 and 3, and R = 40 Ω, which provides the best fit to

the data. For sample 3, the measured resistance varied between two values as the

data was taken. Red (triangle) data points were taken when the beam resistance

was measured to be 29.9 Ω, while black (square) data points correspond to a beam

resistance of 17.7 Ω.

To convert the data to equivalent force noise on the nanoresonator, we use

Eq. 1.12 to find the force noise from the mode temperature and Q. The results are

shown in Fig. 5.3 From the theory, the electromechanical force noise should follow

SF = (.83)
4

5

p2
F

e

2

π
I (5.1)

where I have recast Eq. 1.20 in terms of current by using V = IR and the Drude

resistivity pF /nee
2`. Here, pF = 1.28× 10−24 is the Fermi momentum for gold [42]

and the factor of 2/π accounts for averaging the AC current over a half-cycle. This
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Figure 5.2: Mode temperature vs. bias current. Lines are
the expected average electron gas temperature along the beam
profile.
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Figure 5.3: Force noise power vs. bias current. Solid black
lines are theory for electromechanical noise.
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theoretical line has been included in Fig. 5.3, offset by the thermal noise at base

temperature.

5.1.2 Dissipation and Frequency

It is also instructive to look at how the dissipation and frequency of the

nanoresonators vary with temperature, both when the nanoresonator is in equi-

librium with the bath and when it is driven to a higher temperature by application

of a bias current. Figure 5.4 shows the dissipation, ω0/Q for both cases (equilibrium

data is missing from sample 1 as noise thermometry was not performed on that

sample).

Previous experiments with nanoresonators have yielded a T 1/5 dependence of

dissipation on temperature [43]. Such a curve has been fit for the dissipation data of

samples 1 and 2. Sample 3 exhibited different behavior in that the overall dissipation

was about an order of magnitude larger and the trend with increasing temperature

was roughly linear. Also note that in samples 2 and 3, the dissipation is roughly the

same whether the mode temperature is raised independently of the bath or with it.

The dissipation predicted for momentum noise is given by

γem =
4.87

5

p2
F

e2

1

RM
(5.2)

For R = 23 Ω, the average resistance measured for samples 2 and 3, and M =

1.8× 10−15 kg, I find γem = 1502 Hz.

This dissipation is larger than what is observed in samples 1 and 2. However,
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Figure 5.4: Dissipation vs. temperature.
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we must also account for the fact that the nanoresonator is a composite of a Si3N4

substrate and a gold film. The dissipation is defined as the energy loss per cycle

over the total energy, both of which can be different in the two layers. Assuming

that the electromechanical dissipation is confined to the gold film, we must use [44]

γem → β

1 + β
γem (5.3)

where

β =
YAutAu

YSiN tSiN

(5.4)

Assuming the Young’s modulus of gold YAu = 80 GPa [45], nitride YSiN = 290

GPa [46] and the thicknesses are tAu = 130 nm and tSiN = 50 nm, I get γem =

627 Hz. This dissipation is the expected lower bound if electromechanical dissipation

is the only source of dissipation. Though they exhibit a temperature dependance

not predicted by Eq. 5.2, both samples 1 and 2 have dissipations that stay within

approximately 50% of this value. I have also drawn a line on Fig. 5.4(a) for a

dissipation of 361 Hz, which would be expected if R = 40 Ω

Figure 5.5 shows the frequency shifts as a function of bath or mode temperature

for the three samples. Sample 2 exhibits a much larger frequency shift when the

bath temperature is raised than when only the mode temperature is raised, though

it should be noted that the frequency at base temperature, f0, shifts up about 30

kHz between the two measurements. In contrast, sample 3 shows a similar frequency

depedence on temperature for both cases.
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Figure 5.5: Fractional frequency shift vs. temperature.
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5.2 Data for Aluminum Coated Resonators

5.2.1 Quality Factor vs. Magnetic Field

The quality factor, Q, of aluminum coated resonators was measured using the

capacitive detection technique, with the samples immersed in a magnetic field. Eddy

current damping is expected to be a small effect for resonators of this size [47]. The

resistance of sample 4 was measured with a 1-wire measurement from the top of the

dilution refigerator, while sample 5 was measured with a 2-wire measurement at the

nanoresonator bond pad. Sample 4 was oriented with the beam axis perpindicular

to the field, while sample 5 was in a parallel orientation. In both cases, the sample

substrate was parallel to the field. The resistance of the beams was also measured

as a function of magnetic field to determine the critical fields of the two samples.

The critical field behavior was measured with bias currents ranging from 50 to 1000

nA and at frequencies ranging from 25 to 100 kHz and exhibited no difference over

these range of parameters. The quality factor’s and beam resistances vs. magnetic

field are shown in Fig. 5.6.

We attribute the two steps at higher fields to the aluminum. I first note that

the resistance through the nanoresonator of sample 5 was measured at 4 K to be

30 Ω, including the leads, bond pads, and about 1 m of stainless steel coax. This

value is consistend with the combined 20 Ω resistance change shown in Fig. 5.6(b).

Also, the resistance vs. temperature of sample 5 was measured and is shown in

Fig. 5.7. There is a large step in resistance that has a height equal to the sum of

the two steps shown in Fig. 5.6(b). The position of this step between 1.25 and 1.35
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K is consistent measured reported values for the critical temperature of thin film

aluminum [48, 49]. The smaller step can be attributed to the bond pads, which are

made of an Al-Ti-Au trilayer known to superconduct below 700 mK [50].

Without a direct 4-wire measurement, it is difficult to speculate whether both

resistance steps are due to the nanoresonator. It is possible that the existance of

two steps is due to the aluminum leads from the bond pads to the nanoresonator

having a different critical field than the nanoresonator itself. However, since there is

not enough evidence to make this claim conclusively, I will simply use the combined

sum of both steps as an upper bound.
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Both samples are expected to have a bare mass of about 2 × 10−15 kg. From

Eq. 5.2 and Eq. 5.3 (with the Young’s modulus of aluminum, YAl, assumed to be 65

GPa), we expect electromechanical Q’s in the normal state of 30,260 and 14,753 for

samples 4 and 5, respectively. These values should be the upper bound for Q in the

normal state, yet we observe Q’s about 6 to 15 times larger.

5.2.2 Loading

The discrepancy in Q between theory and experiment becomes even more

pronounced if we take into account loading from the external measurement circuit.

Part of the dissipation in Fig. 5.6 results from energy being dissipated in the external

circuit and is not indicative of the intrinsic losses in the nanoresonator [8]. To see

how loading affects the overall quality factor, we put a complex external impedance

Rx + iXx in series with the RLC model of the beam impedance (see Fig. 5.8). The

loaded Q is given by

1

QL

=
1

Q
+

V 2
GC2

G

ω0d2M
Rx (5.5)

We made several measurements of Q vs. VG at different magnetic fields for

sample 4. In Fig. 5.9, I plot 1/Q vs. V 2
G/ω0. The intercept of these plots, shown

in Fig. 5.10, should give the dissipation without loading. Except for the zero field

case, the intercepts give an intrinsic Q of around 500,000. The analysis performed

here assumes that a) Rx(ω0) does not vary appreciably over the bandwidth of the

mechanical resonance, which is a valid assumption given Q/QT ∼ 103 and b) Rx(ω0)

does not vary much as the beam frequency shifts with VG, an effect explained in the

81



Cm

Rm

Lm

Zext

V(t)

I(t)

Figure 5.8: General loading model for capacitive detection.

appendix and shown in Fig. 5.11. In Fig. 5.12, I show the relative frequency range

of the mechanics to the tank resonance at each field. It is clear that assumption

(b) is not valid for B=0 Tesla, which may explain the difference in intercept at that

field.

5.2.3 Temperature Dependence

For completeness, we also show the temperature dependence of the quality

factor of samples 4 and 5. The dissipation vs. temperature is not expected to exhibit

a discontinuity at the superconducting transistion as it should vary smoothly with

the number of thermally excited quasiparticles, which goes as e−∆/kBT [18]. The Q

above TC is consistent with the value predicted for electromechanical noise, however.
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Chapter 6

Conclusion

6.1 Discussion of Results

Looking again at the data, Fig. 5.3 indicates a strong agreement between

theory and experiment. The only adjustable parameters for the fits are the mass of

the resonator and the Fermi momentum of the conducting medium.

On the other hand, Fig. 5.4 shows a clear dependence of Q on mode temper-

ature, which is not explained by the theory. This temperature dependence argues

that the nanoresonator is coupled to another thermal bath in addition to the electron

gas. The total force on the nanoresonator mode is proportional to its temperature,

Tm, over its quality factor Qm. Assuming the nanoresonator is coupled to the elec-

trons at temperature Te with dissipation Qe and a second bath we temperature Tp

and dissipation Qp, we have

Tm

Qm

=
Te

Qe

+
Tp

Qp

(6.1)

and

Qm =
QeQp

Qe + Qp

(6.2)

Figure 5.2 strongly suggests that the mode temperature follows the electron gas

temperature, Tm = Qm. The question is then how does it attain that temperature?

Is heat being transferred directly from the electron gas, or from an intermediary
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source that itself is heated by the electron gas? Looking at Eq. 6.1 and Eq. 6.2, one

possibility is that Qe >> Qp, so that Tm = Te and Qm = Qe. However, in samples 1

and 2, the quality factor dropped by a factor of two over the range of temperatures

studied, suggesting that Qp is at least of the same order as Qe. Also, sample 3 had

a quality factor about three times lower than that predicted for electromechanical

dissipation alone, yet still exhibits good agreement between mode temperature and

predicted average electron temperature.

We next suppose that Qp = Qe and Tp << Te. In this scenario, we would be

left with Tm ' Te/2.

Thus it appears that, at least at higher bias currents, there is another source

of dissipation coupled to the nanoresonator with temperature near Te. We cannot

be sure where this dissipation comes from, but one possible source to consider is

the phonon gas. Normally, we would expect the phonon gas to stay cool relative to

the electron gas, since electron-phonon coupling is very weak at low temperatures,

giving rise to the ”hot electron” effect [51]. However, even if very little heat is

transferred to the phonon gas from the electrons, it will still heat up if thermal

conduction out through the nanoresonator is even weaker.

To investigate this possibility, I consider a simple thermal circuit for the sys-

tem, shown in Fig. 6.1. Here I assume that the bath temperature is Tb = .03 K

and

• Q1 = I2R, The power dissipated in the electron gas, I2R, taken to be deposited

at the center of the beam.

87



I

Electron Gas (Te)

Phonon Gas (Tp)

Bath (TB)Re-p

Re-B

Rp-B

Q1

Q2

Q3

Q4

Figure 6.1: A simple thermal model for the nanoresonator.

• Q2 = 2L0/R×(T 2
e −T 2

b ), The power flowing from the electron gas out through

the leads (Weidemann-Franz). L0 is the Lorenz number, equal to 2.45× 10−8.

The factor of 2 takes into account that diffusion can occur in either direction

with resistance R/2 from the center.

• Q3 = ΣV (T 5
e − T 5

p ), The power from the electrons to the phonons through

electron-phonon coupling. Σ is taken to be the empirical value 2× 109 [52].

• Q4 = (4π2k2
B)/(3h)× (T 2

p − T 2
b ), The power from the phonon gas to the bath

through 8 times the quantum of thermal conductance (two directions, 4 modes

per direction).

I solved this system numerically for the temperatures of the electron gas and phonon
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gas and found the results shown in Fig. 6.2.

While a complete model would have to take into account the fact that the

dissipated power is distributed along the length of the beam, the results do indicate

that at the higher bias currents, the phonon temperature can follow the electron

temperature.

Another possibility that cannot be ruled out by the data is that Shytov et

al. have overestimated the direct coupling between the electrons and the resonator

mode. In this scenario, the mode temperature would still follow the temperature of

the electron gas because it is coupled to the phonons, which themselves are heated

by the electron gas. The lack of a change in Q at the critical field for the aluminum

resonators provides some support for this assertion.

In the end, it is difficult to ignore the quality of agreement between theory

and experiment for the electromechanical noise itself. In our experience, the force

noise due to impurity scattering of conduction electrons is well predicted by Shytov

et al., with the role of dissipation requiring more study.

6.2 Suggestions for future work

Because the electromechanical force noise is predicted to be independent of

geometry, future efforts to observe it should optimize their devices to suppress heat-

ing of the phonon gas. Making the nanoresonator as short as possible, so that hot

electrons are able to diffuse out the leads before scattering off a phonon, would help

in this regard. Figure 6.2 suggests that future efforts should concentrate on lower
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bias currents, in the region where the phonon gas temperature is still relatively flat

while the electron gas has already started to increase its temperature linearly.
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Appendix A

Appendix

Here I describe in more depth our research in regards to the capacitive detec-

tion technique. In the first section, I show how we are able to succesfully model the

behavior using the equivalent circuit model described in Chapter 2. I then demon-

strate how this technique can be applied to the readout of arrays of resonators. The

third section briefly deals with parametric amplification. Finally, I conclude with a

look at a linear coupling between transverse mechanical modes.

A.1 Testing of the Capacitive Detection Model

To test the implementation of our capacitive detection scheme we used the

measurement setup shown previously in Section 4.2 and shown in Fig. 4.17. Mea-

surements were performed in a vacuum probe (Fig. A.2) immersed in liquid helium

at 4 K. The sample chip was mounted in the probe in a homemade sample package

and wirebonded to SMA connectors leading to the readout cables (Fig. A.1).

With VNR set at 15 V, we used the network analyzer as the drive source and

swept the frequency through the beam’s resonance. The measured signal was the

reflected voltage. The network analyzer divides this signal by the input signal, giving

the reflection coefficient

Γ11 =
Z − 50

Z + 50
(A.1)
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Figure A.1: Picture of sample in sample package. The tank
circuit is composed of two chip inductors and a small length
of twisted pair serving as the capacitor.

Figure A.2: Picture of 4.2 K probe.
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Figure A.3: Reflected signal as a function of drive frequency.
The red line is a fit using the circuit model shown in Fig. A.5.

Figure A.3 shows the response of the reflected signal as the drive frequency is swept

through the mechanical resonance. A measurement with a wider frequency span is

shown in Fig. A.4.

The red curves in Fig. A.3 and A.4 are fits, both using the same circuit model,

shown in Fig. A.5. This model incorporates the beam, gate and tank impedances, the

same as shown in Fig. 2.4, as well as the nonzero resistance of the tank inductor, RT ,

and a lumped element RLC model for the impedance of the coaxial line in the probe.

The source resistance, RS, is 50 Ω. Also, there is -22 dB of attenuation added to

the model to account for the net result of the attenuation of the drive signal, Vs, the
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Figure A.4: Wider frequency sweep of the reflected signal
showing the response of the tank circuit. The mechanical
resonance can be seen as a sharp central peak.
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Lm 4.94 H
Cm 28.1 aF
Rm 571 kΩ
LT 33 µH
CT 4.21 pF
RT 470 Ω
Lc 100 nH
Cc 40 pF
RT 3 Ω

Table A.1: Relevant dimensions for dissipation measurement
devices.

Figure A.5: Full circuit model for the measurement setup
shown in figure 4.17.

insertion loss of the directional coupler and the gain from the readout amplifier. The

circuit element values for the model are given in Table A.1. The electromechanical

impedance values are derived from beam parameters: M ' 1.2 × 10−15 kg, Q '

26500, ω0/2π ' 11 MHz, CNR ' 54 aF and d ' 180 nm.

On resonance, the impedance seen by the network analyzer is the transformed

electromechanical impedance (Eq. 2.12) plus the tank resistance, RT (in our case,

about 600 Ω). Off resonance, the impedance is simply RT . I can calculate the peak
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height by subtracting the reflection coefficients for these two impedances.

peakheight = Γ11(ω0)− Γ11(background) (A.2)

=

Z2
LC

Rm
+ RT − 50

Z2
LC

Rm
+ RT + 50

− RT − 50

RT + 50

=
100Z2

LC

RmR2
T

P =
100Z2

LCC2
GQV 2

NR

d2Mω0R2
T

(A.3)

In Fig. A.6, I plot the measured mechanical peak height divided by Q versus the

applied bias voltage, VNR. The V 2
NR dependance implied by equation A.3 is clearly

demonstrated.

Increasing the bias voltage, VNR, not only increases the height of the reflectance

peak, but also affects the frequency and quality factor of the mechanical resonance

as well. These affects are seen in Fig. A.7

The frequency shift of an electromechanical resonator coupled to a nearby gate

is a well-known effect and allows the resonator to be used as a sensitive electrom-

eter [53]. The frequency of the mechanical resonance is determined by its spring

constant and its mass through the relation
√

K/M . The spring constant is found

from k = d2U/dX2, where the energy U is in two parts, the elastic energy stored in

the lattice giving the spring constant in Eq. 1.7, as well as the energy stored in the
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Figure A.6: Mechanical response amplitude vs. bias voltage
VNR. The data is scaled by the quality factor Q at each point
to account for loading at higher bias voltages. The red line is
a fit using the model in Fig. A.5.
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Figure A.7: Frequency and quality factor of mechanical res-
onance vs. bias voltage. Solid lines use parameters given in
text. Dashed lines are best fit lines.
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capacitance between the beam and gate. The effective spring constant is then

Keff = Kelastic + Kelectrostatic (A.4)

= K − V 2
NR

d2C(X)

dX2
(A.5)

Keff ' K − V 2
NR

CNR

d2
(A.6)

Where again, I have used X/d << 1. The resonant frequency is then calculated

from

ωm =

√
Keff

M
(A.7)

Expanding about KC/K << 1, I find

ωm = ω0 −
1

2

CNR

Md2ω0

V 2
NR (A.8)

The bias voltage also affects the loading contribution to the quality factor as

discussed in Chapter 5. There, it was shown how the dissipation 1/Q goes as V 2
NR.

The quadratic behavior of both the frequency and dissipation are demonstrated in

Fig. A.7.

A.2 Capacitive Detection of Nanomechanical Resonator Arrays

One of the most important advantages to the capacitive detection technique

is its suitability for the read-out of arrays of nanoresonators. As a proof of principle

test of array read-out, we measured a device consisting of two separate banks of 10
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Figure A.8: SEM photo of two arrays of 10 resonators each
with schematic showing ability to select which array of res-
onators is measured. The two arrays share a read-out circuit,
but can be biased individually.

beams each. Both arrays are connected to a single gate and tank circuit read-out

line, but can be biased individually, as shown in Fig. A.8. By choosing which array

to apply a non-zero bias voltage to, we could choose which set of nanoresonators we

observed.

When measuring a single array, the essential point is that off resonance the

mechanical impedance is quite high, so that as long as the nanoresonators are sep-

arated in frequency (which is nearly always the case due to the beams’ high quality

factors and sensitive frequency dependance on minor variations in fabrication) a sin-

gle mechanical resonance will not be appreciably loaded by the other nanoresonators

sharing the circuit. Figure A.9 demonstrates that we can successfully measure sev-

eral resonances from each array.

The number of nanoresonators that can be read-out by a single tank circuit
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Figure A.9: Demonstration of array resonances.
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is mainly determined by the ratio of the nanoresonator quality factor to the quality

factor of the tank circuit, which in our experiments is typically on the order of

103 − 104. For an application such as frequency-based molecular mass sensing, for

which having the ability to read-out multiple nanoresonators functionalized to be

sensitive to different molecules would be attractive, the nanoresonators would need

to be separated in frequency enough to allow for the necessary frequency shifts. A

single molecule, for instance, is expected to shift a nanoresonator’s frequency by

∼ 10− 100 Hz [4].

A.3 Parametric Amplification

Having a nearby gate electrode capacitively coupled to the nanoresonator is

also ideal for a form of amplification known as parametric amplification. There

are two types of parametric amplification, degenerate and non-degenerate. In the

degenerate case, a parameter of a resonant system is modulated at twice the reso-

nance frequency with the result that energy is “pumped” into the system [54]. This

amplification only supplies energy to oscillations in phase with the pump.

In mechanical resonators, modulating the spring constant at 2ω0 increases the

amplitude of the mechanical oscillations. To show that we could achieve gain with

this method, we used the setup shown in Fig. A.10. The resonator was driven and

detected using the magnetomotive technique [8], while a small AC voltage at 2ω0

was sent to the gate to modulate the spring constant through Eq. A.6.

For pump voltage Vp and relative phase between pump and drive θ, the gain
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Figure A.10: Schematic of measurement setup for testing
parametric amplification.

is given by [55]

G(θ) =
cos2θ

(1 + Vp/VT )2 +
sin2θ

(1− Vp/VT )2 (A.9)

where VT is the theshold pump voltage above which the system is excited into self-

oscillation. Figures A.11 and A.12 show the measured gain of the system vs. the

pump phase and amplitude, respectively. The fit uses Vp/VT = 0.68. A rough

estimate for this ratio was 0.83.

A.4 Coupled Transverse Modes

Throughout this thesis, I have only dealt with the fundamental transverse

mode of a nanoresonator moving in the plane of the substrate: the in-plane mode.

The detection schemes described are most sensitive to this mode. There is however,

another, perpindicular mode: the out-of-plane mode. In the linear regime, the two

modes are independent of each other and obey Eq. 1.5. However, if we include

104



- 2 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0

0 . 5

1 . 0

1 . 5

2 . 0

2 . 5

3 . 0

3 . 5

Ga
in

P h a s e  ( D e g r e e s )

Figure A.11: Gain vs. relative phase between drive and
pump signals.
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Figure A.12: Gain vs. pump signal amplitude.
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the effect of tension, the modes are governed by a system of coupled differential

equations

M

(
d2X

dt2
+

ω0,x

Qx

dX

dt

)
+ KxX + K3(X

3 + Y 2X) = Fx (A.10)

M

(
d2Y

dt2
+

ω0,y

Qy

dY

dt

)
+ KyY + K3(Y

3 + X2Y ) = Fy (A.11)

where X and Y refer to the in-plane and out-of-plane modes, respectively. K is the

usual spring constant that has been used throughout this thesis and can include the

electrostatic contribution given in Eq. A.6. It can be different for the two modes,

since it depends on the geometry of the sample relative to its motion. The frequency,

ω0, is the resonant frequency without tension. K3 is the nonlinear spring constant

given by

K3 =
AE

2L

[∫ L/2

−L/2

(
du(z)

dz

)2

dz

]2

(A.12)

and describes the effect of tension of the beam as it is stretched when it undergoes

displacement from its equilbrium position. The first nonlinear term in each equation

is the effect of tension from that mode’s own motion and gives the well known Duffing

resonator response [56]. The second nonlinear term describes the coupling between

the two modes, i.e. as one mode displaces, the resulting tension in the beam affects

the other mode. For nondegenerate mode frequencies, I can substitute sinusoidal

solutions X(t) = X0 cos ωxt and Y (t) = Y0 cos ωyt. Solving for the mode frequencies

as a function of the amplitudes (ignoring nonsecular terms in X3, Y 3, X2Y and
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Figure A.13: Setup for measuring coupled transverse modes.
The amplifier used to readout the out of plane mode (CLC425)
has a 3 kΩ input impedance (DC resistance of beam ' 1.6
kΩ), while a tank circuit (Lt = 62 µH, Ct = 5.4 pF) is
used to match the impedance of the in plane mode to a 50 Ω
amplifier (Miteq).

Y 2X), I find

ωx = ω0,x

(
1 +

3

8

K3

K1,x

X2
0 +

1

4

K3

K1,x

Y 2
0

)
, (A.13)

ωy = ω0,y

(
1 +

3

8

K3

K1,y

Y 2
0 +

1

4

K3

K1,y

X2
0

)
. (A.14)

We used the setup shown in Fig. A.13 to investigate the mode coupling for

a 16.2 µm by 220 nm by 125 nm nanoresonator with an estimated mass of 1.3 ×

10−15 kg. The sample was oriented in a magnetic field such that the out-of-plane

mode could be easily detected magnetomotively. At low excitation, the resonant
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(a) (b)

Figure A.14: Measured frequency shift of out of plane and
in plane modes versus out of plane (a) and in plane (b) am-
plitudes. Lines are linear fits to the data.

frequencies were found to be ω0,x = 2π 8417243 rad/s and ω0,y = 2π 8741763 rad/s,

giving linear spring constants of (from K = Mω2
0) Kx = 5.3 Nt/m and Ky = 5.75

Nt/m.

We measured the non-linear response and non-linear mode coupling by mea-

suring the change in resonance frequency while either increasing the drive on the

measured mode (Duffing response) or increasing the drive on the orthogonal mode

(frequency pulling).

Figure A.14 shows the results of these measurements. In both cases, the

Duffing and frequency pulling slopes differ by a factor of about 1.2. Assuming that

the spring constants are identical (which they nearly are), then equations (A.13)

and (A.14) predict that this ratio should be 3
2
.

We also measured the mode frequencies versus the bias voltage VNR. The

in-plane mode frequency decreases with increasing bias as in Eq. A.8 and Fig. A.7.
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Figure A.15: Frequency of in-plane and out-of-plane modes
vs. bias voltage VNR. (·)-magnetomotive detection, (×)-
capacitive detection.

In contrast, the out-of-plane mode increases in frequency since ∂2C(X0)/∂Y 2 is

negative. Since in our case the in-plane mode begins at the higher frequency, the

frequencies may be expected to cross at some point. Instead, we find the data shown

in Fig. A.4: an avoiding crossing around VNR = 10 V, indicating a coupling between

the modes. Because the effect did not depend on detection method or drive level,

we conclude that this is not due to the nonlinear effects described earlier, but rather

is a linear coupling.

At least part of this coupling can be attributed to the electrostatics. To take
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into account the presence of both modes we have to need to work with the Taylor

expansion of the capacitance in two dimensions

C(X,Y ) =C(0, 0) +
∂C

∂X
|0,0 X +

∂C

∂Y
|0,0 Y (A.15)

+
1

2

∂2C

∂X2
|0,0 X2 +

1

2

∂2C

∂Y 2
|0,0 Y 2 +

∂2C

∂X∂Y
|0,0 XY

The forces on the two modes due to the electrostatics become

FX =
V 2

2

[
∂C

∂X
|0,0 +

1

2

∂2C

∂X2
|0,0 X +

∂2C

∂X∂Y
|0,0 Y

]
(A.16)

FY =
V 2

2

[
∂C

∂X
|0,0 +

1

2

∂2C

∂Y 2
|0,0 Y +

∂2C

∂X∂Y
|0,0 X

]
(A.17)

The first term in each of the above expressions describe the static deflecting. Note

that if the beam and gate are in the same plane, then the first term in FY will be

zero. The second term gives the electrostatic contribution to the spring constant,

as discussed previously. The third term represents the coupling between the two

modes due to the capacitance.

This coupling leads to the modes not being completely in-plane or out-of-

plane. Magnetomotive experiments with the sample in different orientations in the

magnetic field indicate that the modes do stay linearly polarized, but the planes

they oscillate in rotate as the bias voltage is increased. This coupling may explain

the abnormally high masses found in Fig. 4.15: if some of the motion was not in

the plane of the resonator and SET, the observed motion would be less and give the

impression of a larger mass.
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Axial Length of Natural Frequency
Length (m) Side (m) Frequency f (Hz) Shift ∆f (Hz) ∆f/f

10−6 10−7 1.03× 109 2.4× 10−5 2.33× 10−14

10−5 10−7 1.03× 107 2.4× 10−6 2.33× 10−13

10−6 10−8 1.03× 108 2.4× 10−1 2.33× 10−9

10−5 10−8 1.03× 106 2.4× 10−2 2.33× 10−8

10−6 10−9 1.03× 107 2.4× 103 2.33× 10−4

10−5 10−9 1.03× 105 2.4× 102 2.33× 10−3

Table A.2: Frequency and pulling frequency shift for a
square cross section Si3N4 beam of various dimensions. The
frequency shift is for 1 quanta of motion in the mode that
does the pulling.

Quadratic coupling between two resonators has been proposed as a means of

performing non-linear detection for quantum measurement [57]. Here, we have two

modes of the same resonator coupled through the non-linear spring constant, K3.

The expressions for the eigenfrequencies given in (A.13) and (A.14) indicate the

design a beam must have in order to maximize the non-linear effect of one mode’s

motion on the frequency of the other mode. For instance, as the square of the

in-plane amplitude increases, the out of plane frequency goes as K3/(MK1,x)
1/2.

Using the expressions for K and K3 and considering a homogeneous prismatic beam

(so EIx = Ewh3/12, where h is the thickness in the direction of the out of plane

mode and w is the width), we find that the frequency shift goes as L−2h−1. Thus,

a short narrow beam will maximize the nonlinear coupling between the two modes.

Table A.2 shows the frequency shift expected in one mode of a square cross-section

resonator for one quantum in the other mode. These shifts are not observable with

current technology.
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