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Nonlinear magnetization dynamic process in nano-scale magnetic systems is

of great scientific interests for its application to magnetic recording technology and

spintronic devices. In the dynamic process, thermal fluctuation effects are of crit-

ical importance since they are directly related to long term reliability of magnetic

devices. Recently, a novel approach to modeling stochastic magnetization dynamics

has been proposed[1, 2, 3]. In this approach, thermal bath effects are accounted

for by introducing a jump-noise torque term into the precessional magnetization

dynamics equation. In this dissertation, we develop a Monte Carlo type numeri-

cal technique for implementation of the approach. There are two central elements

of our numerical technique: a “midpoint” finite-difference scheme for integration

of deterministic precessions and a “self-scattering” scheme which results in time-

homogenization of a jump-noise process. The numerical technique unconditionally

preserves the micromagnetic constraint and appreciably simplifies the random com-

ponent of Monte Carlo simulations. We perform and illustrate numerous Monte



Carlo simulations in the dissertation using numerical examples. The Monte Carlo

simulations are ideally suited for implementation on GPUs since they are intrinsi-

cally parallelizable in the sense that different realizations of stochastic magnetization

dynamics can be computed concurrently. Therefore we develop a parallel algorithm

and implement it using an Nvidia GPU card. A speed-up factor of more than 200 is

achieved using this GPU implementation in comparison with the tranditional CPU

single threaded implementation. Furthermore, we apply the jump-noise process

driven magnetization dynamic equation to study random magnetization switching

induced by thermal fluctuations. Numerical results demonstrate that the magneti-

zation switching rate has a very different temperature dependence at relatively high

and very low temperatures. The high temperature switching conforms to the Ar-

rhenius law of thermal activation, whereas the low temperature switching has many

features traditionally attributed to the phenomenon of macroscopic magnetization

tunneling. The two temperature dependent regimes emerge directly from the prop-

erties of a jump-noise process while no quantum considerations are involved in our

approach. Finally, we study the magnetization dynamics at elevated temperatures.

We extend the jump-noise process driven magnetization dynamics approach and

derive a generalization of the classical Landau-Lifshitz equation to describe magne-

tization dynamics around Curie temperature where the traditional micromagnetic

constraint is not valid. The longitudinal and transverse damping terms in the gen-

eralized equation emerge directly from the mathematical structure of a jump-noise

process which accounts for interactions with thermal bath.
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Introduction

The study of magnetization dynamics in nano-scale magnetic materials has

been the focus of considerable research for many years. This interest is driven by its

theoretical importance as well as by its impact on the rapid development of scientific

and engineering applications, including ferromagnetic resonances, hard disk drives

and spin-torque nano-oscillators.

Magnetic recording is one of the most important examples of magnetic ap-

plications. The first idea of using magnetic materials for recording came out more

than one hundred years ago when Oberlin Smith suggested in 1878 to use a silk or

cotton thread impregnated with steel powder to record sound as a magnetic signal.

This is exactly the idea on which modern magnetic recording is based. Over the

next century, this idea was further developed. A audio tape cassette was success-

fully invented in 1963, and since then tape recorders became popular as consumer

products[4]. The first magnetic hard drive was produced in 1956 when IBM created

the IBM350 computer that incorporated a hard drive. This hard disk had a total

capacity of 5 Mb consisting of 50 disks with an areal density of 2Kb per square inch.

In the following sixty years, rapid development of computers has pushed the hard

disk drives to achieve larger capacity, faster read/write speed, better stability and

lower price. Nowadays, commercially available hard disk drives can store 3Tb or

more and the areal density has increased to beyond 500Gb per square inch.

Figure 1 is a schematic illustruation of the principle of a magnetic hard disk

drive. The recording medium is made of thin-film ferromagnetic materials. Fer-

romagnetic materials have spontaneous magnetization and the recording medium
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Figure 1: Schemtic structure of a hard disk drive

consists of a large number of small sized grains. In each grain the magnetization

can have two distinguished stable states, where their orientations are antiparallel

to each other. Due to this property, the orientation of the magnetization can be

recorded as a bit of information. How the data is represented by the magnetic ori-

entations is determined by the encoding scheme. Figure 1 shows a typical scheme to

encode binary data where combinations of the directions of two neighboring grains

can be coded to represent logical 0 and 1. This is the principle of data storage in

a maganetic hard disk drive. The data can be rewritten and retrieved from the

recording medium. Writing data to the recording medium is achieved through a

writing head. During the writing process, voltage is applied to the head to induce

current flows in the writing coil which generate a magnetic field at the gap and force

the magnetization orientation at the magnetic bit to align with the magnetic field

created at the gap. When the voltage is positive, the magnetic bit is polarized in

one direction. When the voltage changes to negative, the magnetic field induced in

the media also changes direction. The reading process utilizes a separate reading

head. The reading head is a detector capable of converting magnetization orienta-
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tions back to electrical signals. Currently the widely used reading head relies on

the giant magneto-resistive (GMR) effect. The GMR effect was discovered in 1988

by Peter Gruenberg and Albert Fert, who won the 2007 Nobel Prize in Physics for

this discovery. The GMR reading head is constituted by a multi-layers structure:

two layers of ferromagnetic materials separated by a nonmagnetic metal spacer.

One ferromagnetic layer is called the pinned layer which has a fixed magnetization

and the other ferromagnetic layer is called free layer since its magnetization can

change freely. Exchange interaction in magnetic materials tends to align nearby

magnetization in the same direction. Consequently, when the head moves over the

recording medium, the magnetization orientation in the free layer is influenced by

the magnetic orientation of magnetized bit on the recording medium. Due to the

GMR effect, change of the magnetization orientation in the free layer will induce

a significant change in the electrical resistance of the multi-layers structure. When

magnetization in the free layer and magnetization in the pinned layer are parallel,

the electrical resistance is relatively low. Conversely, when they are antiparallel,

the resistance is relatively high. Thus, by observing the electrical resistance of the

GMR head, the information stored on the recording medium can be recognized.

One of the main challenges of magnetic storage devices nowadays is how to

achieve higher recording density, faster read/write speed and better thermal reliabil-

ity at lower costs. The recording density, speed and reliability are not independent

issues and they are all related to the dynamic processes of magnetic materials. The

areal density affects the reliability since a reduction in the size of the bit leads to a

reduction in the energy barrier which separates the two magnetization states rep-
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resenting logical 0 and 1 respectively. The height of the energy barrier determines

the thermal stability of the written information. As the space required by a bit of

information in a magnetic storage device shrinks, the effects induced by thermal

fluctuations become increasingly important. When the energy barrier is comparable

to the thermal energy, the magnetization becomes unstable and the inversion of the

magnetization by thermal fluctuations is likely to occur. This effect is known as

superparamagnetism and the corresponding limitation of the density is called su-

perparamagnetic limit. Superparamagnetic effect can cause spontaneous switching

of the magnetization, which modifies the stored data and results in data loss. Ther-

mal fluctuations tend to destabilize the configuration of the magnetized bit. As a

result, the smaller the size of the bit, the more likely a magnetization inversion will

occur. In addition, as the areal density increases, the demand for higher write/read

speed increases. Since the data writing speed is limited by the magnetization switch-

ing time, it is crucial to understand the magnetization dynamic processes for the

optimal design of magnetic recording media. In this vein, my dissertation helps

understand the time evolution of magnetic properties in magnetic particles and the

magnetization reversal mechanism under various conditions, which shed light on the

fundamentals of magnetic materials and the magnetization dynamic process.

Magnetic recording technology has been developing rapidly and several new de-

signs have been invented recently. One such technology is the perpendicular record-

ing. Originally the hard disk drive designs implemented longitudinal recording,

where the magnetized bits were oriented horizontally and in-plane of the thin-film

magnetic disk. More recently, a new perpendicular recording design has been incor-
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Figure 2: Recording medium structure of longitudinal recording and perpendicular
recording

porated which aligns the magnetized bits vertically. This vertical design allows for

closer magnetic domain spacing thus can achieve higher areal density than longitudi-

nal recording. However, decreasing the size of a bit beyond the superparamagnetic

limit could affect the reliability of the data stored. As pointed out earlier, when

bit sizes are very small, superparamagnetic effect causes magnetization orientation

to be unstable under the influence of temperature. Figure 2 shows schematically

the difference between both recording solutions. The first commercially available

hard disk drive using perpendicular recording was fabricated by Toshiba in 2005.

It stores 40 GB on a single 1.8-inch platter and the areal density of this drive is

133Gb per square inch[5]. Another new technology of magnetic storage devices has

being recently developed to enable future magnetic storage densities of up to 1000

Gb per square inch or more. This new approach is heat-assisted magnetic recording

(HAMR). In the perpendicular recording the area to store a single bit is limited by
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the superparamagnetic effect. To store data reliably for very small bit sizes, the

magnetic medium must be made of a material with a very high coercivity, such as

iron platinum alloy. However, since the bit size is very small and the coercivity is

very high, the magnetic field used for writing data itself may not be strong enough

to reverse the magnetization orientation so it can not write data to the disk. This

difficulty can be overcome by raising the temperature of the magnetic medium where

data is stored. This is achieved by applying an ultrafast pulsed laser locally to the

magnetic grain so that the temperature at that region can go up to very close to the

Curie temperature. In this way, the coercivity of the magnetic storage medium at

the bit is lowered and a realistically achievable magnetic write field can be used to

write data to the medium[6]. Understanding the magnetization dynamic processes

in these techniques will greatly help optimizing the designs.

Figure 3: Schemtic illustration of spin torque nano oscillator

Besides novel designs of magnetic storage devices, another interesting phe-

nomenon being discovered recently is the spin torque driven magnetization dynam-

ics. Traditionally a direct current can only induce a constant voltage since the
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electrical resistance has a relatively constant value. A nano-sized device has been

developed so that a direct current can induce an oscillating voltage. The oscillation

frequency is several gigahertz and can be tuned by the intensity of the current. This

device is called spin torque nano oscillator (STNO)[7]. The design of the STNO is

based on two spintronic effects: the spin torque and giant magneto-resistance effect.

STNO has a multi-layers structure: there are two layers of ferromagnetic material

separated by a nonmagnetic metal spacer. The incoming current is spin polarized

by a first ferromagnetic layer which is the pinned layer. After flowing through a

nonmagnetic spacer, the spin polarized current reaches the second ferromagnetic

layer which is the free layer. The spin polarized current can induce the magnetiza-

tion in the free layer to precess with frequencies in gigahertz range. The gigahertz

oscillation of the magnetization can be detected as an AC voltage due to the giant

magneto-resistance effects of the structure. The device resistance varies as the co-

sine of the angle formed by the magnetization vectors of two ferromagnetic layers

varies, and as a result the output voltage varies. This phenomenon opens a new

field known as spintronics. It is of great scientific interests to investigate spintronic

effects since spintronic devices may potentially substitute the semiconductor devices

in the future.

In addition to being applied to data recording and spintronic devices, nano-

scale magnetic materials have improved the performance of many other applications

such as sensors and actuators. More recently, the nano-scale magnetic materials are

increasingly being used in applications in the life sciences and medicine techniques.

For example, the magnetic nanoparticles can be used for cell labeling and drug
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delivery[8].

To conclude, nano-scale magnetic structures have various scientifically inter-

esting and technologically important properties. Therefore, the understanding of

nanostructures and the study of their magnetic properties are of extreme signifi-

cance. Whereas experiment on magnetic materials is a good way to understand

their properties, a quantitative modeling of magnetic properties in nanostructured

materials is also necessary to study magnetic technology. Theoretical analyses and

numerical modeling of magnetization dynamics properties can help understand the

magnetization dynamics mechanisms at extremely short or long timescales or at ex-

tremely low temperatures, which are normally experimentally not accessible. For ex-

ample, experimental studies have difficulty in controlling magnetic properties down

to the nanometer scale or close to absolute zero or a few kelvins in temperature[9].

Modeling of the dynamics processes on these scales poses no such problem. Mag-

netization dynamics modeling can deal with problems ranging from short timescale

nonthermal precessional motions in nanoseconds to long timescale thermal stability

up to years. It is of great interest to develop appropriate thermal and dissipative

mechanisms and numerical models which could allow evaluation of the magnetization

dynamics at both timescales. Since the spatial scale of magnetic recording media is

in the order of hundred nanometers, magnetic properties of recording devices have

to be analyzed by theoretical models with appropriate resolution. Moreover, the

fast development of computational ability of computer processors in the last decade

makes it possible to model complicated magnetic systems in acceptable time.

Microagnetic theory deals specifically with the behavior of magnetic materials
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at sub-micrometer length scales. This theory started with a paper by Landau and

Lifshitz in 1935[10] on the structure of the domain wall between two antiparallel

magnetic domains. William Fuller Brown Jr. contributed several works on antipar-

allel domain wall structures around 1940[11, 12, 13] and gave this theory the name

micromagnetics and used it as the title of his book in 1963[14]. In his book [14],

Brown used a continuous magnetization vector to describe the transition region be-

tween magnetic domains instead of taking account of individual atomic moments as

Landau did in [10]. The micromagnetic theory neglects the microscopic details by

explaining magnetic properties and magnetization dynamic mechanisms at an in-

termediate length scale between magnetic domains and crystal lattice sites[15] and

assuming that the magnitude of the magnetization vector for each point inside a

magnetic structure is preserved.

In chapter one, the micromagnetic theory and magnetic interactions within

magnetic systems are introduced. Then the micromagnetic model and the classi-

cal magnetization dynamics equations are discribed in details. Landau-Lifshitz[10]

and Landau-Lifshitz -Gilbert[16, 17] equations are the most widely used equations

for description of magnetization dynamics. Dynamics described by these equations

contains precessional motion and transverse damping motion. The Landau-Lifshitz

and Landau-Lifshitz-Gilbert equations are mathematically equivalent to each other

and they are consistent with micromagnetic constraints. The constraints hold valid

unless the temperature of the magnetic system goes very close to the Curie temper-

ature. At elevated temperatures, Landau-Lifshitz-Bloch equation[18] can be used

as an alternative to describe magnetization dynamics. The Landau-Lifshitz-Bloch
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equation is a macroscopic equation for a ferromagnet at elevated temperatures and

contains both transverse and longitudinal relaxation terms. It interpolates between

the Landau-Lifshitz equation at relatively low temperatures and the Bloch equation

at very high temperatures close to the Curie point. Thermal fluctuations are of great

scientific importance since they are one of the dominant causes of intrinsic writing

errors in magnetic data storage devices, and the stability of the information stored

is of critical importance particularly as bits are made smaller and media are made

thinner. The traditional approach to modelling magnetization dynamics in pres-

ence of thermal bath effects is presented in chapter one where a white-noise torque

term is added to the classical Landau-Lifshitz or Landau-Lifshitz-Gilbert equation

to account for the thermal effects. This approach was developed by Brown[19] in

1963 and has been widely used since then in modeling magnetization dynamics with

thermal fluctuations. Recently, a different approach has been proposed[1, 2, 3] in

which the thermal bath effects are accounted for by using a jump-noise torque term

in the precessional magnetization dynamics equation. In this chapter it will be

shown that this approach has clear advantages over the traditional one and both

the damping and the fluctuation effects emerge from a single random process term:

the jump-noise process.

In chapter two, we develop a numerical technique for this approach. The nu-

merical technique has two central elements: a “mid-point” finite-difference scheme

and a “self-scattering” technique. The mid-point finite-difference scheme is for nu-

merical integration of deterministic precessional magnetization dynamics. Due to

the mathematical structure of the mid-point finite-difference scheme, it uncondi-
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tionally preserves the micromagnetic constraints in numerical simulations. This is

a unique feature of the mid-point finite-difference scheme, since other numerical

methods for differential equations pay little attention to the preservation of the mi-

cromagnetic constraints and the conservation of magnetization magnitude may be

corrupted in the long run. The second central element of the numerical technique

is the self-scattering technique used to determine the random scattering events. In-

stead of evaluating the scattering time using a complicated integral equation, an

additional random scattering process is introduced into the dynamic equation and

it results in zero jump of magnetization. Introduction of the “self-scattering” events

leads to a time-homogenization of the jump-noise process, as a result, this technique

appreciably simplifies the random component of Monte Carlo simulations. Then a

Monte Carlo simulation of random magnetization dynamics driven by a jump-noise

process is presented and some examples of Monte Carlo simulations are given to

demonstrate the accuracy and efficiency of the numerical technique[20].

A main drawback of the CPU-based Monte Carlo simulation is the extensive

computational burden. In chapter three, we develop a parallel algorithm to speed

up the Monte Carlo simulations of magnetization dynamics driven by a jump-noise

process by utilizing the computational power of general purpose Graphics Processing

Units (GPUs). GPUs were originally developed for computer graphical processing

but now they have been widely used for scientific computation because of its enor-

mous parallel computational power. The Monte Carlo simulations are ideally suited

for implementation on GPUs since they are intrinsically parallelizable in the sense

that different realizations of stochastic magnetization dynamics can be computed
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concurrently and independently. In our GPU implementation, there are two kernel

functions executed on the GPUs. The first kernel function is used to precompute the

scattering rate in parallel for ten thousand mesh points uniformly distributed over

the sphere. The second kernel function is used to concurrently compute 10752 sep-

arate realizations of random magnetization dynamics. The accuracy and efficiency

of this implementation are illustrated through simulations of thermal relaxations

in uniaxial cobalt nanoparticles to the superparamagnetic state. To compare CPU

and GPU speed, the code developed for the GPU implementation is carefully con-

verted to a CPU equivalent code to perform exactly the same computations as the

GPU code. A speed-up factor of about 200 has been observed in GPU Monte Carlo

simulations in comparison with traditional single-threaded CPU simulations[21].

In chapter four, we apply the Landau-Lifshitz equation driven by a jump-noise

process to study magnetization dynamics for a very wide range of temperatures.

First, we investigate the random magnetization reversals in magnetic materials. For

long timescale analysis, thermal decay of magnetization occurs due to thermal fluc-

tuations which make it possible for magnetization to overcome the energy barrier

and reverse its orientation in magnetic systems. This probability is normally given

by Arrhenius’ law. It has been demonstrated through experimental work[22, 23, 24]

that there exists macroscopic tunneling effect of magnetization. At sufficiently low

temperatures, macroscopic tunneling of magnetization causes the relaxation from

one state to another to be enhanced above the thermally activated rate given by

the classical Arrhenius’ law. We derive a thermal switching model from the jump-

noise driven magnetization dynamic equation, and numerical implementation of this
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model shows consistency with the experimental observations described above. The

high temperature switching agrees with the Arrhenius law of thermal activation,

while the low temperature switching has many features traditionally attributed to

the phenomena of macroscopic magnetization tunneling. And the two different tem-

perature regimes are controlled by the thermal fluctuation through the parameters

of the jump-noise process. Our derivation uses only the Kramers-Brown quasi-local

equilibrium approximation without any additional assumptions, and the two tem-

perature dependent regimes emerge directly from the properties of a jump-noise

process while no quantum considerations are involved[25]. On the other hand, when

the temperature of the magnetic systems is very close to the Curie temperature, the

magnitude of magnetization is not conserved. Since both of the classical Landau-

Lifshitz and Landau-Lifshitz-Gilbert equations are consistent with the micromag-

netic constraint, they are not applicable for magnetization dynamics at elevated

temperatures. For this reason, a generalization of the classical Landau-Lifshitz

equation for the case of magnetization dynamics at elevated temperatures has to be

investigated. A widely used model to describe magnetization dynamics at elevated

temperature is the Landau-Lifshitz-Bloch[18] equation which is derived from the

Fokker-Planck equation and the derivation uses the mean-field approximation. It

is very desirable to develop one such generalization without approximations. We

derive such a generalization based on the approach of describing the thermal bath

effects by a jump-noise process, and the generalized equation coincides with the

Landau-Lifshitz equation at low temperatures and is also valid when the tempera-

ture is very close to the Curie temperature. This equation has both longitudinal and
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transverse damping terms, and the mathematical form of this equation is similar to

the Landau-Lifshitz-Bloch equation. The uniqueness of our approach is that the lon-

gitudinal and transverse damping terms of our generalized equation emerge directly

from the structure of a jump-noise process which accounts for thermal interactions,

which is consistent with the physical origin of damping effects. The explicit formula

of these parameters will be shown[26].

Conclusion is presented in chapter five and future research topics are intro-

duced.
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Chapter 1

The Micromagnetic Model and the Dynamic Equations

To better understand the physics of the magnetization dynamics equations, we

will start this chapter with a brief introduction of magnetization and its interactions

that occur within ferromagnetic bodies at different spatial scales. The expressions

of the energies related to each analyzed interaction are presented. Then the Brown’s

equations describing the equilibrium configurations are derived by imposing micro-

magnetic equilibrium as a ‘stationary point’ of the free energy. As a further step, a

brief overview of the development of micromagnetic dynamic models is presented.

Numerical modeling techniques related to micromagnetic dynamic models are also

explained. Then thermal fluctuations are introduced into micromagnetic dynamic

models because they are crucial for reliability of magnetic storage devices. The

traditional approach to model magnetization dynamics in presence of thermal bath

effects is discussed where a white-noise torque term is added to Landau-Lifshitz or

Landau-Lifshitz-Gilbert equations to account for the thermal effects. A different

approach has recently been proposed[1, 2, 3]. In this approach, the thermal bath

effects are accounted for by using a jump-noise torque term in the precessional mag-

netization dynamics equation. At the end of this chapter it will be shown that this

approach has clear advantages over the traditional one which uses a white-noise

term to account for thermal bath effects.

16



1.1 Magnetization and Micromagnetic Interactions

Micromagnetics deals specifically with the behavior of magnetic materials at

sub-micrometer length scales. This theory started with a paper by Landau and

Lifshitz in 1935[10] on the structure of the domain wall between two antiparallel

magnetic domains. William Fuller Brown Jr. contributed several works on an-

tiparallel domain wall structures around 1940[11, 12, 13] and gave this theory the

name micromagnetics in his book in 1963[14]. He emphasized that in this theory

the microscopic details of the atomic structure were ignored and the material was

considered from a macroscopic point of view by taking it to be continuous.

In micromagnetics, instead of describing the states of individual spins, the

state of the ferromagnet is described by the magnetization M = M(r, t), which is

the magnetic moment per unit volume. It is a function of position r and time t.

Micromagnetics is a continuum theory which means the magnetization can be

regarded as a continuous function of space. When the temperature is well below

the Curie temperature, the strong exchange interaction prevails over all other forces

at the smallest spatial scale. Because of this continuum hypothesis, a fundamental

constraint for micromagnetics is that at a given temperature that is well below the

Curie temperature, the magnitude of magnetization at each point inside a ferromag-

net is preserved and is equal to the spontaneous magnetization. This constraint can

be expressed using the following equation:

|M(r, t)| = Ms. (1.1)

Micromagnetics deals with magnetic interactions arisen in a wide spatial scale,
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going from few nanometers to few microns. In this respect, the micromagnetic

framework includes short-range exchange and anisotropy interactions and long-range

magnetostatic interactions between magnetic moments. All of these interactions

can be described in terms of the micromagnetic free energy g. The micromagnetic

free energy depends on applied field and temperature and can be expressed by the

following volume integral[27]:

g(M,Ha) =

∫
Ω

[
A

M2
s

((∇Mx)
2+(∇My)

2+(∇Mz)
2)+fAN(M)−µ0

2
M·HM−µ0M·Ha]dV.

(1.2)

where Ω is the region that the ferromagnet is occupying, Ms is the spontaneous

magnetization,Mx, My and Mz are components of magnetization in the cartesian

coordinates, fAN(M) is the anisotropy energy density, HM is the demagnetizing

field and Ha is the applied magnetic field.

The first term inside the integral represents the exchange energy. The exchange

interaction deals with spin-spin interactions and it tends to align neighboring spins so

that the exchange energy penalizes nonuniformities in the magnetization orientation.

The constant A is called the exchange stiffness constant. It can be experimentally

identified but it is also possible to be estimated using a theoretical approach[27].

The second term describes crystal anisotropy effects where certain energy-

favored directions exist for a given material. In the absence of an external field,

the anisotropy effect makes the magnetization tend to be aligned along the easy

direction. In a ferromagnet, the easy directions correspond to the minima of the

anisotropy energy density fAN(M), whereas saddle-points and maxima of fAN(M)
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determine the medium-hard directions and the hard directions respectively.

The third term represents magnetostatic energy. The magnetostatic contri-

bution is governed by the field HM , which is determined by solving the following

magnetostatic Maxwell’s equations:

∇×HM = 0,∇ ·HM = −∇ ·M, (1.3)

using appropriate interface conditions at the ferromagnetic surface.

The last term is the energy due to the interaction with the external applied

magnetic field Ha. This energy term is also referred to in literature as the Zeeman

energy.

The micromagnetic free energy may contain additional terms describing other

energy contributions, for example magnetoelastic effects. These additional terms

can be added to model when necessary.

1.2 Micromagnetic Equilibrium

From equation(1.2) we can calculate the free energy, if the magnetization dis-

tribution within the magnetic system is known. For constant external field and

temperature, the micromagnetic equilibria are given by the minima of the free en-

ergy g. In order to find the energy extrema, a variation method has been proposed

by Brown in his book Micromagnetics[14]. This variation method expresses the free

energy variation δg corresponding to an arbitrary magnetization variation δM(r)

subject to the constraint (1.1). The expression of the free energy variation is:

δg(M,Ha) = −µ0[

∫
Ω

Heff · δMdV − 2A

µ0M2
s

∮
Σ

∂M

∂n
· δMdS], (1.4)
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where the effective field is defined as a sum of applied field, demagnetizing field,

anisotropy field and exchange field:

Heff = Ha + HM + HAN + HEX , (1.5)

Here HAN is the anisotropy field derived from the anisotropy energy:

HAN = − 1

µ0

∂fAN
∂M

, (1.6)

and HEX is the exchange field defined as:

HEX =
2A

µ0M2
s

∇M. (1.7)

The effective field also identifies the direction of steepest energy decrease and

can be calculated by means of

Heff = − 1

µ0V
∇Σg. (1.8)

By taking into account that at equilibrium, δg = 0 for any arbitrary δM

consistent with (1.1), the following equations can be derived that at each point in

Ω,

M×Heff = 0, (1.9)

In other words, in equilibrium the magnetization is parallel to an effective

field and the torque on the magnetization vanishes. This equation is known as

Brown’s equation. Using this equation the equilibrium configurations can be found

for any magnetized body without describing how the magnetization reaches equi-

librium during this time. And when using Brown’s equation to find the equilibrium

configurations, it is necessary to check if the solution is for a energy minimum or a

energy maximum, for which situation the variation of energy vanishes too.
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1.3 From Statics to Dynamics

The solution of Brown’s equations gives us the magnetization distribution

in equilibrium. However, real life magnetic systems are hardly ever in equilibrium.

Usually the observed phenomena are time dependent, or, even if they are stationary,

the systems are open due to the exchange of energy or another physical quantity.

When M × Heff 6= 0, the system is not at equilibrium. In order to properly de-

scribe the evolution of the system, dynamic equations are introduced. The most

commonly used deterministic dynamic equations are the Landau-Lifshitz equation

proposed by Landau and Lifshitz in 1935 and the Landau-Lifshitz-Gilbert equation

which is based on the Landau-Lifshitz equation and modified by Gilbert in 1955. It

has been demonstrated that the Landau-Lifshitz-Gilbert equation is mathematically

equivalent to the classical Landau-Lifshitz equation.

1.3.1 Landau-Lifshitz Equation

The Landau-Lifshitz equation is a dynamic constitutive relation that is com-

patible with micromagnetic constraints (1.1) and compatible with Brown’s equa-

tion (1.9) at equilibrium. Namely, these constraints are the conservation in time

of magnetization magnitude and the alignment of magnetization with the effective

magnetic field at equilibrium. The Landau-Lifshitz equation is commonly written

in the following form:

dM

dt
= −γLM×Heff − αLM× (M×Heff). (1.10)

The dynamics described by the Landau-Lifshitz equation consists of two mo-
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tions: precessional motion and damping motion. The first term on the right side

corresponds to the precessional motion where γL is gyromagnetic ratio and deter-

mines the precession rate. The precessional motion can be derived from precessions

of angular momentum of a electron. The magnetization precesses around the mag-

netic field direction and never reaches the equilibrium position unless it already

points in the same direction. The precessional term is a conservative term in the

sense that the precessional motion conserves both the magnetic moment magnitude

and the free energy. It is known from experimental results that changes in the

magnetization decay in finite time. So Landau proposed the damping term in the

form of the second term on the right side. However, this damping cannot be derived

rigorously from basic principles, it is just added by a phenomenological term. The

phenomenological term represents only transverse relaxation since the magnitude of

the magnetization is conserved. This term forces the magnetization rotates towards

the direction of the effective field and eventually becomes parallel to it, reaching the

equilibrium that is a stable state with a minimum of free energy. Parameter αL is

the damping constant which determines the damping rate. This part conserves the

magnitude of magnetization but not the free energy of the system. Thus the equa-

tion as a whole is dissipative and does not conserve the energy, albeit conserving

the magnitude of the magnetization.
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Figure 1.1: Damped precession motion of magnetization according to Landau-
Lifshitz equation

1.3.2 Landau-Lifshitz-Gilbert Equation

Another equation typically used for the description of magnetization dynamics

was proposed by Gilbert. This equation has the following form:

dM

dt
= −γG(M×Heff) +

α

Ms

M× ∂M

∂t
. (1.11)

The Landau-Lifshitz-Gilbert equation is different from the Landau-Lifshitz

equation in the definition of the damping component. The Gilbert damping term

depends on the time derivative of the magnetic field. Similar to the Landau-Lifshitz

equation, the Landau-Lifshitz-Gilbert equation preserves the magnetization magni-

tude.

The Landau-Lifshitz and the Landau-Lifshitz-Gilbert equations are the two

most widely used equations for the description of the damped magnetization motion

and they deal only with transverse relaxation. Such a transverse relaxation model

is valid since the magnitude of magnetization of ferromagnet is conserved as long as

the temperature is not too close to the Curie temperature. In addition, it can be

demonstrated that t1he Landau-Lifshitz and the Landau-Lifshitz-Gilbert equations
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are mathematically equivalent to each other[27]. The Gilbert version is typically

preferred because the damping parameter can be assumed to be proportional to the

intensity of the energy dissipation processes. This gives more physically reasonable

results in terms of the dependence of the relaxation time on the damping parameter

such that it predicts slower motion with increasing damping, whereas for the Landau-

Lifshitz form it is true only for small damping[28].

1.3.3 Numerical Techniques

In recent years there has been a lot of work regarding the existence and regu-

larity of solutions to the Landau-Lifshitz and Landau-Lifshitz-Gilbert equations[29,

30, 31, 32, 33, 34, 35, 36, 37, 38]. The Landau-Lifshitz and Landau-Lifshitz-Gilbert

equations are highly nonlinear and analytical solutions to them exist only for some

special cases. To understand the dynamic process described by this equation, a lot

of attention has been put on numerical modeling of Landau-Lifshitz and Landau-

Lifshitz-Gilbert equations.

Typically, the dynamic problem is first discretized in space by using finite dif-

ference or finite element methods[15]. This process reduces the problem to a ordinary

differential equation. The resulting system requires at least a second order numerical

scheme to obtain correct solution and the Heun method and Runge-Kutta method

are the most widely used schemes[39]. Solving magnetization dynamics requires us

to evaluate the energy term(1.2) which is a number of sums. The computational

effort for n magnetic moments scales as n2 as a result of the demagnetizing energy
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term. Various techniques have been developed to attack this challenge. These in-

clude the direct FFT approach[40], the fast multiple method[41], the hybrid finite

elements and boundary elements method[42], the Ewald summation approach[43]

and the fast Fourier transfrom on multipoles method[44, 45].

There are several software packages available for simulations of the Landau-

Lifshitz equation. They are the Object Oriented MicroMagnetic Framework (OOMMF)

[46, 47] provided by the National Institute of Standards and Technology, Magpar

[61, 62, 48] developed by Werner Scholz and the group of Prof. Fidler and Prof.

Schrefl of the Technische Universitat Wien, Nmag [49] developed by Hans Fangohr,

Thomas Fischbacher and Matteo Franchin from University of Southampton, and

MuMax [50, 51] by Arne Vansteenkiste and DyNaMat group from Ghent Univer-

sity.

1.3.4 Landau-Lifshitz-Bloch Equation

There is an increasing need for higher areal density of magnetic data storage

in hard disk drives. However, in current technology the area to store a single bit is

limited by the superparamagnetic effect. For very small bit sizes, superparamagnetic

effect causes magnetization randomly flip direction under the influence of thermal

fluctuations. To store data reliably for very small bit sizes, the magnetic medium

must be made of a material with a very high coercivity, such as iron platinum alloy.

The only problem with the design is that since the bit size is very small and the

coercivity is very high, the magnetic field used for writing data itself is not strong
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enough to reverse the magnetization orientation and data can not be written to the

disk. This problem can be solved by raising the temperature very close the Curie

temperature so the coercivity of the magnetic storage medium at the bit is lowered

and a realistically achievable magnetic write field can be used to write data to the

medium. Currently, a laser is used to heat the material temporarily and locally.

This technology is named heat-assisted magnetic recording (HAMR) by Seagate,

where the name temperature-assisted recording(TAR) is used by Hitachi.

The classical Landau-Lifshitz and Landau-Lifshitz-Gilbert equations are con-

sistent with the micromagnetic constraint and ignore longitudinal relaxation of mag-

netization dynamics. This restriction is true when the system temperature is well

below the Curie temperature. However, magnetization dynamics in heat-assisted

magnetic recording involves magnetization dynamics with temperature likely moving

very close the Curie point on nanosecond timescales so the classical Landau-Lifshitz

or Landau-Lifshitz-Gilbert equation doesn’t work. In this case, the Bloch equa-

tion may serve as an alternative to the Landau-Lifshitz and Landau-Lifshitz-Gilbert

equations since the temperature of the system is so close to Curie temperature that

the magnetization magnitude is no longer preserved.

The Bloch equation was introduced by Felix Bloch in 1946[52]. It a phe-

nomenological equation used to describe nuclear magnetic resonance and it is written

as follows:

dM

dt
= γM×H0 + H1 +

1

τss
e0 × (e0 ×M) +

e0

τsl
(M0 −M · e0). (1.12)

where H0 is a applied dc magnetic field, H1 is a applied time-harmonic magnetic
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field, e0 is a unit vector along the applied dc magnetic field, and τss and τst are re-

laxation time constants. It is clear from the equation that there are two independent

relaxation terms, one is parallel to the applied field and the other is perpendicular

to it. The relaxation term parallel to the applied field is due to spin-lattice relax-

ation where the magnetization relaxes to the equilibrium saturation magnetization

M0 as a consequence of thermal fluctuation, while the relaxation term perpendicu-

lar to the applied field is attributed to spin-spin relaxation where phase coherence

progressively disappear in the precession of the individual spins[27].

The Landau-Lifshitz-Bloch equation was derived by Garanin[18, 53] for both

classical and quantum average spin polarizations. The Landau-Lifshitz-Bloch equa-

tion is a macroscopic equation for a ferromagnet at elevated temperatures and con-

tains both transverse and longitudinal relaxation terms. It interpolates between

Landau-Lifshitz equation at low temperatures and the Bloch equation at hightem-

peratures. In the derivation, the spin-bath interactions are described by stochastic

Langevin fields and spin-spin interactions are treated within the mean-field ap-

proximation. With the assumption that external field changes slowly, the Landau-

Lifshitz-Bloch equation is derived from the solution of Fokker-Planck equation. The

equation has the following form:

dM

dt
= γHeff ×M +

L‖
M2

s

(M ·Heff)M +
L⊥
M2

s

M× (M×Heff). (1.13)

In this equation, the conservation of the magnetization magnitude is no longer

a constraint. There are two independent relaxation mechanisms (transverse and

longitudinal) for the magnetization components that are parallel and perpendicular
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to the external field and L‖ and L⊥ are the longitudinal and transverse kinetic

coefficients. It is valid beyond the Curie temperature while it coincides with the

classical Landau-Lifshitz equation at low temperatures. Many simulations have been

developed based on the Landau-Lifshitz-Bloch to model magnetization dynamics

near Curie temperatures[54, 55, 56, 57, 58, 59].

1.4 Thermal Perturbations

The classical Landau-Lifshitz and Landau-Lifshitz-Gilbert equations describe

magnetization dynamics at zero kelvin. At nonzero temperature, magnetization

dynamics will be randomly perturbed by thermal fluctuations. Magnetic storage

devices are usually very small such that the influence of thermal fluctuations can

not be neglected. They will lead to random walks in a energy landscape and may

eventually induce the magnetization to overcome the energy barrier and transition

from one state to another. For this reason, thermal fluctuation is a dominant cause of

error in magnetic storage devices and this process has been the subject of much study

recently[15, 19, 27]. We will focus our study in this dissertation on magnetization

dynamics in the presence of thermal fluctuations.

1.4.1 Stochastic Processes

The traditional approach to model thermal fluctuations is to add a white-noise

process term to the classical Landau-Lifshitz or Landau-Lifshitz-Gilbert equation[19,

27, 60]. This approach was first developed by Brown in 1963. The assumption that
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the thermal noise follows a Gaussian distributions is usually due to the central limit

theorem. This is because the random fluctuations are the result of a very large

number of statistically independent random fluctuation events, so the sum of these

effects tends to have a Gaussian distribution.

In order to understand white-noise process, I will briefly review the Wiener

process. The Wiener process is a continuous-time stochastic process and it is also

called Brownian motion after the botanist Robert Brown.

The Wiener process W(t) is a zero mean Gaussian random process and is

characterized by three properties,

1. W(t) satisfies the initial condition: W(0) = 0.

2. W(t)−W(s) is a Gaussian random variable with zero mean and variance

t− s: E[(W(t)−W(s))2] = |t− s|.

3. W(t) has uncorrelated increments: E[(W(t)−W(t′))(W(s)−W(s′))] = 0,

if [s′, s] and [t′, t] are nonoverlapping intervals.

Though the Wiener process is not differentiable, a generalized derivative exists.

And this generalized derivative of Wiener process is called Gaussian white-noise

process. It is defined as follows:

hN(t) =
dW(t)

dt
. (1.14)

The Gaussian white-noise is uncorrelated, independent, and can be charater-

ized by the following properties:

1. E[hN(t)] = 0.

2. E[hN(t)hN(s)] = δ(t− s).
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1.4.2 Stochastic Magnetization Dynamics

In the presence of thermal agitation, magnetization dynamics is usually stud-

ied by introducing appropriate stochastic terms in the Landau-Lifshitz or Landau-

Lifshitz-Gilbert equation to account for the thermal fluctuation effects on the sys-

tem. As discussed above, traditionally the stochastic term added to the Landau-

Lifshitz or Landau-Lifshitz-Gilbert equation is a white-noise process term[19, 27, 60].

And this process is most commonly treated as a random component of the effective

magnetic field and added to the dynamics equation as follows[19]:

dM

dt
= −γM× (Heff + νhN(t))− γα

Ms

M× [M× (Heff + νhN(t))]. (1.15)

where Heff is the deterministic effective field which includes anisotropy, exchange,

magnetostatic and external field interactions, ν is a parameter which controls the

intensity of thermal perturbations. This parameter can be determined by the

fluctuation-dissipation theorem[19, 65]

ν2 =
2αkBT

µ0M2
s V

. (1.16)

From the above equation, we can see that the intensity of thermal perturba-

tions and the damping rate are related to each other. This is consistent with the

physical nature of damping and thermal fluctuation since these two phenomena both

results from the same interaction of the magnetization with the environment. How-

ever, the fluctuation-dissipation theorem relies on the assumption that the response

of a system in thermodynamic equilibrium to a small applied force is the same as its

response to a spontaneous fluctuation[27]. The fluctuation-dissipation theorem is
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only valid for the stochastic magnetization dynamics in the vicinity of equilibrium.

The fluctuation-dissipation theorem is no longer valid when the system is forced out

of equilibrium by the presence of additional interactions such as the application of

magnetic fields or the injection of electric currents.

By considering mathematical properties of Wiener process, the following Stochas-

tic Landau-Lifshitz can be derived:

dM = −γ[M×Heff +
α

Ms

M× (M×Heff)]dt+ νM× dW(t), (1.17)

Equation (1.17) is a stochastic differential equation which has a drift (de-

terministic) and diffusion (noise) terms. The random magnetization dynamic pro-

cess can be understood by solving this stochastic differential equation. There are

two dominating versions of stochastic calculus, the Ito stochastic calculus and the

Stratonovich stochastic calculus. The Ito integral is the usual choice in applied math-

ematics while the Stratonovich integral is frequently used in physics. An expression

can be conveniently converted from an Ito form to an equivalent Stratonovich form,

and vice versa. However, this stochastic equation (1.17) must be understood in the

Stratonovich sense in this case. When it is interpreted in the Ito sense, the mag-

nitude of magnetization is not preserved, ever worse, it blows up in finite time. A

detailed derivation can be found in chapter 10 of Nonlinear Magnetization Dynamics

in Nanosystems[27].

A more generalized form of magnetization dynamics with white-noise term is

the stochastic LLB equation:
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dM

dt
= γHeff×M+

L‖
M2

s

(M ·(Heff)+νhN‖)M+
L⊥
M2

s

M×(M×(Heff +νhN⊥)). (1.18)

This equation is valid even when thermal effects cause the temperature of the

system to increase very close to the Curie temperature.

1.4.3 Numerical Techniques

Numerical simulations of stochastic Landau-Lifshitz equation have been devel-

oped using different choices of stochastic calculus and numerical integration schemes.

The most straightforward method of solving a stochastic differential equation is

the Euler-Maruyama method[63]. It is similar to the Euler method of the determin-

istic case and it is easy to implement. But this stochastic Euler method converges to

the Ito interpretation[63] so it is not applicable for magnetization dynamics analysis.

The Stratonovich sense solution can be obtained by using the Milstein method[63].

This method is also a first order scheme but a numerical technique of at least second

order is required to obtain correct results of the Landau-Lifshitz equation so this

method won’t work either. The proper techniques to solve this equation are the

stochastic Heun method [64] and stochastic Runge-Kutta method. They are com-

patible with the Stratonovich interpretation and are of at least second-order[63, 39].

1.5 Jump-Noise Process Driven Magnetization Dynamics

As discussed above, magnetization dynamics has traditionally been modeled

by introducing a white-noise torque term into the Landau-Lifshitz equation. In this

32



white-noise term approach, two distinct terms must be included in the dynamic

equation: a deterministic damping term of either Landau-Lifshitz or Gilbert form

and a white-noise torque term. However, the thermal interaction is also responsible

for the damping, since fluctuations and dissipation are related phenomena resulting

from the same interaction of the magnetization with its environment. The reason

that two distinct terms are required in equation(1.17) is that the white-noise pro-

cess alone cannot fully and adequately describe the random thermal effects. This

is because the expected value of a white-noise process is always zero. The com-

mon physical origin of these two terms is traditionally accounted for by imposing

fluctuation-dissipation relations. The fluctuation-dissipation theorem is only valid

for the stochastic Landau-Lifshitz dynamics in the vicinity of equilibrium but ques-

tionable when dealing with far-from-equilibrium magnetization dynamics[1]. In ad-

dition, this approach does not show any magnetization dependence of the damping

parameter. For these reasons, it is desirable to develop an approach that can fully

describe the thermal bath effects by a single random process.

Recently, such a novel approach has been developed[1, 2, 3]. In this approach,

a jump-noise process is introduced in the magnetization dynamics equations to ac-

count for random thermal effects. In this section, this approach will be discussed.

First the Landau-Lifshitz equation driven by a jump-noise process is presented.

It will be shown that unlike the white-noise approach, the jump-noise term itself

can describe the thermal fluctuations and the Landau-Lifshitz and Gilbert damping

terms can be derived as averages of the jump-noise process. It will also be demon-

strated that this approach is more consistent with the physical origin of damping
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and scattering in the sense that both damping and fluctuation effects emerge from

a single noise term.

1.5.1 Mathematical Model

In this approach, a jump-noise process is introduced to account for thermal

fluctuations. The jump-noise process can be defined by the following formula

Tr(t) =
∑
i

miδ(t− ti), (1.19)

where mi is the ith random magnetization jumps which occurs at random time ti.

The statistical properties of the jump-noise process are isotropic and independent

of the orientation of the current magnetization state.

The stochastic magnetization dynamics driven by the jump-noise process can

be mathematically described by the following stochastic differential equation[1, 2, 3]

dM

dt
= −γ(M×Heff) + Tr(t), (1.20)

where the first term on the right hand side represents the precessional dynamics of

magnetization and Tr(t) is the jump-noise process that accounts for the thermal

bath effects.

From equation (1.20) and (1.19) we can see that the stochastic magnetiza-

tion dynamics described by them consists of continuous magnetization precessions

randomly interrupted by random jumps in magnetization. This approach consid-

eres magnetization dyanmics at relatively low temperatures so the micromagnetic

constraint should be satisfied. Consequently, due to the strong local exchange in-
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teraction, the magnitude of magnetization is preserved:

|M(t)| = Ms = const, (1.21)

Therefore, magnetization dynamics happens only on the the sphere Σ defined by

equation (1.21) so the random jump process defined in (1.19) must also be defined

on the sphere.

In order to solve the dynamics equation (1.20), the jump-noise process Tr(t)

must be known. To completely describe the random process Tr(t), statistics of

mi and ti must be given. This can be accomplished by specifying the transition

probability rate S(M−
i ,M

+
i ), where M−

i = M(t−i ) is the magnetization immediately

before a random jump (scattering) at time ti and M+
i = Mi + mi = M(t+i ) is

the magnetization immediately after the random jump . To satisfy the dynamic

constraint (1.21), the transition probability rate S(M−
i ,M

+
i ) is defined on the sphere

Σ.

By using the physical meaning of the function S(M,M′), the scattering rate

of the jump-noise process λ(M(t)) can be defined as

λ(M(t)) =

∮
Σ

S(M(t),M′)dΣ′. (1.22)

with the integration being performed over all M′ on the sphere |M(t)| = Ms.

It is clear that λ(M(t))dt is the probability of a magnetization scattering from

M(t) to any M′ on the sphere Σ during the time interval (t, t+ dt). Assuming the

ith jump event occurs at time ti, the statistics of ti and mi can be defined by the
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following formulas, respectively:

Prob(ti+1 − ti > τ) = e−
∫ ti+τ
ti

λ(M(t))dt, (1.23)

χ(mi|Mi) =
S(Mi,Mi + mi)

λ(Mi)
, (1.24)

where χ(mi|Mi) is the conditional probability density of mi.

It is apparent from formula (1.24) that χ(mi|Mi) satisfies the normalization

condition ∮
Σ

χ(mi|Mi)dΣmi
= 1, (1.25)

where the integration is performed over all mi such that |Mi + mi| = Ms.

Also, from the statistic expressions of ti (1.23) and mi (1.24), we can see

that the random magnetization dynamics can be fully defined provided that the

transition probability rate S(M,M′) is known. A physically reasonable expres-

sion for S(M,M′) has been be found by studying the stochastic magnetization

dynamics defined by equation (1.20) on the level of transition probability density

w(M, t;M0, t0)[1]. It can be shown[100] that w(M, t) is the solution of the following

partial differential equation

∂w

∂t
= −γdivΣ[(M×∇Σg)w] + Ĉ(w), (1.26)

where Ĉ(w) is the Boltzmann-type collision integral given by the formula

Ĉ(w) =

∮
Σ

[S(M′,M)w(M′, t)− S(M,M′)w(M, t)]dΣ′. (1.27)

By considering the transition prabablity density at thermal equilibrium, the

following relation is obtained:

S(M′,M)w(M′, t) = S(M,M′)w(M, t). (1.28)
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This is the “detailed balance” condition and this condition is quite natural

from the physical point of view in that it expresses the scattering process from any

M to M′ are equilibrated by its reversed process.

By using the “detailed balance” condition and aking the first three terms in the

Taylor expansion, the transition probability rate can be expressed in the following

form:

S(M,M′) = Ae−
|M−M′|2

2σ2 e
g(M)−g(M′)

2kT , (1.29)

where A and σ2 characterize the strength of thermal bath effects.

Since the expression for the transition probability rate S(M,M′) has been

derived, the random magnetization dynamics can be fully defined. In this way,

magnetization dynamics can be fully solved using the jump-noise process driven

Landau-Lifshitz equation (1.20).

1.5.2 Discussion

It has also been demonstrated that the jump-noise process driven Landau-

Lifshitz equation approach is more consistent with the physical origin of damping

and scattering than the original approach where thermal noise is accounted for using

a white-noise term. It has been shown that both damping and fluctuation effects

emerge from the jump-noise term and the damping term for magnetization can be

extracted as average effects caused by the jump-noise process Tr(t)[1, 2, 3].
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The jump-noise process can be written in the following form:

Tr(t) = E[Tr(t)] + T(0)
r (t), (1.30)

where E[Tr(t)] is the expected value of the process while T
(0)
r (t) accounts for fluc-

tuations.

Under the assumption that the magnitude of the process Tr(t) is small since

only small jumps m(t) have non-negligible probability to occur, the following for-

mula can be reached:

M(t) · E[Tr(t)] ' 0. (1.31)

This means that the expected value E[Tr(t)] is in the plane perpendicular to

M(t). By choosing the basis vectors in this plane to be M×Heff and M×(M×Heff),

it can be found that

E[Tr(t)] ≈ −γ′L(M×Heff)− αL(M× (M×Heff)). (1.32)

By substituting formula (1.32) into formula (1.30) and then into equation

(1.20), the following equation can be reached:

dM

dt
= −γ̃L(M×Heff)− αL(M× (M×Heff)) + T(0)

r (t), (1.33)

where γ̃L = γ + γ′L. The equation (1.33) is the Landau-Lifshitz equation randomly

perturbed by the fluctuation T
(0)
r (t). It is also apparent from formula (1.32) that

the average action caused by random thermal effects as described by the jump-

noise process will result in the Landau-Lifshitz damping and a slight change of the

gyromagnetic ratio which determines the precession rate.
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It is also clear from the derivation that the gyromagnetic ratio γ and the damp-

ing constant α can be found by evaluating the expected value of the jump-noise pro-

cess and decomposing it in terms of appropriate basis vectors. Since the expression

for the transition rate S(M,M′) has been derived, we can evalute E[Tr(t)] and find

the Landau-Lifshitz damping term αL. By using formulas (1.24) and (1.29), the

expected value of the jump-noise process is

E[Tr(t)] = A

∫
me−

|M−M′|
2σ2 e

g(M)−g(M′)
2kT dΣ. (1.34)

By taking into account that M−M′ = m and g(M)−g(M′) ' −m ·∇Σg, the

expected value of the jump-noise process can be written in the following Gaussian-

type integral:

E[Tr(t)] ' A

∫
me−(

|m|
2σ2 +

m·∇Σg

2kT
)dΣ. (1.35)

Due to the smallness of σ2, the last integration formula is performed only for

small m in the plane tangential to the sphere Σ so that

E[Tr(t)] = −πσ
4

kT
Ae

1
2

(
σ|∇Σg|

2kT
)2∇Σg. (1.36)

In a similar way, by using formula (1.29) in equation (1.22) we derive

λ(M) = 2πσ2Ae
1
2

(
σ|∇Σg|

2kT
)2∇Σg. (1.37)

By substituting formula (1.37) into (1.36) and taking into account that

∇Σg =
µ0V

M2
s

M× (M×Heff), (1.38)

the following expression for the damping constant can be found

αL = λ(M)
σ2µ0V

2kTM2
s

. (1.39)
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This formula clearly reveals that the damping rate αL depends on properties

of the jump-noise process as well as on M.
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Chapter 2

Monte Carlo Simulation of the Jump-Noise Process Driven

Magnetization Dynamics

In the previous section, stochastic magnetization dynamics driven by a jump-

noise process has been discussed as an alternative to the traditional approach where

magnetization dynamics is driven by a white-noise process. This alternative ap-

proach has clear advantages since both the damping and the fluctuations effects

of the thermal bath emerge directly from the mathematical structure of a jump-

noise process. However, due to the nature of the nonlinear equation, there exists no

general analytical solution to this problem. In order to understand the dynamics,

efficient numerical techniques for this approach need to be developed. In this chap-

ter, such techniques are developed and a Monte Carlo simulation of this approach

will be discussed in details.

2.1 Numerical Simulation Techniques

Typically when solving a magnetization dynamics process numerically, the

magnetic system is first discretized in space by using finite difference or finite el-

ement methods[15]. In this way the magnetic dynamic system is reduced to a

problem discribed by a ordinary differential equation. An appropiate time-stepping

techinique is then required to numerically integrate the resulting equation.
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As shown in chapter one, the stochastic magnetization dynamics driven by

the jump-noise process can be mathematically described by the following stochastic

differential equation

dM

dt
= −γ(M×Heff) + Tr(t), (2.1)

It is clear from the above equation that the random magnetization dynamics

described by it has two distinct components: deterministic precessions described

by the cross product term and a stochastic scattering described by the jump-noise

process Tr(t). Accordingly, a numerical technique for integration of random dy-

namics must have two distinct components: a numerical scheme for integration of

precessional dynamics and a numerical realization of random scattering described

by Tr(t)[20]. For numerical integration of deterministic precessions, as shown in

chapter one, a numerical scheme of at least a second order accuracy is required

to obtain a correct solution. While the Heun method and Runge-Kutta method

are widely used to solve ordinary differential equations, they pay little attention

to the preservation of the micromagnetic constraints. By using these schemes to

solve the precessional dynamics the conservation of magnetization magnitude may

be corrupted. This problem can be solved by using “mid-point” finite-difference

scheme. These schemes unconditionally preserve the magnetization magnitude and

are of second-order accuracy. The other central element of this simulation is the

self-scattering technique used to determine the random scattering events. Instead

of evaluating the scattering time using complicated integration, a more efficient self-

scattering scheme can be implemented in our simulation. This technique greatly
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simplifies the calculation of random scatterings and results in a time-homogenization

of the jump-noise process.

2.1.1 Midpoint Finite-Difference Scheme

The deterministic component of magnetization dynamics can be obtained by

solving the following differential equation:

dM

dt
= −γ(M×Heff). (2.2)

This differential equation can be solved numerically using finite difference

methods. Since we are going to use the numerical schemes to study long term

magnetization dynamic behavior, it is crucial to have a accurate numerical time

integration technique. Particularly, a technique preserves the micromagnetic con-

straints. For this reason, the following mid-point finite difference scheme[66] is used

to find numerical solutions to equation (2.2):

M(n+1) −M(n)

∆tn
= −γM

(n+1) + M(n)

2
×H

(n+ 1
2

)

eff . (2.3)

Here, a temporal mesh consisting of the sequence of time instants t1, t2, . . . tn

is introduced for integration of (2.2), and ∆t = tn+1− tn. M(n) is the magnetization

M at tn, while H
(n+ 1

2
)

eff is the effective magnetic field evaluated at tn+ 1
2

= tn + ∆t/2.

By using the Adams extrapolation formula, the following expression for the field

H
(n+ 1

2
)

eff can be derived[27]:

H
(n+ 1

2
)

eff =
3

2
H

(n)
eff −

1

2
H

(n−1)
eff . (2.4)
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Figure 2.1: Ellipsoidal ferromagnet in the cartesian reference frame.

We can assume that the ferromagnetic nanoparticle is of ellipsoidal shape, and

initial distribution of magnetization and parameters are spatially uniform. Under

these conditions, the demagnetizing field is spatially uniform and can be expressed in

terms of a demagnetizing tensor. We also assume that the nanoparticle has uniaxial

anisotropy and the direction of the easy axis is aligned with one of the axes of the

ellipsoid. In this case, the effective field can be expressed as:

Heff = (Hax −DxMx)ex + (Hay −DyMy)ey + (Haz −DzMz)ez, (2.5)

whereDx,Dy,Dz are parameters that account for demagnetizing and crystal anisotropy

effects, Hax, Hay, Haz are the components of Ha along ex, ey, ez. And the free energy

is of the following form:

g(M,Ha) = [
1

2
(DxM

2
x +DyM

2
y +DzM

2
z )−HaxMx −HayMy −HazMz]µ0V. (2.6)

The mid-point finite difference scheme equation provides a second order of ac-

curacy in time and it can be shown that it preserves the micromagnetic constraints

unconditionally. Through the dot-multiplication of both sides of this equation by

M(n+1) + M(n), it can be obtained that

|M(n+1)|2 = |M(n)|2 = M2
s . (2.7)
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This conservation of magnetization magnitude is valid for any form of the

function Hn
eff used in the the mid-point finite difference scheme and any time step

value. Furthermore, this property is valid for any excitation condition (constant

or time-varying applied fields, constant or time-varying spin-transfer effects, vari-

ous anisotropy properties, etc.)[27]. Thus, this mid-point finite difference scheme

preserves the magnetization magnitude in numerical computations.

It also can be shown that in the case of constant applied field, the following

energy balance relation can be derived:

g(M(n+1))− g(M(n))

∆tn
= 0. (2.8)

This confirms that the free energy is preserved using the mid-point finite-

difference scheme regardless of the choise of Hn
eff or time steps.

Since the mid-point finite-difference scheme preserves exactly the magnitude

and the microscopic free energy regardless of the time step, for the sake of simplicity,

constant time steps are implemented in our simulation. The accuracy of this finite

difference scheme can be judged by the “ability” of this scheme to preserve g(M(n)) in

numerical computations. The value of g(M(n)) is proved numerically to be conserved

for pressional motions described by this scheme. It is also clear that if the magnetic

energy g is conserved in the computations, then the numerical precessional trajectory

must be closed. And indeed, numerical integrations of precessional dynamics using

the mid-point scheme with sufficiently small time-step ∆t results in closed numerical

precessional trajectories. This is illustrated by Figure 2.2 where examples of closed

numerical precessional trajectories are presented.
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Figure 2.2: Closed precessional trajectories computed for different anisotropy set-
tings and different values of applied fields (Dx = 0.4132 Dy = 0.4132 Dz = 0.0946
Hax = 0.2 Hay = 0 Haz = 0, Dx = 0.4132 Dy = 0.4132 Dz = 0.0946 Hax = −0.1
Hay = 0 Haz = 0, Dx = 0.0946 Dy = 0.4132 Dz = 0.4132 Hax = 0 Hay = 0 Haz = 0)

2.1.2 Self-Scattering Technique

After solving the precessional dynamics numerically, a numerical realization

of random scattering described by Tr(t) need to be developed. In our approach, a

self-scattering technique is developed to calculate the random component of mag-

netization dynamics. This techinique can greatly simplify the random component

of the simulations, and is adopted from Monte Carlo simulations of semiclassical

transport of electrons and holes in semiconductors[67, 68].

As shown in chapter one, the probability that a ferromagnet which scattered

the time ti has not yet experienced another scattering after a time τ is defined by

the following formula:

Prob(ti+1 − ti > τ) = e−
∫ ti+τ
ti

λ(M(t))dt. (2.9)

This formula gives the probability of a scattering (jump) free precessional time
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intervals (ti, ti+τ). Consequently, the probability that the magnetization will scatter

during dτ around time τ can be given by

P (τ)dτ = λ(M(τ))e−
∫ ti+τ
ti

λ(M(t))dtdτ. (2.10)

The scattering events should be selected stochastically in accordance with

the statistics given by (2.10) in the simulation. However, since the scattering rate

λ(M(t)) is a function of M(t), we need to calculate and store the value of λ(M(t))

at each time step along a magnetization trajectory and evaluate the integral equa-

tion at each time step to determine if a scattering event should happen. Due to

the complexity of the integral at the exponent, it is not efficient to determine the

scattering (jump) free precessional time intervals τ directly from (2.10). This is why

the numerical realization of the random part is complicated. Simulations of charge

transport in semiconductors have a very similar situation when dealing with the free

flight duration and Rees has developed a method[69, 70] to overcome this difficulty.

He introduced a new fictitious “self-scattering” such that the total scattering proba-

bility, including the self-scattering, is constant. This technique can be implemented

here to simplify the simulation of scattering events in magnetization dynamics pro-

cesses. This can be achieved by introducing an additional random scattering process

T
(0)
r (t) which does not change the actual magnetization dynamics. In other words,

instead of evaluating the actual scattering rate in (1.20) we numerically simulate

the solution of equation

dM

dt
= −γ(M×Heff) + Tr(t) + T(0)

r (t). (2.11)

The random process T
(0)
r (t) is defined by the transition probability rate S0(Mi,Mi+1)
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given by the following formula

S0(Mi,Mi+1) = λ0(Mi)δ(Mi+1 −Mi). (2.12)

By using the last formula and equation (1.24), we find

χ0(mi|Mi) = δ(mi), (2.13)

which means that the random “scattering process T
(0)
r (t) results in zero jumps of

magnetization. For this reason, this process is called self-scattering. This termi-

nology is adopted from the area of Monte Carlo simulations of charge transport

in semiconductors to calculate free flight duration[67, 68]. It is clear from (2.13)

that the introduction of the self-scattering event does not affect the actual stochas-

tic magnetization dynamics. However, by choosing an appropriate self-scattering

rate we can achieve time-homogenization of the total (Tr(t) + T
(0)
r (t)) jump-noise

process. In this way, the numerical calculation of jump time will be considerably

simplified. The choice of λ0(M) should be in such a way that the total scattering

rate Γ is constant as shown in the following formula:

λ(M(t)) + λ0(M(t)) = Γ = const. (2.14)

This is illustrated in Figure 2.3 where the relation between the real scattering rate,

self-scattering rate and total scattering rate is shown.

The random duration τ of magnetization precession without scattering as de-

fine by (1.23) can be simplified using the total scattering process such that

Prob(ti+1 − ti > τ) = e−Γτ . (2.15)
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Figure 2.3: Definitions of actual scattering rate, self-scattering rate and total scat-
tering rate in self-scattering technique (Dx = 0.4132 Dy = 0.4132 Dz = 0.0946
Hax = 0 Hay = 0 Haz = 0)

This equation implies that the probability P (τ) of scattering during the time

interval τ does not depend on ti and is given by the formula

P (t ≤ τ) = 1− e−Γτ . (2.16)

From this equation, the random duration without scattering can be randomly

generated each time from the probability distribution P (τ). An inverse transform

sampling method is used to obtain the random intervals. This is a general method

for generating random sample numbers x from any probability distribution given

its cumulative distribution function F (x)[71, 72]. When the distribution function

is simple enough that its inverse F−1(x) can be found, a random number x can be

obtained from a uniformly distributed random number by

x = F−1(r). (2.17)

where r is a uniformly distributed random number between 0 and 1.

In our case, using formula (2.16) the random duration τ of magnetization
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precession without scattering can be generated from the following formula:

τ = − 1

Γ
ln[1− P (τ)]. (2.18)

Thus, by generating a random number P uniformly distributed between 0 and

1 and using the above formula, we can generate the random duration τ of magne-

tization precession and the random time ti+1 = ti + τ at which the next scattering

occurs. Since the self-scattering rate should not be negative, the total scattering rate

is always greater than (sometimes equal to) the actual scattering rate. In this sense,

the scattering events generated by (2.18) occur more frequently than the actual scat-

tering events and the simulation wastes time in taking care of self-scattering events.

However, the time “wasted” is far more than compensated for by the simplification

of the calculation of the integral equation. For this reason, the “self-scattering”

technique determines the timing of the scattering events far more efficiently than

equation (2.10) does. The magnetization experiences only precessional dynamics

till next scattering occurs. So the magnetization state M(t−i+1) before a scattering

occurs can be found by integrating the precessional dynamics over the time interval

τ using the mid-point finite-difference scheme.

After generating the random scattering time and the magnetization state right

before the scattering occurs, we have to determine if the scattering at ti+1 is due

to the actual jump-noise process defined by S(M,M′) and given by formula (1.23)

or if it is a self-scattering event defined by S0(M,M′) using (2.12). In order to

determine the scattering mechanism, we need to know the actual scattering rate and

total scattering rate at the time of scattering event. Since the probability density of

50



actual scattering and self-scattering at time ti+1 is proportional to λ(M(t−i+1)) and

λ0(M(t−i+1)) respectively, we can first generate a random number ν that is uniformly

distributed between 0 and Γ . Then the discrimination between these two scattering

events can be accomplished using the following rules: when comparing the value of

ν and the actual scattering rate, if 0 < ν < λ(M(t−i+1)), an actual scattering occurs

at ti+1 and the magnetization after the scattering event M(t+i+1) can be determined

using the conditional probability density specified by formula (1.24). Otherwise, if

λ(M(t−i+1)) < ν < Γ, the actual scattering event does not occur and a self-scattering

event is performed. That is, a self-scattering occurs at ti+1 and the magnetization

does not change M(t+i+1) = M(t−i+1). Then, by using formula (2.18), a new random

time interval τ of precessional motion is generated and the steps described above

are repeated.

The two central elements of our simulation are described above. The dynamics

described by using the mid-point finite difference scheme and the self-scattering

technique can be illustrated by Figure 2.4, which shows that the magnetization

dynamics occurs on the sphere and consists of magnetization precessions randomly

perturbed by jumps.

2.2 Monte Carlo Simulation

The evolution of an individual particle governed by random magnetization dy-

namics can be solved by the above numerical techniques. Because of the random

nature of the jump-noise process, the magnetization dynamics solved by the above
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Figure 2.4: An example of magnetization dynamics trajectory

numerical teniques is random. The timing of the jumps and the jumps themselves

are randomly determined by their probability distribution functions such that they

have inherent uncertainty. As a result, the dynamics calculated based on these ran-

dom jumps is just one of the possible realizations of the system. In order to better

understand the time evolution of the system, it is appropiate to use the Monte Carlo

method. By calculating the results over and over again using the same numerical

techniques as mentioned above, but each time using different random values from

the probability distribution functions, the Monte Carlo simulation can produce dis-

tributions of possible realizations. In this way, the Monte Carlo simulation gives a

much more comprehensive way of describing uncertainty of the magnetization dy-

namics of a magnetic system and provides macroscopic properties of magnetization

dynamics under thermal fluctuations. Not only can possible realizations be pro-

vided, but also how likely each realization would be to happen. Furthermore, our
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simulation is intrinsically parallel in the sense that different realizations of random

magnetization dynamics can be computed independently. Thus the Monte Carlo

method is suitable for our problem.

Because of the random nature of Monte Carlo simulation, the results from each

calculation may be different even when the number of realizations per calculation

is the same. Thus it is important to know how many realizations we will have to

calculate in order to safely assume that we have taken “enough” realizations and to

see how accurate our Monte Carlo simulation result is, given a certain number of re-

alizations. These two issues are related in the sense that the more accurate we want

our result to be, the more realizations we need to take, and the more realizations

we take, the more likely it will be that we will get a more accurate estimate. Unfor-

tunately, it is not possible to achieve perfect accuracy through sampling unless we

could sample the entire population of possible evolution trajectories of the system.

What we implemented to ensure the accuracy of our simulation is to set the number

of realizations in such a way that further doubling the number of calculations will

not change the simulation result by more than 0.1 percent.

2.3 Numerical Results

To test the accuracy of the described numerical techniques, thermal relaxations

of an uniaxial cobalt particle to the superparamagnetic state have been simulated.

We consider a ferromagnetic nanoparticle with uniaxial anisotropy. The di-

rection of the easy axis is aligned with the z-axis of the ellipsoid. When there is no
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applied field, the magnetization has two equilibrium states, one is along the z direc-

tion while the other is along the -z direction. In sufficiently small nanoparticles, the

potential barrier created from the anisotropy would be insufficient to separate the

two states when the fluctuations are strong enough. At this size, the rate at which

the magnetization will randomly reverse direction becomes significant. The sys-

tem becomes superparamagnetic. In the superparamagnetic state, the equilibrium

distribution has the following Boltzmann-type form[19]

weq(M) =
1

Z
exp(− g

kT
), (2.19)

where Z is the normalization factor.

Specifically when there is no applied field, the equilibrium distribution has the

following form:

weq(m) =
1

Z(µ)
exp[−µ

2
(Dzm

2
z +D⊥(1−m2

z))], (2.20)

where

Z(µ) =

∮
Σ

exp[−µ
2

(Dzm
2
z +D⊥(1−m2

z))]dΣ. (2.21)

In the last two formulas, m is the particle magnetization normalized by Ms,

Dz and D⊥ are anisotropy constants along the z-axis and in the plane perpendicular

to this axis, while µ = µ0M
2
s V/kT . The equilibrium distribution weq(m) has been

computed through Monte Carlo simulations. Comparisons between the Boltzmann

expression and numerical simulations are presented in Figures 2.5 and 2.6 for

different sets of anisotropy parameters specified in the figure captions. In both

cases, the agreement between Monte Carlo simulations and the Boltzmann formula
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is quite good. Figure 2.7 presents the plot of mz(t) for one specific realization

of random magnetization dynamics. From the figure we can see that the random

switching occurs very frequently in the superparamagnetic state.

Figure 2.5: Equilibrium distribution in the superparamagnetic state of uniaxial
cobalt nanoparticle (computations performed for the following parameters: Dx =
0.4132 Dy = 0.4132 Dz = 0.0946 Ms = 1.42× 106 γ = 1.837 T = 300 V = 2× 10−25

σ = 0.1 B = 1012)

Figure 2.6: Equilibrium distribution in the superparamagnetic state of uniaxial
cobalt nanoparticle (computations performed for the following parameters: Dx =
0.49 Dy = 0.49 Dz = 0.02 Ms = 1.42×106 γ = 1.837 T = 300 V = 2×10−25 σ = 0.1
B = 1012)

We also use this Monte Carlo simulation to show a time evolution of the prob-
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Figure 2.7: Plot of mz over time

ability that magnetization is in one certain energy well of a system. The magnetiza-

tion is initially at the equilibrium state in well one so at initial state the probability

that magnetization is in well one is equal to one. The magnetization goes away from

the equilibrium and experiences precessions and random jumps due to the thermal

fluctuations. Since the energy barrier created from the anisotropy is not sufficient

to separate the two states, the magnetization will randomly go beyond the barrier

and reverse its direction. The probability that magnetization is in energy well one

will eventually equal to the probability that magnetization is in energy well two

when the particle reaches superparamagnetic state. And both of the probabilities

will be 0.5. This is illustrated in figure 2.8. The curve is not perfectly smooth

due to the fact that the Monte Carlo simulations are not able to sample all the

possible realizations. We have also compared results from simulation implemented

with self-scattering technique and simulation using the integral equation without the

self-scattering technique. The time evolutions of the probability of two approaches

are identical but the self-scattering technique saves a lot of computational time and
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resources. From the above analysis of the calculation performance, the mid-point

finite-difference and self-scattering numerical techniques are a reasonable choice for

producing adequate results in an acceptable calculation time.

Figure 2.8: Plot of time evolution of the probability that magnetization is in one
certain energy well
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Chapter 3

Magnetization Dynamics Simulation on GPUs

In the previous chapter, Monte Carlo simulations of magnetization dynamics

driven by a jump-noise process have been discussed. However, a main drawback

of the CPU-based Monte Carlo simulation is the extensive computational burden.

Some of our simulations of long-term magnetization dynamics require weeks of cal-

culation on a CPU. In order to reduce simulation time, we utilize the parallel com-

putation ability of GPUs to speed up our Monte-Carlo Simulation. The details of

such a implementation will be described in this chapter.

Knowledge of computer architectures is helpful to understand difference be-

tween CPUs and GPUs and how to expedite different kinds of numerical calculations.

Michael Flynn proposed a classification of computer architectures in 1966[74]. There

are four classifications in Flynn’s taxonomy, defined by the number of concurrent

instructions and the number of data streams. They are single instruction single

data (SISD), single instruction multiple data (SIMD), multiple Instruction single

data (MISD) and multiple instruction multiple data (MIMD). SISD and MISD ar-

chitectures process data sequentially so they are not of spectacularly interests in our

simulation.

SIMD architecture refers to a parallel computer that runs the exact same pro-

gram on each of its parallel units which contain different data. In SIMD processor,
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Figure 3.1: Principles of SISD, SIMD, MISD and MIMD systems

there is a global controller unit with many processors and all the processors do the

same task. For the nature of this architecture, SIMD is used to perform operations

which may be naturally parallelized. Since SIMD is relatively simple to design, it is

less expensive.

MIMD architecture refers to a parallel computer that runs independently dif-

ferent instructions on each of its simultaneously-executing parallel units which con-

tain different data. In MIMD, each processor is assigned an independent controller

and each processor will be doing an independent task. Because of the complexity

MIMD processors tend to be expensive, but it can solve very complex problems.

Clusters and most of supercomputers are based on a MIMD architecture.

A GPU (Graphics Processing Unit) has a massively multi-threaded architec-

ture. The multi-threaded architecture is designed to perform identical calculations

59



on different data sets which are the same idea as SIMD. This architecture is ideal for

graphical processing which enables real-time rendering 3D graphics scenes in paral-

lel in computer games. That was the reason why GPUs were originally developed.

But now the GPUs have been widely used for scientific computation because of its

enormous parallel computational power. Significant savings of computing time have

been reported in micromagnetic modeling by implementing GPU computations in

comparison to single CPU core implementations. For example, a micromagnetic

simulator called GPMagnet is built recently and a speedup factor of two orders

of magnitude is achieved[73], 1000 times speedup has been achieved to perform

Monte Carlo simulations of photon migration[76], and 35 times speedup has been

achieved for Ising model of the ferromagnetic phase transition[75]. There is also an

increasing popularity of implementing simulation on GPUs in a lot of other scientific

applications such as solving Kepler’s equation[77], air pollution modeling[78], finan-

cial markets modeling[79], dose calculation[80], volume reconstruction from X-ray

images[81], molecular dynamics simulations[82], and quantum chemistry[83].

GPU’s highly parallel data structure makes it more effective than a general-

purpose CPU for algorithms that have a large fraction of the computation done in

parallel. From the previous chapter we can see that the Monte Carlo simulations

are intrinsically parallelizable in the sense that different realizations of stochastic

magnetization dynamics can be computed concurrently and independently from one

another. For this reason, GPU is especially suited for our Monte Carlo simulations

where a large number of different realizations of random magnetization dynamics are

computed based on a series of identical arithmetic operations. When running Monte
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Carlo simulations on a CPU using single-threaded implementation, simulations of

random trajectories are computed one after another. As a result, the CPU-based

Monte Carlo simulations are very time consuming. By taking advantage of GPUs,

the same program can be executed on many data elements in parallel, thus the

simulation is performed much faster. Also, GPUs are much less expensive than

MIMD systems like clusters or supercomputers. For these reasons we choose to use

GPUs for our Monte Carlo simulations.

We use an NVIDIA GTX 460 for the simulation, which has a Fermi architec-

ture and is incorporated with 7 multiprocessors, 336 cores and offers 1GB GDDR5

global memory while costs about $180. This NVIDIA card is controlled by the

host CPU-type computer which has two Intel Xeon processors at 2.13 GHz with

48 GB RAM. Our work is based on NVIDIA’s Compute Unified Device Architec-

ture (CUDA), a hardware and software architecture for general-purpose computing

on graphics processing units (GPGPU) specifically designed for NVIDIA GPUs.

CUDA programs are based on the C programming language with certain extensions

to utilize the parallelism of the GPU.

3.1 GPU Architecture

In general, CPUs contain a few very powerful multiprocessors with up to a

few cores each that can handle multi-threading. These cores are very powerful and

fast but are still intrinsically sequential such that instructions are handled serially.

This limits the processing speed when a large number of tasks can and should be
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completed simultaneously. To handle this, CPU multiprocessors use complicated

pipelining algorithms to switch between tasks and therefore requires large memory

caches to hold data in storage while it waits to be processed.

Unlike CPUs, GPUs don’t have sophisticated control logic and excessive mem-

ory caches but process a large number of arithmetic logic units (ALUs) for doing

actual computations. GPUs differ from CPUs in that while each GPU multipro-

cessor is not very powerful on its own, there are a large number of multiprocessors

optimized to provide very high floating point arithmetic for a same problem. In

this way, the large number of computations that need to be completed can be dis-

tributed between the cores such that each core can work on the problem quickly and

independently.

Figure 3.2: Architectural differences between CPUs and GPUs

When a kernel is called to be performed on GPUs, they will be executed N

times in parallel. Each of these realizations is executed independently by a GPU

“thread”. To align with the physical hardware, these threads are grouped into

“blocks”, which themselves are grouped into a “grid”. Threads can be grouped to

form a one-dimensional, two-dimensional, or three-dimensional block, and blocks
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can be grouped to form a one-dimensional, two-dimensional, or three-dimensional

grid. This grouping structure provides a natural way to perform computations using

vectors, matrixes, or volume elements[84]. We will utilize this grouping structure to

distribute the Monte Carlo simulations onto the 336 cores of a NVIDIA GTX 460.

An illustration of GPU thread hierarchy is shown in Fig 3.3[84].

Threads within a block are all processed on the same processor, can share data

via fast shared memory and can coordinate their execution. Because of the limited

memory resources of the core, there is a limit to the number of threads per block.

For NVIDIA GTX 460, the maximum number of threads per block is 1024. The

number of blocks in a grid is usually a multiple of the number of processors in the

system and is dictated by the size of the data being processed. The total number of

threads executed in parallel N, as defined above, is equal to the number of threads

per block times the number of blocks[84]. The threads execute independently from

one another, and even the execution order of the threads is not controllable. Thus

a thread should never rely on the results from another parallel thread. GPUs are

capable of switching rapidly between different threads, and this ability effectively

hides memory latency when there are a large number of threads in a program. The

ability of hiding memory latency ensures that the hardware is working on arithmatic

calculations at all times rather than waiting for data to be trasfered so it largely

improves GPU performance.

There are multiple memory spaces on the GPU that the threads can access

during their execuation. Each thread has private local memory, access to which is

extremely fast. Threads combined in a block have shared memory that can be ac-
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Figure 3.3: Schematic representation of GPU thread hierarchy[84]

cessed by all threads in that block. This memory can be accessed essentially without

significant memory latency so it is normally used to synchronize and communicate

between the threads in a block. There is also global memory that is accessible by

all threads being executed, but accessing global memory in the middle of a kernel

will cause a latency of several hundred clock cycles. There are also two additional

read-only memory spaces accessible by all threads: the constant and texture mem-

ory spaces. The several layers of very high bandwidth memory also improve the

GPU performance.

Several general steps should be taken to run GPU computations. First, any

data required in the calculation should be copied from the host computer to the

GPU memory. Then the CPU calls the process on the GPU, which is called a

“kernel”, and the GPU operates on the data. Next, the data is copied back to the

host to use it in the rest of the program or so another “kernel” can be called to

further process the data on the GPU.
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3.2 GPU Implementation vs. CPU Implementation

In the CPU implementation of the Monte Carlo algorithm, a total scattering

rate has to be generated before the random magnetization dynamics calculations.

The total scattering rate (the lambda threshold), as defined in the self-scattering

technique, is set to be a constant in each calculation to achieve time-homogenization

of the scattering events. In most of our calculation we set the total scattering rate to

be 1.2x the maximum value of the scattering rates at each point on the sphere. The

scattering rates are magnetization orientation dependent and each of them have to

perform a integration of transition probability density on the whole sphere, so the

calculation of total scattering rate will be time consuming when we use a fine mesh.

After calculating the total scattering rate, random jump times are first calculated

along with the magnetization vector. The magnetization for the next time step is

then calculated using the Mid-point Finite Difference Scheme based on the Landau-

Lifshitz equation. If the current time is greater than the calculated random jump

time, it means a random jump has occurred and random numbers are generated

to determine if it is a self-scattering event or an actual scattering event and the

new scattered magnetization if it is a real scattering event. Once this process is

completed, the current time is incremented and the process repeats. This process

occurs for each time step for each Monte Carlo trial and is very computationally

intensive.

For the GPU implementation of the Monte Carlo algorithm, both the total

scattering rate calculation and the realizations of random magnetization evolutions
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are computed in parallel. The scattering rates at each point on the sphere can

be calculated independently from each other so that they are computed in parallel

on GPU. In addition, the fact that each Monte Carlo trial of the magnetization

dynamics is independent lends itself very nicely to parallelization. In fact, the

same process is followed as the CPU implementation with the exception of having

each graphics processing core only handling one or a few Monte Carlo trials. This

considerably speeds up the processing time.

3.2.1 Random Number Generator

A key component in our GPU implementation of the Monte Carlo simulations

is the random number generators (RNGs) that provide the independent stochastic

input to each realization. Our simulation requires a large number of realizations and

each realization runs a large number of time steps. As a result, it is very important

to have a random number generator that gives a long sequence of independent

numbers that are indistinguishable from a true random number source for each

thread in parallel and in a quick manner. A common way to generate pseudo-random

numbers for Monte Carlo simulations is to use the same random number generator

with different seed, such as a timestamp. However, when we are running many

threads concurrently on GPUs this method will result in many threads performing

exactly the same computations. One option would be to use the same random

number generator but with a different seed for each thread. Moreover, in our case

the number of parallel processes is large, the number of random numbers in each
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process is large, so the total number of random numbers required is very large. Even

the random number generator could be perfectly seeded, the period of a random

number generator may not be long enough thus the simulation may end up using

the same sequence of random numbers. Therefore there are two key properties a

RNG should have to be used in our simulation: a long period and a good statistical

quality.

One of the oldest and best-known RNGs is the linear congruential generator

(LCG) [87], which uses a transition function of the form xn+1 = (axn + c)mod m. If

c = 0, the generator is often called a multiplicative congruential generator (MCG),

or Lehmer RNG. If c 0, the method is called a mixed congruential generator. The

maximum period of the generator is m, since GPUs run by 32-bit integer, the period

can be at most 232, which is far too low. Another generator that is commonly used

in Monte Carlo simulations is the lagged Fibonacci generator[87]. This generator

is similar to an LCG but introduces a delayed feedback. However, to achieve good

quality, the delayed feedback must be large. Consequentially a certain amount of

memory must be used to hold the state for the delayed feedback. However, in the

NVIDIA GPU architecture, the available memory per thread is limited. So a RNG

that requires less memory is prefered. The Mersenne Twister[86] is also one of the

most widely used methods for random number generation in software. It has a

period of 219937− 1 and a extremely good statistical quality. These properties make

the Mersenne Twister a really good candidate for our RNG. However, it presents

problems similar to those of the lagged Fibonacci, because it requires more than a

thousand bytes of states that must be updated serially.
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To solve this problem, we have employed a revised 4-cycle multiplicative con-

gruential RNG[88]. This generator features a long period of about 2120 and good

statistical quality. More importantly, this generator is easy to implement in code

and it requires only 16 bytes of states which could be updated independently in each

realization. Another beauty of this approach is that each individual thread could

have a different seed so that they all generate unique sequences of random numbers

while requiring a minimum amount of memory.

3.2.2 GPU Simulator

The simulator is built of two layers. The first layer is the main function which

handles all simulation host tasks that are running on the CPU. This includes defining

simulation parameters, generating the mesh, initializing magnetization and seeding

the random number generators. It also allocates memory structures in the GPU

memory and copies all the data needed for the simulation from the CPU memory

to the GPU global memory.

When all of the data is copied, the CUDA kernel is called. This kernel function

is the second layer of our simulator and is executed on the GPU. Our simulator has

two distinct kernel functions. The first kernel function is called to precompute the

scattering rate. These computations are performed in parallel for ten thousand mesh

points uniformly distributed over the sphere. The results of these computations are

arranged in a square matrix, which is copied to the CPU. These computations are

used to find the maximum of the scattering rate, which is used in the choice of
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self-scattering rate to guarantee the constant total scattering rate.

The second kernel function is called to concurrently compute different realiza-

tions of random magnetization dynamics. Each thread contains one Monte Carlo

realization of the dynamics. In our simulations, 42 blocks of 256 threads have been

concurrently executed. In this way, 10,752 separate realizations of random magne-

tization dynamics are simultaneously computed. As the numerical techniques used

in CPU simulation discussed in Chapter two, the second kernel function here also

has two distinct components: a numerical integration of deterministic precessional

dynamics using the “mid-point” finite difference scheme and a numerical implemen-

tation of random magnetization scattering. It copies the data from global memory

to the multiprocessor registers, performs a certain number of time steps for each

thread and then copies the magnetization state at each time step back to global

memory. After all threads are done, the data is copied back from the global mem-

ory and written to a output file. Though all threads execute the same programmable

instructions, the computations of different realizations of magnetization dynamics

are not synchronized in time. This is because random magnetization scatterings

occur at different random times for different realizations.

Another thing to point out is that the second kernel function has to be called

multiple times, performing a limited number of time steps each time. This is because

the Windows Watchdog timer prohibits any program to use the GPU for more than

approximately 5 seconds. Hence, the calculation has to be divided into smaller

parts. This gives the program a chance to give updates to the user regarding the

progress of the simulation. The downside of this solution is a slightly increased
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simulation time. Since register memory only has the lifespan of a kernel, the entire

magnetization state has to be copied to global memory, which has the lifetime of

the host program, in between executions of the kernels. This copying data back and

forth takes some time.

3.3 Optimization of GPU Based Magnetization Dynamics Simulator

The Monte Carlo simulations of magnetization dynamics properties require

considerable computational resources and thus it is possible and desirable to further

improve our computing performance by optimizing the kernel functions, memory

access and block/grid configuration.

3.3.1 Optimize Instruction Usage

Some operations take a longer time to execute than other operations. For

example, division using ”/” is more costly than fdividef(), and they both cost

much more than multiplication. Usually, a ”/” operation takes 36 clock cycles and

fdividef() takes 20 clock cycles, whereas a multiplication takes only 4 clock cycles.

In order to maximize the speed-up of the GPU, the use of slow operations should be

minimized and, when possible, we should exchange them with fast operations[130].

This method can be applied to many steps within our calculations. For ex-

ample, when determining the random time duration of magnetization precession

without scattering in our simulation, we need to perform the calculation:

τ = − 1

Γ
ln[1− P (τ)]. (3.1)
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where P is a random number uniformly distributed between 0 and 1 and Γ is the

total scattering rate. Instead of performing the division operation every time, it can

be benefical to store Γr = 1
Γ

instead of Γ in memory and perform a multiplication

at each step:

τ = −Γr ln[1− P (τ)]. (3.2)

In addition, since P is a random number uniformly distributed between 0 and

1, so also is (1− P ). We could replace (1− P ) with P so a minus opertation is not

necessary each time we generate a random time duration of magnetization precession

without scattering. Following is the equation we use:

τ = −Γr ln[P (τ)]. (3.3)

3.3.2 Optimize Memory Structure

On graphics cards, memory access is very costly compared to operations on

registers. There are different memory spaces on the GPU and they each have dif-

ferent bandwidths. Thus, memory optimization is one of the most important con-

siderations for performance. Global memory space is off-chip but is the only way to

communicate data between the host CPU and device GPU. The amount of global

memory is rather large and the global memory bandwidth is good. Memory access to

global memory should be coalesced to achieve the best performance. Shared memory

space is on-chip and, as a result, it is much faster than global memory. Shared mem-

ory latency is roughly 100 times lower than global memory latency, provided that

there are no band conflicts between the threads[85]. Simulation should maximize
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the memory access efficiency by using as much fast memory and as little slow-access

memory as possible.

3.3.3 Maximize Computation Potential

In order to maximize the use of GPU computation resources, one has to max-

imize parallel execution by determining the optimal thread number per multipro-

cessor. Since the warp size is 32 threads, the best block size would be a multiple

of 32. As a result the number of threads per block should always be a multiple of

32 and it is better if is 192 or more. The number of blocks should be a multiple

of the number of multiprocessors on the GPU and the number of blocks that run

simultaneously on each multiprocessor[85].

The number of blocks and warps that can reside and be processed together on

the multiprocessor for a given kernel depends on the amount of registers and shared

memory used by the kernel and available on the multiprocessor. If there are not

enough registers or shared memory available per multiprocessor to process at least

one block, the kernel will fail to launch.

To maximize the computation potential, our simulations assign 256 threads

per block which is a multiple of 32 while having 42 blocks of threads which is a

multiple of the number multiprocessors (there are 7 multiprocessors in a NVIDIA

GTX 460 card). In this way, 10,752 separate realizations of random magnetization

dynamics are simultaneously computed and they are very well mapped to the GPU

structure.
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3.4 Numerical Results

As all current CUDA-enabled devices are optimized for 32-bit floating point

precision, this was the precision used in our code. The results from our 32-bit

precision code have been compared to results from our MATLAB implementation

performed in double precision and no significant difference is observed. This confirms

that single-precision floating point calculations are sufficient.

To test the accuracy of GPU simulator, thermal relaxations of an uniaxial

cobalt particle to the superparamagnetic state have been simulated. As shown

in chapter two, in the superparamagnetic state the equilibrium distribution has

a Boltzmann-type form. We compute the equilibrium distribution through Monte

Carlo simulations and compare between the Boltzmann expression and our numerical

simulations for different sets of anisotropy parameters. The agreement between

Monte Carlo simulations and the Boltzmann formula is quite good.

The numerical results confirm that our GPU implementation of the Monte

Carlo simulation can produce adequate results of the jump-noise driven Landau-

Lifshitz equation under a much more acceptable calculation time.

3.5 Computational Cost and Performance Comparison

To compare CPU and GPU speed, the code developed for the CUDA imple-

mentation has been carefully converted to a CPU equivalent to perform exactly the

same computations as the CUDA code, including the sequence of random number

generator. The CPU equivalent program runs on a Intel Xeon processor at 2.13
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Figure 3.4: Equilibrium distribution in the superparamagnetic state of uniaxial
cobalt nanoparticle (computations performed for the following parameters: Dx = 0.2
Dy = 0.2 Dz = 0.01 Ms = 1.42 × 106 γ = 1.837 T = 300 V = 2 × 10−25 σ = 0.1
B = 1012)

Figure 3.5: Equilibrium distribution in the superparamagnetic state of uniaxial
cobalt nanoparticle (computations performed for the following parameters: Dx =
0.35 Dy = 0.35 Dz = 0.3 Ms = 1.42× 106 γ = 1.837 T = 300 V = 2× 10−25 σ = 0.1
B = 1012)

GHz with 48 GB RAM.

We can see from the above table that though the two implementations per-
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Table 3.1: Performance Comparison

Number of CPU single-thread GPU multi-thread Speed-up

realizations computation time (s) computation time (s) factor

1792 43974.5 272.9 161.1

5376 132123.9 641.5 206.0

10752 263234.3 1211.9 217.2

form the same task using the same kernel function, a speed-up factor of more than

200 has been observed in GPU multi-thread implementation in comparison with

the conventional CPU single-thread implementation when compute 10,752 separate

Monte Carlo realizations. It is also clear from the table that the speed-up factor

of GPU implementation over CPU implementation increases as the number of re-

alizations calculated increases. This is because with a larger number of separate

realizations, calculations are better mapped to the GPU structure so the processors

are kept busy all the time and memory latency is very well hidden.
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Chapter 4

Magnetization Dynamics at Low Temperatures and at Elevated

Temperatures

In the previous chapters, we have demonstrated that the magnetization dy-

namics model with jump-noise process is more consistent with physical origin of

damping and an efficient numerical technique for this model has been developed.

In this chapter, the analysis framework of modeling the thermal fluctuations in

magnetic systems using a jump-noise process is extended to study magnetization

dynamics at a very wide range of temperatures.

Low temperature behavior of magnetization dynamics is of great scientific

interest because the phenomenon of macroscopic tunneling of magnetization has

been experimentally observed. Before any experiment was performed, it has been

predicted theoretically[103, 104, 105, 106, 107] that macromagnetic quantum tun-

neling effect can be observed in magnetic systems. The macroscopic tunneling of

magnetization is mostly studied by measuring the temperature dependence of mag-

netic relaxation. At high temperatures, magnetization reversal is caused by ther-

mal fluctuations which drive the system above energy barrier created by magnetic

anisotropy. This magnetization relaxation rate shows an exponential decay with

respect to temperature decrease. When temperature is very low, thermal activa-

tion becomes extremely weak so magnetization relaxation should be really rare.
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However, theoretical prediction suggests that there is still possibility to detect mag-

netization reversal. This reversal at low temperatures is because magnetization is

able to tunnel through the energy barriers and this effect is called magnetic quantum

tunneling[108, 109].

Modeling of high temperature behavior of magnetization dynamics is also of

great scientific importance due to the recent advances in heat-assisted magnetic

recording technology. In HAMR, temperature is raised locally using ultrafast pulsed

laser so the coercivity of the magnetic storage medium at the bit is lowered and a re-

alistically achievable magnetic write field can be used to write data to the medium.

The classic Landau-Lifshitz or Landau-Lifshitz-Gilbert equation doesn’t work for

this case since it considers magnitude of magnetization as a constant and ignores

longitudinal relaxation of the dynamics. The magnitude of magnetization is not con-

served when temperature is close to the Curie temperature, thus a model is necessary

for high temperature dynamics. A widely used model to describe magnetization dy-

namics at elevated temperature is the Landau-Lifshitz-Bloch equation[18, 53] which

is derived from the Fokker-Planck equation and the derivation uses the mean-field

approximation. Details of this equation have been discussed in chapter one. It

is very desirable to develop one generalized equation without approximations. In

this chapter we will extend our framework of modeling the thermal fluctuations in

magnetic systems using a jump-noise process and will develop a generalized equa-

tion that conincides with the Landau-Lifshitz equation at low temperatures and

is also valid up to and beyond the Curie temperature. The generalized equation

has both longitudinal and transverse damping terms, and the mathematical form
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of this equation is similar to the Landau-Lifshitz-Bloch equation. The longitudinal

and transverse damping terms emerge directly from the structure of a jump-noise

process which accounts for thermal interactions.

4.1 Random Switching of Magnetization

The mechanisms of the magnetization switching process have been widely dis-

cussed and have prompted intense research activities, motivated in particular by

applications to magnetic data storage technology. Typically, at zero field, the en-

ergy barrier is very high so magnetization reversal is rarely observed. However, the

energy barrier can be lowered by applying a magnetic field in the opposite direction

of the magnetization. Here we are interested in the random switching process due

to thermal excitations because of its important applications in thermal stability of

magnetic recording devices. Long-term themal stability of magnetic storage devices

is preferred, however, random and unstable distributions of magnetization directions

are created by thermal fluctuations and long-term thermal switching would occurs

due to the possibility of overcoming thermal energy barriers in the magnetic systems.

Here we study particles whose magnetic moment has only two stable orientations.

Even if these thermal fluctuations are small compared to the energy barrier, the

magnetization will stay in a local energy minimum during many precessional peri-

ods with small jumps but it still has a certain probability to surmount the energy

barrier separating the two energy minima and appear in the other minima. Typi-

cally when temperature fluctuations are small as compared to energy barriers, the
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magnetization reversal happens due to thermal transitions through energy barriers.

The probability of magnetization reversal is determined by the Arrhenius-Neel for-

mula which is based on the Arrhenius equation proposed by Svante Arrhenius in

1889, Neel relaxation theory developed by Louis Neel in 1949[119] and Neel-Brown

theory derived by Brown[14]. The Arrhenius-Neel law has the following form:

f = f0e
− ∆E
kBT . (4.1)

where f0 is a characteristic of the material called the attempt frequency which ranges

from 109Hz and 1011Hz for magnetic systems, ∆E is the energy barrier, kB is the

Boltzmann constant, T is the temperature and their product is the thermal en-

ergy. We can see from the equation that the relaxation frequency is an exponential

function of temperature, so the probability of magnetization reversal will increase

exponentially with temperature increasing. Also, since the energy barrier is pro-

portional to the grain volume, the flipping probability becomes rapidly negligible

for large nanoparticles. The thermally activated magnetization reversal process has

been the subject of much study recently[89, 90, 91, 92, 93, 94, 95, 96, 97].

As discussed above, a theory about quantum tunneling of magnetization has

been developed that magnetization is able to tunnel through the energy barriers

created by anisotropy [101, 102]. Researchers have also experimentally investigated

this process and measurements have been performed at very low temperatures to

test this hypothesis on a variety of materials such as BaFeCoTiO[110] Mn12[108,

112, 111], Co[113], Ni[113, 114] and ferritin[115, 116, 117, 118]. These results show

agreement with theoretical predictions. The figure 4.1 is taken from experimental
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Figure 4.1: Experimental data of magnetic quantum tunneling[109]

study by Zhang et al in 1995. The curves show that at high temperatures the

magnetization reversal of these particles follows the thermal activation theory while

at lower temperature the reversal rate strongly deviates from it and confirms the

predictions of the existence of magnetic quantum tunneling effect. There has been

some research on modeling the low temperature thermally activated magnetization

reversal processes in the micromagnetic framework [120, 121, 122, 123, 124]. These

models involve quantum mechanical analysis of spin-bath interactions and spin-spin

interactions.

The framework of modeling the thermal fluctuations as a jump-noise process

can be extended to understand the long term dynamics of the magnetization reversal

process. In this section, an approach to determine magnetization reversal probability

is developed based on the jump-noise process driven magnetization dynamics model.

We consider a system with two stable magnetization states that are parallel and

antiparallel to the easy axis. Between these states there is an energy barrier due
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to the anisotropy. This system is expected to escape from one state to the other

either by thermal activation over the barrier at high temperatures or by quantum

tunneling at low temperatures. As discussed in chapter one, the jump-noise process

approach of magnetization dynamics under thermal effects leads to a integral-partial

differential equation for transition probability density. In this section, we will show

that this equation can be reduced to a Master equation using the Kramers-Brown

quasi-local equilibrium approximation without any additional assumptions.

The numerical implementation of this approach will then be discussed and

computational results of thermal switching of magnetization for a very wide range

of temperatures will be presented. The computations confirm that there are two dis-

tinct regimes of magnetization switching and the regimes are controlled by the ther-

mal bath through the parameters of the jump-noise process. The first regime occurs

for sufficiently high temperatures. The temperature dependence of the magnetiza-

tion switching rate coincides with that for thermally activated switching phenomena.

The second regime occurs at very low temperatures. The magnetization switching

rate exhibits some features that coincide with experimental results of macroscopic

quantum tunneling effect of magnetization. What makes this approach different

from the traditional approach to predict quantum tunneling effects is that, this two

different temperature dependent regimes emerge directly from the properties of a

jump-noise process and no quantum considerations are involved in our analysis.
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Figure 4.2: Energy distribution of an uniaxial particle

4.1.1 Mathematical Model

We study the random switching of magnetization in uniaxial nanoparticles

with only two equilibrium (minimum energy) states located in the two wells D1 and

D2 that completely cover Σ, i.e., D1 +D2 = Σ. The energy distribution is illustrated

in Fig 4.2. More complicated energy landscapes can be treated in a similar way.

To study the random switching of magnetization, we will start with the Landau-

Lifshitz magnetization dynamics driven by a jump-noise process described by equa-

tion (1.20). When the energy barrier between wells D1 and D2 is sufficiently large

compared with kT , the noise-driven magnetization switching process occurs on a

very slow time scale. In this case Kramers and Brown [19, 125] suggested that the

switching is a quasi-stationary diffusion process. So at any moment we expect a

Boltzmann distribution will have been established in an energy well a long time be-

fore an appreciable number of particles have switched due to thermal fluctuations.

The Kramers-Brown quasi-local approximation for the transition probability density
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function can be written as follows:

w(M, t) '
2∑
i=1

Pi(t)w0i(M). (4.2)

where Pi(t) is the probability of M ∈ Di at time t and it has the following Boltzmann

form:

w0i(M) =
ϕi(M)

Zi
e−

g(M)−gi
kT . (4.3)

In the last formula, ϕi(M) = 1 for M ∈ Di and ϕi(M) = 0 for M /∈ Di,

gi are energy minima and Zi are the normalization constants such that the total

probability that M ∈ Di is one: ∫
Di

w0i(M)dΣ = 1. (4.4)

The above normalization is consistent with the definition of Pi(t) such that

Pi(t) =

∫
Di

w(M, t)dΣ. (4.5)

By using the Kramers-Brown approximation (4.2) without any additional as-

sumptions, it can be shown [1] that the above equations can be transformed into

the following Master equation:

dPk
dt

=
2∑
i=1

λkiPi − Pk
2∑
i=1

λik, (k = 1, 2), (4.6)

where

λki =

∫
Dk

(∫
Di

S(M′,M)w0i(M
′)dΣ′

)
dΣ. (4.7)

By substituting the expression for the transition probability rate (1.29) , the last

expression can be written in the form

λki =
A

Zi

∫
Dk

(∫
Di

e−
|M−M′|2

2σ2 e−
g(M)+g(M′)−2gi

2kT dΣ′
)
dΣ. (4.8)
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The Master equation can be further simplified into the following equation:

dP1

dt
= −dP2

dt
= −λ21P1 + λ12P2. (4.9)

It is clear from (4.9) that under the condition of a high energy barrier and

small thermal noise and given initial conditions, the evolution of the system under

thermal fluctuation can now be determined by simply solving a set of deterministic

first-order differential equations.

4.1.2 Numerical Results

Then magnetization switching is studied by using the Master equations (4.8)

(4.9) with the following initial conditions

P1(0) = 0, P2(0) = 1, (4.10)

which means the orientation of magnetization is initially in energy well 2 with prob-

ability 1.

Equations (4.9) can be easily solved analytically under the above initial con-

ditions. The solutions should have the following form:

P1(t) =
λ12

λ12 + λ21

− λ12

λ12 + λ21

e−(λ12+λ21)t, (4.11)

P2(t) =
λ21

λ12 + λ21

+
λ12

λ12 + λ21

e−(λ12+λ21)t, (4.12)

From the above expressions we can see that the evolution of magnetization

reversal probability can be described by a single exponential function of time.

To illustrate the evolution of magnetization reversal probabilities, P1(t) has

been computed for different values of applied field along the anisotropy axis. The
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Figure 4.3: Distribution of normalized microscopic energy for different applied fields
along the z-axis.

following expression is used to compute normalizaed microscopic energy g:

g(θ) = −keff

2
cos2 θ − ha cos θ, (4.13)

where g is the microscptic energy of the particle normalized by µ0M
2
s V , with V being

the particle volume and ha is the applied magnetic field normalized by magnitude of

magnetization Ms. Since the energy distribution has rotational symmetry, we only

plot the energy values along the z-axis. Figure 4.3 illustrate the energy distribution

for different applied fields along the z-axis.

Figure 4.4 presents the computed plots of P1(t) for different values of applied

magnetic field. The orientation of magnetization is initially in energy well 2 with

probability 1, so at time 0 the value of P1(t) is always 0. It is apparent from this fig-

ure that for zero applied magnetic field, after a long enough time the magnetization

will end up either in energy well 1 or enegy well 2 with a same probability so the

P1(∞) = 0.5. When the applied magnetic field is not zero, the magnetization will

tend to stay in the energy well with higher energy barrier, so P1(∞) monotonically
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Figure 4.4: Evolution of magnetization reversal probability at 300 K for different
applied fields along the z-axis.

increases with the monotonic increase in energy barrier height of energy well D1

due to the applied field. It is also clear from this figure that as the energy barrier

decreases, P1(t) increases faster.

To study the temperature dependence of magnetic switching properties, we

have also numerically studied the initial switching rate as a function of temperature.

From initial conditions, the following equations are true during the initial stage:

P1(t) ' 0, P2(t) ' 1. (4.14)

Consequently, by substituting the initial conditions into equation (4.9) it can

be derived that at initial stage, the switching rate can be identified as follows:

dP1(t)

dt
' λ12. (4.15)

Since the initial switching rate equals to λ12, properties of the initial switching

rate can be identified by analyzing the mathematical structure of λ12. It is clear

from formula (4.8) that two distinct performance of the value λ12 may occur for
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sufficient low and high temperatures, as a result, two different regimes of magneti-

zation switching rate may be revealed. By evaluating the structure of λ12 we can

see that for appreciably large T , the first exponential factor in the integrand of

(4.8) dominates and the integrand is strongly peaked in the narrow region near the

boundary between D1 and D2. In this narrow region, the second exponential factor

of the integrand in (4.8) is close to e−(gmax−gi)/kT . This is of the same mathematical

form of the Arrhenius Law thus expected to lead to the classical thermally activated

switching case of the switching rate. At very low temperatures, the second expo-

nential factor in the integrand dominates and it is strongly peaked for M and M′

around their respective energy minima. It is reasonable to expect that this structure

will not follow the classical situation of thermally activated switching but lead to a

different temperature dependence of switching rate at very low temperatures.

The above qualitative reasoning can be supported by numerical evaluation

of the initial swithching rate λ12. Since we are considering uniaxial nanoparticles

with easy axis aligned with the direction of z-axis, the micromagnetic free energy

distribution has rotational symmetry. The mathematical structure of the initial

swithching rate λ12 can be better visualized by evaluting the following formula where

magnetization is characterized using the θ value while the φ of a magnetization is

ignored due to the rotational symmetry:

f12(θ, θ′) =
A

Z2

e−
g(θ)+g(θ′)−2g2

2kT

∫ 2π

0

∫ 2π

0

e−
|M(θ,φ)−M(θ′,φ′)|2

2σ2 dφdφ′ (4.16)

The computations are illustrated by Figure 4.5 where the f12(θ, θ′) is plotted

for different temperatures. It is apparent from Figure 4.5a that at 1K, the function
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Figure 4.5: f12(θ, θ′) at various temperatures.

f12(θ, θ′) is strongly localized around the point (θ = 0, θ′ = π) which corresponds

to M and M′ being at their respective minima. As the temperature is increased

to 1.9 K, two strongly pronounced maxima of f12(θ, θ′) abruptly appear along the

lines θ = π/2 and θ′ = π/2 as shown in Figure 4.5b. As the temperature is further

increased, these two maxima of f12(θ, θ′) move along the two lines and merge together

at 4.4 K as shown in Figure 4.5c. At higher temperatures this localized maximum

at the point (θ = π/2, θ′ = π/2) continues to grow.

These two different localizations of the integrand in formula (4.16) result in
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Figure 4.6: Temperature dependence of magnetization switching rate with different
noise strength.

two different temperature dependences of magnetization switching rate. This is

illustrated by Figure 4.6 where the quantity −1/ lnλ12 is plotted versus temperature

for different values of σ.

This figure clearly reveals the existence of two distinct regimes of magnetiza-

tion switching. And the curves of switching rate coincide very well with those from

experimental data shown in 4.1. The linear variation of −1/ lnλ12 with respect to

temperature at relatively high temperatures can be clearly identified with traditional

thermally activated switching. That is, at high temperature the Arrhenius law is

approximately followed. With decreasing temperature, the curves flatten out and

becomes temperature independent. The flat part of the curves reveals that at very

low temperature therelaxation from one state to another is enhanced above the ther-

mally activated rate. These deviations from the simple model of thermally assisted
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magnetization reversal are consistent with experimental observations of macroscopic

quantum tunneling of magnetization at very low temperatures. It is also clear from

the figure that the transition from the thermal regime to quantum regime is quite

sharp. The crossover temperature occurs at a few Kelvins and depends on the value

of σ. All of these properties of the switching rate are consistent with the theoretical

predictions of magnetic quantum tunneling effect and experimental data. Since the

tranditional theoretical explanation requires quantum mechanical analysis of spin-

bath interactions and spin-spin interactions, it is remarkable that in our analysis the

two regimes performance has emerged from the properties of a jump-noise process

and that no quantum mechanical considerations have been involved.

4.2 Magnetization Dynamics at Elevated Temperatures

Modeling of high temperature behavior of magnetization dynamics is also of

great importance due to the recent advances in heat-assisted magnetic recording

technology[127] and all-optical magnetization switching[128]. In heat-assisted mag-

netic recording, temperature is raised locally above the Curie temperature using

ultrafast pulsed laser so the coercivity of the magnetic storage medium at the bit is

lowered and a realistically achievable magnetic write field can be used to write data

to the medium. The classic magnetization dynamics model is not valid to model

the elevated temperature dynamic performance. The classical Landau-Lifshitz and

Landau-Lifshitz-Gilbert equations describe magnetization dynamics with the prop-

erty that the magnitude of magnetization is conserved, i.e., magnetization is con-
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sidered as a vector of fixed length and its longitudinal relaxation is ignored. This

property is usually justified for well below the Curie temperature because at such

temperatures the local exchange interaction prevails over all other forces at the

smallest spatial scale and is compatible with the continuous media hypothesis of

micromagnetics. However, this property may not be true at elevated temperatures.

If we consider the changes of magnetization magnitude at elevated temperatures,

the magnetization dynamics equation of a ferromagnet should contain both trans-

verse and longitudinal relaxation terms. For this reason a model is necessary for

high temperature dynamics. A widely used model to describe magnetization dy-

namics at elevated temperature is the Landau-Lifshitz-Bloch equation[18, 53]. It

is a generalization of the classical Landau-Lifshitz equation while is applicable at

both elevated temperatures and low temperatures so that magnetization dynam-

ics can be described when the magnetization magnitude is not conserved. The

Landau-Lifshitz-Bloch equation is derived from the Fokker-Planck equation and the

derivation uses the mean-field approximation. It is very desirable to develop one

such generalization without approximations and in this section such a generalized

dynamic equation is developed. It is based on the same approach in chapter one

which is to describe the thermal bath effects using a jump-noise process. The only

difference is that previously, the magnetization dynamics is restricted to the sphere

|M(t)| = Ms = const due to the microscopic constraint, but at elevated tempera-

tures this constraint is no longer valid. The magnetization magnitude is allowed to

change, and these changes are accounted for by relaxing this constraint on a jump-

noise process and by introducing an additional term in the effective magnetic field
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or the free magnetic energy [126].

4.2.1 Mathematical Model

Our model is based on the same approach in chapter one which is to describe

the thermal bath effects using a jump-noise process. Consequently, we will start with

the magnetization dynamics equation (1.20). There, the magnetization dynamics is

studied at temperatures T well below the Curie temperature Tc so that the dynamics

occurs only on the sphere Σ defined by the formula (1.21). This is achieved in chapter

one by restricting the transition probability rate S(M(t),M′) to the sphere Σ. At

elevated temperatures close to Tc there is no such restriction so S(M,M′) can be

defined for any M and M′. Since the magnetization magnitude is allowed to change,

an additional term need to be introduced in the free magnetic energy to account for

the changes of the magnetization magnitude.

g(M) = g0(M) + g̃(M), (4.17)

where g0(M) is the classical free micromagnetic energy traditionally used for mag-

netization dynamics on the sphere Σ, while g̃(M) is the part of the free magnetic

energy which is due to the deviation of the magnetization magnitude from Ms.

The effective magnetic field Heff is related to g(M) by the formula

Heff = − 1

µ0V
∇g(M). (4.18)

This formula implies that at the equilibrium (energy minimum) state we have

Heff = 0. (4.19)
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This is quite different from the classical micromagnetic equilibrium condition

expressed by the Brown equation

M×Heff = 0. (4.20)

This difference is due to the fact that at elevated temperatures equilibrium

states are found as a result of unconstrained minimization of g(M), while in the

classical micromagnetics equilibrium states are restricted to the sphere Σ.

In order to derive the damping parameter at elevated temperatures, we follow

the method used in chapter one. Similarly, the damping term for magnetization can

be shown as average effects caused by the jump process Tr(t). First, we decompose

the jump-noise process into two distinct terms: the expected (average) value and

fluctuation:

Tr(t) = E[Tr(t)] + T(0)
r (t), (4.21)

By neglecting the fluctuation term T
(0)
r (t), the magnetization dynamics can

be described using the following deterministic equation:

dM

dt
= −γ (M×Heff) + E[Tr(t)]. (4.22)

Then we need to find the expression for E[Tr(t)] to fully describe the magne-

tization. Similar to (1.34), the expected value can be written as a integral equation.

A slight difference here is that value need to be integrated over the whole space be-

cause at elevated temperatures the magnetization magnitude is no longer constraint

to the sphere and M and M′ can take any value in the whole space. For this reason,
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the expected value of the jump-noise process can be written as follows:

E[Tr(t)] =

∫∫∫
mS(M,M + m)dm. (4.23)

To evaluate the integral, we rewrite the expression in the follwing form by

taking into account that M−M′ = m and g(M)− g(M′) ' −m · ∇g

S(M,M + m) ' A exp

{
−|m

2|
2σ2

− m · ∇g
2kT

}
, (4.24)

which can be further transformed as follows:

S(M,M + m) = A exp

{
1

2

(
σ|∇g|
2kT

)2
}

× exp

{
− 1

2σ2

∣∣∣∣m +
σ2

2kT
∇g
∣∣∣∣2
}
. (4.25)

By substituting the last formula into equation (4.23), we find

E[Tr(t)] = A exp

{
1

2

(
σ|∇g|
2kT

)2
}
I, (4.26)

where I is the notation for the following Gaussian integral

I =

∫∫∫
m exp

{
− 1

2σ2

∣∣∣∣m +
σ2

2kT
∇g
∣∣∣∣2
}
dm, (4.27)

which can be evaluated as follows:

I = −
(
σ
√

2π
)3 σ2∇g

2kT
. (4.28)

Then we apply a similar technique to find the expression for the scattering

rate λ(M). Since λ(M) can be written as a integral of S (M,M′):

λ(M) =

∫∫∫
S (M,M′) dM′, (4.29)
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we derive that

λ(M) = A
(
σ
√

2π
)3

exp

{
1

2

(
σ|∇g|
2kT

)2
}
. (4.30)

By combining the above equations, we obtain

E[Tr(t)] =
σ2

2kT
λ(M)Heff, (4.31)

and the magnetization dynamics equation at elevated temperatures becomes

dM

dt
= −γ (M×Heff) +

σ2

2kT
λ(M)Heff. (4.32)

The last equation suggests that average thermal relaxations of magnetization

to the equilibrium (energy minimum) state occur along the direction of steepest

energy decrease.

Since M, M×Heff and M×(M×Heff) are mutually orthogonal, any vector can

be expresses using these three basis vectors. Because Heff is orthogonal to M×Heff,

the average value of the jumps E[Tr(t)] can be decomposed into the following form:

E[Tr(t)] = −αM× (M×Heff)− νM. (4.33)

By using the vector-algebra identity for a double cross product, the decompo-

sition can also be written in the following form:

E[Tr(t)] = α|M|2Heff − [α (M ·Heff) + ν]M. (4.34)

By comparing the above equation and equation (4.31), we can derive the

following expressions for the transverse damping constant α and the longitudinal
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damping constant ν:

α =
σ2

2kT |M|2
λ(M), (4.35)

ν = −σ
2(M ·Heff)

2kT |M|2
λ(M). (4.36)

Finally, by substituting formula (4.33) into equation (4.22), the following equa-

tion for magnetization dynamics at elevated temperatures can be derived:

dM

dt
= −γ(M×Heff)− α(M× (M×Heff))− νM. (4.37)

This equation has a generalized form which contains both longitudinal and

transverse damping terms. The corresponding damping parameters α and ν are

given by formulas (4.35) and (4.36), respectively, and they depend on the magneti-

zation and parameters of the jump-noise process. It is clear that the mathematical

structure of this equation is similar to the structure of the Landau-Lifshitz-Bloch

equation mentioned in chapter one. The difference is that our derivation of this

equation is based on an entirely different conceptual basis. It is appreciably sim-

pler and more physically transparent than in [18]. The longitudinal and transverse

damping terms emerge in the presented derivation directly from the structure of a

jump-noise process, while in [18], the Landau-Lifshitz damping term is introduced

in the initial equation independently of the stochastic white-noise term.

4.2.2 Discussion

It is of great interest to further discuss the structure of the damping motion

described using (4.37). Since g̃(M) is the part of free energy that is due to the devi-

ation of the magnetization magnitude from Ms, we can assume that g̃(M) depends
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only on the magnitude M of magnetization M(t) and it reaches its minimum on

the sphere. This implies that the component g̃(M) of free magnetic energy can be

interpreted as an “energy penalty” caused by deviation of |M(t)| from Ms.

With the above assumption and by using formulas (4.17) and (4.18), we find

Heff = − 1

µ0V
[∇Mg0(M)− g̃′(M)

M

M
], (4.38)

where g̃′ is the derivative of g̃.

By substituting the last formula into the expression (4.36), we get

ν =
σ2λ(M)

2kTM
(M · ∇Mg0(M) + g̃′(M)) . (4.39)

One way of choosing g̃(M) is to use the Landau theory of second-order phase

transition. According to this theory[129], near the Curie temperature Tc the function

g̃(M) can be represented as follows:

g̃(M) = −A1(Tc − T )M2 + A2M
4, (A1 > 0, A2 > 0). (4.40)

From the last formula we find

g̃′(M) = −2A1(Tc − T )M + 4A2M
3, (4.41)

and g̃(M) achieves its minimum at

Ms(T ) =

(
A1(Tc − T )

2A2

) 1
2

. (4.42)

By using the last formula, the expression for g̃(M) can be represented by the

equation

g̃(M) =
A2

1

4A2

(Tc − T )2

[(
M

Ms

)2

− 1

]2

. (4.43)
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From formulas (4.41) and (4.43) we can see that when temperature goes down,

a very steep energy well is formed around the sphere Σ. This may cause the very

fast relaxation dynamics of magnetization towards the sphere Σ. As a result of

these relaxations, the subsequent magnetization dynamics will occur on the sphere

Σ where ν = 0 and the generalized dynamics equation (4.37) is reduced to the jump-

noise process driven Landau-Lifshitz equation for low temperatures with α defined

by formula (4.35).
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Chapter 5

Conclusion and Outlook

In this dissertation, a jump-noise process driven Landau-Lifshitz equation has

been numerically implemented to model random magnetization dynamics with ther-

mal bath interactions. Magnetization phenomena have been investigated using this

approach for a very wide range of temperatures and these phenomena can be con-

nected with various technological applications. The primary strength of the jump-

noise process driven magnetization dynamics approach over the traditional approach

where the thermal fluctuations are accounted for by a white-noise process, is that

the jump-noise term itself can describe the thermal effects in a magnetic system

including both damping motion and fluctuations. The classical Landau-Lifshitz and

Landau-Lifshitz-Gilbert damping terms can be derived as average effects caused by

the jump-noise process. It has been demonstrated that this approach is clearly

consistent with the physical origin of damping and scattering processes since both

damping and fluctuation effects emerge from the jump-noise process. Numerical

implementation has been developed for this approach and the numerical results

comfirms the correctness of the analytical derivations. Numerical techniques imple-

mented in the simulation are unconditionally stable. They preserve micromagnetic

constraints and appreciably simplify the random component of Monte Carlo simula-

tions. The accuracy and efficiency of the numerical techniques are demonstrated by
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examples of Monte Carlo simulations that show an perfect agreement between the

equilibrium distribution in the superparamagnetic state and a Boltzmann-type dis-

tribution. To speed up the Monte Carlo simulations of magnetization dynamics, a

parallel algorithm is developed on GPUs. The simulation tasks are perfectly mapped

to the GPU architecture and a speed-up factor of about 200 is observed in GPU

Monte Carlo simulations in comparison with the traditional single-threaded CPU

simulations. Several magnetization dynamics properties have been investigated us-

ing this analysis framework. In particular, magnetization switching processes are

investigated for a very wide range of temperatures. By using a Kramers-Brown

quasi-local equilibrium approximation, a Master equation is derived for magnetiza-

tion random switching when the energy barrier between energy wells is sufficiently

large in comparison with the thermal energy. The Master equation is a first-order

differential equation so that the evolution of reversal probabilities can be easily

solved using the Master equation without any randomness. Numerical implemen-

tation of the Master equation shows consistency with experimental data where the

high temperature switching agrees with the Arrhenius law of thermal activation

while the low temperature switching has many features traditionally attributed to

the phenomena of macroscopic magnetization tunneling. In addition, a general-

ized stochastic equation is developed to describe the magnetization dynamics at

elevated temperatures. Such a generalization is derived based on the same approach

of describing the thermal bath effects by a jump-noise process, and the generalized

equation conincides with the Landau-Lifshitz equation at low temperatures and is

also valid up to the Curie temperature. This equation has both longitudinal and
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transverse damping terms, and the mathematical form of this equation is similar to

that of the Landau-Lifshitz-Bloch equation. The difference is that the generalized

equation we derived is based on a different conceptual basis and the longitudinal

and transverse damping terms emerge directly from the structure of a jump-noise

process which accounts for thermal interactions. There are several areas where the

jump-noise process approach can be applied and incremental improvements can be

made. The following are some of the improvements and topics that can be done in

the future.

The numerical implementation of the jump-noise process driven magnetization

dynamics approach can be extended by developing a finite element method with

mid-point time-stepping and self-scattering scheme. This extended implementation

would allow simulation of magnetization dynamic processes of magnetic bodies in

arbitrary shape. For instance, the dynamic processes of a thin-film material in hard

disk drives or a multi-layer structure in spin valves can be calculated in this way.

In addition, the jump-noise process has two distinct parameters that characterized

the noise. Their physical meanings should be further investigated to understand

the relation of damping motion and thermal interactions. Moreover, in chapter four

the thermally activated magnetization reversal process has been investigated using

the jump-noise process driven approach. A deterministic Master equation is derived

using only one assumption, the Kramers-Brown approximation. In order to find the

applicability for the Master equation, the condition of the Kramers-Brown approxi-

mation should be very well understood. This approximation holds only when energy

barriers created by anisotropy are sufficiently high in comparison with thermal ef-
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fect. It is of great importance to identify the “sufficiently high” condition using

a quantitative number. Future work in the jump-noise process driven dynamics

framework could also be made by developing techniques to describe magnetization

dynamics of a magnetic system in the presence of spin polarized current injection.

Spintronics is a new area rising from nanomagnetism and there are numerous spin-

tronic dynamic phenomena worth investigating and modeling. Finally, an averaging

technique can be used to develop a slow time scale dynamic equation by using the

magnetic free energy as a state variable. The stochastic dynamic equation of energy

can also be used to analyze thermally activated magnetization reversal processes.

And it can be used to identify the condition of the Kramers-Brown approximation

and the limit of applicability of the Master equation. This direction can be pursued

in future activities.
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