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We present new algorithms related to both theoretical and practical questions in

the area of elliptic curves and class field theory. The dissertation has two main parts, as

described below.

Let O be an imaginary quadratic order of discriminant D < 0, and let K =

Q(
√
D). The class polynomial HD of O is the polynomial whose roots are precisely

the j-invariants of elliptic curves with complex multiplication by O. Computing this

polynomial is useful in constructing elliptic curves suitable for cryptography, as well as

in the context of explicit class field theory. In the first part of the dissertation, we present

an algorithm to compute HD p-adically where p is a prime inert in K and not dividing D.

This involves computing the canonical lift Ẽ of a pair (E, f) where E is a supersingular

elliptic curve and f is an embedding of O into the endomorphism ring of E. We also

present an algorithm to compute HD modulo p for p inert which is used in the Chinese

remainder theorem algorithm to compute HD.

For an elliptic curve E over any fieldK, the Weil pairing en is a bilinear map on the

points of order n ofE. The Weil pairing is a useful tool in both the theory of elliptic curves



and the application of elliptic curves to cryptography. However, for K of characteristic

p, the classical Weil pairing on the points of order p is trivial. In the second part of the

dissertation, we considerE over the dual numbersK[ε] and define a non-degenerate “Weil

pairing on p-torsion.” We show that this pairing satisfies many of the same properties of

the classical pairing. Moreover, we show that it directly relates to recent attacks on the

discrete logarithm problem on the p-torsion subgroup of an elliptic curve over the finite

field Fq. We also present a new attack on the discrete logarithm problem on anomalous

curves using a lift of E over Fp[ε].
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Chapter 1

Introduction

In this dissertation, we present new algorithms related to both theoretical and prac-

tical questions in the area of elliptic curves and class field theory. The dissertation has

two main parts. In the first part, we present an algorithm to compute the class polynomial

of an imaginary quadratic order using the canonical lift of a supersingular elliptic curve.

In the second part, we define a Weil pairing on the p-torsion of an ordinary elliptic curve

over the dual numbers of the fieldK. We give a brief overview of each part in this section.

Computing class polynomials using the canonical lift of a supersingular elliptic curve

LetO be an imaginary quadratic order of discriminantD < 0, and letK = Q(
√
D)

denote the corresponding imaginary quadratic field. Let p be a prime inert in K with p

not dividing D. In this case, we say p is inert with respect to D. In Chapter 2, we present

an algorithm to compute the canonical lift Ẽ of a pair (E, f) where E is a supersingu-

lar elliptic curve over Fp and f is an embedding of O into the endomorphism ring of

E. The curve Ẽ is a curve over Qp reducing to E such that the induced embedding of

endomorphism rings is precisely the embedding f .

In particular, the curve Ẽ has complex multiplication by O and therefore its j-

invariant is a root of the class polynomial ofO, denotedHD(X). The polynomialHD(X)
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is a minimal polynomial of the extension HO/K, where HO is the ring class field of

O. Thus computing the polynomial HD(X) is of interest for explicit class field theory.

Moreover, computing HD(X) is useful in constructing elliptic curves suitable for crypto-

graphic purposes. In Chapter 2, we present an algorithm to compute HD(X) p-adically

using the canonical lift of (E, f) where p is inert with respect to D. We also present an

algorithm to compute HD(X) modulo p for p inert which is used in the Chinese remain-

der theorem approach to computing HD(X).

A Weil pairing on the p-torsion of an ordinary elliptic curve over the dual numbers

Let K be any field. The Weil pairing is a bilinear map en on the points of order n

of an elliptic curve E over a field K. The Weil pairing is a useful tool in both the theory

of elliptic curves and in the application of elliptic curves to cryptography. In particular,

for n not divisible by the characteristic of K, the Weil pairing en can be used to reduce

the discrete logarithm problem on elliptic curves to that in the multiplicative subgroup of

a finite field.

ForK of characteristic p, the classical Weil pairing on the points of order p is trivial.

In Chapter 3, we consider E over the ring of dual numbers K[ε] ' K[x]/(x2). We define

a non-degenerate “Weil pairing on p-torsion” on E over K[ε] and prove that this shares

many of the same properties of the classical pairing. Moreover, we show that it directly

relates to recent attacks on the discrete logarithm problem on the p-torsion subgroup of

an elliptic curve over Fq. We also present a new attack on the discrete logarithm problem

on anomalous curves using a lift of E over Fp[ε].
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Chapter 2

Computing class polynomials using the canonical lift of a supersingular

elliptic curve

2.1 Introduction

LetO be an imaginary quadratic order of discriminantD < 0, and letK = Q(
√
D)

denote the corresponding imaginary quadratic field. Let E be an elliptic curve over C,

and let EndC(E) denote the ring of endomorphisms of E defined over C. The curve E

has complex multiplication by O if EndC(E) ' O. It is a result of class field theory that

E is isomorphic to a curve defined over HO, the ring class field of O. The ring class

field HO is an algebraic extension of K with Galois group isomorphic to the ideal class

group Cl(O) via the Artin map. The class polynomial ofO is the polynomial whose roots

are precisely the j-invariants of all isomorphism classes of curves over C with complex

multiplication by O. This polynomial, denoted HD(X), is a minimal polynomial of the

extension HO/K. In the case of O equal to OK , the ring of integers of K, this is known

as the Hilbert class polynomial of K. Algorithms to compute the polynomial HD are of

interest for explicit class field theory as well as for constructing elliptic curves used in

cryptography [8, Sec. 18.1].

In this chapter, we present a new algorithm to computeHD(X) using a p-adic lifting

technique where p is a prime inert in K with p not dividing D. In this case we say p is
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inert with respect to D. The algorithm is based on computing the canonical lift of an

elliptic curve over Fp together with its endomorphism ring, as proposed in [10]. We

first give an overview of the known methods to compute the class polynomial HD(X)

followed by a brief explanation of the p-adic approach for p inert with respect to D.

The j-invariants of curves with complex multiplication by O are algebraic integers

and therefore the polynomial HD(X) has integer coefficients [45, Thm. 10.9]. The clas-

sical method to compute HD is to compute each root ji in the field C to high enough

accuracy so that in expanding the product
∏h(O)

i=1 (X − ji) we can recognize the coeffi-

cients as actual integers. There are good bounds on the size of the coefficients of HD(X)

which are based on the correspondence of binary quadratic forms of discriminant D with

ideals of O. Let (a, b, c) denote the form ax2 + bxy + cy2, and let Q be a set of primitive

reduced binary quadratic forms (a, b, c) of discriminant D representing the class group

Cl(O). From [17, Sec. 6], we have the following bound on the number of decimal digits

of the largest coefficient of HD:

C = 2.48h(D) + π
√
|D|

∑
(ai,bi,ci)∈Q

1

ai
. (2.1)

Each root ji is computed as the value of the modular function j(z) for z = −bi+
√
D

2ai
. The

drawback of this method is that in expanding
∏

i(X − ji), we potentially lose accuracy

at each multiplication due to round-off error. While this does not appear to be a problem

in practice, there are not rigorously proven good estimates for the amount of accuracy of

the roots ji needed to offset the round-off error. For discussion of this issue, see [17].

To circumvent the problem of round-off error, Couveignes and Henocq in 2002

proposed computing the roots ji in a p-adic setting [10]. The advantage of working
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with the p-adics is that there is no round-off error when multiplying or adding p-adic

integers. Therefore, knowing the roots ji to a certain p-adic accuracy means that we know

the coefficients of the polynomial
∏

i(X − ji) to that same p-adic accuracy. Using the

bound (2.1), we can then recognize the coefficients of the expanded product as integers.

A main difference in the p-adic approach is that a single root j̃ of HD(X) is computed

to sufficient p-adic accuracy using a lifting technique, and then the remaining roots of

HD(X) are computed to that same accuracy using the Galois action of the class group

Cl(O) on the set of roots.

To compute the root j̃, we compute the canonical lift of a pair (Ē, f), where Ē

is an elliptic curve in characteristic p and f : O ↪→ End(Ē) is an embedding. The

canonical lift is the curve Ẽ defined over HO and unique up to isomorphism such that

Ē ≡ Ẽ mod p for p a prime above p, and such that induced embedding of endomorphism

rings End(Ẽ) ↪→ End(Ē) is precisely f .

In the case of a prime p that splits principally in K with p not dividing D, the curve

Ē is ordinary. This implies that the endomorphism rings of Ē and its canonical lift Ẽ are

isomorphic, and f is an isomorphism. There is thus a one-to-one correspondence between

curves Ẽ over Qp with End(Ẽ) ' O and ordinary curves Ē over Fp with End(E) ' O.

The main idea of [10] is to first compute the induced action of Cl(O) on the set of curves

Ē with endomorphism ring isomorphic to O. This action lifts uniquely to an action on

the curves over Qp and can be used to define a p-adic analytic map. Then using a variant

of Newton’s method, we can compute an approximation to the canonical lift of Ē. The j-

invariant of this curve is an approximation to a root of HD(X). Computing the canonical

lift in this case has been developed into an explicit algorithm [5]. As the lower bound
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on the smallest prime splitting principally is |D|/4, there is motivation for working with

primes which are inert with respect to D. Under the Generalized Riemann Hypothesis

(GRH), the upper bound on the smallest such prime is O((log |D|)2), thus an algorithm

to compute HD(X) based on computing the canonical lift for p inert is potentially faster.

In the case of p inert with respect to D, there are two main differences which arise

when defining and computing the canonical lift. The first is that the curve Ē is super-

singular and thus f is not an isomorphism. The correspondence between curves over Qp

with End(Ẽ) ' O and supersingular curves over Fp with End(Ē) containing O is not

one-to-one but depends instead on how the order O embeds into End(Ē). Therefore,

we must compute the induced action of Cl(O) on the set of pairs (Ē, f) where Ē is a

supersingular curve and f is an embedding O ↪→ End(Ē). We address this by using the

connection between supersingular elliptic curves over Fp and the quaternion algebraAp,∞

ramified at p and ∞. The second difference is that the curve Ē may have j-invariant 0 or

1728 if p 6≡ 1 mod 12. Curves with these j-invariants have extra automorphisms which

make computing the canonical lift more delicate. We address this by working with the

Legendre form of an elliptic curve which accounts for the extra automorphisms of the

curves. We are then able to explicitly compute the canonical lift of (E, f) for any p ≥ 3.

(For the case of p = 2 inert in K and D a fundamental discriminant, see [33].)

In Section 2.2, we describe the theory of supersingular elliptic curves over Fp and

maximal orders of Ap,∞. In Section 2.3, we define the canonical lift of a pair (Ē, f),

where Ē is a supersingular elliptic curve and f is an optimal embedding of O into Ap,∞,

and define an action of the class group Cl(O) on the set of such pairs. In Section 2.4,

we present an algorithm to compute the canonical lift of (Ē, f) for p ≡ 1 mod 12. We
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also use the action of Cl(O) to give an algorithm to compute HD(X) modulo p for p

inert with respect to D. This algorithm is used in the recently proposed “multi-prime”

algorithm for class polynomials which computes HD(X) mod p for many small primes p

and then recovers HD using the Chinese Remainder theorem [2].

In Section 2.5, we introduce the Legendre form L of an elliptic curve to address

the case of p 6≡ 1 mod 12. In Sections 2.6 and 2.7, we discuss the modular function λ

of level 2 and use it to define an action of a generalized class group of K on the set of

curves in Legendre form with complex multiplication by O. In Section 2.8, we present

the algorithm to compute the canonical lift of (L̄, f) for p 6≡ 1 mod 12 using a p-adic

analytic map ρα. Finally, in Section 2.9, we give a p-adic lifting algorithm to compute the

polynomial HD(X) for p inert with respect to D.

For completeness, we mention another known method to compute HD(X) as dis-

cussed in [11, Section 13]. Letm be a positive integer such thatO has a primitive element

of norm m. The polynomial HD(X) is an irreducible factor of the modular polynomial

φm(X,X). As there are algorithms for computing φm(X, Y ) and for factoring polyno-

mials, in theory this gives another way to compute HD(X). However, the size of the

coefficients of modular polynomials is exponential in m. As the smallest m such that O

has a primitive element of norm m is roughly the size of D, this approach to computing

HD is not feasible in practice.
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2.2 Supersingular curves and quaternion algebras over Q

2.2.1 Brief introduction to quaternion algebras over Q

A quaternion algebra over Q is a central, simple Q-algebra of dimension four. By

simple, we mean that the algebra has no non-trivial two-sided ideals. The results in the

next three sections can be found in [42, Chap. I - III] unless otherwise noted. Let A be

a quaternion algebra over Q. The following proposition gives a concrete characterization

of A.

Proposition 2.2.1 The following are equivalent:

1. A is a central, simple Q-algebra of dimension four.

2. A = L + Lβ where L is a separable 2-dimensional Q-algebra, β2 = b for b ∈ Q∗

and βα = ᾱβ for all α ∈ L, where ᾱ denotes the non-trivial automorphism of L.

This is denoted
(
L,b
Q

)
.

3. A = Q[α, β] where α2 = a, β2 = b for a, b ∈ Q∗ and αβ = −βα. This is denoted(
a,b
Q

)
.

Consider the algebraA defined byA = L+Lβ whereL is a separable 2-dimensional

Q-algebra, β is an element ofAwith β2 = b and βα = ᾱβ for all α ∈ L, where ᾱ denotes

the non-trivial automorphism of L. The algebraA has an involution or conjugation which

comes from extending the non-trivial automorphism of L to A by defining β̄ = −β. The

reduced trace and norm of A are defined as

tr(γ) = γ + γ̄, n(γ) = γγ̄.
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ForA =
(
a,b
Q

)
, we let L = Q(α) and writeA =

(
L,b
Q

)
. Then for γ = x+yα+zβ+wαβ ∈

A, we have

tr(γ) = 2x, n(γ) = x2 − ay2 − bz2 + abw2.

Thus tr(γ), n(γ) ∈ Q, and every element of A is a root of a characteristic polynomial in

Q[X] :

X2 − t(γ)X + n(γ).

A division algebra or skew field is an algebra such that all non-zero elements have

inverses. It is a classic result that a quaternion algebra A over Q is either isomorphic

to M(2,Q), the algebra of two-by-two matrices over Q, or to a division algebra. The

following proposition gives a necessary and sufficient condition for A to be a division

algebra.

Proposition 2.2.2 [42, Cor. 2.4] The quaternion algebraA =
(
L,b
Q

)
is a division algebra

if and only if L is a field and b 6∈ n(L).

A quaternion algebra A is ramified at the prime p if A⊗Q Qp is a division algebra

and ramified at ∞ if A⊗Q R is a division algebra. Let Ap,∞ denote a quaternion algebra

which is ramified at precisely these two places. For all primes ` 6= p, Ap,∞ ⊗Q Q` '

M(2,Q`), the algebra of two-by-two matrices over Q`. There is a unique such algebra up

to isomorphism and we define Ap,∞ to be the quaternion algebra Ap,∞ over Q ramified

at p and ∞. An explicit characterization of Ap,∞ as
(
a,b
Q

)
for a, b ∈ Q∗ is found in [42,

Exercise III.5.2].
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2.2.2 Supersingular elliptic curves and the quaternion algebra Ap,∞

In this section, we make explicit the connection between supersingular elliptic

curves and the maximal orders of Ap,∞. Let A be a quaternion algebra over Q. The

set of integers of A consists of all elements γ ∈ A such that tr(γ), n(γ) are integers. Un-

like the case of a number field, the set of integers is not necessarily a ring, and therefore it

does not make sense to consider the maximal order of A. A ring of integers of A is a set

of integers of A which forms a ring under the operations of addition and multiplication.

We define an order R of A to be a ring of integers of A containing Z with R ⊗Z Q = A.

A maximal order is an order not properly contained in any other order.

Given an order R, we call J a left ideal of the order R if J is a left ideal of the

ring R, that is, RJ ⊂ J , and if J is a finitely-generated Z-module contained in A with

J ⊗Z Q = A. The ideal J is integral if J ⊂ R. Similarly, we call J a right ideal of R

if JR ⊂ J . Given an ideal J of any order, the left order of J is the order containing all

elements x ∈ A such that xJ ⊂ J . This is denoted Rl(J). Similarly, we let Rr(J) denote

the right order of J . Any order R is its own left and right order.

The norm n(J) of the ideal J is the positive generator of the subgroup generated

by the image of the norm map n : J → Z. In other words, n(J) is the greatest common

divisor of the set {n(γ)|γ ∈ J}. The inverse of an ideal is the set J−1 = {γ ∈ A : JγJ ⊂

J}. For ideals I, J , we have the following properties:

JJ−1 = Rl(J) = Rr(J
−1)

J−1J = Rl(J
−1) = Rr(J)

Rr(IJ) = Rr(J), Rl(IJ) = Rl(I).
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Let I, J be left ideals of R. If I = Jx for some x ∈ A, we say I and J are right-

isomorphic as left R-modules. The left ideal classes of R are the right-isomorphism

classes of ideals [Ji] such that R = Rl(Ji). We have the analogous definition for right

ideal classes, and the map J 7→ J−1 gives a bijection between left and right ideal classes

of R.

Let R be a maximal order of A and {Ji} a set of left ideal class representatives.

The number of classes is the same for any maximal order of A, and therefore we define

the class number hA of A as the number of left ideal classes of R.

Two orders R and R′ are of the same type if they are conjugate by an element of

A, that is, if there exists h ∈ A such that hRh−1 = R′. The type number tA of A is the

number of conjugacy classes of maximal orders. It is a fact that every conjugacy class of

maximal orders of A appears in the set {Rr(Ji)} at least once, and so tA ≤ hA.

We now give the connection between supersingular elliptic curves and maximal or-

ders ofAp,∞. A supersingular curve E is an elliptic curve over Fp such that the subgroup

of p-torsion points of E over Fp is trivial. We begin by giving a characterization of the

supersingular curves over Fp and their automorphism groups.

Proposition 2.2.3 Every supersingular elliptic curve over Fp is isomorphic to a curve

defined over Fp2 . For p 6= 2, 3 and j(E) 6= 0, 1728, the automorphism group Aut(E) of

E is ±Id. For j(E) = 0, 1728 and p 6= 2, 3, the group Aut(E) is cyclic of order 6 and 4,

respectively. For p = 2, 3, the curve with j = 0 is supersingular and Aut(E) is cyclic of

order 24 and 12, respectively.
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A curve with j = 0 is supersingular if and only if p 6≡ 1 mod 3. A curve with

j = 1728 is supersingular if and only if p 6≡ 1 mod 4.

Proof: The first fact follows from the definition of a supersingular curve. As E has

no p-torsion points, the endomorphism [p] of E is inseparable of degree p2, and thus is

the map π2
p , where πp is the the Frobenius map (x, y) 7→ (xp, yp). Therefore π2

p fixes the

coefficients of the Weierstrass equation of E and j(E) as well. Thus j(E) is in Fp2 . A

proof of the statements concerning Aut(E) is found in [38, Appendix A].

Let E be a curve in characteristic zero with j = 0, respectively 1728, which is

defined over Q and has good reduction modulo p. The curveE has complex multiplication

by the ring of integers of K = Q(
√
−3), respectively Q(

√
−1), and reduces modulo p to

a curve Ep/Fp. This curve is supersingular if and only if p does not split in K [26, Thm.

13.4.12]. Thus, the curve Ep with j = 0 is supersingular if and only if p does not split in

the field K which is true if and only if p 6≡ 1 mod 3. Similarly, a curve with j = 1728 is

supersingular if and only if p does not split in K = Q(
√
−1)) which is true if and only if

p 6≡ 1 mod 4. 2

Theorem 2.2.4 [14, 2.1-2.4,10.]

1. The number of isomorphism classes of supersingular elliptic curves over Fp2 is

equal to the class number hp of Ap,∞.

2. The number of Gal(Fp2/Fp)-conjugacy classes of j-invariants of supersingular el-

liptic curves over Fp2 is equal to the type number tp of Ap,∞.

3. LetR be any maximal order ofAp,∞ and let {Ji} be a set of left ideal class represen-
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tatives forR. There is a one-to-one correspondence between the set of isomorphism

classes [Ei] of supersingular elliptic curves over Fp2 and the set of maximal orders

{Rr(Ji)} such that End(Ei) ' Rr(Ji).

If E is defined over Fp, there exists a unique Ji such that End(Ei) ' Rr(Ji) and

the correspondence of part 3 is well-defined. However, for curves over Fp2 that are not

defined over Fp, the correspondence is only determined up to conjugation. For any pair

of Galois conjugates E and Ep, we have End(E) ' End(Ep) via the Frobenius map πp.

Thus, there exist two classes [Ji] and [Jk] with End(E) ' Rr(Ji) ' Rr(Jk), and there

is no canonical choice of maximal order Rr(Ji) with respect to E. We have only that the

pair (E,Ep) corresponds to the pair (Ji, Jk). However, if we fix a set of representatives

Ji, we can uniquely establish the correspondence of part 3, as we now explain.

Let E be a supersingular curve with a fixed isomorphism i : R
∼−→ End(E). For J

a left ideal of R, we define E[J ] as the subgroup

E[J ] =
⋂

α∈i(J)

ker(α).

This subgroup determines an isogeny ϕJ : E → E ′ = E/E[J ], unique up to isomor-

phism.

Remark 2.2.1

Though the curve E ′ = E/E[J ] is only defined up to isomorphism over Fp2 , there is a

canonical choice of E ′. An isogeny ϕ is called normalized if ϕ∗ω′ = ω where ω and

ω′ are the invariant differentials of E and E ′ respectively. The normalized isogeny with

kernel E[J ] is unique up to automorphisms of E ′. In the remainder of this chapter, we use

13



the notation E/E[J ] to denote the unique curve E ′ such that the isogeny E → E ′ with

kernel E[J ] is normalized. The curve E/E[J ] can be explicitly computed given E and

E[J ] using Vélu’s formulas [41].

The degree of the isogeny ϕJ with kernelE[J ] is equal to n(J), the norm of J ( [46,

Thm. 3.15]). Furthermore, if I is another left ideal of R, the curves E/E[J ] and E/E[I]

are isomorphic if and only if I and J are right-isomorphic [46, Thm. 3.11].

The isogeny ϕJ : E → E ′ = E/E[J ] induces an isomorphism iJ :

iJ : Ap,∞
∼−→ End(E ′)⊗Q

α 7→ ϕJ i(α)ϕ̂J ⊗ (degϕJ)
−1.

(2.2)

We have the following proposition.

Proposition 2.2.5 [46, Prop. 3.9, 3.12]

1. The maximal order i−1
J (End(E/E[J ])) is equal to Rr(J), the right order of J .

2. Let I be a left ideal of Rr(J). Let E ′[I] denote the subgroup

E ′[I] =
⋂

α∈iJ (I)

ker(α)

and ϕI : E ′ → E ′/E ′[I] the corresponding isogeny. Then the composition

ϕI ◦ ϕJ : E → E ′/E ′[I]

is the isogeny ϕJI : E → E/E[JI] determined by the left R-ideal JI .

Let {Ji} be a set of representatives of left ideal classes ofR, with J1 = R. Consider

the map

Ji 7→ [Ei] where Ei = E/E[Ji]. (2.3)
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Note that E1 = E. By the previous proposition, this gives the one-to-one correspondence

of Theorem 2.2.4, part 3.

We note also that given a separable isogeny ϕ : E → E ′, the kernel of ϕ determines

a left ideal of R:

I = i−1
(
{α ∈ End(E) : α(P ) = P∞ for all P ∈ ker(ϕ)}

)
.

Here P∞ denotes the identity element of the group E(Fp). The norm of I is prime to p

and equal to degϕ. For any prime ` 6= p, the `-isogeny graph of supersingular curves over

Fp2 is connected and has diameter O(p) [29]. Therefore there exists a separable `-power

isogeny between any two supersingular curves and every ideal class of R has a represen-

tative with norm equal to a prime power of `, for any prime ` 6= p. Algorithms to compute

a set {Ji} of left ideal class representatives ofR and the set of their respective right orders

{Rr(Ji)} can be found in [44, 9] and are implemented in the computer algebra program

MAGMA [9].

The following table gives the number of supersingular curves modulo p.

p hp

2, 3 1

≡ 5 mod 12 p+7
12

≡ 7 mod 12 p+5
12

≡ 11 mod 12 p+13
12

≡ 13 mod 12 p−1
12
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This follows from Eichler’s mass formula forAp,∞ ( [19, Section 1]) and the characteriza-

tion of the automorphism groups of supersingular curves modulo p found in Proposition

2.2.3.

2.3 The canonical lift of a supersingular elliptic curve and an optimal

embedding

LetO be an imaginary quadratic order of discriminantD < 0, and letK = Q(
√
D)

denote the corresponding imaginary quadratic field. LetE be an elliptic curve over C with

complex multiplication by O. By class field theory, E is isomorphic to a curve defined

over HO, the ring class field of O. The ring class field HO is an algebraic extension of

K with Galois group isomorphic to the ideal class group Cl(O) via the Artin map. Let p

be a prime inert with respect to D. That is, p is inert in K and p - D. Let p be any prime

of HO lying above p. A key property of the ring class field HO of O is that the principal

ideal (p) ⊂ O splits completely in HO. Therefore, the residue class field extension over

Z/(p) is of degree two, and we can view HO as a subfield of the unramified degree 2

extension F of Qp.

We may assume E is defined over F by a minimal Weierstrass model with dis-

criminant 4min. If p does not divide 4min, then E/F has good reduction modulo p, or

equivalently, E/HO has good reduction modulo p. The reduced curve Ep ≡ E mod p is

supersingular ( [26, Thm. 13.4.12]) and is defined over the finite field Fp2 . As discussed

in Section 2.2.2, its endomorphism ring is a maximal order in the quaternion algebraAp,∞

ramified at p and ∞ [14, 2.4].
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Let ZF denote the ring of integers of F . The reduction map ZF → Fp2 induces an

embedding f : O ' End(E) ↪→ End(Ep). As we discuss in this section, the essence of

the Deuring lifting theorem is that this process can be reversed ([26, Thm. 13.5.14]). That

is, given a supersingular elliptic curve Ē over Fp2 and an embedding f : O ↪→ End(Ē),

there exists a canonical choice of curve Ẽ over HO with Ē ≡ Ẽ mod p for p a prime

above p, such that the induced embedding End(Ẽ) ↪→ End(Ē) is precisely f . This curve

Ẽ is defined as the canonical lift of the pair (E, f), as we explain in detail in this section.

We begin by discussing optimal embeddings of O into Ap,∞.

Remark 2.3.1

We restrict to discriminants D < −4 in the remainder of the chapter. The cases of

D = −3 and D = −4 are well-understood as a curve with complex multiplication by

the order O of discriminant D has automorphisms other than ±Id. There is a single class

of curves with complex multiplication by O, namely those with j-invariant 0 and 1728,

respectively [38, III.10] .

2.3.1 Optimal embeddings of a quadratic imaginary order O into Ap,∞

Given O, an order of a quadratic imaginary field K, an embedding of O into A

is an injective Z-algebra homomorphism from O into A. Let f : O ↪→ A be such an

embedding and let R be a maximal order of Ap,∞. The embedding f is called optimal

with respect to R if f(K) ∩ R = f(O). As the set f(K) ∩ R is an order of f(K), a

commutative subfield of A, every embedding of the ring of integers OK of K into R is

necessarily optimal.
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An embedding f : O ↪→ A induces an embedding f : K ↪→ A and there exists

β ∈ Ap,∞ with β2 = b ∈ Q∗ such that A =
(f(K),b

Q

)
. Writing O = Z[τ ], the embedding

f : O ↪→ A can be given by f(τ) = y, where y is an element of A which is a root of

X2 − tr(τ)X + n(τ), the characteristic polynomial of τ . Here tr, n agree with the trace

and norm of K since A =
(f(K),b

Q

)
.

Any two embeddings f, g ofO give an isomorphism of f(K) and g(K), as commu-

tative subfields ofA. By the Skolem-Noether Theorem [42, Thm. I.2.1], this isomorphism

extends to an inner automorphism of A. Therefore, if f(τ) = y, there exists x ∈ A∗ such

that g(τ) = xyx−1.

Two embeddings f, g : O ↪→ R are equivalent if there exists a unit u ∈ R∗ such

that g(τ) = uf(τ)u−1. Since R∗ is contained in the normalizer of R, f is optimal if and

only if g is optimal. Thus we can consider equivalence classes of optimal embeddings

O ↪→ R.

The following proposition characterizes when an embedding τ 7→ y ∈ R is optimal

with respect to R.

Proposition 2.3.1 Let τ be an integer of a quadratic imaginary field K with τ 6∈ Z. Let

the characteristic polynomial of τ be T (X) = X2− tX+n. Let4 be the discriminant of

K and letm be the conductor of the orderO = Z[τ ]. Consider an embedding g : O ↪→ R

given by g(τ) = y, where y = [y1, y2, y3, y4] is expressed in terms of a Z-basis {ri} of R

with r1 = 1. Let

a1 =


y1 − t

2
4 ≡ 0 mod 4

y1 − t−m
2

4 ≡ 1 mod 4
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and let ai = yi for i = 2, 3, 4. Then g is optimal with respect to R if and only if there exist

i, j ∈ {1, ..., 4} such that gcd(ai, aj) = 1.

Proof: The embedding g is optimal if and only if the order g(O) equals g(K)∩R, or

equivalently, if and only if for any orderO′ containingO, the order g(O′) is not contained

in R. Let c ∈ Z+ divide m and let O′ be the order of conductor c. Let d = m
c

.

If 4 ≡ 0 mod 4, since t2 − 4n = m24, we have that t
2

is an integer. We can write

the ring of integers OK as Z[ 1
m

(τ − t
2
)] and thus O′ = Z[1

d
(τ − t

2
)].

The element g(1
d
(τ − t

2
)) of A expressed in terms of the basis for R is then 1

d
[y1 −

t
2
, y2, y3, y4]. Letting a1 = y1− τ

2
and ai = yi for i = 2, 3, 4, we see that this is an element

of R if and only if d divides ai for all i.

If4 ≡ 1 mod 4, we have that t−m
2

is an integer and we can write the ring of integers

OK as Z[ 1
m

(τ − t−m
2

)]. Thus we have O′ = Z[1
d
(τ − t−m

2
)].

The element g(1
d
(τ − t−m

2
)) of A expressed in terms of the basis for R is then

1
d
[y1 − t−m

2
, y2, y3, y4]. Letting a1 = y1 − t−m

2
and ai = yi for i = 2, 3, 4, we have that

this is an element of R if and only if d divides ai for all i.

In either case, we have that if there exist i, j ∈ {1, ..., 4} such that gcd(ai, aj) = 1,

the order g(O′) cannot be in R for any order O′ of conductor c dividing m. We also have

that if d divides gcd(a1, a2, a3, a4), then g(O′) will be contained in R. Therefore, the em-

bedding g is optimal if and only if there exist i, j ∈ {1, ..., 4} such that gcd(ai, aj) = 1.2.

Note that given D < −4, with D = m24, for 4 a fundamental discriminant, we
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may write the order O of discriminant D as Z[τ ] with the minimal polynomial of τ

T (X) =


X2 +m24

4
D ≡ 0 mod 4

X2 −mX +m2 1−4
4

D ≡ 1 mod 4.

In this case, the embedding given by g(τ) = [y1, ..., y4] is an optimal embedding if and

only if gcd(yi, yj) = 1 for some i, j ∈ {1, ..., 4}.

For example, consider A7,∞ =
(−1,−7

Q

)
, where i2 = −1, j2 = −7 and ij = −ji.

The order R = Z[1, i, 1
2
(i + k), 1

2
(1 + j)] is the unique maximal order of A7,∞, up to

conjugation. Let D = −4 · 51. The order O of discriminant D can be written as Z[τ ]

where τ is a root of T (X) = X2 +51. We can verify that y = [2,−5, 2,−4] is an element

of A7,∞ with characteristic polynomial T (X). Letting f(τ) = y, by the proposition, we

have that g is an optimal embedding since gcd(−5, 2) = 1. In particular, τ+1
2
6∈ R, and

thus R doesn’t contain f(OK), where OK is the ring of integers of K.

Assume there exists an optimal embedding ofO into R. We can explicitly compute

this embedding of O into R using the quadratic form given by the norm of Ap,∞ in terms

of a basis forR. This is the approach used in Algorithm A.0.2 in Appendix A. The number

of embeddings of O = Z[τ ] into the maximal orders of Ap,∞ is directly related to h(O),

the class number of O, as the following result of Eichler shows.

Proposition 2.3.2 [16, Prop. 5] Let R be a maximal order of Ap,∞, and let {Ji}hp

i=1 be

a set of ideal class representatives. Let n(O, Rr(Ji)) denote the number of equivalence
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classes of optimal embeddings O ↪→ Rr(Ji). Then

hp∑
i=1

n(O, Rr(Ji)) = 2h(O).

We let EmbD(Ap,∞) denote the set of equivalence classes of optimal embeddings

O ↪→ Rr(Ji) where we identify “complex conjugate” embeddings τ 7→ y and τ 7→ ȳ.

By the proposition, EmbD(Ap,∞) has cardinality h(O). We will see in Section 2.3.4

that there is a natural action of the class group Cl(O) on this set which will be useful in

computing the canonical lift of (E, f).

2.3.2 Optimal embeddings f : O ↪→ End(E)

Let O be a quadratic imaginary order of discriminant D < −4. Let p be a prime

inert with respect to D. As mentioned in the introduction to this section, the ring class

field HO embeds into F , the unramified degree 2 extension of Qp. Thus all curves over

Qp with complex multiplication by O are isomorphic to curves defined over F . Let E be

a curve defined over F with complex multiplication by O. Of the two isomorphisms γ :

O ∼−→ End(E), we can make a well-defined choice, called the normalized isomorphism.

We choose γ such that for any y ∈ O and invariant differential ω ofE, we have ω◦γ(y) =

yω, where y is viewed as an element of F under the embedding HO ↪→ F . We call E a

‘normalized’ elliptic curve to indicate that we have chosen the normalized isomorphism.

Let EllD(F ) be the set of isomorphism classes of normalized elliptic curves E/F with

endomorphism ring O.

For supersingular curves over Fp, we have a similar notion of a normalized embed-

ding f : O ↪→ End(E). Let O → Fp2 be one of the two possible reduction maps of O
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modulo p. For any y ∈ O, and invariant differential ω of E, we have ω ◦ f(y) = yω

where y is viewed as an element of Fp2 under the map O → Fp2 .

Two embeddings f, g are equivalent if there exists an automorphism h of E such

that g(y) = hf(y)h−1 for all y ∈ O. Let a ∈ Fp be such that ω ◦ h = aω. Then

ω ◦ (hf(y)h−1) = (aȳa−1)ω = ȳω.

Thus any embedding equivalent to a normalized embedding is also normalized.

Let EmbD(Fp2) be the set of equivalence classes of pairs (E, f) with E/Fp2 a su-

persingular elliptic curve and f : O ↪→ End(E) a normalized optimal embedding. Recall

that an embedding is called optimal if f(O) is equal to the ring f(K)∩End(E). Writing

O = Z[τ ], the pairs (E, f) and (E ′, f ′) are equivalent if there exists an isomorphism

h : E
∼−→ E ′ of elliptic curves such that hf(τ)h−1 = f ′(τ).

The set EmbD(Fp2) is in bijection with EmbD(Ap,∞), the set of equivalence classes

of optimal embeddings O ↪→ Rr(Ji) where {Ji} is a fixed set of integral left ideal class

representatives for a maximal order R of Ap,∞ in which O optimally embeds. There is a

bijection between EmbD(Fp2) and EmbD(Ap,∞) as we now show.

By the bijection from Theorem 2.2.4, part 3, there exists an isomorphism class of

supersingular curves whose endomorphism rings are isomorphic to R. Let E be such a

curve and fix an isomorphism i : Ap,∞ → End(E) ⊗ Q. As described in Section 2.2.2,

the curves Ei = E/E[Ji] represent the hp isomorphism classes of supersingular elliptic

curves over Fp. Letting ϕJi
denote the isogeny E → Ei, the isomorphism Rr(Ji) '

End(Ei) can be explicitly given by

iJi
: α 7→ ϕJi

i(α)ϕ̂Ji
⊗ (degϕJi

)−1.

22



Let g : O ↪→ Rr(Ji) be an optimal embedding defined by g(τ) = y. Then the

embeddings τ 7→ iJi
(y) and τ 7→ iJi

(ȳ) are both optimal embeddings and exactly one is

normalized. We call this f : O → End(Ei) and define

Ψ : EmbD(Ap,∞) → EmbD(Fp2)

by Ψ(g) = (Ei, f). It is straightforward to show that this definition is independent of the

choice of E.

Proposition 2.3.3 The map Ψ : EmbD(Ap,∞) → EmbD(Fp2) is a bijection.

Proof: If g and g′ are equivalent embeddings, then g′(τ) = hg(τ)h−1 for some

h ∈ Rr(Ji)
∗. The embeddings f, f ′ differ by conjugation by iJi

(h), an automorphism of

Ei, and therefore (Ei, f) and (Ei, f
′) are equivalent. Thus Ψ is well defined.

Let (E, f) ∈ EmbD(Fp2). Then E ' Ei for some i, so without loss of generality,

we assume E = Ei and consider (Ei, f). As f : O ↪→ End(Ei) is an optimal embedding,

the embedding g = i−1
Ji
◦ f : O → Rr(Ji) is optimal. By construction, Ψ(g) equals

(Ei, f) and so Ψ is surjective. By Theorem 2.2.4, the sets have the same cardinality, thus

we have that Ψ is a bijection. 2

2.3.3 The canonical lift of (E, f)

In this section, we define the notion of the canonical lift of a pair (E, f) of the set

EmbD(Fp2). Recall that the reduction map ZF → Fp2 induces an embedding f : O γ→

End(E) ↪→ End(Ep). Thus a curve E corresponds to a pair (Ep, f) and there is a natural
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map

π : EllD(F ) → EmbD(Fp2).

The Deuring lifting theorem implies that the converse is true: given (E, f) ∈

EmbD(Fp2), there exists a curve Ẽ over F which reduces to E modulo p such that the

induced embedding is precisely f .

Theorem 2.3.4 [26, 13.5.14], [20, Prop. 2.7]

Let E be an elliptic curve over Fp and φ an endomorphism of E. There exists a

curve Ẽ defined over Q with endomorphism β and a prime p over p such that Ẽ ≡ E mod

p and β mod p corresponds to the endomorphism φ. That is, the following diagram

commutes
Ẽ

β−−−→ Ẽy y
E

φ−−−→ E.

Furthermore, the pair (Ẽ, β) is unique up to isomorphism.

We now show that the map π sending E to (Ep, f) is a well-defined bijection.

Theorem 2.3.5 Let D < −4 be a quadratic imaginary discriminant. If p is inert with

respect to D, then the reduction map π : EllD(F ) → EmbD(Fp2) is a well-defined bijec-

tion.

Proof: The induced embedding is indeed normalized, since γ is normalized and

differential forms behave well with respect to reduction [26, Section 9.4, p. 120].

To show f that is optimal, it suffices to show f(End(E)) = f(End(E) ⊗ Q) ∩

End(Ep). Let S = f(End(E)) ⊗ Q. Write O′ = S ∩ End(Ep), and let m be the index
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[O′ : f(End(E))]. We first show that (m, p) = 1. Let O be the order of discriminant D.

Since End(E) ' O, the integer m is a divisor of the conductor of O in OK , the ring of

integers of K = Q(
√
D). Since p is inert with respect to D, we have that m is relatively

prime to p.

Now consider any δ in O′. There exists γ ∈ End(E) with mδ = f(γ), and since

(m, p) = 1, the endomorphism f(γ) annihilates the m-torsion Ep[m]. Therefore γ anni-

hilates E[m] and γ is a multiple of m inside End(E). Thus δ is contained in f(End(E)),

and O′ = f(End(E)).

To show surjectivity, we use the Deuring lifting theorem. Let (E, f : O ↪→

End(E)) be in EmbD(Fp2). Writing O = Z[τ ], we have f(τ) ∈ End(E). By Theo-

rem 2.3.4, there is a curve Ẽ over Q with endomorphism β, and a prime p over p with

β ≡ f(τ) mod p. Identifying τ and β, we have that the ring End(Ẽ) is an order of

K = Q(τ) containing O = Z[τ ]. Let O′ = End(Ẽ) and let m = [O′ : O]. We show

that m = 1 and therefore that End(Ẽ) is precisely the order O. As End(Ẽ) injects into

End(E), we have that f(O′) is contained in End(E) and [f(O′) : f(O)] is m. As the

embedding f is optimal, f(O) equals f(K)∩End(E) and thusm = 1. Since f is normal-

ized, the map τ 7→ β gives the normalized isomorphism γ : O ∼−→ End(Ẽ). Therefore,

the embedding O γ→ End(Ẽ) ↪→ End(E) is precisely f . By the theory of complex mul-

tiplication, j(Ẽ) is in HO, the ring class field of O, which embeds in F since p is inert in

K. Therefore, without loss of generality, we may assume Ẽ ∈ EllD(F ). This proves the

surjectivity of the map π.

Finally to show injectivity, consider E,E ′ ∈ EllD(F ) with π(E) = π(E ′) =

(Ep, f). By the uniqueness of the lift of (Ep, f) in the Deuring lifting theorem, we have
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that E is isomorphic to E ′. 2

Definition 2.3.6 The canonical lift Ẽ of a pair (E, f) ∈ EmbD(Fp2) is the inverse

π−1(E, f) in EllD(F ).

This definition generalizes the notion of a canonical lift for ordinary elliptic curves

to supersingular curves. In the remaining sections, we describe an algorithm to explicitly

compute the canonical lift of (E, f), based on ideas from [10]. In particular, this algo-

rithm gives an explicit way to lift a supersingular curve E and an endomorphism of E to

the curve Ẽ whose existence is guaranteed by the Deuring lifting theorem.

2.3.4 An action of the class group Cl(O) on EmbD(Fp2)

The integral ideals of O act on EllD(F ) via

j(E) 7→ j(E)a = j(E/E[a]),

where E[a] is the group

E[a] =
⋂
α∈a

ker(α).

These are the points of E annihilated by all endomorphisms in a ⊂ End(E), using the

fixed isomorphism O ' End(E). As principal ideals act trivially, this action factors

through the class group Cl(O). If m is the conductor of O, the group Cl(O) is defined

as the quotient of the group of ideals of O prime to m by the group of principal ideals of

O prime to m. It is well-known that the Cl(O)-action is transitive and free [26, Thm.

10.3.5].
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The bijection EllD(F ) → EmbD(Fp2) from Theorem 2.3.5 induces a transitive

and free action of the class group on the set EmbD(Fp2), which we describe now. Writ-

ing O = Z[τ ], let β ∈ End(E) be the image of τ under the normalized isomorphism

O ∼−→ End(E). For an O-ideal a = (`, c + dτ) of norm `, let ϕa : E → Ea be the

isogeny of complex multiplication-curves with kernel E[a] = E[`] ∩ ker(c + dβ). Con-

sider the tensor product End(Ea)⊗Z Q. By [26, 9.4 Diff 1], the normalized isomorphism

O ∼−→ End(Ea)⊗Z Q is now given by

τ 7→ ϕaβϕ̂a ⊗Z (degϕa)
−1.

The image of τ is an actual endomorphism of Ea since the endomorphism ϕaβϕ̂a kills

the `-torsion of Ea. This is because ϕ̂a kills one generator of the `-torsion and maps the

other generator to the kernel of ϕa, which is stabilized by β. Thus ϕaβϕ̂a is of the form

`δ for some δ ∈ End(Ea).

We have Ea
p = (Ea)p and f a is the composition

f a : O ∼−→ End(Ea) ↪→ End(Ea
p).

We have

f a(τ) = ϕaf(τ)ϕ̂a ⊗Z (degϕa)
−1. (2.4)

Note that if a is a principal ideal, then ϕa is an endomorphism of E. As End(E) is com-

mutative, we have f = f a. This confirms the fact that principal ideals act trivially.

We now describe a way to explicitly compute the embedding f a, via the bijection

of Proposition 2.3.3. This will be useful for the algorithm in Section 2.4, in which we
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need to determine the kernel of f a(b) for a, b ∈ Cl(O) with the norms of a and b not

necessarily relatively prime. Loosely speaking, we can compute the action of a on the

corresponding embedding in EmbD(Ap,∞) and “translate” the resulting embedding back

to an element of EmbD(Fp2), which will be the pair (Ea, f a).

Given a supersingular curve E/Fp2 such thatO embeds optimally into End(E), we

fix an isomorphism

i : Ap,∞
∼−→ End(E)⊗Q.

The order R = i−1(End(E)) is a maximal order of Ap,∞. Via this isomorphism, we view

the embedding f as an element of EmbD(Fp2):

g = i−1 ◦ f : O ↪→ R ⊂ Ap,∞.

For an ideal a of O, we compute the curve Ea = ϕa(E), where ϕa is the isogeny

with kernel E[f(a)]. We choose an auxiliary isogeny ϕJ : E → E/E[J ] = Ea, where

J is a left ideal of End(E). This induces an isomorphism iJ : Ap,∞
∼−→ End(Ea) ⊗ Q

given by

α 7→ ϕJ i(α)ϕ̂J ⊗ (degϕJ)
−1.

Let g = i−1
J ◦ f : O → R be given by g(τ) = y. By Proposition 2.2.5, the maximal order

i−1
J (End(Ea)) is equal toRr(J), the right order of J . Furthermore, the leftR-idealRg(a)

is right-isomorphic to J as an R-module, since they both determine the same isogenous

curve, up to isomorphism ([46, Thm 3.11]). Therefore, there exists an x ∈ Ap,∞ with

Rg(a) = Jx. We have that y ∈ Rr(Rg(a)), the right order of Rg(a), since the element

y = g(τ) commutes with g(a) and is an element of R. Since Rg(a) = Jx, y is in
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x−1Rr(J)x, the right order of Jx. Therefore we obtain an embedding τ 7→ xyx−1 ∈

Rr(J). The claim is that iJ(xyx−1) is precisely f a(τ).

Proposition 2.3.7 Let a be an ideal of O. Let ϕJ be an isogeny E → Ea, where J is a

left ideal of End(E). Let f : O = Z[τ ] → End(E), and let the embedding g = i−1
J ◦ f :

O → R be given by g(τ) = y. Then the induced embedding f a : O ↪→ End(Ea) is

precisely

f a(τ) = iJ(xyx
−1) ∈ End(Ea)

where x ∈ Ap,∞ is such thatRg(a) = Jx. The embedding f a is independent of the choice

of J .

Proof: Let RJ = Rr(J). The ideal Rg(a) is the product of ideals J · RJx. Thus

by Proposition 2.2.5, the isogeny ϕa is the composition ϕRJx ◦ ϕJ , where ϕRJx is the

isogeny determined by the ideal RJx. Since RJx is principal, this is precisely iJ(x) =

ϕJ i(x)ϕ̂J⊗(degϕJ)
−1. Thus ϕa = iJ(x)◦ϕJ = ϕJ ◦i(x). Note that i(x) ∈ End(E)⊗Q

defines an isogeny of E and thus i(x)−1 is simply î(x)⊗ (deg i(x))−1.

The original embedding is given by f(τ) = i(y), and the induced embedding is

f a(τ) = ϕai(y)ϕ̂a ⊗ (degϕa)
−1. Then

f a(τ) = ϕai(y)ϕ̂a ⊗ (degϕa)
−1

= (ϕJ ◦ i(x))i(y)(î(x) ◦ ϕ̂J)⊗ (deg i(x) degϕJ)
−1

= (ϕJ ◦ i(x))i(y)(î(x) ◦ ϕ̂J)⊗ (deg i(x) degϕJ)
−1

= ϕJ i(xyx
−1)ϕ̂J ⊗ (degϕJ)

−1

which is precisely iJ(xyx−1). 2
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For (p − 1)|12, the class number of Ap,∞ is one, and there is a single supersingu-

lar elliptic curve up to isomorphism. Thus Ea is isomorphic to E, and Rg(a) is right-

isomorphic to R. There exists x ∈ Ap,∞ with Rg(a) = Rx, and we get the embedding

τ 7→ xyx−1 ∈ R. Note that x ∈ R since g(a) is an integral ideal, and so i(x) is an endo-

morphism of E. As ϕa and i(x) both have the same kernel, we have that ϕa = h ◦ i(x),

for an isomorphism h : E → Ea. Let ih be the isomorphism given by ih(α) = hi(α)h−1

for all α ∈ Ap,∞. Then the argument in the above proof shows that the embedding

f a : O ↪→ End(Ea) is given by f a(τ) = ih(xyx
−1).

2.3.5 An action of Cl(O) on EmbD(Ap,∞)

Via the bijection of Proposition 2.3.3, the action of Cl(O) on EmbD(Fp2) induces

an action on EmbD(Ap,∞) which is necessarily transitive and free. This action is essen-

tially what has been described in the discussion of how to explicitly compute f a. However,

we now work in reference to a fixed maximal order R and a fixed set of left R-ideal class

representatives {Ji}. This is convenient for the algorithms in the next sections, where

we will compute the action first in EmbD(Ap,∞) and then translate back via a fixed set of

isomorphisms iJi
to elements of EmbD(Fp2). While the action ofCl(O) on EmbD(Ap,∞)

depends on a particular choice of maximal order R and set of left ideal class representa-

tives {Ji}, Proposition 2.3.7 shows that the translation of this action back to EmbD(Fp2)

via iJi
is well-defined.

Given g : O → Rr(Jk), an optimal embedding defined by g(τ) = y and an ideal a
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of Cl(O), we compute ga(τ) where ga is the result of the action induced via Ψ :

ga := Ψ−1(Ψ(g)a).

There exists an x ∈ Ap,∞ and a left ideal Jm such that Jkg(a) = Jmx. Multiplying

on the left by J−1
k , we get J−1

k Jkg(a) = J−1
k Jmx which is the same as Rr(Jk)g(a) =

J−1
k Jmx. The integral left Rr(Jk)-ideal n(Jk)J

−1
k defines the dual isogeny ϕ̂Jk

. Thus, by

Proposition 2.2.5, the ideal J = n(Jk)J
−1
k Jm defines an isogeny ϕJ = ϕJm

ϕ̂Jk
: Ek →

E → Em. The claim is that ga(τ) = xyx−1.

Let (Ek, f) ∈ EmbD(Fp2) be the image of g under Ψ. Since Jkg(a) = Jmx, we

have that Ek/Ek[f(a)] ' Em by [46, Thm. 3.11]. The pairs (Ek, f)a and (Em, f
a)

are equal under the equivalence relation of EmbD(Fp2), and so Ψ(g)a = (Em, f
a) and

ga = Ψ−1(Em, f
a) = i−1

Jm
◦ f a.

We now apply Proposition 2.3.7 with E = Ek, R = Rr(Jk), i = iJk
and ϕJ the

auxiliary isogeny. We have that

f a(τ) = ϕJ iJk
(xyx−1)ϕ̂J ⊗ (degϕJ)

−1.

Using the fact that iJk
= ϕJk

i(−)ϕ̂Jk
⊗ (degϕJk

)−1 and that ϕJ = ϕJm
ϕ̂Jk

, we get

f a(τ) = ϕJϕJk
i(xyx−1)ϕ̂Jk

ϕ̂J ⊗ (degϕJk
degϕJ)

−1

= ϕJm
i(xyx−1)ϕ̂Jm

⊗ (degϕJm)−1

= iJm(xyx−1).

Therefore, to compute the action of a ∈ Cl(O) on g : O → Rr(Jk) ∈ EmbD(Ap,∞),

we choose x ∈ Ap,∞ and a left R-ideal class representative Jm such that Jkg(a) = Jmx,

and let ga(τ) = xyx−1. In particular, this gives a straightforward way to compute the
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class polynomial of HO modulo a prime p inert in K, as we describe in the next section.

We summarize in the following algorithm, the details of which are found in Appendix A.

We assume we have fixed a Z-basis {ri} for R. All computations in Ap,∞ take place with

respect to this basis and the right orders of Jm and Jk are not explicitly computed.

Algorithm 2.3.1

INPUT:

• A basis {ri} of the order R

• An optimal embedding g given by g(τ) = y ∈ Rr(Jk) where y = [y1, ..., y4] is in

terms of {ri}

• An integral ideal a ∈ Cl(O) of norm a with a = (a, c+ dτ)

OUTPUT:

• The value ga(τ) = w ∈ Ap,∞, with w given in terms of {ri} as [w1, ..., w4]

• The left R-ideal class representative Jm such that ga is optimal with respect to

Rr(Jm)

The following lemma shows that wi ∈ Q will have denominator at most a divisor

of n(Jm). This fact is useful in the algorithms to compute the canonical lift in Sections

2.4 and 2.8.

Lemma 2.3.8 Let g(τ) = y give an optimal embedding ofO intoRr(Jm) and let ga(τ) =

w. Let [w1, ..., w4] be the expression of w in terms of a basis for the maximal order R.

Then wi ∈ 1
n(Jm)

Z.
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Proof: Let h : τ 7→ z ∈ R be an optimal embedding into R. As the action is

transitive, there exists an integral ideal ak ∈ Cl(O) such that hak = g. Thus ga =

(hak)a = haka and there exists v ∈ Ap,∞ such that Rh(aka) = Jmv. We thus have

w = vzv−1. As z ∈ R, it is expressed as [z1, ..., z4] with zi ∈ Z. Thus any denominators

in the expression of w in terms of the basis for R must come from the denominators of v

and v−1, expressed in terms of the basis {ei}.

As the ideal am = aka is integral, we have that Jmv = Rh(am) is contained in R.

Thus, for every γ ∈ Jm, we have γv = r for some r ∈ R. In particular, for n(γ) = γγ̄,

we have n(γ)v = γ̄r ∈ R. Therefore, expressing v in terms of an integral basis for R,

the denominators must divide n(γ), for any γ. Therefore, the denominators are divisors

of n(Jm).

Now let α ∈ f(a) and let a ∈ Z be the norm of α. As a is in h(a), we have that

Ra ⊂ Jmv. As Jm ⊂ R, there exists r ∈ R such that av−1 = r. Therefore, expressing

v−1 in terms of an integral basis for R, its denominators must divide n(α) for all α ∈ a.

Thus, the denominators can at most be divisors of n(a).

As w = vzv−1, the wi can have denominators at most dividing n(Jm)n(a). How-

ever, the action is independent of the choice of ideal class representative, thus we may

compute the value of w with respect to b, a representative with norm relatively prime to

n(a), and this does not change the values of the wi. Therefore, wi ∈ 1
n(Jm)

Z. 2
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2.3.5.1 Example

We illustrate the above algorithm by computing the action of Cl(O) on an embed-

ding in EmbD(Ap,∞) for p = 37 and D = −56. The ideal a = (3, 1 + τ) generates the

class group Cl(O), which is of order 4.

Let {1, i, j, k} be the basis of Ap,∞ with i2 = −2, j2 = j − 5, ij = k. This basis is

also a Z-basis for a maximal order R. Writing O = Z[τ ], the element y = [0, 1, 1,−1] ∈

R satisfies X2 + 56 = 0. As D is fundamental, this determines an optimal embedding

g : O → R.

We compute the action of ai, for i = 1, ..., 4 on the embedding g. The ideal Rg(a)

is right-isomorphic to R via x1 = [1, 1, 0, 0]. Thus ga(τ) = x1y0x
−1
1 = [−1, 0, 1, 1] ∈ R,

which we denote as y1.

To compute ga2 , we compute the action of a on ga. The ideal Rga(a) is right-

isomorphic to J2 via right-multiplication by x2 = [−1/2, 1/2, 1/2, 0]. Then ga2
(τ) =

x2y1x
−1
2 = [0, 1, 1,−1] ∈ R2, which we denote as y2.

To compute ga3 , we compute the action of a on ga2 . That is, we find the ideal class

representative which is right-isomorphic to J2g
a2

(a). We find that J2g
a2

(a) is equiva-

lent to J3 via right-multiplication by x3 = [−1,−1, 0, 0]. Then ga3
(τ) = x3y2x

−1
3 =

[−1, 0, 1, 1] ∈ R3, which we denote as y3.

As a4 is principal, ga4 should be the original embedding g. To check this, we

consider the ideal J3g
a3

(a) and find that it is right-isomorphic toR via right-multiplication

by x4 = [−1,−1, 0, 0]. Then ga4
(τ) = x4y3x

−1
4 = [0, 1, 1,−1] ∈ R, which is precisely

the original embedding. This confirms that the principal ideal a4 acts trivially.
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2.3.6 An algorithm to compute HD mod p for p inert with respect to D

In this section we present an algorithm to compute HD mod p for p inert with re-

spect to D. This is used in the multi-prime algorithm [2] used to compute HD. We

remark that for a prime p with (p − 1)|12, there is a unique supersingular j-invariant

in characteristic p, and computing the class polynomial of O modulo p is trivial. For

example, for D ≡ 5 mod 8, the prime p = 2 is inert in O and we immediately have

HD(X) mod 2 = Xh(O).

Algorithm 2.3.2

INPUT:

• An imaginary quadratic discriminant D < −4

• A prime p inert in Q(
√
D) with p - D

OUTPUT: The polynomial HD(X) mod p, where HD is the class polynomial of O

1. Write O as Z[τ ] where τ has characteristic polynomial

T (X) =


X2 −X + 1−D

4
D ≡ 1 mod 4

X2 + D
4

D ≡ 0 mod 4.

2. Compute an optimal embedding g : O ↪→ Ap,∞ given by g(τ) = y using Algorithm

A.0.2. Let R be a maximal order that contains g(O) optimally and fix a basis {ri}

of R.

3. Choose a set {Ji} of left R-ideal class representatives. This determines the set
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EmbD(Ap,∞) of optimal embeddings of O into Ap,∞ with respect to some order

Rr(Ji), used in the set up for Algorithm 2.3.1.

4. Using Algorithm 2.3.1, compute ga and the corresponding left ideal class Jia for

each a ∈ Cl(O).

5. For each Ji, compute the right orders Rr(Ji). Use Algorithm A.0.1 to compute

the correspondence between Gal(Fp2/Fp)-conjugacy classes of supersingular j-

invariants over Fp2 and the set of maximal orders {Rr(Ji)}, up to conjugacy.

6. Using the above correspondence, identify each Jia with a Gal(Fp2/Fp)-conjugacy

class of supersingular j-invariant, denoted ja.

7. Return HD(X) mod p =
∏

a∈Cl(O)(X − ja).

In Step 2 we use Algorithm A.0.2 in Appendix A to compute an element y ∈ Ap,∞

satisfying the same minimal polynomial as a generator τ of O and such that τ 7→ y gives

an optimal embedding into R, for some a maximal order of Ap,∞.

In Step 3, we compute a set of left ideal class representatives {Ji}. Algorithms to

compute a set {Ji} of left ideal class representatives of R and the set of their respective

right orders {Rr(Ji)} can be found in [44, 9] and are implemented in the computer

algebra program MAGMA [9].

For Step 4, let Cl(O) =
⊕
〈ai〉 be a decomposition of the class group into a direct

product of cyclic groups generated by integral prime ideals ai of order hi and norm `i

not dividing p. To compute ga, we first successively compute the action of the ai on

the embedding f(τ) = y using Algorithm 2.3.1. That is, we take h1 − 1 successive
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applications of a1 to get f a1 , . . . , f a
h1−1
1 . To each of these, a2 is applied h2 − 1 times, and

so forth. This gives a sequence (with possible repetition) of ideal class representatives Jia

of R, each corresponding to a maximal order Rr(Jia). We remark that in this step we do

not need to have explicitly computed the right orders {Rr(Ji)}.

For Step 5, to compute the set of right orders {Rr(Ji)}, we use the algorithm in [9].

To compute the correspondence, we use an algorithm of Cerviño [6] which associates

to each Gal(Fp2/Fp)-conjugacy class j of supersingular j-invariants a maximal order

of Ap,∞, up to conjugacy. This algorithm is based on comparing the the elements of

specified norm n and trace t of the maximal orders Rr(Ji) with the endomorphisms of

trace t and degree n in End(Ei) where the Ei are representatives of the isomorphism

classes of supersingular curves. For more detail, see Algorithm A.0.1 in Appendix A.

Using the list from Step 5, we associate to each Jia from Step 4 the corresponding

Gal(Fp2/Fp)-conjugacy class of supersingular j-invariant, denoted ja. This gives a list of

size h(O) of Gal(Fp2/Fp)-conjugacy classes of j-invariants. We compute HD(X) as the

product of factors (X−j) for all j on the list. For j in Fp, we include one factor of (X−j)

for each time j appears on the list. The j-invariants not in Fp appear an even number of

times since the roots of HD mod p which are not in Fp come in conjugate pairs. Thus for

j 6∈ Fp, we include the factor (X − j)(X − j̄) for every two times j appears on the list.

We expand
∏

(X − ja) modulo p to obtain HD(X) mod p.

This algorithm is used in the multi-prime algorithm to compute the class polynomial

HD(X) ([2]). The polynomialHD(X) is computed modulo p for sufficiently many primes
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p which either split principally or are inert in K. Then HD(X) is computed modulo the

product of these primes using the Chinese Remainder theorem. If the product of primes is

greater than 2·10C , whereC is the bound in Section 2.1, the coefficients can be recognized

as integers and we obtain the polynomial HD(X).

2.3.6.1 Example

We illustrate the algorithm with an example. Let p = 53 and D = −71. We

compute H−71 mod 53. The order O of discriminant D can be written as Z[τ ] for τ with

characteristic polynomial T (X) = X2 −X + 18.

There are four Gal(Fp2/Fp)-conjugacy classes of supersingular j-invariants over

Fp2:

j = 0, 46, 50, 28± 9
√

2.

The quaternion algebra Ap,∞ has a basis {1, i, j, k} with i2 = −2, j2 = −35, ij =

k. We compute an embedding given by f(τ) = y = 1/2− 3/2i+ 1/2j, where y is a root

ofX2−X+18 = 0. This lies in the maximal orderRwith basis {1, i, (2−i−k)/4,−(1+

i+ j)/2}. As D is a fundamental discriminant, the embedding is automatically optimal.

We calculate a set of left ideal class representatives J1, ..., J5 and their correspond-

ing maximal orders R1, ..., R5. The ideal a = (2, 3 + τ) generates the class group of

O, which is of order 7. Computing the action of a successively yields a sequence of left

ideals

J5, J3, J1, J3, J4, J2, J2
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which corresponds to a sequence of embeddings into the right orders

R5, R3, R1, R3, R4, R2, R2.

We now establish the correspondence of theRi with the four Gal(Fp2/Fp)-conjugacy

classes of supersingular j-invariants. We use Algorithm A.0.1 as described in Step 5. In

this case, it suffices to look at the elements of norm less than or equal to two. Before doing

so, we test which of the five orders are conjugate. In this way, we determine that R4 and

R5 correspond to the class j = 28±9
√

2. By computing the units of the remaining orders,

we find that all orders except R1 have unit group ±1. Thus R1 corresponds to j = 0. It

remains to determine the correspondence of the orders R2, R3 with j = 46 and 50. In this

case, it suffices to look at elements of norm 2. We take the curve y2 = x3 +40x+26 with

j = 46. Computing the isogenous curves for each factor of the two-division polynomial

reveals that this curve has no endomorphisms of degree 2. As the basis for R2 contains an

element of norm 2, this immediately identifies j = 46 with the order R3 and j = 50 with

R2.

Computing HD(X) mod p is a matter of counting how many times the order Ri

appears in the sequence above. Using the correspondence, we obtain the sequence of

Gal(Fp2/Fp)-conjugacy classes

28± 9
√

2, 46, 0, 46, 28± 9
√

2, 50, 50.

We then compute

H−71(X) mod 53 = X(X − 46)2(X − 50)2(X2 + 50X + 39).
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2.4 Computing the canonical lift of (E, f) for p ≡ 1 mod 12

2.4.1 The map ρα for the case of p ≡ 1 mod 12

In this section we give an algorithm to compute the canonical lift of (Eo, f) ∈

EmbD(Fp2) where p is inert with respect to D and p ≡ 1 mod 12. By Proposition 2.2.3,

the condition p ≡ 1 mod 12 ensures that the elliptic curves with j-invariants 0, 1728

are not supersingular. The case where one of these two curves is supersingular is more

technical due to the extra automorphisms of the curve and is addressed in Sections 2.5-2.8.

Let Cp be the completion of an algebraic closure of Qp. The field Cp is algebraically

closed. Let η = (Eo, f) be an element of EmbD(Fp2) and let Ẽ denote its canonical lift.

We define a ‘disc’ above η containing all possible candidates for the j-invariant Ẽ. These

are pairs (j(E), f) with j(E) ≡ j(Eo) modulo p, where p is the prime above p in the

smallest extension of Qp in which j(E) lies. We denote this disc by

XD(η) = {(j(E), f) | j(E) ∈ Cp, j(E) ≡ j(Eo) mod p}.

Ignoring the second coordinate, this is simply the open p-adic disc of radius one around

j(Eo) viewed as an element of F .

The reason for including the second coordinate f is as follows. While there may

be multiple curves E ∈ EllD(F ) which reduce to Eo modulo p, only one such curve (up

to isomorphism) satisfies the condition that the induced embedding End(E) ↪→ End(Eo)

is equivalent to f , namely the canonical lift Ẽ. By including the second coordinate f ,

we establish a bijection between the set of discs XD(η) and the set EllD(F ). This is the

statement of Theorem 2.3.5. We then view of the pair (j(Ẽ), f) as the “center” of XD(η)
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and adapt the key idea of [10] to construct a p-adic analytic map from the disc to itself

that has this pair as a fixed point. Using this map, we can “zero in” on the canonical lift

of η.

Let a be an ideal of O of norm N which is coprime to p. We define a map

ρa :
⋃
η

XD(η) →
⋃
η

XD(η)

as follows. For (j(E), f) ∈ XD(η), the ideal f(a) ⊂ End(Eo) defines a subgroup

Eo[f(a)] of Eo[N ]. As (N, p) = 1, the subgroup Eo[f(a)] lifts canonically to a subgroup

of the N -torsion of E which we denote E[a]. We define

ρa(j(E), f) = (j(E/E[a]), f a),

where f a is as described in Section 2.3.4. When the embedding f is clear, we also denote

by ρa the induced map on the open p-adic disc of radius one in Cp around j(Eo).

For principal ideals a = (α), we have f (α) = f and thus the map ρα stabilizes

every disc. Furthermore, as f is the induced embeddingO ∼−→ End(Ẽ) ↪→ End(Eo), the

subgroup Ẽ[(α)] is precisely the kernel of α viewed as an endomorphism of Ẽ. Therefore,

Ẽ/Ẽ[α] is isomorphic to Ẽ, and the map ρα fixes j(Ẽ). Since j(Eo) does not equal

0, 1728, the map ρα is p-adic analytic by [5, Theorem 4.2]. That is, there exist ai ∈ ZF

such that

ρα(x)− j(Ẽ) =
∑
i≥1

ai(x− j(Ẽ))i,

for all x ∈ XD(η). This comes from an interpretation of ρα as a map on modular curves.

In Section 2.8.1, we will define a similar map in order to handle the case of p 6= 1 mod 12.

Though the map is more technical, we are able to establish analogous results, and thus we

defer more detail on ρα to that section.
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By [5, Lemma 4.3], the derivative of ρα at j(Ẽ) is equal to α/α ∈ ZF . If α/α− 1

is a p-adic unit, we can use a modified version of Newton’s method to converge to j(Ẽ)

starting from a random lift (j0, f) ∈ XD(η). As described in [5], the sequence {jk} with

jk+1 = jk −
ρα(jk)− jk
α/α− 1

, (2.5)

converges quadratically to j(Ẽ). This is the key idea of the algorithm presented in the

next section.

2.4.2 An algorithm to compute the canonical lift of (E, f)

We now present the algorithm to compute the canonical lift of the pair (E, f) of the

set EmbD(Fp2) to a specified p-adic accuracy for p ≡ 1 mod 12. We use “accuracy” to

mean how p-adically close the computed value is to the actual value in terms of the num-

ber of p-adic digits to which they agree. We use “precision” to mean the number of p-adic

digits which we keep track of in computations. The overall structure of the algorithm is

modeled after the algorithm to compute the canonical lift in the case of an ordinary ellip-

tic curve ([5]). Both the theory and technical details differ however, as we are working

with supersingular curves.

Algorithm 2.4.1

INPUT:

• E, a supersingular curve modulo p

• A maximal order R of Ap,∞ with End(E) ' R and a basis {ri} of R
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• An explicit isomorphism i : R → End(E) specified by an identification of bases

{ri} of R and {ei} of End(E)

• An optimal embedding f : O = Z[τ ] ↪→ End(E) given by f(τ) = y = [y1, ..., y4]

expressed in terms of {ei}

• r ∈ Z such that 2r is greater than or equal to the desired p-adic accuracy

OUTPUT: The canonical lift j(Ẽ) of (E, f) to 2r p-adic digits accuracy.

1. Choose α = a+ bτ ∈ Z[τ ] such that α
ᾱ
− 1 is a p-adic unit by searching the set

SA = {a+ bτ | a, b ∈ Z, b 6≡ 0 mod p, a+ bτ prime to D, and n(a+ bτ) ≤ A}

where the bound A is greater than n(τ). If the set is empty, we increase A until

this is not the case. Let
∏m

i=1 bi be the factorization of α into prime ideals and let

an =
∏n

i=1 bi for n = 1, ...,m.

2. Choose the smallest prime ` relatively prime to n(α). Compute {Ji}, a set of leftR-

ideal class representatives, each with norm a power of ` and the set of right orders

{Rr(Ji)}. This determines the set EmbD(Ap,∞) used in the set up of Algorithm

2.3.1. Compute the corresponding set of elliptic curves Ei = E/E[i(Ji)].

3. Using Algorithm 2.3.1, compute the action of α =
∏m

i=1 bi on the embedding g

given by g(τ) = y in a successive manner to obtain a sequence of embeddings

{gan} for n = 0, 1, ...,m− 1 where gan : O ↪→ Rr(Jin) with in ∈ {1, ..., hp}. The

embedding gan is obtained by computing the action of bn on the embedding gan−1 .
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4. Compute E[f(a1)] and the polynomial P1(X) whose roots are the x-coordinates of

the points of E[f(a1)]. For n = 1, ...,m−1, let f an = iJin
◦gan and let Ean = Ein .

Compute the subgroup Ean [f an(bn+1)] and the corresponding kernel polynomial

Pn(X) ∈ F [X]. In this way, obtain the cycle of isogenies

E
b1→ Ea1

b2→ Ea2 ...
bm→ E(α) = E. (2.6)

5. Let j0 be an arbitrary lift of j(E) to 2 digits precision.

6. For k = 0, 1, 2, ..., r−1, repeat the following steps. The kth iteration produces jk+1,

the 2k+1-digit approximation to j̃. Computations are done to 2k+1 digits precision.

(a) Let Ek be a curve with j-invariant jk which reduces to E. Compute ρα(jk)

by lifting the cycle of isogenies (2.6) in a step-by-step manner to a cycle of

isogenies over F :

Ek
b1→ Ea1

k

b2→ Ea2
k ...

bm→ E
(α)
k . (2.7)

(b) Compute

jk+1 = jk −
ρα(jk)− jk
α/ᾱ− 1

to obtain jk+1 ∈ F , the 2k+1-digit approximation to j(Ẽ).

7. Return jr−1, the 2r p-adic digit approximation to j̃.

In Step 1, we want to choose α not only such that α/ᾱ − 1 is p-adic unit but also

such that α is “smooth,” that is, factors into the product of ideals of small norm. This is

key to computing the map ρα. Recall that ρα corresponds to an isogeny of degree n(α),

the norm of α, which is on the same order as D. For large D, it is not feasible to compute
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the isogeny directly. However if n(α) has small prime factors, we can compute this as a

sequence of isogenies of small degree.

The condition b 6≡ 0 mod p is necessary and sufficient for α/ᾱ − 1 to be a p-adic

unit. Since p - D, the prime p is inert in K and does not divide the conductor of O. Thus

the minimal polynomial T (X) of τ is irreducible modulo p and τ 6≡ τ̄ mod p. Thus if

p - b, then ᾱ = a+ bτ̄ is invertible and α 6≡ ᾱ mod p.

To find an α satisfying these conditions, we fix A > n(τ) and B = 20 and search

the set

SA = {a+ bτ | a, b ∈ Z, b 6≡ 0 mod p, a+ bτ prime to D, and n(a+ bτ) ≤ A}

for elements α such that n(α) is B-smooth. That is, the smallest prime factor of n(α) is

less than B. We also may impose the additional condition that gcd(a, b) = 1 to ensure

the isogeny corresponding to α is not an integer multiple of an isogeny of smaller degree.

The condition that a+ bτ is prime to D implies that the principal ideal (α) is prime to the

conductor of O. If there are no such α we may increase either A,B or both until we find

an α satisfying the conditions. (There are more sophisticated sieving methods that could

be used to improve the efficiency of this search.)

Remark 2.4.1

We can give a heuristic upper bound on the size of A needed to find a B-smooth element

α where B = bexp
√

log |D|c. This uses the following lemma from [10].

Lemma 2.4.1 [10, Lem. 2] LetD be an imaginary quadratic discriminant and let τ be an

integer of K = Q(
√
D) with characteristic polynomial X2− tX+n where t2−4n = D.
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Let ε ∈ (0, 1
2
) and let S be the set of integers a + bτ with (a, b) = 1, a + bτ prime

to nD, 1 ≤ b ≤ 2 exp((log |D|) 1
2
+ε) and n(a + 1

2
bt) ≤ |D| 12 exp((log |D|) 1

2
+ε). Let

B = bexp
√

log |D|c. Assuming the Generalized Riemann Hypothesis, the proportion of

B-smooth elements of S is greater than or equal to exp(−2(log |D|) 1
2 log log |D| for D

sufficiently large depending on ε.

In searching S, we are guaranteed to find a B-smooth element α with norm less than

|D| exp(2(log |D|) 1
2
+ε). Such an element does not necessarily satisfy the condition that p

does not divide b. However, heuristically speaking, there is only a 1
p

probability that this

condition fails, and therefore this gives an estimate on A.

As noted in [5, p.17], an alternative approach to finding a suitable element α is to

choose q the smallest split prime in O. Under the Generalized Riemann Hypothesis, the

bound on q is O((log |D|)2). Letting (q) = aa, we have that ad is principal for some d

dividing the class number of O. If ad = (α) for α such that α/ᾱ− 1 is invertible, then we

may use this α for the map.

In Step 2, we compute a set of left ideal class representatives {Ji} of R of norm a

power of ` using the algorithm found in [44, 9]. Each Ji is given by a basis βi,k of four

elements of R. Let `d be the maximum of the norms n(βi,k). For each Ji, we compute

the subgroup of E corresponding to the ideal i(Ji) of End(E) by checking which points

of E[`d] are killed by i(βi,k) for all k. Then we use Vélu’s formulas [41] to compute the

isogenous curve Ei = E/E[Ji]. This curve is uniquely determined by the condition that

the isogeny be normalized (see Remark 2.2.1).
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For Step 4, we describe the computation of Ea[f a(b)] given the curve Ea = Ei

and the embedding f a = ϕJi
i(w)ϕ̂Ji

⊗ (degϕJi
)−1 where w = [w1, ..., w4] ∈ Ap,∞ is

expressed in terms of the basis {ei}.

By the choice of {Ji}, the least common multiple of the denominators of the wi is

`d for some 0 ≤ d ≤ hp, using Lemma 2.3.8. Therefore `di(w) is a Z-linear combination

of the endomorphisms ei of E. Write b = (m, c + dτ) with m the norm of b. Again by

choice of Ji, we have that m is relatively prime to degϕJi
. Therefore, we can calculate

Ea[f a(b)] by checking which m-torsion of Ei is killed by the isogeny

`d
(
degϕJi

c+ d · ϕJi
i(w)ϕ̂Ji

)
.

We now describe how to compute ρα(jk) in Step 5. Let Ek be a curve reducing

to E with j-invariant jk. To lift E[f(a1)] to Ek, use Hensel’s lemma to lift the kernel

polynomial P1(X) to a factor of the `1-division polynomial of Ek. Use Vélu’s formula to

compute ja1
k , the j-invariant of Ea1

k = Ek/Ek[a1]. Note that ja1
k = ρa1(jk).

In the same way, lifting the polynomials Pi(X) for i = 2, ...,m, we compute the

cycle of j-invariants

jk
b1→ ja1

k

b2→ ja2
k , ...,

bm→ j
(α)
k

over F , with computations carried out to 2k+1 p-adic digits precision. The resulting j(α)
k

is precisely ρα(jk) +O(p2k+1
).

We remark that for p = 13, there is a single isomorphism class of supersingular

elliptic curve over F13 and Step 2 is not needed. Furthermore, the computation in Step 4

simplifies to finding which m-torsion is killed by c+ di(w).
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2.4.2.1 Example

We illustrate Algorithm 2.4.1 by computing the canonical lift of an element of

EmbD(Fp2) whereD = −56 and p = 37. Let Fp2 = Fp[a] where a is a root ofX2+2 = 0.

Let E be the curve Y 2 = X3 +12X+13 with j-invariant 8. Let {1, i, j, k} be the basis of

Ap,∞ with i2 = −2, j2 = j − 5, ij = k. This basis is also a Z-basis for a maximal order

R that is isomorphic to the endomorphism ring End(E). Writing O = Z[τ ], the element

y = [0, 1, 1,−1] ∈ R satisfies X2 + 56 = 0, and as D is fundamental, this determines

an optimal embedding f : O → End(E). We now compute the canonical lift of the pair

(E, f) to 16 p-adic digits precision.

In Step 1, we choose α = (5+2τ). The factorization of α is a4 where a = (3, 1+τ)

is a prime lying over 3.

For Step 2, we use ` = 2. Let J2 be the left ideal of R with basis {2, i + j, 2j, k}

and J3 the ideal with basis {1 + j + k, i+ k, 2j, 2k}. The ideals J1 = R, J2, J3 form a set

of left R-ideal class representatives. The ideal J2 defines the 2-isogeny ϕJ2 : E → E2 =

E/E[J2] with kernel 〈(19 + 23a, 0)〉. The curve E2 has j-invariant 3− 14a. The ideal J3

gives ϕJ3 : E → E3 with kernel 〈(19 − 23a, 0)〉 and j(E3) = 3 + 14a. This gives the

correspondence of curves and orders: E1, E2, E3 with R,R2, R3.

For Step 3, we compute the action of α = a4 on g(τ) = y. This has been done in

Example 2.3.5.1 and we obtain the sequence

τ 7→ y1 ∈ R, y2 ∈ R2, y3 ∈ R3, y4 ∈ R.

From Step 2, using the correspondence ofE1, E2, E3 withR,R2, R3, we count the number
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of times each order appears in the sequence and obtain

HD mod p = (X − 8)2(X2 − 6X − 6).

Now we compute the sequence of kernel polynomials as in Step 4. Let f = i ◦ g,

and compute the kernel E[f(a)] by checking which 3-torsion points P ∈ E[3] are killed

by 1+f(τ) ∈ End(E). This yields the points P with x-coordinate 18±9a. Using Vélu’s

formulas, we confirm that Ea ' E.

Similarly, to find E[f a(a)] we check which 3-torsion points P ∈ E[3] are killed by

1+ f a(τ) ∈ End(E). This yields the points P with x-coordinate 19± 12a. Note that that

Ea2 has j-invariant 3− 14a, which confirms that Ea2 ' E2.

Now f a2
(τ) = iJ2 ◦ ga2

(τ) = iJ2(y2). As there are no denominators in the ex-

pression of y2 in terms of the basis {ei}, to find the kernel E2[f
a2

(a)], we check which

3-torsion points P ∈ E2[3] are killed by the isogeny

2 · c+ d · ϕJ2
i(y2)ϕ̂J2

.

We obtain the points P with x-coordinate 32 + 8a. Using Vélu’s formulas, we see that

Ea3 ' E3.

Lastly, we have f a3
(τ) = iJ3 ◦ ga3

(τ) = iJ3(y3). We check which 3-torsion points

P ∈ E3[3] are killed by the isogeny

2 · c+ d · ϕJ3
i(y3)ϕ̂J3

and obtain the kernel polynomial for E3[f
a3

(a)] as X + 25a+ 11.

Thus we have a cycle of 3-isogenies

(E, f) → (Ea = E, f a) → (Ea2

, f a2

) → (Ea3

, f a3

) → (Ea4

, f a4

) = (E, f)
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where each element of the cycle corresponds uniquely to a root of HD(X).

For Step 5, we choose the curve defined by Y 2 = X3 − 210X + 420 over the

unramified extension F of degree 2 of Qp. Let F = Qp[ã] where ã is the unique lift

of a ∈ Fp2 as a root of X2 + 2 = 0. We lift the cycle of isogenies over Fp2 to F to 2

p-adic digits precision using Hensel’s lemma, and obtain ρα(j0) = 555ã− 214 +O(372).

Updating according to the Newton formula, we get j1 = 148ã − 66 + O(372). Next we

work with 4 p-adic digits precision, lift the cycle of isogenies to get ρα(j1) and update the

j-invariant as before.

k jk ρα(jk)

0 8 +O(372) 555ã− 214 +O(372)

1 148ã− 66 +O(372) 805120ã− 733850 +O(374)

2 37111ã+ 492774 +O(374) 344483948038ã+ 1323692294659 +O(378)

The value j3 is 19341378631ã+1272855677534+O(378), which is a 378 approximation

of the canonical lift of (E, f). To confirm this, we use the complex analytic method

to compute the polynomial H−56(X), as implemented in MAGMA [9]. We then check

that H−56(j3) has valuation 8, while H ′
−56(j3) has valuation one. Therefore, by Hensel’s

lemma [25, Prop. II.2.2], j3 lifts uniquely to a root of H−56(X) and is in fact an 8-digit

p-adic approximation to the canonical lift of (E, f).
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2.5 The Legendre form of an elliptic curve and the case of p 6≡ 1 mod 12

2.5.1 Motivation for working with the Legendre form of E

In this section, we present an algorithm which computes the canonical lift of (E, f)

in the case of p 6≡ 1 mod 12. We begin by explaining the complication that arises when

computing the canonical lift in this case.

Let D < −4 and let O be the order of K of discriminant D. Let p be any prime

inert with respect to D. Let j̃ be the j-invariant of the canonical lift of a pair (E, f)

of EmbD(Fp2). There are infinitely many equations of curves Ẽ over F reducing to E

with j-invariant j̃ and each has complex multiplication by O. Let Ẽ1, Ẽ2 be two such

curves and suppose that the induced embedding End(Ẽ1) ↪→ End(E) is f . If h is an

isomorphism between E1 and E2, then

End(Ẽ2) = {hγh−1|γ ∈ End(Ẽ1)}.

As D < −4, this isomorphism is unique up to ±1. The isomorphism h reduces to an

automorphism h̄ of E and the embedding End(Ẽ2) ↪→ End(E) is given by h̄f(γ)h̄−1

for all γ ∈ End(Ẽ1). We use h̄f h̄−1 to denote this embedding. We have the following

commutative diagram:
Ẽ1

h−−−→ Ẽ2y y
(E, f)

h̄−−−→ (E, h̄fh̄−1)

If j(E) 6= 0, 1728, the automorphism is ±Id and h̄f h̄−1 = f . Thus the embedding

End(Ẽ2) ↪→ End(E) is also equal to f . In this case, the j-invariant j̃ is sufficient to

determine a curve Ẽ reducing to E for which the induced embedding is f .
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For j(E) = 0 or 1728, however, this is not the case. The map h̄ may be a non-

trivial automorphism of E in which case h̄f h̄−1 and f are not the same embeddings. This

follows from that fact that h̄ corresponds to ζ , a primitive sixth, respectively fourth, root of

unity in R, the maximal order of Ap,∞ isomorphic to End(E). Let i be the isomorphism

R → End(E) and let g denote the embedding i−1 ◦ f : O ↪→ R. As D < −4, the

value ζ is not contained in the commutative subfield g(Q(
√
D)) of R and thus does not

commute with g(τ). Therefore h̄ does not commute with the endomorphism f(τ) and the

embeddings are distinct.

For example, let p 6= 3 and considerE/Fp2 given by y2 = x3+xwith j(E) = 1728.

Let Ẽ1 be the curve given by y2 = x3 +x+B where B ∈ F is such that j(Ẽ1) = j̃, the j-

invariant of the canonical lift of (E, f). Let Ẽ2 be the curve given by y2 = x3+x−B. The

isomorphism between them reduces to the non-trivial automorphism (x, y) 7→ (−x, iy)

of E, where i is an element of Fp2 such that i2 = −1. Though both Ẽ1 and Ẽ2 have j-

invariant j̃, exactly one of the curves yields an embedding of endomorphism rings which

is equal to f and thus may be properly considered the canonical lift of (E, f).

Therefore, for j(E) = 0, 1728, the j-invariant j̃ is not sufficient to determine a

curve Ẽ reducing to E for which the induced embedding is f . This poses a problem

in Step 6 of Algorithm 2.4.1. In the kth iteration, given jk, we choose a curve Ek with

j-invariant jk which reduces to E. Recall that jk is the 2k p-adic digit approximation to

j̃. The key assumption is that the curve Ek is a 2k digit approximation to a curve Ẽ for

which the induced embedding is f . Therefore, when we lift the kernel of E[f(α)] to a

subgroup of Ek and compute the resulting isogeny Ek → E
(α)
k , the isogeny is in fact an

endomorphism of Ek up to 2k digits accuracy, and the j-invariant of E(α)
k is in fact the
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value ρα(jk). Thus when using Newton’s method to compute jk+1, we obtain the 2k+1

digit approximation to j̃.

If we choose a curve Ek which is not an approximation to a curve Ẽ for which the

induced embedding is f , then the j-invariant of E(α)
k is not necessarily equal to the value

ρα(jk). Thus in the case of j(E) = 0, 1728, the ambiguity of choice of Ek in Step 6a may

lead to incorrect computations. In fact, this ambiguity occurs at any place within the lift

of the cycle of isogenies where the curve over Fp2 has j-invariant 0 or 1728.

For this reason, we work with the Legendre model of a curve E which takes into

consideration the presence of non-trivial automorphisms. These curves are only defined

over fields with characteristic not equal to two. Therefore for the remainder of the chapter,

we assume p 6= 2. For a discussion of the case of p = 2, see [33].

2.5.2 The Legendre form of an elliptic curve

Let F be any field of characteristic not equal to two. For λ ∈ F , with λ 6= 0, 1, the

curve

Lλ : y2 = x(x− 1)(x− λ)

is an elliptic curve in Legendre form. A straightforward computation yields that the j-

invariant of Lλ is

j(Lλ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
. (2.8)

The two-torsion of Lλ is L[2] = {(0, 0), (1, 0), (λ, 0), P∞}where P∞ is the identity of the

group L(F̄ ). The following proposition characterizes all curves in Legendre form which

are isomorphic to a given curve E. We give the proof here, based on the proof in [38,
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Sec. III.1], as we refer to it in later arguments.

Proposition 2.5.1 [38, Prop. III.1.7] Let E be defined over F , with char F 6= 2. Then

1. E is isomorphic to a curve in Legendre form defined over an extension of F of

degree at most six. The isomorphism is defined over an extension of F of degree at

most twelve.

2. If j(E) 6= 0, 1728, there are six distinct values of λ such that j(Lλ) = j(E).

3. If j(E) = 0, 1728 and char F 6= 3, there are two, respectively three, distinct values

of λ such that j(Lλ) = j(E). If char F = 3 and j(E) = 0 = 1728 mod 3, there is

only one value λ such that j(Lλ) = j(E).

Proof: Given a curve E with Weierstrass equation y2 = f(x) over F , let e1, e2, e3

denote the roots of f(x), a degree-3 polynomial. These are the x-coordinates of the 2-

torsion of E and they lie in an extension of F of degree at most six. Therefore we can

write E as

y2 = (x− e1)(x− e2)(x− e3).

The change of coordinates (x, y) 7→ (u2x+ r, u3y) with u = 1√
e2−e1 and r = −e1

e2−e1

defines an isomorphism of E to the curve L : y2 = x(x − 1)(x − λ) with λ = e3−e1
e2−e1 .

The value λ, called the λ-invariant of the curve, lies in an extension of F of degree at

most six and the isomorphism E → L is defined over an extension of degree at most

twelve. Under this isomorphism, the ordered sequence
[
(e1, 0), (e2, 0), (e3, 0)

]
of non-

trivial 2-torsion is sent to
[
(0, 0), (1, 0), (λ, 0)

]
. Any matrix M ∈ GL2(Z/2Z) acts on

the basis
(
(e1, 0), (e2, 0)

)
of E[2] and gives a permutation e1, e2, e3 7→ e′1, e

′
2, e

′
3 of the
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x-coordinates of the two torsion of E. This defines the curve Lµ : y2 = x(x− 1)(x− µ)

isomorphic to E with λ-invariant equal to µ =
e′3−e′1
e′2−e′1

.

The following chart describes all possible isomorphisms of Lλ to another curve Lµ

in Legendre form isomorphic to E. It also gives the corresponding permutation of the

x-coordinates of the two-torsion and the matrix M ∈ GL2(Z/2Z) such that µ is the λ-

invariant of the curve obtained by the action of M on the basis
(
(e1, 0), (e2, 0),

)
of E[2].

These can be determined from straightforward computations (see also [21, p. 455])

µ x 7→ x′ 0 1 λ M

λ x 0 1 µ

1 0

0 1


1
λ

λ−1x 0 µ 1

1 1

0 1


1− λ −x+ 1 1 0 µ

0 1

1 0


1

1−λ
1−x
1−λ µ 0 1

1 1

1 0


λ
λ−1

λ−x
λ−1

µ 1 0

1 0

1 1


λ−1
λ

−λ−1x+ 1 1 µ 0

0 1

1 1


Therefore, each µ in the set S = {λ, 1

λ
, 1− λ, 1

1−λ ,
λ
λ−1

, λ−1
λ
} defines a curve in Legendre

form isomorphic to E defined over an extension of F at most degree 6.
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Equating the elements in S, we see that the six values are distinct, with the excep-

tion of three cases. If char F 6= 3 and λ = −ζ3,−ζ2
3 , for ζ3 a primitive third root of unity,

there are only two distinct values. If char F 6= 3 and λ = −1, 2, 1
2
, there are three distinct

values. If char F = 3 and λ = −1, then all six values are identical. Using (2.8), we see

that the first case corresponds to j(E) = 0, the second to j(E) = 1728, and the third to

j(E) = 0 = 1728 mod 3. 2

Consider an isogeny ϕ : Lλ → Lµ of two curves in Legendre form, where Lλ and

Lµ are not necessarily isomorphic. We say that ϕ fixes the two-torsion if ϕ sends the

ordered sequence
[
(0, 0), (1, 0), (λ, 0)

]
to

[
(0, 0), (1, 0), (µ, 0)

]
.

Given j ∈ F , the roots of the polynomial Pj(X) = 28(X2−X+1)3−j ·X2(X−1)2

are precisely the elements of

S = {λ, 1

λ
, 1− λ,

1

1− λ
,

λ

λ− 1
,
λ− 1

λ
}.

Note that F (µ) = F (λ) for any µ ∈ S, since µ is a rational expression in λ. The

minimal polynomial of F (λ) over F is a factor of Pj(X) of degree one, two, three or six.

This follows from the natural action of GL2(Z/2Z) on the set S of roots of Pj(X), as

described in the proof above. Thus if Pj(X) is irreducible, we have that Gal(F (λ)/F (j))

is GL2(Z/2Z) ' S3. The matrix

1 1

0 1

 corresponds to the automorphism σ : λ 7→ 1
λ

and

1 1

1 0

 corresponds to τ : λ 7→ 1
1−λ and they do not commute.Therefore, if F (λ)

is a cyclic extension of F (j) (in particular, if it is a finite field extension or unramified

p-adic extension), the polynomial Pj(X) is reducible and the degree of the extension can
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be at most 3.

2.5.3 The canonical lift of (L, f)

Let D < −4, and let p be a prime inert in K = Q(
√
D) with p - 2D. Let O be the

order of K of discriminant D. In this section, we discuss the relationship between curves

in Legendre form defined over Qp with complex multiplication by O and their reductions

modulo p, a prime above p.

Let F denote the degree two unramified extension of Qp and let LegD(F ) be the set

of normalized elliptic curves L in Legendre form defined over F with endomorphism ring

isomorphic toO. Recall from Section 2.3.2 that a “normalized” elliptic curve L is one for

which we have chosen the isomorphism γ : O ∼−→ End(L) such that for any y ∈ O and

invariant differential ω of L, we have ω ◦ γ(y) = yω, where y is viewed as an element of

F under the embedding HO ↪→ F . As in Section 2.3.2, reduction modulo p yields a curve

Lp and normalized optimal embedding f . Let LegEmbD(Fp2) be the set of pairs (L, f)

where L is a supersingular elliptic curve in Legendre form over Fp2 and f is a normalized

optimal embedding f : OD ↪→ End(L).

Note that elements of the set LegD(F ) represent specific curves, not an equivalence

class of curves. Similarly, the pair (L, f) in LegEmbD(Fp2) represents a specific curve

L and a specific embedding f . In contrast to EmbD(Fp2), where (L, f) and (L, f ′) are

identified if f ′ = h ◦ f ◦ h−1 for an automorphism h of L, these are distinct elements of

the set LegEmbD(Fp2).

Theorem 2.5.2 Let F denote the degree two unramified extension of Qp. Let D < −4
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and let p be a prime inert in K = Q(
√
D) with p not dividing 2D. Let π be the map

π : LegD(F ) → LegEmbD(Fp2)

L 7→ (Lp, f)

defined by sending a curve L to the pair (Lp, f) where Lp is the reduction of L modulo

p and f is the induced embedding of endomorphism rings. Then π is a well-defined

bijection.

Proof: Given L ∈ LegD(F ), the reduction map ZF 7→ Fp2 induces a normalized

optimal embedding f : OD → End(Lp), and hence the map is well-defined. By Theorem

2.3.5 we can lift an element (Lp, f) in EmbD(Fp2) to a normalized curve Ẽ with complex

multiplication by O which reduces to L : y2 = x(x − 1)(x − λ) and whose induced

embedding is f . As Ẽ reduces to L, it must be of the form y2 = (x− e1)(x− e2)(x− e3)

with e1, e2, e3 ≡ 0, 1, λ mod p respectively. The change of coordinates (x, y) 7→ (u2x +

r, u3y) with u = 1√
e2−e1 and r = −e1

e2−e1 gives an isomorphism from Ẽ to the curve L̃

with λ̃ = e3−e1
e2−e1 ≡ λ mod p. This isomorphism is the identity modulo p, therefore the

embedding f is unchanged, and L̃ ∈ LegD(F ) reduces via π to (L, f). Therefore the map

is surjective.

It remains to show that the two sets have the same cardinality. We first consider

LegD(F ). The number of F̄ -isomorphism classes of curves defined over F with complex

multiplication by O is h(O), the class number of O. Since D < −4, the j-invariant of

any class is not 0 or 1728 and thus yields six distinct curves in Legendre form. We show

in Section 2.7 that all curves in Legendre form isomorphic to a curve E in EllD(F ) are

defined over F . Thus the cardinality of LegD(F ) is 6h(O).
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Now consider LegEmbD(Fp2). As shown in Section 2.3.2, the sets EmbD(Fp2) and

EmbD(Ap,∞) are in bijection. Thus by Proposition 2.3.2, the cardinality of EmbD(Fp2)

is h(O), the class number of O.

For j(E) 6= 0, 1728, there are six distinct curves in Legendre form with j-invariant

j(E). Thus each embedding f : OD ↪→ End(E) yields six distinct elements of the set

LegEmbD(Fp2).

For j(E) = 0 and p 6= 3, there are two distinct curves in Legendre form. For each

curve L, the three automorphisms of L (up to ±1) yield three distinct isomorphisms from

E to L (up to ±1). Thus for each embedding f : OD ↪→ End(E), there are six distinct

elements of LegEmbD(Fp2). Similarly, for j(E) = 1728 and p 6= 3, given an embedding

f : OD ↪→ End(E), each of the three curves in Legendre form with j-invariant 1728

has two distinct embeddings. This gives six distinct elements of LegEmbD(Fp2). Finally

if p = 3 and j(E) = 0 = 1728, the curve with λ = −1 has six automorphisms (up to

±1). Thus for each embedding f : OD ↪→ End(E), there are six distinct elements of

LegEmbD(Fp2).

As there are h(O) pairs (E, f) where E is an elliptic curve and f is a normalized

embedding, the cardinality of LegEmbD(Fp2) is 6h(O). 2

Definition 2.5.3 The canonical lift L̃ of a pair (L, f) ∈ LegEmbD(Fp2) is the inverse

π−1(L, f) in LegD(F ).
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2.6 The modular function λ of level 2

2.6.1 Brief Introduction to Modular Curves

In this section, we give some facts from the theory of modular curves which will be

used in the following sections. Unless otherwise stated, the reference for this material is

[15]. Let H denote the complex upper-half plane. The prinicipal congruence subgroup

of level N , denoted Γ(N), is the subgroup of SL2(Z) consisting of matrices M such

that M ≡ Id mod N . More generally, any subgroup Γ of SL2(Z) containing Γ(N)

for some N is called a congruence subgroup of level N . The modular curve Y (Γ)C is

defined as Γ\H, and X(Γ) denotes its compactification as a Riemann surface. A priori,

the elements of the “curve” are just cosets. The fact that X(Γ) has the structure of an

algebraic curve comes from a correspondence between non-singular projective curves

over C and transcendental extensions of degree one of C.

For any N , the modular curves X(N) can be described by irreducible non-singular

projective models with coefficients in Z[ζN ], where ζN is an N th root of unity [22, 32].

Therefore, we may consider X(N) to be defined over an extension of Q or any field

of characteristic p prime to N . In particular, we are interested in k = Qp or Fp. We

write X(N)k to indicate that we are working with the modular curve defined over k.

For any extension F of k, let X(N)k(F ) denote the F -rational points of X(N)k, and let

Y (N)k(F ) denote the F -rational points which are not cusps. We work with both Y (N)

and X(N) in what follows.

The points of the affine curve Y (Γ)C correspond to a moduli space consisting of

equivalence classes of elliptic curves with particular torsion data. Points of Y (1) cor-
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respond simply to isomorphism classes [E] of elliptic curves over C. Points of Y (N)

correspond to equivalence classes [E, (P,Q)] where E is a curve over C and (P,Q) is an

ordered basis of E[N ] such that eN(P,Q) = e2πi/N , where eN is the Weil pairing on N -

torsion. Two pairs [E, (P,Q)] and [E ′, (P ′, Q′)] are equivalent if there is an isomorphism

h : E → E ′ such that h(P ) = P ′ and h(Q) = Q′.

In particular, points of Y (2) correspond to equivalence classes [E, (P,Q)] where E

is a curve over C and (P,Q) is an ordered basis of E[2]. The Weil-pairing condition is

superfluous, as there is a single non-trivial square root of unity. In the next section, we

will see that a point [E, (P,Q)] of Y (2)C corresponds uniquely to a curve in Legendre

form over C isomorphic to E.

For the fields k = Q,Qp and Fp, we also have a moduli interpretation of Y (N)k

(with some technical modifications, see [15]). For example, if F is the unramified de-

gree 2 extension of Qp, the points of Y (2)Qp(F ) correspond to F̄ -isomorphism classes

[E, (P,Q)] where E is a curve over F and (P,Q) is an ordered basis of E[2] defined over

F .

Let k be an algebraically closed field. The field of modular functions of X(N)k,

denoted k(X(N)), is the field of rational functions f : X(N) → P1(k). For k = C,

these are functions on the upper half plane which are invariant under γ ∈ Γ(N). This

field can be described in a purely algebraic way as follows. Assume char k 6= 2, 3. Let j

be transcendental over k and let Ej denote the “universal elliptic curve”

y2 = 4x3 − 27j

j − 1728
x− 27j

j − 1728
.

For jo ∈ k with jo 6= 0, 1728, this specializes to an elliptic curve over k with j-invariant
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jo. Let x(Ej[N ]) denote the x-coordinates of the N -torsion of this curve. Since the N th-

division polynomial has coefficients in k(j), these are algebraic over k(j). The field of

functions of X(N)k is k(j, x(Ej[N ])).

We now describe a function λ on X(2) which generates the field of modular func-

tions of X(2)k.

2.6.2 The modular function λ of level 2

In this section, we introduce a function λ : H → C which parameterizes the mod-

ular curve Y (2)C, assigning to each point [E, (P,Q)] a distinct curve in Legendre form

isomorphic to E. Given E/C, choose τ ∈ H such that E is isomorphic to C/Λτ where

Λτ is the lattice Z + τZ. Let ℘τ (z) denote the Weierstrass ℘-function associated to Λτ .

The points of order two of the Riemann surface C/Λτ are { τ
2
, 1

2
, 1+τ

2
}. Let

e1(τ) = ℘τ (
τ

2
), e2(τ) = ℘τ (

1

2
), and e3(τ) = ℘τ (

1 + τ

2
).

These are precisely the x-coordinates of the non-trivial two-torsion ofE. Define λ : H →

C as

λ(τ) =
e3(τ)− e1(τ)

e2(τ)− e1(τ)
.

The following proposition describes the key properties of λ.

Proposition 2.6.1 [1, Section 7.3.4]

1. λ(τ) is analytic on H.

2. λ(τ) is Γ(2)-invariant: λ(γ(τ)) = λ(τ) for all γ ∈ Γ(2).
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3. λ satisfies the following transformation identities:

λ(τ + 1) =
λ(τ)

λ(τ)− 1
and λ(

−1

τ
) = 1− λ(τ).

At the cusps 0, 1,∞ of Y (2), the function λ takes the value 1,∞, 0 respectively.

Furthermore, it can be shown that λ : Y (2) → C − {0, 1} is a one-to-one map [1, Thm

7.7]. Thus C− {0, 1} is a parameter space for the curve Y (2).

Defining λ(0) = 1, λ(1) = ∞, λ(∞) = 0, and using the fact that λ is Γ(2)-invariant

and holomorphic onH, we have that λ : X(2) → P1(C) = C∪∞ is modular function for

Γ(2). Thus X(2)C(C) is in bijection with P1(C) via the map λ and the field of functions

of X(2) is C(λ).

Let k be an algebraically closed field not of characteristic two. We define λ :

X(2)k 7→ P1(k) analogously to the complex-analytic case. On Y (2), define

λ([E, (P,Q)]) =
x(P +Q)− x(P )

x(Q)− x(P )
. (2.9)

At the cusps, let λ(0) = 1, λ(1) = ∞ and λ(∞) = 0. For L, a curve in Legendre form,

we define

λ(L) := λ([L, ((0, 0), (1, 0))]),

by abuse of notation. Note the curve L in Legendre form with λ-invariant λ([E, (P,Q)]))

is isomorphic to E via the change of coordinates in the proof of Proposition 2.5.1, and

the ordered basis (P,Q) of E[2] is mapped to the basis ((0, 0), (1, 0)) of L[2]. The fact

that λ is well-defined and injective follows from considering the chart in the proof of

Proposition 2.5.1.

The map is clearly surjective, since given λo ∈ k with λo 6= 0, 1, the curve L :

y2 = x(x − 1)(x − λo) is mapped via λ to λo. Therefore the map λ : X(2)k 7→ P1(k)
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establishes a bijection with P1(k), and the field of functions of X(2)k is k(λ).

This agrees with definition of the field of modular functions ofX(2) as k(j, x(Ej[2])),

where j : X(1)k(k) → P1(k) is the (algebraic) j-invariant function forX(1). To see this,

we revisit the relationship between the functions λ and j on X(2)k. This is described in

[21, p. 461], and we give a more detailed proof here.

Proposition 2.6.2 Let k be an algebraically closed field, not of characteristic two. Let j

be transcendental over k. Let λ be a root of the polynomial Pj(X) = 28(X2−X +1)3−

jX2(X − 1)2.

1. k(j, x(Ej[2])) = k(λ).

2. The map J : X(2)k 7→ X(1)k given by

J(λ) = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2

is of degree six. For char k 6= 3, the cover is ramified at j = 0, 1728 and ∞ of

degree 3, 2, and 2 respectively. For char k = 3, the cover is ramified at j = 0 and

∞ of degree 6 and 2 respectively.

Proof: Consider the extension of function fields, k(λ)/k(j). We first show the

polynomial Pj(X) is irreducible over k(j). As there is a single power of j in Pj(X), if

Pj(X) factors into two polynomials, we must have that Pj(X) = A(X)(B(X)+jC(X)),

whereA,B, andC are polynomials in k[X]. ThusA(X) must divide both 28(X2−X+1)3

and X2(X − 1)2 which implies that A(X) is ±1 and therefore Pj(X) is irreducible. As

each root of Pj(X) is a rational expression in λ, the extension k(λ)/k(j) is therefore a

degree six Galois extension. As discussed in Section 2.5, the Galois group of k(λ)/k(j)
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is isomorphic to GL2(Z/2Z) and generated by the automorphisms σ : λ 7→ 1
λ

and τ :

λ 7→ 1
1−λ of order 2, 3 respectively.

By the same argument as in Section 2.5, the Galois group of k(j, x(Ej[2]))/k(j)

is isomorphic to GL2(Z/2Z) (see also [21, Thm. 4]). Thus it suffices to show λ is in

k(j, x(Ej[2])). The change of coordinates from Proposition 2.5.1 takes Ej to L : y2 =

x(x − 1)(x − λ) with λ = e3−e2
e1−e2 , where ei are some permutation of the x-coordinates of

Ej[2]. Thus λ is a rational expression in x(Ej[2]) and λ ∈ k(j, x(Ej[2])).

As the discriminant of Pj(X) ∈ k[j][X] is j4(j − 1728)3, the only finite points of

ramification occur at j = 0, 1728. Fix jo ∈ k and let p = (t), where t = (j − j0) ∈ k(j)

is a uniformizer for jo. Consider the local field k((t)), with ring of integers k[[t]]. Let

λo ∈ k be such that j(λo) = jo, and let P = (s), where s = λ − λo is a uniformizer

for λo. Since the extension k(λ)/k(j) is Galois, the ramification degree of the local field

extension at jo is independent of the choice of λo. Since k((s)) is a local field extension

of k((t)) and both have residue fields k, the ramification degree of P is simply the degree

of the extension, which is the order of the subgroup of S3 fixing P.

Let jo = ∞. The values 0, 1,∞ are pre-images of jo under the map λ. In particular,

we see that λo = 1 is only fixed by the subgroup generated by σ : λ 7→ 1
λ

. Therefore, the

ramification degree at j = ∞ is 2. Assume char k 6= 3. Let jo = 0 and λo = −ζ3. Then

P = (λ − λo) is fixed only by the subgroup generated by τ : λ 7→ 1
1−λ .Therefore, the

ramification degree at j = 0 is 3. Let jo = 1728 and λo = −1. Then P = (λ − λo) is

fixed only by the subgroup generated by σ : λ 7→ 1
λ

. Therefore, the ramification degree at

j = 1728 is 2.
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For char k = 3, the only ramification at finite places occurs at jo = 0 = 1728 and

λo = −1. The ideal P = (λ−λo) is fixed by both τ and σ and therefore the ramifiication

degree at j = 0 is 6. 2

2.7 An action of Cl(O2) on LegD(F )

Let O be an order of discriminant D < −4 and let K = Q(
√
D). Let E be a curve

with complex multiplication by O. In this section, we describe the minimal extension of

K over which the curves in Legendre form isomorphic to E can be defined. In particular,

we show that the λ-invariant of a curve in Legendre form with complex multiplication by

OK , the ring of integers of a quadratic imaginary field, generates the ray class field of K

of conductor 2. This is a known result, analogous to the fact that the j-invariant of an

elliptic curve with complex multiplication by OK generates the Hilbert class field H of

K. The reference for the class field theory used in this section is [11, Chap. 8].

We also show that all curves in Legendre form with complex multiplication by O

can be defined over F , the degree two unramified extension of Qp, and define an action

of a generalized ideal class group of OK on the set LegD(F ). This action extends to an

action on LegEmbD(Fp2) and gives a way to compute the canonical lift of (L, f), as will

be described in the next section.

We begin by defining some notation. For m ∈ Z+, let Im(OK) denote the set of

proper fractional ideals of OK relatively prime to mOK . Let Pm,Z(OK) denote the subset

of principal ideals (α) such that α ≡ a mod mOK for some integer a relatively prime to

m. Let Pm,1(OK) denote the subset of principal ideals (α) such that α ≡ 1 mod mOK .
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By class field theory, given a fixed algebraic closure of K, there is a unique abelian

extension Rm,K of K, such that Gal(Rm,K/K) ' Im(OK)/Pm,1(OK) via the Artin map.

This is called the ray class field of K of conductor m.

LetO be an order of conductorm. The ring class field ofK of conductor m, denoted

HO, is the unique abelian extension of K such that Gal(HO/K) ' Im(OK)/Pm,Z(OK)

via the Artin map. The group Im(OK)/Pm,Z(OK) is isomorphic to the class group Cl(O)

via aK 7→ aK ∩ O. Recall that the class group is the quotient of the group of ideals of O

prime to m by the group of principal ideals ofO prime to m. As Pm,1(OK) ⊂ Pm,Z(OK),

we have that Rm,K is an extension of HO.

LetE be a curve in characteristic zero with complex multiplication byO. As shown

in Section 2.5, the set of λ-invariants of curves in Legendre form isomorphic toE depends

only on the j-invariant of E. Therefore, to determine the λ-invariants associated to j(E),

we may work with the “universal curve” Ej defined in Section 2.6.1. The λ-invariant of

any curve L in Legendre form isomorphic toEj is rational expression in the x-coordinates

of the two torsion of Ej . Thus λ is an element of the field K(j(E), x(Ej[2])). By the

results in [3, 40], the Galois group Gal(K(j(E), x(Ej[2]))/K) is isomorphic via the Artin

map to the quotient of I2m(OK) by P2,1(O), the set of principal ideals αOK where α ∈ O

such that α ≡ 1 mod 2O and αOK is relatively prime to m, the conductor of O.

We now show that the group P2,1(O) is equal to P2m,Z(OK) and therefore that the

ring class field of K of conductor 2m is precisely the field K(j(E), x(Ej[2])). Let w

be a generator of OK . If (β) is an ideal of P2m,Z(OK), then β = a + 2mbw for some

integer a relatively prime to 2m. Since O = Z + mOK , this implies that β ∈ O and

β ≡ 1 mod 2O. Furthermore, (β) is relatively prime to m and thus (β) ∈ P2,1(O). For
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the other containment, let (β) be an ideal of P2,1(O). Since β ≡ 1 mod 2O, we have

β = a+ bmw with a odd and b even. Therefore β ≡ a mod 2mOK . The assumption that

(β) is relatively prime to m implies that (a,m) = 1 and thus (β) ∈ P2m,Z(OK).

Therefore the ring class field of K of conductor 2m is the field K(j(E), x(Ej[2]))

and contains the λ-invariant of any curve with complex multiplication by O. We can say

more by the following proposition, which follows as in the proof of part 1 of Proposition

2.6.2, using the fact that the Galois group of Q(j, x(Ej[2])) over Q(j) is isomorphic to

GL2(Z/2Z) ( [15, Thm. 7.6.3]). An alternate argument is found in [21, p. 460].

Proposition 2.7.1 Let j be the modular j-invariant function of the curve X(1). The field

Q(j, x(Ej[2])) of modular functions of X(2) is Q(λ), where λ is the modular function

from Section 2.6.

This proposition implies that the λ-invariant of a curve with complex multiplication

by O generates the field K(j(E), x(Ej[2])). In the case of a fundamental discriminant,

the groups P2m,1(OK) ⊂ P2m,Z(OK) are equal since the conductor m is 1. Thus the ray

class field of K of conductor 2 is the same as the ring class field of conductor 2 and both

are equal to K(λ) where λ is the λ-invariant of any curve in Legendre form with complex

multiplication by OK .

Let F be the degree two extension of Qp, where p is a prime not dividing 2D. We

now show that every curve E with complex multiplication by O is isomorphic to a curve

in Legendre form defined over F .

Proposition 2.7.2 Let D < −4 be a discriminant of a quadratic imaginary order and let
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p be inert in K = Q(
√
D) with p - 2D. Let F be the degree two unramified extension

of Qp. For any E with complex multiplication by O and good reduction modulo p, the

curves in Legendre form isomorphic to E are defined over ZF and have good reduction

modulo p.

Proof: Let E be a curve with complex multiplication by O and with good reduc-

tion modulo p. Any curve L in Legendre form isomorphic to E is given by λ = e3−e1
e2−e1

where e1, e2, e3 is some ordering of the x-coordinates of E[2]. In particular, λ is in

K(j(E), x(Ej[2]). The fact that p is prime to 2D implies that the ideal (p) of K is in

P2m,Z(OK), the kernel of the Artin map I2m(OK) → Gal(K(j(E), x(Ej[2])/K). There-

fore (p) splits completely in K(j(E), x(Ej[2])) and the extension field embeds into F .

Thus L is defined over F .

As E has good reduction modulo p, the ei are distinct modulo p. This implies that

λ is a p-adic integer and λ 6≡ 0, 1 mod p. Therefore λ ∈ ZF and L has good reduction

modulo p. 2

By the above proposition, given any j-invariant corresponding to a curve with com-

plex multiplication by O, the six distinct curves in Legendre form with j-invariant j are

defined over F . This shows that the cardinality of the set LegD(F ) is 6h(O), where h(O)

is the order of Cl(O), as was claimed in the proof of Theorem 2.5.2.

Let O2 denote the order of K of conductor 2m and let Cl(O2) denote its class

group. The following commutative diagram relates Cl(O2) and Cl(O) with generalized

ideal class groups of K:

69



I2m(OK)/P2m,Z(OK) −−−→ Im(OK)/Pm,Z(OK)y y
Cl(O2) −−−→ Cl(O)

The left and right maps are isomorphisms given by aK 7→ aK ∩ O2 and aK 7→ aK ∩ O,

respectively. The lower horizontal map is the map b 7→ bO.

We now define an action of Cl(O2) on LegD(F ) which is compatible with the

action of Cl(O) on the j-invariants of curves in EllD(F ) which sends j(L) to j(E) where

E = L/L[a]. Let L ∈ LegD(F ) and let a be the image in Cl(O) of an ideal of Cl(O2). In

particular, a is relatively prime to 2O. Via the normalized isomorphism O ∼−→ End(L),

this defines a subgroup L[a] =
⋂
α∈a ker(α) and a corresponding isogeny ϕa : L → E.

Since a is relatively prime to 2O, the isogeny ϕa sends ((0, 0), (1, 0)) to (P,Q), a basis

of E[2]. Let

λa = λ([E, (P,Q)]),

where λ is the map (2.9) from Section 2.6 and define La to be the curve with Legendre

invariant λa. This gives a well-defined action of Cl(O2) on LegD(F ), as we show below.

Furthermore, as j(La) = j(L)a, this action is compatible with the action of Cl(O).

Proposition 2.7.3 The actionL 7→ La is a well-defined free action ofCl(O2) on LegD(F ).

Given L,L′ ∈ LegD(F ), there exists a ∈ Cl(O2) such that j(La) = j(L′).

Proof: Let (α) be an ideal of P2m,Z(OK). Then α ≡ a mod 2mOK for some

integer a prime to 2m. Therefore, α ∈ O2 and the ideal a = αO is equivalent to 1

modulo 2O. The isogeny ϕa : L → E gives a curve with j(E) = j(L). Let λa =

λ([E, (P,Q)]), and let h be the unique isomorphism (up to ±1) E → La which maps
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(P,Q) to ((0, 0), (1, 0)). Then hϕa : L → La fixes the two-torsion. Let g : La → L

be the unique isomorphism (up to ±1) between the two curves. The map ghϕα is an

endomorphism of L corresponding to the element α ∈ End(L). Since α ≡ 1 mod 2O,

the endomorphism must fix the two-torsion. Therefore, g must send ((0, 0), (1, 0)) to

((0, 0), (1, 0)) ⊂ L[2]. By the chart in the proof of Proposition 2.5.1, an isomorphism

between two curves in Legendre form with the same j-invariant which fixes two-torsion

must be the identity. Therefore, La = L, and the action of Cl(O2) is well-defined.

To show the action is free, let a be the image in Cl(O) of an ideal of Cl(O2)

such that La = L. We show that a = (α) where αOK is an ideal of P2m,Z(OK). The

action of a is compatible with the action of Cl(O) on EllD(F ), which sends j(L) to

j(La) via the isogeny with kernel L[a]. Therefore, as j(La) = j(L), the ideal a must be

principal with a = (α) for some α ∈ O. The isomorphism h : E → La sends (P,Q) to

((0, 0), (1, 0)). Since La = L, we have that α = h ◦ ϕa is an endomorphism of L fixing

the two-torsion L[2]. This implies that α ≡ 1 mod 2O. LettingOK = Z[w], we have that

α = a+ bmw where b is even and a is odd. Thus a is the image of αO2 in Cl(O2) which

is by assumption prime to 2m. Thus a is prime to 2m. Since α ≡ a mod 2mOK , this

shows that αOK is in P2m,Z(OK).

The last claim follows from the fact that Cl(O) acts transitively on the set EllD(F ),

which is precisely the set of j-invariants of curves in LegD(F ), and the fact that any ideal

class of Cl(O) has a representative relatively prime to (2). 2

A straightforward counting argument shows that the action is not transitive. The
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following exact sequence relates the groups Cl(O2) and Cl(O): ([11, Thm. 7.24]):

1 → (O/2O)∗/(im(O∗)(Z/2Z)∗) → Cl(O2) → Cl(O) → 1 (2.10)

where im(O∗) is the image of the unit group O∗ under the map O → O/2O. Let h(O)

denote the class number of O. As (Z/2Z)∗ = 1 and im(O∗) = 1, by the above exact

sequence, we have that #Cl(O2) = m · h(O) where

m =



1 (2) splits in K

2 (2) ramifies in K

3 (2) is inert in K.

As LegD(F ) has cardinality 6h(O), the action cannot be transitive. In particular, for the

case of m = 1, there is no a ∈ Cl(O2) that sends a curve L in Legendre form to a distinct

curve L′ in Legendre form with the same j-invariant. Suppose L′ = La. Then the ideal

a must be prinicipal, because the action is compatible with that of Cl(O) on EllD(F ).

Therefore a = (α) defines an endomorphism of L fixing the two-torsion, with kernel

L[α]. By definition of the action, this endomorphism factors through an isogeny between

L and L′ = La which also fixes the two-torsion. This implies there is an isomorphism

between L and L′ fixing two-torsion, which implies that L = L′, as shown in the proof of

Proposition 2.5.1.

The action of Cl(O2) on LegD(F ) induces an action on LegEmbD(Fp2) via Theo-

rem 2.5.2:

(Lp, f)a = ((Lp)
a, f a)

where (Lp)
a = (La)p, and f a is the action described in Section 2.3.4. For convenience,
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we reiterate the details here, as the condition of fixing the two-torsion adds a minor tech-

nicality. Let ϕa : L → E be the isogeny with kernel L[a]. Let h : E → La be the

unique isomorphism (up to ±1) such that hϕa fixes the two-torsion, that is, sends the

ordered sequence
[
(0, 0), (1, 0), (λ, 0)

]
to

[
(0, 0), (1, 0), (λa, 0)

]
. Writing O = Z[τ ], let

β ∈ End(L) be the image of τ under the normalized isomorphism O ' End(L). The

normalized isomorphism for La is given by

τ 7→ hϕaβϕ̂ah
−1 ⊗ (degϕa)

−1,

and f a is the composition O ' End(La) ↪→ End(La).

Remark 2.7.1

In Section 2.3.4, we explicitly computed f a using the action of Cl(O) on EmbD(Ap,∞).

We can use this action to compute f a for a ∈ Cl(O2), but this only determines the

embedding f a up to automorphism of La. Thus if j(La
p) = 0 or 1728, there are three,

respectively two, possible candidates for the embedding f a. To determine which is the

correct embedding will require extra computation. This is discussed in Section 2.8.5.

We now proceed to show how the action ofCl(O2) is used to compute the canonical

lift of (L, f) ∈ LegEmbD(Fp2).

2.8 Computing the canonical lift of (L, f) ∈ LegEmbD(Fp2)

In this section, we present an algorithm to compute the canonical lift of (L, f) ∈

LegEmbD(Fp2) for any prime p ≥ 3. For p ≡ 1 mod 12, the algorithm is merely a modi-
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fication of the algorithm in Section 2.4. For p 6≡ 1 mod 12, the set of supersingular curves

over Fp2 includes a curve with j = 0 or 1728, and the algorithm requires a modification

of the p-adic analytic map used in the Algorithm 2.4.1.

2.8.1 The map ρα for the case of p 6≡ 1 mod 12

Let Cp be the completion of an algebraic closure of Qp. The field Cp is algebraically

closed. Let η = (Lo, f) be an element of LegEmbD(Fp2), and let L̃ denote its canonical

lift. We define a ‘disc’ above η containing all possible candidates for the λ-invariant of the

canonical lift of (Lo, f). These are pairs (λ(L), f) with λ(L) ≡ λ(Lo) modulo p, where

p is the prime above p in the smallest extension of Qp in which λ(L) lies. We denote this

disc by

XD(η) = {(λ(L), f) | λ(L) ∈ Cp, λ(L) ≡ λ(Lo) mod p}

By Theorem 2.5.2, there is exactly one pair in each disc XD(η) such that the induced

embedding of endomorphism rings is equal to f , namely (λ(L̃), f). As in Section 2.4, we

construct a p-adic analytic map from the set of discs to itself that has these pairs as fixed

points and then “zero in” on the canonical lift of η using Newton’s method.

Let a be an O-ideal of norm N coprime to 2p. We define a map

ρa :
⋃
η

XD(η) →
⋃
η

XD(η)

as follows. Let (λ(L), f) ∈ XD(η). The ideal f(a) of End(Lo) defines a subgroup

Lo[f(a)] of the N -torsion. Since (N, p) = 1, the N -torsion of Lo lifts canonically to

L[N ] and the subgroup Lo[f(a)] lifts canonically to a subgroup L[a] of L. This defines

an isogeny ϕa : L → E = L/L[a]. Since 2 - N(a), the map ϕa sends ((0, 0), (1, 0))
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to a basis (P,Q) of E[2]. Thus [E, (P,Q)] is a point of Y (2)Qp , and we may apply the

modular function λ from Section 2.6. Define

ρa(λ(L), f) = (λ([E, (P,Q)]), f a),

where f a is as in Section 2.7. When the map f is clear, we also denote by ρa the induced

map on the disc XD(η) restricted to the first coordinate of the pair, which is simply the

p-adic disc of radius one around λ(Lo).

We now explain the connection of ρa to the action of Cl(O2) on LegD(F ). If

L̃ is the canonical lift of (Lo, f), then ρa(λ(L̃), f) is equal to (λ(L̃a), f a), where L̃a is

determined by the action defined in Proposition 2.7.3. This follows from the fact that the

induced embedding End(L̃) ' O ↪→ End(Lo) is by definition f . Therefore, the isogeny

ϕa defined by the lift of Lo[f(a)] is precisely the isogeny defined by a ⊂ End(L̃).

Let a be principal with a = (α) for α ≡ 1 mod 2 and norm N(α) coprime to p and

m, the conductor of O. Then the isogenous curve E = L̃/L̃[a] is isomorphic to L̃ and

λ([E, (P,Q)]) equals λ(L̃). Furthermore, fα = f , and therefore (λ(L̃), f) is fixed by ρα.

Note, however, that the map ρa is not an extension of the action in Proposition

2.7.3. Let L ∈ LegD(F ) with λ(L) ≡ λ(Lo) mod p but such that L is not the canonical

lift of η. That is, the induced embedding of endomorphism rings is not f . Then the lift

of Lo[f(a)] to L is not necessarily equal to the subgroup L[a]. Therefore, ρa(λ(L), f)

is not necessarily equal to (λ(La), f a). They may be equal, for example, if the induced

embedding is equal to f conjugated by an isogeny which stabilizes the subgroup Lo[f(a)].

However, if a is principal with a = (α) where α/ᾱ − 1 is a p-adic unit, then they

cannot be not equal. That is, the point (λ(L), f) is fixed by ρα if and only if L is the
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canonical lift of η = (λ(Lo), f). Therefore, though the disc XD(η) may contain multiple

pairs (λ(L), f) with L ∈ LegD(F ), it contains exactly one point fixed by ρα. This fact

follows from the p-adic analyticity of ρα, as we now show.

Let α ≡ 1 mod 2 with norm N coprime to p and m, the conductor of O. Let

η = (Lo, f) ∈ LegEmbD(Fp2). Since (α) is prinicipal and α ≡ 1 mod 2, ρα stabilizes

XD(η). By abuse of notation, we let ρα : XD(η) → XD(η). denote the corresponding

map on λ-invariants and XD(η) denote the p-adic disc of radius one around λ(Lo). The

proofs of the following statements are found in the next three subsections.

Theorem 2.8.1 Let η ∈ LegEmbD(Fp2) and let λ̃ be the λ-invariant of the canonical lift

of η. For α ∈ OK with α ≡ 1 mod 2 and norm N(α) coprime to pm, the map ρα is

p-adic analytic in the disc XD(η). That is, there exist ai ∈ ZF such that

ρα(λ)− λ̃ =
∑
i≥1

ai(λ− λ̃)i,

for all λ ∈ XD(η).

Proposition 2.8.2 Let the hypotheses be as in Theorem 2.8.1. The map ρα(λ) has deriva-

tive α/ᾱ at the point λ = λ̃.

As in the case of Section 2.4, for ᾱ 6≡ α mod p, the p-adic analytic map ρα has a

unique fixed point, namely λ̃. The algorithm in Section 2.8.7 to compute the canonical

lift uses a variant of Newton’s method to converge to λ̃.

Proposition 2.8.3 Let

λk+1 = λk −
ρα(λk)− λk
α/ᾱ− 1

.
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For any λ0 ∈ XD(η), the sequence {λk} converges quadratically to λ̃. Therefore, the

map ρα has a unique fixed point in the disc XD(η).

2.8.2 Proof of Theorem 2.8.1

The purpose of this section is to prove Theorem 2.8.1, following the approach found

in the proof of [5, Thm. 4.2]. We begin by giving an algebraic-geometric interpretation

of ρα in terms of functions on modular curves. Let N be odd and consider the modular

curve Y (Γ2,N) defined over C by the congruence subgroup Γ2,N = Γ0(N) ∩ Γ(2), where

Γ0(N) is the subgroup of SL2(Z) of matrices M =

a b

c d

 with c ≡ 0 mod N .

The curve X(2N) has a non-singular projective model over Z[ζN ], thus we can

consider it as a curve over Qp(ζN). The ζN comes from the Weil-pairing condition in the

moduli interpretation of Y (2N). Since Γ(2N) ⊂ Γ2,N , the curve X(Γ2,N) is a quotient

of X(2N) and thus we may also work with X(Γ2,N) over Qp(ζN). Moreover, it can be

defined over Qp, since there is no Weil-pairing condition in the moduli interpretation for

Γ0(N). In what follows, we work with the modular curves X(Γ2,N) and X(2) defined

over Qp, unless otherwise specified, and consider their points over Cp, the completion of

an algebraic closure of Qp.

The points of the affine curve Y (Γ2,N) correspond to the equivalence classes of

triples [E,G, (P,Q)] where E is an elliptic curve over Cp, G is a cyclic order-N sub-

group, and (P,Q) is a basis of the 2-torsion. Two triples are equivalent if there is a

Cp-isomorphism h : E → E ′ such that h(G) = G′, h(P ) = P ′ and h(Q) = Q′.

We now define two maps λ1, λ2 : Y (Γ2,N) → Cp as follows. Let π denote the
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“forgetful” map

π : Y (Γ2,N) → Y (2)

[E,G, (P,Q)] 7→ [E, (P,Q)]

Given a point [E,G, (P,Q)] of Y (Γ2,N), let ϕG denote the degree-N isogeny with

kernel G. Let Ĝ denote the “complementary” subgroup of G, that is, the subgroup of

points of E[N ] such that Ĝ⊕G = E[N ]. The Atkin-Lehner involution is

wN : Y (Γ2,N) → Y (Γ2,N)

[E,G, (P,Q)] 7→ [ϕG(E), ϕG(Ĝ), (ϕG(P ), ϕG(Q))]

and satisfies the property that w2
N = Id. This is true by the following facts. The map ϕ bG

is the map on the curve ϕG(E) with kernel ϕG(Ĝ). Therefore it is the dual isogeny to

ϕG, and thus ϕ bGϕG = [N ]. Since N is odd, this fixes the two-torsion of E. Note also

that the subgroup complementary to ϕG(Ĝ) is mapped by ϕ bG to G. Therefore, applying

wN to the point [ϕG(E), ϕG(Ĝ), (ϕG(P ), ϕG(Q))], we get [E,G, (P,Q)]. Thus w2
N is the

identity map.

We define the map λ1 : Y (Γ2,N) → Cp as λ1 = λ ◦ π, where λ : Y (2) → Cp is the

map from Section 2.6. We define the map λ2 : Y (Γ2,N) → Cp as λ2 = λ1 ◦ wN .

The map λ2 is directly related to ρα. Given λ ∈ XD(η), let L over F be the curve

y2 = x(x− 1)(x− λ). As L ≡ Lo mod p, we can lift the subgroup Lo[f(α)] uniquely to

a subgroup L[α], as described in the previous section. By construction, the value ρα(λ)

is the λ-invariant of the curve L′ in Legendre form isomorphic to L/L[α] such that the

induced isogeny L→ L′ preserves the order of the two-torsion. Thus

ρα(λ) = λ2([L,L[α], ((0, 0), (1, 0))]).
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We now have the tools to prove Theorem 2.8.1.

Proof of Thm. 2.8.1: Let η = (Lo, f) and let L̃ ∈ LegD(F ) be its canonical lift.

As Lo has all two-torsion defined over Fp2 , all endomorphisms of Lo are defined

over Fp2 ( [46, Thm. 4.1]). Thus the subgroup Lo[f(α)] is defined over Fp2 and its lift

L̃[α] ⊂ L[N ] is defined over F . Therefore, the point R = [L̃, L̃[α], ((0, 0), (1, 0))] is an

F -rational point of Y (Γ2,N). As L̃ is the canonical lift of η, we have that λ2(R) = λ̃.

Let π(R) = T , and let OR and OT denote the local rings of functions at R and T ,

respectively. As shown in Section 2.6, the modular function λ : Y (2)(F ) → F − {0, 1}

is a bijection. Therefore, λ− λ(T ) is a uniformizer for OT .

The map Y (Γ(2N)) → Y (2) is unramified above λ 6= 0, 1,∞ [21, p. 463], and

factors through the map Y (Γ2,N) → Y (2). Therefore the cover Y (Γ2,N) → Y (2) is

unramified above λ 6= 0, 1,∞. Viewing the maximal ideal (λ − λ(T )) in OR and using

the fact that λ1 = π ◦ λ, this implies that

(λ− λ(T ))OR = (λ1 − λ1(R)).

Therefore the function λ1 − λ1(R) is a uniformizer for the completion ÔR of the local

ring atR. Since Y (Γ2,N)F is a smooth curve, ÔR is a discrete valuation ring over F . Thus

ÔR ' F [[λ1 − λ1(R)]].

We now show that λ2 − λ2(R) is also a uniformizer for R. Precomposing with wN

gives

(λ2 − λ2(R)) ◦ wN = λ1 ◦ w2
N − λ2(R) = λ1 − λ1 ◦ wN(R), (2.11)

sincew2
N = Id and λ2 = λ1◦wN . If λ2−λ2(R) has a zero of orderm atR, then (2.11) has
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a zero of order m at wN(R), again by the fact that w2
N = Id. As (2.11) is a uniformizer

for the local ring at wN(R), we have that m = 1, and thus λ2 − λ2(R) is a uniformizer

for R in ÔR.

The curve X(2N) has good reduction modulo p not dividing N . As X(Γ2,N) is a

quotient of X(2N), the curve X(Γ2,N) also has good reduction modulo p not dividing

N ([12, Prop. 4.2]). Arguing as in [5, p. 10], we now work with the modular curves

X(2) and X(Γ2,N) as schemes over Zp. As shown in the proof of Proposition 2.7.2, the

λ-invariant of L̃, denoted λ̃, is in ZF and is not equal to 0 or 1 modulo p. Thus L̃ has

good reduction modulo p and there is a point R′ of X(Γ2,N)Zp which corresponds to R

and similarly a point R̄ of X(Γ2,N)Fp corresponding to R. Similarly, we may consider the

points T ′, T̄ of X(2)Zp , respectively X(2)Fp .

By [21, pp. 460], the function λ generates the field of functions of X(2)Fp , and

therefore λ−λo is a uniformizer for T̄ . The cover π : Y (Γ2,N)Fp → Y (2)Fp is unramified

above λ 6= 0, 1,∞ ( [21, p. 463], and so λ1 = λ ◦ π is a uniformizer for R̄. Considering

λ2 = λ1 ◦ wN as a function Y (Γ2,N)Fp → Fp, we have that λ2 − λo is also a uniformizer

for R̄ by the fact that w2
N = Id.

Let ÔR′ denote the completion of the local ring atR′. Since λ1− λ̃ and λ2−λo both

reduce to uniformizers modulo p, the ideals (p, λ1 − λ̃) and (p, λ2 − λ̃) are uniformizers

for ÔR′ . By the structure theory of complete local rings, ÔR′ ' ZF [[λ1 − λ̃]] [27, Proof

of Thm. 29.7]. Therefore, there exist ai ∈ ZF such that

λ2 − λ̃ =
∑
i≥1

ai(λ1 − λ̃)i. (2.12)

Given λ ∈ XD(η), let L denote the corresponding curve in Legendre form. Recall
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that ρα(λ) = λ2([L,L[α], ((0, 0), (1, 0))]). Therefore

ρα(λ)− λ̃ = λ2([L,L[α], ((0, 0), (1, 0))])− λ̃

=
∑

i≥1 ai
(
λ1([L,L[α], ((0, 0), (1, 0))])− λ̃

)i
=

∑
i≥1 ai(λ− λ̃)i.

As ai ∈ ZF , this series converges for any λ ∈ XD(η). 2

2.8.3 Proof of Proposition 2.8.2

In this section, we prove Proposition 2.8.2 by computing the value a1 ∈ ZF in the

power series (2.12). The proof follows the approach in the proof of [5, Lemma 4.3].

We first show that it is valid to compute the slope in the complex analytic setting. This

follows from the fact that the value a1 may be interpreted as the ratio of differentials of

the curve Y (Γ2,N) evaluated at an F -rational point.

Proof of Prop. 2.8.2 The space of differentials of the curve Y (Γ2,N) is a one-

dimensional vector space over the function field of the curve. As λ1, λ2 are functions of

Y (Γ2,N), there exists a function γ on Y (Γ2,N) such that γdλ1 = dλ2. By the power series

(2.12), we have that dλ2 =
(
a1 +

∑
i≥2 iai(λ1 − λ̃))i−1

)
dλ1. Thus, for the F -rational

point R = [L̃, L̃[α], ((0, 0), (1, 0))], we have γ(R) = a1.

Since λ̃ is integral over Z(2)[j(L̃)], where j(L̃) is an algebraic integer, we may view

λ̃ ∈ Q̄. Thus we may view R as a point in Y (Γ2,N)(C) and calculate a1 = dλ2

dλ1
(R) from

the complex-analytic viewpoint.

By the bijection of the moduli space Y (Γ2,N)C with Γ2,N\H, given any point P

representing [L,L[α], ((0, 0), (1, 0))], there exists a representative τ ∈ Γ2,N\H such that
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P corresponds to

[C/Λτ , 〈1/N + Λτ 〉, (τ/2 + Λτ , 1/2 + Λτ )].

In particular, the kernel of the map α on C/Λτ is 〈1/N +Λτ 〉. Let τo be the representative

corresponding to the point R.

The map λ1 on Y (Γ2,N)C is given by λ1(P ) = λ(τ). To interpret the map λ2, note

that the complex-analytic map defined by α on L corresponds to

C/〈1, τ〉 → C/〈1/N, τ〉 N→ C/〈1, Nτ〉, (2.13)

where the first map has kernel 〈1/N〉+ Λτ and the second map is the isomorphism given

by rescaling by N . The resulting curve is C/〈1, Nτ〉 and the map λ2 is given by λ2(P ) =

λ(Nτ). Letting λN(τ) = λ(Nτ), we have that

dλ2

dλ1

(P ) =
dλN
dλ

(τ).

Thus to compute a1, we want to evaluate at τ = τo.

From Section 2.6, the modular function j(τ) can be given as a rational expression

in λ(τ) via the function J :

j(τ) = J(λ(τ)).

Let jN(τ) denote the function j(Nτ) and let JN(τ) denote the function J(λN(τ)), which

is equal to jN(τ). We now show that

dλN
dλ

(τo) =
djN
dj

(τo).

By [5, Lemma 4.3], djN
dj

(τo) = α
ᾱ

, and thus the result follows.

We have

dJ

dτ
=
dJ(λ(τ))

dτ
=
dJ

dλ

dλ

dτ
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and

dJN
dτ

=
dJ(λN(τ))

dτ
=
dJN
dλN

dλN
dτ

.

Therefore

djN
dj

(τ) =
dJN
dJ

(τ) =
dJN
dλN

(τ)(
dJ

dλ
(τ))−1dλN

dλ
(τ).

Since dJN

dλN
(τ) = dJ

dλ
(Nτ), it suffices to show that λ(Nτo) = λ(τo). Since α is an endo-

morphism of C/Λτo with kernel 〈1/N〉 + Λτ , we have C/〈1, τo〉
α→ C/〈1, τo〉. The map

(2.13) has the same kernel, thus the image curves are isomorphic via the map α/N :

C/〈1, Nτo〉
α/N→ C/〈1, τo〉.

Therefore, there exists M =

a b

c d

 ∈ SL2(Z) such that ατo = aτo + b and α/N =

cτo + d, and Mτo = aτo+b
cτo+d

= ατo
α/N

= Nτo.

We now show that M ∈ Γ(2). The non-trivial two-torsion of Λτo is {1/2 +

Λτo , τo/2 + Λτo , (τo + 1)/2 + Λτo}. As α ≡ 1 mod 2, the endomorphism α fixes the

two-torsion. Furthermore, since (N, 2) = 1, the map C/〈1, τo〉 → C/〈1/N, τo〉
N→

C/〈1, Nτo〉 also fixes the two-torsion. For example,

1/2 + 〈1, τo〉 7→ 1/2 + 〈 1

N
, τo〉 7→ N/2 + 〈1, Nτo〉 = 1/2 + ΛNτo .

Since neither α nor N permute the two torsion, the isomorphism α
N

= cτo + d must

also fix the the two-torsion. Thus c is even and d is odd, which implies that M ∈ Γ(2).

Since λ is Γ(2)-invariant, λ(Nτo) = λ(Mτo) = λ(τo). This completes the proof. 2
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2.8.4 Proof of Proposition 2.8.3

We now give the proof of Proposition 2.8.3. We assume that α/ᾱ − 1 is a p-adic

unit and show that {λk} converges quadratically to λ̃ where

λk+1 = λk −
ρα(λk)− λk
α/ᾱ− 1

.

In particular, this implies that λ̃ is the unique fixed point in the p-adic disc radius 1 around

λ(Lo).

Proof of Prop. 2.8.3: Let a1 = α/ᾱ and choose λ0 ∈ XD(η). Then λ0 ≡

λ(Lo) mod p. Let

λk+1 = λk −
ρα(λk)− λk
a1 − 1

.

Let vp denote the p-adic valuation of F . We show by induction that for all k ≥ −1,

vp(λk+1 − λ̃) ≥ 2k+1.

By assumption, vp(λ0 − λ̃) ≥ 1, therefore the statement holds for k = −1. Assume

vp(λk − λ̃) ≥ 2k. Then

λk+1 − λ̃ = λk − λ̃−
(
ρα(λk)− λk

)(
a1 − 1

)−1

= (λk − λ̃)−
(
λ̃+

∑
i≥1 ai(λk − λ̃)i − λk

)(
a1 − 1

)−1

= (λk − λ̃)−
(
(a1 − 1)(λk − λ̃) +

∑
i≥2 ai(λk − λ̃)i

)(
a1 − 1

)−1

= −
∑

i≥2 ai(a1 − 1)−1(λk − λ̃)i

Thus vp(λk+1 − λ̃) = vp(−
∑

i≥2 ai(a1 − 1)−1(λk − λ̃)i) ≥ vp((λk − λ̃)2) ≥ 2k+1, as

desired.
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Note that this is essentially Newton’s method

λk+1 = λk −
ρα(λk)− λk
ρ′(λk)− 1

since ρ′(λk)− 1 = ρ′(λ̃)− 1 +O(p2k
) = (a1− 1) +O(p2k

). This completes the proof. 2

Corollary 2.8.4 Let vp be the p-adic valuation of F and assume vp(λk − λ̃) = 2k. Then

vp(λk+1 − λk) = vp(λk − λ̃).

Proof: This follows from the definition of ρα and λk+1. Let a1 = α/ᾱ. Then

vp(λk+1 − λk) = vp(
(
ρα(λk) − λk

)(
a1 − 1

)−1
) = vp(ρα(λk) − λk), since a1 − 1 is a

p-adic unit. 2.

2.8.5 An algorithm to compute the action of Cl(O2) on LegEmbD(Fp2)

Let O be an order of discriminant D < −4. Let p be inert in K = Q(
√
D) with

p - 2D. In this section, we present an algorithm that computes the action of an ideal

a ∈ Cl(O2) on a pair (L, f) of the set LegEmbD(Fp2) The algorithm returns the curve

La and the embedding f a. In this section, all elliptic curves are supersingular curves in

characteristic p.

We fix a maximal order R of Ap,∞ into which O optimally embeds and a prime `

not equal to p. We choose a set of left R-ideal class representatives {Ji}, each of norm a

power of `. As discussed in Section 2.2.2, this is possible because the `-isogeny grapha

of supersingular curves over Fp is connected. This determines EmbD(Ap,∞), the set of

equivalence classes of optimal embeddings O ↪→ Rr(Ji). As shown in Section 2.3.2, this

set is in bijection with EmbD(Fp2).
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We choose a curve L1 with End(L1) ' R and fix an isomorphism i : Ap,∞ →

End(L1)⊗Q specified by a Z-basis {ri} of R which maps to a Z-basis {ei} of End(L1).

(For more detail, see A.0.3 in Appendix A and the examples in Appendix B.) For any

isogeny ϕ : L1 → E, we define the isomorphism iϕ : Ap,∞ → End(E)⊗Q by

iϕ : α 7→ ϕi(α)ϕ̂⊗ (degϕ )−1.

The left ideals Ji of R define curves Ei = L1/L1[Ji] with Rr(Ji) ' End(Ei). As

discussed in the remark 2.2.1, we make the choice of isogenous curve Ei such that the

isogeny ϕJi
: L1 → Ei is normalized. The isogeny ϕJi

defines an isomorphism denoted

iJi
. Note that the curves Ei are not necessarily in Legendre form.

Fix a pair (L, f) of LegEmbD(Fp2) and an ideal a. The following algorithm com-

putes the unique curve La in Legendre form such that the isogeny L → La with kernel

L[f(a)] fixes the two-torsion. To compute f a, we use Algorithm 2.3.1 which returns

the value ga(τ) = w, an element of Rr(Jm) where Em ' La. The value ga(τ) is only

determined up to conjugation by units of Rr(Jm). If j(La) 6= 0, 1728, the value ga(τ)

is uniquely determined. For j(La) = 0 or 1728, however, there are three, respectively

two, choices of ga(τ), only one of which gives the embedding f a into End(La). This

ambiguity is addressed in Step 5.

The expression we obtain for f a(τ) gives an endomorphism of the curve La in

terms of the basis of endomorphisms {ei} for L1 and an isogeny L1 → La. By factoring

L1 → La through the isogeny L1 → Em, we control the denominators in the expression

of f a(τ) so that they are at most a power of `. Thus, for any ideal a and for any element

β ∈ O with norm prime to `, we can compute the kernel of the endomorphism f a(β) by
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computing the kernel of `d · f a(β) for some d.

Algorithm 2.8.1

INPUT:

• A supersingular curve L in Legendre form with End(L) ' Rr(Jk)

• A basis {ri} of R

• The data

1. g(τ) = [y1, ..., y4] ∈ Rr(Jk) expressed in terms of the basis {ri} of R

2. γ, an isomorphism Ek → L

specifying an optimal embedding f : O ↪→ End(L), given by f(τ) = iϕ ◦ g(τ)

where ϕ = γ ◦ ϕJk

• An ideal a of Cl(O2) with a = (a, c+ dτ) and n(a) = a where (a, `) = 1

OUTPUT:

• The curve La

• The data

1. ga(τ) = [w1, ..., w4] ∈ Rr(Jm) expressed in terms of the basis {ri} of R

2. γ, an isomorphism Em → La

3. δ, an automorphism of La

specifying the embedding f a as given by f a(τ) = iϕ ◦ ga(τ) where ϕ = δ ◦ γ ◦ϕJm
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• The polynomial P (X) whose roots are the distinct x-coordinates of the affine points

of the kernel L[f(a)]

• The curveE = L/L[f(a)] and the two-torsion points (P,Q), the image of ((0, 0), (1, 0))

under the isogeny L a→ E.

The last two outputs are a by-product of the computations La and are used in the

algorithm to compute the canonical lift in Section 2.8.7.

1. Using Algorithm 2.3.1, compute ga(τ) = w ∈ Rr(Jm), with w = [w1, ..., w4] in

terms of {ri}.

2. Compute the subgroup L[f(a)] by checking which points Qi ∈ L[a] are in the

kernel of f(c + dτ). Let P (X) =
∏(a−1)/2

n=1 (X − x(Qi)), the polynomial whose

roots are the x-coordinates of L[f(a)].

3. Compute ϕa : L → E, the isogeny with kernel L[f(a)], and (P,Q), the image of

((0, 0), (1, 0)) under ϕa. Compute

λa =
x(P +Q)− x(P )

x(Q)− x(P )

and an isomorphism h : E → La with (x, y) 7→ (u2x+ r, u3y) for

u = ± 1√
x(Q)− x(P )

and r =
−x(P )

x(Q)− x(P )
.

Let ψ = hϕa : L→ La.

4. If j(La) 6= 0, 1728, compute the isomorphism γ : Em → La (unique up to ±1) and

let ϕ = γ ◦ ϕJm . Return La and f a = iϕ ◦ ga.
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5. If j(La) = 0 or 1728, choose an arbitrary isomorphism γ : Em → La. For each

automorphism δ ∈ Aut(La), let ϕ = δγϕJm and determine if

iϕ(g
a(τ))ψ = ψf(τ) (2.14)

as isogenies L → La. Choose the unique δ (up to ±1) for which this holds, and

return La and f a = iϕ ◦ ga.

We now give a more detailed description of the algorithm, as well as justification

of the fact that Step 5 yields the embedding f a. In Step 3, we use Vélu’s formulas to

compute ϕa : L → E. By the proof of Proposition 2.5.1, the curve with λ-invariant

λa is La, the unique curve in Legendre form isomorphic to E such that there exists an

isomorphism E → La sending (P,Q) to ((0, 0), (1, 0)). Either choice of square root for

u is valid, as the automorphism −Id fixes the two-torsion.

In Steps 4 and 5, the curve E is isomorphic to Em but not necessarily equal. Since

in Step 1, we have computed the value ga(τ) with respect to the set EmbD(Ap,∞) which

depends on the fixed set {Ei} of representatives of isomorphism classes, we factor the

isogeny L1 → La through Em. If p = 3, 5, 7 or 13, there is a unique isomorphism class

of supersingular curves over Fp2 . Thus Em = L and ϕJm
is just the identity.

In Step 5, letting ϕ = γ ◦ϕJm , we have that iϕ(ga(τ))ψ = ψf(τ) up to conjugation

by an automorphism δ ∈ Aut(La). The goal of Step 5 is to determine the correct δ, up to

±1.

Let φ = iϕ(g
a(τ)). For any δ, δ′ ∈ Aut(La) with δ 6= ±δ′, the endomorphisms

δφδ−1 and δ′φδ′−1 are distinct. Thus there exists some positive integer s, relatively prime

to a and `, such that δφδ−1 and δ′φδ′−1 are not equal on La[s] for all pairs δ, δ′ with
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δ 6= ±δ′.

This implies that there is a unique δ up to ±1 such that (2.14) holds for points of

La[s]. We then check each δ until we obtain one for which this is true. As (s, a · `) = 1,

we can do this by checking that

a · δ
(
ϕJm

i(w)ϕ̂Jm

)
δ−1 ◦ ψ = `d ·

(
ψ ◦ f(τ)

)
(2.15)

on L[s], where `d is the maximum of n(Jm) and the denominators of the {wi} .

To choose an appropriate s, for each pair of automorphisms with δ 6= ±δ′, we

compute the difference of δφδ−1 and δ′φδ′−1 expressed in terms of the basis {ei}. For

p 6= 3 and j = 1728, there is two automorphisms up to ±1, and thus a single difference.

For j = 0, there are three automorphisms up to ±1 and thus three differences. If p = 3,

there are six automorphisms up to ±1 and thus fifteen differences.

Let m be the smallest absolute value of the numerators of the terms in each of the

differences. Choose a positive integer s relatively prime to m, ` and a. By the choice of s

and the fact that the denominators of the terms contain at most powers of `, the differences

are not equal to zero modulo s. Hence the corresponding pairs of endomorphisms are not

equivalent on La[s].

This approach gives an upper bound on s, the smallest positive integer such that

δφδ−1 and δ′φδ′−1 are not equal on La[s]. The terms of any embedding with respect to

the basis are each bounded by n(τ), the norm of the embedding. Thus the terms in the

differences of conjugate endomorphisms are bounded by 2n(τ). For any s > 2n(τ),

the differences are not equal to zero modulo s, and hence the corresponding conjugate

endomorphisms are not equivalent on La[s].
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There is a better bound on s for large enough n(τ), as follows. If the differences

are zero modulo r = 2, 3, 5... for a sequence of relatively prime integers, then they are

zero modulo the product of these primes. For large x, the product of primes less than x is

approximately ex by the Prime Number theorem. More specifically, by [34, Cor. to Thm.

4], for x ≥ 41, ∑
p≤x

log p > x(1− 1/(log x)).

Thus solving x(1− 1/(log x)) = log 2n(τ) for x, we have that the product of primes less

than x is greater than 2n(τ). Thus there is a prime s < x such that the differences are not

equal to zero modulo s and no pair of conjugate embeddings give endomorphisms which

are equal on La[s].

Alternately, we may determine the correct automorphism δ by simply trying primes

r = 2, 3, ... , coprime to a · `, in consecutive order, and testing for each δ whether the

condition (2.15) holds on L[r]. We discard those that fail on any given s until only one δ

remains.

For practical implementation, we want to use a small s. For instance, in the case

that s = 2, the algorithm simplifies, as we know that the isogeny ψ fixes the two-torsion.

We present this simplified variant of the algorithm, followed by an example. We then give

a characterization, in terms ofD and the characteristic polynomial of τ , of the cases when

s = 2 suffices.

Algorithm 2.8.1, s = 2 Variant:

The input is the same as in Algorithm 2.8.1, assuming we have chosen the ideal
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class representatives Ji to have norm a power of ` 6= 2. Steps 1, 2 and 4 remain the

same. In Step 3, there is no need to calculate the isomorphism h. Step 5 is replaced by

the following step.

Choose an arbitrary isomorphism γ : Em → La. For each δ ∈ Aut(La), let ϕ =

δγϕJm . Since the conjugate endomorphisms are not equal on La[2], to check condition

(2.14) from Step 7 of Algorithm 2.8.1, it suffices to verify that

iϕ(g
a(τ))ψ ≡ ψf(τ) mod 2.

Since ψ : L→ La fixes the two-torsion ((0, 0), (1, 0)), this is equivalent to checking

that iϕ(ga(τ)) and f(τ) evaluated on the two torsion of La and L, respectively, give the

same result. We check this for each δ ∈ Aut(La)/{±1} until we find one for which this

is true. The following example illustrates this variant.

2.8.6 Example

Let p = 7 and D = −23. We work with Fp2 = Fp(a) where a2 = −2. The order O

of discriminant D can be written as Z[τ ] where τ is a root of X2 −X + 6 = 0.

Let L be the curve y2 = x(x−1)(x−2) with j(L) = 1728. We fix a maximal order

R with R ' End(L). (See Appendix B for the explicit bases of R and End(L)). As there

is a unique conjugacy class of maximal orders of A7,∞, all embeddings of EmbD(Fp2)

are embeddings into R.

Let f : O ↪→ End(L) be the embedding given by the data g(τ) = [0,−1,−1, 1], in

terms of the basis of R and the isomorphism i : R → End(L). Recall that g(τ) gives an

embeddingO ↪→ R and the embedding f is given by the endomorphism i(g(τ)). As D is
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fundamental, the embedding f is optimal. Furthermore, as D ≡ 9 mod 16, we are able

to use the s = 2 variant of Algorithm 2.8.1, by Proposition 2.8.5 below.

Given a = (3, 1 + 2τ), an ideal of OK relatively prime to 2, we compute the action

of a on (L, f). In Step 1, we use Algorithm 2.3.1 to compute ga(τ) = [0,−2, 1, 1] ∈ R.

In Step 2, we check which points of L[3] are killed by 1 + 2f(τ). This yields the

points with x-coordinate 5a + 5. Thus P (X) = X + 2a + 2 is the kernel polynomial of

L[f(a)].

In Step 3, using Vélu’s formulas, we obtain the isogenous curve E = L/L[f(a)]

with y2 = x3 + 4ax. The images of (0, 0) and (1, 0) under the isogeny are P = (0, 0)

and Q = (5a + 1, 0) respectively. The point P + Q = (2a + 6, 0) and we compute

λ = 6. Thus La is the curve given by y2 = x(x− 1)(x− 6). The isomorphism (x, y) 7→

((a+ 4)x, (3a+ 3)y) sends E to the curve La and the basis (P,Q) to ((0, 0), (1, 0)).

As j(La) = 1728, we go to Step 5. We choose the isomorphism γ : L→ La given

by (x, y) 7→ (x+ 6, y). The following chart gives the value of the endomorphism f(τ) of

L evaluated on the non-trivial points of L[2]. Here P∞ denotes the identity of the group

L(Fp2).

P f(τ)(P )

(0, 0) (0, 0)

(1, 0) P∞

(2, 0) (0, 0)

Similarly, the following chart gives the value of endomorphism iγ(g
a(τ)) of La evaluated

on the non-trivial points of La[2]. Here P∞ denotes the identity of the group La(Fp2).
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P iγ(g
a(τ))(P )

(0, 0) (0, 0)

(1, 0) P∞

(6, 0) (0, 0)

As they agree, the correct automorphism is δ = Id and the embedding f a is given by

iγ(g
a(τ)), where ga(τ) = [0,−2, 1, 1] and γ is the isomorphism above.

As a check, we consider the non-trivial automorphism of La given (up to ±1) by

δ : (x, y) → (6x, 2ay). Conjugating by δ, we get the embedding δiγ(ga(τ))δ−1 and we

evaluate it on the non-trivial points of La[2].

P δ(iγ(g
a(τ)))δ−1(P )

(0, 0) (0, 0)

(1, 0) (0, 0)

(6, 0) P∞

As this doesn’t agree with the values of f(τ) on L[2], this confirms that we have identified

the correct embedding automorphism as δ = Id.

Let L be supersingular curve with j(L) = 0 or 1728 such that the order O of dis-

criminant D embeds in End(L). The following proposition describes for which discrim-

inants D the endomorphisms corresponding to conjugate embeddings are distinguishable

on the 2-torsion of the curve L.

Proposition 2.8.5 Let L be a supersingular curve in Legendre form over Fp2 with j(L) =

0 or 1728. Let O = Z[τ ] be the order of discriminant D < −4, and let T (X) = X2 −
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tX + n be the characteristic polynomial of τ . Let φ be an element of End(L) with

characteristic polynomial T (X). Let δ ∈ Aut(L) be any automorphism with δ 6= ±Id.

Assume φ 6≡ 0 mod 2 and one of the following cases is true

T (X) ≡



X2 +X mod 2 and j(La) = 0 or 1728

X2 +X + 1 mod 2 and j(La) = 1728

X2 + 1 mod 2 and j(La) = 0.

Then φδ 6= δφ onL[2]. Furthermore, these are conditions are necessary for φδ 6≡ δφ mod

2, except in the last case.

Proof: Let P0, P1, P2 be the non-trivial two-torsion points of L. If φ ≡ 0 mod 2,

then φ kills the two-torsion and thus δφ ≡ φδ mod 2. Therefore, in order that δφ 6≡

φδ mod 2, we must have that φ 6≡ 0 mod 2.

Case 1: If T (X) ≡ X2 + X mod 2, then φ2 ≡ φ on L[2] and φ kills a point of

two-torsion of L. Without loss of generality, let φ(P0) = P∞ and φ(P1) = φ(P2) = P1.

If j(L) = 1728, the non-trivial automorphism δ (up to ±1) is a permutation of

order 2 on the non-trivial points of L[2]. Thus δ fixes one non-trivial two-torsion point

and permutes the other two. If δ(P0) = P0, then δφδ−1(P2) = P2. If δ(P1) = P1, then

δφδ−1(P2) = P∞. If δ(P2) = P2, then δφδ−1(P2) = P0. In all cases, δφδ−1(P2) is not

equal to φ(P2) = P1. Therefore φδ 6= δφ on L[2].

If j(L) = 0, any non-trivial automorphism δ of L gives a permutation of or-

der 3 and thus does not fix any two-torsion point. We show for each possibility for

δ that δφδ−1(P0) 6= φ(P0), and therefore φδ 6= δφ on L[2]. If δ(P0) = P1, then
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δφδ−1(P0) = P2. If δ(P0) = P2, then δφδ−1(P0) = P0. In both cases, δφδ−1(P0) is

not equal to φ(P0) = P∞.

Case 2: Suppose T (X) ≡ X2 + X + 1 mod 2. Since 2 - n, the endomorphism

φ acts as a permutation on L[2]. Writing [n] = φφ̂, we have φ2 + φ + φφ̂ ≡ 0 mod 2,

and thus φ̂ ≡ 1 + φ on L[2]. If φ(Pi) = Pi for any i, then φ̂(Pi) = P∞, which is a

contradiction. Thus φ is a permutation of order 3 on the non-trival points of L[2].

For j = 0, the non-trivial automorphisms of L are permutations non-trivial two-

torsion of order 3. Therefore δ commutes with φ and φδ ≡ δφ mod 2.

For j = 1728, the non-trivial automorphism of L gives an order 2 permutation.

Thus φ and δ do not commute and φδ 6= δφ on L[2].

Case 3: If T (X) ≡ X2 + 1 mod 2, then φ2 ≡ 1 on L[2]. This implies that φ is

an order 2 permutation of the non-trivial points of L[2]. If j = 0, then δ is an order 3

permutation of the non-trivial points of L[2]. Therefore, φδ 6≡ δφ mod 2, as δ and φ do

not commute.

If j = 1728, then δ is an order 2 permutation as well. If δ and φ are the same

order 2 permutation, then δφ = φδ on L[2]. However, if δ and φ are not the same per-

mutation, then there exists i such that δφδ−1(Pi) 6= φ(Pi). Thus the condition T (X) ≡

X2 +1 mod 2 and j(L) = 0 is sufficient, but not necessary to guarantee φδ 6≡ δφ mod 2.

2

ForD a fundamental discriminant, we may writeO = Z[τ ] where the characteristic
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polynomial of τ is

T (X) =


X2 −X + 1−D

4
for D ≡ 1 mod 4

X2 + D
4

for D ≡ 0 mod 4.

It is straightforward to verify that

D ≡



9 mod 16 iff T (X) ≡ X2 +X mod 2 and 4 - n

5 mod 8 iff T (X) ≡ X2 +X + 1 mod 2

4 mod 8 iff T (X) ≡ X2 + 1 mod 2.

In particular, this implies that in the case of D ≡ 9 mod 16, with D a fundamental

discriminant, we may always use the s = 2 variant of Algorithm 2.8.1, regardless of

whether the curves with j-invariant 0 or 1728 are supersingular over Fp2 .

2.8.7 An algorithm to compute the canonical lift of (L, f)

We now present the algorithm to compute the canonical lift of the pair (L, f) of the

set LegEmbD(Fp2) to a specified p-adic accuracy for p 6≡ 1 mod 12. We use “accuracy”

to mean how p-adically close the computed value is to the actual value in terms of the

number of p-adic digits to which they agree. We use “precision” to mean the number of

p-adic digits which we keep track of in computations. The overall structure of the algo-

rithm is the same as Algorithm 2.4.1 for p ≡ 1 mod 12. However, some technical details

differ as we are working with the Legendre form.
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Algorithm 2.8.2

INPUT:

• L, a supersingular curve modulo p with p 6≡ 1 mod 12

• A maximal order R of Ap,∞ with End(L) ' R and a basis {ri} of R

• An explicit isomorphism i : R → End(L) specified by an identification of bases

{ri} of R and {ei} of End(L)

• An optimal embedding f : O = Z[τ ] ↪→ End(E) given by f(τ) = y = [y1, ..., y4]

expressed in terms of {ei}

• r ∈ Z+ such that 2r is greater than or equal to the desired p-adic accuracy

OUTPUT: The canonical lift λ̃ of (L, f) to 2r p-adic digits accuracy.

1. Choose α = a+ bτ ∈ Z[τ ] satisfying the following:

(a) α ≡ 1 mod 2

(b) α
ᾱ
− 1 is a p-adic unit

by searching the set

SA = {a+bτ | a, b ∈ Z, a+bτ prime to D, a odd, b even, b 6≡ 0 mod p and n(a+bτ) ≤ A}

where the bound A is greater than n(τ). If the set is empty, we increase A until

this is not the case. Let
∏m

i=1 bi be the factorization of α into prime ideals and let

an =
∏n

i=1 bi for 1 ≤ n ≤ m.
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2. Choose the smallest prime ` relatively prime to 2p · n(α). Compute {Ji}, a set of

left R-ideal class representatives, each with norm a power of `. This determines the

set EmbD(Ap,∞) used in the setup of Algorithm 2.8.1. Compute the corresponding

set of elliptic curves Ei = L/L[i(Ji)].

3. Using Algorithm 2.8.1 with input (L, f) and the ideal b1 = a1, compute (La1 , f a1).

Store the following by-products of the computation:

• P1(X), the polynomial whose roots are the distinct x-coordinates of the points

of the subgroup L[f(b1)]

• E(1) = L/L[f(b1)], the isogenous curve

• (P1, Q1) the image of ((0, 0), (1, 0)) under the isogeny L→ E(1).

Similarly, for n = 1, ...,m − 1, use Algorithm 2.8.1 with input (Lan , f an) and

bn+1 to compute (Lan+1 , f an+1). Store the polynomial Pn(X) corresponding to the

subgroup Lan [f an(bn+1)], the isogenous curve E(n) = Lan/Lan [f an(bn+1)], and

(Pn, Qn) the image of ((0, 0), (1, 0)) under the isogeny L → E(n). In this way,

obtain the cycle of isogenies

L
b1→ E(1) ' La1

b2→ E(2) ' La2 ...
bm→ E(m) ' L(α) = L. (2.16)

4. Let λ0 be an arbitrary lift of λ(L) to 2 digits precision.

5. For k = 0, 1, ..., r − 1, repeat the following four steps. In the kth iteration, work to

2k+1 digits precision and obtain λk+1, which is the value λ̃ to 2k+1 digit accuracy.
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(a) Let Lk be the curve y2 = x(x− 1)(x− λk) and compute the isogeny

Lk
b1→ Ek,1

with kernel Lk[b1].

(b) Lift the two torsion (P1, Q1) of E(1) to (Pk,1, Qk,1) in Ek,1[2]. Let

λa1
k =

x(Pk,1 +Qk,1)− x(Pk,1)

x(Qk,1)− x(Pk,1)
.

This is ρa1(λk) to 2k+1 digits accuracy. Let La1
k be the curve with λ-invariant

λa1
k .

(c) Lift the remaining m − 1 isogenies of (2.16) one at a time as in Steps 5a and

5b to obtain the cycle of isogenies

Lk
b1→ La1

k

b2→ La2
k ...

bm→ L
(α)
k . (2.17)

The λ-invariant of L(α)
k is ρα(λk) to 2k+1 digits accuracy.

(d) Compute

λk+1 = λk −
ρα(λk)− λk
α/ᾱ− 1

to obtain λk+1, which is the value λ̃ to 2k+1 digit accuracy.

6. Return λr−1, the value λ̃ to 2r digit accuracy.

In Step 1, we want α not only to satisfy the given conditions but to factor into the

product of ideals of small norm, as discussed in Algorithm 2.4.1. To find such an α, we

fix A > n(τ) and B = 20 and search the set

SA = {a+ bτ | a, b ∈ Z, a+ bτ prime to D, a odd, b even, b 6≡ 0 mod p, n(a+ bτ) ≤ A}
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for elements α such that n(α) is B-smooth. That is, the smallest prime factor of n(α)

is less than B. The condition a is odd and b is even ensures that a + bτ ≡ 1 mod 2.

The condition b 6≡ 0 mod p ensures that α
ᾱ
− 1 is a p-adic unit, since p - D implies that

τ 6≡ τ̄ mod p. We also may impose the condition gcd(a, b) = 1. If there are no such α

we may increase either A,B or both until we find an α satisfying the conditions. (There

are more sophisticated sieving methods that could be used to improve the efficiency of

this search.)

As discussed in Remark 2.4.1, we can obtain a heuristic upper bound on the size of

A needed to find a B-smooth element α = a+ bτ where B = bexp
√

log |D|c. However,

in this algorithm, we also require that a is even and b is odd. Arguing heuristically, this

holds for a fourth of the B-smooth elements of the set S defined in Lemma 2.4.1.

In Step 2, we use the algorithm in [44, 9] to compute a set of left ideal class

representatives {Ji} of R of norm a power of `. Each Ji is given by a basis βk of four

elements of R. For each Ji, we compute the subgroup of L corresponding to the ideal

i(Ji) of End(E) by checking which points of L[`d] are killed by i(βk) for all k. Then we

use Vélu’s formulas to compute the isogenous curve Ei = L/L[Ji]. For p = 3, 5 or 7,

there is a single isomorphism class of supersingular elliptic curves over Fp2 and Step 2 is

not necessary.

Throughout Step 5, the precision for computations in the kth iteration should be

2k+1 as we are computing λk+1 to that accuracy. In Step 5a, to compute the isogeny

Lk
b1→ Ek,1 with kernel Lk[b1], we use Hensel’s lemma to lift the kernel polynomial

P1(X) to a factor of the N -division polynomial of Lk where N is the norm of b1. We use

Vélu’s formulas to compute Ek,1 = Lk/Lk[b1].
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In Step 5b, to lift (P1, Q1) to (Pk,1, Qk,1) we use Hensel’s lemma. Let y2 = f(x)

denote the Weierstrass equation for Ek,1. We lift the x-coordinates of P1 and Q1 to roots

of f(x) to obtain the x-coordinates of Pk,1 and Qk,1. As x(Pk,1) 6≡ x(Qk,1) mod p, no

p-adic accuracy is lost in the division required to compute λa1
k . Thus this value is equal to

ρa1(λk) to 2k+1 digits accuracy.

For Step 5c, given λai−1

k , we compute λai
k in the same way as in Steps 5a and 5b. In

this way, we compute the cycle of λ-invariants

λk
b1→ λa1

k

b2→ λa2
k , ...,

bm→ λ
(α)
k

and λ(α)
k is ρα(λk) to 2k+1 digits accuracy.

Remark 2.8.1

For calculation purposes, we must determine the correct embedding of O = Z[τ ] into F ,

given by a root of T (X) = X2 − tX + n, the minimal polynomial of τ . This is in order

to be able to compute the value α/ᾱ, where α = a + bτ , as an element of F in Step 5d

of Algorithm 2.8.2. As f is a normalized embedding, the correct choice of root of T (X)

in Fp2 is c such that f(τ)∗ω = cω for ω = dx
y

. Therefore, we can choose one of the two

roots c modulo p and verify whether or not this holds. For the correct one, we then lift it

to a root of T (X) modulo p2k+1 .

To check the differential condition, we choose a point P of L not of order 2, and

check that

dx ◦ f(τ)

dx

1

(y ◦ f(τ))
(P ) =

c

y(P )
.

This requires explicitly obtaining the x-coordinate of the endomorphism f(τ). For large
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D, this coordinate is a ratio of polynomials of large degree. However, we may write

f(τ) =
∑4

i=1 biei, where ei are the basis for End(L). Then by the linearization property

of the differential, we have that f(τ)∗ω =
∑4

i=1 bi(e
∗
iω), and we check whether

4∑
i=1

bi
dx ◦ ei
dx

1

(y ◦ ei)
(P ) =

c

y(P )
.

It is feasible to obtain the x-coordinates of the endomorphism ei as the basis endomor-

phisms are generally of small degree.

Alternatively, we can choose a root of T (X) in Fp2 arbitrarily. We have a one-half

chance of choosing the correct root, and if we choose the incorrect root, we will detect

this in the kth iteration where k is such that 2k is greater than the valuation of λ0 − λ̃.

In particular, if a1 = α/ᾱ and we have chosen the incorrect root, the Newton’s method

update in Step 5d will use ā1. Since τ 6≡ τ̄ when viewed as elements of Fp2 under the

reduction map O → O/(p) ' Fp2 , we have that a1 − 1 is invertible in F . Therefore

(a1 − 1)/(ā1 − 1) is invertible in ZF . Then

λk+1 − λk = (λk − λ̃)
(
(a1 − 1)/(ā1 − 1)

)
+

∑
i≥2

ai(ā1 − 1)−1(λk − λ̃)i

and its valuation is thus equal to that of λk − λ̃. As this holds for any k, we see that

λk+1 − λk can never have valuation greater than that of the starting valuation of λ0 − λ̃.

Thus once we reach the end of the kth iteration for k such that 2k is greater than the

valuation of λ0−λ̃, we will detect that we’ve chosen the incorrect root, since by Corollary

2.8.4, we know we should have that the valuation of λk+1 − λk is at least 2k. In that case,

we choose the conjugate root c̄.

We now give a detailed example of Algorithm 2.8.2 for p = 7 and D = −23.
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2.8.7.1 Example

Let p = 7 and D = −23. We work with Fp2 = Fp(a) where a2 = −2. We let

F = Qp(ã) where ã is the unique lift of a ∈ Fp2 to a root of X2 + 2 = 0. The order O of

discriminant D can be written as Z[τ ] with τ a root of X2 −X + 6 = 0.

We compute the canonical lift of (L, f) where L is the curve with λ(L) = 2 and

f(τ) = [0,−1,−1, 1] specifies an optimal embedding of O = Z[τ ] into End(L). We

compute the canonical lift λ̃ to 16 p-adic digits accuracy.

In Step 1, we choose α = 1 + 2τ which factors as (α) =
∏3

i=1 a for a = (3, 1 +

2τ). Since p = 7, there is a unique class of supersingular elliptic curves and Step 2 is

unnecessary. In Step 5, we use the s = 2 variant of Algorithm 2.8.1. In Example 2.8.6,

we computed the action of a on (L, f) and obtained P1(X) = X + 2a + 2 as the kernel

polynomial of L[f(a)]. We also computed that La is the curve y2 = x(x − 1)(x − 6)

and the embedding f a is given by iγ(g
a(τ)) where ga(τ) = [0,−2, 1, 1] and γ is the

isomorphism (x, y) 7→ (x+ 6, y).

Similarly, we use Algorithm 2.8.1 with input (La, f a) and a. Checking which 3-

torsion points of La are killed by 1 + 2 · iγ(ga(τ)), we see that the kernel of La[f a(a)] is

generated by the point with x-coordinate 2a + 4. Thus P2(X) = X + 5a + 3. We also

get that the curve La2 is y2 = x(x − 1)(x − 4) and f a2 is specified by the isomorphism

γ : (x, y) 7→ (4x, y), and the automorphism of La2
δ : (x, y) 7→ (6x + 1, 5ay), and

ga2
(τ) = [1, 2, 0,−1]. Using this, we can determine that the kernel polynomial P3(X) is

X + a+ 5. Thus Step 3 yields the sequence of kernel polynomials

[X + 2a+ 2, X + 5a+ 3, X + a+ 5].
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We also obtain (Pi, Qi), the image of the two torsion, for i = 1, 2, 3:

(1, 5a+ 2), (2a+ 1, 5a+ 6), (a+ 1, 4).

In Step 4, we choose λ0 = 9 as a lift of λ(L) = 2. In Step 5, to compute λ̃ to 16

digits accuracy, we do iterations for k = 0, 1, 2, 3. As the value of τ , we use the lift of

3a+ 4 ∈ Fp2 to a root of T (X) to 2k+1 accuracy. (The value 3a+ 4 is determined by trial

and error as discussed in Remark 2.8.1.)

For k = 0, 1, 2, 3, we compute the following sequence of isogenies using Steps 5a,

b and c.

Lk
a→ La

k
a→ La2

k
a→ L

a3=(α)
k (2.18)

Let k = 0. In Step 5b, we Hensel lift P1(X) to a factor of the 3-division polynomial

of the curve L0 given by y2 = x(x− 1)(x− 9). This yields an isogeny to the curve E0,1

given by y2 = x3 − 10x2 + (11ã + 3)x + (24ã − 22). The two torsion (P1, Q1) lifts to

((21ã− 20, 0), (−16ã+ 16, 0)) and we compute λa
0 = 14ã+ 3.

In Step 5c, we compute the rest of the cycle in the same way to get

λa
0 = 14ã+ 3, λa2

0 = 7ã+ 4, λa3

0 = −19.

The value of ρα(λ0) is −19 +O(72). For Step 5d, we use the Newton’s method update to

get λ1 = −14ã− 5 +O(72).
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The results of the other iterations are recorded below.

k λk ρα(λk)

0 9 +O(72) −19 +O(72)

1 −14ã− 5 +O(72) −700ã− 250 +O(74)

2 −308ã+ 975 +O(74) −2759057ã− 2169529 +O(78)

3 −1589770ã+ 2769328 +O(78) −8713440653260ã− 14503366061721 +O(716)

The value of λ4 is 10354895380858ã− 11703056327961 +O(716).

The following chart gives the j-invariants corresponding to the λk as well as the

p-adic valuation of the differences between the values in the iterations k and k − 1. This

shows the quadratic convergence of λk to λ̃.

k j(λk) vp(λk − λk−1) vp(jk − jk−1)

0 13 +O(72)

1 13 +O(72) 1 2

2 −833ã− 673 +O(74) 2 3

3 −1520666ã+ 1286263 +O(78) 4 5

4 7006024547445ã+ 9359259476181 +O(716) 8 9

The value λ4 is the 16 digit approximation to the λ-invariant of the canonical lift L̃ of

(L, f). The value j4 is therefore a 16 digit approximation to the j-invariant of L̃. To

confirm this, we compute the polynomial H−23(X) using the complex analytic method as

implemented in MAGMA. We then see that H−23(j4) has valuation 20, while H ′
−23(j4)

has valuation 4. Therefore, by Hensel’s lemma [25, Prop. II.2.2], j4 lifts uniquely to a

root of H−23(X) and is in fact a 20 digit approximation to j̃.
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For completeness, we give an algorithm to compute the canonical lift of (L, f) for

p ≡ 1 mod 12. If p ≡ 1 mod 12, the set of supersingular curves over Fp2 does not

include any curve with j = 0 or 1728. In this case, we use the algorithm from Sec-

tion 2.4 to compute the j-invariant of the canonical lift L̃ of (L, f) and choose the root of

Pj(L̃)(X) which reduces to λ. This will be λ̃, the λ-invariant of the canonical lift of (L, f).

Algorithm 2.8.3

INPUT:

• L, a supersingular curve modulo p, where p ≡ 1 mod 12

• A maximal order R of Ap,∞ with End(L) ' R and a basis {ri} of R

• An explicit isomorphism i : R → End(L) specified by an identification of bases

{ri} of R and {ei} of End(L)

• An optimal embedding f : O = Z[τ ] ↪→ End(E), given by f(τ) = y = [y1, ..., y4],

expressed in terms of {ei}

• r ∈ Z+ such that 2r is the desired p-adic accuracy

OUTPUT: The canonical lift λ̃ of (L, f) to precision p2r .

1. Use Algorithm 2.4.1 from Section 2.4 to compute j(L̃), the j-invariant of the canon-

ical lift of (L, f) to precision p2r .

2. Use Hensel’s lemma to lift λ(L) to a unique root of Pj(Ẽ)(X) in F to 2r digits

accuracy
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Note that we can use Hensel’s lemma in Step 2 since j(L) 6= 0, 1728 implies that

Pj(Ẽ)(X) factors into six distinct linear terms in Fp2 .

2.9 A p-adic algorithm to compute HD for p inert with respect to D

Let D < −4 be an imaginary quadratic discriminant. In this section, we give a

p-adic algorithm to compute the class polynomial HD(X) of the order O of discriminant

D. Let p be the smallest prime inert with respect to D. There are two variants of the

algorithm, depending on whether or not p ≡ 1 mod 12.

The algorithm presented in this section is modeled after the p-adic algorithm in [5,

Sec. 7] where p is a prime splitting in O. The key step is to compute the canonical lift

j̃ of (E, f) to sufficient accuracy. Approximations to the other roots of HD(X) are then

computed using the action of Cl(O) on j̃. In [5], for an ideal a ∈ Cl(O) of prime

norm N , the value j̃a is computed by determining the correct root in Fp of the modular

polynomial φN(j̃, X) ∈ Fp[X] and Hensel lifting it to sufficient p-adic accuracy. This is

feasible as the polynomial has exactly two distinct roots modulo p.

In the case of p inert, the situation is more delicate as the polynomial φN(j̃, X)

factors completely in Fp2 [X] and is in general not separable. Thus in the following algo-

rithm, we compute the Galois conjugate j̃a by directly applying the map ρa from Section

2.8.1.
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Algorithm 2.9.1

INPUT:

• An imaginary quadratic discriminant D < −4

• A prime p with p ≡ 1 mod 12

OUTPUT: The class polynomial HD(X) ∈ Z[X]

1. Let Cl(O) =
⊕m

k=1〈ak〉 be a decomposition of the class group into a direct product

of cyclic groups generated by integral prime ideals ak of order hk and norm `k not

dividing p. Let αk = (ak)
hk .

2. Using Algorithm A.0.2, compute a maximal order R of Ap,∞ into which O op-

timally embeds and the embedding g : O ↪→ R given by g(τ) = [w1, ..., w4]

expressed in terms of a basis {ri} for R.

3. Using Algorithm A.0.1, compute the correspondence between the Gal(Fp2/Fp)-

conjugacy classes of supersingular j-invariants over Fp2 and the conjugacy classes

of maximal orders of Ap,∞. Select j, a j-invariant in the list corresponding to R.

4. Choose a curve E in Weierstrass form with j-invariant j and fix an isomorphism i :

R → End(E) using Algorithm A.0.3. Let f(τ) = i(g(τ)) specify the embedding

f : O ↪→ End(E).

5. Choose a small prime ` relatively prime to p ·
∏
`k. Compute {Ji}, a set of left R-

ideal class representatives, each with norm a prime power of `, and the correspond-

ing set of elliptic curves Ei = E/E[i(Ji)]. This determines the set EmbD(Ap,∞)

used in the set up of Algorithm 2.8.1.
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6. Let r be the smallest integer such that 2r is greater than logp 10 ·C+logp 2 where C

is the constant (2.1). Use Algorithm 2.4.1 to compute the canonical lift j̃ of (E, f)

to 2r digits accuracy.

7. Working to 2r digits precision, let Ẽ be a curve with j-invariant j̃. Compute

ραi
((j̃, f)) as in Algorithm 2.4.1 to obtain the set S of pairs of j-invariants and

embeddings

S = {(j̃, f), (j̃a1 , f a1), (j̃a2
1 , f a2

1), ..., (j̃a
h1−1
1 , f a

h1−1
1 )}.

The j-invariant j̃ai
1 is the canonical lift of (Eai

1 , f ai
1) to 2r digits accuracy.

8. For k = 2, ...,m do the following. For each pair (j, f) in S, compute ραk
(j, f) to

obtain the pairs (jai
k , f ai

k) for i = 1, ..., hk − 1. At the end of the kth iteration, add

these all to the set S, which now contains h1h2...hk pairs. The first coordinate of

each pair is a distinct root of HD(X) computed to 2r digits accuracy.

9. Working to 2r digits precision, expand HD(X) =
∏

(j,f)∈S(X − j) and recognize

the coefficients as integers between −p2r and p2r . Return HD(X).

For Step 1, there is a bound on the generators of Cl(O). Assuming GRH, the norm

of ai is bounded by O((log |D|)2) [7, p. 249]. In Step 6, the logp 2 term in the lower

bound on 2r comes from the fact that the coefficients of HD(X) have absolute value less

than 10C and thus lie in a range of size 2 · 10C .

If there exists k such that αk/ᾱk− 1 is a p-adic unit, then in Step 6 we can compute

the canonical lift using the map ραk
. Without loss of generality, we may assume k = 1.

If we compute j̃ to 2r+1 digits accuracy, we obtain as a by-product of Algorithm 2.4.1
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the pairs (j̃ai
1 , f ai

1) where j̃ai
1 is accurate to 2r digits. Thus this replaces Step 7. However,

there is not guaranteed to be such a k in which case we compute the canonical lift in

Step 6 by finding an α satisfying the conditions that α/ᾱ−1 is invertible and use the map

ρα to compute j̃.

The algorithm for p 6≡ 1 mod 12 is analogous except that in Steps 6, 7 and 8, we

compute λ̃, the λ-invariant of the canonical lift of (L, f), and the Galois conjugates of

λ̃. We then compute j(λ̃a) for each a ∈ Cl(O) and proceed as in Step 9. In Step 1, we

have to use a decomposition of Cl(O) into ideals of odd norm. We can replace Step 7

as described above, provided that αk ≡ 1 mod 2. We give the algorithm for completeness.

Algorithm 2.9.2

INPUT:

• An imaginary quadratic discriminant D < −4

• A prime p with p 6≡ 1 mod 12

OUTPUT: The class polynomial HD(X) ∈ Z[X]

1. Let Cl(O) =
⊕
〈ak〉 be a decomposition of the class group into a direct product of

cyclic groups generated by integral prime ideals ak of order hk and norm `k prime

to 2p. Let αk = (ak)
hk .

2. Using Algorithm A.0.2, compute a maximal order R of Ap,∞ into which O op-

timally embeds and the embedding g : O ↪→ R given by g(τ) = [w1, ..., w4]

expressed in terms of a basis {ri} for R.
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3. Using Algorithm A.0.1, compute the correspondence between the Gal(Fp2/Fp)-

conjugacy classes of supersingular j-invariants over Fp2 and the conjugacy classes

of maximal orders of Ap,∞. Select j, a j-invariant in the list corresponding to R.

4. Choose a curve L in Legendre form with j-invariant j and fix an isomorphism

i : R→ End(L) using Algorithm A.0.3. Let f(τ) = i(g(τ)) specify the embedding

f : O ↪→ End(L).

5. Choose a small prime ` 6= 2 relatively prime to p ·
∏

k `k. Compute {Ji}, a set

of left R-ideal class representatives, each with norm a prime power of `, and the

corresponding set of elliptic curves Ei = L/L[i(Ji)]. This determines the set

EmbD(Ap,∞) used in the set up of Algorithm 2.8.1.

6. Let r be the smallest integer such that 2r is greater than logp 10 ·C+logp 2 where C

is the constant (2.1). Use Algorithm 2.8.2 to compute the canonical lift λ̃ of (L, f)

to 2r digits accuracy.

7. Working to 2r digits precision, let L̃ be a curve with λ-invariant λ̃. Compute

ραi
((λ̃, f)) as in Algorithm 2.4.1 to obtain the set S of pairs of λ-invariants and

embeddings

S = {(λ̃, f), (λ̃a1 , f a1), (λ̃a2
1 , f a2

1), ..., (λ̃a
h1−1
1 , f a

h1−1
1 )}.

The λ-invariant λ̃ai
1 is the canonical lift of (Lai

1 , f ai
1) to 2r digits accuracy.

8. For k = 2, ...,m do the following. For each pair (λ, f) in S, compute ραk
(λ, f)

to obtain the pairs (λai
k , f ai

k) for i = 1, ..., hk − 1. At the end of the kth iteration,
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add these pairs to the set S, which now contains h1h2...hk pairs. The j-invariant of

the first coordinate of each pair is a distinct root of HD(X) computed to 2r digits

accuracy.

9. Working to 2r digits precision, expand HD(X) =
∏

(λ,f)∈S(X − j(λ)) and recog-

nize the coefficients as integers between −p2r and p2r . Return HD(X).

We remark that in the case of p = 3, 5, 7, 13, Steps 3 and 5 of the respective algo-

rithms are not necessary since there is a unique class of supersingular elliptic curves over

Fp2 .

2.9.1 Example

In this section, we give an example of the algorithm to compute the class polynomial

of the order O of discriminant D = −4 · 903. This is the order of conductor two of the

field K = Q(
√
−903). We write it as O = Z[τ ] where τ is a root of T (X) = X2 + 903.

The smallest prime inert in K is p = 5. As p does not divide D, we may compute

HD(X) 5-adically using Algorithm 2.9.2 since p 6≡ 1 mod 12. Steps 3 and 5 of the

algorithm are not necessary as there is a unique isomorphism class of supersingular curves

over Fp2 , namely that with j = 0.

The class group ofO is non-cyclic generated by a1 = (3, 3+τ) and a2 = (29, 5+τ)

of orders 2 and 8, respectively.

The quaternion algebra Ap,∞ for p = 5 can be given by
(−2,−5

Q

)
, where

i2 = −2, j2 = −5, ij = k, ij = −ji.
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The single conjugacy class of maximal orders ofAp,∞ has the representative R with basis

{r1, ..., r4} = {1, 1/2 + i/4− k/4, 1/2− 3i/4− k/4,−1/4i− j/2− k/4}.

The map g : O → Ap,∞ given by g(τ) = [−5,−13, 23, 0] is an embedding of O into the

order R. As the greatest common divisor of the terms is one, this embedding is optimal.

Let Fp2 = Fp(a) where a is a root of X2 +2 = 0. There are two curves in Legendre

form with j = 0:

L : y2 = x(x− 1)(x− (a+ 3))

L′ : y2 = x(x− 1)(x− (4a+ 3)).

We choose L and fix an isomorphism i : R → End(E) as given in Appendix B. The

embedding f : O → End(E) is given by f(τ) = i(g(τ)).

We compute the constant (2.1) for D and from determine that the necessary p-adic

accuracy is 10 digits. Therefore we let r = 4 and use Algorithm 2.8.2 to compute λ̃ to 16

p-adic digits accuracy.

We note that a2
1 = (3) and a8

2 = (16900τ−475381). As α/ᾱ−1 is not a p-adic unit

for either α1 or α2, we cannot use either of these values for the map ρα when computing

the canonical lift. Thus we search the set SA from Step 1 of Algorithm 2.8.2 forB-smooth

elements where B = 20 and A = 20000.

We find α = 45 + 5τ of norm 16473 = 3 · 172 · 19. The ideal (α) factors as b1b
2
2b3

where b1 = (3, τ), b2 = (17, 7 + τ), and a3 = (19, 16 + τ).

The action of a on the pair (L, f) yields the sequence of curves

L
b1→ L′

b2→ L′
b2→ L

b3→ L
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with embeddings given by

([−5,−13, 23, 0], Id), ([−17, 35,−1, 0], γ), ([11,−1,−21, 24], γ), ([−5, 25,−15, 12], Id)

where γ : L→ L′ is the isomorphism given by (4x+ 1, 3y). We also obtain the sequence

of kernel polynomials

P1 X + 2a+ 2

P2 X8 + (4a+ 4)X7 + (3a+ 1)X6 + (2a+ 1)X5 + (3a+ 3)X4+

(a+ 2)X3 + (2a+ 4)X2 + (3a+ 1)X + 3a+ 3

P3 X8 + (4a+ 2)X7 + 4X6 + (4a+ 2)X5 + 2aX4 + 3aX3+

(3a+ 4)X2 + 2aX + 4a+ 4

P4 X9 + 2X8 + (4a+ 4)X7 + (a+ 4)X6 + (2a+ 2)X5 + 3aX4+

2X3 + 3X2 + 3X + 1

and the sequence of two-torsion

[(3a+ 4, 3a+ 2), (a+ 3, 4a+ 4), (a+ 3, 4a+ 2), (4a+ 1, 4a)].

Let F = Qp(ã) where ã is the lift of the root a of X2 + 2 = 0. We choose

λ0 = ã + 8 as a lift of λ(L) = a + 3. As the value of τ , we use the lift of 2a ∈ Fp2

to a root of T (X) to 2k+1 accuracy. Lifting the kernel polynomials and two-torsion data,

we compute the canonical lift of (L, f) to 16 p-adic digits precision and obtain λ̃ =

−11866376559ã− 76293945312 +O(516).

We now compute the action of a1 = (3, τ+3) on λ̃ to obtain λ̃a1 = 13518257669ã−

76293945312 + O(516). The curve La1 in characteristic p is L′ and the embedding f a1 is

specified by ga1(τ) = [−17, 35,−1, 0] and the isomorphism γ : L→ L′. The S in Step 7
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of Algorithm 2.9.2 is thus

S = {(λ̃, f), (λ̃a1 , f a1)}.

We next compute the value ρα2 of each of the pairs of S to obtain 16 total pairs.

For each pair, the j-invariant of the first coordinate is a 16 p-adic digit approximation

to a distinct root of HD(X). Expanding the product and recognizing the coefficients as

integers between −516 and 516, we obtain the polynomial HD(X) of degree 16. The

largest coefficient of HD(X) is 187 digits.
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Chapter 3

A Weil pairing on the p-torsion of ordinary elliptic curves over K[ε]

3.1 Introduction

Let E be an elliptic curve over K, an algebraically closed field of characteristic

p > 0. For n relatively prime to p, the Weil pairing is a bilinear, non-degenerate map

en : E[n]× E[n] → µn(K) (3.1)

where E[n] ' Z/nZ × Z/nZ is the n-torsion subgroup of E and µn(K) is the group

of nth roots of unity of K [38]. The Weil pairing is a useful tool in both the theory and

application of elliptic curves.

In fact, the Weil pairing may be defined for any n, regardless of the characteristic of

K, via a group scheme interpretation, as we briefly mention now. Let S be any scheme.

LetE[n] denote the kernel of the multiplication-by-nmap on the schemeE. Let µn denote

the kernel of the multiplication-by-nmap on Gm, the group scheme of invertible elements.

As explained in [22, pp. 87-89], Cartier duality gives the following isomorphism of group

schemes over S:

E[n]
∼→ Hom(E[n], µn). (3.2)

Therefore, for any n ∈ N, and any scheme S, the Weil pairing exists as an isomorphism of

group schemes. Let S = Spec K, where K is a field of characteristic p. For n relatively

prime to p, this isomorphism is equivalent to the existence and non-degeneracy of the
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classical Weil pairing (3.1).

For n = p, however, if we extend the classical definition to the p-torsion of E, an

ordinary elliptic curve, the resulting map ep is degenerate. This is true for two reasons: K

contains no non-trivial pth roots of unity and E[p] ' Z/pZ. Each of these facts implies

that ep(P,Q) = 1 for all P,Q ∈ E[p](K). (Note that the second implies degeneracy since

the Weil pairing is bilinear and anti-symmetric).

As the utility of the Weil pairing hinges on its non-degeneracy, we would like to

have an explicitly defined non-degenerate Weil pairing onE[p]. The purpose of this paper

is to concretely develop such a pairing by extending the classical definition to the curve E

over the ring of dual numbers K[ε]. Through this deformation of K, we have substitutes

for the “missing” geometric points of both E[p] and µp and thus are able to define a non-

degenerate “Weil pairing” on p-torsion. In the process, we demonstrate that the discrete

logarithm attacks on p-torsion subgroups of [35] and [36] are essentially Weil-pairing-

based attacks, no different than the MOV attacks on n-torsion subgroups for (n, p) = 1.

(For more on the MOV attack, see [28]).

In section 3.2.1, we give an introduction to elliptic curves over the dual numbers. In

sections 3.2.2 and 3.2.3, we recall Miller’s algorithm for computing the Weil pairing and

Semaev’s algorithm for solving the discrete log problem (DLP) on p-subgroups of elliptic

curves. In sections 3.3 and 3.4, we define the “Weil pairing on p-torsion,” ep, over the

dual numbers, show its direct relation to Semaev’s algorithm, and prove that it satisfies

the basic properties of the classical Weil pairing. We also describe how ep can be used to

solve the DLP on p-torsion subgroups of an elliptic curve. In section 3.5, we give a simple

way to compute the pairing using the algorithm of Rück defined in [35]. In section 3.6,
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we describe how the map ep behaves with respect to isogenies of elliptic curves. In the

last section, we give another application of elliptic curves over the dual numbers, namely

a DLP attack on anomalous curves, analogous to that of Smart in [39].

3.2 Preliminaries

3.2.1 Elliptic Curves over the Dual Numbers

The ring of dual numbers of the ring R is R[x]/(x2), denoted R[ε] with ε2 = 0.

Considering elliptic curves over the dual numbers was proposed in [43], where Virat

introduced a cryptosystem based on elliptic curves over Fq[ε], the dual numbers of Fq.

Let K be a field of characteristic p 6= 0, 2, 3. Let E be the elliptic curve over K

given by the Weierstrass equation y2 = x3+Ax+B. Let Ã = A+A1ε and B̃ = B+B1ε,

for some A1, B1 ∈ K. We call the curve y2 = x3 + Ãx+ B̃ a lift of E to K[ε], and denote

it as Ẽ.

The set of points Ẽ(K̄[ε]) consists of two sets:

• Affine Points: P = (x0 + x1ε : y0 + y1ε : 1) such that

(x0, y0) ∈ E(K) and (2y0)y1 = (3x2
0 + A)x1 + A1x0 +B1.

• Points at Infinity: Ok = (kε : 1 : 0) for all k ∈ K.

Let Θ denote the set {Ok|k ∈ K} and let P∞ denote O0. The standard addition law for

elliptic curves may be extended to give an addition law on Ẽ(K̄[ε]) (see [45], p. 61). An
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easy calculation shows that

K
+ → Θ

k 7→ Ok

is an isomorphism. Thus, Ẽ(K̄[ε]) contains the p-torsion subgroup Θ, and there is an

exact sequence

0 → Θ → Ẽ(K̄[ε]) → E(K) → 0.

If Ã = A and B̃ = B, we call Ẽ the canonical lift of E, since the p-torsion points

E[p] remain p-torsion points in Ẽ. (Though not immediately obvious, this terminology

is consistent with the definition of the canonical lift Ẽ of an ordinary elliptic curve E to

Qp from Chapter 2. For more on this alternate characterization of the canonical lift, see

[8, Thm. 17.29].) For the remainder of the paper (except in Section 3.7), we will assume

we are in this situation. In this case, the sequence splits and every point of Ẽ may be

decomposed as a point of E(K) and a point of infinity. A straightforward calculation

using the addition laws gives the following lemma. (Note that 3x2
0 + A 6= 0 for points of

order 2, since the curve is non-singular.)

Lemma 3.2.1 Let P̃ ∈ Ẽ(K̄[ε]) with P̃ = (x0 + x1ε : y0 + y1ε : 1). Then there exists a

unique k ∈ K such that P̃ = P +Ok, with P = (x0 : y0 : 1) ∈ E(K). Furthermore

k =


− x1

2y0
if y0 6= 0

− y1
3x2

0+A
if y0 = 0.

Note that if y0 6= 0, the point (x1, y1) lies on the line through the origin with slope

3x2
0+A

2y0
, which is precisely the tangent space of the elliptic curve point (x0, y0). Thus points

of Ẽ(K̄[ε]) may be thought of as points of E(K) with extra “derivative” information. (In
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fact, the set of points of Ẽ(K̄[ε]) may be naturally identified with the tangent bundle of

the variety E.)

The canonical lift Ẽ has p-torsion Ẽ[p] = E[p] ⊕ Θ. Furthermore, µp(K̄[ε]) has

non-trivial pth roots of unity, in particular the subgroup {1 + aε : a ∈ K}. Thus we will

see that it is possible to define a non-degenerate “Weil pairing” on the p-torsion of Ẽ.

Before we proceed we recall Miller’s algorithm for computing the Weil pairing.

3.2.2 Miller’s algorithm for computing the Weil pairing

Let (n, p) = 1. Let P,Q ∈ E[n], and let DP , DQ be divisors with disjoint sup-

port which sum to P,Q respectively. Let fP , fQ be functions with divisors nDP , nDQ

respectively. The Weil pairing is defined as

en(P,Q) =
fQ(DP )

fP (DQ)
.

This definition is independent of the choices of divisors by Weil reciprocity. In [30],

Miller gives a way to compute the value fP (DQ). As this will be the foundation for the

definition of the “Weil pairing on p-torsion,” we recall the details here.

Let P,Q ∈ E[n]. Choose any two points T,R ∈ E(K) such that the divisorsDP =

(P +T )− (T ) and DQ = (Q+R)− (R) are disjoint. Let fP be the function with divisor

nDP . Note that this function is unique only up to a non-zero constant. Following [30],

in such situations, we choose the unique function with the value 1 at P∞, which we call

the normalized function. (Note that since we are calculating the ratio fP (Q+R)/fP (R),

such constants may in fact be disregarded.)
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For k ∈ N, let fk denote the (normalized) function with

div (fk) = k(P + T )− k(T )− (kP + T ) + (T ).

Note that div (f1) = 0, so f1 ≡ 1 . Also note that div (fP ) = div (fn) and div (fi+j) =

div (fifjhi,j) where

div (hi,j) = −((i+ j)P + T ) + (iP + T ) + (jP + T )− (T ).

Thus fP (Q) = fn(Q) can be calculated recursively by using an addition chain decompo-

sition for n.

An addition chain for a positive integer n is an increasing sequence of integers

S ⊂ {1, ..., n} such that for each k ∈ S with k > 1, there exist i, j ∈ S such that

i + j = k. Given an addition chain S, an addition chain decomposition C of n is a

sequence of steps of the form (k 7→ i, j) with i+ j = k and i, j, k ∈ S which decomposes

n into the sum of n ones: 1 + ...+ 1︸ ︷︷ ︸
n

. Note that any decomposition will consist of exactly

n− 1 steps.

Thus, since fk(Q) = fi(Q)fj(Q)hi,j(Q) and f1 ≡ 1, fn(Q) will be the prod-

uct of n − 1 contributions of the form hi,j(Q). For example, if n = 11 and S =

{1, 2, 4, 8, 10, 11}, then one possible decomposition is

f11 = f1f10h1,10 = f1f2f8h1,10h2,8 = ... = f 11
1 h1,10h2,8h4,4h

2
2,2h

5
1,1.

Given an addition chain decomposition C for n, we write
∏

C hi,j(Q) to denote the value

fn(Q). Note that there always exists a decomposition with O(log n) distinct hi,j .

Let `i,j denote the line through iP and jP , and let vi denote the vertical line through
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iP . Note that

div (`i,j) = (iP ) + (jP ) + (−(i+ j)P )− 3P∞ and div (vi) = (iP ) + (−iP )− 2P∞.

Let τ denote translation by −T . Then

hi,j =


`i,j
vi+j

◦ τ i+ j 6= n,

vi ◦ τ i+ j = n.

(3.3)

As is remarked in [18], this calculation of fP (Q) may be interpreted as exponentia-

tion in a generalized jacobian with modulus (Q + T )− (T ). The hi,j are simply cocycle

values. A good source for this viewpoint is [13].

3.2.3 Semaev’s algorithm for solving the DLP on anomalous elliptic curves

Let K = Fq be a finite field of characteristic p. In [36], Semaev proposed a polyno-

mial time algorithm for solving the DLP on elliptic curves over K which contain a point

of order p, using the following map:

λ : E[p] → K+

P 7→ f ′P
fP

(R)

P∞ 7→ 0

whereDP is any divisor of degree 0 which sums to P , fP is any function with div (fP ) =

pDP , and R ∈ E[p] with R 6= P∞. Here f ′P denotes d
dx
fP .

To see how this map is used to solve the DLP, consider P,Q ∈ E[p] with Q = nP .

Using the standard log p addition chain decomposition, we can compute λ(P ), λ(Q) in

time O(log p), and then solve nλ(P ) = λ(Q) for n ∈ K+ by Euclid’s algorithm.
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Proposition 3.2.2 (Semaev, [36]) The map λ is well-defined and non-zero for any R ∈

E[p] with R 6= P∞. Furthermore, λ is an injective homomorphism with respect to P and

is independent of the divisor DP .

This is proved explicitly in [36] and in fact, the proof holds for any field K of char-

acteristic p > 0 such that E[p] ⊂ E(K). The proposition also follows from considering

the map:

E[p] → Pic0K(E)[p] → Ωh
K(E) → Ldiv(dt) → K+

P
δ7→ DP

ρ7→ dfP

fP

ψ7→ dfP

dtfP

ϕ7→ dfP

dtfP
(R)

where Pic0K(E) is the group of divisor classes of E of degree 0, Ωh
K(E) are the holomor-

phic differentials of the one-dimensionalK(C)-vector space of differentials,Ldiv(dt) is the

one-dimensional K-vector space of functions g with div (gdt) ≥ 0 and t is a uniformizer

for the point R.

This is an injective homomorphism since ρ is an injective homomorphism (see

[37]), δ and ψ are isomorphisms, and ϕ is injective by Riemann-Roch. This is noted

in [35], where the attack on the DLP is extended to the p-subgroup of the divisor class

group of a curve of arbitrary genus.

The computation method proposed in [36] is a variation on Miller’s algorithm. Let

T be a point of order two and letR ∈ E[p]. Let fP be the function with div (fP ) = DP =

(P +T )− (T ). As in section 3.2.2, the value of the function λ may be computed by using

an addition chain decomposition and summing contributions of the form
h′i,j
hi,j

(R), where

hi,j is as in Section 3.2.2. That is, f ′P
fP

(R) =
∑

C

h′i,j
hi,j

(R). (We remark that in [36], the

function vivj

l−i,−j
is used, which is equivalent up to constant since it has the same divisor.)
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To compute h′ = d
dx
h, we make use of the invariant differential property dx

y
◦τ = dx

y
.

Let g be a function expanded in a power series around x. Then g ◦ τ can be expanded in

a series around x ◦ τ with the same coefficients, and so

d(g ◦ τ)
dx

=
d(g ◦ τ)
d(x ◦ τ)

d(x ◦ τ)
dx

= (
dg

dx
◦ τ)y ◦ τ

y
.

Therefore, for h = `
v
◦ τ , h′(R) = y(R+T )

y(R)
( `
v
)′(R+ T ). (Since T is order 2, translation by

T and −T are the same.)

Remark 3.2.1

The choice of the divisor DP = (P + T ) − (T ) avoids any possible zeros or undefined

values when evaluating the lines through multiples of P at R, which is itself a multiple

of P . Note that when p > 7, for a fixed point P , it is always possible to choose an

R ∈ E[p] such that the lines in a log p addition chain decomposition will not have R as

a zero. However, since the homomorphism λ is not independent of R, in order to have

it well-defined it is necessary to choose an evaluation point that works for all P , which

explains Semaev’s use of a translation point.

As is the case for Miller’s algorithm to compute the Weil pairing, this calculation

may be interpreted as exponentiation in a generalized jacobian, after a slight modification.

Note that if we use the divisorDP = (P )−(P∞), the hi,j are simply ratios of lines through

multiples of P , and thus evaluating at R+ T /∈ E[p] gives well-defined, non-zero values.

In this case, we may calculate the value f ′P
fP

(R+ T ) using exponentiation in a generalized

jacobian with modulus 2(R + T ) for R ∈ E[p], with T of order 2. The value will differ

from the value λ(R) by the constant factor y(R + T )/y(R).
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3.3 A “Weil pairing” on the p-torsion of Ẽ(K̄[ε])

Let Ẽ denote the canonical lift of E : y2 = x3 + Ax + B to K[ε]. We define the

pairing

ep : Ẽ[p]× Ẽ[p] → µp(K̄[ε])

by first defining a bilinear map e on E[p]×Θ, and then extending it to Ẽ[p] in such a way

that the necessary properties hold.

Let P ∈ E[p] and let T be a point of order two. Consider the divisor DP =

(P + T ) − (T ). Let fP be the function on E with divisor pDP , unique up to a non-zero

constant. We use the notation of section 3.2.2. Recall that to compute fP evaluated at a

point Q, we choose an addition chain decomposition for p and compute the product of

cocycle contributions of the form hi,j(P ), where hi,j are ratios of lines translated by T .

Any function in K(E) is a well-defined function on the affine points of Ẽ(K̄[ε]),

provided that the denominator is invertible. We will see that this is true for hi,j on certain

points of Ẽ, thereby making the computation of
∏

C hi,j legitimate.

Definition 3.3.1 Fix R ∈ E[p] such that R 6= P∞. Let C be an addition chain decompo-

sition for p. Define the map e : E[p]×Θ → µp(K̄[ε]) by

e(P,Ok) =


∏

C
hi,j(R)

hi,j(Ok+R)
if P,Ok 6= P∞

1 if P = P∞ or Ok = P∞

The proof of the following theorem is given in the next section.

Theorem 3.3.2 The map e is well-defined and bilinear. It is independent of divisor DP

summing to P , evaluation point R ∈ E[p] and the addition chain decomposition C of p.
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Furthermore, for any R ∈ E(K),

e(P,Ok) = 1 + 2
(
y
f ′P
fP

)
(R)kε,

where fP is the normalized function with divisor pDP .

We now may define the Weil pairing on p-torsion. Extend the map e to

ep : Ẽ[p]× Ẽ[p] → µp(K̄[ε])

such that

• ep(P,Ok) = e(P,Ok) for all P ∈ E[p],

• ep(P,Q) = 1, for all P,Q ∈ E[p],

• ep(Ok,Oj) = 1, for all j, k ∈ K,

• ep is bilinear,

• ep is anti-symmetric: e(P,Q) = e(Q,P )−1.

Theorem 3.3.3 The map ep is non-degenerate. That is, if ep(P,Q) = 1 for all P ∈ Ẽ[p],

then Q = P∞, and if ep(P,Q) = 1 for all Q ∈ Ẽ[p], then P = P∞.

The proof of this theorem is given in the next section.

Remark 3.3.1

Note that we are defining ep(P,Ok) to be the result of Miller’s algorithm to compute

fP (R)

fP (Ok +R)
.
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This definition can thus be viewed as the analog of the Weil pairing definition for n prime

to p:

en(P,Q) =
fQ(P + T )

fQ(T )

fP (R)

fP (Q+R)
.

Recall that Miller’s algorithm computes the value of fQ as the product of ratios of lines

through multiples of the point Q. For Q = Ok, this involves products of lines through

points at infinity (which would then be evaluated at affine points of E(K)). Assuming

such a line has the form ` = 0 with `(x, y, z) = ax + by + cz and a, b, c ∈ K̄[ε], there

is not a unique choice for such a line. For example, any line of the form aεx + cz, for

a ∈ K, c ∈ K̄[ε], passes through all points in Θ. We make the choice of the line ` = cz.

When evaluated at affine points, this becomes the constant function c which normalized

is just 1. The value of fQ(P+R)

fQ(R)
for Q = Ok may therefore naturally be considered to be 1.

We now show how the Weil pairing ep can be used to solve the DLP on p-subgroups

of elliptic curves over Fq. Given P,Q ∈ E[p] with Q = nP , calculate ep(P,O1) = 1+aε

and ep(Q,O1) = 1 + bε. Since ep is bilinear, ep(Q,O1) = ep(P,O1)
n = (1 + aε)n =

1 + naε. Thus it suffices to solve the equation b = na in F+
q for n ∈ Z/pZ by computing

the multiplicative inverse of a. By Theorem 3.3.2, forR ∈ E[p], this process is essentially

Semaev’s algorithm to solve the DLP in p-subgroups. Therefore, we see that Semaev’s

algorithm may be interpreted as a Weil-pairing based attack.
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3.4 Proof of properties of the pairing

To show that e is well-defined and bilinear, we relate its calculation to the map λ

from section 3.2.3. For this, we need the following lemma.

Lemma 3.4.1 Let `i,j denote the line through iP and jP , and let vi denote the vertical

line through iP . Let τ denote translation by −T and let

hi,j =


`i,j
vi+j

◦ τ i+ j 6= p,

vi ◦ τ i+ j = p.

Let R ∈ E[p] with R 6= P∞. Then

hi,j(R)

hi,j(Ok +R)
= 1 + 2y(R)

h′i,j
hi,j

(R)kε.

Proof: We first show that

hi,j(Ok +R) = hi,j(R)− 2y(R)h′i,j(R)ε.

We can think of this as analogous to the calculus approximation of f(x0 + ε) by the value

f(x0) + f ′(x0)ε.

Let S = R + T = (x0, y0). Assume i + j 6= p. Fix i, j and let hi,j = h = `
v
◦ τ .

Since we are evaluating hi,j at affine points, we have ` = y −mx − b and v = x− c for

some m, b, c ∈ K.

Since v is a line through a multiple of P , and S /∈ E[p], we see that x0 − c 6= 0.

Thus h(R) = `
v
(S) is well-defined. Furthermore, since

Ok + S = (x0 − 2y0kε : y0 − (3x2
0 + A)kε : 1),
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the denominator of h(Ok+R) is invertible, and thus the value h(Ok+R) is well-defined.

Then

h(Ok +R) = `
v
(Ok + S)

=
[
(y0 −mx0 − b) + (2y0m− (3x2

0 + A))kε
]/[

(x0 − c)− 2y0kε
]

=
[
(y0 −mx0 − b) + (2y0m− (3x2

0 + A))kε
][

(x0 − c)−1 + (x0 − c)−22y0kε
]

= h(R) +
[
(2y0m− (3x2

0 + A))(x0 − c)−1 + h(R)(x0 − c)−12y0

]
kε.

Recall from section 3.2.3 that h′(R) = y(S)
y(R)

( `
v
)′(S). Since v′ = 1 and l′(S) =

3x2
0+A

2y0
−m,

we have

h′(R) =
1

2y(R)

(
(3x2

0 + A− 2y0m)(x0 − c)−1 − 2y0h(R)(x0 − c)−1
)

and therefore h(Ok +R) = h(R)− 2y(R)h′(R)kε.

For i+ j = p, we have h = v ◦ τ and h′(R) = y(S)
y(R)

by the equation in Section 3.2.3.

Then

h(Ok +R) = v ◦ τ(Ok +R) = v(Ok +S) = (x0− c)− 2y0kε = h(R)− 2y(R)h′(R)kε.

It remains to show that h(R) 6= 0. The fact that R ∈ E[p] implies that S is not a

zero of the line described by ` or v. Therefore, in both cases, h(R) 6= 0, and thus

h(Ok+R)
h(R)

= 1− 2y(R)h
′(R)
h(R)

kε. The lemma then follows directly. 2

Now we can prove Theorem 3.3.2 and 3.3.3.

Proof (Thm. 3.3.2): Fix P,Ok and an addition chain decomposition C for p. Note that

by Lemma 3.4.1, e(P,Ok) is well-defined. Let fP be the function with divisor pDP for
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DP = (P + T )− (T ). Let R ∈ E[p] with R 6= P∞. Then f ′P (R)

fP (R)
=

∑
C

h′i,j
hi,j

(R). We have

e(P,Ok) =
∏

C
hi,j(R)

hi,j(Ok+R)

=
∏

C

(
1 + 2y(R)

h′i,j
hi,j

(R)kε
)

= 1 + 2y(R)
( ∑

C

h′i,j
hi,j

(R)
)
kε

= 1 + 2y(R)
f ′P (R)

fP (R)
kε.

Note that f ′P (R)

fP (R)
= λ(R), where λ is the homomorphism with respect to P from section

3.2.3. Thus since e(P,Ok) = 1 + 2(y
f ′P
fP

)(R)kε, the map e is linear in the first coordinate.

Furthermore, since Ok + Oj = Ok+j , we have that e is linear in the second coordinate.

Therefore, e is bilinear. Since f ′P (R)

fP (R)
is independent of the divisor for P , as shown in [36],

the value of e is independent of choice of the divisor for P . Similarly, since f ′P (R)

fP (R)
is

independent of addition chain decomposition, so is the value of e.

As shown in [36], div (
f ′P
fP

) = div ( 1
y
), thus y f

′
P

fP
is a constant function on E(K).

Therefore since e(P,Ok) = 1 + 2(y
f ′P
fP

)(R)kε for R ∈ E[p], we have for any R ∈ E(K)

that

e(P,Ok) = 1 + 2
(
y
f ′P
fP

)
(R)kε.

Thus, in computing e, we may use any evaluation point R, including P∞. 2

Proof (Thm. 3.3.3): Let P ∈ Ẽ(K̄[ε])[p]. We show that if P 6= P∞, then there exists

Q ∈ Ẽ(K̄[ε])[p] such that ep(P,Q) 6= 1. This shows non-degeneracy in the first coordi-

nate, and by the property of anti-symmetry, non-degeneracy in the second coordinate will

follow.
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By Lemma 3.2.1, P may be written as P0 + Ok for P0 ∈ E(K) and k ∈ K. If

P0 6= P∞, let Q = O1. Then ep(P,Q) = ep(P0,O1)ep(Ok,O1) = ep(P0,O1). Let

R ∈ E[p] with R 6= P∞. By Proposition 3.2.2, f ′P
fP

(R) is non-zero. Therefore, since

ep(P0,O1) = 1 + 2(y
f ′P
fP

)(R)ε and R /∈ E[2], we have that ep(P,Q) 6= 1.

If P0 = P∞, then k 6= 0, since P 6= P∞. Let Q,R ∈ E[p] with Q,R 6= P∞. Then

ep(P,Q) = ep(Ok, Q) = 1 − 2(y
f ′Q
fQ

)(R)kε. Since k 6= 0 and R /∈ E[2], we have that

ep(P,Q) 6= 1, as desired. 2

3.5 Rück’s algorithm for solving the DLP on p-torsion

Recall the homomorphism from Section 3.2.3:

E[p] → Pic0K(E)[p] → Ωh
K(E) → Ldiv(dt) → K+

P
δ7→ DP

ρ7→ dfP

fP

ψ7→ dfP

dtfP

ϕ7→ dfP

dtfP
(R)

Choosing the divisor DP = (P ) − (P∞) and evaluation point R = P∞, we may

compute the value of dfP /dt
fP

(R) by simply summing the slopes of lines through multiples

of P for any addition chain decomposition. This fact is noted in [24], where it is referred

to as the “Rück algorithm,” and a slight variation is found in [31]. In [35], Rück refers

to the result of this algorithm as “the additive version of the Tate pairing.” We make

this remark explicit by relating the algorithm to the pairing of E[p] and Θ which we’ve

defined.

Proposition 3.5.1 (Rück, [35]) Let fP be any function with divisor p(P )−p(P∞) and let

t = −x
y
. Letmi,j denote the slope of the line through iP and jP , and let C be an addition
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chain decomposition for p. Then

dfP/dt

fP
(P∞) = −

∑
C

mi,j.

Proof: Consider dfP /dt
fP

(P∞). Since DP = (P )− (P∞), this reduces to computing dhi,j/dt

hi,j

where hi,j is defined as in section 3.2.3. In particular, we show that

dhi,j/dt

hi,j
=


−1

t
−mi,j +O(t) if i+ j 6= p,

−2
t
+O(t) if i+ j = p

(3.4)

For i+ j 6= p,

hi,j =
`

v
=
y −mx− b

x− c
=

1

t
−m+O(t).

Thus

dh/dt

h
= −1

t
−m+O(t).

For i+ j = p, hi,j = v. Expanding v around t, we get v = x− c = 1
t2
− c+O(t). Thus

dv/dt

v
= −2

t
+O(t),

and (3.4) is proved.

Note that using an addition chain decomposition for p to calculate fP will result

in (p − 1) terms of the form hi,j with exactly one such that i + j = p. Thus the pole

contributions of the hi,j total to zero in characteristic p and

dfP/dt

fP
= −p

t
−

∑
C

mi,j +O(t) = −
∑
C

mi,j +O(t)

Evaluating at P∞ yields the result. 2
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Corollary 3.5.2 Let mi,j be the slope of the line through iP and jP , and let C be an

addition chain decomposition for p. Then

e(P,Ok) = 1 +
[ ∑

C

mi,j

]
kε.

Proof: By Theorem 3.3.2, the map e is independent of divisor and evaluation point. Thus

we may choose the divisor DP = (P )− (P∞) and evaluation point R = P∞. This means

we must calculate

e(P,Ok) = 1 + 2
(
y
f ′P
fP

)
(P∞)kε.

Since we evaluate at P∞, we want to expand functions around the uniformizer for

P∞, namely t = −x
y
. Using the fact that dt

dx
= x3+Ax+2B

2y3
, we are looking to compute

dfP/dt

fP

x3 + Ax+ 2B

y2
(P∞).

Recall that x and y have poles at P∞ of order 2 and 3, respectively. In particular, x =

1
t2

+ O(t) and y = − 1
t3

+ O(t) ([38], p. 113). Thus x3+Ax+2B
y2

= −1 + O(t), and hence

this contributes a factor of −1 when we evaluate at P∞.

Now, by Proposition 3.5.1, dfP /dt
fP

(P∞) = −
∑

Cmi,j , and the result follows. 2

3.6 The map ep and isogenies of Ẽ(K[ε])

Let φ : E1 → E2 be an isogeny between curves given by the Weierstrass form

y2 = x3 + Aix + Bi. Let Ẽi denote the canonical lift of Ei, as defined in 3.2.1. In this

section, we show how to extend φ to a homomorphism φ̃ : Ẽ1 → Ẽ2 in such a way that

the following proposition holds:
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Proposition 3.6.1 For any isogeny φ : E1 → E2,

ep(φ̃(P ), φ̃(Q)) = ep(P,Q)deg φ.

For ease of notation, we assume K is algebraically closed. As Ẽi ' Ei ⊕ Θi, it

suffices to define φ : Θ1 → Θ2 and then extend it linearly to a map φ̃ : Ẽ1 → Ẽ2. Let

xi, yi denote the coordinate functions of Ei, and let ti = −xi

yi
be a uniformizer at P (i)

∞ , the

point at infinity of Ei. Let m ∈ K be such that t2 ◦φ = mt1 +O(t21). (To obtain the value

m, expand x1 and y1 around t1 and use the fact that x2 and y2 are rational functions of x1

and y1 to obtain t2 ◦ φ as a function of t1.)

Definition 3.6.2 Given φ : E1 → E2, define φ : Θ1 → Θ2 by φ(Ok) = Omk.

First note that φ : Θ1 → Θ2 is a homomorphism with respect to this definition.

Furthermore, it is compatible with composition of isogenies. That is, if φ : E1 → E2 and

ψ : E2 → E3, are isogenies, then (ψ◦φ)(Ok) = ψ(φ(Ok)). This follows from the fact that

if t2 ◦φ = m1t1 +O(t21) and t3 ◦ψ = m2t2 +O(t22), then t3 ◦(ψ◦φ) = (m1m2)t1 +O(t21).

The motivation for this definition is as follows. If φ is inseparable, then φ = φs◦πr,

where φs is separable and the degree of inseparability of φ is pr. The map π : (x : y :

z) 7→ (xp : yp : zp) is well-defined on the points of Ẽ(K[ε]), and clearly (kε : 1 : 0)
π7→

(0 : 1 : 0). Thus we should define φ(Ok) = P
(2)
∞ . (Note that this agrees with the idea

that Θ is acting as the replacement for the “missing” geometric points of p-torsion, the

“kernel of Frobenius.” ) But if φ is inseparable, m = 0, since the order of t2 ◦ φ at P (1)
∞

is equal to the degree of inseparability ([38, pp. 28, 76]). Thus is makes sense to define

φ(Ok) = Omk.
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Now consider φ separable. Then t2◦φ is a uniformizer for P (1)
∞ , som 6= 0. Suppose

we want φ(Ok) = Oj , for some j ∈ K. Since t2 ◦ φ(Ok) = t2((jε : 1 : 0)) = −jε and

(mt1 +O(t21))(Ok) = −mkε, it makes sense to define j = mk.

Next we extend the isogeny φ : E1 → E2 to Ẽ(K[ε]). By Lemma 3.2.1, any

point of Ẽ1(K[ε]) decomposes uniquely as a point of E1(K) and Θ. Furthermore, for any

k ∈ K and P ∈ E1(K), φ(Ok) and φ(P ) are both points of E2(K[ε]), hence their sum is

as well. Therefore, the following definition extends φ in a well-defined manner to all of

E1(K[ε]):

Definition 3.6.3 Let P̃ ∈ Ẽ1(K[ε]) with P̃ = P +Ok. Define

φ̃(P̃ ) = φ(P ) + φ(Ok). (3.5)

Proposition 3.6.4 Let P,Q ∈ Ẽ1(K[ε]). Then

φ̃(P ) + φ̃(Q) = φ̃(P +Q).

The proposition follows immediately from Definition (3.6.3) and from the fact that

φ is a homomorphism on E1(K[ε]) and Θ.

Lemma 3.6.5 Let φ : E1 → E2 be an isogeny with t2 ◦ φ = mt1 + O(t21) for m ∈ K.

Then

e(φ(P ),Omk) = e(P,Ok)
deg φ.

Proof: If φ is inseparable, then the degree of inseparability is q = pr for some r > 0 and

thus p divides deg φ. Furthermore, m = 0 since the order of t2 ◦ φ at P (1)
∞ is the degree of

inseparability. So both e(P,Ok)
deg φ and e(φ(P ),Ok)

m equal 1, and the result holds.
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Now assume φ is separable, which implies that m 6= 0. By the proof of Proposition

3.5.2, it suffices to show that

m
dfP2/dt2
fP2

(P (2)
∞ ) = (deg φ)

dfP1/dt1
fP1

(P (1)
∞ ).

Let kerφ = {R1, ...Rs}. Since div (fP2) = p(P2) − p(P∞) and φ is separable,

div (fP2 ◦ φ) =
∑s

i=1 p(P1 + Ri) − p(Ri). Let gi =
l−P1,−Ri

vP1
vRi

. Then div (fP2 ◦ φ) =∑s
i=1 p[(P1)− (P∞) + div (gi)] =

∑s
i=1 div (fP1g

p
i ). Thus, up to a constant, fP2 ◦ φ =

fdeg φ
P1

(
∏s

i=1 gi)
p. Since the characteristic of K is p,

d(fP2 ◦ φ) = (deg φ)fdeg φ−1
P1

(dfP1)(
s∏
i=1

gi)
p.

Thus

d(fP2 ◦ φ)

fP2 ◦ φ
= (deg φ)

dfP1

fP1

. (3.6)

Note that for any function g expanded around t, dg
dt
◦ φ = d(g◦φ)

d(t◦φ)
. Using this and

(3.6), we have

m
dfP2

/dt2
fP2

(P
(2)
∞ ) = m

(
dfP2

/dt2
fP2

◦ φ
)
(P

(1)
∞ )

= m
d(fP2

◦φ)/d(t2◦φ)

fP2
◦φ (P

(1)
∞ )

= m(deg φ)
dfP1

/d(t2◦φ)

fP1
(P

(1)
∞ ).

From that dt1
d(t2◦φ)

= m−1 +O(t1), we have

m
dfP2

/dt2
fP2

(P
(2)
∞ ) = (deg φ)

dfP1
/dt1

fP1
(P

(1)
∞ ),

and the lemma is proved. 2
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The proof of Proposition 3.6.1 is now immediate. From Lemma 3.6.5 and Definition

3.6.3, we have

ep(φ̃(P ), φ̃(Ok)) = e(φ(P ),Omk) = ep(P,Ok)
deg φ,

for P ∈ E1[p] and Ok ∈ Θ. Thus, since ep is bilinear and φ̃ is a homomorphism, the

proposition holds.

3.7 Another application of elliptic curves over the dual numbers

We have seen how the extension of the Weil pairing to p-torsion over the dual num-

bers directly leads to the previously defined maps of [35] and [36]. Though we have not

gained any “new” information, we have shown that discrete logarithm attacks on p-torsion

subgroups of [35] and [36] may be interpreted as Weil-pairing-based attacks, exactly the

same as the MOV attack on prime-to-p torsion subgroups. In this section, we give an-

other example of how looking at elliptic curves over the dual numbers may be a fruitful

approach.

The DLP attack of Smart [39] on anomalous elliptic curves involves working in

Ẽ(Z/p2Z) where Ẽ is a non-canonical lift of E (meaning p-torsion points of E are no

longer p-torsion when lifted to Ẽ). The attack involves lifting points P,Q ∈ E[p] with

Q = nP to Ẽ(Z/p2Z), multiplying the points by p, and applying the map (x, y) 7→ x
y
.

In this way, solving for n such that nP = Q reduces to solving an instance of the DLP

in F+
p . The fact that this map is a homomorphism may be shown via the p-adic elliptic

logarithm (see [39], or [45], p. 190).

If we consider Ẽ(Fp[ε]) instead, the attack works analogously, and the reasoning
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behind it is elementary. (In fact, the attack works for Ẽ(K[ε]), where K is any field

of characteristic p 6= 0, 2, 3.) Lift P,Q to P̃ , Q̃ ∈ Ẽ(Fp[ε]). The points P̃ , Q̃ may no

longer be dependent. However, since nP = Q ∈ E(Fp), there exists R ∈ Θ such that

nP̃ − Q̃ = R. Since P,Q are points of p-torsion, pP̃ , pQ̃ ∈ Θ. Thus we have the

following equation in Θ

p(nP̃ )− pQ̃ = pR = P∞. (3.7)

Note that pP̃ , pQ̃ = P∞ if and only if P̃ and Q̃ are p-torsion points in Ẽ. Thus if this is

not the case, we can translate (3.7) to an instance of the DLP in F+
p via the homomorphism

(kε : 1 : 0) 7→ k and then solve for n.

This version is more efficient, as computations in Fp[ε] are more straightforward

than in Z/p2Z. It may present another advantage as well, related to the fact that the DLP

attack requires that the lift of the curve over Fp be non-canonical.

Let Ẽ be any lift of the curve E : y2 = x3 +Ax+B, with j-invariant j ∈ Fp. Note

that D = 4A3 + 27B2 6= 0 since E is non-singular. Define j(Ẽ) as the value 4Ã3

4Ã3+27B̃2 .

Since D 6= 0, the denominator is invertible, and hence j(Ẽ) ∈ Fp[ε]. Let j̃ denote the

value j(Ẽ), and note that j̃ ≡ j mod ε. The following proposition shows that j̃ ∈ Fp if

and only if the elliptic curve Ẽ can be transformed to the “canonical lift” (as defined in

Section 3.2.1) by an invertible change of coordinates.

Proposition 3.7.1 Let E be given by y2 = x3 +Ax+B. Let Ẽ be a lift of E to Fp[ε] with

Ã = A + A1ε, B̃ = B + B1ε, for A1, B1 ∈ Fp. Then j̃ ∈ Fp if and only if there exists

µ = 1 + kt with k ∈ Fp such that µ4A = Ã and µ6B = B̃. In this case, there exists a

change of coordinates x 7→ µ2x, y 7→ µ3y taking E to Ẽ, where E is viewed as an elliptic
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curve over Fp[ε].

Proof: Assume there exists µ = 1 + kt, k ∈ Fp with µ4A = Ã and µ6B = B̃. Then

j̃ = 4Ã3

4Ã3+27B̃2 = j.

For the other implication, assume j̃ ∈ Fp. Then j̃ = j and a calculation with the

ε-components yields

12A2A1D = 4A3(12A2A1 + 56BB1). (3.8)

To find µ = 1+kt such that µ4A = Ã and µ6B = B̃, we solve 4kA = A1 and 6kB = B1

simultaneously for k. If either A or B is zero this is no problem. If A,B 6= 0, choose

k ∈ Fp such that 4kA = A1. Then (3.8) becomes

12A2(4kA)D = 4A3(12A2(4kA) + 56BB1)

which simplifies to 6k(D − 4A3) = 27BB1. This implies that B1 = 6kB, as desired. 2

Thus if j̃ ∈ Fp, the p-torsion of E lifts to p-torsion of Ẽ, and the DLP attack over

the dual numbers fails. Calculations suggest that lifts with j̃ ∈ Fp are the only lifts of

E for which p-torsion lifts to p-torsion. Presuming this, it is easy to avoid a lift to Fp[ε]

for which P̃ and Q̃ are p-torsion simply by choosing a lift with j-invariant j̃ /∈ Fp. This

differs from the case of lifting to Z/p2Z, since (to the author’s knowledge) there is no

analogously simple way to determine from the j-invariant j̃ ∈ Z/p2Z whether or not the

lift is canonical.
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Appendix A

Auxiliary algorithms for computing HD(X)

In this appendix, we give the details of the auxiliary algorithms used in the main

algorithms of Chapter 2.

Let O be an order of discriminant D < −4 and let p be a prime inert with respect

to D. We fix a maximal order R of Ap,∞ and a set of left R-ideal class representatives

{Ji}. As discussed in Section 2.3.1, this determines the set EmbD(Ap,∞) of optimal

embeddings of O into one of the maximal orders {Rr(Ji)}. The following algorithm,

introduced in 2.3.5, computes the action of Cl(O) on the set EmbD(Ap,∞). We write

O = Z[τ ] and fix a Z-basis {ri} for R. All computations in Ap,∞ take place with respect

to this basis and the right orders of Jm and Jk are not explicitly computed.

Algorithm 2.3.1

INPUT:

• A basis {ri} for R

• An optimal embedding g given by g(τ) = y ∈ Rr(Jk) where y = [y1, ..., y4] is in

terms of {ri}

• An integral ideal a ∈ Cl(O) of norm a with a = (a, c+ dτ)

OUTPUT:
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• The value ga(τ) = w ∈ Ap,∞, with w = [w1, ..., w4] given in terms of {ri}

• The left R-ideal class representative Jm such that ga is optimal with respect to

Rr(Jm)

1. Compute the left ideal J of R equal to Jkg(a).

2. Compute a Minkowski-reduced basis {bi} for J and the set V = {vs} of elements

of smallest norm, n(J)

3. Starting with m = 1, do the following sequence of steps for the left-ideal Jm of R:

(a) Compute a Minkowski-reduced basis {bm,i} of Jm. Check if n(Jm)n(bi) =

n(bm,i)n(Jk)a for each i. If so, let s = 1 and go to the Step 3b. If not, let

m = m+ 1 and repeat Step 3.

(b) If s > #V , let m = m+1 and repeat Step 3. Let xs = b−1
m,1vs. For i = 2, 3, 4,

let ui ∈ Ap,∞ be the element such that b−1
m,ibi = uixs. Else let s = s + 1 and

repeat Step 3b.

(c) Compute the matrix C = (ci,j) where bm,iui =
∑

j ci,jbm,i. If C is invertible

over Z, let x = xs and go to Step 4. Else, let s = s+ 1 and repeat Step 3b.

4. Return Jm and w = xyx−1, expressed in terms of the basis {ri} of R.

In Step 1, let {bk,i} denote the Z-basis for Jk. To compute a basis for J = Jkg(a)

we use the LLL-algorithm for linearly dependent lattice vectors ([7, Algorithm 2.6.8]) on

the set {abk,i, (c+ dy)bk,i}4
i=1.
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In Step 2, we use the Fincke-Pohst algorithm ([7, Algorithm 2.7.7]) to compute a

set V of elements of minimal norm. We let b1 be one of these vectors and compute {bi},

a Minkowski-reduced basis. This is a basis of J such that b1 is a shortest vector of the

lattice J , the element b2 is a next shortest vector such that {b1, b2} extends to a basis of J ,

and so forth. While there is not necessarily a unique Minkowski-reduced basis, the norms

of the elements n(bi) are unique.

In Step 3, if Jm is right-isomorphic to J , then there exists an x ∈ Ap,∞, unique up

to left multiplication by a unit of Rr(Jm), such that Jmx = J . This step is guaranteed

to return such an x if Jm and J are left isomorphic. The norm of x is n(J)/n(Jm) =

n(Jk)a/n(Jm) which we denote it N .

Compute a Minkowski-reduced basis {bm,i} for the ideal Jm. Since the norms of

any Minkowski-reduced basis of J are unique, if Jmx = J for some x of norm N , then

we must have n(bi) = n(bm,i)N for each i. Furthermore, the element bm,1x must appear

in the set V of shortest vectors of J . Therefore, there exists some index s such that

x = b−1
m,1vs. Thus we consider each xs = b−1

m,1vs as a candidate for x, and check whether

or not Jmxs = J . To do this, we attempt to find an invertible change of bases between

{bm,ixs} and {bi}.

For i = 2, 3, 4, we let ui be the element such that b−1
m,ibi = uixs. Check that bmi

ui

is in J for each i. If so, compute the matrix C = (ci,j) where bm,iui =
∑

j ci,jbm,j . If C

is invertible over Z, then this gives a change of basis from {bm,i} to {bm,iui}. Using the

fact that bi = bm,iuixs, we get that C gives a change of basis from {bm,ixs} to {bi}, and

thus Jmxs = J . On the other hand, if Jmxs = J , then {bi} and {bm,ixs} are both bases

for J and thus the matrix C will be invertible.
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We are guaranteed to find Jm such that Jm is right-isomorphic to J via x, since

we consider all ideal class representatives for the left R-ideals, and for each of these, we

consider all possible candidates for x.

The following algorithm is based on the algorithm in [6] which explicitly establishes the

one-to-one correspondence in Theorem 2.2.4 between the Gal(Fp2/Fp)-conjugacy classes

j of supersingular j-invariants and the maximal orders of Ap,∞, up to conjugacy.
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Algorithm A.0.1

INPUT: A set {Ri} of representatives of the conjugacy classes of maximal orders of the

quaternion algebra Ap,∞

OUTPUT: A set {ji} of Gal(Fp2/Fp)-conjugacy classes of supersingular j-invariants such

that for any curve Ei with j-invariant ji, the ring End(Ei) is isomorphic to Ri.

We summarize the algorithm found in [6]. The conjugacy classes of maximal orders

Ri are uniquely characterized by the set of elements of norm less thanB, where the bound

B is on the order of p/12, ([6, Prop. 3.3]):

SRi,B = {(t(α), n(α))| α ∈ Ri and n(α) ≤ B}.

Therefore, the Gal(Fp2/Fp)-conjugacy classes of supersingular j-invariants are distin-

guishable by the set of endomorphisms of End(Ei) of degree less than B, where Ei is

a curve with j-invariant ji. Thus, to establish the correspondence, for each order R, we

compute the set SRi,B and for each representative ji, we choose a curveEi with j-invariant

ji and compute the set

Sji,B = {(tr(α), deg(α))| α ∈ End(Ei) and deg(α) ≤ B}.

By comparing these sets, we obtain the correspondence. We can also use information

about the unit group of Ri to directly identify j = 0 and j = 1728 with their respective

orders. The run-time of the algorithm is O(p5/4), thus it is feasible for small primes p.

As the p-adic algorithm to compute HD(X) from Section 2.9 uses the smallest prime p

which is inert in K and not dividing D, this is not an issue.
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The following algorithm computes an embedding of the order O of K = Q(
√
D) of

discriminant D into R, a maximal order of Ap,∞. Furthermore, the embedding is optimal

with respect to R. Writing D = m24, for 4 a fundamental discriminant, we can express

O as Z[τ ] where τ has characteristic polynomial

T (X) =


X2 −X + 1−D

4
D ≡ 1 mod 4

X2 + D
4

D ≡ 0 mod 4.

The algorithm returns an element w of Ap,∞ with characteristic polynomial T (X) and an

order R containing w for which the embedding specified by g(τ) = w is optimal. The

algorithm is guaranteed to succeed as there exist h(O) embeddings ofO intoAp,∞ which

are optimal with respect to some maximal order of Ap,∞, by Proposition 2.3.2.

Algorithm A.0.2

INPUT:

• D < 0

• A prime p such that p is inert in K = Q(
√
D) and p - D

OUTPUT:

• A maximal order R of Ap,∞ into which O, the order of discriminant D, embeds

optimally

• g(τ) = [w1, ..., w4] expressed in terms of a basis {ri} for R
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1. Let

t, n =


0, D

4
D ≡ 0 mod 4

1, 1−D
4

D ≡ 1 mod 4.

2. Compute {Rk}tpk=1, a set of representatives of the conjugacy classes of maximal

orders of Ap,∞.

3. Starting with k = 1, repeat the following until a pair R,w is returned.

(a) Choose a basis {ri} of Rk with r4 = 1. Compute N(x1, x2, x3, x4), the norm

form for Ap,∞ in terms of {ri}. Compute Tr(x1, x2, x3, x4), the trace form in

terms of {ri}. LetQ(x1, x2, x3) equalN(x1, x2, x3, x4)− 1
4
Tr(x1, x2, x3, x4)

2.

Let Sk be an empty list.

(b) Find a triple (w1, w2, w3) ∈ Z3 such that Q(w1, w2, w3) + 1
4
t2 = n and

(w1, w2, w3) 6∈ Sk}. If none exist, repeat Step 3 with k = k + 1. Else, store

the 3-tuple the list Sk and go to Step 3.

(c) Compute the integer w4 ∈ Z such that Tr(w1, w2, w3, w4) = t. Let w =

[w1, w2, w3, w4]. This is an element with characteristic polynomial T (X).

(d) If D is a fundamental discriminant, return Rk and w. Else, for each pair

i, j ∈ {1, ..., 4}, compute gcd(wi, wj). If there exists a pair with gcd equal to

one, return Rk and w. Else, repeat Step 3b.

For Step 2, we use the characterization of maximal orders of Ap,∞ by ternary

quadratic forms to compute representatives of the conjugacy classes of maximal orders of

Ap,∞. (See Appendix B and [6] for more detail.)
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For Step 3b, we consider the order R as a 4-dimensional lattice with quadratic form

N(x1, ..., x4). As r4 = 1, the rational part of N(x1, ..., x4) is simply 1
4
Tr(x1, ..., x4)

2.

Thus Q(x1, x2, x3) + 1
4
t2 is a ternary quadratic form on the sublattice Rt of elements of

trace t. This form is positive definite as Ap,∞ is ramified at ∞. We use the Fincke-Pohst

algorithm [7, Alg. 2.7.7] to find all vectors of the lattice Rt of norm n. Once we find

a solution (w1, w2, w3) in Step 3b, we store in in S and keep note of where the search

stopped. Thus, if the solution w in Step 3d is not optimal, when we return to Step 3b,

we continue the search where we stopped. In this way, we eventually find all solutions to

Q(w1, w2, w3)+ t2 = n for a particular maximal order R. If we do this for every maximal

order, we are guaranteed to find an optimal embedding of O into some maximal order of

Ap,∞, by Eichler’s formula.

In Step 3c, we can find an integer w4 such that Tr(w1, ..., w4) = t as follows. By

choice of (w1, w2, w3), we have that N(w1, w3, w3, x4)− 1
4
Tr(w1, w2, w3, x4)

2 = n− 1
4
t2

for any x4 ∈ Z. Therefore Tr(w1, w2, w3, x4) and t have the same parity for any x4 ∈ Z.

Letting x4 = 0, we solve for w4 ∈ Z such that Tr(w1, w2, w3, 0)− t equals −2w4. Then

Tr(w1, ..., w4) = t.

In Step 3d, we check that the embedding given by τ 7→ [w1, w2, w3, w4] is opti-

mal with respect to R. This is automatically true if D is a fundamental discriminant.

Otherwise, it is true if only if there exist i, j ∈ {1, ..., 4} such that gcd(wi, wj) = 1 by

Proposition 2.3.1. We can give a rough estimate on the probability that the element w

gives an optimal embedding.

Let O′ be an order containing O. Every optimal embedding of O′ into a maximal

order of Ap,∞ corresponds to a non-optimal embedding of O into the same order. There
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are h(O′) such embeddings, each given by an element ofAp,∞ with characteristic polyno-

mial T (X). An element ofAp,∞ may lie in more than one maximal order, and thus it may

correspond to more than one embedding of O′ into a maximal order of Ap,∞. Therefore,

there are at most ∑
O⊂O′⊂Ok

h(O′)

elements of the union
⋃
k Rk which have characteristic polynomial T (X). Of these, at

most h(O) elements give optimal embeddings of O into some maximal order.

In Step 3, we enumerate all possible elements with characteristic polynomial T (X)

contained in one of the maximal orders Rk, with possible repetition if an element is con-

tained in more than one maximal order. If d is the number of divisors of the conductor m

of O in OK , then the probability we get an element corresponding to an optimal embed-

ding is roughly

h(O)∑
O⊂O′⊂Ok

h(O′)
>

h(O)

dh(O)
=

1

d
.

In particular, this says that if Rk contains O optimally, it is likely we will find an optimal

embedding after d repetitions of Steps b-d. This heuristic assumes that elements corre-

sponding to non-optimal and optimal embeddings are equally distributed. It also does not

take into account the fact that the type number tp and class number hp ofAp,∞ may not be

equal. That is, for a fixed maximal order R, and a set of left ideal classes Ji, a conjugacy

class of a maximal order may be represented twice on the list {Rr(Ji}), which is of size

hp. These orders correspond precisely to the supersingular curves defined over Fp2 but

not over Fp, and embeddings into these conjugate orders are counted separately in the

formula for h(O).
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We now give an algorithm to compute an explicit basis of endomorphisms for a

supersingular elliptic curve E, given a basis {ri} of a maximal order R of Ap,∞ with

End(E) ' R. For one way to determine such a basis {ri}, see the remark which follows

this algorithm. For an alternate construction of an explicit basis of endomorphisms, see

[33] or the algorithm in [23].

To specify a basis {e1} for the quaternion algebra End(E)⊗Q, it suffices to specify

the characteristic polynomials for each ei and the relations e1e2, e2e1, e1e3, e3e1, e2e3, e3e2.

Therefore we search for a set of endomorphisms of E satisfying the characteristic poly-

nomials of the ri and the relations r1r2, r2r1, r1r3, r3r1, r2r3, r3r2, expressed in terms of

the basis {1, r1, r2, r3}.

r2
1 = [n1, t1, 0, 0] r2

2 = [n2, 0, t2, 0] r2
3 = [n3, 0, 0, t3]

r1r2 = . . . r2r1 = . . . r2r3 = . . .

r3r2 = . . . r3r1 = . . . r1r3 = . . .

(A.1)

Any two distinct bases ofR satisfying the relations corresponds to an automorphism

of Ap,∞, which by the theorem of Skolem-Noether, implies that one is the conjugate

of the other by an element x. As xRx−1 = R, we have that the element x is in the

normalizer of R, Normalizer(R). Furthermore, conjugation of a basis by any non-trivial

x in Normalizer(R) gives another basis satisfying the same relations. Thus there are

#(Normalizer(R)/Q∗) distinct bases satisfying a given set of relations.

By [42, Ex. III.5.4], for R a maximal order of Ap,∞, the group Normalizer(R)/Q∗

is isomorphic to (Z/2Z)mR∗ with m = 0 or 1. Using the connection with supersingular

curves, we have that the only endomorphisms of E which are in Normalizer(End(E))
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are those whose kernels are stabilized by every α ∈ End(E) [26, Thm. 13.3.10]. Such

endomorphisms must either be in the center of End(E) or they must have no kernel.

Therefore the only elements of Normalizer(End(E))/Q∗ are either automorphisms or

powers of the Frobenius element. For a supersingular curve defined over Fp, the Frobenius

element πp is an endomorphism and does not commute with End(E) ([46]). Furthermore,

as E is supersingular, we have π2
p = [p]. Thus m = 1. For a supersingular curve E not

defined over Fp, we have m = 0, since the Frobenius endomorphism is π2
p = [p] which

commutes with all endomorphisms of E. Thus the number of distinct bases of End(E)

satisfying a given set of relations is

N =


2|#Aut(E)/{±1}| j(E) ∈ Fp

|#Aut(E)/{±1}| j(E) ∈ Fp2 .

Algorithm A.0.3

INPUT:

• The relations (A.1) for a basis {ri} of a maximal order R of Ap,∞, with r4 = Id

• An elliptic curve E with End(E) ' R

OUTPUT: A set B of all bases {ei} of endomorphisms of E satisfying the relations (A.1)

1. Work over an extension of Fp2 of degree at least 2. Let P be a random point not of

order 2.

2. Factor the n1-division polynomial of E. For each factor F (x), use Vélu’s formulas

to compute the j-invariant of the isogenous curveE ′. If j(E ′) = j(E), compute the

explicit isogeny ϕ : E → E ′ and an isomorphism γ : E ′ → E. For δ ∈ Aut(E),
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include δγϕ in the set B1. For each φ ∈ B1, test if φ satisfies the relation r2
1 =

t1r1 + n1 on P . If not, discard φ from B1. These are all the candidates for the

endomorphism e1.

3. Factor the n2-division polynomial of E. For each factor F (x), use Vélu’s formulas

to compute the j-invariant of the isogenous curve E ′. If j(E ′) = j(E), compute

the explicit isogeny ϕ : E → E ′ and an isomorphism γ : E ′ → E. For δ ∈

Aut(E), include δγϕ in the set B2. For each φ ∈ B2, test if φ satisfies the relation

r2
2 = t2r2 + n2 on P . If not, discard φ from B2. These are candidates for the

endomorphism e2.

4. For each φ1 ∈ B1, do the following:

(a) For each φ2 ∈ B2,

i. Let r1 = φ1 and r2 = φ2 and determine φ3 uniquely using one of the

relations in (A.1).

ii. Check that the remaining six relations are satisfied on the point P . If not,

discard φ2 and go back to step 4a. Else, store the tuple (φ1, φ2, φ3, 1) in

the set B of possible bases for End(E).

5. If #B = N , return B. Else choose another random point P , and for each tuple in

B, check that the nine relations are satisfied on the point P , discarding those that

fail. Then repeat Step 5.

Remark A.0.1

Given a curve E, we may use the algorithm of Cerviño [6] to find the ternary quadratic

152



form associated to the maximal order R such that End(E) ' R. That is, we use the ex-

plicit bijection between the classes of ternary quadratic forms of discriminant −p and

the conjugacy classes of maximal orders of Ap,∞ [4]. The coefficients of the form

f = a11x
2
1 + a22x

2
2 + a33x

2
3 + a12x1x2 + a13x1x3 + a23x2x3 determine a Z-basis for

a maximal order Rf of Ap,∞. Letting (i, j, k) equal (1, 2, 3), (2, 3, 1), and (3, 1, 2) (all

even permutations of 1, 2 and 3) we get a set of nine relations which uniquely determine

Rf :

r2
i = ajkri − ajjakk

rirj = akkaij − akkrk

rjri = a1kr1 + a2kr2 + a3kr3 − aikajk.

(A.2)

We represent the form f by the matrix of coefficients

Mf =

a11 a22 a33

a23 a13 a12


Tables for the classes of ternary quadratic forms of discriminant −p up to p = 1000 are

found in [4].
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Appendix B

Explicit Bases of End(E) for E/Fp2 with p = 3, 5, 7, 13 and 37

In this Appendix, we give explicit bases for the endomorphism rings of a repre-

sentative of the unique class of supersingular curves over Fp2 for p = 3, 5, 7 and 13. In

this case, we use MAGMA to compute a representative R of the maximal order of Ap,∞

and a Minkowski-reduced basis {ri}. We then use Algorithm A.0.3 from Appendix A to

compute the bases.

We also give the basis for the endomorphism ring of a curve E with j-invariant 8

over Fp2 where p = 37, from the example from Section 2.4. See the example or Algorithm

A.0.1 for how to determine which maximal order R of Ap,∞ is isomorphic to End(E).

Let E be a curve over Fp2 . Given a subgroupGN of E[N ] of orderN , we let E/GN

denote the unique curve (up to automorphism) such that the isogeny E → E/GN with

kernel GN is normalized (see 2.2.1). This curve can be computed using Vélu’s formulas

[41]. We record an endomorphism of E with kernel GN as a pair (P (X), (u, r)) where

P (X) is the polynomial whose roots are the x-coordinates of the points of GN and (u, r)

defines the isomorphism h : E/GN → E given by (x, y) → (u2x+ r, u3y).

B.1 p = 3

The quaternion algebra Ap,∞ for p = 3 can be given by
(−1,−3

Q

)
, where

i2 = −1, j2 = −3, ij = k, ij = −ji.
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The single conjugacy class of maximal orders ofAp,∞ has the representative R with basis

of elements of norm one

{r1, ..., r4} = {(1 + j)/2,−(i− k)/2,−i, 1}.

The basis relations are given by the following tuples of coefficients of 1, r1, r2, r3:

r2
1 = [−1, 0, 0, 0] r2

2 = [−1, 0, 1, 0] r2
3 = [−1, 0, 0, 0]

r1r2 = [0, 1, 0,−1] r2r1 = [0, 0, 0, 1] r2r3 = [0,−1, 0, 1]

r3r2 = [0, 0,−1, 0] r3r1 = [0, 1, 0, 0] r1r3 = [−1, 0, 1, 0].

The curve L : y2 = x(x− 1)(x + 1) has j(E) = 0. Let Fp2 = Fp[a] where a is a root of

x2 + 1 = 0. The basis for End(L) is given by {e1, .., e4} where

P (X) u r

e1 1 2a 2

e2 1 a 0

e2 = −e3 ◦ e1, and e4 = Id. The map i : ri 7→ ei is an isomorphism R→ End(L).

B.2 p = 5

The quaternion algebra Ap,∞ for p = 5 can be given by
(−2,−5

Q

)
, where

i2 = −2, j2 = −5, ij = k, ij = −ji.

The single conjugacy class of maximal orders ofAp,∞ has the representative R with basis

{r1, r2, r3, r4} = {1/2 + i/4− k/4, 1/2− 3i/4− k/4,−i/4− j/2− k/4, 1}.
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The basis relations are given by the following tuples of coefficients of 1, r1, r2, r3:

r2
1 = [−1, 1, 0, 0] r2

2 = [−2, 0, 1, 0] r2
3 = [−2, 0, 0, 0]

r1r2 = [−1, 1, 1,−1] r2r1 = [0, 0, 0, 1] r2r3 = [0,−2, 0, 1]

r3r2 = [−2, 2, 0, 0] r3r1 = [0, 0,−1, 1] r1r3 = [−1, 0, 1, 0].

Let Fp2 = Fp[a] where a is a root of x2 + 2 = 0. The curve L : y2 = x(x− 1)(x−

(a+ 3)) has j(E) = 0. The basis for End(L) is given by {e1, .., e4} where

P (X) u r

e1 1 a+ 3 1

e2 X + 4 a+ 4 2a+ 3

e3 = e2 ◦ e1, and e4 = Id. The map i : ri 7→ ei is an isomorphism R→ End(L).

B.3 p = 7

The quaternion algebra Ap,∞ for p = 7 can be given by
(−1,−7

Q

)
, where

i2 = −1, j2 = −7, ij = k, ij = −ji.

The single conjugacy class of maximal orders ofAp,∞ has the representative R with basis

{r1, r2, r3, r4} = {i, (i+ k)/2, (1 + j)/2, 1}.

The basis relations are given by the following tuples of coefficients of 1, r1, r2, r3:

r2
1 = [−1, 0, 0, 0] r2

2 = [−2, 0, 0, 0] r2
3 = [−2, 0, 0, 1]

r1r2 = [0, 0, 0,−1] r2r1 = [−1, 0, 0, 1] r2r3 = [0,−2, 1, 0]

r3r2 = [0, 2, 0, 0] r3r1 = [0, 1,−1, 0] r1r3 = [0, 0, 1, 0].
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The curve L : y2 = x(x− 1)(x− 2) has j(E) = 1728. Let Fp2 = Fp[a] where a is a root

of x2 + 2 = 0. The basis for End(L) is given by {e1, .., e4} where

P (X) u r

e1 1 5a 2

e2 X + 5 3a 1

e3 = −e1 ◦ e2, and e4 = Id. The map i : ri 7→ ei is an isomorphism R→ End(L).

B.4 p = 13

The quaternion algebra Ap,∞ for p = 13 can be given by
(−2,−13

Q

)
, where

i2 = −2, j2 = −13, ij = k, ij = −ji.

The single conjugacy class of maximal orders ofAp,∞ has the representative R with basis

{r1, ..., r4} = {1/2− i/4 + k/4,−i, 1/2− i/2− j/2, 1}.

The basis relations are given by the following tuples of coefficients of 1, r1, r2, r3:

r2
1 = [−2, 1, 0, 0] r2

2 = [−2, 0, 0, 0] r2
3 = [−4, 0, 0, 1]

r1r2 = [−1, 0, 0, 1] r2r1 = [0, 0, 1,−1] r2r3 = [−2, 2, 0, 0]

r3r2 = [0,−2, 1, 0] r3r1 = [0, 0, 2, 0] r1r3 = [−1, 1, 2, 1].

The curve E : y2 = x3 + 10x + 6 has j(E) = 5. Let Fp2 = Fp[a] where a is a root of

x2 + 2 = 0. The basis for End(E) is given by {e1, .., e4} where

P (X) u r

e1 X + 4a+ 4 5a+ 10 0

e2 X + 5 7a 0

e3 = Id + e1 ◦ e2, and e4 = Id. The map i : ri 7→ ei is an isomorphism R→ End(E).
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B.5 p = 37

The quaternion algebra Ap,∞ for p = 37 can be given by
(−2,−37

Q

)
, where

i2 = −2, j2 = −37, ij = k, ij = −ji.

The maximal order R of Ap,∞ with basis

{r1, ..., r4} = {i, 1/2− i/4 + k/4,−1/2 + i/2 + j/2, 1}

is isomorphic to End(E) where j(E) = 8. The basis relations are given by the following

tuples of coefficients of 1, r1, r2, r3:

r2
1 = [−2, 0, 0, 0] r2

2 = [−5, 0, 1, 0] r2
3 = [−10, 0, 0,−1]

r1r2 = [0, 1, 0,−1] r2r1 = [1, 0, 0, 1] r2r3 = [1,−5,−1, 1]

r3r2 = [0, 5, 0, 0] r3r1 = [0,−1,−2, 0] r1r3 = [−2, 0, 2, 0].

Let Fp2 = Fp[a] where a is a root of x2 + 2 = 0. The curve E : y2 = x3 + 12x + 13 has

j(E) = 8. The basis for End(E) is given by {e1, .., e4} where

P (X) u

e2 X + 1 19a

e3 X2 + (8a+ 29)X + (4a+ 23) 24a+ 26

e3 = e1 ◦ e2, and e4 = Id. The map i : ri 7→ ei is an isomorphism R→ End(E).
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[29] J.-F. Mestre. Sur la méthode des graphes, exemples et applications. Proceedings of
the international conference on class numbers and fundamental units of algebraic
number fields, pages 217–242, 1986.

[30] V. Miller. The Weil pairing, and its efficient calculation. Journal of Cryptology,
17:235–261, 2004.

[31] D.Y. Pei and Y.F. Zhu. An algorithm for dlp on anomalous elliptic curves over Fp.
Science in China, Series A, Math, physics, astronomy, 45(6):773–777, 2002.
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