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Abstract

The “agent program” framework introduced by Eiter, Subrahmanian and Pick
(Artificial Intelligence, 108(1-2), 1999), supports developing agents on top of
arbitrary legacy code. Such agents are continuously engaged in an “event occurs→
think→ act→ event occurs . . . ” cycle. However, this framework has two major limi-
tations: (1) all actions are assumed to have no duration, and (2) all actions are taken
now, but cannot be scheduled for the future. In this paper, we present the concept of
a “temporal agent program” (tap for short) and show that using taps, it is possible
to build agents on top of legacy code that can reason about the past and about the
future, and that can make temporal commitments for the future now. We develop
a formal semantics for such agents, extending the concept of a status set proposed
by Eiter et al., and develop algorithms to compute the status sets associated with
temporal agent programs. Last, but not least, we show how taps support classical
negotiation methods (as well as some new ones) and classical auction methods (as
well as some new ones).
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1 Introduction

Over the last few years, there has been intense work in the area of intelligent
agents (Huhns and Singh 1997; Wooldridge and Jennings 1995). Applications
of agents range from intelligent news and mail filtering agents (Maes 1994),
agents that monitor the state of the stock market and detect trends in stock
prices, intelligent web search agents (Etzioni and Weld 1994), digital battlefield
agents that monitor and merge information gathered from multiple heteroge-
neous information sources (Arens, Chee, Hsu, and Knoblock 1993; Labrou and
Finin 1994; Labrou and Finin 1997; Subrahmanian 1994; Wiederhold 1993).
More recently, we have seen an increase in the number of agents that automat-
ically interact with one another. Such agents can negotiate with each other,
participate in auctions, make group consensus decisions, and the like (Kraus
1997; Rosenschein and Zlotkin 1994; Sullivan, Glass, Grosz, and Kraus 1999).

In previous work (Arisha, Ozcan, Ross, Subrahmanian, Eiter, and Kraus 1999;
Eiter, Subrahmanian, and Pick 1999; Eiter and Subrahmanian 1999), we have
developed a framework (called IMPACT) for building agents on top of special-
ized data structures and/or legacy code bases. Each such agent has a “state”
and provides a set of services to other agents. Such services include data re-
trieval services (answering database queries, retrievals from geographic infor-
mation systems, etc.) as well as computational services (e.g. creating a plan,
recognizing features in imagery, finding a route, etc.). The developer of an
IMPACT agent can augment a body of software code in any ordinary pro-
gramming language with a set of rules called an agent program. These rules
encode the “operating principles” of the agent. In (Eiter, Subrahmanian, and
Pick 1999; Eiter and Subrahmanian 1999), the semantics of an agent is char-
acterized via a basic construct called a feasible status set which specifies what
the agent is permitted to do, forbidden from doing, obligated to do, and ac-
tually does in a manner that complies with its operating principles. Eiter,
Subrahmanian, and Pick (1999, Eiter and Subrahmanian (1999) propose var-
ious more refined semantics by selecting certain feasible status sets—different
semantics Sem choose different feasible status sets.

IMPACT agents are engaged in a continuous cycle of “evaluate state changes
→ compute a Sem-status set→ take actions→ evaluate state changes→ . . . .”
When an agent receives a message, its state changes. The agent computes an
appropriate Sem-status set, finds out what actions are to be performed, and
executes them immediately. This framework therefore has two major draw-
backs:

• An agent always takes actions now. It cannot decide (now) that it is obli-
gated to do something tomorrow, and forbidden from doing something else
day after tomorrow.
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• All actions are assumed to take zero time to perform. However, in the real
world, agents may take actions that have a temporal duration—for example,
actions such as drive(boston, ny) have a temporal extent during which the
agent’s location (hence its state) is changing.

The primary aim of this paper is to endow agents with the ability to execute
actions which have a temporal duration, and to make commitments for the
future. The paper’s contributions are organized as follows:

(1) Section 2 contains a brief motivating example that will be expanded on
as the paper proceeds.

(2) Section 3 overviews the framework of (Eiter, Subrahmanian, and Pick
1999) and explains how legacy and specialized software code may be
“agentized” via agent programs and other related structures.

(3) Section 4 shows how to specify actions with temporal duration.
(4) Section 5 introduces the syntax of a temporal agent program (tap for

short).
(5) Section 6 develops two semantics for taps which extend the semantics

introduced for non-temporal agents in (Eiter, Subrahmanian, and Pick
1999).

(6) Section 7 describes a compact representation of the semantic structures
associated with taps.

(7) Section 8 presents an algorithm that computes the (compact representa-
tion of a) class of taps called positive taps.

(8) Finally, in Section 9, we present three applications of taps—the first ap-
plication is about individual agents collaboratively working together to
satisfy a shared goal. The second implementation shows that auction
mechanisms can be logically modeled via taps and in fact that certain
useful auction mechanisms that have not been studied before are sup-
ported by taps. As a third application, we show that taps may be used
to support well known (as well as some new) forms of negotiation within
the contract net (Smith and Davis 1983) paradigm.

(9) Section 10 compares and contrasts our work with existing research by
others.

2 Motivating Example

Consider a simplistic rescue operation where a natural calamity (e.g. a flood)
has stranded many people. Rescuing these people requires close coordination
between helicopters and ground vehicles. For the sake of this example, we
assume the existence of the following agents:

(1) A helicopter agent that conducts aerial reconnaissance and supports
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aerial rescues;
(2) A set gv1, gv2, gv3 of ground vehicles that move along the ground to

appropriate locations—such vehicles may include ambulances as well as
earth moving vehicles.

(3) An immobile command center agent comc that coordinates between the
helicopter and the ground vehicles.

We will periodically revisit this simple scenario to illustrate the basic defini-
tions used in this paper.

3 Preliminaries

In IMPACT, each agent a is built on top of a body of software code (built
in any programming language) that supports a well defined application pro-
grammer interface (either part of the code itself, or developed to augment the
code). In general, we will assume that the piece of software Sa associated with
an agent a ∈ A is represented by a triple Sa =def (T aS ,Fa

S , CaS):

Definition 3.1 (Software Code) We may characterize the code on top of
which an agent a is built as a triple Sa =def (T aS ,Fa

S , CaS) where:

(1) T a
S is the set of all data types managed by S,

(2) Fa
S is a set of predefined functions over T a

S —these functions typically
are those through which external processes may access the data objects
managed by the agent, and

(3) CaS is a set of type composition operations. A type composition operator
is a partial n-ary function c which takes as input types τ1, . . . , τn and
yields as output a type c(τ1, . . . , τn). As c is a partial function, c may
only be defined for certain arguments τ1, . . . , τn, i.e., c is not necessarily
applicable on arbitrary types.

When a is clear from context, we will often drop the superscript a. Intu-
itively, TS is the set of all data types managed by a, FS is the set of all
function calls supported by S’s application programmer interface (API). CS
is the set of ways of creating new data types from existing data types. This
characterization of a piece of software code is widely used (cf. the Object Data
Management Group’s ODMG standard (Cattell, R. G. G., et al. 1997) and
the CORBA framework (Siegal 1996)). Without loss of generality, we will
henceforth assume that TS is closed under the operations in CS .

Each agent also has a message box having a well defined set of associated code
calls that can be invoked by external programs. Appendix B.1 describes the
details of the message box.
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Example 3.2 (Rescue Example) Consider the rescue mission described
earlier. The heli agent may have the following data types and code calls.

• Data Types: speed, bearing of type int, location of type point (record
containing x, y, z fields), nextdest of type string, and inventory—a relation
having schema (Item, Qty, Unit).
• Functions:
· heli : speed(): which specifies the current speed of the helicopter.
· heli : location(): which specifies an (x, y, z) coordinate for the helicopter.
· heli : inventory(Item): returns a pair of the form 〈Qty,Unit〉. For instance,

heli : inventory(blood) may return the pair 〈25, liters〉 specifying that the
helicopter currently has 25 units of blood available.
· heli : bearing(): returns an angular bearing of the helicopter.
· heli :nextdest(): specifies the next destination (i.e. a string) of the heli-

copter.

Definition 3.3 (State of an Agent) The state of an agent at any given
point t in time, denoted OS(t), consists of the set of all data objects in the
data structures (consisting of types contained in T a

S ) of the agent.

An agent’s state may change because it took an action, or because it received
a message. Throughout this paper we will assume that except for appending
messages to an agent a’s mailbox, another agent b cannot directly change
a’s state. However, it might do so indirectly by shipping the other agent a
message requesting a change.

Example 3.4 (Rescue: State) For instance, returning to the heli agent, at
a given instant of time, the state of the agent may be:

• speed = 50 (mph).
• location = 〈45, 50, 9000〉.
• inventory contains the following four tuples:
〈fuel, 125, gallons〉, 〈blood, 25, litres〉, 〈bandages, 50,−〉, 〈cotton, 20, lbs〉.
• bearing = 56.
• nextdest = "big-rag".

Queries and/or conditions may be evaluated w.r.t. an agent state using the
notion of a code call atom and a code call condition defined below.

Definition 3.5 (Code Call/Code Call Atom) If S is the name of a soft-
ware package, f is a function defined in this package, and (d1, . . . , dn) is a
tuple of arguments of the input type of f , then S : f (d1, . . . , dn) is called a
code call.

If cc is a code call, and X is either a variable symbol, or an object of the output
type of cc, then in(X, cc) is called a code call atom.
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It is important to note that for each data type τ managed by an agent, we
assume the existence of a set of variable symbols ranging over objects of type
τ . When τ is a complex type (e.g. a record), we assume the use of variables
ranging over τ ’s components. Thus, if X is a variable over type τ and τ is a
record structure with field f , then X.f is a variable ranging over objects of
the type of field f . In this case, X is called a root variable. This “intuitive”
definition of a root variable suffices for this paper—for a formal definition, the
reader is referred to (Eiter, Subrahmanian, and Rogers 1999).

Definition 3.6 (Code Call Condition) A code call condition χ is defined
as follows:

(1) Every code call atom is a code call condition.
(2) If s, t are either variables or objects, then s = t is a code call condition.
(3) If s, t are either integers/real valued objects, or are variables over the

integers/reals, then s < t, s > t, s ≥ t, s ≤ t are code call conditions.
(4) If χ1, χ2 are code call conditions, then χ1 & χ2 is a code call condition.

A code call condition satisfying any of the first three criteria above is an atomic
code call condition.

Example 3.7 (Rescue: Code Call Conditions) Returning to the Rescue
example, we have the following simple code call conditions:

• in(X, heli : inventory(fuel)) & X.Qty < 50.
This code call condition is satisfied whenever the helicopter has less than
50 gallons of fuel left.
• in(X, heli : inventory(bandages)) & X.Qty < 50 &

in(Y, heli : inventory(cotton))& Y.Qty < 100 & Y.Unit = lbs.
This code call condition is satisfied whenever the helicopter has less than
50 bandages and less than 100 pounds of cotton.

Each agent has an action-base describing various actions that the agent is
capable of executing. Actions change the state of the agent and perhaps the
state of other agents’ msgboxes. As usual actions have preconditions (code
call condition) and add/delete lists (sets of ground code call atoms).

Each agent has an associated set of integrity constraints—only states that
satisfy these constraints are considered to be valid or legal states. Each agent
also has an associated notion of concurrency specifying how to combine
a set of actions into a single action—this is a function that maps a set of
actions and an agent state into one action. (Eiter, Subrahmanian, and Pick
1999) describes three alternative notions of concurrency. Each agent has an
associated set of action constraints that define the circumstances under
which certain actions may be concurrently executed. As at any given point

6



t in time, many sets of actions may be concurrently executable, each agent
has an Agent Program that determines what actions the agent can take, what
actions the agent cannot take, and what actions the agent must take. Agent
programs are defined in terms of status atoms defined below.

Definition 3.8 (Status Atom/Status Set) If α(~t) is an action, and Op ∈
{P,F,W,Do ,O}, then Opα(~t) is called a status atom. If A is an action
status atom, then A,¬A are called status literals. A status set is a finite set
of ground status atoms.

Intuitively, Pα means α is permitted, Fα means α is forbidden, Oα means α is
obligatory, Doα means α is actually done, and Wα means that the obligation
to perform α is waived.

Definition 3.9 (Agent Program) An agent program P is a finite set of
rules of the form

A←χ & L1 & . . .& Ln

where χ is a code call condition and L1, . . . , Ln are status literals.

Several alternative semantics for agent programs are presented in (Eiter, Sub-
rahmanian, and Pick 1999; Eiter and Subrahmanian 1999)—due to space rea-
sons, we do not explicitly recapitulate them here, though Appendix A contains
a brief overview of the semantics. Appendix B contains a description of the
agents (code calls, actions, integrity and action constraints, etc.) in the Rescue
Example.

4 Actions with Temporal Duration

In classical AI (Nilsson 1986), an action contains a precondition, an add-list,
and a delete-list. The idea is that for the action to be executable in a given
state, the precondition should be true in the state, and the new state that
results after executing the action differs from the previous state in that it no
longer satisfies the code call atoms in the delete list, but satisfies the atoms in
the add list. This is also the notion of action used in works on reasoning with
actions by Baral (Baral and Gelfond 1993; Baral, Gelfond, and Provetti 1995;
Baral and Gelfond 1994; Baral and Lobo 1996), Baldoni (Baldoni, Giordano,
Martelli, and Patti 1998), and Gelfond and Lifschitz (Gelfond and Lifschitz
1993; Gelfond and Lifschitz 1998; Lifschitz 1997).

We would like to extend this general definition, to allow an action to have a du-
ration or temporal extent. For example, consider the heli agent in our Rescue
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Example. Here, the agent may execute the action fly("BigRag", "StonyPoint").
It is immediately apparent that this action is one that has a temporal duration—
going from Big Rag to Stony Point may take some time, during which the
location of the heli agent is changing continuously. More importantly, if we
know the location of the plane now and we know the plane’s velocity and
climb angle, we can precisely compute its location in the future (assuming
no change in these parameters). Thus, in order to specify a timed action, we
must:

(1) Specify the total amount of time it takes for the action to be “completed”.
(2) Specify exactly how the state of the agent changes while the action is

being executed. Most traditional AI planning frameworks (Nilsson 1980)
assume that an action’s effects are realized only after the entire action is
successfully executed.

A further complication may arise when we consider the gv1, gv2, gv3 ground
vehicle agents executing the action drive(front royal, thornton, rte354) say-
ing that the vehicle in question is driving from Front Royal to Thornton along
Route 354. Here, there may be no easy “formula” that allows us to specify
where the vehicle is at a given instant of time, and furthermore, there may
be no need to know that the vehicle has moved one mile further west along
Interstate I-90 since the last report. The designer of the gv1 agent may be
satisfied with knowing the location of the vehicle every 30 minutes.

4.1 Checkpoints

Thus, the notion of a timed action should allow the designer of an agent to
specify the preconditions of an action, as well as intermediate effects that the
action has prior to completion. Checkpoints are time points when the agent’s
state is updated during execution of the action. For example, an action that
takes 75 units of time starting at time 0 may have checkpoints every 15 units
of time, i.e. at times 15,30,45,60, and 75. This means that every 15 time units,
the state is updated.

It is important to note that it is the agent designer’s responsibility to specify
checkpoints in a manner that satisfies his application’s needs. If he needs
to incorporate intermediate effects on a millisecond by millisecond basis, his
checkpoints should be spaced out at each millisecond (assuming the time unit
is not larger than a millisecond). If on the other hand, the designer of the gv1

agent feels that checkpoints are needed on an hourly basis (assuming the time
unit of the time line is not larger than an hour), then he has implicitly decided
that incorporating the effects of the drive action on an hourly basis is good
enough for his (assuming the time unit of the time line is not larger than an
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hour) agent. We are now ready to define checkpoint expressions.

Definition 4.1 (Checkpoint Expressions rel :{X | χ}, abs :{X | χ})

• If i ∈ N is a positive integer, then rel : {i} and abs : {i} are checkpoint
expressions.

• If χ is a code call condition involving a non-negative, integer-valued variable
X, then rel :{X | χ} and abs :{X | χ} are checkpoint expressions.

We will use the symbol cpe as a metavariable for relative and absolute check-
point expressions.

rel : {i} says that a checkpoint occurs every i units of time from the start of
an action. abs :{i} says that a checkpoint occurs at time i. If χ is a code call
condition involving a non-negative, integer-valued variable X, then rel :{X | χ}
says that for every possible value i of X that makes χ true in the current object
state, a checkpoint occurs every i units of time from the start of an action.
Similarly, abs :{X | χ} says that a checkpoint occurs at every time point which
is a value X that makes X | χ true in the current object state.

The following example presents some simple checkpoint expressions.

Example 4.2 (Rescue: Checkpoints)

• rel :{100}.
This says that a checkpoint occurs at the time of the start of the action,
100 units later, 200 units later, and so on.
• abs :{T | in(T, clock : time()) &

in(0, math : remainder(T, 100)) &
T > 5000}.
This says that a checkpoint occurs at absolute times 5000, 5100, 5200, and
so on.
• abs :{T | in(T, clock : time()) &

in(X, getMessage(comc))&
X.Time− T = 5}.
This says that a checkpoint occurs at 5 time units after a message is received
from the comc agent.

4.2 Timed Actions

Checkpoint expressions provide a convenient way of specifying a set of time
points. In this section, we will show how definitions of actions in classical AI
may be extended with checkpoint expressions so as to syntactically extend
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actions to have duration and intermediate effects over time (i.e. while they
are being executed). Our first definition is the concept of a timed effect triple.

Definition 4.3 (Timed Effect Triple 〈cpe,Add ,Del〉) A timed effect triple
is a triple of the form 〈cpe,Add ,Del〉 where cpe is a checkpoint expression,
and Add and Del are add lists and delete lists.

Intuitively, when we associate a triple of the form 〈cpe, Add, Del〉 with an
action α, we are saying that the contents of the Add - and Del- lists are used
to update the state of the agent at every time point specified by cpe.

A couple of simple timed effect triples are shown below.

Example 4.4 (Rescue: Timed Effect Triples)

• The heli agent may use the following timed effect triple to update its loca-
tion every 30 seconds;

1st arg : rel :{30}

2nd arg : {in(NewLocation, heli : location(Xnow)) }

3rd arg : {in(OldLocation, heli : location(Xnow − 30)) }

• The truck agent may use the following timed effect triple to update its fuel
at absolute times 5000, 5100, 5200, and so on.

1st arg :

abs :{T | in(T, clock : time())& in(0, math : remainder(T, 100))& T > 5000}

2nd arg:{in(NewFuelLevel, truck : fuelLevel(Xnow)) }

3rd arg :{in(OldFuelLevel, truck : fuelLevel(Xnow − 20)) }

We are now ready to define the concept of a timed action—an action whose
effects are incorporated into a state at the checkpoints specified by the designer
of the agent.

Definition 4.5 (Timed Action) A timed action α consists of five compo-
nents:

Name: A name, usually written α(X1, . . . , Xn), where the Xi’s are root vari-
ables.

Schema: A schema, usually written as (τ1, . . . , τn), of types. Intuitively, this
says that the variable Xi must be of type τi, for all 1 ≤ i ≤ n.
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Pre: A code-call condition χ, called the precondition of the action, denoted
by Pre(α) 4

Dur: An expression of the form {i} or {X | χ}. Depending on the current
object state, this expression determines a duration duration(α) ∈ N of α.
duration(α) is not used as an absolute time point but as a duration (length
of a time interval).

Tet: A set Tet(α) of timed effect triples such that if both 〈cpe, Add, Del〉
and 〈cpe′, Add′, Del′〉 are in Tet(α), then cpe and cpe′ have no common
solution w.r.t. any object state. The set Tet(α) together with Dur(α) deter-
mines the set of checkpoints checkpoints(α) for action α (as defined below).

Intuitively, if α is an action that we start executing at tαstart, then Dur(α)
specifies how to compute the duration duration(α) of α, and Tet(α) specifies
the checkpoints associated with action α. It is important to note that Dur(α)
and Tet(α) may not specify the duration and checkpoint times explicitly (even
if the associated checkpoints are of the form abs :{X | χ}, i.e. absolute times).
The method to compute duration(α) is given below.

• If Dur(α) is of the form {i}, then duration(α) = i.
• If Dur(α) is of the form {X | χ}, then
· If there is a solution is a solution of χ w.r.t. OS at time tαstart then:

duration(α) = min{‖Xθ − tαstart‖ | θ is a solution of χ w.r.t. OS

at time tαstart and Xθ � tαstart}.

· Otherwise, duration(α) is not defined with respect to OS at time tαstart.
Intuitively, the above definition says that we find solutions to χ which are
greater than or equal to tαstart. Of such solutions, we pick the smallest—the
duration of α is from α’s start time, to the time point chosen in this way.
If such a solution is not found, performing α is infeasible.

The set, checkpoints(α), of checkpoints is the union of the following five sets:

• {tαstart + duration(α)}
• {Xθ | 〈abs :{X | χ}, Add, Del〉 ∈ Tet(α) and θ is a solution of χ, Xθ � tαstart

and ‖Xθ − tαstart‖ ≤ duration(α)}
• {i | 〈abs :{i}, Add, Del〉 ∈ Tet(α), i � tαstart and ‖i− tαstart‖ ≤ duration(α)}
• {tαstart+i×j | 〈rel :{i}, Add, Del〉 ∈ Tet(α) and i, j ∈ N, i, j > 0

with i× j ≤ duration(α) }

4 As in (Eiter, Subrahmanian, and Rogers 1999), we require that Pre(α) be safe

modulo the variables X1, . . . ,Xn,i.e. assuming the variables X1, . . . ,Xn are grounded,
there must be some way in which the atoms in χ can be reordered so that the
(reordered) version of χ can be evaluated from left to right. The formal definition
of this is contained in (Eiter, Subrahmanian, and Rogers 1999) and is not required
for this paper.
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• {tαstart + i× Xθ | 〈rel : {X | χ}, Add, Del〉 ∈ Tet(α) and θ is a solution of
χ and i ∈ N, i > 0 and ‖tαstart + i× Xθ‖ ≤ duration(α) }.

In other words, even though Tet(α) may imply the existence of infinitely many
checkpoints, only those that occur at or before the scheduled completion of
the action α are considered to be valid checkpoints. In addition, the last time
period of executing an action is always a checkpoint.

Example 4.6 (Rescue: Timed Actions) Returning to the Rescue example,
we have the following timed actions.

The action drive() of the truck agent may be described via the following
components;

• Name: drive(From, To, Highway)
• Schema: (String,String,String)
• Pre: in(From, truck : location())
• Dur: {T | in(X, math : distance(From, To))& in(T, math : compute(60X

70
))}

• Tet:

1st arg : rel :{20}

2nd arg :{in(NewPosition, truck : location(Xnow)) }

3rd arg :{in(OldPosition, truck : location(Xnow − 20)) }

The Tet part says that the truck agent updates its location every 20 minutes
(assuming a time period is equal to 1 minute) during the expected time it
takes it to drive the distance between From to To at 70km per hour.

The action load truck() of the truck agent may be described via the following
components:

• Name: load truck(Loc)
• Schema: (String)
• Pre: in(Loc, truck : location())
• Dur: {10}
• Tet:

1st arg : rel :{5}

2nd arg :{in(NewStatus, truck : load(Xnow)) }

3rd arg :{in(OldStatus, truck : load(Xnow − 5)) }

The Tet part says that the truck agent updates its load status every 5 minutes
during the expected time it takes it to load the truck.
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The action fill fuel() of the truck agent may be described via the following
components:

• Name: fill fuel()
• Pre:
• Dur: {1}
• Tet:

1st arg : rel :{1}

2nd arg : {in(false, truck : tank empty()) }

3rd arg : {in(true, truck : tank empty()) }

The Tet part says that after filling the tank, the agent updates its state by
indicating that the tank is not empty anymore.

The action monitorHeli(Heli) of the comc agent may be described as follows;

• Name: monitorHeli(Heli)
• Schema: (String)
• Pre: in(danger, comc : checkStatus(Heli))
• Dur: {30}
• Tet:

1st arg : abs :{ Xnow | in(Xnow, clock : time())&

in(danger, comc : checkStatus(Heli))&

in(0, math : remainder(Xnow, 2))

}

2nd arg : { in(〈Heli, danger, Xnow〉, comc : vehicle to be notified())&

in(Xnow, clock : time())

}

3rd arg : {}

Whenever there is a helicopter which is in danger, the comc agent executes the
monitorHeli timed action. The monitorHeli action is executed for 30 minutes,
and a notification is sent to the helicopter every 2 minutes.
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5 Syntax of taps

In this section, we introduce the syntax of temporal agent programs (taps for
short) and provide an “intuitive” semantics for them—the formal semantics
is deferred to Section 6. The first concept we define is that of a temporal
annotation item.

Definition 5.1 (Temporal Annotation Item tai)

(1) Every integer is a temporal annotation item.
(2) The distinguished integer valued variable Xnow is a temporal annotation

item.
(3) Every integer valued variable is a temporal annotation item.
(4) If tai1, . . . , tain are temporal annotation items, and b1, . . . , bn are integers

(positive or negative), then (b1tai1 + . . .+bntain) is a temporal annotation
item.

For example, 1, Xnow, Xnow +3, Xnow +2v +4 are all temporal annotation items
if v is an integer valued variable. Temporal annotation items, when ground,
evaluate to time points. A temporal annotation, defined below, uses temporal
annotation items to specify a time interval.

Definition 5.2 (Temporal Annotation [tai1, tai2]) If tai1, tai2 are annota-
tion items, then [tai1, tai2] is a temporal annotation.

Examples of temporal annotations are given below.

Example 5.3 (Rescue: Temporal Annotations)

• [2, 5] is a temporal annotation item describing the set of time points between
2 and 5 (inclusive).
• [2, 3X+ 4Y] is a temporal annotation item. When X := 2, Y := 3, this defines

the set of time points between 2 and 18.
• [X + Y, X + 4y] is a temporal annotation item. When X := 2, Y := 3, this

defines the set of time points between 5 and 18.
• [X + 4Y, X − Y] is a temporal annotation item. When X := 2, Y := 3, this

defines the empty set of time points.
• [Xnow, Xnow+5] is a temporal annotation item. When Xnow := 10, this specifies

the set of time points between 10 and 15.
• [Xnow − 5, Xnow + 5] is a temporal annotation item. When Xnow := 10, this

specifies the set of time points between 5 and 15; when Xnow := 3 this
specifies the set of time points between 0 and 8.
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5.1 Temporal Action State Conjuncts

An agent may often base its actions (current and future) not only on its
current/past state, but also on its current/past actions. Thus, we need to be
able to specify temporal conditions involving an agent’s state and actions. This
is done via the concept of a temporal action state conjunct defined below.

Definition 5.4 ((Temporal) Action State Condition) Suppose χ is a (pos-
sibly empty) code call condition, L1, . . . , Ln are action status literals, and ta

is a temporal annotation. Then:

(1) (χ & L1 & . . .& Ln) is called an action state condition.
(2) (χ & L1 & . . .& Ln) : ta is called a temporal action state conjunct (tasc).
(3) If χ is empty, then (χ & L1 & . . .& Ln) : ta is called a state-independent

tasc .

For any tasc ̺ : ta, we denote by B(̺ : ta), the collection of action status
literals in ̺; by B−(̺ : ta) we denote the negative literals in B(̺ : ta), and by
B+(̺ : ta) the positive literals in B(̺ : ta). Moreover, ¬.B−(̺ : ta) denotes the
status atoms whose negations occur in B−(̺ : ta).

Intuitively, when ̺ : ta is ground for some action state condition ̺, we may
read this as “̺ is true at some point in ta”. For example, the following are
simple tascs.

• in(danger, comc : checkStatus(heli)) : [6, 10]
This tasc is true if if at some point between times 6 and 10 (inclusive) the
heli agent was in danger according to the comc agent.
• (in(X, heli : inventory(fuel)) & X.Qty < 50) : [Xnow−10, Xnow] Intuitively, this

tasc is true if at some point in time ti in the last 10 time units, the helicopter
had less than 50 gallons of fuel left.

We are now ready to define the most important syntactic construct of this
paper, viz. a temporal agent rule.

Definition 5.5 (Temporal Agent Rule/Program T P) A temporal agent
rule is an expression of the form:

Op α : [tai1, tai2]← ̺1 : ta1 & · · ·& ̺n : tan (1)

where Op ∈ {P,Do ,F,O,W}, and ̺1 : ta1, . . . , ̺n : tan are tascs.

A temporal agent program is a finite set of temporal agent rules.
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Intuitively, a ground temporal agent rule of the form shown in (1) above may
be read as:

Intuitive Reading of Temporal Agent Rule (First Cut)
“If ̺1 was true at some time point in the interval ta1 and . . . and ̺n was
true at some time point in the interval tan, then Opα should be true at some
time point in the interval [tai1, tai2]”.

Example 5.6 (Rescue: Temporal Agent Rules) The following rules may
be used by agents in the rescue example:

r1: Odelete msg(Msg.Id) : [Xnow, Xnow] ←
Do process request(Msg.Id, Agent) : [Xnow, Xnow].

This rule says that the agent immediately deletes all messages that it has
processed from its message box.

r2 (Agent heli):
Oorder item(Item) : [Xnow, Xnow + 5] ←

( in(Item, heli : emergency items()) &
in(X, heli : inventory(Item)) &
in(Minimal amount, heli : minimal inventory(Item)) &
X.Qty ≤ Minimal amount

):[Xnow, Xnow]

If the helicopter’s supply of an item which is needed in an emergency is
below the minimal required quantity, it is obliged to order this item within
5 time units.

r3 (Agent comc):
OnotifyAgent(Agnt) : [Xnow, Xnow] ←

in(danger, comc : checkStatus(Agnt)) : [Xnow, Xnow]

The comc agent is obliged to notify an agent immediately if it believes the
agent is in danger.

r4 (Agent truck):
Fdrive(From, To, Highway) : [Xnow, Xnow] ←

Do process request(Msg.Id, Agent) : [Xnow, Xnow] &
=(Msg.body.call, "drive(From, To, Highway)"):[Xnow,Xnow ] &
in(Highway, msgbox : gatherWarning(comc)) : [Xnow, Xnow − 10]

If, in the last 10 time units, the truck agent received a warning message
from the comc agent concerning a given highway, it is forbidden to drive
through this highway.
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The intuitive “First Cut” reading of the rules is not quite correct because it
is possible for the body of a temporal agent rule to become true now, even
though it was not true before. Thus, we may be obliged (now) by such a rule to
do something in the past—something that is clearly infeasible. The following
example rule says that a truck agent is obliged to fill its tank before driving
more than 30km.

Ofill fuel() : [Xnow − 1, Xnow − 1]←

(Do drive(From, To, Highway) &

in(X, math : distance(From, To))&

X > 30

) : [Xnow, Xnow]

This rule may not have fired “yesterday” as the action status atom

Do drive(From, To, Highway)

may not have been true yesterday, yet if it becomes true today, it imposes
(today) an obligation on us to have done something yesterday which clearly
makes no sense !

An alternative reading of the temporal agent rule Op α : [tai1, tai2] ← ̺1 :
ta1 & . . .& ̺n : tan is:

Intuitive Reading of Temporal Agent Rule (Second Cut)
“If for all 1 ≤ i ≤ n, there exists a time point ti such that ̺i is true at time
ti and such that ti ≤ tnow (i.e. ti is now or is in the past) and ti ∈ tai (i.e.
ti is true at one of designated time points), then Op α is true at some point
t ≥ tnow (i.e. now or in the future) such that tai1 ≤ t ≤ tai2.”

In other words, the antecedent of a rule always refers to past or current states
of the world, and past action status atoms, and the obligations, permissions,
forbidden actions that are implied by rules apply to the future. Note that this
framework is completely compatible with basing actions on predictions about
the future, because such predictions are made now and hence are statements
about the future in the current state!

However, the second reading above still has a flaw. For instance, consider the
rule:

Pγ : [tnow + 9, tnow + 9] ← Pα : [tnow + 1, tnow + 10] ∧ Pβ : [tnow + 1, tnow + 8].
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According to the above reading, even if we know that α is permitted during
the interval [tnow +1, tnow +10] and β is permitted during the interval [tnow +
1, tnow+8], this rule cannot be fired because the body of the rule is supposed to
be true at some time point in the past ! Thus, we are led to a third reading of
a temporal agent rule—this reading distinguishes between state independent
and arbitrary tasc’s.

Intuitive Reading of Temporal Agent Rule (Third Cut)
“If for all 1 ≤ i ≤ n, there exists a time point ti such that ̺i is true at time
ti such that either
(1) ̺i is state independent and ti ∈ tai, or
(2) ̺i is not state independent and ti ≤ tnow (i.e. ti is now or is in the past)

and ti ∈ tai,
then Op α is true at some point t ≥ tnow (i.e. now or in the future) such
that tai1 ≤ t ≤ tai2”.

This reading of a tap rule allows us to avoid the problems encountered earlier.

For example, the truck agent is obliged to fill fuel now if it’s tank is empty
and it is obliged to drive somewhere in 15 minutes.

Ofill fuel() : [Xnow, Xnow]←

in(true, truck : tank empty()) : [Xnow, Xnow] &

Odrive(From, To, Highway) : [Xnow, Xnow + 15]

Since, Odrive(From, To, Highway) is a state-independent tasc the above rule
makes sense.

6 Semantics of taps

In this section, we provide a formal semantics for taps, building upon the
informal intuitions provided in the preceding section.

First and foremost, we reiterate that in our framework, we use the natural
numbers to represent time. In classical temporal logics, a temporal interpreta-
tion associates a set of ground atoms with each time point. In our framework,
things are somewhat more complex. This is because at any given point t in

18



time, certain things are true in an agent’s state, and certain action status
atoms are true as well. Thus, we introduce two temporal structures:

(1) a temporal status set, which captures actions, and
(2) a history.

6.1 Temporal Status Set

A temporal status set extends the notion of a status set in much the same
way as a temporal interpretation extends the classical logical notion of an
interpretation (Lloyd 1987).

Definition 6.1 (Temporal Status Set T Stnow
) A temporal status set T Stnow

at time tnow is a mapping from natural numbers to ordinary status sets satis-
fying T Stnow

(i) = ∅ for all i > i0 for some i0 ∈ N.

Intuitively, if T Stnow
(3) = {Oα,Doα,Pα,Fβ}, then this means that ac-

cording to the temporal status set T Stnow
, at time instant 3, α is obliga-

tory/done/permitted, while β is forbidden. Similarly, if T Stnow
(4) = {Pα}

then this means that according to the temporal status set T Stnow
, at time 4,

α is permitted.

As an agent that reasons about time may need to reason about the current,
as well as past states it was/is in, a notion of state history is needed by an
agent.

Definition 6.2 (State History Function histtnow
) A state history function

histtnow
at time tnow is a partial function from N to agent states such that

histtnow
(tnow) is always defined and for all i > tnow, histtnow

(i) is undefined.

The definition of state history does not require that an agent store the entire
past. For many agent applications, storing the entire past may be neither
necessary nor desirable. The definition of state history function above merely
requires that the agent stores the current agent state—which past agent states
are to be stored is the choice of the agent designer. Furthermore, an agent
cannot store future states, though it can schedule actions for the future (in its
current state) and it may have beliefs (in its current state) about the future.
Thus, the designer of an agent may make decisions such as those given below:

(1) He may decide to store no past information at all. In this case, histtnow
(i)

is defined if and only if i = tnow.
(2) He may decide to store information only about the past i units of time.

This means that he stores the agent’s state at times tnow, (tnow − 1), . . . ,
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(tnow−i), i. e. histtnow
is defined for the following arguments: histtnow

(tnow),
histtnow

(tnow − 1), . . . , histtnow
(tnow − i) are defined.

(3) He may decide to store, in addition to the current state, the history every
five time units. That is, histtnow

(tnow) is defined and for each 0 ≤ i ≤ tnow,
if i mod 5 = 0, then histtnow

(i) is defined. Such an agent may be specified
by an agent designer when he believes that maintaining some (but not
all) past snapshots is adequate for the application’s needs.

Suppose we are now given a temporal status set T Stnow
and a state history

function, histtnow
. We define below, what it means for a triple consisting of

T Stnow
, histtnow

and the current time, tnow, to satisfy a tap.

Definition 6.3 (Satisfaction, Closure of T Stnow
under tap Rules)

Suppose tnow is any integer. We present below, an inductive definition of sat-
isfaction of formulas by 〈T Stnow

, histtnow
, tnow〉;

(1) (a) State independent tasc:
〈T Stnow

, histtnow
, tnow〉 |=

O
temp (L1 & . . .& Ln) : [tai1, tai2] where L1 & . . .& Ln :

[tai1, tai2] is ground if there is an integer i, tai1 ≤ i ≤ tai2 such
that B+((L1 & . . . & Ln) : [tai1, tai2]) ⊆ T Stnow

(i) and for every L ∈
¬.B−((L1 & . . .& Ln) : [tai1, tai2]) L 6∈ T Stnow

(i). In this case, i is said
to witness the truth of this tasc.

(b) General tasc:
〈T Stnow

, histtnow
, tnow〉 |=

O
temp (χ & L1 & . . . & Ln) : [tai1, tai2] where the

conjunction χ & L1 & . . .& Ln : [tai1, tai2] is ground if there is an
integer i, tai1 ≤ i ≤ tai2 such that histtnow

(i) is defined and χ is true
in the agent state histtnow

(i) and B+((L1 & . . . & Ln) : [tai1, tai2]) ⊆
T Stnow

(i) and for every L ∈ ¬.B−((L1 & . . .& Ln) : [tai1, tai2]) L 6∈
T Stnow

(i). In this case, i is said to witness the truth of this tasc.
(2) 〈T Stnow

, histtnow
, tnow〉 |=

O
temp Opα : [tai1, tai2] ← ̺1 : ta1 & . . .& ̺n : tan

(where the rule is ground) if either:
(a) there exists an 1 ≤ i ≤ n such that either (1) ̺i is state independent

and for all ti ∈ tai, ti is not a witness to the truth of ̺i : tai by
〈T Stnow

, histtnow
, tnow〉, or (2) ̺i is not state independent and for all

ti ≤ tnow and ti ∈ tai, ti is not a witness to the truth of ̺i : tai by
〈T Stnow

, histtnow
, tnow〉, or

(b) there exists a tj ≥ tnow such that tj ∈ [tai1, tai2] and Op α ∈ T Stnow
(tj).

If a temporal agent rule r is not ground, 〈T Stnow
, histtnow

, tnow〉 |=
O
temp r if

for all ground instances of the rule r′, 〈T Stnow
, histtnow

, tnow〉 |=
O
temp r′.

(3) 〈T Stnow
, histtnow

, tnow〉 |=
O
temp (∀x)φ if 〈T Stnow

, histtnow
, tnow〉 |=

O
temp φ[x/s]

for all ground terms s. 5

(4) 〈T Stnow
, histtnow

, tnow〉 |=
O
temp (∃x)φ if 〈T Stnow

, histtnow
, tnow〉 |=

O
temp φ[x/s]

for some ground term s.

5 Here φ[x/s] denotes the replacement of all free occurrences of x in φ by ground
term s.
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(5) 〈T Stnow
, histtnow

, tnow〉 |=
O
temp T P where T P is a tap if for each temporal

agent rule (tar) r ∈ T P: 〈T Stnow
, histtnow

, tnow〉 |=
O
temp r.

Instead of 〈T Stnow
, histtnow

, tnow〉 |=
O
temp T P we also say “T Stnow

is closed under
the program rules of T P”.

The definition of satisfaction by 〈T Stnow
, histtnow

, tnow〉 is complex. In partic-
ular, item (2) in the above definition has subtle aspects to it. We illustrate
some of these subtleties by revisiting the rescue example.

Example 6.4 (Rescue: Temporal Status Set) Suppose we consider the
following very simple table, describing a temporal status set, T Stnow

of the
truck agent.

i Ttnow
TtnowTtnow

S(i)

0 {Fdrive(was, bal, hw95),Fdrive(was, bal, hw295),

Ofill fuel(),Dofill fuel()}

1 {Pdrive(was, bal, hw95),Fdrive(was, bal, hw295),Ffill fuel()}

2 {Pdrive(was, bal, hw95),Fdrive(was, bal, hw295)}

3 {Odrive(was, bal, hw95),Do drive(was, bal, hw95),

Fdrive(was, bal, hw295),Pdrive(was, bal, hw95),

Oorder item(fa bag),Do order item(fa bag)}

4 {Pdrive(was, bal, hw95),Do drive(was, bal, hw95),

Fdrive(was, bal, hw295),Dofill fuel()}

4 < i < 9 {Pdrive(was, bal, hw95),Fdrive(was, bal, hw295)}

i > 9 ∅

Suppose we also consider the very simple table describing the state of the
truck agent.

i histtnowtnowtnow
(i)

0 in(hw295, msgbox : gatherWarning(comc)), in(true, truck : tank empty())

1 in(false, truck : tank empty())

2 in(false, truck : tank empty()), in(2, truck : inventory(fa bag)),

3 in(1, truck : inventory(fa bag)), in(false, truck : tank empty())
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Suppose tnow = 3. Let us examine some simple ground formulas and see
whether 〈T Stnow

, histtnow
, tnow〉 satisfies these formulas.

• ( in(2, truck : inventory(fa bag)) &
in(false, truck : tank empty())

) : [tnow − 3, tnow].

This formula is satisfied by 〈T Stnow
, histtnow

, tnow〉 because i = 2 is a witness
to the satisfaction of this formula.
• ( in(2, truck : inventory(fa bag)) &

in(false, truck : tank empty()) &
F drive(was, bal, hw295)

) : [tnow − 3, tnow].

This formula is satisfied by 〈T Stnow
, histtnow

, tnow〉 because i = 2 is a witness
to the satisfaction of this formula. Notice that at time 1, the action status
atom Fdrive(was, bal, hw295) ∈ T Stnow

(2) and the other in(, ) atoms are
also true in the agent state at time 2.
• ( in(true, truck : tank empty())&

Odrive(was, bal, hw95)
) : [tnow − 3, tnow − 3].

This formula is not satisfied by 〈T Stnow
, histtnow

, tnow〉 because the action
status atom Odrive(was, bal, hw95) /∈ T Stnow

(0).
• The rule

Ofill fuel() : [tnow, tnow] ←
( in(true, truck : tank empty()) &
O drive(was, bal, hw95)

):[tnow − 3, tnow − 3]

is satisfied by 〈T Stnow
, histtnow

, tnow〉 because its antecedent is not satisfied
via a witness i ≤ tnow by 〈T Stnow

, histtnow
, tnow〉.

• The rule

F drive(was, bal, hw295):[tnow,tnow +3] ←
in(hw295, msgbox : gatherWarning(comc)) : [tnow − 3, tnow]

is satisfied by 〈T Stnow
, histtnow

, tnow〉 because its antecedent is satisfied by it
(witness i = 0 < tnow) and its consequent is true at a future time instant,
viz. at time 3 ≥ tnow.
• Consider the following tap

(1) Fdrive(was, bal, hw295) : [tnow, tnow + 2] ←
in(hw295, msgbox : gatherWarning(comc)) : [tnow − 3, tnow]

(2) Do fill fuel() : [tnow, tnow] ←
in(true, truck : tank empty()) : [tnow − 2, tnow]

(3) Oorder item(fa bag) : [tnow, tnow + 4] ←
in(1, truck : inventory(fa bag))[tnow − 3, tnow]

(4) Pdrive(was, bal, hw95) : [tnow, tnow] ←
in(false, truck : tank empty()) : [Xnow, Xnow] &
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Fdrive(was, bal, hw295) : [tnow + 1, tnow + 2]

This tap is satisfied by 〈T Stnow
, histtnow

, tnow〉 as all its temporal agent rules
are satisfied. The first rule is satisfied by 〈T Stnow

, histtnow
, tnow〉, because its

antecedent is satisfied by a witness i = 3 ≤ tnow, and its consequent is
satisfied as Fdrive(was, bal, hw295) ∈ T Stnow

(i ≥ 3).
The second rule is satisfied by 〈T Stnow

, histtnow
, tnow〉, because its antecedent

is not satisfied—in(true, truck : tank empty()) /∈ histtnowtnowtnow
(2 ≤ i ≤ tnow).

The third rule is satisfied by 〈T Stnow
, histtnow

, tnow〉, because its antecedent
is satisfied via witness i=3 ≤ tnow and its consequent is satisfied because
Oorder item(fa bag) ∈ T Stnow

(3).
Finally, the fourth rule is satisfied by 〈T Stnow

, histtnow
, tnow〉 since its an-

tecedent is satisfied and its consequent is satisfied. The first tasc of the an-
tecedent, in(false, truck : tank empty()) : [Xnow, Xnow], is satisfied via a wit-
ness i=3≤ tnow. The second tasc, Fdrive(was, bal, hw295) : [tnow+1, tnow+2],
is state independent and is satisfied as Fdrive(was, bal, hw295) ∈ T Stnow

(4)
The rule’s consequent is satisfied as Pdrive(was, bal, hw95) ∈ T Stnow

(3).

An agent may record not only its state history, but also the actions it took
(or was obliged to take, forbidden from taking etc.) in the past. This leads to
the notion of an action history.

Definition 6.5 (Action History) An action history acthisttnow
for an agent

is a partial function from N to status sets satisfying acthisttnow
(i) = ∅ for all

i > i0 for a i0 ∈ N.

Intuitively, an action history specifies not only what an agent has done in the
past, but also what an agent is obliged/permitted to or forbidden from doing
in the future. In this respect, an action history is different from a state history.
Here is an example of an action history:

i acthist2(i)

0 {Pα1,Oα2,Doα2,Pα2,Fα3}

1 {Oα2,Doα2,Pα2}

2 {Pα3,Doα3}

3 {Fα3}

4 {Oα1,Doα1}

i ≥ 5 {}

If the current time is tnow = 2, then this says the agent is forbidden from doing
α3 at time 3 and is obliged to do action α1 at time 4. What this means is that
when this agent receives new requests from other agents at time 3, it must
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consider the fact that it is forbidden from doing α3 at time 3 and doing α4 at
time 4, i.e. it must find a new temporal status set, based on commitments made
in the past (even if these commitments involve the future). The new temporal
status set, in turn, may add more commitments or forbidden actions to the
future and the acthisttnow

with respect to tnow and the future may change.

Intuitively, an action history specifies the intention of an agent, as far as its
future actions are concerned. For example, according to the above example,
at time 3, the agent intends to Doα3, even though it is not obliged to do so.
An external event at time 3 may well cause it to change its mind.

An action history and a temporal status set both make statements about
action status atoms. The following definition specifies what it means for the
two to be compatible.

Definition 6.6 (History-Compatible Temporal Status Set) Suppose the
current time is tnow and acthisttnow

(·) denotes the action history of an agent,
and suppose T Stnow

is a temporal status set. T Stnow
is said to be action history-

compatible at time tnow if for all i < tnow, if acthisttnow
(i) is defined, then

T Stnow
(i) = acthisttnow

(i), and for all i ≥ tnow, if acthisttnow
(i) is defined, then

acthisttnow
(i) ⊆ T Stnow

(i).

In other words, for a temporal status set to be compatible with an action
history, it must be consistent with the past history of actions taken by the
agent and with commitments to do things in the future that were made in the
past by the agent. An example illustrating this kind of compatibility is given
below.

Example 6.7 (Rescue: Action History) Consider the following simple ac-
tion history of the truck agent.

i acthist3(i)

0 {Fdrive(was, bal, hw95),Fdrive(was, bal, hw295),Ofill fuel(),

Do fill fuel()}

1 {Pdrive(was, bal, hw95),Fdrive(was, bal, hw295),Ffill fuel()}

3 {Odrive(was, bal, hw95),Do drive(was, bal, hw95),

Fdrive(was, bal, hw295), }

4 ≤ i < 9 {Fdrive(was, bal, hw295)}

The temporal status set, T Stnow
presented in Example 6.4 is history-compatible

with the above action history at time tnow = 3.
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Given the agent’s current temporal status set and its plans about the future,
it has some expectation about how its future states will change over time.
This leads to the notion of expected states.

Definition 6.8 (Expected States at time t: EO(t)) Suppose the current
time is tnow, histtnow

is the agent’s state history function and T Stnow
is a tem-

poral status set. The agent’s expected states are defined as follows:

• EO(tnow) = histtnow
(tnow).

• For all time points i > tnow, EO(i) is the result of concurrently executing

{α |Doα ∈ TSnow(i− 1)}∪

{β ′ |Doβ ∈ TSnow(j) for j ≤ i− 1 and i− 1 is a checkpoint for β, and β ′

denotes the action (non-timed) which has an empty precondition,

and whose add and del lists are as specified by Tet(β)}

in state EO(i− 1).

We note that that from a certain i0 ∈ N onwards, we have EO(i) = ∅ for
all i > i0 (this is because of the same property for the action history and the
temporal status set).

We demonstrate the computation of the expected states using the following
example.

Example 6.9 (Rescue: Expected States) Suppose, tnow = 1,

histtnow
(0) = {in(was, truck : location()), in(true, truck : tank empty()),

in(empty, truck : load(0))

histtnow
(1) = {in(was, truck : location()), in(true, truck : tank empty()),

in(empty, truck : load(0))

and

T Stnow
(0) = {Do load truck(was)}

T Stnow
(1) = {Dofill fuel()}

T Stnow
(10) = {Do order item(fa bag)}
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Then,

EO(2) = {in(empty, truck : load(0)), in(was, truck : location()),

in(false, truck : tank empty())}

For, 3 ≤ i ≤ 5, EO(i) = EO(2).

EO(6) = {in(half loaded, truck : load(5)), in(was, truck : location()),

in(false, truck : tank empty())}

For, 7 ≤ i ≤ 10, EO(i) = EO(6).

EO(11) = { in(loaded, truck : load(10)), in(was, truck : location()),

in(false, truck : tank empty()),

in(〈fa bag, 10〉, msgbox : supplier to be notified())}.

For, i > 11, EO(i) = EO(11).

It is apparent that given a temporal agent program, and a state/action history
associated with that tap, temporal status sets must satisfy some “feasibility”
requirements in order for them to be considered to represent the semantics of
the tap in question. We are now ready to address the issue of what constitutes
a feasible temporal status set.

6.2 Feasible Temporal Status Sets

Let us consider an agent a that uses a temporal agent program tap to de-
termine what actions it should take, and when it should take these actions.
Let the current time be tnow and suppose histtnow

(·), acthisttnow
(·) represent the

state and action histories associated with this agent at time tnow.

Given a set S of action status atoms, let D-Cl(S) be the smallest superset S ′

of S such that Oα ∈ S ′ → Pα ∈ S ′. Likewise, let A-Cl(S) be the smallest
superset S∗ of S such that (i) Oα ∈ S∗ → Doα ∈ S∗ and (ii) Doα ∈ S∗ →
Pα ∈ S∗. We say that set S is deontically closed iff S = D-Cl(S) and action
closed iff S = A-Cl(S).

Definition 6.10 (Temporal Deontic Consistency) Suppose histtnow
is the

agent’s state history function. T Stnow
is said to be temporally deontically con-

sistent at time tnow if it satisfies the following conditions:
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• For all time points i, (1) Oα ∈ T Stnow
(i) → Wα /∈ T Stnow

(i); (2) Pα ∈
T Stnow

(i)→ Fα /∈ T Stnow
(i);

• For all i ≤ tnow, if Pα ∈ T Stnow
(i) and histtnow

(i) is defined, then histtnow
(i) |=

Pre(α) and duration(α) is defined with respect to histtnow
(i) and i.

• For all i > tnow, if Pα ∈ T Stnow
(i), then EO(i) |= Pre(α) and duration(α)

is defined with respect to EO(i) and i.

Thus, if T Stnow
(4) = {Doα,Fα}, then T Stnow

cannot be deontically consistent.
The following definition explains what it means for a temporal status set to
be closed under the deontic modalities and under actions.

Definition 6.11 (Temporal Deontic/Action Closure) T Stnow
is said to

be temporally deontically closed at time tnow if D-Cl(T Stnow
(i)) = T Stnow

(i)
for all time points i.

T Stnow
is said to be temporally action closed at time tnow if A-Cl(T Stnow

(i)) =
T Stnow

(i) for all time points i.

The definition of action consistency ensures that action constraints are never
violated.

Definition 6.12 (Action Consistency) T Stnow
is said to be temporally ac-

tion consistent at time tnow if for all time points i such that acthisttnow
(i) and

histtnow
(i) are defined, Do i = {Doα | Doα ∈ T Stnow

(i)} satisfies the action
constraints with respect to the agent state histtnow

(i). 6

In the above definition, the reader should note that action consistency is
checked only at those time points for which the agent designer chose to save
the agent state. The following example illustrates this definition.

Example 6.13 (Rescue: Action Consistency) Let the truck agent have
the following action constraint AC = {drive(From, To, Highway), fill fuel()} ←֓ ,
intuitively saying that the tank agent cannot drive and fill fuel simultaneously.
Furthermore, let tnow = 3, let T Stnow

and histtnow
be the temporal status set

and the state history function from Example 6.4 respectively. Then T Stnow
is

temporally action consistent since for all time points i ≤ 3, Do i satisfies AC
w.r.t. histtnow

(i). Note that although Do 4 does not satisfy AC, this does not
alter the outcome since histtnow

(4) is not defined.

For a temporal status set to be feasible, whenever a checkpoint is encountered
(and hence the state of the agent is updated), the new state must satisfy the
integrity constraints. That is, the expected future states of the agent need to

6 Note that for i = tnow both acthisttnow(i) and histtnow(i) are defined.
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satisfy the integrity constraints. This requirement, called checkpoint consis-
tency, is defined below.

Definition 6.14 (Checkpoint Consistency) T Stnow
is said to be check-

point consistent at time tnow if for all i > tnow, EO(i) satisfies the integrity
constraints IC.

It is important to note that every time a checkpoint is encountered, we must
ensure that all integrity constraints are satisfied. This means that at every
checkpoint, we must ensure that the concurrent execution of all actions of the
form Doα at that time point does not lead to a state which is inconsistent.

For a temporal status set to be feasible, it must satisfy the additional require-
ment of state consistency.

Definition 6.15 (State Consistency) T Stnow
is said to be state consistent

at time tnow if for all i ≤ tnow such that histtnow
(i) is defined, the state

obtained from histtnow
(i) by concurrently applying all Do actions contained in

T Stnow
(i) satisfies the integrity constraints IC.

Definition 6.16 (Feasible Temporal Status Set) Suppose the current time
is tnow, T P is a tap, and histtnow

, acthisttnow
are the state/action history respec-

tively. Further suppose that IC,AC are sets of integrity constraints and actions
constraints, respectively. A set T Stnow

satisfying T Stnow
(i) 6= ∅ for only finitely

many i is said to be a feasible temporal status set with respect to the above
parameters if

(1) T Stnow
is closed under the rules of T P,

(2) T Stnow
is temporally deontically and action consistent at time tnow,

(3) T Stnow
is temporally deontically and action closed at time tnow,

(4) T Stnow
is checkpoint consistent at time tnow,

(5) T Stnow
is state consistent at time tnow,

(6) T Stnow
is history compatible at time tnow.

6.3 Rational Temporal Status Sets

A feasible temporal status set may contain action status atoms that are not
necessary for the temporal status set to be feasible. In this section, we identify
a class of feasible status sets for which agents perform a minimal set of actions.

Definition 6.17 (Rational Feasible Temporal Status Set) A temporal sta-
tus set T Stnow

is grounded, if there is no temporal status set T S ′
tnow

6= T Stnow

such that T S ′
tnow

⊆ T Stnow
and T S ′

tnow

satisfies conditions (1)–(6) of a feasible
temporal status set.
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A temporal status set T Stnow
is a rational temporal status set, if T Stnow

is a
feasible status set and T Stnow

is grounded.

Note that when T Stnow
is a feasible status set, every T S ′

tnow
⊆ T Stnow

satisfies
conditions (2), (5) in the definition of feasibility, and hence the above definition
may be simplified to only require satisfaction of conditions (1), (3), (4) and
(6). The notion of a rational temporal status set is illustrated via the following
example.

Example 6.18 (Rescue: Rational Status Set) Consider the simple ex-
ample where the truck agent has an action constraint as in Example 6.13,
i.e.,

AC = {drive(From, To, Highway), fill fuel()} ←֓}

and one integrity constraint

IC = { in(Loc1, truck : location())&

6= (Loc1, Loc2)⇒ not in(Loc2, truck : location())}

intuitively saying that the truck cannot simultaneously be in two different
locations.

The agent’s tap includes only one rule specified at the end of Section 5, i.e.,

Ofill fuel() : [Xnow, Xnow]←

in(true, truck : tank empty()) : [Xnow, Xnow] &

Odrive(From, To, Highway) : [Xnow, Xnow + 15]

Suppose the agent has the following very simple state history (histtnow
), and

action history (acthisttnow
):

histtnow
(0) = {in(true, truck : tank empty()), in(was, truck : location())}

histtnow
(1) = {in(true, truck : tank empty()), in(was, truck : location())}

acthisttnow
(8) = {Odrive(was, bal, hw95)}

Suppose, tnow = 1. The following temporal status sets are feasible sets, but
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only the first one is rational.

T S1
tnow

(1) = {Ofill fuel(),Dofill fuel(),Pfill fuel()}

T S1
tnow

(8) = {Odrive(was, bal, hw95),Pdrive(was, bal, hw95),

Do drive(was, bal, hw95)}

T S2
tnow

(1) = {Ofill fuel(),Dofill fuel(),Pfill fuel(),

Oorder item(fa bag),Do order item(fa bag),

Porder item(fa bag), }

T S2
tnow

(8) = {Odrive(was, bal, hw95),Pdrive(was, bal, hw95),

Do drive(was, bal, hw95)}

T S1
tnow

is temporally deontically consistent because (1) the only action which
has a precondition is drive and it is easy to see that its precondition

in(was, truck : location())

is satisfied by EO(8); (2) for each T Stnow
(i), there are no forbidden or waived

actions. T S1
tnow

is temporally action closed (and hence, temporally deontically
closed) because for each T S1

tnow
(i) where Oα ∈ T S1

tnow
(i), Doα ∈ T S1

tnow
(i)

and Pα ∈ T S1
tnow

(i). T S1
tnow

is temporally action consistent because there
is no Do i where Do drive(From, To, Highway),Dofill fuel(∈)Do i. T S1

tnow
is

checkpoint consistent as the only relevant action, drive(was, bal, hw95), never
violates the integrity constraints in IC. Finally, it is easy to verify that T S1

tnow

is closed under the rule in T P.

Note that T S2
tnow

is also a feasible temporal status set: however, it contains
Do order item(fa bag) even though no rule or previous commitment forces
order item(fa bag) to be done. This prevents T S2

tnow
from being a rational

status set.

7 Compact Representation of Temporal Status Sets

Representing a feasible temporal status set explicitly is difficult because, for
each time point i, T Stnow

(i) must be explicitly represented. This is obviously
problematic from an implementation point of view because i might be infinite,
and representing actions for many such i’s is difficult and cumbersome. To
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ameliorate this problem, we describe below, a constrained representation of a
class of temporal feasible status sets.

Definition 7.1 (Temporal Interval Constraint tic) An atomic temporal
interval constraint is an expression of the form ℓ ≤ t ≤ u where t is a variable
ranging over natural numbers, and ℓ, u are natural numbers.

Temporal Interval Constraints are inductively defined as follows:

(1) Atomic temporal interval constraints are temporal interval constraints.
(2) If tic1, tic2 are temporal interval constraints involving the same variable t,

then (tic1 ∨ tic2), (tic1 & tic2) and ¬tic1 are temporal interval constraints.

For example, (5 ≤ t ≤ 10) is an atomic temporal interval constraint. So is
(50 ≤ t ≤ 60). In addition, (5 ≤ t ≤ 10) ∨ (50 ≤ t ≤ 60) and (5 ≤ t ≤
10) & (50 ≤ t ≤ 60) are temporal interval constraints.

As the concepts of constraints and solutions of constraints with variables rang-
ing over the natural numbers are well known and well studied in the litera-
ture (Cormen, Leiserson, and Rivest 1989), we do not repeat those concepts
here.

Definition 7.2 (Interval Constraint Annotated Status Atom) If tic is
a temporal interval constraint, and Op α is an action status atom, then Op α :
tic is an interval constraint annotated status atom.

Intuitively, the interval constraint annotated status atom Op α : tic may be read
as “Opα is known to be true at some time point which is a solution of tic”.
For example, Oα : (500 ≤ t ≤ 6000) says that an agent is obliged to do α at
one of times 500, 501, . . . , 6000. If tic is an atomic temporal interval constraint,
then we will sometimes write it as temporal annotation, e.g., instead of Oα :
(500 ≤ t ≤ 6000) we will write Oα : [500, 6000].

Notice that one single statement allows us to implicitly represent the obligation
of this agent to do α at one of 5,501 time instances.

Definition 7.3 (Interval Constraint Temporal Status Set ic-T S) An in-
terval constraint temporal status set, denoted ic-T S, is a set of interval con-
straint annotated status atoms.

Such a set ic-T S stands for a whole class of temporal status sets: all status
sets that are compatible with it in the following sense:

Definition 7.4 (Temporal Status Sets Compatible with ic-T S (I)) A tem-
poral status set T Stnow

is compatible with ic-T S if for every Opα : tic in ic-T S,
there is a solution t = i of tic such that Op α ∈ T Stnow

(i).
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We use the notation CompTSS(ic-T S) to denote the set of all temporal status
sets compatible with ic-T S.

The following example illustrates the connection between interval constraint
temporal status sets and temporal status sets.

Example 7.5 (Rescue: Compatibility) The status set T Stnow
from Exam-

ple 6.4 is compatible with the following ic-T S:

{Pdrive(was, bal, hw95) : (0 ≤ t ≤ 4),

Ofill fuel() : ((0 ≤ t ≤ 2) ∨ (4 ≤ t ≤ 7)),

Ffill fuel() : (0 ≤ t ≤ 5)}

There are an infinite number of temporal status sets T Stnow
that are compatible

with this ic-T S. For example, the following temporal status set, T S ′
tnow

is also
compatible with it:

T S ′
tnow

(0) = {Ffill fuel()}

T S ′
tnow

(4) = {Ofill fuel(),Pdrive(was, bal, hw95)}

On the other hand, there are infinitely many interval constraint temporal
status sets that are compatible with the T Stnow

from Example 6.4. The empty
set is one example.

It is important to note that when we have two interval constraint annotated
status atoms of the form Op α : tic1 and Op α : tic2 in ic-T S, we cannot (in
general) infer Opα : tic1 ∧ tic2.

The following section shows how to use interval constraint status sets to com-
pute feasible status sets.

8 Status Set Computation Algorithm for Positive taps

In this section, we provide an iterative fixpoint algorithm to compute a feasible
temporal status set when all the rules in our temporal agent program are nega-
tion free—such taps are called positive taps. Suppose the current time, tnow

and the histories, histtnow
(·) and acthisttnow

(·) are arbitrary, but fixed. When
computing a temporal feasible status set, we need to address the following
issues.
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(1) History compatibility uniquely specifies T Stnow
(i) for i < tnow.

(2) Checkpoint consistency constrains T Stnow
(i) for i ≤ tnow.

(3) If there exists an i < tnow for which state consistency does not hold, then
no feasible temporal status set can exist. But if for all i with i < tnow state
consistency holds, then Checkpoint consistency imposes an additional
restriction on T Stnow

(tnow).
(4) Let us now consider the “closure under program rules” condition for

feasibility. As rule bodies are always evaluated either in the current or the
past (if the tasc is state dependent) every state dependent tasc of the form
̺ : [tai1, tai2] may implicitly be rewritten as ̺ : [tai1, min(tai2, tnow)]. The
state independent tasc’s stay unchanged. If tai2 < tnow, then evaluation
of ̺ : [tai1, tai2] boils down to either (1) (if ̺ is state dependent) checking
if ̺ is true at some time point i < tnow, or (2) (if ̺ is state independent)
checking if ̺ is true at some time point in [tai1, tai2]. Now (2) is a check
that does not involve the state, but just the temporal status set T Stnow

being constructed. Thus satisfying the rule adds a constraint on T Stnow

(for those i with i ≥ tnow, for i < tnow the sets T Stnow
(i) are fixed). In

case (1), all that is needed is to evaluate ̺ w.r.t. the state at time i and
T Stnow

(i) both of which are fixed ! If the body is true and the head is of
the form Opα : ta, then T Stnow

(j) must contain Opα for some time point
j ∈ ta such that j ≥ tnow.

Hence, it is only if tai2 = tnow that we need to worry about evaluating
the rule wrt state dependent tascs (using modus ponens). State indepen-
dent tascs in rules add constraints on the sets T Stnow

(i) for i ≥ tnow.

The problem is therefore to compute the set T Stnow
(tnow)! Adding more and

more action status atoms to T Stnow
(tnow) leads to more and more program

rules that evaluate to true! However, adding an action status atom Do β to
T Stnow

(i) where i > tnow influences the set T Stnow
(tnow)! For instance, suppose

the checkpoint consistency constraints are satisfied, so that Do β can be put
into T Stnow

(tnow + 1). As these constraints never ever change, Do β can stay
there. But later we might be forced to make F β : [tnow, tnow + 1] true. As
both F β and Do β cannot be in T Stnow

(tnow + 1) (deontic consistency), we
are forced to include F β into T Stnow

(tnow).

Therefore, when constructing the feasible temporal status set bottom-up, we
have to be very cautious about adding action status atoms to T Stnow

(i) for
i ≥ tnow. When a rule body fires (as in item 4 above) and we have a choice of
which T Stnow

(j) to insert Opα for j ≥ tnow, some choices might lead to success
and others might lead to failure. Our algorithms reflect these choices.

Remark 8.1 As mentioned above, the feasible temporal status sets to be
constructed are already determined for time points strictly smaller than tnow.
In particular, we assume from now on that histtnow

(·) and acthisttnow
(·) are arbi-

trary but fixed. We also assume that histtnow
(·) and acthisttnow

(·) are consistent
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with the existence of a temporal status set: by this, we mean that state con-
sistency (point (3) on the previous page) holds for all time points t < tnow.
Obviously, it can be easily decided if this condition holds or not.

Our algorithm to compute temporal feasible status sets is based on two broad
steps.

(1) Find an interval constraint temporal status set ic-T S s.t. CompTSS(ic-T S)
is a superset of the set of all feasible temporal status sets. This step does
not involve explicitly computing CompTSS(ic-T S).

(2) Manipulate ic-T S so as to identify a member of CompTSS(ic-T S) that is
feasible.

Algorithms to implement Step (1) are described in Section 8.1, while algo-
rithms to implement step (2) are described in Section 8.2.

8.1 Fixpoint Operator acting on ic-T S’s

We refer the reader to the intuitive reading of a temporal agent rule (third cut)
at the end of Section 5:

(1) For state independent tasc’s, we do not need to ensure that the body of a
rule is evaluated in the past (as we do not have a condition on the state
which needs to be checked).

(2) However, state dependent tasc’s have an associated state condition which
can only be checked up to tnow. Therefore, in this case, we only need to
worry about the current time, tnow. Thus, if we derive new facts of the
form Op ′ α : tic and we want to use these facts in the bodies of rules, we
only have to look for occurrences of the form Op ′ α : tic′ where tic′ has
tnow as a solution.

We now associate with a temporal agent program T P, an operator DT P which
maps interval constraint temporal status sets into themselves. This definition
assumes that implication of modalities is defined as follows: O implies P and
Do , Do implies P and for every Op, Op implies Op.

Definition 8.1 (Operator DT P) Suppose T P is a tap, histtnow
(tnow) is an

agent state and ic-T S is an interval constraint temporal status set. Then we
define DT P(ic-T S) to be the set
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{Op ′ α : tic |Opα : [tai1, tai2] ← ̺1 : ta1 & . . .& ̺n : tan

is a ground instance of a rule in T P and for all 1 ≤ i ≤ n

(I) If ̺i is state independent

(we assume ̺i=Opi1αi1 ∧ . . . ∧Opinαim)

If m = 1 then there exists Op′
i1
αi1 : tici1 in ic-T S s. t.:

(1) Op′
i1

implies Opi1, and Op implies Op′,

(2) tici1 implies t ∈ tai1 (i.e. all solutions of tici1 are in tai1).

If m > 1 then there exist ti ∈ tai and Op′
ij
αij : [ti, ti] in ic-T S

s. t. Op′
ij

implies Opij and Op implies Op′.

(II) If ̺i is not state independent

(we assume ̺i=χi ∧ Opi1αi1 ∧ . . . ∧Opinαim)

If m = 0 then

(0) χi is true in the agent state histtnow
(ti), for a ti ≤ tnow and

(1) ti is a solution of tai.

If m ≥ 1 then there exist ti ≤ tnow and Op′
ij
αij : [ti, ti] in ic-T S s. t.:

(0) χi is true in the agent state histtnow
(ti),

(1) Op′
ij

implies Opij , and Op′ implies Op,

(2) ti is a solution of tai.

and tic = [max {tai1, tnow}, tai2].

}

Remark 8.2

• The overall idea of the operator above is to construct an ic-T S by iterating
the operator. However, we do not start the operator at ∅: this is because
part of the temporal status set we want to construct is already determined
by acthisttnow

(·) (see Note 8.1). Therefore we define

ic-T Sstart :=
⋃

{i s.t. acthisttnow(i) is defined}

acthisttnow
(i).

In most of the examples below, we assume without loss of generality that
acthisttnow

(·) is empty and thus ic-T Sstart = ∅.
• There may be situations in which max {tai1, tnow} > tai2 for one of the rules
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Opα : [tai1, tai2] ← ̺1 : ta1 & . . .& ̺n : tan in T P. In this case, there is
no feasible temporal status set with respect to T P, and our algorithm will
report failure.

The following example illustrates the use of the DT P operator in the context
of our Rescue Example.

Example 8.2 (Rescue: DT P) Suppose the truck agent’s tap, T P, contains
rules (r2) and (r3) from Example 6.4 which are recapitulated for convenience
below:

r2: Dofill fuel() : [tnow, tnow] ←
in(true, truck : tank empty()) : [tnow − 2, tnow]

r3: Oorder item(fa bag) : [tnow, tnow + 4] ←
in(1, truck : inventory(fa bag))[tnow − 3, tnow]

Suppose, tnow = 3 and

histtnow
(tnow) = {in(1, truck : inventory(fa bag)), in(true, truck : tank empty())}

DT P(∅) = {Do fill fuel() : (3 ≤ t ≤ 3),Pfill fuel() : (3 ≤ t ≤ 3),

Oorder item(fa bag) : (3 ≤ t ≤ 7),

Porder item(fa bag) : (3 ≤ t ≤ 7),

Do order item(fa bag) : (3 ≤ t ≤ 7) }

We will later apply this operator to construct an ic-T S which represents a
set of potential candidate feasible temporal status sets. This ic-T S will be
the least fixpoint of DT P . To show that a least fixpoint of DT P exists, we
have to show that the operator is monotone (Theorem 8.3). In fact, DT P is
also continuous (Theorem 8.6) so that the least fixpoint is reached after ω-
iterations (Theorem 8.9).

Theorem 8.3 (Inclusion Monotonicity) Suppose T P is a positive tap, O
is an agent state and ic-T S is an interval constraint temporal status set. Then:
DT P is monotone, i.e.

ic-T S1 ⊆ ic-T S2 ⇒ DT P(ic-T S1) ⊆ DT P(ic-T S2).

Proof: Suppose Opα : tic ∈ DT P(ic-T S1). Then there is a rule in T P having
a ground instance of the form

Op α : [tai1, tai2]← ρ1 : ta1 & . . .& ρn : tan
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such that for all 1 ≤ i ≤ n, there exist Op′
ij
αij : ticij in ic-T S1 such that

conditions (1)-(3) hold (condition (0) if ρi is state independent) and tic has
the required form. But in this case, as ic-T S1 ⊆ ic-T S2, all the Op′

ij
αij : ticij

are also in ic-T S2 and hence, the conditions for Op α : tic ∈ DT P(ic-T S2) hold.

The following result proves a different kind of monotonicity result. Given two
interval constraint temporal status sets ic-T S1, ic-T S2, we say that ic-T S1 is
less vague that ic-T S2, denoted ic-T S1 ≤v ic-T S2, if there is a surjective
function f from ic-T S1 to ic-T S2 such that:

f(Opα : tic) = Opα : tic′ and every solution of tic is a solution of tic′.

To see why this captures the meaning of less vague, consider the following
example.

Example 8.4 (Rescue: Vagueness) Suppose ic-T S1 = {Pα : 5 ≤ t ≤ 6}
and ic-T S2 = {Pα : 3 ≤ t ≤ 7}. The first interval constraint temporal status
set says P is permitted sometime between time 5 and 6, while the second
says it is permitted sometime between time 3 and 7—the former statement is
certainly less vague than the latter.

In contrast to the previous monotonicity result, the following result shows that
DT P is anti-monotonic w.r.t. to vagueness.

Theorem 8.5 (Vagueness Anti-Monotonicity) Suppose T P is a positive
tap, O is an agent state and ic-T S is an interval constraint temporal status
set. Then DT P is ≤v-anti-monotone, i.e.

ic-T S1 ≤v ic-T S2 ⇒ DT P(ic-T S2) ≤v DT P(ic-T S2).

Proof: Suppose Opα : tic ∈ DT P(ic-T S2). Then there is a rule in T P having
a ground instance of the form

Op α : [tai1, tai2]← ρ1 : ta1 & . . .& ρn : tan

such that for all 1 ≤ i ≤ n, there exist Op′
ij
αij : ticij in ic-T S1 such that

conditions (1)-(3) hold (condition (0) if ρi is state independent) and tic has
the required form.

As ic-T S1 ≤v ic-T S2, it follows that for each 1 ≤ i ≤ n, ic-T S1 contains an
interval constraint annotated status atom Op′

iα : tic⋆
i such that every solution

of tic⋆
i is also a solution of tici. Hence, for al 1 ≤ i ≤ n, tic⋆

i implies tici and
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therefore it also implies t ∈ tai. Hence, Opα : tic⋆
i is in DT P(ic-T S1) and it is

easy to see that Op α : tic⋆
i is less vague than Op α : tic.

The following theorem guarantees that DT P is continuous w.r.t. inclusion.

Theorem 8.6 (Continuity) Suppose ic-T S1 ⊆ ic-T S2 ⊆ · · · ⊆ ic-T Sn ⊆
ic-T Sn+1 ⊆ · · · is an ascending chain of interval constraint temporal status
sets. Then:

DT P(
⋃

i

ic-T Si) =
⋃

i

DT P(ic-T Si).

Proof: From inclusion monotonicity of DT P , it is immediate that

DT P(
⋃

i

ic-T Si) ⊇
⋃

i

DT P(ic-T Si).

Hence, we only need to show that DT P(
⋃

i ic-T Si) ⊆
⋃

i DT P(ic-T Si). Suppose
Op′α : tic ∈ DT P(

⋃
i ic-T Si). Then there is a rule in T P having a ground

instance of the form

Op α : [tai1, tai2]← ρ1 : ta1 & . . .& ρn : tan

such that for all 1 ≤ i ≤ n, there exist Op′
ij
αij : ticij in

⋃
i ic-T Si such that

conditions (1)-(3) hold (condition (0) if ρi is state independent) and tic has
the required form.

As n is finite, there must exist an integer r such that the above conditions are
satisfied by ic-T Sr. In this case, we have Op′

ij
αij : ticij ∈ DT P(ic-T Sr) and we

are done.

One major consequence of the above theorem is that if we iteratively apply
the DT P operator, starting from the empty interval constraint temporal status
set, then we will be guaranteed to terminate. In order to state this result, we
must first define the iterations of the DT P operator.

Definition 8.7 (Iterations of DT P) Suppose T P is a positive tap, and O
is an agent state. The iterations of DT P are defined as follows:

DT P ↑
0 = ic-T Sstart.

DT P ↑
(j+1) = DT P(DT P ↑

j).

DT P ↑
ω =

⋃

j

DT P ↑
j .

38



The following example shows how we may iterate the DT P operator.

Example 8.8 (Rescue: DT P) We will continue with Example 8.2 and will
assume that the agent state is as described there, acthisttnow

(·) is empty and
thus ic-T Sstart = ∅. In addition to rules r2 and r3 mentioned there, we assume
that we have two additional rules in the agent’s tap T P:

r0: Fdrive(was, bal, Highway) : [Xnow, Xnow + 2] ←
Dofill fuel() & in(true, truck : tank empty()) : [Xnow, Xnow + 2]

r1: Odrive(was, bal, hw95) : [Xnow + 5, Xnow + 10] ←
Oorder item(fa bag) : [Xnow, Xnow + 10]

• DT P ↑
0= ∅ since ic-T Sstart = ∅.

• DT P ↑
(1)= DT P(DT P ↑

0) = DT P(∅). The additional two rules in T P didn’t
change the set DT P(∅), and it is as in Example 8.2, i.e.,

DT P ↑
(1) = {Dofill fuel()(3 ≤ t ≤ 3),Pfill fuel()(3 ≤ t ≤ 3),

Oorder item(fa bag)(3 ≤ t ≤ 7),

Porder item(fa bag)(3 ≤ t ≤ 7),

Do order item(fa bag)(3 ≤ t ≤ 7) }

• Applying the rules r0 and r1, in addition to r2 and r3, we get:

DT P ↑
(2)= DT P ↑

(1) ∪

{Fdrive(was, bal, hw95) : (3 ≤ t ≤ 5) ,

Fdrive(was, bal, hw295) : (3 ≤ t ≤ 5) ,

Odrive(was, bal, hw95) : (8 ≤ t ≤ 13) ,

Do drive(was, bal, hw95) : (8 ≤ t ≤ 13) ,

Pdrive(was, bal, hw95) : (8 ≤ t ≤ 13) }

• For all j > 2, DT P ↑
(j)= DT P ↑

(2).
• DT P ↑

ω= DT P ↑
(2)

The following result specifies that DT P ↑
ω is the least fixpoint of DT P .

Theorem 8.9 Suppose T P is a positive tap, and O is an agent state. Then:
DT P ↑

ω is the least fixpoint of DT P .

Proof: Immediate consequence of the Tarski-Knaster theorem (Lloyd 1987)
that states that if f is a continuous function on a complete lattice, then f ↑ω
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is the least fixpoint of f . Here, DT P is a continuous function, and the set
of all interval constraint temporal status sets is a complete lattice under set
inclusion.

We are now ready to show that DT P ↑
ω has various desirable properties that

will later help us in computing feasible temporal status sets. First, we need
to define three important properties of an interval constraint temporal status
set.

• ic-T S is temporally deontically consistent if there is a temporal status set
T Stnow

compatible with ic-T S which is temporally deontically consistent.
• ic-T S is temporally deontically closed (resp. action closed) if there is a

temporal status set T Stnow
compatible with ic-T S which is temporally de-

ontically (resp. action) closed.

The following example illustrates these concepts.

Example 8.10 Consider the ic-T S of Example 8.2, i.e.,

{Do fill fuel() : (3 ≤ t ≤ 3),Pfill fuel() : (3 ≤ t ≤ 3),

Oorder item(fa bag) : (3 ≤ t ≤ 7),Porder item(fa bag) : (3 ≤ t ≤ 7),

Do order item(fa bag) : (3 ≤ t ≤ 7) }

Suppose, tnow = 3, histtnow
(0) = histtnow

(1) = histtnow
(2) and

histtnow
(3) = {in(1, truck : inventory(fa bag)), in(true, truck : tank empty())}

This ic-T S is temporally deontically consistent and temporally deontically
closed and temporal action closed because the following T Stnow

that is tem-
porally deontically consistent and temporally deontically and action closed is
compatible with it.

For all i 6= 3, T Stnow
(i) = ∅, and

T Stnow
(3) = {Dofill fuel(), Pfill fuel(), Oorder item(fa bag),

Porder item(fa bag), Do order item(fa bag)}

The following result shows that DT P ↑
ω has the properties of temporal deontic

and action closure, and also that all feasible temporal status sets must be
compatible with DT P ↑

ω.

Theorem 8.11 Suppose T P is a positive tap, and O is an agent state. Then:
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(1) DT P ↑
ω is temporally deontically closed.

(2) DT P ↑
ω is temporally action closed.

(3) If T Stnow
is a feasible temporal status set, then it must be compatible with

DT P ↑
ω.

Proof:

(1) Let XO be the set of all interval constraint annotated status atoms of
the form Oα : tic in DT P ↑

ω. Let XP be the set of all interval constraint
annotated status atoms of the form Pα : tic in DT P ↑

ω. Each atom
Oα : tic in XO must be in DT P ↑

j for some integer j, but then, as O
implies P, the same rule used to place Oα : tic in DT P ↑

j must also have
been used to insert Pα : tic into DT P ↑

j which means Pα : tic ∈ XP.
One may now construct a temporal status set T Stnow

as follows: for each
Oα : tic in DT P ↑

ω, insert Oα,Pα into T Stnow
(j) where j is the smallest

integer which is a solution of tic. For all other modalities Op 6= O, if
Opα : tic in DT P ↑

ω, insert Opα into T Stnow
(j) where j is the smallest

integer which is a solution of tic. It is easy to see that T Stnow
is compatible

with DT P ↑
ω and T Stnow

is temporally deontically consistent.
(2) Similar to the proof of the previous item.
(3) Suppose T Stnow

is a feasible temporal status set which is not compatible
with DT P ↑

ω. We will attempt to derive a contradiction.
We call an interval constraint annotated status atom Opα : tic a rogue

atom if Opα /∈ T Stnow
(i) for all i’s that are solutions of tic. Let Rogues

be the set of all rogue atoms associated with T Stnow
, and let

j = min{r | Opα : tic ∈ DT P ↑
r and Opα : tic ∈ Rogues}.

We proceed by induction on j.
j=0: In the base case, DT P ↑

0= ic-T Sstart. Since T Stnow
is a feasible

temporal status set, it is history compatible at time tnow and hence
cannot contain any rogue atoms.

j=s+1: As no rogues occur in DT P ↑
s, we know that T Stnow

is compatible
with DT P ↑

s. As Opα : tic ∈ DT P ↑
s+1, there must exist a rule in

T P having a ground instance of the form shown in Definition 8.1 and
satisfying the conditions stated there. Clearly, each interval constraint
annotated status atom in the body of this rule is satisfied by T Stnow

, i.e.
for each interval constraint annotated status atom Opiαi : tici in the
body of this rule, T Stnow

(ti) contains Opiαi where ti is a solution of tici.
As T Stnow

is feasible, by the “closure under program rules” condition in
the definition of feasibility, it must satisfy the head of this rule, but to
do this, it must satisfy the constraint attached to the rule head, which
coincides with tic. This contradicts our assumption.
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The following example demonstrates how the feasible temporal status sets of
a tap must be compatible with DT P ↑

ω.

Example 8.12 (Rescue: Compatibility with DT P ↑
ω) Suppose the truck

agent’s tap, T P, includes the rules r2 and r3 as in Examples 8.2 and 8.10,
histtnow

is as in Example 8.10, IC and AC are as in Example 6.18, and for all
i ≥ 0, acthisttnow

(i) = ∅, and tnow = 3. It is easy to see that DT P ↑
ω is equal

to the ic-T S of Example 8.10, i.e.,

DT P ↑
ω = {Do fill fuel() : (3 ≤ t ≤ 3),Pfill fuel() : (3 ≤ t ≤ 3),

Oorder item(fa bag) : (3 ≤ t ≤ 7),

Porder item(fa bag) : (3 ≤ t ≤ 7),

Do order item(fa bag) : (3 ≤ t ≤ 7) }

The following is a feasible temporal status state with respect to the above
parameters. It is easy to see that it is compatible with DT P ↑

ω. For all i 6= 3,
T Stnow

(i) = ∅, and

T Stnow
(3) = {Dofill fuel(), Pfill fuel(), Oorder item(fa bag),

Porder item(fa bag), Do order item(fa bag)}

What exactly is the role of DT P ↑
ω? DT P ↑

ω serves as a starting point to
compute feasible temporal status sets. But note that DT P ↑

ω is not, by itself,
a feasible temporal status set. This is because our notion of “closure under
rules” (Definition 6.16) admits reasoning by cases. Let us illustrate this.

Example 8.13 (DT P and Closure under the Rules)
Consider the following temporal program

Pα1 : [10, 10] ← Pβ : [1, 5]

Pα2 : [10, 10] ← Pβ : [6, 10]

Pβ : [1, 10] ←

The DT P operator is very cautious: as [1, 10] neither implies [1, 5] nor [6, 10],
the least fixpoint is simply {Pβ : [1, 10]}. However, any temporal status set
closed under the rules of this program contains either Pα1 : [10, 10] or Pα2 :
[10, 10]: this is because Pβ must be contained in at least one of T Stnow

(1),
T Stnow

(2), . . . , T Stnow
(10) and thus at least Pα1 or Pα2 must be contained in

T Stnow
(10).
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8.2 Feasible Temporal Status Set Algorithm

The net result of the above theorem is that in order to find feasible temporal
status sets we can (1) compute the least fixpoint of DT P and then (2) select
from amongst the compatible temporal status sets, those that satisfy the other
requirements for feasibility.

Algorithm 8.1 describes this procedure. It uses three major subroutines: one
to find compatible temporal status sets, called FindCompTSS described in
Section 8.2.1, one to compute temporal status sets satisfying certain condi-
tions called ComputeTSS described in Section 8.2.2, and one to compute
certain changes to temporal status sets called Modified Set described in
Section 8.2.3. (In addition, it uses some relatively minor subroutines that we
will describe as needed). 7

Algorithm 8.1 (Feasible Temporal Status Set Computation)

FTSS(OS,T P,histtnow
, acthisttnow

)

(⋆ input is an agent state OS , a positive tap T P ⋆)
(⋆ and the histories histtnow

, acthisttnow
⋆)

(⋆ output is a feasible temporal status set if one exists ⋆)
(⋆ otherwise, the output is “No”. ⋆)

(1) if Check trivial part(histtnow
, acthisttnow

)= false then return “No.”
(2) pre-ic-T S := DT P ↑

ω;
(3) done := false;
(4) Seen := ∅;
(5) while ¬done do

(a) T Stnow
:= FindCompTSS(OS ,pre-ic-T S,Seen);

(b) if T Stnow
= “No” then return “No.”

(c) if FeasTSS(T Stnow
) then done := true else Seen := Seen ∪{T Stnow

};
(6) return T Stnow

.

The FTSS algorithm terminates as soon as a feasible temporal status set is
found. The Check trivial part subroutine determines T Stnow

(i) for i < tnow

by history compatibility and then checks checkpoint consistency and state

7 In order to simplify the procedures we will sometime refer to a temporal constraint
set ic-T S as a temporal status set. The intended temporal status set T Stnow is
defined as follows: for each time point i, Opα ∈ T Stnow(i) iff Op α : [i, i] ∈ ic-T S or
Opα : (i ≤ t ≤ i) ∈ ic-T S.
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consistency for T Stnow
(i) for i < tnow. If either of them is not satisfied, it

returns false and there is no compatible set (see the explanations at the
beginning of the previous section).

The algorithm maintains a set, Seen, of compatible temporal status sets seen
thus far—if the algorithm is “still running” this means that none of the com-
patible temporal status sets examined thus far is feasible, and hence, we must
find a new compatible temporal status set that is feasible.

As FindCompTSS computes compatible status sets that are closed under
the rules of the program, the FeasTSS algorithm only needs to check (for a
given T Stnow

)

(1) checkpoint consistency for T Stnow
(tnow),

(2) action consistency for T Stnow
(tnow),

(3) whether all the operators Opα in T Stnow
where Op ∈ {P,O,Do } are

executable in the current state histtnow
(tnow),

(4) temporal deontic consistency for T Stnow
(tnow). (As we require our tempo-

ral status sets to be finite, we only need to check this for finitely many
i.)

It returns true if all requirements are met—otherwise it returns false.

New compatible temporal status sets are generated by the FindCompTSS
subroutine. This algorithm, which we will define shortly, uses the notion of a
culprit (Definition 8.14). Culprits reflect ways of generating compatible tem-
poral status sets different from those generated before.

Definition 8.14 (Culprit) Suppose ic-T S is an interval constraint temporal
status set, and Seen is a set of temporal status sets closed under the rules of
T P. A set CAA of constraint annotated atoms is said to be a culprit set of
ic-T S with respect to Seen and T P if

(1) If Opα : ta ∈ CAA, then ta is of the form [tai, tai] (i.e. the annotation
represents a single time point) and

(2) If Opα : [tai, tai] ∈ CAA, then there exists an Opα : tic in ic-T S such
that tai is a solution of tic and

(3) For every T Stnow
∈ Seen, there exists an Opα : tic in ic-T S such that tic

has i as a solution and Opα : [i, i] ∈ CAA and Opα /∈ T Stnow
(i). In this

case, 〈Opα : tic, T Stnow
〉 is called a culprit-TSS pair.

Example 8.15 (Rescue: Culprit) Suppose the truck agent’s tap, T P, in-
cludes rules r2 and r3 as in Examples 8.2 and 8.10, and ic-T S is as in Ex-
ample 8.12, and Seen includes the T Stnow

of Example 8.12 and the following
T S ′

tnow
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For all i < 3 and i > 5, T S ′
tnow

(i) = ∅, and

T S ′
tnow

(3) = {Dofill fuel(), Pfill fuel()}

T S ′
tnow

(4) = {Oorder item(fa bag),Porder item(fa bag)}

CAA = {Oorder item(fa bag) : [4, 4]}

Porder item(fa bag) : [5, 5]}

is a culprit set of ic-T S with respect to Seen and T P.

〈Oorder item(fa bag) : [4, 4], T Stnow
〉, 〈Porder item(fa bag) : [5, 5], T S ′

tnow
〉

are culprit-TSS pairs.

An algorithm, FindCulprit(ic-T S,Seen), to find a culprit is relatively simple.
Pick a member of Seen and then find an Opα : tic in ic-T S that satisfies
condition (3) in the definition of culprits. Insert Opα : [i, i] into the culprit
set. Repeat this for each member of Seen. The resulting temporal status set
is compatible with ic-T S, but is different from all the members of Seen. The
algorithm for culprit identification is easily seen to run in time O(|ic-T S| ·
|Seen|). We extend this function by another argument H : H is a set of CAA’s
which were already considered.

8.2.1 Algorithm to Find Compatible Temporal Status Sets

Intuitively, when we have a set ic-T S of interval constraint temporal status
atoms, and we have a set Seen of temporal status sets compatible with ic-T S,
the culprit set associated with ic-T S and Seen specifies ways of modifying the
elements of Seen so as to get a new temporal status set not in Seen that is
compatible with ic-T S. This may be done as follows.

Algorithm 8.2 (Find Compatible TSS (OS,ic-T S,Seen))
FindCompTSS(OS,ic-T S,Seen)

(⋆ input is an agent state OS , a positive tap T P ⋆)
(⋆ an interval constraint temporal status set ic-T S ⋆)
(⋆ and a set Seen of temporal status sets ⋆)
(⋆ output is a compatible temporal status set not in Seen ⋆)
(⋆ if such a set exists and “No” otherwise ⋆)

(1) if Seen = ∅ then return ComputeTSS(ic-T S,T P,Seen);
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(2) H := ∅;
(3) CAA := FindCulprit(ic-T S,Seen, H);
(4) if CAA = ∅ then return ComputeTSS(ic-T S,T P,Seen);
(5) CTSSP = set of all culprit-TSS pairs of ic-T S,Seen w.r.t CAA;
(6) while CTSSP 6= ∅ do

(a) Select a pair 〈Opα : tic, T Stnow
〉 from CTSSP ;

(b) Set CTSSP := CTSSP \ {〈Opα : tic, T Stnow
〉};

(c) Set T S ′
tnow

:= Modified Set(ic-T S , T P,T Stnow
, Opα : tic).

(d) if T S ′
tnow

6= “No” ∧ T S ′
tnow

/∈ Seen then return T S ′
tnow

.
(7) H := H ∪ {CAA};
(8) Go to 3;

Remark 8.3 The simplest algorithm for FindCompTSS(OS ,ic-T S,Seen)
is the one consisting solely of calling the function ComputeTSS(ic-T S,T P,Seen).
In fact, if ic-T S is trivial (e.g. empty), then CAA is empty and Algorithm 8.2
comes down to line (4). However, in many cases ic-T S is more structured and
different temporal status sets can be distinguished by a Opα : tic in ic-T S ac-
cording to condition (3) of Definition 8.14. Thus the culprits give us in many
cases a much more precise instrument for determining different status sets,
rather than just calling the function ComputeTSS(ic-T S,T P,Seen).

Let us elaborate on the two subroutines ComputeTSS and Modified Set.

Definition 8.16 (Input and Output of ComputeTSS)
The ComputeTSS function takes as input (1) an interval constraint temporal
status set ic-T S, (2) a positive temporal program T P, and (3) a set Seen of
temporal status sets closed under the rules of T P.

It either returns a temporal status set closed under the rules of T P, compat-
ible with ic-T S, and different from the sets in Seen and minimal wrt. these
properties, if such a set exists, or “No” (if no such temporal status set exists).

Definition 8.17 (Input and Output of Modified Set)
The Modified Set function takes as inputs (1) an interval constraint temporal
status set ic-T S, (2) a positive temporal program T P, (3) a temporal status
set T Stnow

closed under the rules of T P, and (4) a temporal atom Opα : [i, i]
such that Opα 6∈ T Stnow

(i).

It either returns a new temporal status set T Snew
tnow

which is closed under the
rules of T P, compatible with ic-T S and satisfies Opα ∈ T Stnow

(i), and minimal
wrt. these properties if such a set exists, or “No” otherwise. In addition, T Stnow

is not contained in T Snew
tnow

.

The following theorem states that algorithm FindCompTSS is correct if the
subroutines it uses are correctly implemented. We will prove correctness of
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those subroutines later.

Theorem 8.18 Suppose the subroutines invoked by algorithm FindCompTSS
behave correctly as defined. Then:

(1) If Algorithm FindCompTSS returns a temporal status set T S ′
tnow

on the
inputs (O, ic-T S, Seen), then T S ′

tnow

is compatible with ic-T S in state O
and T S ′

tnow

/∈ Seen.
(2) If Algorithm FindCompTSS returns “No” then there is no temporal

status set compatible with ic-T S in state O which is not in Seen.

Proof:

(1) Suppose algorithm FindCompTSS returns a temporal status set T S ′
tnow

on the inputs (O, ic-T S, Seen). If this is returned in step 1, then we know
by definition of the ComputeTSS algorithm, that the output returned
is compatible with ic-T S. The only other step in which T S ′

tnow
can be

returned is Step 6d inside the while loop of Step 6. This step immedi-
ately ensures that T S ′

tnow
is not in Seen. By part (4) of the definition of

Modified Set (Definition 8.17), it follows that the output returned is
compatible with ic-T S.

(2) The only way that algorithm FindCompTSS returns “No” is when
ComputeTSS(ic-T S,T P,Seen) returns “No”. Thus the claim follows
from the correctness of ComputeTSS.

8.2.2 Algorithm ComputeTSS

We now present a detailed algorithm for ComputeTSS—later we will explain
how this function may be used to implement the Modified Set function.

Formally, the function ComputeTSS is used directly only at the beginning
of Algorithm 8.2 when Seen is still empty (later, in Section 8.2.3, we will see
that it is also used in the Modified Set algorithm). We have to construct
a temporal status set T Stnow

compatible with ic-T S and closed under the
rules of T P. How can we accomplish this? Obviously, if an atom of the form
Opα : [4, 4] is in ic-T S we have to put Opα into T Stnow

(4).

But all other atoms consisting of non-singleton tic’s must also be satisfied.
How can we assign them to T Stnow

? For a precise description, let us introduce
the concept of a constraint hitting set.

Definition 8.19 (Constraint Hitting Set) Suppose ic-T S is an interval
constraint temporal status set. A constraint hitting set, H, for ic-T S is a
minimal set of ground annotated atoms of the form Op α : [i, i] such that:
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For every interval constraint annotated status atom Op α : tic ∈ ic-T S, there
is an annotated atom of the form Op α : [i, i] in H such that i is a solution
of tic, and if i < tnow, then Op α ∈ acthisttnow

(i).

We use chs(ic-T S) to denote the set of all constraint hitting sets for ic-T S.

We will use a subroutine called find member chs(ic-T S, Seen) which finds a
member of chs(ic-T S) that is not in Seen. If no such element exists, it returns
“No solution.” We do not specify the implementation of this algorithm as
it can be easily implemented (using standard hitting set algorithms(Cormen,
Leiserson, and Rivest 1989)) in time proportional to the product of

(1) the cardinality of ic-T S,
(2) max{card(X) |Opα : tic ∈ ic-T S and X is the set of all solutions of tic},

and
(3) cardinality of Seen, and
(4) max{card(Y ) | Y ∈ Seen}.

Our algorithm for ComputeTSS systematically tries to satisfy the status
atoms by first computing a hitting set. There are two possibilities:

(1) There is no such hitting set. If this happens, then the ic-T S we started
with cannot be extended to a temporal status set closed under the rules
of T P and still compatible with ic-T S.

(2) There is such a hitting set H .

Such a hitting set H will serve us as a starting point to compute a temporal
status set. Note that H can already be seen as a temporal status set compatible
with ic-T S. The problem is that it is not closed under the rules of T P.

Before elaborating further on how ComputeTSS may be implemented, we
need one more concept.

Definition 8.20 (Solution closed) A set H of interval constrained anno-
tated atoms is said to be solution-closed iff:

for all interval constrained annotated status atoms Opα : tic ∈ H, the fol-
lowing holds:
tic has a solution i and Opα : [i, i] ∈ H

Intuitively, a set H is solution closed if for every interval constrained anno-
tated status atoms Opα : tic in H , some explicit Opα : [i, i] is also in H where
i is a solution of tic.
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Given this requirement, another problem is that the ic-T S with which we
started is obtained as the least fixpoint of the D operator. Thus it contains
status atoms that violate the solution-closed requirement. We use the hitting
set H to get rid of them. H chooses appropriate times for status atoms with
annotations that includes more than one time point. We add these atoms to the
program and get a new program T Pnew (see (2)(d)(ii)(A) in Algorithm 8.3).
We then apply our operator D to T Pnew (see (2)(d)(ii)(B) in Algorithm 8.3).
Note that new atoms which violate the solution-closed requirement may still
be generated. We repeat this process until either

(1) all constraint atoms have a solution in the current H∗ (see (2)(d)(ii)(C)
in Algorithm 8.3), or

(2) we reach a fixpoint H∗. This fixpoint yields a better candidate ic-T Snew

and we have to re-iterate the whole process, by first computing a hitting
set of ic-T Snew and then computing the iterations of our operator D.

We may now implement ComputeTSS as follows.

Algorithm 8.3 (ComputeTSS(ic-T S, T P, Seen))
ComputeTSS(ic-T S, T P, Seen)

(⋆ input is a positive tap T P ⋆)
(⋆ an interval constraint temporal status set ic-T S ⋆)
(⋆ and a set Seen of temporal status sets ⋆)
(⋆ output is a compatible temporal status set not in Seen ⋆)
(⋆ which is closed under the rules of T P ⋆)

(1) done := false; found := false; Loc Seen := Seen;
ic-T Snew := ic-T S; H∗ := ∅, done inner := false;

(2) while ¬done ∧ ¬found do
(a) if done inner then

(i) H = find member chs(ic-T S,Loc Seen);
(ii) if H = “No” then done:= true;
(iii) done inner:= false

(b) else
(i) H = find member chs(ic-T Snew,Loc Seen);
(ii) if H = “No” then done inner= true;

(c) Loc Seen := Loc Seen ∪ {H};
(d) if H 6= “No” then

(i) H⋆ = H; changed =true;
(ii) while ¬found ∧ changed do

(A) T Pnew = T P ∪ H⋆; oldH⋆ = H⋆;
(B) H⋆ = DT Pnew

;
(C) if H⋆ /∈ Loc Seen ∧ H⋆ is solution closed

then found = true
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else changed = (oldH⋆ 6= H⋆);
(iii) Loc Seen := Loc Seen ∪ {H∗}; ic-T Snew := H∗

(3) if found then return H⋆ else return “No.”

The following lemma states that the above implementation of Algorithm 8.3
satisfies the output conditions of Definition 8.16.

Lemma 8.21 Suppose the find member chs(ic-T Snew,Loc Seen) algorithm
is correctly implemented. Then:

(1) If algorithm ComputeTSS returns a temporal status set H∗, then H∗

satisfies the output conditions of Definition 8.16.
(2) If algorithm ComputeTSS returns “No”, then there is no temporal sta-

tus set satisfying the output conditions of Definition 8.16.

Proof: We start by observing that successive executions of the inner while
loop cause T Pnew to increase monotonically (i.e. w.r.t. subset inclusion) and
hence, successive executions of the inner while loop cause H⋆ to expand mono-
tonically (w.r.t. subset inclusion) as well. Hence, successive iterations of step
(iii) cause ic-T Snew to grow monotonically as well (as long as done remains
false).

Concerning the outer while loop, we have to distinguish whether the if part
(step (a)) or the else part (step (b)) has been applied. In the beginning, the
else part is active. Then a hitting set H is computed (based on ic-T S) which
is then refined (to guarantee that it is closed under the program rules). The
inner loop computes the least fixpoint of H (using the operator DT Pnew

). Once
this least fixpoint H∗ is computed, the outer loop has to be called again 8 with
H∗ as a new ic-T Snew. The iteration ends only, if

• H∗ is a solution as determined in Step (C)). In this case the boolean “found”
is set to true. Or,
• we enter the if part in step (a). This means that all attempts to extend H∗

to a solution closed set (i.e. a temporal status set closed under the rules of
T P) failed and we have to backtrack. Thus we have to add H∗ to Loc Seen
and to find a new hitting set.

(1) Suppose ComputeTSS returns H∗. Clearly H∗ is closed under the rules
of T P because H⋆ = DT Pnew

which is closed under all the rules of T Pnew

and T P ⊆ T Pnew. H∗ is compatible with ic-T S because the function
find member chs(ic-T Snew,Loc Seen) correctly finds a constraint hitting
set H ⊆ H∗ of ic-T Snew—however, it is easy to see that ic-T S ⊆ ic-T Snew

and hence H is a constraint hitting set of ic-T S (though it may not satisfy

8 See the explanation just above Definition 8.20.
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the minimality requirement of a hitting set)—hence H is compatible with
ic-T S. As H ⊆ H∗, H∗ is also compatible with ic-T S. Lastly, Step (C)
ensures that H∗ is not in Seen.

(2) Suppose ComputeTSS returns “No.” This can only happen in step (3),
which itself happens only when the if part in step (C) applied. This
means that there are no more unseen hitting sets. As all compatible
status sets of ic-T S must be supersets of some hitting set of ic-T S, there
are no compatible temporal status sets of ic-T S which are not in Seen
and closed under the rules of T P.

Note that once a hitting set H is determined in the outer loop, there
is no freedom in extending H to a potential solution. The algorithm
extends H only by those elements that are strictly needed (iterating the
DT P operator): the construction is deterministic. The only indeterminism
is in step (a) where we backtrack over all possible hitting sets.

We note, in view of Remark 8.4, that the set generated by ComputeTSS is
not a minimal one. i.e. there might be smaller sets closed under the rules which
are compatible with ic-T S. The reason is that the generated hitting set might
not have been optimal. As an illustration, we consider the ic-T S consisting
of Pα : [1, 2], Pα : [3, 4], and the program Pα : [1, 1] ← Pα : [2, 2],Pα :
[4, 4]. If we start with the wrong hitting set, namely {Pα : [2, 2],Pα : [4, 4]},
ComputeTSS produces H∗ = {Pα : [1, 1],Pα : [2, 2],Pα : [4, 4]}. But if
we start with a subset of H∗, namely {Pα : [1, 1],Pα : [4, 4]}, then this is a
minimal status set closed under the rules and compatible with ic-T S. It is easy
to modify Algorithm 8.3 to take this into account. We can either compute all
solutions and check for minimality, or we can take a solution and compute a
hitting set different from the one we started with. We then call ComputeTSS
on this new hitting set. The result could be a smaller solution than originally
obtained.

8.2.3 Algorithm for Modified Set Computation

The function Modified Set used as a subroutine in Algorithm 8.2 takes a set
T Stnow

known to be closed under the rules of T P and a culprit Opα : [i, i] and
computes a new set T Snew

tnow
such that Opα ∈ T Snew

tnow
(i) (note that, by the very

definition of a culprit, Opα /∈ T Stnow
(i)). The idea is to modify T Stnow

as little
as possible, and to try to restore closure under the rules (simply adding Opα
to T Stnow

(i) might result in rules which did not fire before to fire, and thus
this simple extension is not closed under the program rules). Here is a simple
way to realize Modified Set by using the function ComputeTSS.

(1) First, set Seen := ∅.
(2) Then, define T Snew

tnow
to be exactly like T Stnow

, except that Opα ∈ T Snew
tnow

(i).
Then if Opα ∈ T Stnow

(j) and there is a program rule in T P with head
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Opα : tic such that both j and i are solutions of tic, then make sure
that Opα 6∈ T Snew

tnow
(j). This condition ensures minimality of the com-

puted temporal status set: without it, we can generate larger and larger
temporal status sets just by adding unnecessary atoms. We are interested
in generating rational temporal status sets (rather than all feasible sta-
tus sets) because the latter have various desired epistemic properties (see
(Eiter, Subrahmanian, and Pick 1999) for details)—for instance, they do
not perform more actions than needed.

(3) We can then apply ComputeTSS(T Snew
tnow
∪ ic-T S,T P,Seen) (here we

slightly abuse notation and identify T Snew
tnow

with the obviously induced
interval constraint status set) and get a new temporal status set closed
under the rules of T P.

(4) Finally, we have to check that the computed status set does not contain
T Stnow

(in that case, it would not be rational). If it does contain T Stnow
,

then we set Seen := Seen ∪ {T Stnow
} and go back to (2).

Note that this algorithm may also produce “No”, namely via the function
ComputeTSS. It is easy to see that the whole procedure correctly satisfies
the requirements laid out in Definition 8.17.

Theorem 8.22 (Algorithm 8.1 is correct and complete)
Algorithm 8.1 generates a feasible temporal status set (if one exists).

Proof:

Suppose Algorithm 8.1 returns T Stnow
. In this case, T Stnow

is compatible via
step (5)(a), and feasible via step 5(b).

Conversely, suppose Algorithm 8.1 returns “No.” In this case, we know that
FindCompTSS returned “No” which means that it was unable to find a
minimal temporal status set compatible with pre-ic-T S. But this means that
all temporal status set compatible with pre-ic-T S are in Seen which means
none of them is feasible.

Remark 8.4 A slight modification of the ComputeTSS subroutine allows
for the computation of rational status sets. Namely if we require the computed
set of Definition 8.16 to be minimal while being closed under T P, and com-
patible with ic-T S, and change Algorithm 8.3 accordingly, then Algorithm 8.1
generates a rational feasible temporal status set (if one exists). The proof
is literally the same. The fact that the outcome is rational follows from the
minimality requirements in Modified Set and ComputeTSS.

Once the rational temporal status sets are known, the feasible status sets are
easily obtained by adding new action atoms and then applying the Compute-
TSS function. This is because each feasible status set is an extension of its
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underlying rational status set.

Remark 8.5 Note that we required a temporal status set to satisfy T Stnow
(i) 6=

∅ for only finitely many i. It is easy to write programs where FindCompTSS
never terminates but yet such a finite temporal status set does not exist. For
example, consider the simple loop

Pα : [t + 1, t + 1] ←

meaning that for all i: Pα ∈ T Stnow
(i).

It is obvious that in general, the complexity introduced by the two subroutines
ComputeTSS and Modified Set is very high. The underlying source is
reasoning by cases which is known to be of high complexity. A possible remedy
(which is beyond the scope of this paper) is to consider special classes of
programs and to show that for these classes, the functions ComputeTSS
and Modified Set can be realized with low overall complexity. To define
such classes syntactically, we have to make sure that situations as described
in Example 8.13 are excluded.

9 Applications of taps

In this section, we present three multiagent applications of temporal agent
programs involving time. The first describes how different agents The first
describes how different agents reconcile existing commitments to a group with
new requests/opportunities. The second studies how different agents may ne-
gotiate with one another to reduce pollution. The third deals with the well
known contract net framework.

9.1 Intention Reconciliation by Collaborative Agents

Many applications have been proposed that require individual agents to work
collaboratively to satisfy a shared goal (Decker and Li 1998; Sen, Haynes, and
Arora 1997; Sycara and Zeng 1996). In these settings, agents form teams to
carry out actions, making commitments to their group’s activity and to their
individual actions in service of that activity. As rational agents, the individu-
als who form teams must be able to make individually rational decisions about
their commitments and plans. As members of a team, they must be respon-
sible to the team and, dually, be able to count on one another. In particular,
there are many factors that an agent needs to take into consideration when
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confronted with a request to perform an individual action γ which conflicts
with prior commitment to perform a group action β.

In (Sullivan, Glass, Grosz, and Kraus 1999; Glass and Grosz 1999) such factors
were studied and tested in a simulation environment called SPIRE (Shared-
Plans Intention-Reconciliation Experiments). In this environment, a team of
agents (g1, . . . , gn) work together on group activities, called GroupTasks, each
of which consists of doing a set of tasks. Each task has a specified time pe-
riod and is assigned to one of the agents in the group by a central scheduling
function that has complete knowledge of agents’ defaulting behavior. Agents
receive income for the tasks they do which can be used in determining an
agent’s current utility and in estimating its future-expected utility.

Sometimes, agents, are offered the opportunity to do some action γ that con-
flicts with a task β they have been assigned. If the agent chooses the new
opportunity, it defaults on the task β with which γ conflicts. If there is an
available replacement agent that is capable of doing β, the task is given to
that agent; otherwise, β goes undone. The group as a whole incurs a cost
whenever an agent defaults, and this cost is divided equally among the group’s
members. The cost of a particular default depends on its impact on the group;
it is larger if there is no replacement.

SPIRE currently uses a social-commitment policy (SCP) in which a portion of
each agent’s weekly tasks is assigned based on how “responsible” it has been
over the course of the simulation. When an agent needs to make a decision
whether to keep its commitment to the group (i.e., do β) or default and do
the outside option, γ it weighs the impact of the choice on three factors:
current income (CI), future expected income (FEI) given the SCP (i.e., effect
on ranking and subsequent task assignment), and loss of good-guy stature
in the community independent of effect on income (BP). For each option, it
combines the three factors into an expected utility value using normalization
methods of multiple attribute decision making theory (Yoon and Hwang 1995)
and choose the option with the highest expected utility.

SPIRE is a simulation environment and only simulates agent decision making,
but does not provide tools for creating and deploying such agents. In this
section we demonstrate how such agents can be programmed using tap.

We associate with each agent, a specialized package called utility that sup-
ports the following functions in order to compute its expected utility. Such a
package can be easily implemented in the IMPACT agent development envi-
ronment (Eiter, Subrahmanian, and Rogers 1999) and agent developers can
choose to use it if their agent needs to perform intention reconciliation of the
sort described in SPIRE.

• utility : current income(A, Rep) → Real
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current income takes as input, an action and a flag. The flag indicates, in
case that the action is an outside option, whether there is a replacement if
the agent defaults on its current assigned action in order to do the specified
action. The function returns the income from the task or outside offer, as
well as the agent’s share of the group cost if it defaults.
• utility : future e income(A, Rep) → Real

future e income takes as input, an action and a “replacement” flag and
returns the agent’s estimate of its income in the future, based on its current
ranking if it will do A.
• utility : brownie points(A, Repl) → Real

brownie points takes as input, an action and a “replacement” flag and pro-
vides a measure of the agent’s sense of its reputation as a responsible col-
laborator if it does A under the specified conditions.
• utility : combine factors(A, CI, FEI, BP) → Real

combine factors combines the three factors that the agent should take into
consideration when making a decision, and computes the expected utility
of the agents from doing A. The combination is done using normalization
methods of multiple attribute decision making theory (Yoon and Hwang
1995).

We associate with each agent, an additional specialized package called schedule

that supports the code calls listed below that determine its schedule.

• schedule : check(T) → Actions

check returns the action (to be precise the name of an action together with
its arguments) that the agent is scheduled to do in the specified time, if
such an action exist, and null, otherwise.

The msgbox package is discussed in appendix B.1 and Appendix B.1. We now
extend it by adding the following code calls:

• msgbox : gather outside req()→ {〈Actions,Time〉}
gather outside req returns pairs of an action and a time period of outside
offers.
• msgbox : check replacement(T)→ Boolean

check replacement takes a time period as input, and returns whether there
is an agent who is available at this time period.

Here are a few rules that can be used to program agents in SPIRE.

r1 (Schema for actions α ∈ Actions):
Oα : [Xnow, Xnow] ← in("α", schedule : check(Xnow)) : [Xnow, Xnow]

This represents a schema of rules: an instance is obtained by substituting
the metavariable α with a particular action act(x) (the tuple x represents
the arguments) from a prespecified finite set Actions. We denote by "α"
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resp. by "act(x)" the string consisting of the complete name of the action
together with the arguments (we consider such strings as constants in the
underlying language).

The agent is obliged to do an action α if it is in its schedule when the
action time arrives.

r2: OremoveAction(Y) : [Xnow, Xnow] ←
(Do addAction(Y, T) & in(Y, schedule : check(T)) ) : [Xnow, Xnow]

The agent maintains the consistency of its schedule. It is obliged to remove
Y from its schedule if it adds a conflicting action (in SPIRE, an agent cannot
have more than one task at a time in its schedule).

r3: PaddAction(Y, T) : [Xnow, Xnow] ←
( in(〈Y,T〉, msgbox : gather outside req()) &
in(null, schedule : check(T))

):[Xnow, Xnow]

The agent is permitted to add an action to its schedule if it was requested
to do it and it does not conflict with its other scheduled actions.

r4: PaddAction(Y, T) : [Xnow, Xnow] ←
( in(〈Y,T〉, msgbox : gather outside req()) &
in(Y1, schedule : check(T)) & 6= (Y 1, Y ) &
in(X, msgbox : check replacement(T)) &
in(CI, utility : current income(Y, X)) &
in(FEI, utility : future e income(Y, X)) &
in(BP, utility : brownie points(Y, X)) &
in(U, utility : combine factors(Y, CI, FEI, BP)) &
in(CI′, utility : current income(Y1, "na")) &
in(FEI′, utility : future e income(Y1), "na") &
in(BP′, utility : brownie points(Y1, "na")) &
in(U′, utility : combine factors(Y1, CI′, FEI′, BP′)) &
> (U,U′)

):[Xnow, Xnow]

The agent is permitted to add a new action Y to its schedule, even if
it conflicts with another action, Y 1, if its expected utility from Y is larger
than its expected utility from Y 1. In order to compute the expected utility
of an action the agent computes its current income, future expected income
and its brownie points from doing the action.

r5: OSendAnnouncement(scheduler, "default", 〈X,T〉) : [Xnow, Xnow] ←
Do removeAction(X, T) : [Xnow + 1, Xnow + 1]

If the agent intends to remove a collaborative action from its schedule, it
is obliged to announce the scheduler agent about its intention.
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9.2 Strategic Negotiations in the Pollution Control Problem

There are situations in which there is a need to reduce air pollution for a short
time period in a specific geographical area because of external factors (such
as weather). Plants have to reduce emission of several polluting substances
by some percentage. The solution that is currently implemented is simply the
reduction of emission by each plant by the appropriate percentage. But, it
may be less costly for one plant to reduce a specific substance emission than
it is for another plant. Therefore, plants in the given geographical area can
reach a beneficial agreement with respect to emission of what substances and
by which percentage each of them must reduce emission.

Several countries have been using human bargaining and auctions for dis-
tribution of long term emission allowances for efficient control of pollution
(e.g.,(EPA 1999)). For short term reductions which should be agreed upon in
a short time period, we propose that the plants be represented by automated
agents that will negotiate to reach an agreement on the pollution reduction.
Each agent would like to maximize the profit of its plant, but the total emis-
sion of each substance must not exceed the maximal permissible emission of
this substance according to the authorities’ instructions.

We propose to use the model of alternating offers, in which all agents negotiate
to reach an agreement which specifies the reduction in each substance for each
of the plants. An agent may opt out of the negotiations and choose to use the
equal percentage reduction instructed by the authorities.

The protocol of alternative offers involves several iterations until an agreement
is reached. During even time periods, one agent makes an offer, and in the
next time period each of the other agents may either accept the offer, reject
it, or opt out of the negotiation. If an offer is accepted by all agents, then
the negotiation ends, and this offer is implemented. If at least one of the
agents opts out of the negotiation, then the plants will reduce their pollution
according to the equal percentage reduction instructed by the authorities. If
no agent has chosen “Opt”, but at least one of the agents has rejected the
offer, the negotiation proceeds to the next time period, another agent makes
a counter-offer, the other agents respond, and so on.

The problem described here is similar to the data allocation in the multi-
servers environment problem discussed in (Schwartz and Kraus 1997). The
details of the strategies that are in perfect-equilibrium which are specified in
(Schwartz and Kraus 1997) are also in perfect equilibrium in our domain. As
in the data allocation domain, the perfect equilibrium leads to an agreement
with no delay. We demonstrate here how a designer of an agent can program
these strategies in tap.
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We assume that there are #agents agents (where #agents > 2) who are num-
bered 0, 1, 2, ..., #agents − 1, and that the temporal agent program specified
below is for agent i. Furthermore, we assume that each agent has an evalua-
tion function V i representing its preferences. It is a function from the set of all
possible allocations of the emission reductions to the real numbers. We denote
by V, the set of evaluation functions of all the agents.

We associate with each agent, a specialized package called nego that supports
a function, findAlloc which takes as input, a set of substances to be reduced,
the equal percentage reduction instructed by the authorities, equal reduction,
the valuation functions of the agents and a maximization criteria (e.g., max sum)
which returns an allocation that is better for all agents than opting out and
maximizes the given criteria. This can be done, for example, by a package sup-
porting simplex if the evaluation functions of the agents are linear functions.

nego also supports the code call nego : endNego(Messages) → Boolean.
endNego gets as an input a set of answers or an offer or an empty set and
returns true if the negotiations ends and false otherwise.

The msgbox package is discussed in Appendix B.1. We now extend it with the
following code calls:

• msgbox : gatherAnswers(NumAgents, Time) → SetofAnswers

gatherAnswers gets as input a number of agents and a time point and returns
the answers sent by these agents at the specified time point.
• msgbox : doneBroadcast(Time) → Boolean

doneBroadcast gets as input a time point, and returns true if the agent has
broadcast the required answer at this time period and false otherwise.
• msgbox : gatherProposal(Time) → SetofProposals

gatherProposal gets as input a time point and returns the proposal made
by the relevant agent at the specified time point.

The following rules can be used to program the agents in the strategic nego-
tiation.

r1: Obroadcast(Offer) : [Xnow, Xnow] ←
Do processAnswers() : [Xnow − 1, Xnow − 1] &
( in(X1, msgbox : gatherAnswers(#agents − 1, Xnow − 1)) &
in(false, nego : endNego(X1)) &
in(Offer, nego : findAlloc(subst,V, equal reduction, max sum)) &
in(0, math : remainder(Xnow, 2)) &
in(i, math : remainder(Xnow/2, #agents))

):[Xnow, Xnow]

If the negotiations have not ended in the preceding time period, then the
agent whose turn it is to make an offer is obliged to make an offer. The offer
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is the one that maximizes the sum of the utilities among the allocations
that yield each agent at least its opting out utility (i.e., the utility from
following the authorities requirements.) The desired proposal is determined
using the findAlloc function.

In the protocol described above, offers are made only in even time periods.
Therefore, the agent is obliged to broadcast a proposal only when the time
period is even. In particular, agent i should make offers in time periods,
2i, 2(i + #agents , 2(i + 2×#agents , etc.

The agent doesn’t need to send a proposal if the negotiation ends. This
is determined by processing the answers of the previous time period which
is gathered using the gatherAnswers code call.

r2: Obroadcast("yes") : [Xnow, Xnow] ←
Do processAnswers() : [Xnow − 1, Xnow − 1] &
in(Offer, msgbox : gatherProposal()) : [1, Xnow − 1] &
( in(false, nego : endNego(Offer)) &
in(Offer, nego : findAlloc(subst,V, equal reduction, max sum)) &
in(1, math : remainder())

):[Xnow, 2] &
not in(i, math : remainder((Xnow − 1)/2, #agents)) : [Xnow, Xnow]

The agent answers “yes” if it received a proposal that maximizes the sum
of the utilities among the allocations that yield each agent at least its opting
out utility. Answers are given only in odd time points and an agent i should
answer only when it wasn’t its turn to make an offer, i.e. if the remainder of
the the division of (Xnow − 1)/2 by #agents is not i. This is relevant only if
the negotiations haven’t ended yet, i.e., the code call endNego returns false,
given the offer made in the previous time point (i.e., Offer).

r3: Oopt : [Xnow, Xnow] ←
Do processAnswers() : [Xnow − 1, Xnow − 1] &
in(Offer, msgbox : gatherProposal()) : [1, Xnow − 1] &
( in(false, nego : endNego(Offer)) &

in(Offer1, nego :findAlloc(subst,V, equal reduct, max sum)) &
6= (Offer, Offer1)&
in(1, math : remainder())

):[Xnow, 2]&
not in(i, math : remainder((Xnow − 1)/2, #agents)) : [Xnow, Xnow]

The agent opts out of the negotiations if it received a proposal which
does not maximize the sum among the allocations that yield each of at
least its opting out utilities. The only difference between r3 and r2 is that
in r3 Offer1 is not equal to Offer and according to the specifications of
the strategies that are in equilibrium, it should opt out of the negotiation.

r4: FprocessAnswers() : [Xnow, Xnow] ←
in(false, msgbox : doneBroadcast(T1)) : [Xnow, Xnow]

An agent is forbidden to read the answer of other agents before it broad-
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casts its answers.
r5: OprocessAnswers() : [Xnow, Xnow] ←

in(1, math : remainder(Xnow, 2)) : [Xnow, Xnow]

An agent is obliged to process the answers it obtained from other agents.

9.3 Delivery Agents in Contract Net Environments

In this section, we show how agent programs may be used to simulate a con-
tract net problem. We consider the problem described in (Sandholm 1993)
where there are several companies each having a set of geographically dispersed
dispatch centers which ship the companies’ products to other locations.

Each dispatch center is responsible for the deliveries initiated by certain fac-
tories and has a certain number of vehicles to take care of deliveries. The
geographical areas of operation of the dispatch centers overlap considerably.
This enables several centers to handle a given delivery. Every delivery has to
be included in the route of some vehicle. The problem of each dispatch cen-
ter is to find routes for its vehicles minimizing its transportation costs and
maximizing its benefits.

Sandholm (1993) suggests that in solving this problem, each dispatch center—
represented by one agent—first solves its local routing problem. After that, an
agent can potentially negotiate with other dispatch agents to take on some of
their deliveries or to let them take on some of its deliveries for a dynamically
negotiated fee. Sandholm presents a formal model of the bidding and award
process which is based on marginal cost calculations. Here, we demonstrate
how to program such agents in IMPACT. We use the terms “center” and its
associated agent interchangeably.

We will use several specialized packages and functions in building such agents.
The optimizer package provides functions to compute prices, costs, etc. and
for identifying deliveries that can be sub-contracted to other centers. It in-
cludes the following code calls:

• optimizer : findDelivery() → Delivery

findDelivery chooses deliveries (from the deliveries handled by the center)
which will be announced to other centers in order to get bids from them.
In Sandholm’s implementation, deliveries were chosen randomly from those
deliveries whose destination lies in another center’s main operation area.
• optimizer : maxPrice(Del) → Real

maxPrice takes a delivery as input and returns the maximum price of the
announcement (i.e., the maximum price the agent is willing to pay). It uses a
heuristic approximation of the marginal cost saved if the delivery is removed
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from the routing solution of the agent. An example of such a heuristic is
described in (Sandholm 1993).
• optimizer : price(Del) → Real

price takes a delivery as input and returns the price that the delivery would
cost if done by this server.
• optimizer : feasible(Del) → Boolean

feasible takes a delivery as input and returns true if it is feasible for the
agent to perform the delivery, given its current and pending commitments.
• optimizer : getTime(Del) → Time

getTime takes a delivery as input and returns the time until which the agent
is willing to accept bids for an announcement for this delivery.
• optimizer : gatherAnnounceExpired(Time) → ListofAnnouncements

gatherAnnounceExpired takes a time point as input and finds the announce-
ments whose waiting time has expired.
• optimizer : sentBid(Id) → Boolean

sentBid takes an announcement Id as input and returns true if the agent
has already sent a bid for this announcement and false otherwise.
• optimizer : verifyAward(A) → Boolean

verifyAward takes an award as input and returns true if the details of the
award are the same as in the bid sent by the agent.
• optimizer : annTime(Time) → Boolean

annTime takes a time point as input and returns true if the agent should
consider sending announcements at the specified time point.
• optimizer : bidTime(Time) → Boolean

annTime takes a time point as input and returns true if the agent should
consider sending bids at the specified time point.

The gis package includes functions which provide information on the geo-
graphical locations of the dispatch centers. Such a package could well be any
commercial geographic information system. The gis package supports the fol-
lowing code call:

• gis : centers located(Del) → ListofCenters

centers located takes a delivery as input and returns centers (other than
the agent’s center) whose associated operations area cover the destination
of the delivery.

The msgbox package is extended with the following code calls:

• msgbox : getId() → String

getId provides a unique name for an announcement. It could be implemented
as a combination of the agent’s identification number and a counter which
is increased each time getId is called.
• msgbox : gatherAnnounce(Time) → ListofAnnouncements

gatherAnnounce takes a time point as input and returns announcements
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which were received from other agents and their expiration time is before
the specified time. The fields of an announcement are: its identification
number (Id), the delivery (Del), the sender (Center), the expiration time
(Time) and the maximal price (C max).
• msgbox : gatherBids(Id) → ListofBids

gatherBids takes an identification number of an announcement as input and
returns all bids that were sent as a response to the specified announcement.
• msgbox : gatherAwards() → ListofAnnouncements

gatherAwards returns all the awarding messages the agent received.

The following is the agent program that solves the contract net problem.

r1: Osend ann(Center, Id, Del, C max, Time) : [Xnow, Xnow] ←
( in(true, optimizer : annTime(Xnow)) &
in(Del, optimizer :findDelivery()) &
in(Center, gis : centers located(Del)) &
in(C max, optimizer : maxPrice(Del)) &
in(Time, optimizer : getTime(Del)) &
in(Id, msgbox : getId())

):[Xnow, Xnow]

An agent should consider sending announcements if the optimizer indi-
cates (using annTime) that Xnow is an appropriate time to do so. At these
time points, an agent is obliged to send an announcement for the deliveries
chosen by the optimizer to all the centers whose operation areas include the
destination of the delivery. The delivery is chosen by the optimizer, who
also computes the maximal price the agent is willing to pay.

r2: Osend bid(A.Center, A.Id, A.Del, C bid) : [Xnow, Xnow] ←
(in(true, optimizer : bidTime(Xnow)) &
in(A, msgbox : gatherAnnounce(Xnow)) &
in(false, optimizer : sentBid(A.Id)) &
in(true, optimizer : feasible(A.delivery)) &
in(C bid, optimizer : price(A.Del)) &
<(C bid,A.C max)

):[Xnow, Xnow]

The agent considers announcements received from other agents. It first
verifies that the time of the announcement hasn’t passed. Then it verifies
that performing the delivery of the announcement is feasible given its other
commitments. Finally, it determines the bidding price using the price func-
tion. If this price it lower than the maximal price the announcer is willing
to pay, then it is obliged to send the bid.

r3: Osend award(B2.Center, B2.Id) : [Xnow, Xnow] ←
(in(A, optimizer : gatherAnnounceExpired(Xnow)) &
is(B1, msgbox : gatherBids(A.Id)) &
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in(B2, math :min(B1)) &
<(B2.price,A.C max) &
Do delete(A.Del)

):[Xnow, Xnow]

When the time of an announcement has expired, the agent is determining
the identity of the successful bidder. These announcements are identified by
gatherAnnounceExpired. The agent awards the delivery to the center which
offers the lowest bid, given that this bid is lower than the maximal price the
agent is willing to pay. All the bids are gathered by the gatherBids function
and min returns the one with the minimal price. In addition, the delivery
of the announcement is removed from the current deliveries of the center.

r4: O send reject(B2.Center, B2.Id) ←
( in(A, optimizer : gatherAnnounceExpired(Xnow)) &
is(B1, msgbox : gatherBids(A.Id)) &
in(B2, math :max (B1)) &
>(B2.price,B.C max)

):[Xnow, Xnow]

This rule indicates a situation when no award is made. It occurs when
the minimal bid is higher than the maximal price the agent is willing to
pay. Most of the conditions are the same as in rule r3, except for B.price >
C max.

r5: Osend reject(B3.Center, B3.Id) : [Xnow, Xnow] ←
( in(A, optimizer : gatherAnnounceExpired(Xnow)) &
is(B1, msgbox : gatherBids(A.Id)) &
in(B2, math :min(B1)) &
in(B3, msgbox : gatherBids(A.Id)) &
6=(B2,B3)

): [Xnow, Xnow]

The agent is obliged to send rejection messages to all unsuccessful bidders.
The conditions involved are similar to these of r3. The difference is that the
bid (B3) is different from the minimal one (B2).

r6: Oindicate(A.Center, A.Id, A.Del, C bid) : [Xnow, Xnow] ←

ctascDo send bid(A.Center, A.Id, A.Del, C bid)[Xnow, Xnow]
The agent must keep the details of its bids. It will be used to verify the

correctness of the details of awards.
r7: Oadd(A.del) : [Xnow, Xnow] ←

( in(A, msgbox : gatherAwards(Xnow)) &
in(false, optimizer : verifyAward(A))

):[Xnow, Xnow]

Whenever an agent receives an award based on one of the bids it sub-

63



mitted, it must add delivery of the supply item involved to its schedule,
assuming that the details specified in the award are the same as in the bid
sent by the agent. Note that in this system, submitted bids are binding.

10 Related Work

Actions and time have been extensively studied by many researchers in several
areas of computing (e.g., (Manna and Pnueli 1992; Haddawy 1991; Morgen-
stern 1988; Allen 1984; Lamport 1994; Nirkhe, Kraus, Perlis, and Miller 1997;
Dean and McDermott 1987; McDermott 1982; Rabinovich 1998; Singh 1998)).
We present here the main differences between others’ work and ours, and dis-
cuss work that combines time with deontic operators. Surveys of research on
temporal reasoning include (Benthem 1991; Benthem 1995; Baker and Shoham
1995; Lee, Tannock, and Williams 1993; Vila 1994; Alur and Henzinger 1992;
Chittaro and Montanari 1998).

• One of the main differences between our approach and the temporal logics
approach is that we allow the history to be partially specified but in their
approach, the entire history is defined for any time period. Allowing the
history to be partially defined is needed when modeling bounded agents, as
in this book.
• In our model, time can be expressed explicitly (as in, for example, (Thomas,

Shoham, Schwartz, and Kraus 1991)). We do not use the modal temporal
logic approach where time periods cannot be expressed in the language.
• We use a simple interval based temporal logic (Allen 1984), and introduce a

mechanism for specifying intermediate effects of an action. We focus on the
semantics of temporal agent programs which specify the commitments of
the agents. We do not have modal operators associated with time but only
with the obligations, permissions, etc. of an agent. Other interval temporal
logics (e.g., (Halpern and Shoham 1991; Allen and Ferguson 1994; Artale
and Franconi 1998)) were developed for describing complex plans and/or
the study of appropriate semantics and their complexity for interval based
temporal logics.
• We presented a temporal interval constraint language in order to provide a

compact way to represent temporal feasible status sets. Other attempts to
use constraints to simplify temporal reasoning include Dechter, Meiri, and
Pearl (1991) who were one of the first to apply general purpose constraint
solving techniques (such as the Floyd-Warshall shortest path algorithm) to
reason about temporal relationships, and Koehler and Treinen (1995) that
use a translation of their interval-based temporal logic (LLP) into constraint
logic (CPL) to obtain an efficient deduction system.
• Most traditional AI planning frameworks assume that an action’s effects

are realized only after the entire action is successfully executed (Hendler,
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Tate, and Drummond 1990; Hendler and McDermott 1995). We proposed a
mechanism that allows an agent designer to specify intermediate effects.
• In our framework, we allow temporal indeterminacy. For instance, a tax

auditor may be obliged to notify the subject of the audit within 30 days
of performing the audit, and an e-commerce billing system be forbidden
from sending a client more than one bill per week. However, the auditor
may send the notification on any one of 30 days leaving him with some
choices. Likewise, our framework (via the notion of a temporal action state
condition) allows us to specify and evaluate conditions that are true at some
time point in a given set—this is similar to disjunctive reasoning.

Several researchers have combined logics of commitments and actions with
time.

Cohen and Levesque (1990a, Cohen and Levesque (1990b) define the notion
of persistence goals (P-GOAL). They assume that if an agent has a P-GOAL
toward a proposition, then the agent believes that this proposition is not
true now, but that it will be true at some time in the future. The agent will
drop a persistent goal only if it comes to believe that it is true or that it is
impossible. In their logic, time doesn’t explicitly appear in the proposition;
thus, they cannot express a P-GOAL toward propositions that will be true at
some specific time in the future or consider situations where a proposition is
true now, but which the agent believes will become false later and therefore
has a P-GOAL to make it true again after it becomes false. They do not have
any notion of agent programs. Their logic is used for abstract specifications of
agents behavior.

Sonenberg, Tidhar, Werner, Kinny, Ljungberg, and Rao (1992) use a simi-
lar approach to that of Cohen and Levesque. However, they provide detailed
specifications of various plan-constructs that may be used in the development
of collaborative agents. (Shoham 1993)’s Agents0 has programs with commit-
ments and a very simple mechanism to express time points.

Fiadeiro and Maibaum (1991) provide a complex temporal semantics to the
deontic concepts of permission and obligation in order to be able to reason
about the temporal properties of systems whose behavior has been specified
in a deontic way. They are interested in the normative behaviour of a system,
while we focus on decision making of agents over time.

Horty (1996) proposes an analysis of what an agent ought to do. It is based
on a loose parallel between action in indeterministic time (branching time)
and choice under uncertainty, as it is studied in decision theory. Intuitively,
a particular preference ordering is adapted from a study of choice under un-
certainty; it is then proposed that an agent ought to see to it that A occurs
whenever the agent has an available action which guarantees the truth of A,
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and which is not dominated by another action that does not guarantee the
truth of A. The obligations of our agents are influenced by their programs and
we do not use decision theory. An agent’s obligations is determined using its
status set and we provide a language for writing agents program with time.

Dignum and his colleagues (Dignum and Kuiper 1997; Dignum, Weigand, and
Verharen 1996) combine temporal logic with deontic logic. Their semantics is
based on Kripke models with implicit time while ours is based on status sets
where time can be explicitly expressed. They focus on modeling deadlines and
we focus on programming agents. They admit that automatic reasoning with
specifications written in their language is not yet possible.

J.J. Ch-Meyer’s group’s interesting work on deontic logic (Hindriks, de Boer,
van der Hoek, and Meyer 1997; Meyer and Wieringa 1993) for building agents
is closely related. However, his work does not build explicitly on top of het-
erogeneous data structures, and no explicit support is present for modeling
actions with intermediate effects and with constructing agents that can rea-
son with past/future commitments (though his work does apply to reasoning
logically about agents over time).

Their work on dynamic of commitments (Meyer, van der Hoek, and van Linder
1999) is also important and relevant. They present an expressive formalization
of motivational attitudes such as wishes, goals and commitments. They study
the important issue of acts associated with selecting between wishes and with
(un)commiting to action, In this work agents can reason about the change in
their commitments, but there is no explicit support for reasoning about time
or build explicitly on top of heterogeneous data structures.

Kraus, Sycara, and Evenchik (1998) presented a logical model of the mental
states of agents based on a representation of beliefs, desires, intentions, and
goals and use it as the basis for the development of automated negotiators.
As in our model, they also use explicit time structures and their modal op-
erators G (for goal), Int (for intention), and Do have some similarities to
our obligation, permission and do operators. However, their semantics is very
different from ours. They use a minimal structures Chellas (1980) style se-
mantics for each of their modal operators which leads to a set of axioms that
are not appropriate for our agents. In addition, they require a fully specified
history and use a discrete “point-based” representation of time, while we use
an interval-based representation of discrete time.

An interesting line of research begun in (Schroeder, de Almeida Mora, and
Pereira 1997) showed how extended logic programming may be used to specify
the behavior of a diagnostic agent. Their architecture supports cooperation
between multiple diagnostic agents. Issues of interest arise when conflicting
diagnoses are hypothesized by different agents. This problem is tackled by
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using previous work on belief revision (Alferes and Pereira 1996) and and in-
ference mechanism based on the REVISE algorithm (d’Inverno, Kinny, Luck,
and Wooldridge 1997) for eliminating contradictions. Another logic program-
ming based framework called CaseLP has been proposed in (Martelli, Mascardi,
and Zini 1998; Martelli, Mascardi, and Zini 1997). It is intended to be used
for multiagent applications by building on top of existing software. In a sim-
ilar vein, (Kowalski and Sadri 1999) have developed an abductive framework
within which logic programs can be used to support both rational and reactive
agent reasoning. They present an agent cycle, including both these facets, and
develop an abductive proof procedure. As in our work, agents have states,
and states are changed by the agents’ actions, and the behavior of an agent is
encoded through rules.

Singh (1998) studies closely the problem of actions with temporal duration. He
presents a general formalization of actions with several important properties
which include: (1) actions have different durations; (2) the actions may be per-
formed concurrently by different agents; (3) the time can be either continuous
or discrete; (4) the model allow branching into the future. We allow property
(1), but do not handle explicitly (2-4) because our goal has been different than
Singh’s. While Singh developed a model that can serve as a basis for a system
that can be used for reasoning about multiple agents activities, we focus on
the development of a framework to program temporal agents and to provide
the agents with algorithms to decide what to do in a given time point. It will
be interesting to study how can Singh’s framework can be used to reason on
our agents.

11 Conclusions

There has been intensive work over the years on the topic of software agents.
By now, the idea that agents are entities that have a “state” and that au-
tonomously (and hopefully intelligently) react to changes in the state, has
taken firm root (Rosenschein and Zlotkin 1994; Shoham 1993). Important as-
pects of how to build agents and reason about them logically have been studied
by many researchers—(Huhns and Singh 1997) provides an excellent overview.

In (Eiter, Subrahmanian, and Pick 1999), the authors proposed a formal
methodology for building agents “on top” of heterogeneous data structures
and/or legacy software. In the formalism proposed in (Eiter, Subrahmanian,
and Pick 1999), instant t, the state of the agent was assumed to be “accept-
able” (in the terms of this paper, “acceptable” is synonymous with “satisfying
the integrity constraints”). However, the agent’s state would be “disturbed”
by an external event at time t. The receipt of a message by the agent (e.g. from
a sensing device, from a clock agent recording a “tick”, from another agent, or
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a human) is one way the agent’s state can change. When such a state change
occurs, the agent uses its associated structures (primarily the agent program)
to find a feasible (or rational) status set S. It then concurrently and imme-
diately executes all actions in Do (S) to obtain a new state that satisfies the
integrity constraints. This cycle is repeated ad infinitum or till the agent is
“killed.”

A key limitation in the (Eiter, Subrahmanian, and Pick 1999) framework is
that agents must act immediately. In addition, all actions are assumed to be
instantaneous (i.e. actions take no time for execution). However, in the real
world, both these assumptions are restrictive. After all, human beings rou-
tinely make commitments for the future. Such commitments are made based
on their goals, and on their resources, and their obligations. Similarly, most
actions that agents execute take time—and during this time, there may be a
need to update the agent’s state to record the fact that an action need not
finish executing for it to have intermediate effects.

In this paper, we first propose a syntax for “timed actions” that allows actions
to have duration and that allows actions to have intermediate effects while ex-
ecuting. We then extend the concept of agent programs proposed in (Eiter,
Subrahmanian, and Pick 1999) to handle temporal aspects of agent decision
making. Specifically, the in this paper allows an agent to schedule actions now,
as well as in the future. It allows agents to determine that certain actions are
forbidden/obligatory/permitted/to be done at future instances of time, based
on conditions known to be true at the time the actions are executed (including
predictions currently held to be true). We propose a formal syntax and seman-
tics for agents of this kind, and provide (in the case of positive temporal agent
programs only), algorithms that the agent might use to compute such seman-
tics. We further show that certain important applications, viz. reconciliation
of intentions and conflicts between collaborating agents, strategic multiagent
negotiations, and contract net computations, may be neatly expressed via the
notion of temporal agent programs proposed in this paper.
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A Agent Programs without Time

The following definitions are taken from (Eiter, Subrahmanian, and Pick
1999).

A.1 Feasible, Rational and Reasonable Semantics

Definition A.1 (Status Set) A status set is any set S of ground action
status atoms over S. For any operator Op ∈ {P,Do ,F,O,W}, we denote by
Op(S) the set Op(S) = {α | Op(α) ∈ S}.

Definition A.2 (Deontic and Action Consistency) A status set S is called
deontically consistent, if it satisfies the following rules for any ground action
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α:

• If Oα ∈ S, then Wα /∈ S
• If Pα ∈ S, then Fα /∈ S
• If Pα ∈ S, then OS |= ∃

∗Pre(α), where ∃∗Pre(α) denotes the existen-
tial closure of Pre(α), i.e., all free variables in Pre(α) are governed by an
existential quantifier. This condition means that the action α is in fact ex-
ecutable in the state OS .

A status set S is called action consistent, if S,OS |= AC holds.

Besides consistency, we also wish that the presence of certain atoms in S
entails the presence of other atoms in S. For example, if Oα is in S, then we
expect that Pα is also in S, and if Oα is in S, then we would like to have
Doα in S. This is captured by the concept of deontic and action closure.

Definition A.3 (Deontic and Action Closure) The deontic closure of a
status S, denoted D-Cl(S), is the closure of S under the rule

If Oα ∈ S, then Pα ∈ S

where α is any ground action. We say that S is deontically closed, if S =
D-Cl(S) holds.

The action closure of a status set S, denoted A-Cl(S), is the closure of S
under the rules

If Oα ∈ S, then Doα ∈ S
If Doα ∈ S, then Pα ∈ S

where α is any ground action. We say that a status S is action-closed, if
S = A-Cl(S) holds.

The following straightforward results shows that status sets that are action-
closed are also deontically closed, i.e.

Definition A.4 (Operator AppP,OS
(S)) Suppose P is an agent program,

and OS is an agent state. Then, AppP,OS
(S) is defined to be the set of all

ground action status atoms A such that there exists a rule in P having a
ground instance of the form r : A← L1, . . . , Ln such that

(1) B+
as(r) ⊆ S and ¬.B−

as(r) ∩ S = ∅, and
(2) every code call χ ∈ B+

cc(r) succeeds in OS , and
(3) every code call χ ∈ ¬.B−

cc(r) does not succeed in OS , and
(4) for every atom Op(α) ∈ B+(r) ∪ {A} such that Op ∈ {P,O,Do }, the

action α is executable in state OS .
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Note that part (4) of the above definition only applies to the “positive” modes
P,O,Do . It does not apply to atoms of the form Fα as such actions are not
executed, nor does it apply to atoms of the form Wα, because execution of
an action might be (vacuously) waived, if its prerequisites are not fulfilled.

Our approach is to base the semantics of agent programs on consistent and
closed status sets. However, we have to take into account the rules of the
program as well as integrity constraints. This leads us to the notion of a
feasible status set.

Definition A.5 (Feasible Status Set) Let P be an agent program and let
OS be an agent state. Then, a status set S is a feasible status set for P on
OS , if the following conditions hold:

(S1): (closure under the program rules) AppP,OS
(S) ⊆ S;

(S2) (deontic and action consistency) S is deontically and action consis-
tent;

(S3) (deontic and action closure) S is action closed and deontically closed;
(S4) (state consistency) O′

S |= IC, where O′
S = apply(Do (S),OS) is the

state which results after taking all actions in Do (S) on the state OS .

Definition A.6 (Groundedness; Rational Status Set) A status set S is
grounded, if there exists no status set S ′ 6= S such that S ′ ⊆ S and S ′ satisfies
conditions (S1)–(S3) of a feasible status set.

A status set S is a rational status set, if S is a feasible status set and S is
grounded.

Definition A.7 (Reasonable Status Set) Let P be an agent program, let
OS be an agent state, and let S be a status set.

(1) If P is a positive agent program, then S is a reasonable status set for P
on OS , if and only if S is a rational status set for P on OS .

(2) The reduct of P w.r.t. S and OS , denoted by redS(P,OS), is the program
which is obtained from the ground instances of the rules in P over OS as
follows.
(a) First, remove every rule r such that B−

as(r) ∩ S 6= ∅;
(b) Remove all atoms in B−

as(r) from the remaining rules.
Then S is a reasonable status set for P w.r.t. OS , if it is a reasonable
status set of the program redS(P,OS) with respect to OS .
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B Code Calls and Actions in the Rescue Example

B.1 The Message Box Domain

We assume that each agent’s associated software code includes a special type
called Msgbox (short for message box). The message box is a buffer that may
be filled (when it sends a message) or flushed (when it reads the message) by
the agent.

The msgbox operates on objects of the form

(ı/o, "src", "dest", "message", "time").

The parameter ı/o signifies an incoming or outgoing message respectively. The
variable "src" specifies the originator of the message whereas "dest" specifies
the destination. The "message" is a table consisting of triples of the form
("varName", "varType", "value") where "varName" is the name of the vari-
able, "varType" is the type of the variable and the "value" is the value of
the variable in string format. Finally, "time" denotes the time at which the
message was sent.

We will assume that the agent has the following functions that are integral in
managing this message box.

• sendMessage(<source agent>, <dest gent>, <message>): This causes a quin-
tuple
(o, "src", "dest", "message", "time") to be placed in Msgbox. The parameter
o signifies an outgoing message. When a call of

sendMessage("src", "dest", "message")

is executed, the state of Msgbox changes by the insertion of the above quin-
tuple denoting the sending of a message from the source agent src to a given
Destination agent dest involving the message body "message".
• getMessage(<src>): This causes a collection of quintuples

(i, "src", "agent", "msg", "time")

to be read from Msgbox. The i signifies an incoming message. Note that all
messages from the given source to the agent agent whose message box is
being examined, are returned by this operation. "time" denotes the time at
which the message was received.
• timedGetMessage(<op>, <valid>): This causes the collection of all quin-

tuples tup of the form tup =def (i, <src>, <agent>, <message>, time) to
be read from Msgbox, such that the comparison tup.time op valid is true,
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where op is required to be any of the standard comparison operators <, >,
≤, ≥, or =.
• getVar(<mssgId>, <varName>): This functions searches through all the

triples in the "message" to find the requested variable. First, it converts the
variable from the string format given by the "value" into its corresponding
data type which is given by "varType". If the requested variable is not in
the message determined by the "MssgId", then an error string is returned.

B.2 The comc agent

In addition to the actions and functions mentioned above, the comc agent
apply the following functions:

• Returns the status of Vehicle:
comc : checkStatus(Vehicle) → Status

• Returns triplets specifying a vehicle, a status and a time point, indicating
that the specified vehicle should be notified of the specified status in the
given time:
comc : vehicle to be notified() → 〈String, String, T ime〉

B.3 Truck Agents

This agent provides and manages truck schedules using routing algorithms.

B.3.1 Functions

(1) Return the current location of the truck
truck : location() → 2DPoint

(2) Returns the current fuel level of the truck in gallons.
truck : fuelLeval() → Galons

(3) Returns true if the truck’s tank is empty, and false otherwise.
truck : tank empty() → Boolean

(4) Returns roads and areas that are restricted.
msgbox : gatherWarning() → String

(5) Returns the truck’s load at the specified time.
truck : load(T) → String
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B.3.2 Actions

The action order item() of the truck agent may be described with the follow-
ing components;

• Name: order item(Itm)
• Schema: (String)
• Pre:
• Dur: {1}
• Tet:

1st arg : rel :{1}

2nd arg : { in(〈Itm, Xnow〉, msgbox : supplier to be notified())}

3rd arg : {}

The Tet part says that the truck agent requests from its supplier to deliver
the needed item.

B.4 Helicopter Agents

In addition to the functions mentioned above, the heli agent apply the fol-
lowing functions:

(1) Returns the items the heli agent needs in case of emergency
heli : emergency items() → String

(2) Return the minimal amount of the specified item that the heli agent
needs in its inventory. heli : minimal inventory(Item) → Integer
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