
THE INSTITUTE FOR SYSTEMS RESEARCH

ISR develops, applies and teaches advanced methodologies of design and
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the
A. James Clark School of Engineering. It is a graduated National Science

Foundation Engineering Research Center.

www.isr.umd.edu

Obtaining Statistically Random
Information from Silicon Physical
Unclonable Functions

Chi-En Yin and Gang Qu

ISR TECHNICAL REPORT 2014-01

Obtaining Statistically Random Information from
Silicon Physical Unclonable Functions

Chi-En Yin and Gang Qu
Department of Electrical and Computer Engineering & Institute for Systems Research

University of Maryland, College Park, MD 20742, USA
Emails: daniel.yin@gmail.com and gangqu@umd.edu

Abstract—Silicon physical unclonable functions (PUF) uti-
lize the variation during silicon fabrication process to extract
information that will be unique for each chip. There have been
many recent approaches to how PUF can be used to improve
security related applications. However, it is well-known that
the fabrication variation has very strong spatial correlation1

and this has been pointed out as a security threat to silicon
PUF. In fact, when we apply NIST’s statistical test suite for
randomness [1] against the random sequences generated from
a population of 125 ring oscillator (RO) PUFs [2] using classic
1-out-of-8 Coding [3], [4] and Neighbor Coding [5], none of
them can pass all the tests. In this paper, we propose to
decouple the unwanted systematic variation from the desired
random variation through a regression-based distiller, where
the basic idea is to build a model for the systematic variation
so we can generate the random sequences only from the true
random variation. Applying Neighbor Coding to the same
benchmark data [2], our experiment shows that 2nd and
3rd order polynomials distill random sequences that pass all
the NIST randomness tests. So does 4th order polynomial
in the case of 1-out-of-8 Coding. Finally, we introduce two
generic random sequence generation methods. The sequences
they generate fail all the randomness tests, but with the
help of our proposed polynomial distiller, all but one tests
are passed. These results demonstrate that our method can
provide statistically random PUF information and thus bolster
the security characteristics of existing PUF schemes.

Index Terms—ring oscillator (RO), physical unclonable
functions (PUFs), linear regression, variation decomposition

I. INTRODUCTION

A. Overview

One of the most renowned principles for the design of a
cryptosystem is Kerckhoffs’s law: “A cryptosystem should
be secure even if everything about the system, except the
key, is public knowledge (1883).” In order to provide a se-
cure storage for cryptographic keys, contemporary tamper-
resistant devices such as smart cards arm themselves with
a number of countermeasures to defeat various kinds of
invasive, semi-invasive and non-invasive physical attacks.
[6], [7], [8], [9], [6], [10], [11]. Nevertheless, it is still
possible for attackers to read, and possibly write, the secret
bits in the non-volatile memory through the electron beam
of a Scanning Electron Microscope (SEM) once the surface
of the chip is exposed by, for instance, Focused Ion Beam

1Spatial correlations and systematic fabrication variations referred here-
after are different for each PUF.

(FIB). [12], [13]. Physical unclonable functions (PUFs),
in contrast, are ‘inseparable’ because the underlying nano-
scale structural disorder will most likely be damaged during
the course of physical tampering of the device, so will the
keys [14]. Since the first introduction of PUFs in [15], many
types of circuitry have been proposed to realize the notion.
Most notable are Arbiter PUFs [16], [17] RO PUFs [3],
[16] and SRAM PUFs [18], [19]. Many methodologies have
been proposed to advance the art in terms of reliability, [20],
[21], [5], [4] security, [22], [17], [23], [20], [24], [5], [4],
[25], [26], [27], [28] and hardware efficiency. [20], [21],
[5], [29], [30], [31].

Researchers further classify PUFs as ‘Strong’, ‘Con-
trolled’, and ‘Weak’ mainly according to the number of
challenge-response pairs (CRPs) a PUF can generate, where
the words weak and strong are irrelevant to the strength of
PUF security [27]. Considering that a large number of CRPs
can be achieved through a keyed hash function seeded by
a Weak PUF, we chooses Weak PUFs as the context of the
discussion, though the proposed methodology is expected
to work well with Strong PUFs in a similar fashion.

Fig. 1. The typical workflow of a Weak RO PUF

Figure 1 outlines the typical workflow of a Weak RO
PUF that involves the following steps.

1) Fabrication Variation Extraction: The very first task
of PUFs is to measure the unique characteristics endowed
from the uncontrollable fabrication process. The analog-to-
digital transformation is part of the physical entropy source
subject to tests and in our case, this step corresponds to a
full frequency characterization of a RO array [2].

2) Secret Selection: This step selects secure and reliable
secrecy out of the variation profile measured in the previous
step. Existing approaches include the classic 1-out-of-8
Coding [3] and its successor Index-Based Syndrome (IBS)

Coding [4], Chain-like Neighbor Coding [5], [2], [32],
Temperature-Aware Cooperative (TAC) Coding [29] and
Group-Based Coding [30], [31].

3) Error Correction: In addition to the above error pre-
vention methods, error correcting codes (ECC) are applied
to further enhance reliability. Codes that have been used
for RO PUFs include Hamming Code, BCH Code [3],
Repetition Code [21], [4], Reed-Muller Code [20], [21],
and Kendall Syndrome Code [31].

4) Tests for Randomness and Reliability: The security
aspects of the PUF secrect can be judged by its statistical
characteristics or randomness. Reliability, on the other
hand, can be gauged by placing the device under extreme
conditions for secret regeneration and failure rate below
1 part per million (ppm) has been reported under severe
fluctuation of ambient temperature and supply voltage [4].

B. Motivation

Many cryptography applications such as key generation
require random numbers. NIST has established several stan-
dards for cryptographically secure pseudo-random number
generator (PRNG) as well as a statistical test suite for
random and pseudo-random number generators [1]. If the
numbers produced by a PRNG fail to pass the NIST test,
it is considered vulnerable against cryptanalysis. Therefore,
it is critical to verify that the secrecy generated by PUF is
random and can pass the NIST test.

We consider the public available RO PUF data obtained
from frequency characterization on 125 FPGA devices [2].
To our surprise, none of their random sequence can pass all
the NIST tests that are applicable to their sequence length.
Table I shows the detailed testing results. Column 1 lists the
9 statistical random tests we find applicable to the length of
our test sequences.23 Take Frequency Test for example, it
examines whether the number of 1’s and 0’s in a sequence
are approximately the same as would be expected for a
truly random sequence, for which the number of 1’s and
0’s in a sequence should be about the same. If a sequence
has a very disproportional 1’s to 0’s such that its P-value,
the probability for events that at least as extreme as this
instance to occur, is smaller than a significant level α, 1%
in our case, the event is regarded significant. If it turns out
that more than 4% of the total test sequences are significant,
the ‘PROPORTION’ of a test fails; otherwise, it passes.
Furthermore, the P-values of all the test sequences are
expected to be uniformly distributed. To examine this, each
of the 9 tests also calculates the P-value of the P-values
using the χ2 statistic. The ‘P-VALUE (OF P-VALUES)’
of a test fails if the P-value of χ2 is smaller than 0.0001;
otherwise, it passes.

2192 bits for the 1-out-of-8 coding. 480 bits for the chain-like neighbor
coding. Choice of length may impact results.

3Tests like Rank Test, DFT Test, Overlapping Template Matching Test,
Linear Complexity Test, Random Excursions Test and Random Excursion
Variant Test require a longer random sequence over 1000 bits and thus
not applicable to a ‘true’ random number generator like ours.

C. Contribution

Table I clearly indicates that none of the 125 PUF
sequences can be deemed ‘ideally random’ and therefore
cannot be used for critical cryptography applications. We
will analyze why these PUF secrecy fails to pass the ran-
domness tests in Section III. We argue that the systematic
fabrication variation of the semiconductory process causes
such failures. We study the architectures of the current
RO PUFs and the aforementioned 4-step secret generation
workflow. We propose to add one more step before the
secret selection, which we refer to as entropy distillation,
such that we can decouple the unwanted systematic varia-
tion from the desired stochastic variation.

There are three main contributions in this work. First,
as we have pointed out in [33], this is the first work that
evaluates the randomness of the random sequences gener-
ated by different PUF schemes, before being randomized
by means such as hashing, against the NIST standard test.
As researchers have suspected, none of them can pass all
the randomness tests (results are detailed in Section V).
Second, we propose to decouple the unwanted systematic
variation from the desired random variation through a
regression-based distiller, and then generate the random
sequences based on the desired random variation. Third,
we describe how to design such regression-based distillers
and show their effectiveness in enhancing the randomness
of the random sequences. Indeed, with the help of our
distillers, previously proposed PUF schemes are able to
generate random sequences that can pass all the NIST tests.

We demonstrate our approach by the example of RO
PUF, but the proposed method can be applied to other
PUFs to enhance their security as well (of course, for those
silicon PUFs that are more resistant to systematic variation,
it will be less effective). As for the implementation of the
proposed method, one can either implement the distiller
with hardware or rely on a secure ALU for the data process.

In the remainder of this paper, we will first introduce
the basics on RO PUFs in Section II. We analyze the
possible causes for the above randomness test failures in
Section III. Then in Section IV, we elaborate our regression-
based distiller which eliminates the systematic variation and
thus fix the randomness test failures. Finally, we report the
detailed experimental results and conclude.

II. PRELIMINARIES

A. Basics on RO PUF

A RO PUF extracts fabrication variations through com-
paring the frequencies of ring oscillators that are identically
designed. As depicted in Figure 2, the basic RO PUF
consists of two ring oscillators, followed by two counters
and one comparator at the end. When the start/stop control
signal is asserted, the two ROs start to oscillate until the
control signal is negated. The result of the race between the
two ROs is determined by fabrication variations. During the
course of the race, the two counters count the number of

1-out-of-8 chain-like neighbor decoupled neighbor
STATISTICAL TEST P-VALUE PROPORTION P-VALUE PROPORTION P-VALUE PROPORTION
Frequency 0.013689 122/125 0.000072 * 125/125 0.000003 * 115/125 *
BlockFrequency 0.166594 125/125 0.000000 * 125/125 0.050764 120/125
CumulativeSums (m-2) 0.231636 121/125 0.000000 * 125/125 0.000000 * 119/125 *
CumulativeSums (m-3) 0.059743 122/125 0.000000 * 125/125 0.000000 * 118/125 *
Runs 0.002320 117/125 * 0.000000 * 0/125 * 0.302788 120/125
LongestRun 0.000603 123/125 0.000000 * 62/125 * 0.000062 * 124/125
ApproximateEntropy 0.000001 * 117/125 * 0.000000 * 0/125 * 0.000001 * 119/125 *
Serial (forward) 0.004904 124/125 0.000000 * 1/125 * 0.070160 116/125 *
Serial (backward) 0.552185 125/125 0.000000 * 117/125 * 0.192277 123/125

TABLE I
NIST TEST RESULTS WITH RESPECT TO THE RANDOM SEQUENCES GENERATED BY 1-OUT-OF-8 CODING, CHAIN-LIKE NEIGHBOR CODING AND

DECOUPLED NEIGHBOR CODING, WHERE ‘*’ MARKS A FAILURE.

logic cycles run by the respective RO. At the end of race,
the comparator outputs a binary result x based on the two
counter values, say,

x =

{
1 if Counter 1 > Counter 2
0 otherwise. (1)

Fig. 2. The physical structure of a RO PUF [3]

To generate a secret in greater length, a RO PUF typically
implements hundreds of ROs arranged in a 2-dimensional
array. As illustrated in Figure 3, the dataset we use imple-
ments ROs in 16 (columns) by 32 (rows) on each their 125
FPGAs [2].

Fig. 3. The placement of 512 ROs as a 16 (columns) by 32 (rows) array;
for site ROx,y , its running frequency is denoted as zx,y

B. 1-out-of-8 Coding

The result of the race between the same two ROs
may differ when the environmental conditions change.
For example, a RO running faster than its peer at low
temperature can actually be slower than the same peer at
high temperature [3]. To prevent this, the 1-out-of-8 coding
scheme uses a multiplexer to select the pair with the largest
frequency difference out of 8 RO pairs as depicted in Figure

4. For the two dimensional RO array illustrated in Figure 3,
we may generate one random bit for each row j from its 16
ROs RO1,j . . . RO16,j . However, in order to generate more
random bits to better serve the statistical test purpose, we
made a variation by forming two blocks (RO1,j . . . RO8,j)
and (RO9,j . . . RO16,j) for each row. The 8 ROs in the
same block are referenced by a 3-bit index: 000,001,010
. . . 111, and the index to the fastest RO is output as the
random bits. This way we generate 6 random bits for each
row.

Fig. 4. The hardware structure of the 1-out-of-8 RO PUF [3]

C. Chain-like neighbor coding

Another well-known pairing strategy is the chain-like
neighbor coding, which consists of two design princi-
ples: 1) place ROs as close as possible and 2) pair ROs
located adjacent to each other. In the two dimensional
setting of Figure 3, we may derive 15 random bits for
each row j by pairing (RO1,j , RO2,j), (RO2,j , RO3,j),
(RO3,j , RO4,j) . . . (RO15,j , RO16,j).

III. SECURITY ANALYSIS

A. Failure Cause 1: Chain Dependency

The high failure rate of the chain-like neighbor cod-
ing can be attributed to the non-independent comparison
chain. Take 3 ROs ROA, ROB and ROC for example,
two random bits are generated by comparing ROA with
ROB and ROB with ROC . As we know, to pass NIST
test for randomness, the random sequence is expected to
demonstrate no significant deviation from the probability
mass function (p.m.f) of tossing a fair coin twice, i.e., the
4 possible outcomes ‘00’, ‘01’, ‘10’ and ‘11’ are expected
to occur equally with probability 1/4 is not the case for the
two bits we generate from the 3 ROs. Let ROi also denote

the running frequency of ROi. For three ROs, their running
frequencies can have six different orders: ROA < ROB <
ROC , ROA < ROC < ROB , ROB < ROA < ROC ,
ROB < ROC < ROA, ROC < ROA < ROB ,
ROC < ROB < ROA, where each order happens with
probability 1/6 when the running frequencies are random
and identical and independent distributed (i.i.d.). According
to Eqn. (1), both bits xAB and xBC will be equally likely
to be ‘0’ or ‘1’. However, the 2-bit data xABxBC will be
‘00’, ‘01’, ‘10’, and ‘11’ with probabilities 1/6, 1/3, 1/3,
and 1/6 respectively. This means that ‘01’ or ’10’ occur
twice as frequent as ‘00’ or ’11’, clearly not the p.m.f. of
the ideal random sequences.

A simple solution to fix this problem caused by the
chain dependency is to break the chain such that each
RO will only be paired with its neighbor once as follows:
(RO1, RO2), (RO3, RO4) . . . (RO2i−1, RO2i) We re-
fer to this as decoupled neighbor coding. Apparently this
is less efficient than the original chain-like neighbor cod-
ing. For example, when there are n ROs, the chain-like
neighbor coding will generate n−1 bits, but the decoupled
neighbor coding can only generate n

2 bits. However, even
with this hardware cost, we are unable to produce true
random sequence. As the last two columns in Table I
show, the decoupled neighbor coding scheme helps the
original chain-like neighbor coding in passing four out of
the nine ‘P-VALUE (OF P-VALUES)’ tests, and improves
the ‘PROPORTION’ tests too. But it still fails half of the
NIST statistical randomness tests.

B. Failure Cause 2: Spatial Correlation

Chain dependency does not exist in the 1-out-of-8 coding
so to investigate the cause of the failures of the 1-out-of-
8 coding, we investigate the raw data from the physical
measurement of fabrication variation. Figure 5 shows how
the fabrication variation of the semiconductor process por-
trays: the roughness of the surface (random variation) is
superimposed upon a spatial trend (systematic variation).
With the existence of systematic variation, the ‘random’
bits generated by RO PUF arrays may have very low min-
entropy4, which means that they may not be secure for
cryptographic purpose. For example, as we can see in
Figure 5, along the row (Y), the RO’s frequency tends to
increase as the Y index increases. Therefore, for the two
bits xA1A2 and xB1B2 generated by two pairs of ROs (A1,
A2) and (B1, B2), they are more likely to be ‘0’ at the
same time. Similarly, on a different die where the frequency
tends to increase along the row (Y), these two bits are
more likely to be ‘1’ at the same time. This means that the
systematic variation (the spatial correlation for two ROs on
the same row (Y) in this case) will render the probability
of xA1A2 = xB1B2 much higher than 0.5, making them not
as random nor independent.

4the min-entropy of a discrete random event x with possible out-
comes 1 . . . n and corresponding probabilities p1 . . . pn is H∞(X) =
minni=1(− log pi).

Fig. 5. The across-die frequency topology of a RO array. The roughness
of the surface represents the random variation while the slope represents
the systematic variation [34]

While spatial correlation may explain the reason why
none of the coding strategies in Table I passes all tests, it
is interesting to note that in fact this threat has been reported
in the chain-like neighbor coding, where they attempt to let
the systematic effect cancel out with each other, extracting
secrecy out of the random effect [5]. Similar principles
have been used in [32], [25]. However, the results we have
in Table I indicate that such treatment is not sufficient to
pass the NIST randomness tests. We postulate that a small
remnant of the systematic variation can still be captured
by the tests, causing the above failures. To illustrate this,
we consider a hypothetical frequency characterization of 16
ROs as shown in Figure 6. Based on the chain-like neighbor
coding, these 16 ROs will generate the following 15-bit
sequence: 1101,1110,1001,000. The first bit is a ‘1’ because
RO1 < RO2 and the third bit is a ‘0’ because RO3 > RO4,
and so on. If our proposed decoupled neighbor coding is
used, we will only have 8-bit data: 1011,1000. Although
in both cases we have about the same number of 0’s as
the number of 1’s, there is a clear trend that 1’s are more
likely to be in the first half of the sequence and the 0’s in
the second half. When we fit the frequencies into the curve
in Figure 6, we see clearly the systematic trend of ‘going up
slope’ first and then ‘going down slope’, which causes 0’s
and 1’s not distributed uniformly in the sequences. Finally,
we mention that this systematic trend can stay undiscovered
when one tallies the total number of 0’s and 1’s or calculates
the inter-die uniqueness via Hamming distance, e.g., 46.15-
48.51% for RO PUFs [3], [32] and 49.97% for SRAM PUFs
[35].

IV. SYSTEMATIC VARIATION ELIMINATION

We believe that one of the main causes of the failures
in randomness tests for the RO PUF generated sequences
is the systematic process variation. We propose to model
such variation and thus remove them to build RO PUF
sequences based on the true random part of the process
variation. This section shows how the proposed distillation
process can strengthen the randomness of the PUF output.

Fig. 6. Illustration of the impact from systematic variation even after
decoupling.

Due to its simplicity, we apply polynomial regression to
model the systematic trend. Our simulation results show
that this simple model is sufficiently good as it can fix
all the failures of the 1-out-of-8 coding and the decoupled
neighbor coding in Table I.

A. The Causes of Process Variation

The semiconductor process variation has been modeled
as the sum of a systematic component and a random
component. The systematic component attempts to capture
a deterministic trend and other identifiable patterns through
one or a collection of estimators. The main causes of
the systematic variation can be attributed to equipment
and process non-uniformity such as the focus shift of
photolithography, the gradient of thermal annealing, dis-
similar interactions between circuit layout and the chemical
mechanical polishing process [36], [37].

The random component, on the other hand, accounts for
the difference between the model estimates and the ob-
served data; its constituents include atomic-level stochastic
phenomena such as random dopant profiles, measurement
errors and any unidentified patterns [38], [37]. More dis-
cussion and related work on process variation modeling can
be found in the Appendix.

It is important to clarify that our goal is not to build
a new variation model. Indeed, the proposed distiller does
not require the accuracy of the variation model to be as
high as those for power or performance driven applications.
In the rest of this section, we will illustrate how the
distiller can improve PUF data’s randomness using the
simple polynomial regression model.

Fig. 7. The distilled random fabrication variation after the systematic
trend is removed.

Let us first consider an example in Figure 7. It reports
the frequency information of the same 16 RO PUF as in
Figure 6 except that the Y-axis now shows the difference
between each RO’s frequency and the systematic trend
(the bell-shape curve in Figure 6). When we use the same
chain-like neighbor coding, the 15-bit sequence becomes
0100,1010,1011,100. Compared to the original sequence
1101,1110,1001,000 in Figure 6, we don’t see the ‘pre-
dictability’ that there are more 1’s in the first half and more
0’s in the second half of the sequence.

B. Polynomial Regression
A kth-order polynomial regression is a form of linear

regression in which the relationship between independent
variables and a dependent variable by a polynomial of
order k, where k is a non-negative integer. For a RO PUF
with its m ROs arranged in r rows by c columns, the
Cartesian coordinates (x, y) of ROs are regarded as two
independent variables and the oscillating frequency z is
the single variable dependent on x and y. In such a two
dimensional setting, a polynomial regression model of order
k takes the following general form

zx,y =

k∑
i=0

i∑
j=0

βk,i,jvx
i−jhy

j + εk,x,y, (2)

where 1 ≤ x ≤ c, 1 ≤ y ≤ r; z, β, ε ∈ R. On the right
hand side of the equation, the summation term models the
systematic variation at the physical location (vx, hy) on
a chip and the residual term εk,x,y models the random
variation. In the kth-order polynomial model, there will
be m = c × r equations in the form of Eqn. (2) as
1 ≤ x ≤ c and 1 ≤ y ≤ r. The number of unknowns
βk,i,j is n = (k+1)(k+2)

2 as 0 ≤ j ≤ i ≤ k. This results
in an overdetermined system (i.e. m > n), which can be
solved by the ordinary least squares (OLS) method.

Equivalently, we can rewrite this in the matrix form

Z = Ωkβk + εk (3)

where

Ωk =

ωk,1,1 ωk,1,2 · · · ωk,1,n

ωk,2,1 ωk,2,2 · · · ωk,2,n

...
...

. . .
...

ωk,m,1 ωk,m,2 · · · ωk,m,n

 ,

Z =

z1,1
...
zc,1
z1,2

...
zc,2

...
z1,r

...
zc,r

,βk =

βk,0,0
βk,1,0
βk,1,1
βk,2,0
βk,2,1
βk,2,2

...
βk,k,0

...
βk,k,k

, εk =

εk,1,1
...

εk,c,1
εk,1,2

...
εk,c,2

...
εk,1,r

...
εk,c,r

.

And ωk,p,q’s are in the format of vxi−jhyj , where x =

((p−1) mod r)+1, y = bp−1r c+1, i = b−1+
√

1+8(q−1)
2 c,

j = (q−1)− i2+i
2 , 1 ≤ p ≤ m and 1 ≤ q ≤ n. For example,

when k = 2, c = 2, r = 3, we have
z1,1
z2,1
z1,2
z2,2
z1,3
z2,3

 =

1 v1 h1 v1
2 v1h1 h1

2

1 v2 h1 v2
2 v2h1 h1

2

1 v1 h2 v1
2 v1h2 h2

2

1 v2 h2 v2
2 v2h2 h2

2

1 v1 h3 v1
2 v1h3 h3

2

1 v2 h3 v2
2 v2h3 h3

2

β2,0,0
β2,1,0
β2,1,1
β2,2,0
β2,2,1
β2,2,2

+

ε2,1,1
ε2,2,1
ε2,1,2
ε2,2,2
ε2,1,3
ε2,2,3

 .

The OLS method will find the ‘best’ estimate β̂ in terms of
the minimum sum of squared errors as Eqn. (4) indicates.
By taking partial directives of Eqn. (5) with respect to each
βk,i,j and letting each gradient to zero, the solution of OLS
can be expressed in the matrix form as in Eqn. (6).

β̂k = argmin
βk

{
c,r∑

x=1,y=1

ε2k,x,y

}
(4)

= argmin
βk

{
c,r∑

x=1,y=1

(zx,y −
k∑

i=0

i∑
j=0

βk,i,jx
i−jyj)2

}
(5)

= (ΩTkΩk)
−1ΩTkZ (6)

C. Regression-based Distiller

When we apply polynomial regression models to capture
the systematic variation trend, higher order models have
better accuracy and generate smaller residual terms (εk,x,y’s
in Eqn. (2)). While they may lead to sequences that are
more random and secure, they incur more computational
cost and more importantly, the small magnitude of the
residual terms can cause difficulties in error correction
phase and damage the efficiency of RO PUF. For example,
Figure 8 shows the histograms of the random variation of a
data set (see the result section for detailed description of the
data) after regression models with polynomials of degrees 0
to 6 are applied. Clearly we see as the order increases, the
number of ROs whose frequencies are far from the center
decreases quickly, yielding a smaller variance. Neverthe-
less, they all appear normal distribution and it is difficult
to judge which model is the best choice without running
the standard randomness tests. Therefore, our goal is to find
the polynomial regression model in minimal order that can
successfully distill the ideal random variation. We propose
to conduct this distillation procedure after the ‘fabrication
variation extraction’ phase. The remaining question is in the
next ‘secret selection’ phase that how to build the RO PUF
sequence based on the residual terms, or the true random
variations.

Suppose we have a 2-dimensional array of ROs placed in
r rows and c columns (see Figure 3), there are many ways
to define RO PUF bits from the distilled RO frequency
information. For example, in our implementation of the 1-
out-of-8 coding, each row generates c

8×3 bits; in the chain-

like neighbor coding, we have c − 1 bits from each row;
in the decoupled neighbor coding, this number reduces to
b c2c. Of course, instead of focusing on each row, we can
define RO PUF bits by comparing the ROs in the same
column. In addition to these three coding schemes, we study
the following two generic sequences, S and T , to gauge if
there is still any trace of spatial correlation in the distilled
random component:

S = X1, . . . , XlX , . . . , XLX
where XlX

=

{
0 if zuX ,vX

≤ zuX+b c2 c,vX
1 otherwise

(7)

T = Y1, . . . , YlY , . . . , YLY
where YlY

=

{
0 if zuY ,vY ≤ zuY ,vY +b r2 c
1 otherwise

(8)

where in (7), uX = ((lX − 1) mod b c2c)+ 1, vX = b(lX −
1)/b c2cc + 1, 1 ≤ lX ≤ LX = r × b c2c; similarly in (8),
uY = b(lY −1)/b r2cc+1, vY = ((lY −1) mod b r2c)+1, 1 ≤
lY ≤ LY = c× b r2c.

Intuitively, S and T are formulated by cutting each
row (or column in T) in the RO array into two equal
halves, pairing up ROs in the two halves, and comparing
their residual variation terms. Recall that the principle in
neighbor coding is to pair up ROs that are next to each
other in order to reduce the systematic variation. In S and
T , we have purposely done the opposite to pair up ROs that
are far from each other to amplify the effect of systematic
variation in order to test the effectiveness of the proposed
regression-based entropy distiller. In the next section, we
will report our detailed findings on such randomness tests.

V. RESULTS AND ANALYSIS ON RANDOMNESS TESTS

In this section, we conduct standard NIST randomness
tests to validate that the proposed regression-based entropy
distiller will improve the randomness of the RO PUF
sequences. We use the test bench in the public domain
which consists of the frequency characterization of 125 RO
PUFs implemented on 125 Xilinx Spartan-3 FPGAs, where
512 ROs were placed on each FPGA as shown Figure 3 [2].

A. The Polynomial Regression Models

We first report the systematic variation distillation pro-
cedure and then results. For each chip, we apply regression
models of different orders to its 512 averages of frequency
readings. Figure 9 shows the modeled systematic variation
for each RO on the first chip. In the 0th order, the systematic
variation is the average of the 512 averages. In the 1st order
linear model, we see that the ROs have higher frequency
as their Y coordinates decrease. As we use higher order
polynomials, it starts to show trend similar to Figure 5.

Figure 10 shows the random variation after distillation.
We see the radial pattern close to the center for the 0th

and 1st models, which is known as the ‘bull’s eye’ and a
clear indication of ‘non-randomness’. However, it vanishes

Fig. 8. The histogram of the distilled random variation after applying 0th through 6th-order polynomial regression to the dataset of Chip No. 1.

Fig. 9. The modeled systematic variation after applying 0th through 6th-order polynomial regression to the dataset of Chip No. 1.

in the cases of 2nd model and beyond. This suggests us
that polynomials of 2nd degree or higher should be used.

B. NIST Randomness Tests

There are nine randomness tests in the NIST statistical
test suite applicable to the length of our test sequences:
Frequency Test, Block Frequency Test, Cumulative Sums
Test (with block size m = 2 and m = 3), Runs Test,
Longest Run Test, Serial Test (both forward and backward)
and Approximate Entropy Test. According to [1], empirical
results have to be interpreted in two forms of analysis: First,

the proportion of sequences passing a test shall be above a
minimum rate, 0.96 in our case, i.e., to pass 120 sequences
out of a sample size of 125 sequences at significance
level α = 0.01. Secondly, the P-values of all the random
sequences shall be uniformly distributed. Based on χ2

Goodness-of-Fit Test, the underlying distribution is deemed
uniform if the P-value of the P-values is equal or greater
than 0.0001 for a population of 125 sequences. Whenever
either of these two approaches fails, further tests based on a
different sample space will help clarify whether the failure
is a statistical anomaly or a clear non-randomness.

Fig. 10. The distilled random variation after applying 0th through 6th-order polynomial regression to the dataset of Chip No. 1. Notably, we see
the ‘bull’s eye’, i.e., the radial pattern close to the center, vanishing in the cases of 2nd order model and beyond.

Table II reports the detailed test results on the generic
S-sequence, T -sequence, and the sequences generated by
the coding schemes of 1-out-of-8, chain-like neighbor, and
decoupled neighbor.

1) S-sequence and T -sequence: The 512 ROs will gen-
erate a 256-bit S-sequence and a 256-bit T -sequence. The
S-sequence and T -sequence for NIST randomness test are
32000 bits long obtained by concatenating the 125 such
256-bit sequence from the 125 chips.

As the 0th-order section shows, random sequences gen-
erated without entropy distillation fail miserably for both
forms of analysis ‘PROP. (PROPORTION)’ and ‘P-VAL.
(P-VALUE OF P-VALUES)’, where ‘*’ marks a failure.
This strongly suggests the existence of systematic variation
in the raw data. The failure rate decreases sharply when
applied with 1st-, 2nd- or 3rd-order distiller in the case of
S and with 2nd- or 3rd-order distiller in the case of T .

Unfortunately, there is at least one failure with respect
to S, though the failure is only slightly below the cutting
value. In such a boarder case where a weak existence
of systematic variation is inferred, further investigation
with different dataset is necessary to conclude the entropy
source, i.e., RO PUF plus the distillation model, ‘good’
or ‘bad’. If simply taking the sum of failure rates with
respect to S and T , either 2nd- or 3rd-order distillers can
be considered optimal.

Finally, we mention that the pass rate of the ‘P-VALUE
OF P-VALUES’ analysis drops when applied with a model
of 4th order or higher. A further investigation reveals that
this is caused by model over-fitting. When we use high
order models, there will be more coefficients βk,i,j (as in
Eqn(2)) to describe the underlying systematic variation. In

general, this will give us better model. However, consider-
ing the limited number of data samples we have (a 256-
bit S-sequence or a 256-bit T -sequence), if we use a 6th

order polynomial model where 28 unknown βk,i,j’s need
to determined, the model will capture the random variation
instead of the systematic variation and causes over-fitting.
When that happens, there is little ‘true’ random variation
left and thus randomness test will fail. We can see this from
Table II. This result also indicates that the 2nd or 3rd order
model should suffice with the number of data samples we
have.

2) 1-out-of-8 Coding: For our implementation of the 1-
out-of-8 coding, a 3-bit index ‘000’, ‘001’. . . or ‘111’ is
generated by pointing to the fastest RO out of 8 consecutive
ROs on the same row, i.e., 192 bits per chip or 125×192 =
24000 bits for the test sequence.

From Table II, we see that the 1-out-of-8 coding does
very well even without the entropy distillation with only
one clear ‘P-VALUE’ failure and two marginal ‘PROPOR-
TION’ failures. The best linear model can fix all these
three failures, but introduced a different ‘P-VALUE’ failure
which is marginal. Also, distillers of 4th order and higher
pass all the tests and can be deemed ‘good’. However, the
2nd and 3rd order models fail about half of the tests. We
suspect that this is caused by the fact that we are collecting
three bits at a time from the 3-bit index of the eight ROs.
Models of low order may not be able to captuer certain
intrinsic correlation behind such selection.

3) Neighbor Coding: In the case of the chain-like neigh-
bor coding, 15 bits are generated per row by pairing up with
row neighbors, which yields 480 bits per chip. Thus, the
length of the test sequence is 125× 480 = 60000 bits.

As shown in Table II, none of the polynomial distiller
makes meaningful improvement. This phenomenon aligns
with our expectation that the failures are caused by the
intrinsic chain dependencies of the pairing strategy rather
than spatial correlation. Moreover, consider our treatment
to this problem, the decoupled neighbor coding, the 1st

order linear model is capable of helping it to pass all the
randomness tests.

The over-fitting problem for high order polynomial mod-
els does not seem to be a concern in this case. The only
exception is the ‘LongestRun’ test which is also the test
that the 2nd and 3rd order models fail in the case of S-
sequence. Considering the severe over-fitting problem in
the case of S-sequence and T-sequence, we believe this
is due to the structural difference between the decoupled
neighbor coding and the S- or T-sequence. As we have
discussed when defining the S-sequence and T-sequence,
they are designed to amplify the systematic variation, so
over-fitting is more likely to occur. In decoupled neighbor
coding, we pair two ROs that are physically close to each
other, hence they will have similar systematic variation that
can be easily and accurately captured by the distillers.

More detailed results can be found in Appendix B.

VI. CONCLUSION

The systematic component of fabrication variation has
long posted a security threat to RO PUFs. This work
provides experimental data to demonstrate that none of the
current coding schemes can pass all the NIST randomness
tests. To address the issue, we propose a family of entropy
distillers based on polynomial regression. We affirm their
effectiveness in improving the randomness of the PUF
output.

ACKNOWLEDGMENT

This work is supported in part by the National Sci-
ence Foundation of China under grant 61228204, the
Air Force Office of Scientific Research under grant
FA95501010140, and University Partnership with the Lab-
oratory of Telecommunications Sciences, contract number
H9823013D00560002. Chi-En Yin is supported by Taiwan
Merit Scholarships from the National Science Council of
Taiwan (NSC-095-SAF-I-564-056-TMS).

REFERENCES

[1] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh,
M. Levenson, M. Vangel, D. Banks, A. Heckert, J. Dray, S. Vo, and
L. E. B. III, “A statistical test suite for random and pseudorandom
number generators for cryptographic applications,” NIST Special
Publication 800-22 Revision 1a, Apr. 2010.

[2] A. Maiti and P. Schaumont, “A large scale characterization of ro-
puf,” Proceedings of 3rd IEEE International Workshop on Hardware
Oriented Security and Trust (HOST), Jun. 2010.

[3] G. E. Suh and S. Devadas, “Physical unclonable functions for
device authentication and secret key generation,” Proceedings of
44th ACM/IEEE Design Automation Conference (DAC) pp. 9–14,
Jun. 2007.

[4] M.-D. Yu and S. Devadas, “Secure and robust error correction for
physical unclonable functions,” IEEE Journal of Design & Test
Computers, Vol. 27, Issue 1, Jan. 2010.

[5] A. Maiti and P. Schaumont, “Improving the quality of a physical
unclonable function using configurable ring oscillators,” Proceedings
of 19th IEEE International Conference on Field Programmable
Logic and Applications (FPLA), Sep. 2009.

[6] R. Anderson, “Security engineering: A guide to building dependable
distributed systems,” Wiley Computer Publishing, Jan. 2001.

[7] R. Anderson and M. Kuhn, “Tamper resistance — a cautionary note,”
Proceedings of 2nd USENIX Workshop on Electronic Commerce, pp.
1–11, Nov. 1996.

[8] ——, “Low cost attacks on tamper resistant devices,” Proceedings of
5th International Workshop on Security Protocols, LNCS Vol. 1361,
pp. 125–136, Springer, Apr. 1997.

[9] P. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
Proceedings of Crypto 99, LNCS Vol. 1666, Springer, Aug. 1999.

[10] S. korobogatov and R. Anderson, “Optical fault induction attacks,”
Proceedings of 4th International Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES), LNCS Vol. 2523, pp. 2–12
Springer, Aug. 2002.

[11] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor,
“Improving smart card security using self-timed circuits,” Proceed-
ings of 8th International Symposium on IEEE Asynchronous Circuits
and Systems, pp. 211–218, Apr. 2002.

[12] S. Weingart, “Physical security devices for computer subsystems:
A survey of attacks and defenses,” Proceedings of 2th Interna-
tional Workshop on Cryptographic Hardware and Embedded Systems
(CHES), LNCS Vol. 1965, pp. 302–317 Springer, Aug. 2000.

[13] P. Tuyls, G.-J. Schrijen, B. Škorić, J. van Geloven, N. Ver-
haegh, and R. Wolters, “Read-proof hardware from protective coat-
ings,” Proceedings of 8th IACR International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), LNCS Vol. 4249,
Springer, Oct. 2006.

[14] P. Tuyls and B. Škorić, “Secret key generation from classical
physics,” Hardware Technology Drivers of Ambient Intelligence,
Philips Research Book Series, Kluwer, pp. 421–447, 2005.

[15] R. Pappu, “Physical one-way functions,” PhD thesis, Mar. 2001.
[16] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Silicon

physical random functions,” Proceedings of 9th ACM Computer and
Communications Security Conference (CCS), Nov. 2002.

[17] D. Lim, J.-W. Lee, B. Gassend, M. van Dijk, E. Suh, and S. Devadas,
“Extracting secret keys from integrated circuits,” IEEE Transactions
on VLSI Systems, Vol. 13, Issue 10, Oct. 2005.

[18] D. Holcomb, W. Burleson, and K. Fu, “Initial sram state as a finger-
print and source of true random numbers for rfid tags,” Proceedings
of the Conference on RFID Security 07, Jul. 2007.

[19] J. Guajardo, S. Kumar, G.-J. Schrijen, and P. Tuyls, “Fpga intrinsic
pufs and their use for ip protection,” Proceedings of 9th IACR
International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), LNCS 4727, Springer, Sep. 2007.

[20] C. Bösch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, and P. Tuyls,
“Efficient helper data key extractor on fpgas,” Proceedings of 10th
IACR International Workshop on Cryptographic Hardware and Em-
bedded Systems (CHES), LNCS Vol. 5154, pp. 181–197, Springer,
Aug. 2008.

[21] R. Maes, P. Tuyls, and I. Verbauwhede, “Low-overhead implemen-
tation of a soft decision helper data algorithm for sram pufs,”
Proceedings of 11th IACR International Workshop on Cryptographic
Hardware and Embedded Systems (CHES), LNCS Vol. 5747, pp.
332–347, Springer, Sep. 2009.

[22] B. Gassend, D. Clarke, M. van Dijk, and S. Devadas, “Controlled
physical random functions,” Proceedings of the 18th Annual Com-
puter Security Applications Conference, Dec. 2002.

[23] P. Tuyls, B. Skoric, and T. Kevenaar, “Security with noisy data
on private biometrics, secure key storage and anti-counterfeiting,”
Springer ISBN: 978-1-84628-983-5 (Print) 978-1-84628-984-2 (On-
line), 2007.

[24] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
pufs,” Proceedings of the 2008 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), Nov. 2008.

[25] X. Wang and M. Tehranipoor, “Novel physical unclonable function
with process and environmental variations,” Design, Automation &
Test in Europe (DATE), Mar. 2010.

[26] M. Yu and S. Devadas, “Recombination of physical unclonable
functions,” GOMACTech-10 Conference, Mar. 2010.

S T 1-out-of-8 chain-like neighbor decoupled neighbor
P-VAL. PROP. P-VAL. PROP. P-VAL. PROP. P-VAL. PROP. P-VAL. PROP. STATISTICAL TEST

0
t
h

-o
rd

er

0.000000 * 45 * 0.000000 * 38 * 0.013689 122 0.000072 * 125 0.000003 * 115 * Frequency
0.000000 * 59 * 0.000000 * 49 * 0.166594 125 0.000000 * 125 0.050764 120 BlockFrequency
0.000000 * 46 * 0.000000 * 39 * 0.231636 121 0.000000 * 125 0.000000 * 119 * CumulativeSums (m-2)
0.000000 * 46 * 0.000000 * 38 * 0.059743 122 0.000000 * 125 0.000000 * 118 * CumulativeSums (m-3)
0.000000 * 65 * 0.000000 * 31 * 0.002320 117 * 0.000000 * 0 * 0.302788 120 Runs
0.000000 * 66 * 0.000000 * 44 * 0.000603 123 0.000000 * 62 * 0.000062 * 124 LongestRun
0.000000 * 53 * 0.000000 * 23 * 0.000001 * 117 * 0.000000 * 0 * 0.000001 * 119 * ApproximateEntropy
0.000000 * 65 * 0.000000 * 25 * 0.004904 124 0.000000 * 1 * 0.070160 116 * Serial (forward)
0.000000 * 103 * 0.000000 * 74 * 0.552185 125 0.000000 * 117 * 0.192277 123 Serial (backward)

1
s
t
-o

rd
er

0.166594 124 0.003598 122 0.000949 120 0.000072 * 125 0.130323 124 Frequency
0.000002 * 120 0.889414 121 0.529142 125 0.000000 * 125 0.056599 122 BlockFrequency
0.000100 120 0.136969 122 0.063046 120 0.000000 * 125 0.082208 124 CumulativeSums (m-2)
0.405918 122 0.020616 119 * 0.043046 120 0.000000 * 125 0.034444 123 CumulativeSums (m-3)
0.082208 124 0.000000 * 68 * 0.192277 124 0.000000 * 0 * 0.096097 122 Runs
0.048059 120 0.000000 * 90 * 0.000067 * 123 0.000000 * 62 * 0.000274 124 LongestRun
0.025948 120 0.000000 * 75 * 0.002471 120 0.000000 * 0 * 0.130323 122 ApproximateEntropy
0.112055 122 0.000000 * 80 * 0.262219 124 0.000000 * 1 * 0.956806 122 Serial (forward)
0.474938 121 0.000000 * 117 * 0.551044 125 0.000000 * 117 * 0.620686 123 Serial (backward)

2
n
d

-o
rd

er

0.369588 122 0.012159 121 0.000000 * 115 * 0.001228 125 0.086622 121 Frequency
0.000782 122 0.422488 122 0.059743 124 0.000000 * 125 0.262219 123 BlockFrequency
0.020616 120 0.086622 120 0.000000 * 118 * 0.000000 * 125 0.073984 123 CumulativeSums (m-2)
0.575157 122 0.066516 122 0.000000 * 116 * 0.000000 * 125 0.389809 120 CumulativeSums (m-3)
0.316158 125 0.915772 122 0.552185 123 0.000000 * 0 * 0.493319 124 Runs
0.000062 * 122 0.000782 120 0.000000 * 123 0.000000 * 58 * 0.000115 124 LongestRun
0.750075 124 0.474938 120 0.000000 * 120 0.000000 * 0 * 0.316158 122 ApproximateEntropy
0.874833 124 0.077998 122 0.000123 123 0.000000 * 0 * 0.643139 121 Serial (forward)
0.231636 123 0.302788 125 0.457002 124 0.000000 * 110 * 0.262219 123 Serial (backward)

3
r
d

-o
rd

er

0.011457 125 0.136969 124 0.000000 * 111 * 0.000000 * 125 0.389809 123 Frequency
0.262219 124 0.551044 125 0.003829 123 0.000000 * 125 0.457002 122 BlockFrequency
0.002320 125 0.000131 125 0.000000 * 112 * 0.000000 * 125 0.551044 124 CumulativeSums (m-2)
0.002984 125 0.017315 125 0.000000 * 111 * 0.000000 * 125 0.192277 123 CumulativeSums (m-3)
0.643139 124 0.529142 121 0.889414 124 0.000000 * 0 * 0.529142 124 Runs
0.000058 * 123 0.012903 124 0.000000 * 120 0.000000 * 48 * 0.000000 * 123 LongestRun
0.020616 125 0.422488 123 0.000000 * 114 * 0.000000 * 0 * 0.889414 125 ApproximateEntropy
0.369588 124 0.915772 123 0.000017 * 121 0.000000 * 0 * 0.493319 123 Serial (forward)
0.439517 124 0.506075 122 0.575157 124 0.000000 * 114 * 0.439517 125 Serial (backward)

4
t
h

-o
rd

er

0.000001 * 125 0.000000 * 125 0.000407 121 0.000000 * 125 0.192277 124 Frequency
0.166594 125 0.000051 * 125 0.344248 123 0.000000 * 125 0.807956 124 BlockFrequency
0.000000 * 125 0.000000 * 125 0.143910 121 0.000000 * 125 0.070160 124 CumulativeSums (m-2)
0.000011 * 125 0.000000 * 124 0.130323 120 0.000000 * 125 0.117876 124 CumulativeSums (m-3)
0.316158 125 0.903069 122 0.437182 125 0.000000 * 0 * 0.414457 125 Runs
0.004904 123 0.045489 125 0.007522 120 0.000000 * 54 * 0.000000 * 123 LongestRun
0.289860 125 0.265309 122 0.708591 122 0.000000 * 0 * 0.143910 122 ApproximateEntropy
0.571108 125 0.665311 123 0.571108 125 0.000000 * 1 * 0.457002 123 Serial (forward)
0.405918 123 0.283039 124 0.551044 125 0.000000 * 110 * 0.825875 124 Serial (backward)

5
t
h

-o
rd

er

0.000029 * 125 0.211194 125 0.316158 124 0.000000 * 125 0.096097 125 Frequency
0.004074 125 0.000000 * 125 0.493319 124 0.000000 * 125 0.552185 124 BlockFrequency
0.000000 * 125 0.000000 * 125 0.665311 124 0.000000 * 125 0.043046 124 CumulativeSums (m-2)
0.000000 * 125 0.000000 * 125 0.166594 123 0.000000 * 125 0.036430 125 CumulativeSums (m-3)
0.493319 124 0.687147 124 0.036430 125 0.000000 * 0 * 0.192277 123 Runs
0.006661 124 0.001801 125 0.036430 124 0.000000 * 42 * 0.000000 * 124 LongestRun
0.059743 125 0.302788 124 0.729586 125 0.000000 * 0 * 0.665311 122 ApproximateEntropy
0.687147 125 0.304210 121 0.096097 125 0.000000 * 0 * 0.512137 124 Serial (forward)
0.262219 123 0.789315 123 0.457002 125 0.000000 * 114 * 0.474938 125 Serial (backward)

6
t
h

-o
rd

er

0.000009 * 125 0.001586 125 0.001080 125 0.000000 * 125 0.231636 122 Frequency
0.000000 * 125 0.000000 * 125 0.086622 125 0.000000 * 125 0.437182 123 BlockFrequency
0.000000 * 125 0.000000 * 125 0.231636 125 0.000000 * 125 0.091249 123 CumulativeSums (m-2)
0.000000 * 125 0.000000 * 125 0.050764 124 0.000000 * 125 0.211194 123 CumulativeSums (m-3)
0.101175 125 0.130323 123 0.422488 124 0.000000 * 0 * 0.529142 122 Runs
0.000643 124 0.007992 124 0.211194 125 0.000000 * 44 * 0.000017 * 122 LongestRun
0.000006 * 125 0.643139 124 0.130323 124 0.000000 * 0 * 0.598008 124 ApproximateEntropy
0.552185 124 0.289860 123 0.329976 124 0.000000 * 0 * 0.277369 123 Serial (forward)
0.874833 124 0.529142 124 0.405918 124 0.000000 * 113 * 0.843024 121 Serial (backward)

TABLE II
THE RESULTS OF NIST ‘P-VAL. (P-VALUE OF P-VALUES)’ AND ‘PROP. (PROPORTION)’ ANALYSES WITH RESPECT TO RANDOM

SEQUENCES GENERATED BY S , T , THE 1-OUT-OF-8 CODING, THE CHAIN-LIKE NEIGHBOR CODING AND THE DECOUPLED NEIGHBOR CODING
ACCOMPANIED BY 0th- TO 6th-ORDER DISTILLERS, WHERE ‘*’ MARKS A FAILURE.

[27] U. Ruhrmair, F. Sehnke, J. Soelter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable func-
tions,” Proceedings of 17th ACM Computer and Communication
Security Conference (CCS), Oct. 2010.

[28] A. Sadeghi and D. Naccache, “Towards hardware-intrinsic security,”
Springer ISBN 978-3-642-14452-3, 2010.

[29] C.-E. Yin and G. Qu, “Temperature-aware cooperative ring oscillator
puf,” Proceedings of 2nd IEEE International Workshop on Hardware
Oriented Security and Trust (HOST), Jul. 2009.

[30] C.-E. D. Yin and G. Qu, “Lisa: Maximizing ro puf’s secret extrac-
tion,” Proceedings of 3rd IEEE International Workshop on Hardware
Oriented Security and Trust (HOST), Jun. 2010.

[31] C.-E. Yin, G. Qu, and Q. Zhou, “Design and implementation of
a group-based ro puf,” Design, Automation and Test in Europe
(DATE13), pp. 416-421, March 2013.

[32] D. Merli, F. Stumpf, and C. Eckert, “Improving the quality of
ring oscillator pufs on fpgas,” Proceedings of the 5th Workshop on
Embedded Systems Security, Oct. 2010.

[33] C.-E. Yin, G. Qu, and Q. Zhou, “Improving puf security with
regression-based distiller,” 50th ACM/IEEE Design Automation Con-
ference (DAC13), pp. 1-6, June 2013.

[34] P. Sedcole and P. Y. K. Cheung, “Within-die delay variability in
90nm fpgas and beyond,” Proceedings of 16th IEEE International
Conference on Field Programmable Technology (FPT) pp. 97–104,
Dec. 2006.

[35] J. Guajardo, S. Kumar, G.-J. Schrijen, and P. Tuyls, “Physical
unclonable functions and public-key crypto for fpga ip protection,”
Proceedings of 17th IEEE International Conference on Field Pro-
grammable Logic and Applications (FPL, Aug. 2007.

[36] B. E. Stine, D. S. Boning, and J. E. Chung, “Analysis and decompo-
sition of spatial variation in integrated circuit processes and devices,”
IEEE Transactions on Semiconductor Manufacturing, Vol. 10, Issue
1, pp. 24–91, Feb. 1997.

[37] K. Bernstein, D. J. Frank, A. E. Gattiker, W. Haensch, B. L. Ji,
S. R. Nassif, E. J. Nowak, D. J. Pearson, and N. J. Rohrer, “High-
performance cmos variability in the 65-nm regime and beyond,” IBM
Journal of Research and Development, vol. 50, no. 4.5, pp. 433–449,
july 2006.

[38] E. Chang, B. Stine, T. Maung, R. Divecha, D. Boning, J. Chung,
G. R. K. Chang, D. Bradbury, O. Nakagawa, S. Oh, and D. Bartelink,
“Using a statistical metrology framework to identify systematic and
random sources of die- and wafer-level ild thickness variation in
cmp processes,” International Electron Devices Meeting, pp. 499–
502, Dec. 1995.

[39] L. Cheng, P. Gupta, C. Spanos, K. Qian, and L. He, “Physically
justifiable die-level modeling of spatial variation in view of sys-
tematic across wafer variability,” Proceedings of 46th ACM/IEEE
International Annual Design Automation Conference (DAC), Jul.
2009.

[40] F. Liu, “A general framework for spatial correlation modeling in
vlsi design,” Proceedings of 44th ACM/IEEE Design Automation
Conference (DAC) pp. 817–822, Jun. 2007.

[41] J. Xiong, V. Zolotov, , and L. He, “Robust extraction of spatial corre-
lation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 26, no. 4, pp. 619–631, april 2007.

[42] S. Ohkawa, M. Aoki, and H. Masuda, “Analysis and characterization
of device variations in an lsi chip using an integrated device matrix
array,” IEEE Transactions on Semiconductor Manufacturing, Vol. 17,
Issue 2, pp. 155–165, May 2004.

[43] T. Sato, H. Ueyama, N. Nakayama, and K. Masu, “Determination
of optimal polynomial regression function to decompose on-die
systematic and random variations,” Proceedings of 13th IEEE/ACM
Asia and South Pacific Design Automation Conference (ASP-DAC),
pp. 518–523, Jan. 2008.

Chi-En ‘Daniel’ Yin received B.S. and M.S. degrees in
electrical engineering from National Taiwan University in
1999 and 2001, and Ph.D. degree in electrical and computer
engineering from University of Maryland, College Park
in 2012. He is currently a senior security engineer in
a virtual currency startup in Silicon Valley, California.

His research interests include physical unclonable function,
random number generation, smart card design and security,
virtual currency, and all aspects of hardware security.

Gang Qu received his Ph.D. degree in Computer Science
from the University of California, Los Angeles in 2000.
He is currently an Associate Professor in the Department
of Electrical and Computer Engineering and the Institute for
Systems Research at the University of Maryland, College
Park. His current research interests are on VLSI design
automation and wireless sensor networks, with special
focus on security and energy efficiency. He has published
more than 100 journal articles and conference papers in
these fields with best paper awards in MobiCom (2001) and
ASAP (2006). Dr. Qu is currently on the editorial boards
of IEEE Transactions on Computers, IEEE Embedded
Systems Letters, and Integration, the VLSI Journal.

APPENDIX A: SURVEY ON MODELING FABRICATION
VARIATIONS

It is well-known that the fabrication variation across the
die is not identical and independent distributed (i.i.d.) as
shown in Figure 5 [34] as well as other literature [18].
Table I shows that PUF data based on the i.i.d. assumption
will cause failures to the randomness tests. However, it is
not uncommon to see that in many reports PUF outputs are
assumed to be i.i.d. and has been affirmed by affirmed by
statistical results [4]. The key difference appears to be our
direct test on raw output as opposed to those obfuscated
by a linear feedback shift register (LFSR) and/or an output
hash function that de-correlate the challenge and the re-
sponse [22], [18], [4]. In fact, the issue of spatial correlation
can be more serious than one thought in that the across-
die spatial variation results mostly from the deterministic
across-wafer variation [39], that is, the systematic trend of
a chip can be interpolated or extrapolated by the systematic
trends of the surrounding chips on the same wafer.

Stine et al. [36] first proposed a comprehensive frame-
work to identify, model and decompose fabrication vari-
ations. By analyzing the measurements collected from
each chip on the same wafer, their methods can model
variations at wafer level as well as at die level. However,
the framework is not suitable for PUF applications because
it requires revealing on-die characterization as well as
trusting external information for model building, either of
which would seriously compromise the security of PUFs.
Also surveyed was Liu’s framework for spatial correlation
modeling [40], where the author used Generalized Least
Square (GLS) fitting and structured correlation function to
improve the accuracy of prediction for unobservable sites.
In our case, nevertheless, we can always take measurement
at any RO site of interest as wish. Also partly related to
ours are works devoted to extracting the correlation matrix
of the entire fabrication process to facilitate, for example,
statistical static timing analysis (SSTA) [41], [39]. It is
worth noting that the authors in [39] concluded that once
across-wafer systematic variation is captured and removed
by a quadratic polynomial, within-die variation no longer
contains useful spatial correlation.

Since relying on external information for model building
would result in a security loophole, our design principle is
for each PUF device to build its own across-die systematic
model. Works in line with this include [42], [34], [43],
where Ohkawa et al. [42] first employed a 4th-order polyno-
mial model and demonstrated its effectiveness by contrast-
ing the correlation coefficients of the systematic component
and its random counterpart; later Sedcole et al. [34] em-
ployed a quadratic model to gauge the expected magnitude
of the random variation versus the maximum magnitude
of the systematic variation; more recently Sato et al. [43]
argued that high order polynomials could result in an over-
fit and that corrected Akaike information criterion (AICc)
was accurate in selecting the optimal model. Notably, 1st

order polynomial turned out to be the best fit in most cases
with respect to the variability of NMOS threshold voltages
[43]. Our specific application to RO PUFs distinguishes us
from our predecessors; in particular, we impose stringent
criteria on randomness. In this regard, instead of running
D’Agostino-Pearson (D-P) and Kolmogorov-Smirnov (K-
S) statistical tests for normality against the variation profile
as in [43], we apply comprehensive tests for randomness
designed by NIST. In our adaption, the optimal model is
determined by the test results and thus, AICc is optional.

APPENDIX B: ADDITIONAL RESULTS ON NIST TEST
REPORTS WITH C1–C10 DISTRIBUTION

Tables III-VII give the complete C1-C10 distribution for
each of the 5 sequences: S sequence, T sequence, and
the sequences created by the 1-out-of-8 coding, neighbor
coding, and decoupled neighbor coding. For example, in
Table III, we can clearly see that the 0th order, which corre-
sponds to the raw data without using any regression modle
is not random at all. However, when we use the proposed
regression modle, the distribution becomes random.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

0
t
h

-o
rd

er

93 7 3 4 2 6 1 2 4 3 0.000000 * 45/125 * Frequency
95 8 8 3 3 1 1 4 0 2 0.000000 * 59/125 * BlockFrequency
95 6 3 5 4 2 3 0 3 4 0.000000 * 46/125 * CumulativeSums (m-2)
96 7 3 3 7 1 4 1 0 3 0.000000 * 46/125 * CumulativeSums (m-3)
67 5 5 13 9 6 6 4 7 3 0.000000 * 65/125 * Runs
82 6 7 11 6 3 1 3 3 3 0.000000 * 66/125 * LongestRun
88 10 4 7 3 6 1 2 2 2 0.000000 * 53/125 * ApproximateEntropy
81 8 7 5 10 3 1 6 1 3 0.000000 * 65/125 * Serial (forward)
41 12 16 6 16 10 8 5 5 6 0.000000 * 103/125 * Serial (backward)

1
s
t
-o

rd
er

13 19 12 12 13 7 11 7 11 20 0.166594 124/125 Frequency
29 20 16 16 8 9 8 6 5 8 0.000002 * 120/125 BlockFrequency
18 26 15 16 4 8 9 9 15 5 0.000100 120/125 CumulativeSums (m-2)
18 14 17 14 16 10 10 8 9 9 0.405918 122/125 CumulativeSums (m-3)
12 15 19 14 11 20 9 5 9 11 0.082208 124/125 Runs
16 17 15 21 13 7 8 13 7 8 0.048059 120/125 LongestRun
24 14 10 15 9 10 10 15 13 5 0.025948 120/125 ApproximateEntropy
18 16 13 15 6 11 16 4 14 12 0.112055 122/125 Serial (forward)
15 15 17 11 10 11 7 12 9 18 0.474938 121/125 Serial (backward)

2
n
d

-o
rd

er

17 12 16 13 8 11 12 9 10 17 0.369588 122/125 Frequency
27 14 12 19 7 11 7 10 9 9 0.000782 122/125 BlockFrequency
13 22 12 12 5 13 14 4 13 17 0.020616 120/125 CumulativeSums (m-2)
15 16 14 10 9 11 17 9 11 13 0.575157 122/125 CumulativeSums (m-3)
15 6 10 18 11 16 16 14 8 11 0.316158 125/125 Runs
9 13 13 30 14 14 9 7 5 11 0.000062 * 122/125 LongestRun

18 9 12 9 13 13 13 14 13 11 0.750075 124/125 ApproximateEntropy
13 14 11 15 10 14 16 9 11 12 0.874833 124/125 Serial (forward)
12 9 22 13 14 11 12 10 15 7 0.231636 123/125 Serial (backward)

3
r
d

-o
rd

er

4 9 11 15 8 16 22 8 15 17 0.011457 125/125 Frequency
8 14 14 14 6 16 11 12 17 13 0.262219 124/125 BlockFrequency
6 5 11 10 11 14 18 8 23 19 0.002320 125/125 CumulativeSums (m-2)
4 10 10 8 6 18 20 12 18 19 0.002984 125/125 CumulativeSums (m-3)
9 10 14 14 11 18 11 15 13 10 0.643139 124/125 Runs
9 5 14 24 24 14 7 5 11 12 0.000058 * 123/125 LongestRun
5 12 12 7 15 14 20 10 9 21 0.020616 125/125 ApproximateEntropy
7 17 15 12 9 12 16 12 15 10 0.369588 124/125 Serial (forward)

12 19 17 12 13 12 14 10 6 10 0.439517 124/125 Serial (backward)

4
t
h

-o
rd

er

2 2 8 26 13 16 21 10 17 10 0.000001 * 125/125 Frequency
11 7 8 7 11 15 16 16 19 15 0.166594 125/125 BlockFrequency
2 3 5 11 10 24 19 8 20 23 0.000000 * 125/125 CumulativeSums (m-2)
2 4 5 15 13 16 16 17 11 26 0.000011 * 125/125 CumulativeSums (m-3)

11 11 13 5 16 13 10 19 16 11 0.316158 125/125 Runs
9 6 14 22 20 10 17 5 11 11 0.004904 123/125 LongestRun
4 11 9 15 13 12 12 17 15 17 0.289860 125/125 ApproximateEntropy

14 11 6 13 10 15 11 12 14 19 0.571108 125/125 Serial (forward)
8 16 11 21 11 11 9 13 13 12 0.405918 123/125 Serial (backward)

5
t
h

-o
rd

er

0 5 12 20 13 10 11 20 11 23 0.000029 * 125/125 Frequency
6 10 8 8 11 16 15 14 11 26 0.004074 125/125 BlockFrequency
0 4 8 9 14 14 16 10 16 34 0.000000 * 125/125 CumulativeSums (m-2)
0 8 4 13 10 16 10 12 24 28 0.000000 * 125/125 CumulativeSums (m-3)
9 13 16 10 10 8 13 11 19 16 0.493319 124/125 Runs
9 11 18 23 17 7 13 4 12 11 0.006661 124/125 LongestRun
5 9 11 11 14 15 22 15 15 8 0.059743 125/125 ApproximateEntropy

15 12 15 13 10 11 11 10 18 10 0.687147 125/125 Serial (forward)
19 11 17 13 8 11 14 12 11 9 0.262219 123/125 Serial (backward)

6
t
h

-o
rd

er

4 8 2 19 10 8 14 15 22 23 0.000009 * 125/125 Frequency
2 8 12 9 6 9 10 18 20 31 0.000000 * 125/125 BlockFrequency
2 5 4 11 7 11 20 7 19 39 0.000000 * 125/125 CumulativeSums (m-2)
3 9 5 5 5 14 13 9 18 44 0.000000 * 125/125 CumulativeSums (m-3)
8 18 8 6 19 14 12 17 13 10 0.101175 125/125 Runs
7 6 16 22 23 9 7 12 8 15 0.000643 124/125 LongestRun
1 5 16 14 13 14 9 11 13 29 0.000006 * 125/125 ApproximateEntropy
9 6 12 14 14 13 13 13 16 15 0.552185 124/125 Serial (forward)
8 14 11 13 10 16 13 13 14 13 0.874833 124/125 Serial (backward)

TABLE III
NIST TEST RESULTS WITH RESPECT TO RANDOM SEQUENCE S , WHERE M = 32 FOR BLOCK FREQUENCY TEST, m = 2 FOR APPROXIMATE

ENTROPY TEST AND m = 5 FOR SERIAL TEST AND ‘*’ MARKS A FAILURE.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

0
t
h

-o
rd

er

100 6 3 4 2 1 2 2 0 5 0.000000 * 38/125 * Frequency
88 9 3 5 4 4 5 1 6 0 0.000000 * 49/125 * BlockFrequency

100 5 4 5 1 3 2 2 0 3 0.000000 * 39/125 * CumulativeSums (m-2)
100 10 0 6 1 3 0 2 1 2 0.000000 * 38/125 * CumulativeSums (m-3)
108 7 4 1 2 0 1 1 1 0 0.000000 * 31/125 * Runs
100 4 7 7 3 2 0 1 1 0 0.000000 * 44/125 * LongestRun
114 3 2 1 1 1 1 2 0 0 0.000000 * 23/125 * ApproximateEntropy
112 5 4 1 1 0 1 1 0 0 0.000000 * 25/125 * Serial (forward)
73 11 8 7 10 3 4 2 1 6 0.000000 * 74/125 * Serial (backward)

1
s
t
-o

rd
er

25 8 10 13 6 11 7 13 13 19 0.003598 122/125 Frequency
14 8 13 16 12 14 10 13 12 13 0.889414 121/125 BlockFrequency
22 11 13 7 13 13 15 12 6 13 0.136969 122/125 CumulativeSums (m-2)
25 14 11 13 12 9 8 6 15 12 0.020616 119/125 * CumulativeSums (m-3)
86 14 4 6 4 4 1 2 2 2 0.000000 * 68/125 * Runs
66 15 13 16 5 3 3 3 0 1 0.000000 * 90/125 * LongestRun
78 15 7 9 2 5 2 2 2 3 0.000000 * 75/125 * ApproximateEntropy
80 6 9 6 4 6 6 0 5 3 0.000000 * 80/125 * Serial (forward)
40 15 13 14 6 8 6 6 7 10 0.000000 * 117/125 * Serial (backward)

2
n
d

-o
rd

er

20 15 14 22 6 9 8 12 7 12 0.012159 121/125 Frequency
13 11 15 14 10 18 9 9 8 18 0.422488 122/125 BlockFrequency
20 12 6 18 13 10 11 7 11 17 0.086622 120/125 CumulativeSums (m-2)
18 15 9 15 9 17 13 2 13 14 0.066516 122/125 CumulativeSums (m-3)
16 14 14 11 9 10 12 14 13 12 0.915772 122/125 Runs
18 8 15 18 24 11 6 13 6 6 0.000782 120/125 LongestRun
19 14 17 12 13 7 9 10 11 13 0.474938 120/125 ApproximateEntropy
19 6 11 13 11 18 16 8 16 7 0.077998 122/125 Serial (forward)
16 16 9 10 11 9 11 21 12 10 0.302788 125/125 Serial (backward)

3
r
d

-o
rd

er

10 7 10 18 10 14 15 10 10 21 0.136969 124/125 Frequency
10 10 12 16 9 8 13 12 17 18 0.551044 125/125 BlockFrequency
8 9 8 15 9 10 27 5 14 20 0.000131 125/125 CumulativeSums (m-2)
8 8 9 10 14 8 17 11 16 24 0.017315 125/125 CumulativeSums (m-3)

14 13 13 19 11 7 12 12 11 13 0.529142 121/125 Runs
9 11 11 24 20 10 11 11 12 6 0.012903 124/125 LongestRun

15 10 11 6 14 11 9 18 15 16 0.422488 123/125 ApproximateEntropy
11 9 11 15 12 12 15 11 14 15 0.915772 123/125 Serial (forward)
11 18 15 9 13 12 9 10 12 16 0.506075 122/125 Serial (backward)

4
t
h

-o
rd

er

3 6 18 26 12 10 4 9 12 25 0.000000 * 125/125 Frequency
6 10 5 5 12 15 8 19 22 23 0.000051 * 125/125 BlockFrequency
2 5 8 18 15 9 18 8 11 31 0.000000 * 125/125 CumulativeSums (m-2)
2 6 11 15 12 20 14 4 12 29 0.000000 * 124/125 CumulativeSums (m-3)

14 13 12 13 8 11 11 13 14 16 0.903069 122/125 Runs
12 6 23 15 16 8 13 8 13 11 0.045489 125/125 LongestRun
18 7 11 7 13 19 12 11 12 15 0.265309 122/125 ApproximateEntropy
13 16 8 13 13 15 13 15 8 11 0.665311 123/125 Serial (forward)
14 13 13 12 12 13 18 15 10 5 0.283039 124/125 Serial (backward)

5
t
h

-o
rd

er

6 10 11 17 9 14 10 20 15 13 0.211194 125/125 Frequency
6 5 4 6 7 13 18 13 22 31 0.000000 * 125/125 BlockFrequency
2 8 8 19 5 9 16 10 19 29 0.000000 * 125/125 CumulativeSums (m-2)
3 9 5 12 8 14 18 6 14 36 0.000000 * 125/125 CumulativeSums (m-3)

13 17 9 17 11 10 13 11 11 13 0.687147 124/125 Runs
11 9 17 25 18 9 13 5 7 11 0.001801 125/125 LongestRun
9 15 15 7 14 14 15 18 12 6 0.302788 124/125 ApproximateEntropy

13 11 11 10 10 11 17 11 20 11 0.304210 121/125 Serial (forward)
12 13 13 16 10 16 11 12 14 8 0.789315 123/125 Serial (backward)

6
t
h

-o
rd

er

2 13 10 14 11 11 20 9 11 24 0.001586 125/125 Frequency
5 2 4 8 8 8 16 22 19 33 0.000000 * 125/125 BlockFrequency
1 4 11 10 10 12 12 15 19 31 0.000000 * 125/125 CumulativeSums (m-2)
2 6 7 10 6 13 17 7 20 37 0.000000 * 125/125 CumulativeSums (m-3)

23 14 12 14 7 10 13 8 13 11 0.130323 123/125 Runs
9 12 13 24 19 6 15 8 9 10 0.007992 124/125 LongestRun

13 17 11 18 12 10 11 12 11 10 0.643139 124/125 ApproximateEntropy
11 14 11 18 11 13 11 4 17 15 0.289860 123/125 Serial (forward)
15 9 14 13 11 13 15 14 6 15 0.529142 124/125 Serial (backward)

TABLE IV
NIST TEST RESULTS WITH RESPECT TO RANDOM SEQUENCE T , WHERE M = 32 FOR BLOCK FREQUENCY TEST, m = 2 FOR APPROXIMATE

ENTROPY TEST AND m = 5 FOR SERIAL TEST AND ‘*’ MARKS A FAILURE.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

0
t
h

-o
rd

er

21 15 7 20 11 13 9 14 11 4 0.013689 122/125 Frequency
7 19 19 10 10 12 13 7 13 15 0.166594 125/125 BlockFrequency

21 9 9 14 13 10 18 10 11 10 0.231636 121/125 CumulativeSums (m-2)
22 10 9 17 13 7 11 8 11 17 0.059743 122/125 CumulativeSums (m-3)
26 20 13 11 10 11 8 8 9 9 0.002320 117/125 * Runs
22 13 16 13 22 11 3 11 9 5 0.000603 123/125 LongestRun
30 21 15 8 13 7 10 3 9 9 0.000001 * 117/125 * ApproximateEntropy
27 16 14 11 11 8 10 11 8 9 0.004904 124/125 Serial (forward)
10 16 18 15 9 11 10 12 11 13 0.552185 125/125 Serial (backward)

1
s
t
-o

rd
er

24 21 13 14 9 10 11 13 4 6 0.000949 120/125 Frequency
11 18 16 10 10 11 14 15 10 10 0.529142 125/125 BlockFrequency
18 22 13 11 11 8 13 6 14 9 0.063046 120/125 CumulativeSums (m-2)
21 17 17 6 14 6 13 11 9 11 0.043046 120/125 CumulativeSums (m-3)
17 19 13 15 6 16 11 10 10 8 0.192277 124/125 Runs
13 13 13 13 27 20 7 9 5 5 0.000067 * 123/125 LongestRun
22 20 16 14 12 15 7 6 7 6 0.002471 120/125 ApproximateEntropy
12 14 16 16 13 16 14 7 8 9 0.262219 124/125 Serial (forward)
8 14 13 15 14 16 14 8 7 16 0.551044 125/125 Serial (backward)

2
n
d

-o
rd

er

46 21 6 16 6 12 7 7 3 1 0.000000 * 115/125 * Frequency
20 18 10 15 9 7 18 10 10 8 0.059743 124/125 BlockFrequency
41 17 15 10 5 9 9 6 6 7 0.000000 * 118/125 * CumulativeSums (m-2)
39 16 14 9 11 6 10 2 12 6 0.000000 * 116/125 * CumulativeSums (m-3)
19 10 13 12 9 13 14 9 14 12 0.552185 123/125 Runs
21 11 27 12 23 14 2 6 4 5 0.000000 * 123/125 LongestRun
41 18 10 12 9 10 5 9 8 3 0.000000 * 120/125 ApproximateEntropy
15 28 16 10 8 12 16 8 7 5 0.000123 123/125 Serial (forward)
14 10 9 14 14 15 19 13 11 6 0.457002 124/125 Serial (backward)

3
r
d

-o
rd

er

55 14 4 15 7 8 6 3 8 5 0.000000 * 111/125 * Frequency
22 19 20 11 13 8 9 6 9 8 0.003829 123/125 BlockFrequency
47 21 9 9 5 5 10 3 8 8 0.000000 * 112/125 * CumulativeSums (m-2)
47 19 7 4 13 4 12 4 12 3 0.000000 * 111/125 * CumulativeSums (m-3)
15 10 13 13 14 13 15 8 13 11 0.889414 124/125 Runs
21 16 33 12 17 10 3 7 4 2 0.000000 * 120/125 LongestRun
42 17 13 7 10 11 8 5 8 4 0.000000 * 114/125 * ApproximateEntropy
26 25 12 9 7 7 12 12 7 8 0.000017 * 121/125 Serial (forward)
16 12 13 11 9 16 11 17 11 9 0.575157 124/125 Serial (backward)

4
t
h

-o
rd

er

19 23 7 16 8 7 15 17 10 3 0.000407 121/125 Frequency
19 14 9 15 11 16 15 7 9 10 0.344248 123/125 BlockFrequency
20 20 13 11 13 7 10 10 9 12 0.143910 121/125 CumulativeSums (m-2)
19 17 14 12 10 4 15 9 15 10 0.130323 120/125 CumulativeSums (m-3)
10 13 8 14 14 12 16 9 18 11 0.437182 125/125 Runs
15 12 23 18 17 8 8 6 10 8 0.007522 120/125 LongestRun
19 11 15 10 13 11 12 11 12 11 0.708591 122/125 ApproximateEntropy
12 15 6 10 11 13 19 14 14 11 0.571108 125/125 Serial (forward)
9 7 9 15 14 17 10 13 16 15 0.551044 125/125 Serial (backward)

5
t
h

-o
rd

er

12 18 8 18 11 12 9 17 12 8 0.316158 124/125 Frequency
12 16 13 9 15 19 10 9 14 8 0.493319 124/125 BlockFrequency
14 14 14 11 12 10 17 7 12 14 0.665311 124/125 CumulativeSums (m-2)
10 15 18 8 10 11 18 6 17 12 0.166594 123/125 CumulativeSums (m-3)
9 10 12 23 6 11 10 12 19 13 0.036430 125/125 Runs

11 18 18 15 20 11 9 8 10 5 0.036430 124/125 LongestRun
12 12 13 9 9 18 14 11 14 13 0.729586 125/125 ApproximateEntropy
7 14 8 6 14 20 10 16 14 16 0.096097 125/125 Serial (forward)
9 9 11 10 12 10 17 13 14 20 0.457002 125/125 Serial (backward)

6
t
h

-o
rd

er

7 20 5 18 15 15 12 12 19 2 0.001080 125/125 Frequency
7 18 5 15 14 10 17 11 10 18 0.086622 125/125 BlockFrequency
9 18 11 13 12 9 12 8 21 12 0.231636 125/125 CumulativeSums (m-2)
6 15 18 10 10 6 20 10 16 14 0.050764 124/125 CumulativeSums (m-3)
5 9 9 13 16 16 13 14 14 16 0.422488 124/125 Runs

10 14 18 12 21 11 7 10 11 11 0.211194 125/125 LongestRun
4 12 7 16 15 9 14 15 17 16 0.130323 124/125 ApproximateEntropy

11 7 9 15 15 11 9 19 17 12 0.329976 124/125 Serial (forward)
15 15 15 14 7 6 13 9 16 15 0.405918 124/125 Serial (backward)

TABLE V
NIST TEST RESULTS WITH RESPECT TO THE RANDOM SEQUENCE GENERATED BY 1-OUT-OF-8 CODING, WHERE M = 32 FOR BLOCK

FREQUENCY TEST, m = 1 FOR APPROXIMATE ENTROPY TEST AND m = 4 FOR SERIAL TEST AND ‘*’ MARKS A FAILURE.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

0
t
h

-o
rd

er

0 9 6 12 12 20 15 23 10 18 0.000072 * 125/125 Frequency
0 0 0 1 0 1 4 4 15 100 0.000000 * 125/125 BlockFrequency
0 0 8 5 5 9 13 16 9 60 0.000000 * 125/125 CumulativeSums (m-2)
0 3 8 2 5 10 13 19 12 53 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs
113 6 4 0 2 0 0 0 0 0 0.000000 * 62/125 * LongestRun
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy
125 0 0 0 0 0 0 0 0 0 0.000000 * 1/125 * Serial (forward)
36 21 12 11 8 8 9 8 7 5 0.000000 * 117/125 * Serial (backward)

1
s
t
-o

rd
er

0 9 6 12 12 20 15 23 10 18 0.000072 * 125/125 Frequency
0 0 0 1 0 1 4 4 15 100 0.000000 * 125/125 BlockFrequency
0 0 8 5 5 9 13 16 9 60 0.000000 * 125/125 CumulativeSums (m-2)
0 3 8 2 5 10 13 19 12 53 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs
113 6 4 0 2 0 0 0 0 0 0.000000 * 62/125 * LongestRun
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy
125 0 0 0 0 0 0 0 0 0 0.000000 * 1/125 * Serial (forward)
36 21 12 11 8 8 9 8 7 5 0.000000 * 117/125 * Serial (backward)

2
n
d

-o
rd

er

1 6 10 9 14 17 15 22 17 14 0.001228 125/125 Frequency
0 0 0 0 2 2 6 2 20 93 0.000000 * 125/125 BlockFrequency
0 2 6 6 6 11 12 14 7 61 0.000000 * 125/125 CumulativeSums (m-2)
1 1 4 11 7 7 13 10 14 57 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs
111 8 3 2 0 0 1 0 0 0 0.000000 * 58/125 * LongestRun
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Serial (forward)
38 24 14 11 6 6 12 6 3 5 0.000000 * 110/125 * Serial (backward)

3
r
d

-o
rd

er

1 2 6 6 15 24 8 30 17 16 0.000000 * 125/125 Frequency
0 0 0 0 2 1 3 7 11 101 0.000000 * 125/125 BlockFrequency
1 0 3 4 3 7 7 23 16 61 0.000000 * 125/125 CumulativeSums (m-2)
0 1 4 3 9 5 9 19 16 59 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs
115 6 2 0 1 1 0 0 0 0 0.000000 * 48/125 * LongestRun
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Serial (forward)
38 27 10 12 11 9 6 6 4 2 0.000000 * 114/125 * Serial (backward)

4
t
h

-o
rd

er

0 2 6 11 8 23 11 36 10 18 0.000000 * 125/125 Frequency
0 0 0 0 1 2 1 6 14 101 0.000000 * 125/125 BlockFrequency
0 2 1 3 5 7 9 17 12 69 0.000000 * 125/125 CumulativeSums (m-2)
0 1 2 3 5 9 6 22 10 67 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs
113 8 2 0 0 0 2 0 0 0 0.000000 * 54/125 * LongestRun
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy
125 0 0 0 0 0 0 0 0 0 0.000000 * 1/125 * Serial (forward)
40 22 15 14 3 10 7 6 4 4 0.000000 * 110/125 * Serial (backward)

5
t
h

-o
rd

er

2 3 6 6 10 16 15 22 17 28 0.000000 * 125/125 Frequency
0 0 0 0 0 1 3 5 14 102 0.000000 * 125/125 BlockFrequency
1 1 2 7 3 5 6 11 17 72 0.000000 * 125/125 CumulativeSums (m-2)
1 1 5 2 4 5 6 21 11 69 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs
110 9 2 1 2 1 0 0 0 0 0.000000 * 42/125 * LongestRun
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Serial (forward)
40 28 13 12 8 10 5 3 3 3 0.000000 * 114/125 * Serial (backward)

6
t
h

-o
rd

er

2 3 4 7 13 19 13 26 18 20 0.000000 * 125/125 Frequency
0 0 0 0 0 0 3 8 12 102 0.000000 * 125/125 BlockFrequency
1 1 4 2 8 5 8 12 10 74 0.000000 * 125/125 CumulativeSums (m-2)
1 3 1 1 2 10 6 20 14 67 0.000000 * 125/125 CumulativeSums (m-3)

125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Runs
115 6 2 0 1 1 0 0 0 0 0.000000 * 44/125 * LongestRun
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * ApproximateEntropy
125 0 0 0 0 0 0 0 0 0 0.000000 * 0/125 * Serial (forward)
41 23 20 13 7 6 8 0 2 5 0.000000 * 113/125 * Serial (backward)

TABLE VI
NIST TEST RESULTS WITH RESPECT TO THE RANDOM SEQUENCE GENERATED BY THE ORIGINAL NEIGHBOR CODING, WHERE M = 32 FOR

BLOCK FREQUENCY TEST, m = 2 FOR APPROXIMATE ENTROPY TEST AND m = 5 FOR SERIAL TEST AND ‘*’ MARKS A FAILURE.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

0
t
h

-o
rd

er

30 21 12 10 8 9 5 7 10 13 0.000003 * 115/125 * Frequency
20 9 11 16 11 12 9 21 8 8 0.050764 120/125 BlockFrequency
31 14 9 9 9 14 7 3 9 20 0.000000 * 119/125 * CumulativeSums (m-2)
32 15 11 6 10 14 5 3 11 18 0.000000 * 118/125 * CumulativeSums (m-3)
22 12 11 13 16 11 12 9 9 10 0.302788 120/125 Runs
11 16 15 26 16 17 9 7 5 3 0.000062 * 124/125 LongestRun
29 17 7 20 10 6 9 3 11 13 0.000001 * 119/125 * ApproximateEntropy
21 16 12 11 11 15 4 16 9 10 0.070160 116/125 * Serial (forward)
17 7 10 14 18 17 13 13 10 6 0.192277 123/125 Serial (backward)

1
s
t
-o

rd
er

21 17 13 15 11 7 13 7 9 12 0.130323 124/125 Frequency
16 7 9 21 12 7 15 18 10 10 0.056599 122/125 BlockFrequency
23 10 12 13 12 9 9 7 13 17 0.082208 124/125 CumulativeSums (m-2)
24 9 12 12 9 15 16 6 12 10 0.034444 123/125 CumulativeSums (m-3)
22 11 10 11 8 18 13 7 11 14 0.096097 122/125 Runs
7 13 16 27 17 9 13 11 4 8 0.000274 124/125 LongestRun

21 16 12 14 9 10 5 10 13 15 0.130323 122/125 ApproximateEntropy
14 12 16 11 12 15 12 10 12 11 0.956806 122/125 Serial (forward)
10 12 13 15 12 17 11 13 15 7 0.620686 123/125 Serial (backward)

2
n
d

-o
rd

er

20 16 15 17 5 14 10 10 9 9 0.086622 121/125 Frequency
17 6 15 12 8 14 16 12 13 12 0.262219 123/125 BlockFrequency
21 16 11 13 12 7 12 5 11 17 0.073984 123/125 CumulativeSums (m-2)
20 10 13 10 15 13 15 6 11 12 0.389809 120/125 CumulativeSums (m-3)
20 14 11 13 13 8 7 13 14 12 0.493319 124/125 Runs
7 11 20 23 22 10 9 12 6 5 0.000115 124/125 LongestRun

20 15 15 12 11 5 10 13 11 13 0.316158 122/125 ApproximateEntropy
15 15 11 8 16 11 15 14 10 10 0.643139 121/125 Serial (forward)
16 7 7 11 15 12 13 17 14 13 0.262219 123/125 Serial (backward)

3
r
d

-o
rd

er

18 17 12 10 17 8 14 11 9 9 0.389809 123/125 Frequency
13 9 13 10 9 12 18 15 18 8 0.457002 122/125 BlockFrequency
17 15 14 9 13 8 14 9 9 17 0.551044 124/125 CumulativeSums (m-2)
16 11 12 13 8 16 19 5 15 10 0.192277 123/125 CumulativeSums (m-3)
18 15 13 15 8 9 11 12 13 11 0.529142 124/125 Runs
5 13 20 29 16 16 8 8 2 8 0.000000 * 123/125 LongestRun

17 13 13 11 12 11 14 9 14 11 0.889414 125/125 ApproximateEntropy
15 11 8 13 16 5 16 14 13 14 0.493319 123/125 Serial (forward)
16 10 8 10 10 10 19 16 15 11 0.439517 125/125 Serial (backward)

4
t
h

-o
rd

er

18 17 15 17 10 10 10 13 5 10 0.192277 124/125 Frequency
15 8 14 13 12 12 11 11 17 12 0.807956 124/125 BlockFrequency
20 17 12 8 11 14 5 13 8 17 0.070160 124/125 CumulativeSums (m-2)
16 18 7 16 15 9 13 5 10 16 0.117876 124/125 CumulativeSums (m-3)
18 14 12 9 16 13 9 13 8 13 0.414457 125/125 Runs
7 8 19 30 21 7 13 5 5 10 0.000000 * 123/125 LongestRun

15 17 17 7 11 5 17 11 10 15 0.143910 122/125 ApproximateEntropy
12 12 15 8 11 16 11 14 19 7 0.457002 123/125 Serial (forward)
13 6 12 13 13 15 13 14 13 13 0.825875 124/125 Serial (backward)

5
t
h

-o
rd

er

20 17 14 8 15 11 9 6 9 16 0.096097 125/125 Frequency
10 9 12 12 13 13 16 15 17 8 0.552185 124/125 BlockFrequency
21 13 10 14 10 9 13 3 15 17 0.043046 124/125 CumulativeSums (m-2)
16 18 8 12 12 13 7 5 21 13 0.036430 125/125 CumulativeSums (m-3)
16 10 13 10 7 13 12 19 7 18 0.192277 123/125 Runs
4 13 17 30 20 11 10 5 3 12 0.000000 * 124/125 LongestRun

15 14 14 12 9 10 18 12 10 11 0.665311 122/125 ApproximateEntropy
13 15 13 12 14 13 19 7 12 7 0.512137 124/125 Serial (forward)
11 10 20 10 13 16 12 10 15 8 0.474938 125/125 Serial (backward)

6
t
h

-o
rd

er

21 12 10 13 10 12 17 7 9 14 0.231636 122/125 Frequency
16 10 11 9 9 11 17 17 13 12 0.437182 123/125 BlockFrequency
21 12 11 11 7 15 11 6 13 18 0.091249 123/125 CumulativeSums (m-2)
18 12 7 15 12 13 9 10 9 20 0.211194 123/125 CumulativeSums (m-3)
14 10 15 15 15 15 11 6 13 11 0.529142 122/125 Runs
7 7 22 25 20 10 7 13 6 8 0.000017 * 122/125 LongestRun

17 12 11 13 11 14 17 8 12 10 0.598008 124/125 ApproximateEntropy
19 14 6 11 9 14 16 16 9 11 0.277369 123/125 Serial (forward)
15 10 10 13 10 13 11 17 14 12 0.843024 121/125 Serial (backward)

TABLE VII
NIST TEST RESULTS WITH RESPECT TO THE RANDOM SEQUENCE GENERATED BY THE DECOUPLED NEIGHBOR CODING, WHERE M = 32 FOR

BLOCK FREQUENCY TEST, m = 2 FOR APPROXIMATE ENTROPY TEST AND m = 5 FOR SERIAL TEST AND ‘*’ MARKS A FAILURE.

