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Chapter 1

Introduction

Let G be a finite abelian group. We will denote Z,, as the cyclic group with
order n. Then the fundamental theorem of finitely generated abelian groups gives
G =Ly X Ly X -+ X Ly, where ny | ng | -+ | ng, although this property will not be
necessary for the purposes of this paper. We define the integral group algebra Z[G|
as the set whose additive abelian group is the free Z-module having a basis labelled
by the elements of G. That is, every element in Z[G] is a unique linear combination
of the elements from G with coefficients in Z. The multiplication in Z[G] is given

by

(Z agg)(Z bph) = Z( Z agbn)k.

geG heG keG gh=k;g,heG

The purpose of this paper is to classify the prime ideals of Z[G]. Since, if
|G| = n, we have ¢" = 1 for all g € G, we see Z|G] is an integral extension over Z.
Because Z has Krull dimension one, we see that Z[G] has Krull dimension one as well
(See [1]). Therefore, the prime ideals of Z[G] fall into one of two categories: minimal
and maximal. We will first discuss relevant theory of commutative rings. Then we
will explicitly determine the minimal prime ideals of Z|G| using that commutative
ring theory and Galois theory. Finally, the maximal ideals of Z[G] will be categorized
using the minimal prime ideals previously determined and the classification of prime

ideals in rings of cyclotomic polynomials.



With the exception of Theorem 1, we will restrict to the case where G has 2
generators, i.e. t = 2 above. The general case can be done similarly, although the

arguments will have significant complications in the details.



Chapter 2

Preliminaries
The integral group algebra of a finite abelian group has several useful properties.
First we note that we will be able to work with Z[G] as a quotient of a polynomial

ring over Z.

Theorem 1. Given G = (g1) X (ga) X ... X {g¢) such that | g; |= n; for all i, we

have Z|G] = Zlxy, xo, ..., x4 /{z]" — 1,1 < i < t) := R.

Proof: Define the Z-algebra homomorphism Z[zy,xs, ...,z — Z[G] by
x; — ¢;. Because the g; generate GG, we know this homomorphism is surjec-
tive. Since g;" = 1 for all 4, 27" — 1 belongs to the kernel of the above Z- algebra

homomorphism. Thus, this gives the Z-algebra homomorphism [1]

0:Zxy,xa, ...,z /(x]" — 1,1 <1 <t) — Z[G].

Because the map Z[zy, xo,...,2;] — Z[G] is an epimorphism, we know that 6 is
also surjective.

Let n = ny -ng---ny. Now R is a free abelian group with n generators,
o ag? - axyt, where 0 <y < my, 1 <4 < t. Thus, rank(R) = n as an abelian
group. Also rank(Z[G]) = n, so Z|G] = Z™ as abelian groups. Thus, we have an
abelian group epimorphism,

V7" — R.



Consequently,

7 5 R zj6) =7,

Because the composition of two surjective functions is surjective, we have
7" — Z|G]. We claim that 6 o) is also an injective function. If not, then ker(6 o))
is nontrivial, which implies that it must have rank greater than one. Also, we could
factor Z™ by the kernel and get Z" /ker(6 o 1)) = 7. Because the rank of the kernel
is greater than one, the left side of the isomorphism would have rank smaller than n,
which would be a contradiction. Thus, # o1 is injective. In particular, @ is injective.

Hence 6 is an isomorphism.

Q.E.D.
Now we can think of Z[G|] as a quotient of a polynomial ring, which is a more
familiar object. In particular, Z[x, zo,..., 7], is an integral domain. It will be
imperative to have a division algorithm for polynomials in an integral domain if

certain criteria are met.

Lemma 1. Let A be an integral domain, and let f(x) € Alx] be a monic polynomial
in Alz]. If g(x) € Alx], then there exist unique polynomials q(x) and r(z) both in
Alx] with

where deg(r) < deg(f).

(We note that deg(0) := —o0.)



Proof: Consider all polynomials g—q f as ¢ varies over A[x]. Choose ¢ such that
r = g — qf has least degree. Thus, g = qf + . Now we need to show that deg(r) <
deg(f). If r(x) = 0, then we are done. If not, let f(z) = 2" +s, 12" ' +. . .+ 512+ 50,
and r(z) = tpa™ + ty_ 2™+ ...+ tix + ty. By way of contradiction, suppose
deg(r) > deg(f). Then define h(z) = r(x) — t,,2™ " f(x). By assumption, m > n,
which implies that h(z) € Al[z]. We know then that h = 0 or deg(h) < deg(r).
If h = 0, then r(x) = t,z%f(z), which implies that g(x) = q(x)f(z) + tm2?f(z),
which implies that f(z) | g(z). So r(x) = 0, which has degree —oo. If h # 0, then
deg(h) < deg(r) and g — qf = r = h + t,x’f. Thus, g — f(q + t,a?) = h, which
contradicts the minimality of the deg(r). Hence, deg(r) % deg(f), which implies
that deg(r) < deg(f) as desired. To prove uniqueness, assume two different ways to

write g, and a contradiction is quickly reached, as usual.

Q.E.D.

The intersection of ideals will prove to be very important in the classification

of minimal prime ideals of Z[G].

Theorem 2. Let A be a unique factorization domain, and let x, y be independent
variables. Also, let f(x) be monic in Alx] and g(y),h(y) € Aly] be relatively prime.

Then

in Alx,yl.



Proof:

2: Let k(z,y) € (f(x),9(y)h(y)). Then

k(z,y) = a(z,y) f(z) + bz, y)g(y)h(y)

for a(x,y),b(z,y) € Alz,y|.

Thus, it is clear that k(z,y) belongs to both

I = (f(x),9(y)) and I := (f(x), h(y))-

C: Let k(z,y) € I; N I,. Thus, we can write

k(z,y) = a(z,y) f(z) + b(z,y)9(y)

= c(z,y) f(z) + d(z, y)h(y).

It is clear we may view k(x,y) € R[x] such that R = Z[y|. Because f(z) is a monic

polynomial, application of Lemma 1 yields:

=z

-1

k(r,y) = ) k(y)z” + a(x,y)f(z),

N
Il
o

where deg(f) = N. Also, we can write similarly,

br.y) = 3 bu(y)” + Ala.u)f ()
and
d(z,y) = ) d,(y)z" + (2, y)f(z).



Thus,

=2

k,(y)x” = k(z,y) — a(z,y)f(z)

Il
=)

1%

= a(q;,y)f(x) + b(x,y)g(y) - Oé(:L’, y)f(x)

=b(z,y)9(y) + [a(z,y) — alz,y)] f(z)

=z

-1

= > b(y)x"g(y) + Bz, y)9(y) f(z) + [a(z,y) — a(z,y)] f(x)

v

Il
o

-1

= bWr"gy) + 6z, y) f ()

v=0

where §(z,y) = B(x,y)g9(y) + a(z,y) — a(z,y).

By similar argument we also have

k,(y)z” =) d,(y)x"h(y) + e(z,y) f(z)

where €(x,y) = v(x,y)h(y) + ¢(x,y) — a(z,y). Thus, we can conclude that k,(y) =
b,(y)g(y) = d,(y)h(y) for all 0 < v < N — 1. If not, then there exists v between 0

and N — 1 such that

ko (y) # bu(v)9(y),

which implies that

=z

f@)] ) (k(y) —b.(y)g(y))=".

v

I
=)

Consequently, the deg(f(z)) < N—1in A[z,y|, which is a contradiction. Therefore,
b,(¥)g(y) = d,(y)h(y) for all 0 < v < N — 1, and so h(y)|b,(y) because g and h are

relatively prime. We can write b, (y) = h(y)t,(y). Thus,

k(z,y) = (Z_: b, (y)2")g(y)h(y) + (a(z,y) + alz,y)) f(2),
which implies that k(z,y) € (f(x), 9(y)h(y)).

7



Having established containment in both directions, we now have equality as
desired.

Q.E.D.

We would like to be able to extend Theorem 2 so we can further break down

the structure of the integral group algebra.

Corollary 1. Let x, y be distinct variables and A a unique factorization domain.
Let f(x) be monic in Alx], and let g1(y),...,9m(y) € Aly| be pairwise relatively

prime. Then,

(f(2), 1(9)) N (f (@), 92(9)) O O (F (), gm ()

= (f(x),01(y) - - gm(y))

in Alx,y].

Proof: We will use induction on m, the number of pairwise relative prime

polynomials.

Let m = 2. Then we are done by Theorem 2.

Assume the statement we desire to prove is true for m pairwise relatively prime

polynomials. That is,



(f(2), 1(9)) N (f (@), 92(9)) O O (f (), gm ()

= (f(@), 01(y) - - gm(¥))

in Alxy, ..., Tn, Yy

Now consider m + 1 pairwise relatively prime polynomials:

(f(@), 91(y)) OV (f (@), 92(0)) N - 0 (F (@), gm () 0 (F (), g1 (1))

= (f(2),91(y) - - gm(y)) N {(f(2), Gns1(v))

by the induction hypothesis.

We note that ged(g1(y) - -+ 9m(y), gm+1(y)) = 1. If not, there exists a prime

polynomial, h(y), such that A | (g1 -+ gm) and h | gmy1. Because gy, ...

pairwise relatively prime, h | g; for some 1 < ¢ < m. This contradicts the relative

primality of g; and g¢,, 1. Thus, we can apply Theorem 2, and we get:

(f(@),01(¥) - gm(y)) NV (f(2), Gms1(y))

= (f(2),91(4) - -+ g (Y) - Gm11)-

Thus, by induction we have:



(f(2), 1(9)) N (f (@), 92(9)) O O (f (), gm ()

= (f(@), 01(y) - - gm(¥))

in Alx,y] as desired.

Q.E.D.

10



Chapter 3

Recognizing Minimal Prime Ideals

Let A be a commutative ring. The nilradical of A is defined as

N(A) ={a € Ala™ =0 for some m > 1}. That is, N(A) is the set of nilpotents of
A. There are several facts we need to establish concerning the nilradical of A before

we can begin to classify the minimal prime ideals of our group algebra. We define

Spec(A) = {P|P is a prime ideal of A}

Proposition 1. N(A) P.

= ﬂPe Spec(A)

Proof:

C: Let f € N(A). Then f* = 0 for some n > 1. We know that 0 €
Npe Spec(a) P. Thus, f* € (\pe Spec(4) P. Because each P is a prime ideal, f*!
or f belongs to P. Suppose f"~! € P, then f or f"~2 belongs to P. We repeat this

process for each P € Spec(A). And so, f € (), Spec(a) F-

2: Let f e e Spec(a) - By way of contradiction, assume f ¢ N(A), ie.
there does not exist a positive integer n such that f* = 0. Now define the set
S ={1,f,f%...}. We know that 0 ¢ S because f is not a nilpotent element. By
Proposition 1.9 in [6], there exists a prime ideal @ such that @ NS = 0 [6]. Thus,
fEQ, but feNp Speca) £» which is a contradiction. Hence, f € N(A).

We have established containment in both directions, and thus, equality, as

11



desired.

Q.E.D.

Proposition 2. Let P, I be ideals of the commutative ring A with P prime and
I C P. Then there exists a prime ideal ) such that I C Q C P and @) is minimal

over I, i.e. there is no prime ideal containing I strictly contained in Q).

Proof: Define Q2 := {P’ € Spec(A)|I C P’ C P}. Clearly € is a nonempty
set because P € ). We will partially order §2 by reverse inclusion. That is, for P;,

P, eQ,
P, = P; if and only if P, D P;.

Thus a maximal element of this partially ordered set is actually a minimal element
of 2. Let I be a nonempty subset of (2, which is totally ordered with respect to the

above partial ordering. Define

J = ﬂ P

Pel’

We first note that by construction J is a proper ideal of A. We now need to show
that J is a prime ideal of A. Assume ab € J. Then ab € P’ for all P’ € I'. Assume
that a ¢ J. Then we wish to show that b € J. Because a ¢ J, there exists a P, € T’
such that a ¢ P;. Recall that T" is totally ordered with respect to reverse inclusion.
Thus, if P € T, either P C P, or P’ 2 P;. If P' C P, then we know that a ¢ P’
and so b € P" because P’ is a prime ideal. If P’ O P;, then a ¢ P; and the fact that
P; is a prime ideal, implies that b € P; C P’. Thus, if a ¢ J, then b € P’ for all

12



P’ € T, which implies that b € J. Hence, J is a prime ideal, and therefore belongs to
Spec(A). By construction, J O I. Thus J, which is nonempty, is the upperbound of
I' required for application of Zorn’s Lemma. Therefore, I has a a maximal element,
which is actually a minimal element of €2, say (). Hence, there is a minimal prime

ideal, (), contained in an arbitrary prime ideal P, containing I [8].

Q.E.D.

Corollary 2. N(A) = Nm, where m ranges over the minimal prime ideals of A.

Proof: We need only show that Nm = NP, where P € Spec(A). It is clear
that NP C Nm. Thus, to show containment in the other direction, assume f € Nm.
According to the former proposition, every prime ideal contains a minimal prime

ideal. For all P, we can find some m such that m C P Hence, f € NP.

We have established equality. By Proposition 1, we now have that
N(A) =nm.

Q.E.D.

Proposition 3. Let I, 15,...,1; be ideals in A, and P be a prime ideal of A. If

LNnLN---N1I; CP, then there exists 1, 1 <1 < t, such that I; C P.

Proof: By way of contradiction, assume there exist f; € [; such that f; ¢ P
for all 1 < ¢ < t. Because each I; is an ideal, H';:l fi € I; for all 1 < i < t, which

13



implies that

t
Hfiellﬂlgﬂ---ﬂltgP.
i=1

Because P is a prime ideal, there exists 1 < ¢ < t such that f; € P, which is a

contradiction to our assumption. Thus, there exists 1 < i <t such that I, C P.

Q.E.D.
Lemma 2. Let mq,ma, ..., m; be minimal prime ideals of A such that
miNmaN---Nmy = {0}. Then, my, ms, ..., my are exactly the minimal prime ideals

of A.

Proof: Let m be another minimal prime ideal of A that is not contained in the
above list. We know that N!_;m; = {0} C m. Thus, by Proposition 3, there exists
1, 1 <1 < t, such that m; C m. Because m is a minimal prime, m = m;. Thus,
mi,Ma, ..., my are all of the minimal prime ideals of A.

Q.E.D.

We are now ready to consider minimal prime ideals in Z[G].

14



Chapter 4

Minimal Primes in Z[G]

We now specialize to the case where GG has two generators. Thus, by Corollary 1 we
write Z[G] = Zx,y] /(2™ —1,y" —1). (We do not need to assume that m | n because
no work will require this property.) The purpose of this section is to determine all of
the minimal prime ideals of this Z[G]. Thus, we need to determine the prime ideals
in Z[z,y] minimal over the ideal (™ — 1,y" — 1). With this goal in mind we first

observe:

Proposition 4. We have in Z[z,y],

ﬂ (Dg, (), Pg, (y)) = (@™ — 1,y" — 1),

d1|m7d2‘n

where ®;(x) is the 7™ cyclotomic polynomial.

Proof: While holding ®4,(y) constant, range through all ®4, (z). By repeatedly

applying Corollary 1 in Chapter 2 we get

ﬂ <(I)d1 ([E), Do, (y)>

di|m,da|n

_m 1(I)d2 )>

da|n

Again, we apply Corollary 1 to the previous statement. Then we get:

15



ﬂ <<I)d1(l‘)7 q)dQ(y)> = <xm -1Ly" - 1>

di|m,da|n

Q.ED.

Now we have

ZIG) = Zlwyl/ () (Pa(2) Paly)).

d1|m7d2‘n

In order to explicitly classify the minimal prime ideals of our Z[G], we must

be able to decompose (P4, (x), Py, (y)) into an intersection of prime ideals.

We first note that Z[z,y]/(Pa, (z), Py, (y)) = Z[Ca,]y]/(Pay(y)) by the Third

dith root of unity. Hence, we need

Isomorphism Theorem, where (4, is a primitive
to determine the factorization of ®4,(y) in Z[(4,|[y].

Consider the following diagram:

We define [ = lem(dy, dy). Thus, Q((;) is the compositum field of Q((y,) and
Q(Cay)- We know that
[Q(¢G) = Q] = ¢(D),

16



[Q<Cd1) : Q] = (b(dl)’
and
[Q(Ca,) = Q] = ¢(da),

where ¢ is the Euler Phi function.

All extensions are clearly abelian. Also,

[Q(Q) : Q(Ca)] = (1) /p(dr)

and
[Q(G) - Q)] = (1) /d(d2).
We define
F=Gal(Q(G)/Q)
and

H := Gal(Q(¢)/Q(Cay))-

We can think of /" as isomorphic to Z; the multiplicative group of Z;. That is, k with
ged(k, 1) = 1 corresponds to oj, € Aut(Q((;)/Q) such that o4 (¢;) = ¢F. Then H is the
subgroup {ox € F|k = 1 mod d;}. Recall that ®4,(y) = irrg(s,), the irreducible
polynomial of (,, over Q. Hence, we would like to be able to factor ®4,(y) into

polynomials, p;(y), such that p;(y) € (Q(¢a,))y]. Let X = {¢§, |gcd(a,dy) = 1},

which are the primitive d%* roots of unity, and so the roots of ®y,.

Proposition 5. The group H acts on X by 04(C5) = (5. Define Oy,...,0; to
be the orbits of the action of H on X. We know that these orbits, by construction,
partition X. Now define pj(x) = [l,co0,(¥ — a). Then the following are true:

17



(1) Pay(y) = p1(y) - pe(y),
(i) pi(y) € (Z(¢a)) ],
(111) p;(y) is irreducible over Q((y,),

(iv) The number of orbits is ¢(ged(dy,ds)), i.e. t = ¢(ged(dy, dz)).

Proof:

(i): Because the orbits partition the roots of unity, the polynomial

p1(y) - - pr(y) has exactly all the primitive di* roots of unity as its own roots. Recall
that

(I)d2 <y> = iTTQ(CdQ) = H (y - géllz)ﬂ
gcd(a,da)=1

Thus,

n@-pw)= [ @=¢) =2n®).
ged(a,da)=1

(ii): Because Q(¢;)/Q(Cq,) is a Galois extension, this implies that the fixed field of

H is exactly Q((q,). Let 0 € H. Then

o (p;(y))
:g(H (y—oz)) = H (y—U(Oé))-
a€0; ac0;

The a € O; get permuted by o € H because O; is an orbit of H, and so

opiw) =[] (v—o)

aEOj

= p;(y).

18



Thus, p;(y) is fixed by H, which implies that p;(y) € (Q({4,)[y]. Furthermore, we
know that « is an algebraic integer, which implies that all coefficients of p;(y) are

algebraic integers in Q((4, ). Thus, we may conclude that p;(y) € Z((q4, )-

(ili): Define p(y) = irrg,,)(Ca,) for a given pair (di,dp). That is, we will have
a different p(y) for each element in X because Q((q4,,(5,) = Q() for all a such
that ged(a,ds) = 1. Since any element of X is a primitive dgh root of unity, it is
sufficient to show the proof for (4, € O;. Recall that [Q(() : Q(Cay)] = ¢(1)/P(dy).
This implies that deg(p(y)) = ¢(1)/é(d1). We claim that H acts faithfully on X. A
group G acts faithfully on a set S if the only element in GG that sends an element
in S back to itself is the identity element of G. By way of contradiction, suppose
H does not act faithfully on X. Then there exists a nontrivial ¢ € H such that
0(Ca,) = Cay- Because the fixed field of H is Q((y, ), we know that o((4,) = (4, - Thus,
o fixes Q((;), which is a contradiction. Thus, H acts faithfully on X. Now we know

that

Oy =l H |/ | He |,

where H, is the stabilizer of z € X. That is
H,={oc€eH|o(x)=ux}.
Because H acts faithfully, | H, |= 1. Thus,

101 1= | H |= [Q(G) : Q(Ga)] = 6(0)/(d).

'

by the fundamental theorem of Galois extensions.

19



Consequently,
deg(p1(y)) = deg(Ilaco, (y — @) = ¢(1)/d(d).

We know that p(y) | p1(y), but these polynomials have the same degree. Thus,
p(y) = p1(y), and we may conclude p;(y) is irreducible in Q(¢;)/Q(y,). Since the
order of O, is the same for all 1 < j < ¢, we can conclude that p;(y) is irreducible
for all j.
(iv): Let ged(dy, d2) = q1'q5” - - g;", where g; is a distinct prime. We know by part
(iif) that

¢(d2)p(d1)

= 0(c) /deg(p(y) = ¢(da)/ (0(D)/6(dh) = =25

iy (1= P - Lpea - Ly
LA D- ) (1-2)

because it is the primes in the ged that show up in both ¢(d;) and ¢(ds), and these

same primes show up only once in the lcm; all the other primes of d; and d, divide

out because they appear in the lecm exactly once. Hence we have

:@(1_i)(1_l)...(1_1)

q1 q2 qt

since ged(dy, dp) = 4%

Q.E.D.

Now we see how to factor ®4,(y) in Q[Cq,|[y]. We note that all of the p;(y)
we constructed above are monic with integer coefficients. Consequently, the work

we did with the Galois groups is applicable to Z. Thus, we have a way of factoring

20



D4, (y) in Z[Cq,][y]. Write for each 5, 1 < j <t

Pj (y) = Z DPuj (Cdl )yy

where p,;(y) is a polynomial with coefficients in Z anddeg,(p,;(y)) < ¢(dy). Also

write
il y) = pui()y”.

This polynomial is monic in y.

Lemma 3. Given pj(x,y) as constructed above,

<q)d1 (x)vpl(x7y)> N <(I)d1(I),p2<l’,y)> = <c1)d1 (JJ),pl(ZE,y)pQ(l’,y».

Proof: It is clear that

<(Dd1(x)7p1($7y)> N <(I)d1 (1'),]?2(37,3/» 2 <(I>d1 (x)vpl(xvy)]b(xvy»'

To get containment in the other direction, assume

f € <(I)d1($)7p1(5(],y)> N <q)d1<.l’),p2([)3,y)>.
Then we can write
f = CL(x?y)cI)dl ('T) + b(l’,y)pl(.’t,y>

Because py(z,y) is monic in y, we can apply Lemma 1:

b<x7y) = q(x,y)pg(:c,y) + r(m,y),

where deg, (1) < deg,(p2). We can apply the same lemma again because ®y, () is
monic in  :
r(@,y) = ¢ (2,9)®a, () + 7' (2, y),

21



where deg, (1) < deg,(p2) and deg, (') < deg,(®q, (7)) = ¢(d;). Thus,

f=alz,y)®q (x) + q(z,y)p1 (2, y)p2(z,y) + ¢ (2,9)Pa, (x)p1 (2, y) + 7' (2, y)p1 (2, y).

By construction, we know we can choose a (,, which will be a root of py((4,,),
but not a root of p1({y,y). By assumption, f € (®y, (), p2(x,y)), and therefore we

have
0= f(CarsCa,) =
a(Car» Cay) Pty (Car) + a(Ca s € )P1(Car 5 €, )2 (Car 5 Gy )+
q'(Ca» G, ) Pty (Can)P1(Ca 5 6) + 7' (Car s €2, )P (G Cy)

= 7" (Car € )21 (Car» €2y )-
However, p1(a,,(},) # 0 by our choice of ¢} . Because Z|[(;] is an integral domain,
we may conclude that 7'((4,,¢7,) = 0. Thus, (7, is a root of 7'((4,,y). But then
7 (Cay,y) = 0 because deg, (r') < deg,(p2). We can write r'(z,y) = > a,(z)y”. Be-
cause 1'((4,,y) = 0, it is true that a,((4) = 0 for all v. Recall that the division
algorithm gave us deg,(r') < ¢(dy). Thus, deg,(a,(z)) < ¢(dy). Because our di-
vision algorithm gave us a remainder with least degree, we know that a,(z) = 0.

Consequently, 7'(x,y) = 0, which implies that r(z,y) = ¢'(x, y) P4, (z). Thus,
f = al,y)®a, (2) + [a(z, y)p2(2,y) + ¢ (2, y)Pa, ()]p1 (2, y)

= [a(z,y) + ¢'(z, y)p1 (2, y)|Pa, () + q(z,y)p1 (2, y)pa(2, y).

Hence, f S <q)d1 (ZE),pl(l', y)pZ(xu y)>
Having established containment in both directions, we now have equality, as

desired. Q.E.D.
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Example 1

We will illustrate the previous lemma using G = Zg x Zg. Let’s consider the inter-
section of the following two ideals when d; = 4 and dy = 4: {(2* + 1,y + z) and
(r* + 1,y — ), both in Z[z,y]. By the previous corollary, (z* + 1,y + z) N (z* +
Ly—z)={(z*+1,(y+2)(y —x)) = (* + 1,y* — 2?), because it is easy to observe

that y + x and y — x are two distinct p;(x,y)’s in Z[z, y].

We will now check this directly by proving containment in both directions of the

statement:
(*+ Ly+2)n@*+1,y—2) = (@ +1,y* — 2?).

D: Let k(z,y) € (x* 4+ 1,y* — 2?). Then we can write

k(x,y) = a(x,y)(a* + 1) + bz, y)(y* — 2°)
= a(z,y)(z* + 1) + b(z,y)(y — 2)(y + x)

This implies that k(x,y) belongs to both (z* + 1,y + z) and (z* + 1,y — z).

C: Let k(z,y) € (z* + 1,y +x) N (z* + 1,y — x). Thus, we can write:

k(z,y) = a(z,y)(z* + 1) + b(z,y)(y + z)

= c(,y)(a" + 1) + d(z,y)(y — x)
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Now let y=x. Then we have

a(z,z)(z* + 1) + b(z, v)(27) = c(z, z)(2* + 1),

which implies that (z* + 1)[c(z, x) — a(z, x)] = b(x, z)2z.

We know that ged(z* + 1,2x) = 1. Thus, (2* + 1) | b(z,x), and so we can write
b(z,z) =V (z,z)(x*+1). By Lemma 1 we have b(x,y) = (y —2)q(z, y) +r(x), where

r(z) = b(x,r) = b (x,r)(x* 4+ 1). Hence we have,

k(zy) = a(z,y)(" +1) + [(y — 2)q(z,y) + (" + DV (2, 2)](y + 2)

= (2" + Dla(z, y)V'(z,2) (= + y)] + a(z,y) (y* — 27),
which belongs to (z* + 1,y? — 2?). Thus we have equality, illustrating the validity

of our previous theorem.

Lemma 3 can be generalized to give,

Corollary 3. Given p;(x,y) defined in Lemma 3, then
(Pa, (), pr(2,9)) O (Pay (), p2(2,9)) N - 0 (Pay (2), P (2, 9))
= (®a, (), p1(2,y)p2(2,y) - - P (2, 9))-
Proof: We will use induction on Lemma 3. If m = 2, then we are done by

Lemma 3. Assume our hypothesis is true for all p;(z,y) for 1 < j < m. That is,

<(I>d1(x),p1(x,y)> n <(I)d1 (m),pg(x,y» n...N <(I)d1 (I)vpm($7y)>’
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= (®a, (), p1(2,y)p2(2,y) - - P (2, Y))-

Now consider

<(I)d1 (l’),pl(l‘, Z/)> n <q)d1 (:U)>p2($’ y)>ﬂ

N <(I)d1(x)7pm($7 y)> n <(I)d1 (x)vpm—&—l(x?y»'

By our induction hypothesis,

(Pay (), p1(,9)) O (Pay (), pa(, )0

NPy, (2), P (2, 9)) N (P, (2), Prs1 (2, )

= (P4, (), p1 (@, y)pa(2,Y) - pm(2, Y)) N (Paty (), Py (7, 9)).-

It is clear that

<q)d1 (-Z')7p1(33a y)pg(x,y) o 'pm($v y)> N <(I)d1(x)7pm+1($7 y)> 2

(Pay (), pr(z,y)p2(T,y) -+ - P (T, Y)Pmsr (2, )

To get containment in the other direction, assume

[ €(@a, (), pr(z, y)p2(2,y) - - - pm(2,9)) N (P (7), Dns1 (2, )

Then we can write

f = CL(Z', y)q)dl (x) + b(l‘,y)pm+1($,y).

Because each p;(z,y) is monic in y, and hence, pi(z,y)p2(x,y) - - - pm(x, y) is monic
in y, we can follow the same argument as that in the proof of Lemma 3. We will

choose (jj,, which will be a root of pi(C4,,¥), but not a root of ppi1(¢a;,y). Thus,
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Cy, is a root of p1(Cay, ¥)P2(Cay s ¥) - - - Pm(Cay» y)- Using the same degree argument, we

are able to conclude that
f=laz,y) + (@, y)pmi1(2,y)]Pa, (x)+

Q(x> y)pl (’x7 y)pZ (‘1'7 y) o 'pm(xa y)perl (IL’, y)

Hence, f € (@q, (), p1(z, y)p2(2,y) - - Do (2, Y)Pms1 (T, 1))

Having established containment in both directions, we now have equality, as

desired. Q.E.D.

Corollary 4.

t
<q)d1 (I)dz ﬂ (I)d1 p] r y)>

Proof: Use repeated applications of the former corollary and the fact from

page 15 that
(I)dz <y> = p1<$, y)pQ(xv y) o 'pt(xv y) mod (I)dl (SC)

Q.E.D.

Corollary 5. If G =2 Z,, X Z,, then

Z[G} gZ[I7y]/ ﬂ (m§:1<q)d1(x)7pj('r7y)>)‘

d1|m7d2‘n

Proof: This follows immediately from the previous corollary.

Q.E.D.

26



We are now ready to explicitly classify the minimal prime ideals of Z[G].

Theorem 3. Given G = (a,bla™ = 0" = 1,aba™" = b) = Z,, X Z,, the minimal

prime ideals of Z|G| are the ideals

<(I)d1 (a) ) Pj (a> b))

such that dy | m, dy | n, and 1 < j < t.

Proof: Because there is a correspondence between the presentation elements

a,b and the indeterminates z,y, respectively, we need only show

<q)d1 (.Z‘),pj(ZL’, y)>

such that d; | m, dy | n, and 1 < j <t are the prime ideals minimal over

(x™ — 1,y™ — 1). By construction, for all 1 < j <t

Zlx, yl/(Pa, (2), p;(2,y)) = Z[Q],

which is an integral domain. It is a well-known fact that if A is a commutative ring
and [ an ideal, then A/l is an integral domain if and only if I is a prime ideal.

Thus,
(P4, (x), pj(2,y))
such that d; | m, dy | n, and 1 < j <t are prime ideals of Z|x, y].
We now wish to show that these prime ideals are minimal. As stated before,

we have determined that for all 1 < j <t

Zlx, yl/(Pa, (2), p;(2,y)) = Z[Q].
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Because Z[(;] has Krull dimension one, (®4, (), p;(z,y)) has to be a minimal ideal.
If not, then the Krull dimension of Z[z,y]/(®q4, (z), p;(z,y)) would be greater than
one, a clear contradiction. Also,
() (Pa (), Do (y)) = (2" = Ly" —1).
dy|m.da|n
Putting everything together, we have

t

ﬂ (ﬂ<q)d1(x)vpj(x7y)>) = ﬂ (Dg, (), Py, (y)) = (@™ — 1, y" — 1).

dim,dz|n j=1 di|m,da|n

This is the kernel of the isomorphism:
0:Zzx,y]/(z" —1,y" — 1) — Z[G].

Thus, through the correspondence

t

M (@ (a),p;(a,0))) = {0}.

di|m,dz|n j=1

Consequently, by application of Lemma 2 from Chapter 3,

(®a, (), pj(a;b))

such that dy | m, dy | n, and 1 < j < t. are exactly the minimal ideals of G.

Q.E.D.

We will now illustrate the algorithm and classify the minimal prime ideals of

a specific group.
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Example 2

Let G = Zg x Zg = {a,bla® = b® = 1,aba™" = b}. By the previous theorem, we know

that the minimal prime ideals of Z[G] are

(®a, (), pj(a;b))

such that d; | 8,dy | 8, and 1 < j < t. Thus, we will consider all such pairs of (d;, ds).

d; =1,dy =1

Q4 () = Py(x) =2 —1

1)o(1
t:¢(¢)((f)():1:>pl(xay):y_l

Thus, (x — 1,y — 1) < (a — 1,b — 1) is a minimal prime ideal of Z[G].

d; =1,dy =2

Q4 () = P1(x) =2 —1

¢ _ o)

(2) :1:>p1(x7y):y+1

Thus, (z — 1,y + 1) < (a — 1,b+ 1) is a minimal prime ideal of Z|G].

d; =1,dy =4

Gy (2) =D1(x) =2 —1

¢ — o)
o(0)

=1=pi(z,y)=y*+1

Thus, (z —1,y* + 1) < (a — 1,b* + 1) is a minimal prime ideal of Z[G].
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d1:1,d2:8

Oy () =P1(x) =2 —1

t= —"5(;)(2)(8) =1=p(zr,y)=9y*+1

Thus, (x — 1,y* + 1) < (a — 1,b* + 1) is a minimal prime ideal of Z|G].

d1:2,d2:1

Oy (2) = Po(x) =2+ 1

t=0R =1=p(ry) =y -1

Thus, (x 4+ 1,y — 1) <> (a+ 1,b — 1) is a minimal prime ideal of Z|G].

d1:2,d2:2

Oy (z) = Po(x) =2+ 1
t =200 =1 = p(z,y) =y +1

Thus, (z+ 1,y + 1) < (a+ 1,b+ 1) is a minimal prime ideal of Z|[G].

d1:2,d2:4

Oy (z) = Po(x) =2+ 1

t = ¢(i)(‘i’)(4) =1=pi(z,y)=9>+1

Thus, (z + 1,9* + 1) < (a+ 1,b*> + 1) is a minimal prime ideal of Z[G].

d1:2,d2:8

Dy () = Po(x) =2 +1
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t= “5(?(‘5)(8) =1=pz,y)=9y*+1

Thus, (x + 1,y* + 1) < (a+ 1,b* + 1) is a minimal prime ideal of Z[G].

d; =4,dy = 1

Py (1) = Py(x) =22 + 1

t="5" =1=n(ry) =y -1

Thus, (22 + 1,y — 1) <> (a® + 1,b — 1) is a minimal prime ideal of Z|[G].

d1:4,d2:2

Cq, () = Pu(z) =2 +1
t:%:1:>pl(w’y):y+l

Thus, (22 + 1,y + 1) <> (a® + 1,b + 1) is a minimal prime ideal of Z[G].

d1:4,d2:4

In this case, x is acting as the fourth root of unity, ¢. Thus, we are attempt-
ing to factor y? + 1 in Q[i]. Clearly, y* + 1 = (y — i)(y — %), and so y? + 1 =
(y — z)(y — %) mod x? + 1. Explicitly,

Py (1) = Py(x) =22 + 1

t="5" =2 piley) =y —a.plry) =y —a°

Thus, (22 + 1,y —z) < (a®> + 1,0 —a) and (z* + 1,y — 2%) < (a®> + 1,b — a?)

are minimal prime ideals of Z[G].
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d1:4,d2:8

Py, (1) = Py(x) =22 + 1

§_ SW6E) _

70 2=pi(z,y) =y* —a,pa(z,y) =y* — 2°

Thus, (z2+1,9° —z) < (a®*+1,b* —a) and (22 +1,9* —2°) < (a*+1,0* —a?)

are minimal prime ideals of Z[G].

d; =8,dy = 1

Dy, (z) = Pg(x) = 2* + 1

b= S0 1y (ay) =y - 1

Thus, (z*+ 1,y — 1) < (a* + 1,b — 1) is a minimal prime ideal of Z|[G].

d; = 8,dy = 2

Py, () = Dg(z) =2 + 1

¢ (8)02)
0]

=l=py) =y+1

Thus, (z*+ 1,y + 1) < (a® + 1,b + 1) is a minimal prime ideal of Z[G].

d1:8,d2:4

Py, (z) = Pg(z) = 2* + 1

t=20g" =2=pley) =y - pley) =y - a°

Thus, (z*+ 1,y —2%) < (a* + 1,0 —a?) and (z* + 1,y — 2°) < (a* + 1,0 — a%)

are minimal prime ideals of Z[G].
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d1:8,d2:8

Py, (z) = Pg(x) = 2* + 1

t =S5 =4 =ny) =y—zpy =y-—2>pEy =y-
x5,p4(x,y) :y—x7

Thus, (z* + 1,y —2) < {(a* + 1,b—a), (z* + 1,y — 23) < (a* +1,b — a?),
(x'+1,y—2°) < (a*+1,b—a%), and (z*+ 1,y —2") < (a*+1,b—a") are minimal

prime ideals of Z[G].

We note that we have many symmetric cases; clearly (g, (a), Pg,(b)) and
(®y,(b), Py, (a)) should give the same answer. This was indeed obvious in the above

example for all cases except when {d;,ds} = {4,8} where we got
(Dy(a), Ps(b)) = (a® +1,0* — a) N {a® + 1,0* — a®)
the first time we looked at 4 and 8, and after interchanging a and b we got
(Dg(b), Py(a)) = (b* +1,a — b*) N {(b* +1,a — b°)
the second time we looked at 4 and 8. But one can readily check that
(a®> +1,0> —a) = (b* + 1,a — b*) and

(> +1,0* —a®) = (b* +1,a — b°).

Having run through all pairs (dy, ds), we have found the 22 minimal prime ideals

of Z|G|, where G = Zg X Zs.
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Chapter 5

Maximal Primes in Z|G]

Now that we have classified all the minimal prime ideals of Z[G] where G has two
generators, we would like to be able to do the same with the maximal ideals of Z[G].
We note that in any ring, all maximal ideals are prime. We chose to determine the
minimal prime ideals first because they will play an important role in the classifiction

of the maximal ideals. Several facts about maximal ideals follow.

Lemma 4. Fvery maximal ideal contains a minimal prime ideal.

Proof: In Theorem 3, we showed that every prime ideal contains a minimal

prime ideal. Because a maximal ideal is prime, we immediately get our result.

Q.E.D.

Proposition 6. Let M be a maximal ideal in Z|G]|. Then M contains a unique

prime integer.
Proof: Define the quotient map
0:7Z|G) - Z|G|/M

via u +— u + M. It is clear that there exists an embedding of Z into Z[G]. Because
M is a prime ideal, it is sufficient to find any nonzero integer in M since then one
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of its prime factors would be in M. By way of contradiction, assume M contains no

such integer. Then we claim the restriction of # to Z is an injective function:
Oz : 7 — Z|G])/M
z2— z+ M.

Assume 0z(z1) = Oz(z) for z; # z3. Then z; + M = z5 + M, which occurs if
and only if z; — 29 € M. However, z; — 25 is an integer, which would contradict the
assumption that M contains no nonzero integers. Therefore, z; = 25, which shows 6
is injective. Hence, Z — Z[G]/M. Because M is a maximal ideal, Z[G]/M is a field,
which implies that it contains an isomorphic copy of Q. But we know that Z[G|/M
is a finitely generated abelian group. Hence, Z[G]/M cannot contain a copy of Q,
and so we have reached a contradiction. Thus, M must contain a nonzero integer,
as desired.
To prove uniqueness, assume there exists another prime

q € M. Then, ged(q,q’) = 1. By the division algorithm, there exists r, s € Z such
that 1 = rq + s¢’. Because M is an ideal, 1 = rq + s¢’ € M, which implies that M
is the entire ring, a contradiction. Hence, ¢ is unique.

Q.E.D.

Let M be a maximal ideal of Z[G]. By previous work, M must contain a
minimal prime ideal, say u. Recall that we are considering G = (a,b | a™ = 0" =
1,aba™! = b) 2 Z,, X Z,. Previous work shows that all minimal prime ideals of Z[G]

are then of the form pu = (®g4 (a),p;(a,b)) C M, where d; is a divisor of m and p;
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is an irreducible factor of ®4,(y) such that dy|n over Z[(y,]. Now let ¢ be the prime
belonging to M as we got in Proposition 3. Define I := (q, ®4,(a),p;(a,b)) C M.

By the Third Isomorphism Theorem, we have

ZIG]/T = ZIG]/qZ]Gl/1/4ZIG] = Z]Gl/4Z[G]-

Thus, there is a one-to-one correspondence between ideals in Z[(;]/¢Z[(;] and Z|G] /1.

We note that in Z[(;] we can factor

qZIG] = Q705 - - - Q7

where each @); is a prime ideal in Z[(;] and e > 1 [5]. Lift each @; back to M; in
Z|G]. We observe

M; 2 I for every 1

and

Z[(]/Q; is a field.

Thus, each M; is maximal because

Z|G]/M; = Z[(])/Q;, which is a field.

Theorem 4. All the maximal ideals of Z|G] are attained as follows:

1. choose a minimal prime idealof Z|G] (P4, (a),pj(a,b)) as described in

Theorem 3

2. choose any prime integer q of 7

3. forl = lem(dy, ds) (see Theorem 3), let Q; be a factor of q in Z[(;] as above
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4. in the isomorphism Z|G]/I = Z[(]/qZ](] lift Q; to a maximal ideal M; of

Al

Then these M; as q ranges through primes of Z, (®g4, (a),pj(a, b)) range through
all minimal primes of Z|G], and Q; range through factors of qZ|[(;| are all the maz-

imal ideals of Z[G].S

We make a very important observation: these maximal ideals are not neces-
sarily distinct, as we will see for cyclic groups in Chapter 6.
We will explore maximal ideals more explicitly for cyclic groups in the next

section.
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Chapter 6

Application to Cyclic Groups

In this section we will assume G =2 Z,, a finite cyclic group of order n. Applying

work from previous sections with m = 1, we have

Proposition 7. Given G = (a) = 7Z,,

and

(2" — 1) = |(Da()).

din

Proof: This result follows immediately from application of Theorem 1 and

Proposition 4, from Section 2 and Section 4, respectively.

Q.E.D.

We note that there is a clear correspondence between the generator, a, of G

and the variable x. Thus, we arrive at the following:

Theorem 5. Let G = (a) = Z,. Then the minimal prime ideals of Z|G| are exactly

the set (®4(a)), where d | n. Moreover, these ideals are all different.

Proof: By work from Section 4, it is clear that Z[G]/(®4(a)) = Z[(4], which

is an integral domain. Thus, (®4(a)) is a prime ideal. Furthermore, the Krull
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dimension of of Z[(4] is one, which implies that (®4(a)) is a minimal prime ideal of
Z[G| for all d | n.

Because

@ = 1) = [, @a@) = \(@ale)),

dln

and using the fact that we have correspondence between the presentation element
a and the variable x, we have

((®a(a)) = {0}.

dln
Thus, by application of Lemma 2 in Section 3, the (®4(a)) for all d | n are exactly
the minimal prime ideals of Z[G].
For every d,b | n such that b # d, we have that (®4(a)) and (Py(a)) are

relatively prime. Thus, there exist f(z) and g(z) both in Q[z] such that

f(2)P4(z) + g(x)P(z) = 1.

Thus, over Z, we have
f'(2) () + g'(x)(z) = 2,
where f'(x), ¢’(x) are the functions that result when we clear denominators of f(z),
g(x), and z € Z. If
(Pa(a)) = (Py(a)),
then z € (®4(a)), which is a contradiction. Thus, the ideals are each distinct.

Q.E.D.

Now we turn our attention to the maximal ideals of Z[G], with G = (a) = Z,,.
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As shown in the previous sections, each maximal ideal contains a unique prime

integer, g. For a given d | n, we can factor

qZ[Cd] = Q1Q3 - - - @

where the (); are distinct primes in Z[(4]. We also have the map

7 ZIG| — Z|G]/(P4(a)) = Z[4)

e

via a — (q. Indeed if ®4(z) = ¢1(z)®- - - g,(2)° mod g such that g;(x) is irreducible

modgq, then

Q; = {4,95(Ca))-
Define Miqq, Maogq, - -+, Myqq to be the inverse images of Q1,Q2, - - - , @, respectively
in Z|G]. Thus,

M;aq = (g, gj(a), Pa(a)) = (g, gj(a)).

Then a more explicit version of Theorem 4 in Chapter 5 can be given.

Theorem 6. The mazimal ideals of Z|G] are exactly the set M,q,, where q is a

prime of Z, 1 < j <r, and d | n.

Proof: We know Mg, N Z = qZ and Z|G]/M,;4q = Z[C4)/Q;, which is a field.
Thus, M;4, are maximal ideals of Z[G] for all ¢ prime, 1 < j <7, and d | n.

Conversely, let M be a maximal ideal of Z[G]. Also, let ¢ be the unique prime
integer contained in M, i.e. ¢Z = M N Z. Because all minimal prime ideals of Z[G|

are of the form (®4(a)), where d | n, and every prime ideal contains a minimal prime
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ideal, we know there exists d | n such that ®4(a) € M. Thus, M4, = (g, Pa(a)) C M.
By the maximality of M,q4,, we may conclude that M4, = M.

Hence, the set of maximal ideals of Z|G] are exactly given by Mjq4,, where ¢ is
aprime of Z, 1 <j <r and d | n.

Q.E.D.

As mentioned in the last section, these maximal ideals are not necessarily
distinct. In fact we shall show that it is possible to have M;4, = Mg, for d # d',
both divisors of n. We would like to know when such a situation occurs. We make

the following observation:

Theorem 7. If g {n, then M4, contains a unique minimal prime ideal.

Proof: Because ¢ 1 n, ™ — 1 has n distinct roots in its splitting field over
Z/qZ. By way of contradiction, suppose there exists e | n such that e # d and
P.(a) € M4 Then ged(Py(z), e(x)) = 1 mod ¢g. By the division algorithm, there

exists f(x),g(x), h(z) € Z[x] such that

f(@)®e(x) + g(x)Pa(x) = 1+ qh(z).

This implies that 1 € Mjq,, which is a contradiction. Thus, d = e, and we have only

one minimal prime ideal.

Q.E.D.

Now consider the case where ¢ | n. We focus on the minimal primes (®4(a))

for d | n. If q | d, then we will compare ($4(a)) and (P,(a)) such that d = ¢b. If ¢ 1 d,
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we compare (Py(a)) and (P,4(a)), which is valid because gd | n. In both cases we
will show that there exist maximal ideals containing both of these minimal prime
ideals. Indeed we will show M4, = Mjp, if the former situation holds and thus, as
a direct application we get M., = Mjq,, where qd = c if the later situation holds.
Assume d = gb. For simplicity we only consider the case where ¢ 1 b. Then we

know by Proposition 13.2.5 in [2] that

qZIG) = Q1Q2- - Q,
for distinct primes Q1,Qs, ..., Q,, and by Proposition 13.2.9
qZlc) = Q' Qs - Q1 2],

where Q; lies over Q; for 1 < j <t, ie. Q;Z[¢) = Qg-_l.
These ideals give rise to maximal ideals My, and M,q4, in Z[G] as discussed in
Theorem 6. Because the Q1,Q)s, ..., Q, are pairwise comaximal and Qq, Qs,..., 9,

are pairwise comaximal as well, we have that M;,, # Mj,, and M,q, # M4, for all

i # 7.

Theorem 8. For 1 <j <t andd=qb, qtb, we have M;p, = M,qq.

Proof: Define

my : Z[G)/(@o(a)) = Z[G)

via a — (. So @ lifts back to an ideal in Z|G] we have denoted by M. Say

(Po(7)) = fi(2) fa(2) - -+ fr(x) mod g,
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where f;(z) is irreducible modq for all 1 < j <r. Then, Q; = (g, f;(()), [5] and so

Mjug = (q, fi(a), ®o(a)) = (q, f;(a))-
Because
qZ[C) = QI QI Qi
we have
Dy(r) = ()" = fi(2)T fo(x)" - fr(2)"™ mod g.

Thus, Q; = (q, fj(C4)), which implies that

M;aq = (g, fj(a), ®a(a)) = (g, fj(a)) = Mjp,.
Q.E.D.

Now we have recovered a special result in Structure of Witt rings and quotients
of Abelian group rings by Knebusch, Rosenberg, and Ware: the only maximal ideals
that contain more than one minimal prime ideal are those that contain a prime

dividing the order of the group.

We will illustrate this work using the example of G = (a) = Zs.

The minimal prime ideals of Z[G| are the following:
(®1(a)) = (a 1),
(Pa(a)) = (a+1),
(@3(a)) = {a® +a +1),
and

(Pg(a)) = (a* — a +1).
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We will now consider the maximal ideals of G = (a) = Zg. By Theorem 7 and
Theorem8, we know that M,4, are distinct for all primes ¢ > 3. The only primes of
concern then are 2 and 3 because they divide the order of our group, and thus lead

to non-distinct Mjq,.

Let’s consider ¢ = 3.
If d = 1, then we produce only M3 = (3,a — 1).
If d = 2, then we produce only Mis3 = (3,a + 1).
If d = 3, then 3 factors in Z[(3]. This corresponds to d = 3, b = 1 in Theorem 8.
Explicitly, 3 = (1 + (3)(¢3 — 1)?, where 1 + (3 is a unit in Z[(3]. Thus, 3Z[(3] = Q?
such that Q1 = (3 — 1), (r = 1). Therefore, 3 = (a+1)(a —1)*> mod a* + a + 1. So

we have My33 = (a — 1,a® + a + 1). We observe that
(@®>+a+1)(a—2)—(a+1)(a—1)*=3,
which implies that (3,a — 1) C (a — 1,a® + a + 1). We also note that
(a—1)(a—1)+3a=a’+a+1,
which implies that (3,a — 1) 2 (a — 1,a* + a + 1). Consequently,
Mz = (3,a—1)={a—1,a*>+a+1) = M3,

which confirms our Theorem 8.

If d = 6, then 3 factors in Z[(s] = Z[—(3]. This corresponds to d = 6, b = 2 in
Theorem 8. Explicitly, 3 = (¢s—1)(1+(s)?, where Q1 = (1+(3) (r = 1). Therefore,
3= (a—1)(a+1)*>mod a*> — a + 1. So we have M3 = {(a+1,a®>—a+1). We observe
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that

(a>—a+1)(a+2)—(a—1)(a+1)* =3,

which implies that (3,a + 1) C (a + 1,a* — a + 1). We also note that

(a+1D(a+1)—3a=a*—a+1,

which implies that (3,a + 1) D {a + 1,a* — a + 1).Consequently,

Mgz = (3,a+1) = (a+1,6* —a +1) = Mg,

which confirms Theorem 8 because 3 | 6.

We can do similarly for d = 2.
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