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Managing forests for multiple, often competing uses is challenging; managing Sierra 

National Forest’s fire regime and California spotted owl habitat is difficult and 

compounded by lack of information about habitat quality.  Consistent and accurate 

measurements of forest structure will reduce uncertainties regarding the amount of 

habitat reduction or alteration that spotted owls can tolerate.  Current methods of 

measuring spotted owl habitat are mostly field-based and emphasize the important of 

canopy cover.  However, this is more because of convenience than because canopy cover 

is a definitive predictor of owl presence or fecundity.  Canopy cover is consistently and 

accurately measured in the field using a moosehorn densitometer; comparable 

measurements can be made using airphoto interpretation or from examining satellite 

imagery, but the results are not consistent.  LiDAR remote sensing can produce 

consistent and accurate measurements of canopy cover, as well as other aspects of forest 

structure (such as canopy height and biomass) that are known or thought to be at least as 

predictive as canopy cover.  Moreover, LiDAR can be used to produce maps of forest 



structure rather than the point samples available from field measurements.  However, 

LiDAR data sets are expensive and not available everywhere.  Combining LiDAR with 

other, remote sensing data sets with less expensive, wall-to-wall coverage will result in 

broader scale maps of forest structure than have heretofore been possible; these maps can 

then be used to analyze spotted owl habitat.  My work consists of three parts: comparison 

of LiDAR estimates of forest structure with field measurements, statistical fusion of 

LiDAR and other remote sensing data sets to produce broad scale maps of forest 

structure, and analysis of California spotted owl presence and fecundity as a function of 

LiDAR-derived canopy structure.  I found that LiDAR was able to replicate field 

measurements accurately.  Additionally, I was able to statistically combine LiDAR with 

passive optical and RaDAR (SAR backscatter and InSAR range) data to produce broad 

scale maps of forest structure that are consistent and accurate relative to field data and 

LiDAR data alone.  Finally, I was able to demonstrate that these forest structural 

attributes predict spotted owl presence and absence as well as productivity. 
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Chapter 1: Introduction 
Forest wildlife habitat characteristics

Forests contain approximately 50% of Earth’s terrestrial, macroscopic species 

(Wilson 1999).  The implications for converting forest to agriculture or other uses 

would then seem clear; deforestation reduces the amount of available habitat for 

forest species.  In addition, the remaining habitat is often subjected to fragmentation, 

or the additional losses of species due to alterations in the spatial arrangement of 

forest patches above and beyond those lost due to reductions in area.  For example, 

placing a road through the center of a forest may only reduce the total area of a forest 

by a small fraction, while the remaining patches might be too small to support species 

that require a larger, continuous forest interior.   Remote sensing has proven to be a 

very effective means of measuring these types of changes, i.e., the reductions in area 

and increases in fragmentation associated with deforestation (Skole and Tucker 1993, 

Steininger 1996, Cohen et al. 2002). 

 However, area and fragmentation are strictly measurements of the horizontal 

component of forest structure.  Forests also have a vertical structure which is alterable 

in ways that are not as obvious from satellite imagery (Weishampel et al. 1996).  

Because of the practical difficulties in measuring the vertical structure of forests 

beneath the top of the forest canopy relatively less is known about the impact of 

certain silvicultural practices, such as selective logging or prescribed burns 

(Weishampel et al. 1996).  Changes in structure are not always apparent from above, 

or even from below, forest canopies (Weishampel et al. 1996). 
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Ecological theory suggests that there is a causal link between the structural 

complexity of a landscape and its compositional (species) diversity.  The search for 

correlates to, and causes of, diversity has a long history in ecology, e.g., Darwin, 

Wallace, Clements, Hutchinson, May, Volterra, Lotka, Gause, Lack, and Merriam 

(Morrison et al. 1998). Many factors have been considered and some remain 

controversial:  several have been entirely or partially rejected by some while partially 

or wholly accepted by others.  The major theories explaining global patterns of 

diversity include (Recher 1971): 

• Historical- communities gain diversity over time. Undoubtedly history plays a 

role, but its influence is difficult to quantify  

• Biological- increased competition causes greater niche partitioning, or, 

conversely, predation reduces competition allowing more species to coexist.   

However, biological interactions are difficult to quantify and this set of 

hypotheses are nearly impossible to falsify. 

• Environmental- environmental conditions, especially climate (or climatic 

stability) relate to productivity, which in turn allow for longer and more 

complex food webs.  Climate does seem to account for broad scale gradients 

of diversity. However, there are critical exceptions.  Estuaries and wetlands 

are highly productive yet do not have high levels of diversity.  Tropical ocean 

systems receive more solar radiation than temperate ocean systems yet have 

lower levels of diversity.   
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While all of these theories have some empirical support at global scales, they do not 

fully explain patterns at finer scales, such as regions, landscapes, and patches (Recher 

1971). 

At scales finer that the globe or continent, the variability of environmental 

conditions rather than the environment per se may influence the number of ecological 

niches available for species (Recher 1971).    This variation is often described as 

heterogeneity when referring to the horizontal dimension and complexity when 

referring to the vertical dimension   together, heterogeneity and complexity are 

hereafter referred to as patchiness (August 1983). 

 Both natural and anthropogenic processes influence patchiness in forests 

(Fahrig and Merriam 1985).  At broad spatial and temporal scales, this patchiness is 

primarily influenced by climate and geology (Fahrig and Merriam 1985).  At finer 

scales, patchiness is primarily driven by competition and disturbance (Fahrig and 

Merriam 1985).  Anthropogenic disturbance causes not only reductions in forest area 

but also alterations in the spatial pattern of the remaining forest patches, a process 

often termed habitat fragmentation (Fahrig and Merriam 1985).  Many organisms use 

forest patches as habitat and the structure of forest patches, particularly the forest 

canopy, provides niche space. Thus, changes in forest canopy structure may alter the 

suitability of forests for other organisms (August 1983). 

The process of habitat alteration and its consequences for forest species has 

been an active area of research in ecology and biogeography for decades.  Most of 

these studies consider the alterations of habitat in the horizontal dimension, such as 

the composition and configuration of patches (Rotenberry and Wiens 1980).  
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However, forest canopies are three-dimensional elements, i.e., they have length, 

width, and depth. Therefore, to fully understand the relationship between structural 

and compositional diversity, one must describe forest canopies as three-dimensional 

surfaces (Rotenberry and Wiens 1980). Recent evidence suggests that measures of the 

horizontal structure alone are inadequate to characterize the impacts of land cover 

change on biodiversity (Trzcinski et al. 1999).  Consideration of both dimensions 

simultaneously is currently lacking (Rotenberry and Wiens 1980) 

 There are three types of measurements that will be used here to describe forest 

structure: canopy height, canopy cover, and biomass distribution.  The height of 

forest canopy is a surrogate for age, although their relationship is curvilinear.  Canopy 

cover, or the fraction of sky obscured by vegetation, is an important predictor 

biodiversity (Trzcinski et al. 1999).  Biomass (and similar metrics, such as tree 

density) is positively correlated with bird species distributions (Beier and Drennan 

1997).  

The importance of forest wildlife habitat characteristics

Forests remain an important source of natural resources.  There is a pressing need to 

manage forests for multiple (economic, ecological, recreational, hydrological) 

resources in sustainable manner (Hunsaker et al 2002).  Silvicultural practices, 

particularly on National Forests, have come under close scrutiny in recent decades 

(Lee and Irwin 2005).    While the detrimental effects of clear-cutting are well 

documented, the effects of selective logging are less well known (King and DeGraaf 

2000).  Ample evidence exists that silviculture affects bird communities by altering 

vegetation structure (King and DeGraaf 2000).  Exactly how much selective logging a 
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species or a community can tolerate is an active area of research (Beier and Drennan 

1997).  It is, therefore, important to determine critical thresholds in forest structural 

attributes.  It also critical to determine error budgets associated with measurement of 

critical structural characteristics.  For example, if it is found that a species requires a 

minimum of 40% forest cover to persist, and the standard error of the estimation 

procedure is +/- 10%, then the target must be adjusted (to 50% cover) to provide an 

error margin. 

The distribution and abundance of many species, including California spotted 

owls, martens, and goshawks, are dependent on forest structure.  For example, the 

association between spotted owls and old growth forests is well documented (North et 

al. 1999).  It is not known, however, how to evaluate the habitat potential of forests 

because old-growth forests are highly variable structurally (North et al. 1999).  High 

canopy closure, numbers of large trees, abundance of coarse woody debris, and the 

presence of multiple vegetation strata are thought to be among the most important 

components of spotted owl habitat (Call and Gutierrez 1992), while Bias and 

Gutierrez (1992) conclude that broad scale, coarse grain structure maps are unsuitable 

for spotted owl research; the obvious conclusion is that sensors or techniques that can 

measure the former are far more preferable than those that produce the latter. 

The development of measurement techniques that accurately and consistently 

describe the structural complexity of forests is a necessary first step towards building 

habitat models for forest species.  The identification of environmental conditions that 

promote or maintain compositional diversity could augment or even obviate the need 

for costly species inventories.  An improved understanding of the relationship 
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between species and their habitats will reduce the uncertainty associated with 

resource management (Hunsaker et al 2002, Lee and Irwin 2005). 

 The focus of this effort is on several structural measurements, i.e., canopy 

height, canopy cover and biomass.  These are not the only measurements of structure, 

nor are they necessarily the most efficacious vis-à-vis wildlife habitat analysis.  They 

do have several advantages.  First, there is clear biophysical understanding of the 

underlying structure of forests that they intend to represent.  Second, there is a 

reasonably clear mechanism by which the structure being measured would be 

diagnostic of habitat suitability.  Third, each of these can be measured in the field and 

directly compared with remote sensing data sets.  

Canopy height refers to the distance from the highest point of canopy-forming 

trees to the ground. Although canopy height is a component of vertical structure, most 

often it has been used as a surrogate for age, or as a “site index”: the overall capacity 

of a site to produce timber. However, the relationship between canopy height and 

forest age is often curvilinear, not linear (Koike and Syahbuddin 1993) (Figure 1).   

Figure 1.  The curvilinear relationship between tree height and age (shaded circles).  Adapted 
from Aber, 1979. 
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Tree height diversity may be viewed as surrogate for stratification and old-

growth conditions (North et al. 1999); areas in high tree height diversity may provide 

a multitude of perching areas for spotted owls and yet be open enough to allow diving 

flights for prey capture. 

 Canopy cover refers to the fraction of sky obscured by vegetation.  Many 

forest species, particularly birds, are associated with forests with high canopy cover.  

Spotted owls are likely to nest in areas with greater canopy cover (>=70%) or basal 

area of snags, medium-, and old-growth trees (Blakesley et al. 1992), although the 

California subspecies may tolerate lower amounts of cover, ca. 50% (Hunsaker et al. 

2002).  Northern goshawks are likely to be found in areas of high canopy cover 

(>=40%), areas with large trees or high tree density, and show strong (habitat) 

selection for areas with >80% cover (Beier and Drennan 1997).   

Heterogeneity may increase the amount of ecological or niche space (August 

1983, Downes et el 1998).  Vertical structure may also provide new substrates, which 

in turn support more food resources.  One of the first observations that species 

perceive and exploit very small variations in vertical canopy space was made by 

MacArthur (1958).  He found that warbler species similar in size and shape fed and 

nested in different portions of the canopy (Figures 2 and 3). 
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Figure 2. The nesting height of some warbler species.  Adapted from MacArthur, 1958. 
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Figure 3. Composition of warbler populations and their relationship to canopy volume.  Adapted 
from MacArthur, 1958 

Methods used to measure forest wildlife habitat characteristics 

The methods used to measure forest wildlife habitat characteristics fall into three 

main classes:  in situ observations, passive remote sensing, and active remote sensing.  

All three have been used with some measure of success; however, they do not provide 

maps of sufficient quality to serve the needs of biological diversity research.  Wildlife 

habitat characteristics are typically measured in the field on small (< 1 ha) plots and 

are intended to assess fine scale processes.  Broad scale measurement and mapping of 

these characteristics from field surveys is generally cost prohibitive.  Remote sensing 

provides the only cost effective means of measuring forest wildlife habitat 

characteristics in a spatially and temporally continuous manner. Measurements of 
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forest canopy structure are generally made by developing empirical relationships 

between field-derived measurements of the biophysical variable and the intensity of 

the return signal from the remote sensing system.   

However, many remote sensing techniques are not ideally suited for 

measuring forest canopy structure in the vertical dimension.  This is especially true of 

forests that are older, structurally complex, or have closed canopies. The signal from 

passive sensors is dominated by the upper layers of forest canopies; very little solar 

radiation reaches the ground and is returned to the sensor.  Canopy height has been 

measured using interferometric synthetic aperture radar (InSAR) with a modest 

degree of accuracy in structurally simple forests (Treuhaft and Siqueira 2000), but not 

as of yet in mature secondary or primary growth forests.  Canopy cover has been 

recovered via passive remote sensing from forests up to about 80% cover, but the 

return signal tends to saturate at higher levels, making it difficult for this technique to 

distinguish primary from mature secondary growth (Steininger 1996).  Canopy 

heights can be measured via photogrammetry, but are difficult to produce in closed 

forests because the entire tree cannot be seen and because canopy elements of 

individual trees are often interlocked (Bebi et al. 2001).  

Light detecting and ranging (LIDAR) remote sensing may provide a means 

through which forest canopy structure, particularly in the vertical dimension, may be 

measured (Nelson et al. 1984, Nelson et al. 1988, Nilsson 1996, Lefsky 1997, Lefsky 

et al. 1999a, Lefsky et al. 1999b, Lefsky et al. 2001, Dubayah and Drake 2000, Drake 

2001, Drake et al. 2002). Unlike passive sensors, the LIDAR signal penetrates 

through the entire canopy.  Unlike radar, LIDAR signals do not saturate in forests that 
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are structurally complex (Weishampel et al. 2000).  Therefore, LIDAR offers the 

promise of measuring forest canopy structure in all forest types and uniquely has the 

capacity to provide measurements of vertical structure.   

In situ observations 

The traditional technique for measuring tree height is through the use of an 

inclinometer; the angles from an observer to the base and top of a tree, as well as the 

horizontal distance from the observer to the base of the tree are used to calculate tree 

height.  However, this method is very sensitive to the angle used by the observer.  At 

large angles, small measurement errors or imprecision in the instrument will lead to 

large errors in height estimation.  More recently, electronic rangefinder using sound 

or light have been used.  Often, the method that a researcher uses for height 

estimation is unreported (Rosenzweig and Winakur 1969).  Also, allometric 

relationships, such as diameter at breast height (dbh)-to-height regression equations 

(or the use of dbh instead of height as an indicator of age, e.g., Bias and Gutierrez 

1992) are used.  

Canopy cover is measured in the field in a variety of ways.  The point-quadrat 

method involves the observation of the frequency of occurrence of a particular 

vegetation type (Rotenberry and Wiens 1980). Sighting tubes (e.g., moosehorn 

densiometer) instead of rods or poles are sometimes used to ensure vertical 

orientation (Beier and Drennan 1997).  Spherical densiometers, which capture the 

fraction of sky obscured by vegetation, are also used (DeGraaf et al. 1998). 

Hemispherical photography has been used (Danson and Curran 1993) but there are 

problems associated with using such a wide field of view; the technique tends to 
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overestimate cover due to occlusion of canopy gaps. Often, the method used to 

estimate canopy cover is unreported (Pianka 1966, Bias and Gutierrez 1992).   

An early method of measuring vertical structure involved the use of boards 

(MacArthur and MacArthur 1961, Rosenzweig and Winakur 1969). One investigator 

holds a board at a specified height and moves away from a second observer until the 

board is half obscured by foliage.  The distance between the investigators is inversely 

proportional to the density of foliage at the specified height.  The measurement is 

repeated at various heights. The board method was sometimes used in a more 

systematic fashion, with perhaps less subjective height intervals that did not assume 

stratification (Rosenzweig and Winakur 1969).  Both methods are indirect; they 

measure something that is presumably correlated with foliar height diversity. 

An alternate method, a type of point-quadrat method, involves the recording 

of the number of contacts of vegetation within specified height intervals marked on a 

vertical rod or pole (Wilson 1965, Rotenberry and Wiens 1980). With a similar 

method, an optical point-quadrat method, the height of first contact is measured with 

a calibrated telephoto lens (MacArthur and Horn 1969, Aber 1979).   

If multiple layers are present, these methods tend to overestimate foliage in 

lower layers and underestimate foliage in upper layers unless a very large number of 

samples are taken (Fukushima et al. 1998).  The accuracy of height measurement 

declines with distance, making these methods unsuitable in canopies over 

approximately 25 m (MacArthur and Horn 1969).  Destructive sampling, e.g. clipping 

or stratified clipping has also been used, but is impractical at scales broader than a 

single tree (Fukushima et al. 1998).  Photo methods of the two dimensional 
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distributions of foliage density have also been attempted, but are laborious and only 

provide coarse resolution (Tanaka et al. 1998). 

The MacArthur-Horn and Aber methods assume a random distribution of 

foliage (Poisson model) and that foliage density is horizontally uniform (Koike 1985).  

However, leaf angle often changes as a function of height; leaves in the upper portion 

of canopies tend to be plagiophile (midway between horizontal and vertical), while 

leaves in the lower portion of canopies tend to be planophile (horizontal) (Hutchison 

et al. 1986).  The assumption of leaf orientation has implications for rate at which 

light transmitted through canopies is extinguished (Meir et al. 2000), (Table 2), and 

thus bears on the appropriateness of MacArthur’s technique as it is sometimes used a 

justification for a light extinction correction (e.g., Lefsky et al. 1999a). 

 
Table  1.  The effect of leaf orientation on light extinction coefficients.  Adapted from Meir, et al, 
2000. 
Height (m) A B C 
4 0.5 0.8 0.5 
8 0.5 0.8 0.5 
16 0.5 0.7 0.6 
24 0.5 0.6 0.7 
32 0.5 0.5 0.8 
40 0.5 0.5 0.8 
A = Spherical distribution 
B = Varying from spherical at top of canopy to planophile at bottom 
C = Varying from planophile at top of canopy to spherical at bottom 
 

Randomly distributed foliage has a higher light extinction coefficient than 

non-randomly distributed (clumped) foliage (Monsi et al. 1973). Trees with 

needleleaves are typically more clumped than are broadleaves, and thus needleleaf 

canopies likely have smaller light extinction rates, making a MacArthur-Horn 

transform less appropriate in coniferous than deciduous forests.  The use of 

A B C
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hemispherical photography to estimate vertical structure also relies on similar 

assumptions regarding the distribution of leaf inclination angles. 

All of these techniques are based on subjective estimates of vegetation density 

in subjectively defined canopy layers, and presume continuity of the foliage in the 

vertical direction (August 1983).  More objective methods include balloon-lofted 

rafts, cranes, scaffolding towers, tree climbing techniques, and lifting devices used by 

the construction industry (“cherry pickers”); however, measuring canopies in these 

ways is dangerous, time-consuming and expensive, limiting the number of samples 

that can be collected for most studies (Bassow and Bazzaz 1997). 

Passive remote sensing 

At some point in the aging process, forest successional stages become so similar in 

density, structure and optical properties that one is unable to discriminate between 

them with passive sensors (Kimes et al. 1999).  The return signal from passive optical 

sensors return is a function of vegetation structure and their optical properties, which 

are influenced by slope, aspect, elevation (Kimes et al. 1996), as well as sun-target-

sensor geometry and atmospheric effects.  

Airphoto interpretation of tree heights from stereopairs works well in sparse 

canopies, but is limited when canopy cover is dense due to problems discriminating 

individual crowns (Bebi et al. 2001).  Airphoto interpretation is also problematic due 

to very large errors in height estimates on steep slopes (Tanaka and Nakashizuka 

1997).  Coarser resolution satellite imagery suffers from the same problems; however, 

the use of multiple view angles, e.g., Multi-angle Imaging Spectroradiometer (MISR) 

(Diner et al 1999) may lead to improvements in height estimation. 
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The delimiting of tree and non-tree features from imagery suffers from some 

of the same problems associated with canopy height.  High spatial resolution imagery 

is required to separate canopies and canopy elements and thus is limited to small 

spatial extents.  These methods are also labor intensive and the manual delineation of 

forest patches is highly subjective. The spectral mixing of scene elements (crown, 

shadow, ground, non-forest vegetation) in medium to coarse resolution imagery limits 

their utility for measuring vertical structure. Cover measurements are very sensitive to 

angle of the field of view, or view angle.  When view angles are large (>30 degrees 

from the ground), cover measurements are biased high because gaps in the canopy are 

obscured by foliage near to the observer.  Hunsaker et al. (2002) found that Landsat 

Thematic Mapper (TM) overestimates cover relative to aerial photography. 

Air photo interpretation or photogrammetry suffers from high rates of 

misclassification with respect to metrics of vertical structure due to the difficulties in 

distinguishing multilayered from uniform canopies and distinguishing intermediate 

tree size classes (Bebi et al. 2001).  It is possible to assess vertical structure using 

shadow lengths, and this method could be improved with the use of digital terrain and 

solar radiation models. Metrics of stand complexity derived from field measurements 

show a high correlation to texture images derived from SPOT HRV data and to 

“wetness” images derived from Landsat TM data (Cohen and Spies 1992).   

Active remote sensing 

Radar sensors operate on the principle that microwave radiation received by the 

sensor, or backscatter, is proportional to the amount and organization of canopy 

elements. Shorter wavelengths are more sensitive to smaller canopy elements 
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(foliage, twigs) while longer wavelengths are more sensitive to large canopy elements 

(trunk).  However, radar backscatter saturates in closed forests (Kasischke et al. 

1997).  The use of multiple channels (wavelengths and polarizations) may improve 

the accuracy of such measurements.  Also, coupling radar backscatter to ecosystem 

models may provide measurements of forest structural attributes (Castel et al. 2001, 

Ranson et al. 2001).   

Traditional radar (SAR) remote sensing has been used to measure canopy 

height in boreal forests (Dobson et al. 1995).  Polarimetric interferometric SAR, 

which should be more effect than traditional SARs, has also been used to measure 

canopy height, but again in relatively structurally simple (boreal) ecosystems 

(Treuhaft and Siqueira 2000).  Interferometric SAR has been used to assess biomass 

in structurally simple forests (Treuhaft and Siqueira 2000), but this technique is in the 

exploratory stage. 

Light detecting and ranging (LIDAR) sensors also operate on principle that 

radiation received by the sensor, or backscatter, is proportional to the amount and 

organization of canopy elements.  Unlike RaDAR, the radiation emitted by the sensor 

is typically in the shorter wavelength bands (ultraviolet, visible, or near infrared).  

LIDAR systems range from very narrow beams (small footprint, ca. 0.3 – 1 m 

diameter (Naesset 1997, Nelson et al. 1988) to relatively broad beams (large 

footprint, 10-30 m diameter (Blair et al. 1999).  Typically, small footprint systems 

record the first or last return (and sometimes both), while large footprint systems 

typically record the entire return signal; the latter systems produce a nearly 

continuous three dimensional portrait of forest canopy structure. 
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The heights of forest canopies have been measured in a variety of ecosystem 

types using LiDAR, ranging from the structurally simple (Naesset 1997, Nelson et al. 

1984, Nelson et al. 1988) to the complex (Nelson et al. 1997, Lefsky et al. 1999a, 

Peterson 2000).  However, the validation sites in structurally complex ecosystems 

may not be statistically representative vis-à-vis slope; these sites are often in flat 

areas.   

Canopy cover has been derived from LIDAR (Nelson et al. 1984, Nelson et al. 

1988, Nilsson 1996, Lefsky 1997, Lefsky et al. 1999a, Lefsky et al. 1999b, Lefsky et 

al. 2001, Dubayah and Drake 2000, Drake 2001, Drake et al. 2002).  However, some 

of the assumptions regarding the distribution of foliage and the degree to which 

occlusion affects signal are questionable.   Lefsky  (1997) and Lefsky et al. (1999a, 

1999b) attempts to correct for overestimation of abundance of canopy elements in 

upper layers due to occlusion or blocking of lower layers ; however, this correction 

overestimates canopy elements in the lower layers.  The assumptions underpinning 

Lefsky’s method are more valid in broadleaf deciduous forests than in needleleaf 

evergreen, because, as noted, needleleaves tend to be more clumped than broadleaves.  

The vertical distribution of intercepted surfaces (VDIS) derived from a LIDAR signal 

is similar in principle to foliar height diversity, but includes the distribution of non-

foliar canopy elements (e.g., twigs and trunk).  For habitat assessment purposes, 

VDIS may be a more accurate predictor of suitability than foliar height diversity, 

given that niche space is not limited solely to foliar elements.   
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Summary

Forests provide habitat for a variety of species, accounting for about half of all 

terrestrial, macroscopic species.  The National Forest system in the United States has 

traditionally managed these forests for multiple uses, including timber extraction, 

recreation, and water quality.  In recent decades, these forests have also been 

managed explicitly for the benefit of wildlife species.  The importance of natural fire 

regimes, and conversely the negative impacts of fire suppression, has also become an 

important management concern.   However, it is unknown how the effects of these 

disparate and sometimes competing uses will interact.  This is particularly true with 

regard to fire and habitat management, although selective logging is still an important 

consideration.   

Fire and selective logging have the potential to change both the floristics and 

the physiognomy or structure of the forest; some of the changes are easier to detect 

and quantify than others.  Remote sensing can improve the cost effectiveness of 

monitoring land cover change by providing continuous or nearly continuous 

measurements in both space and time.   In contrast, measuring structural 

characteristics is difficult, and no single method provides an adequate solution.  It is 

almost axiomatic in the literature that field methods are superior to other methods; 

however, field methods have biases and inconsistencies, are sometimes crude 

estimators of actual structure, and are limited in scale. 

LIDAR may be the most promising in terms of delivering the required 

measurements, but is not widely available and is very expensive in terms of cost per 

unit area (Table 2).   
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Table 2.  Representative examples of costs for several remote sensing image acquisitions.    Prices 
do not include pre-flight  (e.g., transportation or GPS) costs or post-flight processing.  Prices for 
large footprint systems were not available.   

Sensor 
(spatial resolution) 

Acquisition 
Cost 

($ per square 
kilometer) 

Source 

LiDAR 
(< 1 m) 

386 Airborne 1 Corporation, 
 El Segundo, CA, USA 

High resolution passive optical 
(1 – 5 m) 

 

116-386 UNESCO 

Moderate resolution passive optical 
(10 – 30 m) 

 

0.04 U.S. Geological Survey 

Low resolution passive optical 
(500 – 1000 m) 

 

0 NASA 

RaDAR 
(8 - 50 m) 

0.01 – 1.16 
 

RADARSAT International, 
Richmond, BC, Canada 

Radio detecting and ranging (RaDAR) is relatively inexpensive, as is multi-temporal, 

multi-spectral imagery; however, these sensors do not provide the requisite 

measurements of structure in the vertical dimension.  Combining information from 

multiple sensors (multi-sensor fusion) may be useful in bridging the gap between 

availability and accuracy. Remote sensing data sets, validated with field observations, 

together will likely improve these measurements- a hypothesis that will be tested as 

part of this effort.   

The following chapters will investigate the use of remote sensing to provide 

maps of forest structure for habitat analysis (Figure 4).  The first chapter focuses on 

LIDAR techniques and how these compare with traditional field observations.   The 
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second chapter fuses structural information from several remote sensing data sets in 

the attempt to create synergy in characterizing forest structure.  The penultimate 

chapter applies the results of the previous chapters to the creation of habitat models 

for California spotted owls in the Sierra Nevada of California.  The final chapter 

summarizes the results of the research chapters and discusses the implications for 

future biodiversity studies. 
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Figure 4.  Flowchart depicting the relationship between the chapters of this document. 
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Chapter 2: Mapping forest structure for habitat analysis using 
waveform LIDAR: validation of montane ecosystems 
Introduction

Management of forests for multiple uses, such as timber harvesting and protection of 

biological diversity, is challenging.  Effective management often requires either 

information about the presence and abundance of organisms – which is not available 

for many species- or the development of indicators of habitat quality that correlate 

with species distributions.  At the landscape scale, the structure of forests can be 

quantified and used to predict the occurrence of some species.   These structural 

attributes include the height of the forest canopy, the amount of canopy cover, and 

biomass. 

Habitat models 

Habitat analysisFusion

Chapter 2 Chapter 3 Chapter 4 

Validation
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Field measurements of canopy height and canopy cover are conceptually 

simple.  Direct measurements of biomass are somewhat more problematic because 

they require destructive sampling, although indirect methods, e.g., allometric 

equations relating dbh and/or height to biomass, suffice for most applications.  

However, in situ observations of forest structure, particularly in montane settings, are 

time-consuming and are often limited by accessibility, resulting in relatively small 

(ca. < 1 ha) field studies. Measurement and mapping of these characteristics from 

field surveys are generally cost prohibitive at fine spatial scales, across large areas. 

 Remote sensing methods, primarily multi-spectral (Hyppa et al. 1998) and 

more recently hyperspectral (Pu and Gong 2004) have been explored as cost effective 

means of measuring forest structural characteristics in a spatially and temporally 

continuous manner. However, these techniques are poorly suited for measuring 

vertical forest canopy structure (Weishampel et al. 2000). Radar methods, such as 

interferometric synthetic aperture radar (InSAR) are better at characterizing structure 

in forests, especially those that are structurally simple or have open canopies 

(Treuhaft and Cloude 1999, Treuhaft and Siqueira 2000), but as is the case with 

multi-spectral methods, these are primarily by correlation. 

In contrast, LIDAR remote sensing directly measures important vertical and 

spatial forest structure. Numerous studies using both small footprint (< 0.5 m radius) 

and large footprint, waveform digitization airborne LIDAR, have demonstrated its 

ability to recover structure such as canopy height, canopy cover, canopy height 

profile, canopy volume, biomass and basal area at unprecedented accuracies (Nelson 

et al. 1984, Nelson et al. 1988, Nilsson 1996,  Lefsky 1997, Lefsky et al. 1999a, 
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Lefsky et al. 1999b, Lefsky et al. 2001, Dubayah and Drake 2000, Drake 2001, Drake 

et al. 2002) but these relationships have not been tested in all ecosystem types.  These 

studies developed relationships between in situ observations of forest structure and 

airborne laser data.  The field samples in these studies were typically small in 

number, of limited spatial extent, or were located on relatively flat terrain. Because 

the application of LIDAR remote sensing to land surface characterization is relatively 

new, the accuracies achievable under a variety of environmental conditions is not yet 

well known, especially for large-footprint LIDAR. Factors such as topographic slope, 

canopy vertical structure and forest spatial structure (such as clumping of trees) are 

all hypothesized to affect the accuracies of retrieved structures. This is especially true 

of montane regions where there is a large range of slopes, elevation, soils and climate, 

all of which affect species composition and canopy architecture, such as height and 

cover. Yet it is in these difficult montane conditions where much forest management 

takes place. Thus, developing a better understanding of the effects of these factors on 

LIDAR retrievals is important. 

For example, topographic slope can cause the LIDAR ground return (the last 

Gaussian return from the surface) to spread, leading to inaccurate ground 

determination, and consequently, canopy heights (Hofton et al. 2000). Slopes can also 

cause heights retrieved from LIDAR to be shorter or taller than their actual heights if 

the stem is located away from the center of the footprint (Rocchio 2000, Hofton et al 

2002). The reason for this is that heights are determined relative to the mean ground 

elevation within a footprint, so that a stem which is upslope of the footprint center 

will appear taller and one which is downslope will appear shorter than the actual 



25 
 

height (Rocchio 2000, Hofton et al 2002).  Also, the returns from short trees on steep 

slopes can be convolved or blurred with the surrounding topography. The architecture 

or shape of individual crowns can impact the accuracy of canopy height retrieval; 

some amount of canopy penetration can occur with more pointed, typically 

coniferous, crowns leading to underestimates of canopy height.   Aspect and elevation 

relative to the flight of the aircraft can influence sensor-target geometric relationships 

and thus the actual size of the LIDAR footprint, leading to uncertainty about the 

actual area mapped by a footprint.  The spatial distribution of canopy materials within 

the footprint affects the amount of signal returned to the sensor because of the non-

uniform (Gaussian) illumination of the footprint by the LIDAR pulse; i.e. there is less 

energy at the edge of the footprint which may cause canopy materials at the edge to 

go undetected or be underestimated. 

Developing a thorough understanding of the effects and interactions of these 

factors will require many studies. However, as part of the Vegetation Canopy LIDAR 

(VCL) mission (Dubayah et al. 1997), airborne, large footprint LIDAR data were 

acquired by the LVIS (Laser Vegetation Imaging Sensor) over Sierra National Forest 

in California in 1999. The goal of this experiment was to provide calibration and 

validation data to help define algorithms and subsequent accuracies of forest structure 

retrievals over montane regions under a wide range of slopes, canopy closures and 

environmental conditions.  

Objectives

The primary objective of this chapter is to assess the ability of a large footprint 

LIDAR to retrieve canopy structure over the diverse montane forests of the Sierra 
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Nevada. My ultimate goal is to provide spatially continuous maps of forest structure 

at the landscape scale as a prerequisite for forest management. In the research 

presented here I compare spatially explicit field measurements of structure to metrics 

derived from LIDAR data collected by LVIS.  My field plots cover a large range of 

slope, aspect, elevation, canopy cover, canopy shape and arrangement, and thus 

provide a rigorous assessment of LIDAR retrieval in montane conditions.   

The remainder of this chapter is organized as follows. First I describe my 

collection of field plot data, and give details of the LVIS data acquisition over the 

Sierra Nevada.  Next I present methods for data processing and analysis of both 

LIDAR and field data, including the derivation of canopy height, canopy cover and 

biomass. I then give the results of statistical comparisons between field-derived and 

LIDAR-derived forest structure. Finally, I discuss the significance of my results 

relative to the retrieval of forests characteristics in montane regions, and the 

implications of these for mapping forest structure. 

Data Collection

Study area 

The study area is located in Sierra National Forest in the Western slope of the Central 

Sierra Nevada of California (USA). This site is approximately 60,000 ha, with 

elevation ranging from 853 to 2,743 m (for a complete description, see (Hunsaker et 

al. 2002).  Vegetation types include white fir (Abies concolor), red fir (Abies 

magnifica), Sierran mixed-conifer, ponderosa pine (Pinus ponderosa), and montane 

hardwood-conifer.   Climate is heavily dependent upon elevation.   Temperature 

ranges from below freezing (0 degrees centigrade) to over 38 degrees centigrade; 
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precipitation falls mainly between October and April.  The area is subject to wildfires 

or wildland fires, either naturally-occurring (typically caused by lightning strikes), 

accidentally set by humans, or by prescribed burns in order to reduce the 

accumulation of understory and standing biomass.  Selective logging also occurs on 

the forest but is severely restricted and occurs mostly as part of experimental 

treatments.   

The study area is open to the public and may be subject to a variety of 

recreational activities, including hiking, fishing, hunting, shooting, boating, camping, 

cycling, picnicking, rafting, “four wheeling” or the use of off-road vehicles, skiing, 

and horseback riding.  However, many U.S.D.A. Forest Service roads are gated and 

locked, preventing access by vehicle and thus limiting the exposure of all field plots 

as well as a majority of the study area to outside activity.   Approximately one-third 

of the study area is located within the Teakettle Experimental Area, where access is 

very tightly controlled and almost exclusively restricted to U.S.D.A. Forest Service 

employees and collaborating researchers.    The study area was chosen for several 

reasons: because it is spotted owl habitat, because of the availability of spotted owl 

demography data and remote sensing data sets, and because the location was deemed 

suitable as a test-bed for LiDAR remote sensing calibration-validation activities in 

steep-sloped terrain. 

LiDAR data 
 
LIDAR data was collected by the Laser Vegetation Imaging Sensor (Blair et al. 1999) 

during October 1999 while deciduous trees were in leaf-on condition.  LVIS is an 

airborne laser altimeter that records the time and amplitude of a laser pulse reflected 
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off target surfaces. LVIS is a full waveform-digitizing system and records the vertical 

distribution of nadir-intercepted surfaces at 30 cm vertical resolution. The LVIS 

instrument flew aboard the NASA C-130H aircraft at about 7 km above ground level.   

LVIS is an imaging LIDAR, recording spots or “footprints” illuminated within a 7-

degree potential field of view. For the Sierra Nevada flights these footprints had a 

nominal radius of 12.5 m, nominally separated by 12.5 m across track and continuous 

along track.  Because of variations in altitude of the plane above the varying 

topography of the Sierra, actual footprint radii vary between 9-11 m. An area of about 

175 square kilometers was mapped.  The fundamental observation of LVIS is a 

waveform that gives the vertical distribution of intercepted surfaces. The amplitude of 

the waveform at any height is proportional to the amount of reflective material 

intercepted at a particular height, the orientation of that material, and its reflectance 

(ignoring such effects as multiple scattering within the footprint). Initial processing of 

the data is required to remove various biases to permit accurate geolocation. The data 

are then further processed to find ground and canopy returns, to derive various 

waveform metrics, such as the height of median energy and canopy top height, using 

automated methods. 

Field plot data 
 
One hundred twenty-four (124) plots centered on laser footprints were distributed 

throughout the study area using a modified stratified random sampling scheme; the 

data from 13 plots were excluded because of no discernable ground return existed in 

the waveform (likely due to saturation in very dense forests), leaving 112 suitable for 

analysis.  Although the plots were located on laser footprints, the actual waveforms 
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were not examined before the stratification (to prevent bias), and therefore there was 

no attempt to retain only waveforms that showed a strong ground return. The number 

of plots placed within each land cover type (Table 3) were proportional to their actual 

distribution within Sierra National Forest, with the exception of the red fir class; this 

vegetation type was oversampled because of its importance as remnant old-growth.   

Field plot data were collected by field crews from the University of Michigan, the 

U.S.D.A. Forest Service and University of Maryland; the names of the individuals are 

listed in the Acknowledgement section (above). 

 

Table 3.  Field plots by vegetation class (Meyer & Laudenslayer, 1988). 
 

Vegetation class # plots 
Red fir 36 

White fir 19 
Ponderosa pine 7 

Other pine 4 
Sierra mixed conifer 22 
Montane hardwood 2 

Montane hardwood-conifer 6 
Wet meadow 10 

Barren 6 

Concentric circular plots were established, with an inner plot of 0.07 ha (15 m 

radius) and an outer plot of 1 ha (56.4 m radius).  The 0.07 ha (“footprint”) plots were 

designed to allow direct comparison of field measurements with individual LIDAR 
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footprints; the plot size was slightly larger than the nominal footprint to compensate 

for geolocation errors, if needed.  The 1 ha (“stand”) plots were designed to be 

commensurate with existing Forest Service field plots.  It is assumed that no changes 

in hardwoods occurred between the field and remote sensing data collections. 

 Field plot data were collected during the summers of 2000 and 2001 and 

error-checked in 2002. Within the 0.07 ha plots, all live stems with a diameter at 

breast height (dbh) >= 10 cm were inventoried and species type was recorded.  The 

dbh of the stem was measured with fiberglass tapes.  The height of the stem, the 

height of the full crown, and the height of the partial crown (if present) were 

measured with an Impulse LR laser range finder (Laser Technology, Inc., Englewood, 

CO).  The sweep of the partial crown, if present, was estimated to the nearest 30 

degrees.  The shape of the crown was characterized as elliptical, umbrella-shaped, 

conical, or cylindrical.  Four crown radii (two each along and across slope) were 

measured with fiberglass tapes.  The bearing of each stem with respect to the plot 

center was measured with a digital flux gate compass (Laser Technology, Inc., 

Englewood, CO) and the distance of each stem to the plot center was measured with 

the laser range finder. 

Canopy cover was measured every 5 m along four transects and at the plot 

center with a moosehorn densiometer (Moosehorn CoverScopes, Medford, OR), 

following an established Forest Service field protocol.   Due to time constraints, on 

only a subset of plots (n = 40), canopy cover was measured every 3 m on twelve 15 m 

transects (spaced every 30 degrees for a total of 60 observations) and at the plot 

center with a moosehorn densiometer and a LAI2000 plant canopy analyzer (Li-Cor, 
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Lincoln, NE). This more intensive sampling was performed to help assess the effects 

of under/over sampling as it is notoriously difficult to achieve consistent field-sample 

estimates of canopy cover. 

Within the 1 ha plots, all live stems >= 76 cm dbh were inventoried.  The 

species, the height of the stem, and dbh were also recorded. 

Data Analysis

LIDAR data 

The focus of this study is the derivation of three structural measurements, canopy 

height, canopy cover and aboveground biomass. Canopy height and canopy cover are 

directly retrieved from waveform data using algorithms described below.  Both of 

these require identification of a ground return in the waveform, and associated with 

this, the identification of the canopy portion of the waveform. Biomass is not directly 

measured by LVIS; rather, metrics derived from LIDAR waveforms, such as canopy 

height, and height of median energy (HOME), are correlated with canopy structure.  

Ground and Canopy height 
 
Past studies e.g. Lefsky (1997), Lefsky (2000b) have relied on mainly manual 

methods for finding ground returns, especially where the returns are weak relative to 

the background noise level. While appropriate for validation studies with small 

numbers of waveforms, manual methods are impossible for the large numbers of 

LVIS waveforms used here (about 1 million). Because canopy height is determined 

relative to the ground, accurately retrieving ground elevation is critical. Thus, an 

automated algorithm for finding both ground and canopy height was employed.  
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The algorithm involves: 1) removing noise and resampling the waveform to 

improve sensitivity and resolution, 2) re-estimating noise statistics, 3) finding the 

center or mode of the last pulse, i.e., the ground, and 4) detection of the highest 

surface return above the noise level, i.e., the top of the canopy.   The difference 

between the height of the ground and the top of the canopy is equal to the maximum 

height of the canopy, often referred to simply as canopy height. (Figure 5)  

 In cases where no ground return could be identified by the algorithm, the 

data were not used (thus leading to the elimination of some of the field validation 

waveforms above).   

 

Figure 5.  Diagram of an LVIS waveform.  Home refers to the Height of the Median Energy 
Return, or the height of mid-point of the cumulative energy distribution within each waveform.   

 

Figure 4.  Diagram of a LIDAR waveform from LVIS.   
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Canopy cover 
 
An algorithm was used to extract canopy cover from LVIS waveforms that uses 

canopy height as derived in the previous step to define the top of the canopy.  The 

bottom of the canopy is defined as the second to last return above a noise threshold 

(Figure 5).  Once the ground and canopy portions of the waveform are thus separated, 

canopy cover is calculated by dividing the canopy portion of the waveform by the 

total energy in the waveform (canopy return plus ground return).   

Differences in reflectivity in the near infra-red portion of the spectrum 

between canopy and ground must be accounted for. For example, if the canopy is 

very bright relative to the ground, the amount of energy reflected by the canopy 

portion will be incorrectly attributed to high closures in the canopy (i.e. the weak 

reflectance from the ground will be inferred to be because of weak incoming energy 

rather than weak reflectance). Thus, the ratio of canopy to ground reflectance must be 

known (Lefsky 1997). Others, e.g., Lefsky et al (1999a) and Drake et al (2002) have 

assumed a ratio of 2 for a variety of areas. I empirically estimated this ratio through 

examination of high spatial resolution passive optical (Quickbird, Satellite Imaging 

Corp., Houston, TX) imagery. Representative samples of forest and non-forested 

areas were delineated; NIR reflectance was averaged across samples and then ratioed.  

The resulting correction factor of 1.6 differs significantly from these previous studies.  
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Biomass 

While LIDAR does not measure biomass directly, metrics derived from LIDAR have 

proven effective in estimating forest biomass (Nelson et al. 1984, Nelson et al. 1988, 

Nilsson 1996, Lefsky 1997, Lefsky et al. 1999a, Lefsky et al. 1999b, Drake 2001, 

Lefsky et al. 2001). Canopy height by itself is sufficient in some, more structurally 

simple, biomes (Lefsky et al 1999b).  In more structurally complex biomes, such as 

tropical and old-growth Western coniferous forests, some indication of the depth of 

the canopy is also useful for predicting biomass (Lefsky et al 1999a, Drake et al 

2002).  Additional metrics used in as proxies for biomass include canopy height 

squared and canopy reflectance.  All metrics were calculated from waveforms at both 

the plot and stand levels.    

Field data 
 
Field measurements at the footprint and stand levels include maximum canopy height, 

i.e., the height of the tallest stem within the plot.  Field height data were also pooled 

according to vegetation type (Table 3), which was used as a proxy for crown shape, 

e.g., stands of pure red fir tended to be conical or pointed, while deciduous crowns 

tended to be more rounded.  Elevation for each plot was acquired from a 7.5’ USGS 

Digital Elevation Model, which was also used to calculate slope.    Allometric 

equations relating stem biomass to height and dbh were obtained from the USDA 

Forest Service (Waddell and Hiserote 2003).  These equations were applied to the 

field data to calculate total standing (aboveground) biomass for each stem; the 

biomass of all stems within the plot was added to provide totals at the footprint and 

stand levels. 
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LIDAR and field canopy height and canopy cover were compared through 

regression analysis at the footprint and stand levels using linear regression 

techniques; results are summarized in Table 4.   

 

Table 4.  Accuracy of predictive models derived through regression analysis.   
 

Field 
measurement 

Scale Root mean 
square 
difference 
(m) 

Coefficient of 
determination 
(r2)

Model∗∗∗∗ n p

height (m) footprint 8.9 0.75 Y= 0.83 * 
LHT + 7.85 

112 < 0.000 

height (m) stand 6.4 0.75 Y= 0.59 * 
LHT – 0.07 

112 < 0.000 

cover (%) footprint 13.4 0.81 Y= 0.82 (CE / 
(CE + GE)) + 

1.4 

40 < 0.000 

biomass  
(Mg ha-1)

footprint 73.5 0.83 Y= 54.1 * 
HOME + 5.6 

* LHT2 –
15.1 

112 < 0.000 

Biomass 
 (Mg ha-1)

stand 54.8 
 

0.86 Y= 4.6* mean 
LHT – 6.7 * 
min LHT + 
39.2* mean 
HOME – 

16.5 * median 
HOME – 41.7 
* min HOME 
– 1.5 * max 

HOME – 45.3 

112 < 0.000 

*LHT = LVIS canopy height  HOME = height of the median energy return   
GE= ground energy  CE = canopy energy  
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The residuals of the regression between field and LIDAR height measurements were 

compared to slope, aspect, and cover to quantify the effects of these factors on height 

retrieval.  Plots were then grouped together by land cover types and separate 

regression models were fit for each group to quantify the effects of crown shape.  

Field estimates of biomass were compared to LIDAR metrics using stepwise multiple 

linear regression techniques.

Results 

Canopy height 
 
Field and LIDAR canopy heights showed good agreement (r2 = 0.75, RMSD = 8.2 m, 

n=112, p < 0.00; Figure 6) at the footprint level, comparable to other results using 

large footprint LIDAR e.g., Lefsky et al (1999b). 

Figure 6.  Scatterplot of LVIS canopy heights vs. field canopy heights.  Outliers are likely caused 
by the overestimate of LiDAR canopy height due to the existence of large tree crowns at the edge 
of waveforms. 
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Bare plots were included in the comparison. Note that for some plots, field estimates 

are much larger than LIDAR estimates, by tens of meters, which weakens the 

relationship (analyzed further below).  

Contrary to expectations that slope is the major source of error in montane 

systems, examination of the residuals of the regression showed a weak, and 

statistically insignificant correlation with slope (r2 = 0.19, SE = 11.8 m, n=112, p = 

0.25; Table 5).  
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Table 5. Potential sources of error in LIDAR vs. field canopy height measurements at the 
footprint level.  
 

Potential error 
source 

Coefficient of 
determination

(r2)

Standard 
error 

n
p

slope 0.19 11.8 m 112 0.25 
aspect 0.01 13.1 m 112 0.08 

elevation  0.00 13.1 m 112 0.75 
cover 0.00 5.9 % 40 0.08 

There was no systematic relationship between differences in field vs. LIDAR 

measurements and aspect (r2 = 0.01, SE = 13.1 m, n=112, p=0.08), elevation (r2 =

0.00, SE = 13.1 m, n=112, p=0.75), or canopy cover (r2 = 0.01, RMSD = 5.9 m, n=40, 

p =0.08) (Table 5). There were some differences among vegetation classes (Table 6), 

a rough proxy for crown shape; the plots containing hardwoods were far more 

accurate (r2 = 0.88, SE = 4.0 m, n=8, p = 0.04) than those containing exclusively 

conifers (with a high r2 = 0.72 and a low of 0.35). 

Table 6.  Accuracy of canopy height measurement (at the footprint scale) as a function of 
landcover class.    Only the Montane hardwood & Montane hardwood-conifer contains 
deciduous trees; the remaining land cover classes (except for wet meadow and barren) contain 
only conifers.    
 

Vegetation class 

Root mean 
square 

difference (m)

Coefficient of 
determination 

 n p 
Residuals fit 
to distance 

Residuals fit to 
slope 

 
Red fir 8.8 0.72 36 0.00 0.10 < 0.00 

White fir 8.9 0.60 19 0.00 0.05 0.06 
Ponderosa & Jeffrey 

pine 
11.1 0.43 

11 
0.03 0.06 0.03 

Sierra mixed conifer 10.0 0.35 22 0.00 0.18 < 0.00 
Montane hardwood & 
Montane hardwood-

conifer  

 
4.0 

 
0.88 8 

 0.00 

 

0.00 

 

0.04 
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Wet meadow 9.5 0.54 10 0.02 0.10 0.10 
Barren 3.6 0.85 6 0.00 0.29 0.07 

Field measurements of canopy height from the two montane hardwood plots 

were pooled with measurements from montane hardwood-conifers, the only other 

landcover class that contained some deciduous trees. Field and LIDAR canopy height 

were in closest agreement in the montane hardwood-conifer (r2 = 0.88, RMSD = 5.4 

m, n=6, p < 0.00) and combined montane hardwood & montane hardwood-conifer 

plots (r2 = 0.88, RMSD = 4.5 m, n=8, p < 0.00) and lowest in the Ponderosa pine (r2 =

0.25, RMSD = 8.4 m, n=7, p=0.25) and other pine (r2 = 0.58, RMSD = 11.0 m, n=4, 

p=0.24) plots.  Analysis of variance revealed no significant difference among the 

coefficients of determination (p = 0.06, df =2, 9) or RMSD (p=0.47, df=2, 9). 

The above analyses were performed assuming a nominal footprint size of 12.5 

m. Although efforts were made by the aircraft to follow the terrain, variations in 

footprint size because of changes in elevation were inevitable. I modeled the expected 

footprint size for each footprint based on the sensor/target geometry which yielded a 

range of footprint radius sizes from 9-11 m. If the largest stem in field data was 

beyond 11 m, this would lead to some of the large errors noted above (because the 

stem would not be in the imaged footprint). For example, a stem map of Plot 18 

(Figure 7) shows the tallest tree occurs at a distance of  12.1 m, whereas the 

calculated footprint size is 10.5 m.

Figure 7.  Example of a large underestimate of tree height caused by edge location of the tallest 
tree.  The radii of the concentric circles are 9, 12.5, and 15 meters in length.  The very small 
black circles are the centers of LIDAR footprints; the text beneath them is the canopy height 



40 
 

value at that location.  The small gray circles are stems; the radius of the circle is the average of 
four crown radii measurements taken in the field.  The italicized text inside the stem locations is 
the field measurement of tree height.  These measurements are possible because the location of 
each stem was measured in the field. 

 

I then compared LIDAR height with the tallest stem within the calculated 

footprint radius. The result was an r-squared value of 0.72, RMSD of 7.6 and did not 

significantly improve the results. However, when separate regressions were 

performed as a function of footprint size, r-squared values increased from 0.76 for 11 

m radius footprint up to 0.88 for 9 m radius. One reason for this increase is that the 

larger fooprint sizes coincidentally include those plots where the largest tree is near 

the edge of the footprint; there is no systematic, physical reason for why this is so. 

This then suggests an issue with sensitivity.   
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As discussed earlier, the incident energy pattern within an LVIS footprint is 

not uniform, but rather drops off as a Gaussian, so that errors may increase as the 

tallest stem moves from the center of footprint to the edges, especially for pointed 

crowns. I recalculated my height comparisons, this time by grouping plots together as 

a function tallest stem distance, from 3-12.5 m, and assuming a nominal footprint size 

of 12.5 m (and set this as an upper boundary for the analysis). I also excluded barren 

plots to isolate the effect stem distance. Results are shown in Table 7 and Figure 8.  

 Table 7. Canopy height retrieval accuracy as a function of distance. 
 

i n RSE RMSD Coefficient of 
determination 

st dev Bias (field – 
LIDAR) 

slope 
Coefficient of 

determination* 
3 5 3.74 4.01 0.97 4.33 -0.26 0.18 
4 9 3.99 3.87 0.94 4.01 0.58 0.32 
5 15 3.44 3.45 0.96 3.52 0.51 0.19 
6 24 4.14 4.21 0.95 4.1 1.27 0 
7 32 4 4.07 0.94 3.95 1.18 0.01 
8 45 4.88 5.26 0.9 4.85 2.16 0.01 
9 55 6.38 6.75 0.82 6.38 2.36 0 

10 64 7.09 7.69 0.77 7.09 3.1 0 
11 77 7.52 8.45 0.74 7.61 3.78 0.02 
12 91 7.37 8.43 0.73 7.5 3.93 0 
13 101 7.87 9.33 0.69 8.19 4.55 0.01 

*None of the slope r2s are significant above 0.10 level 
 

Figure 8.  Canopy height retrieval accuracy and bias as a function of distance.   
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The location of the tallest stem relative to the center of the footprint makes a 

dramatic difference in the results. If the stem is within 8 m of the center, my r-squared 

values are above 0.90, with rmsd below 5 m. After about 9 m, my r-squared values 

drop quickly to a low of 0.69. The bias is always positive (field – height) and 

increases near linearly with distance of the stem. This suggests that LVIS 

underestimates tree heights as the crown moves to the edge of the footprint (perhaps 

because of energy drop off).  

Given this large effect on the height accuracy, I reassessed the effects of slope 

by looking for correlation of the height residuals with slope within distance classes 

(shown in Table 6) (and thus isolating the effect of stem distance). As before, there 

were no significant correlations of residual error with slope, i.e. none of the remaining 

variability could be explained by slope, regardless of distance class.   

 Field and LIDAR canopy heights also were in good agreement (r2 = 0.75,

RMSD = 6.0 m, n = 122, p < 0.00) at the stand level. In all cases, there are across-

∆
bias
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track gaps between footprints due to pitch and roll of the aircraft.  Therefore none of 

the 1ha plots were completely mapped, although some plots were more thoroughly 

mapped than others.  Differences in field versus LIDAR canopy height were 

minimized when >40% of the plot area was mapped (about 35 LIDAR observations 

per ha; Figure 9). 

 

Figure 9. Field vs. LIDAR measurements at the stand level.  The left pane, marked ‘A’ is a 
scatterplot of plots that were mapped poorly (less 40% of the area mapped) while the right pane 
‘B’ is a scatterplots of plots that were mapped well. 

Canopy cover 

r2 = 0.68 RMSD = 7.5 n = 66 r2 = 0.83 RMSD = 4.9 n = 66 
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The agreement between field and LIDAR measurements of canopy cover was only 

somewhat poor (r2=0.54, RMSD=19.6%, p<0.00) for those plots (n=112) where the 

limited sampling protocol was used. In contrast, at the 40 plots that were more 

intensively field sampled, field and LIDAR estimates were in good agreement 

(r2=0.81, RMSD=9.4%, n=40, p <0.00; Figure 10) 

 

Figure 10.  Field vs. LIDAR measurements of canopy cover at the footprint level.  P < 0.00. 
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The best results occurred when the moosehorn observations were limited to 

those within 9 m of the plot center.  To highlight the importance of using the correct 

ground to canopy reflectance, I compared results using a ratio of 2 for these 40 plots. 

In this case, the strength of the relationship decreased significantly (r2=0.49, 

RMSD=22.0%, n= 40, p < 0.00).  I do not expect that height or distance would 

influence canopy cover retrieval accuracy and the residuals of the regression were not 

related to either of these factors. 

 

Biomass 
 
LIDAR-derived biomass agreed well with field-estimated biomass at the footprint (r2

= 0.83, RMSD = 73.5 Mg ha-1, p < 0.00) and stand levels (r2 = 0.86, RMSD = 54.8 Mg 

ha-1; p < 0.00; Figure 11).    

Figure 11.  Results of step-wise multiple linear regression models between LIDAR metrics and 
field-measured biomass at the footprint (left panel) and stand (right panel) levels.   
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Laser height squared and HOME were significant predictors of biomass at the 

footprint level, while mean and minimum laser height, mean, minimum, median, and 

maximum HOME were significant predictors of biomass at the stand level. 

 

Discussion

Results suggest that for my study site, the accuracy of canopy height retrieval at the 

footprint level was not clearly related to topography (slope, aspect and elevation) or 

canopy cover, but rather was strongly influenced by the spatial arrangement (more 

precisely the distance from footprint center) of the largest trees (at least for those 
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plots that had an identifiable ground return, i.e., those plots that were not excluded 

because of signal saturation). I hypothesize that this could be the result of two 

factors: footprint size errors (i.e. assuming the footprint to be 12.5 m in radius when it 

is actually smaller); or the Gaussian drop off in power across the footprint, resulting 

in a lack of sensitivity to canopy material progressively towards the edges of the 

footprint.  

The results seem to suggest that it is the latter which is more important, 

because there is little improvement in variance explained or reduction in RMSD by 

using the exact footprint size vs. a nominal footprint size of 12.5 m. However, my 

results are somewhat confounded by the fact that the plots with the largest errors are 

the ones that have their tallest stem at the edge of the footprint, and these 

coincidentally are the largest radius footprints. Nonetheless, the dramatic increase in 

accuracy as the tallest stem is located towards the center of the plot strongly suggests 

that there is a drop in sensitivity as a result of the drop in power near the edge of the 

footprint. This effect should be most pronounced with crowns that are pointed, where 

the increase in intercepted leaf area is slow as a function of distance from the top of 

the stem. The linear increase in positive bias with stem distance also supports this 

contention. Finding more general conclusions about the interaction of footprint size, 

footprint energy pattern, crown shape, and stem location will require further studies. 

For example, I achieved very good results when the actual footprint radius was 9 m, 

suggesting perhaps that a smaller footprint size is appropriate for coniferous forests 

that show large variations in stem height over short distances. 
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Based on previous research (Rocchio 2000, Hofton et al 2002), I expected 

slope to be the major source of error. The maximum expected height error for a 

typical Sierra location is estimated with the following equation: 

Error = tan S * D/2 
 
where S is the slope and D is the footprint diameter 

 

This gives a predicted error of about 3 – 4 m, assuming the average slope of my study 

site, 18%, and footprint radius range of 9 – 12.5 m.  Slope effects should show up not 

as biases, as it is equally likely that the tallest stem would be above the center of the 

footprint or below, but rather as an added scatter to the relationship (i.e. increase the 

RMSD). I observed no relationship of my residual errors with slope (or the tangent of 

slope). The lowest RMSD observed was 3.45 m (considering only stems less than 5 m 

from center in Table 5). The magnitude of this error is about right for slope induced 

error, but again residuals from my linear regression are uncorrelated with slope. One 

possible explanation is that there are a set of factors such as uneven energy 

distribution across the slope, spatial arrangement effects, etc that are masking slope 

effects or interacting with slope in a non-linear fashion. 

 Crown shape, using land cover as a proxy, would seem to have an influence 

on height retrieval accuracy: the more rounded crowns of deciduous trees appear as a 

discernable feature in the waveform more quickly than more pointed coniferous 

crowns.  However, the small number of plots containing deciduous trees limits my 

confidence in making generalizations about crown shape.  Differences in canopy 

height measurements are likely to be a function of several convolved factors: crown 
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shape, canopy cover or crown density, and slope, as well as the spatial arrangement of 

the canopy with respect to the laser footprint. 

My retrievals of canopy cover were encouraging; however my experience in 

the Sierra Nevada suggests a few cautionary notes. First, when following a standard 

USFS field sampling protocol, results were poor, with an r-squared value of just over 

0.50. It was only at the intensively sampled plots where there was strong agreement 

between LIDAR and field estimates. Secondly, LIDAR underestimated canopy cover 

relative to field estimates. I would have expected the opposite given the slightly off-

nadir collection angle of many LVIS footprints (caused by scanning). This is 

probably an artifact of the collection process on the ground; human observers are not 

as likely to observe very small gaps within canopies as does LiDAR; humans tend to 

note the larger gaps between canopies.  These two together highlight the difficulties 

in “ground-truthing” canopy cover and the great care that must be taken in designing 

and implementing a field protocol. Lastly, note the importance of knowing the correct 

ratio of ground to canopy reflectance. It is not clear to us how stationary (in a spatial 

statistics sense) this ratio is, and therefore I cannot say how often it needs to be re-

estimated. The requirement of needing a priori or ancillary data to correctly retrieve 

canopy cover pushes its estimation somewhat farther away from a “direct” retrieval. 

It may be possible to estimate this ratio directly from the LIDAR data if there is some 

confidence that the outgoing pulse energies leaving the system are about the same, or 

if different, that they are recorded, as should also be the case with systems that 

employ a variable gain (to avoid saturation in the recorded return pulse).  In theory 



50 
 

then, the total NIR energy in vegetated and unvegetated waveforms could be used to 

estimate the ratio.  

Biomass again proved to be reliably estimated by LIDAR. Forest structural 

characteristics, such as canopy height, canopy cover, and biomass are correlated but 

curvilinear, not linear, and saturate with age and site conditions (Aber 1979).  There 

are tall stands with high biomass and tall stands with moderate biomass.  

Distinguishing between the two requires other information besides height.  In the 

tropics, height of the median energy (mean HOME at the stand level) return does just 

this (Drake et al 2001).  However, in the less dense, coniferous canopies of the 

Sierras, stand level mean HOME was not as useful because of strong ground returns 

that skew HOME towards the ground.  Minimum height and minimum HOME helped 

distinguish stands that contained some shorter-stature trees or bare patches from 

stands with uniformly tall trees.  

Recall that the ultimate goal of my research is to provide spatially continuous 

maps of forest structure at the landscape scale as a prerequisite for habitat suitability 

studies. Using the direct retrieval of canopy height and cover, and the statistical 

relationship developed between field and LIDAR data for biomass, I created maps of 

each of these over the domain of my LIDAR data (Figures 12-14).   The accuracies 

observed using my extensive set of field plots gives me some confidence in the 

accuracy of the final derived map products.  It is this mapping of forest structural 

characteristics at the landscape scale which I believe will be so useful for future 

habitat studies.   
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Figure 12.   LIDAR-derived canopy height in Sierra National Forest.  Note the linear 
discontinuities in canopy height; these are caused by differing management practices between 
U.S.D.A. Forest Service lands and private inholdings.  A power line right-of-way is also clearly 
visible in the image.  The canopy height values are calibrated to the field data. 
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Figure 13. LIDAR-derived canopy cover in Sierra National Forest. 
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Figure 14. Biomass in Sierra National Forest. 



54 
 

Conclusions

My results have shown the ability of LIDAR to characterize montane forest canopy 

structure – canopy height, canopy cover and biomass -- over the wide range of 

environmental conditions that occur over Sierra National forest, as a prerequisite for 

large area habitat mapping. From a LIDAR remote sensing perspective, the Sierra 

Nevada is difficult terrain, i.e., it contains steep slopes, highly variable cover, highly 

variable backgrounds and a mixture of natural (fire) and anthropogenic (selective 

logging) disturbance regimes. 

 LIDAR cannot provide all the indicators required for habitat mapping and 

indeed, canopy height, canopy cover, and biomass may not necessarily even be the 

best ones.  However, they are nonetheless important metrics that have been 

exceptionally difficult to estimate over large areas using other field or remote sensing 

methods, such as passive optical or RaDAR. My ability to now map these provides an 

opportunity to test and assess their ecological importance in new ways.  

There is additional structural information present in the LIDAR waveform that 

can be exploited for habitat characterization.  For example, ecological theory suggests 

that the vertical distribution of canopy structural elements is the most important 

structural attribute for many forest-dwelling species, particularly avifauna (Trzcinski 

et al. 1999). Such vertical distributions, though not studied here, are straightforward 

to derive from LIDAR (e.g. canopy height (leaf and branch) profiles), and should 

prove useful.  

Lastly, developing strategies for fusion of LIDAR with other remotely sensed 

data will be important for habitat mapping. Multi-spectral, hyperspectral, multi-angle 
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and radar methods all provide data that should be highly complementary with the 

structural information derivable from LIDAR. For example species-level information 

might be derived from hyperspectral observations.  The creation of such fusion 

methods will require further research, but could lead to even more powerful 

approaches to habitat mapping.  
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Chapter 3:  Retrieval of landscape scale forest structure through 
multi-sensor (LIDAR, IFSAR, ETM+, Quickbird) fusion 
 

Introduction

Measurements of forest structure are critical for many applications, including wildlife 

management, fire modeling, and carbon stock estimation. Canopy height and 

associated metrics of vertical heterogeneity (North et al. 1999), when considered 

together with site characteristics, are indicators of old-growth forest conditions and 

thus are of interest to researchers studying old-growth endemics.  Canopy height is an 

important input for ecosystem and fire models and is highly correlated with biomass.  

Biomass is a  key component of the carbon cycle, as forests represent  large carbon 

sources and sinks (Skole and Tucker 1993), and is also a surrogate for fuel loading 

estimation (Finney 1998).  Large trees, in particular, may provide essential habitat for 

California spotted owls (North et al. 1999) and are an important component of 

aboveground biomass. 

 Traditionally, these attributes have been measured in the field using hand-

held equipment.  Field-based methods can be highly accurate but are time-consuming 

and thus are typically limited in scope to either mapping at fine scales or sampling at 

the landscape scale.  Multi-spectral (Hyppa et al. 1998) and hyper-spectral remote 

sensing (Pu and Gong 2004) have been used to map structural metrics at moderate 

resolution and broad scales.  However, passive optical sensors have difficulty 

penetrating beyond upper canopy layers (Weishampel et al. 2000) and are better 

suited for mapping horizontal  structure, e.g.,  land cover type.  Interferometric 
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synthetic aperture radar (InSAR) can provide measures of vertical structure at 

landscape scales at varying degrees of accuracy; however, at the present time these 

are best suited for structurally homogeneous forest types (Treuhaft and Cloude 1999, 

Treuhaft and Siqueira 2000).  Full waveform-digitizing, large footprint LiDAR 

provides highly accurate measurements of forest structure at the footprint level of 

observation (Nelson et al. 1984, Nelson et al. 1988, Nilsson 1996, Lefsky et al. 

1999a, Drake et al. 2002, Hyde et al. 2005); however, they are not capable of imaging 

entire landscapes.  Due to the high cost of flight time, the need to limit scanning to 

near nadir in order to prevent ranging errors, and the presence of coverage gaps due to 

aircraft pitch and roll, a typical large footprint LiDAR mission acquires samples 

(albeit at a high frequency) instead of the wall-to-wall coverage provided by other, 

such as RaDAR or passive optical sensors.     

The optimal strategy for mapping forest structure would include the finely-

detailed measurements of the vertical dimension that field sampling provides as well 

as the broad spatial coverage of satellite (and aircraft) remote sensing.  Although no 

single technology is currently capable of providing this level of forest structural 

information, advancements in InSAR and LiDAR will likely lead to broad-scale 

mapping of vertical structure in the near future.  In the meantime, it is possible to map 

forest structure at intermediate scales by statistically combining or fusing information 

from multiple sensors to take advantage of the highly detailed vertical measurements 

provided by full waveform-digitizing LiDAR, the broad scale mapping capabilities of 

passive optical sensors, and the coarse sensitivity to horizontal and vertical structure 

afforded by InSAR.  Combining information from multiple sensors, or data fusion, 
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has yielded promising results for the estimation of forest structural characteristics 

(Wulder, et al 2004).  Hudak et al (2003) combined regression and co-kriging models 

from LiDAR and multi-spectral data; the results were more accurate than either data 

set alone. Wulder and Seeman (2003) used texture metrics from Landsat TM images 

to improve LiDAR estimates of canopy height (from 61% to 67% variability 

explained).  Moghaddam et al (2002) found that combining Landsat TM and several 

RaDARs was more accurate in predicting ground-based measurements of forest 

structure than any single sensor alone.  Slatton et al. (2001) combined LiDAR data 

with interferometric RaDAR to improve the estimates of vegetation heights. 

Objectives

In the previous chapter, I established that LIDAR could be used to map forest 

structure at the footprint level of observation.  Although LIDAR was also accurate at 

measuring canopy height and biomass at the stand (1 ha) level of observation, LIDAR 

is only sampling and not mapping at this scale.   Therefore, it remains to be seen 

whether improvements could be made at the landscape scale by incorporating other 

sensors.   

For this chapter, only large diameter (> 76 cm dbh) trees will be considered 

because at the stand level only stems in this size class were measured during our field 

validation effort.   Furthermore, a comparison at the footprint level of observation is 

highly problematic due to the inconsistent geolocation accuracy and resolution of the 

various sensors used in this study.   

The primary objective of this chapter is to quantify and compare the predictive 

power of individual remote sensing data sets to estimate large tree canopy height and 
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biomass at the landscape scale.  The secondary objective is to fuse large footprint, 

waveform LiDAR data with other remote sensing data sets to determine if there is 

either synergy or redundancy in predictive power when combining other remote 

sensing data sets and large footprint, waveform LiDAR data.  The tertiary objective is 

to ascertain the optimal sampling regime for large footprint, waveform LiDAR, i.e., 

to determine how sparsely large footprint, waveform LiDAR can be sampled (and 

fused with other remote sensing data sets) and still achieve a reasonable degree of 

predictive power. 

This chapter is organized as follows. First, I describe collection of field plot 

data and provide details of the remote sensing (LVIS, SAR/InSAR, ETM+, 

Quickbird, DEM) data acquisition, which took place over the Sierra Nevada.  This is 

followed by a presentation of the methods used in the processing and analysis of both 

remote sensing and field data, including the estimation of canopy height and biomass. 

I then present the results of statistical comparisons between field-derived and remote 

sensing-derived forest structural attributes and the results of multi-sensor fusion. 

Finally, I discuss the significance of results relative to the retrieval of forests structure 

at the landscape scale. 

Data Collection 

The data included in this chapter include in situ observations, LIDAR data sets 

(Figures 12 and 14), and other remote sensing data sets (Figure 15). 
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Figure 15.  Other remote sensing data sets in the Sierra Nevada used in this study.   
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Digital Elevation Model (DEM) data 

A 30 m resolution Digital Elevation Model was acquired from the U.S. Geological 

Survey.  This data set consists of “bald earth” elevation, or the elevation of the earth’s 

surface devoid of vegetation or anthropogenic features.   The vertical resolution is +/- 

7 m.   

LiDAR data 
 
See Chapter 2. 

SAR/InSAR Data 
 
An X-band (3 cm wavelength, HV polarization) single-baseline RaDAR data set was 

selected for this study because the interferometric scattering phase center of X-band 

occurs relatively near to the top of the forest canopy.  The RaDAR data set was 

generated by the STAR-3i system from Intermap Technologies (Englewood, CO).  

The STAR-3i instrument was flown aboard a Learjet in August 1999 and acquired a 

3500 sq km swath as well as a second overflight to minimize shadows and layover 

areas.  Both a SAR backscatter intensity image and an InSAR “terrain model”, that 

represents the elevation of the top (or near the top) of the canopy, were provided.  The 

nominal spatial resolution of the data sets is 2.5 m and 10 m for the backscatter 

intensity image and the DEM, respectively. The reported accuracy for these products 

is 2.5 m RMSE horizontal and 3.0 m RMSE vertical.  The intensity images are 

filtered to remove speckle. 
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ETM+ data 
 
Two Landsat ETM+ scenes from October of 1999 covering Sierra National Forest 

and Sequoia National Park were acquired from USGS Eros Data Center.  Each scene 

consists of six visible and short-wave infrared bands with a nominal spatial resolution 

of 30 m (thermal and panchromatic bands were not used).  A second pair of ETM+ 

images for a second date (July 2000) was acquired from the University of Maryland 

Global Land Cover Facility.  Both images were acquired during leaf-on conditions. 

Quickbird data 
 
Quickbird imagery was acquired from Satellite Imaging Corp (Houston, TX).  

Quickbird imagery consists of four spectral bands (3 visible, 1 near infra-red) with a 

nominal spatial resolution of 2 m.  Images were acquired in June 2002 and May 2003 

in leaf-on conditions. 

Field data 
 

One hundred twenty plots were distributed through the northern part the study 

area (Sierra National Forest) using a modified stratified random sampling scheme.  

Although the plots were centered on laser footprints, the actual waveforms were not 

examined before the stratification (to prevent bias). Hence, no attempt was made to 

retain only waveforms that showed a strong ground return. The number of plots 

placed within each land cover type was proportional to their actual distribution within 

Sierra National Forest, with the exception of the red fir class; this vegetation type was 

oversampled because of its importance as remnant old-growth.  Concentric circular 

plots were established, with an inner plot of 0.07 ha (15 m radius) and an outer plot of 
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1 ha (56.4 m radius).  The 0.07 ha “footprint” plots were designed to allow direct 

comparison of field measurements and individual LiDAR footprint measurements; 

the plot size was slightly larger than the nominal footprint to compensate for possible 

geolocation errors.  The 1 ha “stand” plots were designed to be commensurate with 

existing USDA Forest Service Forest Inventory and Analysis plots. 

 Field plot data were collected during the summers of 2000 and 2001 and 

error-checked in 2002. Within the 0.07 ha plots, all live stems with a diameter at 

breast height (dbh) >= 10 cm were inventoried and species type was recorded.  The 

dbh of each stem was measured with a fiberglass tape.  The height of the stem, the 

height of the full crown, and the height of the partial crown (if present) were 

measured with an Impulse LR laser range finder (Laser Technology Inc., Englewood, 

CO).  The sweep of the partial crown, if present, was estimated to the nearest 30 

degrees.  The shape of the crown was characterized as either elliptical, umbrella-

shaped, conical, or cylindrical.  Four crown radii (two each along and across slope) 

were measured with a fiberglass tape.  The azimuth of each stem with respect to the 

plot center was measured with a flux gate digital compass (Laser Technology Inc., 

Englewood, CO) and the distance of each stem to the plot center was measured with 

the laser range finder. 

 
Data Analysis

The focus of this study is the estimation of two structural metrics: canopy height and 

aboveground biomass. Canopy height is directly retrieved from waveform data using 

algorithms described below.  It requires identification of a ground return in the 
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waveform, and associated with this, the identification of the canopy portion of the 

waveform. Biomass is not directly measured by LVIS; rather, metrics derived from 

LiDAR waveforms, such as canopy height, and height of median energy, are 

correlated with canopy structure to compute biomass estimates.  

Past studies, e.g. Lefsky (1997), have relied mainly on manual methods for 

identifying ground returns, especially where the returns are weak relative to the 

background noise level. While appropriate for validation studies with small numbers 

of waveforms, manual methods are impossible for the large number of LVIS 

waveforms being used here (ca. one million). Because canopy height is determined 

relative to the ground, accurately retrieving ground elevation is critical. Thus, an 

automated algorithm (described in Hyde et al. 2005) for finding both ground and 

canopy height was employed.    

While LVIS does not measure biomass directly, metrics derived from LiDAR 

have proven effective in estimating forest biomass (Nelson et al. 1984, Nelson et al. 

1988, Nilsson 1996, Lefsky 1997, Lefsky et al. 1999a, Lefsky et al. 1999b, Drake 

2001, Lefsky et al. 2001). Canopy height by itself is sufficient for accurate biomass 

prediction in some, more structurally simple, biomes as canopy height and biomass 

tend to be highly correlated (Lefsky et al. 1999b).  In more structurally complex 

biomes, such as tropical and old-growth Western coniferous forests, some indication 

of the depth of the canopy is also useful for predicting biomass (Lefsky et al 1999a, 

Drake et al 2002).  The metrics used in this study to estimate biomass include 

maximum canopy height, canopy height squared, canopy cover, canopy reflectance, 

and height of the median energy return (HOME) (Table 8).   
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Table 8. Metrics derived from LiDAR waveforms 
Metric Description 

MINMAXHT Minimum height of the top of the canopy within a 1 ha plot (m) 
MAXMAXHT Maximum height of the top of the canopy within a 1 ha plot (m) 

MEANMAXHT Mean height of the top of the canopy within a 1 ha plot (m) 
STDEVMAXHT Standard deviation of the height of the top of the canopy within a 1 ha plot (m) 
MINMAXHT2 Minimum height squared of the top of the canopy within a 1 ha plot  (m2) 
MAXMAXHT2 Maximum height squared of the top of the canopy within a 1 ha plot (m2) 

MEANMAXHT2 Mean height squared of the top of the canopy within a 1 ha plot (m2) 
STDEVMAXHT2 Standard deviation of the height of the top of the canopy within a 1 ha plot 

squared (m2) 
MINCOV Minimum canopy cover within a 1 ha plot (%)  
MAXCOV Maximum canopy cover within a 1 ha plot (%) 

MEANCOV Mean canopy cover within a 1 ha plot (%) 
STDEVCOV Standard deviation of canopy cover within a 1 ha plot (%) 

MINCANREF Minimum canopy reflectance within a 1 ha plot (dn)  
MAXCANREF Maximum canopy reflectance within a 1 ha plot (dn) 

MEANCANREF Mean canopy reflectance within a 1 ha plot (dn) 
STDEVCANREF Standard deviation of canopy reflectance within a 1 ha plot (dn) 

MINHOME Minimum height of the median energy of the waveforms within a 1 ha plot (m) 
MAXHOME Maximum height of the median energy of the waveforms within a 1 ha plot (m) 

MEANHOME Mean height of the median energy of the waveforms within a 1 ha plot (m) 
STDEVHOME Standard deviation of the height of the median energy of the waveforms within 

a 1 ha plot (m) 

SAR/InSAR data 

Elevation from the USGS DEM, which represents the “bare earth” elevation or height 

of the ground beneath a forest canopy, was subtracted from the InSAR DEM, which 

represents the “first return” elevation, which includes the height of the canopy, to 

produce difference image reflecting the height of the InSAR scattering phase center, 

which will always be less than the observed canopy height, to produce a canopy 
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height model.  Summary statistics (minimum, maximum, mean, median, standard 

deviation) of this metric, as well as SAR backscatter intensity, were calculated from 

all pixels whose majority was within the 1 ha plots (Table 9).

Table 9. Metrics derived from SAR/InSAR 
Metric Description 

MIN.SARBS Minimum SAR backscatter intensity for all pixels whose majority lies within a 1 ha 
plot (dn) 

MAX.SARBS Maximum  SAR backscatter intensity for all pixels whose majority lies within a 1 ha 
plot (dn) 

MEAN.SARBS Mean  SAR backscatter intensity for all pixels whose majority lies within a 1 ha plot 
(dn) 

STDEV.SARBS Standard deviation of  SAR backscatter intensity for all pixels whose majority lies 
within a 1 ha plot (dn) 

MIN.SARHT Minimum InSAR  height for all pixels whose majority lies within a 1 ha plot (m) 
 

MAX.SARHT Maximum InSAR  height for all pixels whose majority lies within a 1 ha plot (m) 
 

MEAN.SARHT Mean InSAR  height for all pixels whose majority lies within a 1 ha plot (m) 
 

STDEV.SARHT Standard deviation of InSAR height for all pixels whose majority lies within a 1 ha 
plot (m) 

ETM+ data 

A USGS DEM was used to orthorectify the ETM+ images. Digital numbers (DN) 

were converted to at-sensor radiances (L) using published ETM+ calibration 

constants (ETM+ Data Users Guide) and the following equation: 

L = a0 + a1 * DN 

Where a0 and a1 refer to the sensor gain and bias, respectively. 

 

Atmospheric and topographic correction

Radiance was converted to reflectance using top-of-atmosphere irradiance derived 

using the MODTRAN atmospheric correction model (Berk et al. 1989). A cosine 

correction was used to correct for the influence of topography on the amount of 
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incident solar radiation.  None of the field plots were obstructed by terrain, i.e. all 

field plots received direct and diffuse illumination at the time of image acquisition.   

Metrics

Principle components and NDVI (NIR – red / NIR + red) were calculated for each 

image.  Summary statistics (minimum, maximum, mean, median, standard deviation) 

of these metrics were calculated from all pixels whose majority was within the 1 ha 

plots (Tables 10 and 11). 
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Table 10. Metrics derived from ETM+ 1 (October 1999).  All values are unitless. 
Metric Description 

MIN.NDVI.1 Minimum NDVI for all pixels in ETM+ 1 whose majority lies within a 1 ha plot  
 

MAX.NDVI.1 Maximum NDVI for all pixels in ETM+ 1 whose majority lies within a 1 ha plot  
MEAN.NDVI.1 Mean NDVI for all pixels in ETM+ 1 whose majority lies within a 1 ha plot  
STDEV.NDVI.1 Standard deviation of NDVI for all pixels in ETM+ 1 whose majority lies within a 1 ha plot 

MIN.PCA1.1 Minimum first principle component for all pixels in ETM+ 1 whose majority lies within a 1 ha 
plot  

MAX.PCA1.1 Maximum first principle component for all pixels in ETM+ 1 whose majority lies within a 1 ha 
plot 

MEAN.PCA1.1 Mean first principle component for all pixels in ETM+ 1 whose majority lies within a 1 ha plot 
STDEV.PCA1.1 Standard deviation  first principle component for all pixels in ETM+ 1 whose majority lies 

within a 1 ha plot  
MIN.PCA2.1 Minimum second principle component for all pixels in ETM+ 1 whose majority lies within a 1 

ha plot  
MAX.PCA2.1 Maximum second principle component for all pixels in ETM+ 1 whose majority lies within a 1 

ha plot  
MEAN.PCA2.1 Mean second principle component for all pixels in ETM+ 1 whose majority lies within a 1 ha 

plot  
STDEV.PCA2.1 Standard deviation  second principle component for all pixels in ETM+ 1 whose majority lies 

within a 1 ha plot  
MIN.PCA3.1 Minimum first principle component for all pixels in ETM+ 1 whose majority lies within a 1 ha 

plot  
MAX.PCA3.1 Maximum third principle component for all pixels in ETM+ 1 whose majority lies within a 1 

ha plot  
MEAN.PCA3.1 Mean third principle component for all pixels in ETM+ 1 whose majority lies within a 1 ha 

plot  
STDEV.PCA3.1 Standard deviation  third principle component for all pixels in ETM+ 1 whose majority lies 

within a 1 ha plot  
MIN.PCA4.1 Minimum fourth principle component for all pixels in ETM+ 1 whose majority lies within a 1 

ha plot  
MAX.PCA4.1 Maximum fourth principle component for all pixels in ETM+ 1 whose majority lies within a 1 

ha plot  
MEAN.PCA4.1 Mean fourth principle component for all pixels in ETM+ 1 whose majority lies within a 1 ha 

plot  
STDEV.PCA4.1 Standard deviation fourth principle component for all pixels in ETM+ 1 whose majority lies 

within a 1 ha plot  
MIN.PCA5.1 Minimum fifth principle component for all pixels in ETM+ 1 whose majority lies within a 1 ha 

plot  
MAX.PCA5.1 Maximum fifth principle component for all pixels in ETM+ 1 whose majority lies within a 1 

ha plot  
MEAN.PCA5.1 Mean fifth principle component for all pixels in ETM+ 1 whose majority lies within a 1 ha 

plot  
STDEV.PCA5.1 Standard deviation  fifth principle component for all pixels in ETM+ 1 whose majority lies 

within a 1 ha plot  
MIN.PCA6.1 Minimum sixth principle component for all pixels in ETM+ 1 whose majority lies within a 1 

ha plot  
MAX.PCA6.1 Maximum sixth principle component for all pixels in ETM+ 1 whose majority lies within a 1 

ha plot  
MEAN.PCA6.1 Mean sixth principle component for all pixels in ETM+ 1 whose majority lies within a 1 ha 

plot  
STDEV.PCA6.1 Standard deviation sixth principle component for all pixels in ETM+ 1 whose majority lies 

within a 1 ha plot  
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Table 11. Metrics derived from ETM+ 2 (July 2000).  All values are unitless. 
Metric Description 

MIN.NDVI.2 
 

Minimum NDVI for all pixels in ETM+ 2 whose majority lies within a 1 ha plot  

MAX.NDVI.2 
 

Maximum NDVI for all pixels in ETM+ 2 whose majority lies within a 1 ha plot  

MEAN.NDVI.2 
 

Mean NDVI for all pixels in ETM+ 2 whose majority lies within a 1 ha plot  

STDEV.NDVI.2 Standard deviation of NDVI for all pixels in ETM+ 2 whose majority lies within a 1 
ha plot 

MIN.PCA1.2 Minimum first principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

MAX.PCA1.2 Maximum first principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot 

MEAN.PCA1.2 Mean first principle component for all pixels in ETM+ 2 whose majority lies within 
a 1 ha plot  

STDEV.PCA1.2 Standard deviation  first principle component for all pixels in ETM+ 2 whose 
majority lies within a 1 ha plot  

MIN.PCA2.2 Minimum second principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

MAX.PCA2.2 Maximum second principle component for all pixels in ETM+ 2 whose majority 
lies within a 1 ha plot  

MEAN.PCA2.2 Mean second principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

STDEV.PCA2.2 Standard deviation  second principle component for all pixels in ETM+ 2 whose 
majority lies within a 1 ha plot  

MIN.PCA3.2 Minimum first principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

MAX.PCA3.2 Maximum third principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

MEAN.PCA3.2 Mean third principle component for all pixels in ETM2 whose majority lies within a 
1 ha plot  

STDEV.PCA3.2 Standard deviation  third principle component for all pixels in ETM+ 2 whose 
majority lies within a 1 ha plot  

MIN.PCA4.2 Minimum fourth principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

MAX.PCA4.2 Maximum fourth principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

MEAN.PCA4.2 Mean fourth principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

STDEV.PCA4.2 Standard deviation fourth principle component for all pixels in ETM+ 2 whose 
majority lies within a 1 ha plot  

MIN.PCA5.2 Minimum fifth principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

MAX.PCA5.2 Maximum fifth principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

MEAN.PCA5.2 Mean fifth principle component for all pixels in ETM+ 2 whose majority lies within 
a 1 ha plot  

STDEV.PCA5.2 Standard deviation  fifth principle component for all pixels in ETM+ 2 whose 
majority lies within a 1 ha plot  

MIN.PCA6.2 Minimum sixth principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

MAX.PCA6.2 Maximum sixth principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

MEAN.PCA6.2 Mean sixth principle component for all pixels in ETM+ 2 whose majority lies 
within a 1 ha plot  

STDEV.PCA6.2 Standard deviation sixth principle component for all pixels in ETM+ 2 whose 
majority lies within a 1 ha plot  
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Quickbird data 
 
A USGS DEM was used to orthorectify the images. Digital numbers (DN) were 

converted to at-sensor radiances (L) using published calibration constants (Satellite 

Imaging Corp., Houston, TX). 

Atmospheric and topographic correction 
 
Radiance was converted to reflectance using top-of-atmosphere irradiance derived 

using the MODTRAN atmospheric correction model (Berk et al 1989). A cosine 

correction was used to correct for the influence of topography on amount of incident 

solar radiation.  None of the field plots were obstructed by terrain, i.e. all field plots 

received direct and diffuse illumination at the time of image acquisition.   

Metrics 
 
Principle components and NDVI (NIR – red / NIR + red) were calculated at the 

footprint level.  Summary statistics (minimum, maximum, mean, median, standard 

deviation) of these metrics were also calculated from all pixels whose majority was 

within the 1 ha plots (Table 12). 
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Table 12. Metrics derived from Quickbird.  All values are unitless. 

Metric Description 
 

MIN.QBNDVI Minimum NDVI for all pixels in Quickbird whose majority lies within a 1 ha plot  
 

MAX.QBNDVI Maximum NDVI for all pixels in Quickbird whose majority lies within a 1 ha plot  
 

MEAN.QBNDVI Mean NDVI for all pixels in Quickbird whose majority lies within a 1 ha plot  
 

STDEV.QBNDVI Standard deviation of NDVI for all pixels in Quickbird whose majority lies within a 1 ha plot 
 

MIN.QBPCA1 Minimum first principle component for all pixels in Quickbird whose majority lies within a 1 
ha plot  

MAX.QBPCA1 Maximum first principle component for all pixels in Quickbird whose majority lies within a 1 
ha plot 

MEAN.QBPCA1 Mean first principle component for all pixels in Quickbird whose majority lies within a 1 ha 
plot  

STDEV.QBPCA1 Standard deviation  first principle component for all pixels in Quickbird whose majority lies 
within a 1 ha plot  

MIN.QBPCA2 Minimum second principle component for all pixels in Quickbird whose majority lies within 
a 1 ha plot  

MAX.QBPCA2 Maximum second principle component for all pixels in Quickbird whose majority lies within 
a 1 ha plot  

MEAN.QBPCA2 Mean second principle component for all pixels in Quickbird whose majority lies within a 1 
ha plot  

STDEV.QBPCA2 Standard deviation  second principle component for all pixels in Quickbird whose majority 
lies within a 1 ha plot  

MIN.QBPCA3 Minimum first principle component for all pixels in Quickbird whose majority lies within a 1 
ha plot  

MAX.QBPCA3 Maximum third principle component for all pixels in Quickbird whose majority lies within a 
1 ha plot  

MEAN.QBPCA3 Mean third principle component for all pixels in Quickbird whose majority lies within a 1 ha 
plot  

STDEV.QBPCA3 Standard deviation  third principle component for all pixels in Quickbird whose majority lies 
within a 1 ha plot  

MIN.QBPCA4 Minimum fourth principle component for all pixels in Quickbird whose majority lies within a 
1 ha plot  

MAX.QBPCA4 Maximum fourth principle component for all pixels in Quickbird whose majority lies within a 
1 ha plot  

MEAN.QBPCA4 Mean fourth principle component for all pixels in Quickbird whose majority lies within a 1 ha 
plot  

Field plot data 
 
Field measurements at the footprint and stand levels include maximum canopy height, 

i.e., the height of the tallest stem within each plot. Allometric equations relating stem 

biomass to height and dbh were obtained from the USDA Forest Service (Waddell 

and Hiserote 2003).  These equations were applied to the field data to calculate total 
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standing (aboveground) biomass for each stem (>= 76 cm dbh); the biomass of all 

stems within each plot was added to provide stand level totals. 

Methods

Stand (1 ha) level 

Stepwise multiple linear regression was used to compare the remote sensing data sets 

to field data.  The number of predictors in each model was limited to 10 to prevent 

overfitting.  All regression models were cross-validated using the “Leave One Out” 

method.  First, ETM+, Quickbird, LiDAR, and SAR/InSAR data sets were compared 

separately.    Next, ETM+, Quickbird, and SAR/InSAR data sets were compared, in 

various combinations, to field data to produce models of canopy height and biomass.  

The combinations include: 1) LiDAR and Quickbird, 2) LiDAR and SAR/InSAR, 3) 

LiDAR and ETM+ scene 1 (October 1999), 4) LiDAR and ETM+ scene 2 (July 

2000), 5) Quickbird, SAR/INSAR, ETM+ scene 1 (October 1999), and ETM+ scene 

2 (July 2000), and, 6) LiDAR, Quickbird, SAR/INSAR, ETM+ scene 1 (October 

1999), and ETM+ scene 2 (July 2000). 

Landscape level 

LiDAR data were randomly sampled at a variety of frequencies, corresponding to the 

following percentages of the total LiDAR data set: 1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 

80, 90, and 100 to simulate sparse LiDAR data availability.  Where LiDAR data were 

present, canopy height and biomass maps at each sample interval were produced by 

applying the field-validated models to resampled 1 ha pixels.   Where LiDAR data 

were not present, only the other remote sensing data sets (and their corresponding 

field-validated model) were used.   The result was a series of images at each sample 
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interval that used LiDAR where present; the gaps where LiDAR was not present were 

“filled in” with the other remote sensing data sets. The mean canopy height and 

biomass of each image was then calculated. 

Results

Stand (1 ha) level 

For the single sensor models of canopy height (Tables 13 and 14), LiDAR (r2 = 0.76,

RMSE = 8.8 m) was more accurate than Quickbird (r2 = 0.66, RMSE = 11.6 m), 

SAR/InSAR (r2 = 0.69, RMSE = 9.9 m), ETM+ scene 1 (r2 = 0.73, RMSE = 9.4 m), 

and ETM+ scene 2 (r2 = 0.70, RMSE = 10.0 m).   Cross-validation demonstrated that 

models produced by SAR/InSAR were far less robust (r2 = 0.53, RMSE = 12.0 m) 

than LiDAR (r2 = 0.72, RMSE = 9.4 m), as was the ETM+ scene 2 (r2 = 0.61, RMSE 

= 11.07 m).  The addition of any single sensor to the LiDAR results did not result in 

much improvement relative to LiDAR alone.  The combination of all sensors 

(LiDAR, both ETM+ images, SAR/InSAR, and Quickbird) was more accurate (r2 =

0.84, RMSE = 7.3 m) than LiDAR alone (r2 = 0.76, RMSE = 8.8 m).   
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Table 13.   Canopy height regression results. 
Sensor(s) Coefficient of 

determination 
(r2) 

Root 
mean 

 square 
error (m) 

Cross-
validated 

r2 

Cross-
validated 

RMSE 
(m) 

n p

LiDAR 0.76 8.8 
 

0.72 9.4 111 < 0.00001 

QB 0.66 10.5 
 

0.61 11.6 111 < 0.00001 

LiDAR + QB 0.79 8.2 
 

0.76 8.7 111 < 0.00001 

InSAR 0.69 9.9 
 

0.53 12.0 111 < 0.00001 

LiDAR + InSAR 0.76 8.8 
 

0.73 9.1 111 < 0.00001 

ETM1 0.73 9.4 0.69 9.9 
 

111 < 0.00001 

LiDAR + ETM1 0.82 7.8 
 

0.78 8.2 111 < 0.00001 

ETM2 0.70 10.0 
 

0.61 11.07 111 < 0.00001 

LiDAR + ETM2 0.81 8.0 
 

0.76 8.6 111 < 0.00001 

ETM1+ ETM2+ 
QB + InSAR 

0.74 9.3 
 

0.70 9.6 111 < 0.00001 

LiDAR + ETM1  
+ ETM2 

+ QB+ InSAR 

0.84 7.3 
 

0.81 7.7  111 < 0.00001 
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Table 14. Canopy height models 
Sensor(s) Model 

 
LiDAR -4.01 + (0.7 * MEANMAXHT) + (0.72 * MAXMAXHT) +(-0.63 *MEANHOME) 

 
QB -262.2  + (45.7  * MEAN.QBNDVI) + (  176.7  * STDEV.QBNDVI) + 

 (-0.1* MIN.QBPC1  ) + ( 0.2  * STDEV.QBPC1) + (-0.2* STDEV.QBPC2) +  
(0.4* MEAN.QBPC3)        

 
LiDAR + QB 1.23+ (1.52*MEANMAXHT)+(0.71*MEDIANMAXHT)+ (1.25*SDMAXHT) 

+(31.25*MAX.QBNDVI)+(-0.06 MIN.QBPCA1) 
 

InSAR -15.2  + (1.1 * MAX.SARHT) + (1.1* STDEV.SARHT)  
 

LiDAR + InSAR -4.01 + (0.7 * MEANMAXHT) + (0.72 * MAXMAXHT) + (-0.63 *MEANHOME) 
 

ETM1 -83.7 + ( -322.6 * MIN.NDVI.1   ) + (-192.4 * MAX.NDVI.1) + 
 (0.3 * STDEV.PCA1.1  ) + ( 0.7 * MEAN.PCA2.1) + (-0.5* MAX.PCA4.1)  

 
LiDAR + ETM1 -32.8+(0.6*MAXMAXHT)+(-301.4*MEAN.NDVI.1)+(0.4*MEAN.PCA2.1) 

(-0.4*MAX.PCA4.1)+(4*MAX.PCA6.1)+(-4*MEAN.PCA6.1) 
 

ETM2 1453.0 + (4610.7 * MEAN.NDVI.2) + (32.3 * MAX.PCA2.2  ) + 
 (-82.7 * MEAN.PCA2.2) + (-81.3 * STDEV.PCA2 ) + (92.4* MEAN.PCA3.2) + ( 
84.2 * STDEV.PCA4.2 ) + (136.8 * MIN.PCA5.2) + ( 463.1 * STDEV.PCA5.2 ) + 

(2514.3* MIN.PCA6.2)          
 

LiDAR + ETM2 835.9 +(0.7*MAXMAXHT)+(1855.5*MEAN.NDVI.2)+(35.1*MAX.PCA2.2) 
+ (-60.3*MEAN.PCA2.2)+(-64.3*STDEV.PCA2)+(37.6*MEAN.PCA3.)+ 

(93.6*MIN.PCA5.2) +(377.3*STDEV.PCA5.2) 
 

ETM1+ETM2+ 
QB + InSAR  

 -50.8  + (2.5 * STDEV.SARHT  ) + (-0.6 * MIN.PCA4.1) +  
(-1.1 * MEAN.PCA5.1) + (-1228.8 * MEAN.NDVI.2) + ( -5.1* MEAN.PCA1.2  ) + 

(14.9* MAX.PCA2.2)  
 

LiDAR+ETM1+ 
ETM2+QB+SAR 

 1109.1 + (0.7 * MAXMAXHT) + (-0.3 * MIN.SARBS) + 
 (0.4  * MEAN.PCA2.1  ) +  (12.3 * MAX.PCA2.2  ) + ( 26.4  * MEAN.PCA3.2) + 

(-78.6* MEAN.PCA4.2)  
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For the single sensor models of biomass (Tables 15 and 16), LiDAR (r2 =

0.78, RMSE = 73.0 Mg/ha) was more accurate than Quickbird (r2 = 0.46, RMSE = 

114.6 Mg/ha), SAR/InSAR (r2 = 0.69, RMSE = 86.6 Mg/ha), ETM+ scene 1 (r2 =

0.57, RMSE = 104.8 Mg/ha), and ETM+ scene 2 (r2 = 0.67, RMSE = 92.5 Mg/ha).  

Cross-validation demonstrated that models produced by SAR/InSAR were far less 

robust (r2 = 0.46, RMSE = 112.7 Mg/ha) than LiDAR (r2 = 0.72, RMSE = 81.4 

Mg/ha), as was the ETM+ scene 1 (r2 = 0.47, RMSE = 113.9 Mg/ha).  The addition of 

any single sensor to the LiDAR results did not result in much improvement relative to 

LiDAR alone.  The combination of all sensors (LiDAR, both ETM+ images, 

SAR/InSAR, and Quickbird) was more accurate (r2 = 0.82, RMSE = 69.4 Mg/ha) 

than LiDAR alone (r2 = 0.78, RMSE = 73.0 Mg/ha), but was not as robust; cross-

validated LiDAR was more accurate (r2 = 0.72, RMSE = 81.4 Mg/ha) than all sensors 

combined (r2 = 0.71, RMSE = 83.3 Mg/ha). 
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Table 15. Biomass regression results. 
sensor(s) Coefficient  

of  
determination 

(r2) 

Root mean-
square error 

(Mg/ha) 

Cross-
validated r2 

Cross-
validated 

RMSE 

n p

LiDAR 0.78 
 

73.0 0.72 81.4 111 < 0.00001 

QB 0.46 
 

114.6 0.41 118.3 111 < 0.00001 

LiDAR & QB 0.82 
 

68.5 0.77 74.0 111 < 0.00001 

InSAR 0.69 
 

86.6 0.46 112.7 111 < 0.00001 

LiDAR & SAR 0.80 
 

71.3 0.71 82.4 111 < 0.00001 

ETM1 0.57 
 

104.8 0.47 113.9 111 < 0.00001 

LiDAR + ETM1 0.84 
 

65.9 0.78 71.8 111 < 0.00001 

ETM2 0.67 
 

92.5 0.60 98.2 111 < 0.00001 

LiDAR + ETM2 0.83 
 

54.7 0.73 80.4 111 < 0.00001 

ETM1+ETM2 
+QB 

+InSAR 

0.76 
 

78.0 0.72 81.4 111 < 0.00001 

LiDAR+ETM1 
+ETM2 

+ QB+ InSAR 

0.82 
 

69.4 0.71 83.3 111 < 0.00001 
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Table 16.  Biomass models 
Sensor(s) Model 

 
LiDAR -44.94 + (5.43* MEANMAXHT)+( -4.95 * MINMAXHT) + (27.55 * MEANHOME) 

+
(-9.94 * MEDIANHOME) + (-3.24 * MEANCOVER) + (3.78 * SDCOVER) 

 
QB -3970.2 + (-2.4  * MIN.QBPC3  ) + (6.4* MEAN.QBPC3) + (4.1* MAX.QBPC4) 

 
LiDAR + QB -564.9 + (5.6 * MEANMAXHT) +(-4 * MINMAXHT) + (29.4 * MEANHOME) + 

(9.9 * MEDIANHOME)+ (-2.6 * MEANCOVER)+(3.9 * SDCOVER) + 
(699.2 * MEAN.QBNDVI) +(0.9 * MEAN.QBPC2) + (-0.7 * MIN.QBPC3) 

 
InSAR -419.5  + (-5.1* MIN.SARHT ) + (19.0* MEAN.SARHT) 

 
LiDAR + SAR 14.4 + (5.2 * MEANMAXHT) + (-4.8  * MINMAXHT) + (29.0 * MEANHOME) + 

(-10.2 * MEDIANHOME) + (-3.1* MEANCOVER) + (4.0 * SDCOVER) + 
( -0.7 * MAX.SARBS) 

 
ETM1 -6226.1 + (-10570.8 * MEAN.NDVI.1  ) + (2.8 *  MEAN.PCA1.1  ) + 

(12.1 * MEAN.PCA2.1 ) + ( 8.2 * MAX.PCA3.1 ) + ( -19.4 * STDEV.PCA3.1) 
+ (32.8 * MIN.PCA5.1 ) + ( -30.8 * MAX.PCA5.1) + ( 89.0* STDEV.PCA5.1) 

 
LiDAR + ETM1 116.8+(3.2 * MEANMAXHT) + (-3.4 * MINMAXHT) + 

(32.3 * MEANHOME) +  (-13.3 * MEDIANHOME) + 
(-1.8 * MEDIANCOVER) + (2.6 * SDCOVER) + (-1339.5 * MAX.NDVI1) 

+ (MAX.PCA5.1) 
 

ETM2 -100326.0  + (-19766.8 * MAX.NDVI.2) + (-258441.1 * MEAN.NDVI.2) + 
(-341.1* MEAN.PCA1.2 )+ (289.7  * MAX.PCA2.2) + (3161.3 * MEAN.PCA2.2) + 
( -286.4 * MIN.PCA3.2 ) +(-3818.3 * MEAN.PCA3.) + (-695.1* MEAN.PCA4.2) + 

(1659.6* MEAN.PCA5.2) 
LiDAR + ETM2 13126 + (3.6 * MEDIANMAXHT) + (32 * MEANHOME) + (-15 * MEDIANHOME) 

+
(-1.93 * MEDIANCOVER) + (2.22 * SDCOVER) + (-3943 * MAX.NDVI2) + 

(-18 * MEAN.PCA1.2) + (204*STDEV.PCA3) + (-383 * MEAN.PCA4.2) 
 

ETM1+ETM2 
QB+ InSAR 

-3693.0 + (-381.2 * MIN.QBNDVI) + (9.5 * MIN.SARHT) + (18.1 * STDEV.SARHT) 
+

(-2828.3 * MEAN.NDVI.1) + (4.3 * MAX.PCA3.1) + (-9.7 * STDEV.PCA3.1  ) 
+ (1028.0* MEAN.PCA5.2) 

LiDAR+ETM1+ 
ETM2+ 

QB+ InSAR 

-62598.7 + (2.5* MAXMAXHT) + (9.8 * MEANHOME) + (8.7 * SDHOME) + 
(3.7 * MIN.SARHT)+ ( -1070.1 * MAX.NDVI.1) + ( -205370.9 * MEAN.NDVI.2) 

+ ( -245.8* MEAN.PCA1.2)+ ( 2475.6* MEAN.PCA2.2  ) + ( -3160.0  * 
MEAN.PCA3.) 

+ (-630.8* MEAN.PCA4.2 ) 
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Landscape scale 

Mean canopy height and biomass over the entire landscape were calculated using the 

1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 % LiDAR samples; the results are 

plotted in Figure 16.  Mean canopy height remained relatively stable as LiDAR 

sample size increased (Figure 16a), declining only about 1.5 m as the sample size 

approached 100%.   Biomass (Figure 16b) increased fairly substantially, from about 

155 to 175 Mg/ha. 
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Figure 16. Landscape scale canopy height and biomass as a function of LiDAR sample size 

A

B
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Discussion

LiDAR has been shown to be effective in estimating forest structure.  One unique 

aspect of this study is that LiDAR was shown to be effective in measuring height and 

biomass of large trees, which are important components of wildlife habitat and 

represent a key carbon reservoir.  Other sensors did not perform as well, particularly 

with respect to biomass.  This is not surprising given that only LiDAR has the ability 

to provide an accurate return from both the top and bottom of the canopy and provide 

a volumetric response (via HOME).  While the backscatter from other, longer 

wavelengths RaDARs (e.g., C, L and P)  are sensitive to canopy volume, the X band 

wavelength used in this study is much less so.   The InSAR height metric was less 

accurate at predicting height and biomass than LiDAR height, possibly because the X 

band penetrated further into the top of the canopy, causing a foreshortening of the 

height measurement.   It is also probable that at least some of the elevation values 

from the DEM were corrupted by the canopy; LiDAR ground elevation values are 

likely more reliable since we are confident that the last return is actually coming from 

the ground.  However, other sensors did have significant utility in aiding LiDAR in 

the prediction of canopy height.  In contrast, the other sensors did not contribute as 

much to the accuracy of the biomass predictions. 

At the landscape scale, as LiDAR sample size increases, the estimate of the 

height of big trees stays about the same.   If the image containing the 100% LiDAR 

sample is used as a baseline of height “truth”, then the fused canopy height images 

are reasonably accurate regardless of the size of the LiDAR sample.   In other words, 

the gaps in LiDAR coverage are measured fairly accurately with the other sensors, 
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providing a reasonable approximation of canopy height.  However, this is not true of 

biomass; gaps in LiDAR coverage are not measured as accurately with the other 

remote sensing data sets and the net result is over a 10% reduction in total estimated 

biomass for the entire landscape. 

Recall that the ultimate goal of this effort is to provide spatially continuous 

maps of forest structure at the landscape scale as a prerequisite for habitat suitability 

studies. Using the statistical relationship developed between field and LiDAR plus 

other remote sensing data sets for canopy height and biomass, I created maps of each 

of these over the domain of the data sets (Figures 17 & 18).  It is this mapping of 

forest structural characteristics at the landscape scale which we believe will be of 

great benefit to future habitat studies.   

Conclusion

LiDAR provides accurate estimates of stand level canopy height and biomass 

at the stand (1 ha) level even though it is sampling, not mapping at this scale.  Some 

improvements were achieved by adding some or all additional remote sensing data 

sets.  However, these improvements come at some cost, including 1) cost of data 

acquisition, 2) cost of data processing, and 3) statistical certainty.   The cost of 

acquiring and processing ETM+ is relatively minimal; the cost of acquiring 

(Quickbird) or processing (InSAR) is not.   Atmospheric and topographic correction 

of passive optical data is also not trivial, requiring computing power, time, and 

expertise.   

 It is not clear at this point whether or not estimates of big tree height and 

biomass at the stand (1 ha) scale have more utility for habitat modeling than do 
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samples taken at the footprint scale.   It is possible that these maps do not provide any 

additional predictive power for a given application, but there is no way to know this a

priori.

.
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Figure 17.  Canopy height map from LIDAR and other remote sensing data sets.  The units are 
in meters. 
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Figure 18. Biomass map from LIDAR and other remote sensing data sets.  The units are in 
Mg/ha. 
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Chapter 4: Mapping California spotted owl habitat using forest 
structural characteristics derived from remote sensing 
Introduction 

One of the most critical challenges for natural resources management is balancing the 

needs of multiple, often competing, uses.  This is particularly true in the National 

Forests, where the USDA Forest Service is responsible for fire management as well 

as maintaining water quality and biological diversity.  For example, Sierra National 

Forest must conduct prescribed burns while maintaining critical habitat for California 

spotted owls, Strix occidentalis. There remains a great deal of uncertainty regarding 

how much habitat alteration spotted owl populations can tolerate (Lee and Irwin 

2005), which aspects of forest structure that are being modified are important, and 

how best to measure forest structure within spotted owl habitat (Hunsaker et al 2002).   

A variety of forest structural attributes have been used as indicators of habitat 

quality for spotted owls.  (North et al. 1999) found that canopy height and canopy 

height variability was associated with spotted owl foraging activity.  (Blakesley et al. 

1992) found that variability of canopy height and canopy cover provides a multitude 

of perches and areas in the forest open enough to allow diving flights for prey 

capture.  Spotted owls are likely to nest in areas with greater canopy cover (>=70%) 

or basal area of snags, medium-, and old-growth trees although the California 

subspecies may tolerate lower amounts of cover, ca. 50% (Hunsaker et al. 2002).  The 

size of the dominant or co-dominant canopy-forming trees is correlated with owl 

foraging intensity, suggesting that “large” trees are critical elements of owl habitat 

(North et al 1999). 
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Current USDA Forest Service protocol for assessing spotted owl habitat 

includes field measurements of canopy cover using a moosehorn densitometer.   Tree 

heights are sometimes collected, typically using an inclinometer- although hand-held 

laser rangefinders are now being used with increasing frequency. Biomass estimates 

are not being made but can be calculated from height measurements if the species is 

identified and diameter at breast height (DBH) measurements are also made in the 

field.   These measurements are collected at the plot (< 1 ha) level are not available at 

the landscape scale.  Canopy cover classes (0-19%, 20-39%, 40-49%, 50-69% and 

70-100%) are estimated at the landscape scale using airphoto interpretation and 

satellite image classification (Hunsaker et al 2002).  However, this is a more or less 

ordinal measurement and reflects the difficulty in separating tree and shrub cover.    

Remote sensing methods, primarily multi-spectral (Hyppa et al. 1998) and 

more recently hyperspectral (Pu and Gong 2004) have been explored as cost effective 

means of measuring forest structural characteristics in a spatially and temporally 

continuous manner. However, these techniques are poorly suited for measuring 

vertical forest canopy structure (Weishampel et al. 2000). Radar methods, such as 

interferometric synthetic aperture radar (InSAR) are better at recovering structure in 

forests, especially those that are structurally simple or have open canopies (Treuhaft 

and Cloude 1999, Treuhaft and Siqueira 2000), but as is the case with multi-spectral 

methods, these are primarily by correlation. 

In contrast, LiDAR remote sensing directly measures important vertical and 

spatial forest structure. Numerous studies using both small footprint (< 0.5 m radius) 

and large footprint, waveform digitization airborne LiDAR, have demonstrated its 
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ability to recover structure such as canopy height, canopy cover, canopy height 

profile, canopy volume, biomass and basal area at unprecedented accuracies (Nelson 

et al. 1984, Nelson et al. 1988, Nilsson 1996,  Lefsky 1997, Lefsky et al 1999a, 

Lefsky et al 1999b, Lefsky et al 2001, Dubayah and Drake 2000, Drake et al 2002).   

However, LiDAR data sets are expensive (Table 1) and not available everywhere.  It 

is, however, possible to leverage the high information content of LiDAR with the 

lower lost, more widely available multi-spectral and RaDAR data sets through data 

fusion (Chapter 3).  

Objectives 

The objective of this chapter is to assess the use field-validated, landscape scales 

maps of canopy height, canopy cover, and biomass to as indicators of CASPO habitat 

and habitat quality.  These maps are twofold: footprint level (0.07 ha) structure maps 

of canopy height, canopy cover, and biomass derived from LiDAR observations 

(Hyde et al. 2005) and stand level (1 ha) maps of the height and biomass of large (> 

than 76 cm, following USDA Forest Service field protocols) trees derived from 

LiDAR, RaDAR, and passive optical sensors (Chapter 3).   

The remainder of this chapter is organized as follows. First I describe my 

collection of field plot data, and give details of the data acquisition over the Sierra 

Nevada.  Next I present our methods for data processing and analysis of spotted owl, 

LiDAR and remote sensing data, including the derivation of canopy height, canopy 

cover and biomass. I then give the results of statistical comparisons between remote 

sensing metrics and owl demographic data. Finally, I discuss the significance of my 
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results relative to the retrieval of forests characteristics from remote sensing, and the 

implications of these for mapping spotted owl habitat. 

Study area and data sets

The study area is located in the Sierra Nevada mountains of California (Figure 19). 

This site is approximately 60,000 ha, with elevation ranging from 853 to 2,743 m.  

Vegetation types include white fir (Abies concolor), red fir (Abies magnifica), Sierran 

mixed-conifer, ponderosa pine (Pinus ponderosa), and montane hardwood-conifer 

(for a complete description, see Hunsaker et al (2002) and Chapter 2).   

Figure 19.  Sierra National Forest is located in the Sierra Nevada range of California. This ca. 
60,600 ha area is primarily comprised of montane hard-wood conifer, ponderosa pine, Sierran mixed-
conifer, white fir, and red fir.  The box on the right side of the image marks the approximate location 
of the study area within Sierra National Forest 
 

Owl data were provided by the USDA Forest Service and described in Hunsaker et al 

(2002).  Radio collar telemetry was used to locate points within Sierra National Forest 

where spotted owls were found.  Minimum convex polygons were applied to the 

telemetry data to delineate the home ranges of each nesting pair as a function of the 

50, 70, and 90% probabilities of occupancy.   The home range estimates were then 
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averaged across all nesting pairs to produce “owl analysis areas” (OAA), or the area 

surrounding nest sites likely used by owls (Figure 20).  

 

Figure 20.  California spotted owl nest locations in relation to the study area.   All nest sites are 
shown here.  The upper left and lower right corner coordinates for the image are given in UTM 
eastings and northings. 
 

The area of each OAA is 72 ha, 168 ha, and 430 ha, representing the 50, 70, 

and 90% probability of occupancy, respectively.  From 1991 to 1999, 43 sites were 

visited; the UTM coordinates of the nest or main roost was recorded as well as the 

number of fledglings.  For each nesting pair a productivity index score was calculated 

by normalizing the number of fledglings per year by the average number of fledglings 

produced by all nests in any given year (Hunsaker et al 2002).   

N

294133, 4115816

321945, 4088745
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Remote sensing data 

Maps of forest structure, i.e., canopy height, canopy cover, and biomass were created 

by applying models relating in situ observations to LiDAR footprints, creating 

landscape-scale maps with a resolution of 25 m (Hyde et al. 2005).  Maps of large 

tree canopy height and biomass were created by applying models relating in situ 

observations to LiDAR, RaDAR, and passive optical sensors, creating maps with a 

resolution of 1 ha (Chapter 3).   

Methods  

Owl Data 

The UTM coordinates for each nest or main roost site were averaged across all 

observations to account for small shifts in movement.  The resulting point locations 

representing the centers of owl analysis areas were buffered to create polygons 

equivalent to 72 ha, 168 ha, and 430 ha owl analysis areas (Hunsaker et al 2002).    

Two sets of control sites, corresponding to the LiDAR only and fused structure maps, 

were selected and buffered to match the size of the 72 ha, 168 ha, and 430 ha OAAs 

(Figure 21).  Each control site was located as closely as possible to OAA while 

minimizing overlap; large tracts of land cover types, such as water, barren, 

urban/built, and grasslands, not present in OAA were also avoided.    
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Figure 21.  CASPO nest sites and controls within the study area.  The grey areas are the actual 
owl sites; the multi-colored areas are the controls. The upper left and lower right corner 
coordinates for the image are given in UTM eastings and northings. 
 

Remote sensing data 

Mean and standard deviation canopy height, canopy cover, and biomass of all stems 

for each owl analysis area were calculated from the LIDAR-derived maps of structure 

at the footprint level (Hyde et al. 2005) (Table 17).   
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Table 17.  Canopy structure metrics derived from LiDAR 25 m footprint observations 
Metric Description 

Meanht72 Mean canopy height for all 72 ha OAAs (m) 

Stdevht72 Standard deviation of canopy height for all 72 ha OAAs (m) 

Meanht168 Mean canopy height for all 168 ha OAAs (m) 

Stdevht168 Standard deviation of canopy height for all 168 ha (m) 

Meanht430 Mean canopy height for all 430 ha OAAs (m) 

Stdevht430 Standard deviation of canopy height for all 430 ha OAAs (m) 

Meancv72 Mean canopy cover for all 72 ha OAAs (%) 

Stdevcv72 Standard deviation of canopy cover for all 72 ha OAAs (%) 

Meancv168 Mean canopy cover for all 168 ha OAAs (%) 

Stdevcv168 Standard deviation of canopy cover for all 168 ha (%) 

Meancv430 Mean canopy cover for all 430 ha OAAs (%) 

Stdevcv430 Standard deviation of canopy height for all 430 ha OAAs (%) 

Meanbm72 Mean biomass for all 72 ha OAAs (Mg/ha) 

Stdevbm72 Standard deviation of biomass for all 72 ha OAAs (Mg/ha) 

Meanbm168 Mean biomass for all 168 ha OAAs (Mg/ha) 

Stdevbm168 Standard deviation of biomass for all 168 ha (Mg/ha) 

Meanbm430 Mean canopy biomass for all 430 ha OAAs (Mg/ha) 

Stdevbm430 Standard deviation of biomass for all 430 ha OAAs (Mg/ha) 
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Mean and standard deviation canopy height and biomass of large trees was calculated 

for each owl analysis area using structure maps derived from data fusion (Chapter 3) 

(Table 18).   

 Table 18. Canopy structure metrics derived from LiDAR, RadAR and passive optical sensors (1 
ha resolution) 

Metric Description 

Meanht72f Mean canopy height for all 72 ha OAAs (m) 

Stdevht72f Standard deviation of canopy height for all 72 ha OAAs (m) 

Meanht168f Mean canopy height for all 168 ha OAAs (m) 

Stdevht168f Standard deviation of canopy height for all 168 ha (m) 

Meanht430f Mean canopy height for all 430 ha OAAs (m) 

Stdevht430f Standard deviation of canopy height for all 430 ha OAAs (m) 

Stdevcv430 Standard deviation of canopy height for all 430 ha OAAs (%) 

Meanbm72f Mean biomass for all 72 ha OAAs (Mg/ha) 

Stdevbm72f Standard deviation of biomass for all 72 ha OAAs (Mg/ha) 

Meanbm168f Mean biomass for all 168 ha OAAs (Mg/ha) 

Stdevbm168f Standard deviation of biomass for all 168 ha (Mg/ha) 

Meanbm430f Mean canopy biomass for all 430 ha OAAs (Mg/ha) 

Stdevbm430f Standard deviation of biomass for all 430 ha OAAs (Mg/ha) 

Statistical methods 

Analysis of variance (ANOVA) was used to test for significant differences between 

canopy structure metrics in OAAs and the controls sites.  Canopy height, canopy 

cover, and biomass were examined at the footprint (25 m resolution) level; canopy 

height and biomass were examined at the stand (1 ha resolution) level.  Linear 
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regression and stepwise multiple linear regression was used to relate structure metrics 

and indices of owl nest productivity. 

Results  

There is a significant difference between the mean canopy height of 72 ha OAA and 

controls (p = 0.004, df = 1, 18); the difference is less significant for 168 ha OAA and 

controls (p = 0.014, df = 1, 18) and not significant for 430 ha OAA and controls 

(Figure 22). 

Figure 22.  Mean canopy height in owl analysis and control areas, derived from LIDAR at the 
footprint level. 
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There are no significant differences between the standard deviation of canopy height 

between 72, 168, and 430 ha OAA and controls (Figure 23). 

Figure 23.  Standard deviation canopy height in owl analysis and control areas, derived from 
LIDAR at the footprint level. 
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Figure 24.  Mean canopy cover in owl and control areas, derived from LIDAR at the footprint 
level 
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0.090, df = 1, 18); the difference between 430 ha OAA and controls is not significant 

(Figure 25). 

Figure 25.  Standard deviation canopy cover in owl and control areas, derived from LIDAR at 
the footprint level 
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and controls (p =  0.007, df = 1, 18) and not significant between 430 ha OAA and 

controls (Figure 26 ). 

Figure 26.  Mean biomass in owl analysis and control areas, derived from LIDAR at the 
footprint level 

Me
an

Bi
om

ass
(M

g/h
a)

* significant at the 0.05 level 
** significant at the 0.01 level 
*** significant at the 0.001 level 
+ not significant 

0

50

100

150

200

250

300

350

400

450

500

72 ha OAA 72 ha control 168 ha OAA
169 ha control 430 ha  OAA 430 ha control

*** *** ** ** ++



100 
 

There are significant differences between the standard deviation of biomass of 72 ha 

OAA and controls (p < 0.001, df = 1, 18) and between 168 ha OAA and controls (p =  

0.007, df = 1, 18); the difference between 430 ha OAA and controls  are not 

significant (Figure 27 ). 

Figure 27.  Standard deviation biomass in owl analysis and control areas, derived from LIDAR 
at the footprint level 
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There are significant differences between mean canopy height of large trees between 

72 ha OAA and controls (p < 0.001, df = 1, 44); the difference between 168 ha OAA 

and controls (p = 0.003, df = 1, 44) and between 430 ha OAA and controls (p = 0.032, 

df = 1, 44) are less significant (Figure 28). 

Figure 28.  Mean large tree height in owl analysis and control areas, derived from remote sensing 
at the stand level. 
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There are no significant differences between the standard deviation of canopy height 

between 72, 168, and 430 ha OAA and controls (Figure 29) 

Figure 29.  Standard deviation large tree height in owl analysis and control areas, derived from 
remote sensing at the stand level. 
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There are significant differences between mean large tree biomass between 72 ha 

OAA and controls (p < 0.002, df = 1, 44), 168 ha OAA and controls (p < 0.004, df = 

1, 44) and 430 ha OAA and controls (p < 0.037, df = 1, 44) (Figure 30). 

Figure 30.  Mean large tree biomass in owl analysis areas, derived from remote sensing at the 
stand level 
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There are significant differences between the standard deviation of large tree biomass 

between 72 ha OAA and controls (p < 0.027, df = 1, 44), 168 ha OAA and controls (p 

< 0.025, df = 1, 44) and 430 ha OAA and controls (p < 0.031, df = 1, 44) (Figure 31). 

Figure 31.  Standard deviation large tree biomass in owl analysis areas, derived from remote 
sensing at the stand level 

* significant at the 0.05 level 
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At the footprint level (Table 18, Figure 32) , nest productivity was correlated with 

mean canopy height of 430 OAA (r2 = 0.315, n = 14, SE = 0.04), mean canopy cover 

of 72 ha OAA (r2 = 0.289, n = 14, SE = 0.04), stand deviation of canopy cover of 168 

ha OAA (r2 = 0.245, n = 14, SE = 0.04), and mean canopy cover of 430 ha OAA (r2 =

0.254, n = 14, SE = 0.04).  At the stand level (Table 18), nest productivity was 

correlated with standard deviation of canopy height of 430 ha OAA (r2 = 0.121, n = 

27, SE = 0.078) and mean biomass of 430 ha OAA (r2 = 0.483, n = 27, SE = 0.06).  

Stepwise multiple linear regression of all possible combinations did not produce 

significant results at either the footprint or the stand level of analysis. 

Table 19.  Regression results and models from analysis of footprint and stand level metrics and 
an owl reproductive index.   

 
Metric Coefficient  

of 
determination 

(r2)

P n Standard 
error 

Model 

meanht430 0.315 0.037 14 0.040 0.290 + (0.005 * meanht430) 
 

meancv72 0.289 0.048 14 0.040 0.174 + (0.004 * meancv72) 
 

stdevcov168 
 

0.245 0.072 14 0.040 0.572 + (-0.006 * 
stdevcov168) 

meancv430 0.254 0.066 14 0.043 0.264 + (0.003 * meancv430) 
 

stdevht430f 0.121 0.081 27 0.078 0.317 + (0.012 * stdevht430f) 
 

meanbm430f 0.483 8.072e-05 27 0.060 0.305 + (0.001 * 
meanbm430f) 
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Figure 32. Results of step-wise multiple linear regression models between remote sensing metrics 
and a spotted owl reproductive index.   The best single variable model (large tree biomass from 
430 ha OAA) is shown here. 

Discussion

As expected, I found statistically significant differences in structure between areas 

inhabited by owls and areas not currently occupied.    I am not suggesting that spotted 

owls perceive structure the same way, or at the same scale, as does LiDAR or any 

other sensor; however, there is some correlation between the two.   Individual owls 

undoubtedly search for a suite of characteristics that include something that humans 

perceive and have labeled “owl-growth”-- and remote sensing can quantify 

characteristics that correlate with these conditions.  I do not suggest that LIDAR or 

any other sensor can perceive spotted owl prey items, nest or roost sites.  Rather, 
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remote sensing can record the “signature” of a particular structural type that correlates 

with conditions that owls can perceive.    

 In many cases, the statistical significance between metrics was strongest when 

comparing 72 ha OAA with controls, and the significance declined or disappeared 

entirely as the area around the nest site increased.  This suggests that there is a core 

activity area around owl nest sites where old-growth conditions are more important 

and that this area is ringed by another where structure is intermediate between the 

core and the surrounding matrix of non-habitat.   This is not surprising in that it is 

unlikely that one would find abrupt discontinuities in nature outside of heavily 

disturbed areas   This argues for maintaining buffer zones around known owl 

locations, separating them from other land use practices, such as recreation and 

timber harvest.   

 I also found weak to moderate correlations between structure metrics and owl 

nest productivity.   This suggests that canopy structure plays a role in habitat quality 

beyond simple presence or absence.  This is important because no organism occupies 

the entire range of conditions in which it can tolerate; niches are seldom, if ever, 

saturated in that sense for a variety of reasons not related directly to structure.  I am 

not claiming that areas outside of OAAs are unsuitable for owls or that unoccupied 

areas are so because of structure only.  However, spotted owls obviously do not 

occupy the landscape at random and some structural signature perceptible by remote 

sensing indicates a higher probability of occupancy than do other signatures. Two 

caveats are in order:  First, the relationship between large tree biomass and owl 

productivity could be curvilinear.  A logarithmic function fit to the data produced a 
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higher coefficient of variation (r2 = 0.630) than did a linear model.   Second, there are 

three outlying points where both nest productivity and biomass are low; if these 

points are removed, the relationship weakens considerably (r2 = 0.116).  Further 

analysis should reveal whether these sites are unusual structurally or if there is a 

problem with the data.  It is possible that these sites are low quality and are occupied 

by juveniles attempting to establish new territories.  

I was somewhat surprised by the weak results regarding canopy cover given 

the results of previous efforts; Hunsaker (et al 2002) found a correlation (r = 0.37) 

and between canopy cover and owl productivity.  It is interesting that biomass, 

particularly biomass of large trees, was so significant (although see the caveats 

above). I believe that this is could be because of how LiDAR “sees” biomass, i.e., as 

a composite of canopy height and canopy cover.  I would expect, then, that there are 

other metrics relating to the vertical dimension that would be as or more useful than 

biomass, which is a coarse surrogate for structural complexity. 

Conclusion

There are many other metrics that LIDAR and other remote sensing data sets could 

provide.  We selected only those that were reasonably easy to calculate and compare 

with existing field data.  Additional information regarding the vertical structure of 

habitat exist in LIDAR waveforms, while measurements like canopy cover and 

HOME are just simple correlates to a much richer, more complex signature.  Some 

index of heterogeneity could be developed; for example, standard deviation or 

variance (or even semivariance) in waveform energy.  Additionally, other sensors 
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besides the ones used here can provide structural information, including hyperspectral 

or multi-angle passive optical sensors and longer wavelength RaDARs. 

We were not able to use the full owl data set because we lacked the spatial 

coverage with LiDAR to do so.   In fact, additional flight days were planned that 

would have accomplished this, but mechanical problems with the aircraft carrying 

LVIS prevented us from doing so.  It would be advantageous for future studies to 

have adequate resources to map broader areas with large footprint LiDAR; at the 

present time, only one such instrument exists and it is supported as an experimental, 

not an operational, system.  Management of forests of the size of National Forests 

requires a far richer data set than we were able to provide in this pilot project.  Small 

footprint LiDAR is another alternative method, although I suspect that there are 

elements of vertical complexity that only a full waveform-digitizing system can 

capture.  It would be useful to compare structure metrics derived from small footprint 

systems with our results to confirm or deny our suspicions.  This also limited our 

ability to use randomly selected locations for control plots; there simply is not enough 

coverage to generate non-overlapping random control plots. 

I only had large tree data at the 1 ha level as the field protocol was selected to 

match previous U.S. Forest Service surveys; large trees are reasonably sparse at this 

scale.  Recall that I had highly detailed information about very small stems (10+cm 

dbh) at the footprint level in order to perform a calibration/validation experiment.  If I 

was able to conduct a similar wildlife habitat analysis project in the future, I would 

design the field protocol differently; we would likely increase the minimum dbh 
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threshold and map a smaller area, perhaps measuring stems > 30 cm dbh and reducing 

the plot size to 0.5 ha.   

I was only able to examine the demography data for a single, albeit highly 

important, species.  There are many other species of interest, including Northern 

goshawks and fishers, within Sierra National Forest that almost certainly are found 

only or preferentially in areas with a structural signature discernable by LiDAR and 

other sensors.   It would also be interesting to look at indices of overall diversity and 

examine their relationships with forest structure.  I also recognize that the structure 

maps that we created are not limited to wildlife habitat analysis; forest structure is an 

important component of fuel loads and fire propagation modeling, as well as carbon 

sequestration and hydrologic modeling.  LVIS also captured the elevation of the 

ground under the canopy, which is notoriously difficult to acquire.   

Using our results, I created maps of potential spotted owl habitat using the 

LiDAR structure maps and fused remote sensing maps; these areas include the 

structural signatures of locations of OAA as defined in our results.  The map created 

from LiDAR only (Figure 33) represents all pixels that where the structural metric is 

above the mean value: height > 22.7 m, cover > 42.8%, biomass > 275 mg/ha.  The 

map derived from LIDAR and the other remote sensing data sets (Figure 34) was 

created with the following criteria: height > 49 m, biomass > 172 mg/ha.   Not 

surprisingly, the map derived from big tree data at the landscape scale (from all 

remote sensing data sets) tracks the structure maps created from just LIDAR.  In both 

potential habitat maps, an area known to be old-growth (the Teakettle Experimental 

Area) is clearly identified.  The thresholds I chose are arbitrary and do not reflect a 
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known critical threshold below which owls cannot survive; they are merely intended 

to demonstrate their utility, i.e., that maps of this sort could be highly useful to the 

U.S. Forest Service for management and planning of the Sierra National Forest.  
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Figure 33.   Potential habitat for CASPO, based on canopy height, cover, and biomass criteria 
(height > 22.7 m, cover > 42.8%, biomass > 275 mg/ha).  The numbers in the legend correspond 
to the number of criteria met, 0-3.  This map is based on footprint level LIDAR data only. The 
upper left and lower right corner coordinates for the image are given in UTM eastings and 
northings. 
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Figure 34. Potential habitat for spotted owls, based on big tree canopy height and biomass 
criteria (height > 49 m, biomass > 172 mg/ha).  The numbers in the legend correspond to the 
number of criteria met, 0-2.  This map is based on fusion of LIDAR and other remote sensing 
data.  The upper left and lower right corner coordinates for the image are given in UTM eastings 
and northings. 
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Chapter 5:  Discussion and Conclusion 
Discussion

I demonstrated that LIDAR can recover measurements of forest structure with high 

degree of accuracy relative to field measurements.   Previously, it was assumed by 

many in the LIDAR community that LIDAR would not perform adequately in steep, 

mountainous terrain because of slope effects.  The reason for this is that heights are 

determined relative to the mean ground elevation within a footprint, so that a stem 

which is upslope of the footprint center will appear taller and one which is down  

slope will appear shorter than the actual height.  Also, low-lying vegetation could be 

convolved with the ground return, making ground determination inaccurate.   

 While slope undoubtedly does have an effect, it is masked by more important 

considerations.   The largest factor determining canopy height retrieval is the spatial 

arrangement of canopy materials.  Height retrieval accuracy is highest when the 

tallest stem is at the center of a LIDAR footprint.  There is an energy drop-off at the 

outer edge of LIDAR footprints.  While this phenomenon was known, the magnitude 

had never been quantified with field observations.  One reason for this is that (to my 

knowledge) no other calibration/validation study had carefully geolocated individual 

stems to test this effect.   This result applies to habitat mapping in that the effective 

pixel or grid size for LiDAR-derived maps are much smaller than previously 

anticipated.  This is easy to correct in terms of map creation, but the resulting grids 

will have more coverage gaps. 

 Canopy cover was also retrieved with the same level of accuracy as previous 

studies.  I found that some of the assumptions used by previous researchers did not 
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apply in my study area; canopy cover did not require a correction for light extinction 

and the reflectivity difference between ground and vegetation was smaller than 

previously reported; both of these assumptions were violated and if these factors were 

applied to the data collected in the Sierras, my results would have been significantly 

worse.  This is not especially surprising given that most of the original 

calibration/validation work was done in deciduous forest, which have quite a different 

gap structure than the conifers of the Sierras, as well as different lifeforms 

(broadleaves vs. conifers).  However, Lefsky (1999a) did extend his assumptions 

(canopy reflectance ratios and light extinction effects) to conifers in the Pacific 

Northwest (with good results) and his assumptions were widely accepted.   

At the stand level, I found that the amount of the plot that was mapped was 

the largest determinant of accuracy.  This suggested that using other sensors could fill 

in some of the gaps in LIDAR coverage.  In the earliest SLICER and LVIS missions, 

the sensor acquired swaths (ca. 1 km wide).  However, there were gaps within the 

tracks due to pilot error, as well as pitch and roll of the aircraft.  So, LIDAR was not 

exactly mapping the landscape; rather, it was sampling with a high degree of 

frequency in some areas, while completely missing others.  This led me to investigate 

the use of other data sets to fill in these gaps.   

I did find that some additional predictive power vis-à-vis big tree biomass, 

(and to a lesser extent, big tree canopy height) can be achieved by using information 

from multiple remote sensing data sets.  However, the cost of acquiring and 

processing the additional data sets is considerable.  Recall that the field data was 

limited, therefore I was only able to validate sparse LIDAR and other remote sensing 
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data using stand (1 ha) level data.  It is possible that other remote sensing data sets 

can more accurately map canopy height and biomass of all stems rather than just big 

trees.  Because of incongruities of scale and geolocation, I could not compare the 

footprint level stem maps to Landsat data, for example.  This would require 

inventorying all stems at the 1 ha level, which was not practical given logistical 

constraints.   

I have shown that maps of forest structure derived from LIDAR and remote 

sensing can be used to map (California spotted owl) CASPO habitat.  Ecological 

theory (and particularly the subdiscipline of landscape ecology) suggests that a strong 

relationship exists between environmental structure and biological processes.  While 

there is nothing about CASPO that suggests that it perceives structure in the same 

way as a do LIDAR footprints or satellite pixels, there is undoubtedly some 

correlation between the two.   Individual owls undoubtedly search for a suite of 

characteristics that correspond roughly to what humans perceive and have labeled 

“owl-growth”-- and remote sensing can quantify characteristics that correlate with 

these conditions.  I do not suggest that LIDAR or any other sensor can perceive 

CASPO prey items or roost sites.  Rather, remote sensing can record a “signature” of 

a forest type that correlates with conditions that owls can perceive.   

This signature was used to create maps of potential CASPO habitat.  At any 

given time, these may be unoccupied.  Instead of targeting these areas for 

preservation, it might be useful to flip the argument around.  What is about the 

environment that makes it unsuitable habitat for CASPO?  It is likely that these areas 

include sites that were logged.  They also include rock outcrops, wet meadows, and 
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other naturally-occurring gaps in the forest.  These areas could be targeted for more 

intensive development, since one could argue that if they were not used by CASPO 

over the last 10 years or so, they are not likely to be used if enough suitable habitat is 

available.  If it is determined that CASPO populations have insufficient numbers, 

these areas could be targeted for reforestation efforts.  Future LIDAR missions (or the 

results of this effort) can be used to monitor the CASPO habitat. 

Conclusion

LIDAR is a highly effective tool than can used to map forest structure, from which a 

signature can be extracted that indicates potential CASPO habitat.  While other 

remote sensing data sets can provide some additional structure information, multi-

sensor fusion has some benefit in mapping habitat; a larger portion of the landscape 

can be mapped, but at a high cost of production (Table 2).   An alternative would be 

to simply acquire more LiDAR data; this could include a blend of large and small 

footprint systems given the limited availability of the former.    

It should be noted that configuration of LVIS for this mission was intended to 

provide a testbed for a satellite LIDAR system (VCL).   Current and future LVIS 

missions will be flown with a smaller footprint size and less gaps in coverage.   LVIS 

is becoming more of an imaging system rather than effectively a high intensity 

sampling instrument, as it had been in the past.  Therefore, some of the 

calibration/validation issues elucidated here will simply evaporate as LVIS evolves.  

 However, future space-based missions will result in sparse LiDAR samples 

because no future satellite-based LiDAR system ever proposed will image the entire 

planet; fusing LiDAR and the other remote sensing data sets that provide wall-to-wall 
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coverage (RaDAR and passive optical sensors) would be highly useful.  Co-kriging 

would seem to be a highly useful tool.  Forest structure is spatially autocorrelated, so 

using kriging to fill in coverage gaps would be ideal.  However, Sierra forests are 

highly variable because of disturbance, so there are locations that would have had a 

different structure had they been undisturbed.  Using ancillary data sets to “inform” a 

kriging model would account for these discontinuities in structure that are aspatial in 

nature. 

Future fusion efforts will be far more sophisticated.  Here, I used fusion in the 

statistical sense.  An improved fusion method could include physical models or 

mechanisms that seek to better understand the interaction between electromagnetic 

energy and the target (forest canopies).  Instead, this effort was highly focused on one 

particular application, mapping owl habitat.   For those purposes, simple correlations 

between remote sensing variables and in situ observations of structure known to be 

diagnostic of owl habitat were suitable.    

CASPO are by no means the only species that depends on old-growth forests.  

Other species, too, have their own habitat requirements, some of which will correlate 

to an environmental “signature” that remote sensing can measure.  A comprehensive 

evaluation of habitat would include the requirements of many species, not just 

CASPO.  Because of its status as a management indicator species, CASPO data are 

available.  Because CASPO is a “charismatic megafauna”, there is a great deal of 

interest in its preservation.  Future efforts should include consideration of the needs of 

all forest organisms, not just the ones we like. 
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LIDAR can supplant some field measurements.  Aside from a few 

calibration/validation plots to insure that the sensor is working properly, there is not a 

huge need to conduct detailed inventorying of forests—if the only structural 

measurements needed are canopy height, canopy cover, and biomass.  LIDAR sensors 

have performed well enough in all types of terrain and ecosystems to warrant a great 

deal of confidence in these measurements.  If it turns out that something like foliar 

height diversity structure is more important for some species, then future field efforts 

should concentrate here.   Other aspects of waveforms at the landscape scale should 

be exploited.  For example, one could quantify patchiness or fragmentation in vertical 

structure. 

It should also be noted that the forest structure that was measured here was 

done so with wildlife habitat analysis as the ultimate goal.  However, these structural 

attributes are highly informative for many other purposes, including ecosystem 

dynamics, carbon flux modeling, wildfire modeling, hydrologic modeling, and many 

others.   
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Glossary 

CE- Canopy energy; the canopy portion of a LIDAR waveform 
 
DBH- Diameter at Breast Height; a measure of a tree’s girth 
 
DEM – Digital Elevation Model; a 3-D representation of a topographic surface 
 
ETM+ - Enhanced Thematic Mapper (Landsat 7); a multi-spectral satellite platform 
 
GE- Ground energy; the ground portion of a LIDAR waveform 

HOME – Height of the median energy return; the height of the midpoint of the 
cumulative energy return.    
 
IFSAR – Interferometric Synthetic Aperture Radar; an advanced radar system that 
can map canopy height 
 
LHT – Laser height; the height of the canopy as detected by LIDAR 

LiDAR – Light detecting and ranging; laser altimetry or the near-infrared equivalent 
to RADAR 
 
LVIS – Laser Vegetation Imaging Sensor; a large footprint, airborne LIDAR platform 

NDVI – Normalized Difference Vegetation Index; a measure of vegetative 
“greenness” 
 
NIR- Near Infra-red; the portion of the electromagnetic spectrum in which LVIS 
operates ca. 1064 nanometers 
 
QB- Quickbird; a high spatial resolution, multi-spectral satellite platform 

RaDAR – radio detecting and ranging 

SAR - Synthetic aperture radar; a RADAR sensor used in ecological studies 

USFS- United States Forest Service; government organization within the Department 
of Agriculture charged with managing the National Forests 
 
USGS – United States Geologic Survey; government organization within the 
Department of Interior charged with studying and mapping natural resources within 
the United Sates 
 
VCL- Vegetation Canopy LIDAR; a proposed spaceborne LIDAR platform 
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VDIS- Vertical distribution of intercepted surfaces;  

VIS- Visible portion of the spectrum (red, green, blue) 
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