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Abstract

Dynamically generated web pages are ubiquitous today but their high demand for resources

creates a huge scalability problem at the servers. Traditional web caching is not able to solve

this problem since it cannot provide any guarantees as to the freshness of the cached data.

A robust solution to the problem is web materialization, where pages are cached at the web

server and constantly updated in the background, resulting in fresh data accesses on cache

hits. In this work, we define Quality of Data metrics to evaluate how fresh the data served

to the users is. We then focus on the update scheduling problem: given a set of views that

are materialized, find the best order to refresh them, in the presence of continuous updates,

so that the overall Quality of Data (QoD) is maximized. We present a QoD-aware Update

Scheduling algorithm that is adaptive and tolerant to surges in the incoming update stream.

We performed extensive experiments using real traces and synthetic ones, which show that

our algorithm consistently outperforms FIFO scheduling by up to two orders of magnitude.

�Prepared through collaborative participation in the Advanced Telecommunications/Information DistributionRe-
search Program (ATIRP) Consortium sponsored by the U.S. Army Research Laboratory under the Federated Labo-
ratory Program, Cooperative Agreement DAAL01-96-2-0002. An abridged version of this work appears in the Pro-
ceedings of the 27th VLDB Conference, Roma, Italy, 2001.
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1 Introduction

The World Wide Web has seen tremendous growth in the years since its inception, accompanied

by a big transformation in its nature, from purely static HTML pages in the early 90s to most

web pages having some dynamic content today. Online services, frequently updated content and

personalization[BBC+98] are the main reasons behind dynamically generated web pages. Unfor-

tunately, dynamic content requires far greater resources from web servers than static pages do and

does not scale.

Although web caching has addressed the scalability problem for static pages, it cannot be di-

rectly applied to dynamically generated pages, since it does not deal with continuously chang-

ing data and, therefore, cannot provide any guarantees for the freshness of the cached data. Web

caching also helps in serving user requests fast. This is certainly important, but only if the data is

fresh and correct, otherwise it may be more harmful than slow or even no data service. For ex-

ample, a lightning fast web site with 20 minute delayed stock information is of very little use to

those investors who want to know what the market is doing right now. A slightly slower site that

can display up to the second stock information would be more valuable.

In general, when evaluating the quality of a web server, one must evaluate both its Quality

of Service (QoS), or how fast it services user requests, and, its Quality of Data (QoD), or how

“good” the served data are. Goodness of data can be measured in freshness, accuracy, and other

metrics that need to be defined from the semantics of the application. It is unfortunate that most

web servers do not provide to the users any means of knowing about the QoD they serve, how

fresh the data is, or the reliability of the sources. It is prudent to include in the business model the

QoD guarantees, especially for those web sites whose sole or primary business is serving data.

In [LR99, LR00a] we have showed that materialization of dynamically generated web pages

is a robust solution to the scalability problem. With materialization, web pages are cached and

constantly kept up to date in the background, resulting in fresh data accesses on cache hits. We

use the term WebView to refer to the unit of materialization, which is a page that contains dynamic

HTML fragments generated from a DBMS. Having a WebView materialized can potentially give
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significantly lower service times, compared to a virtual (un-materialized) WebView. Although the

selection of WebViews to materialize will have important implications on both the QoS and QoD,

the order by which materialized WebViews are refreshed plays an even more crucial role in the

overall Quality of Data. For example, we want to update popular WebViews first, since, we expect

that overall they will contribute to higher freshness of the data served.

In this paper we focus on the update scheduling problem as it relates to QoD: given a set of

WebViews that are materialized, find the best order to refresh them, so that the overall Quality of

Data is maximized. Our work is motivated by materialized WebViews in data & update-intensive

web servers, but it can be applied to any environment that has continuous online updates. We

demonstrate that a FIFO schedule for the WebView updates can have disastrous effects on QoD.

Except for ignoring the popularity of the WebViews, a FIFO schedule also ignores the cost to

update each WebView. Scheduling the refresh of “cheaper” WebViews ahead of “expensive” ones,

could also lead to higher QoD.

We performed a workload study on Quote.com, a popular update-intensive web server with

online stock information. We found that both access and update workloads are highly skewed,

with a small percentage of the stocks being responsible for a big percentage of the accesses and

updates. Moreover, we found that access and update patterns are correlated. The results of this

study were used in the release of the current Quote.com server.

Based on the workload analysis, we developed an adaptive QoD-aware update scheduling al-

gorithm (QoDA) that takes into consideration the popularity and the update cost of the views. Our

algorithm unifies the scheduling of relation and view updates under one framework, takes advan-

tage of temporal locality in the incoming update stream and is tolerant to update surges. QoDA

also takes into account the database schema and can support any type of views and arbitrary view

hierarchies.

We implemented an update scheduling simulator and ran extensive experiments using real

traces (from Quote.com and the NYSE) and synthetic ones. Our experiments clearly show that

QoDA update schedules consistently outperform FIFO schedules by up to two orders of magni-
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tude. One of the main advantages of QoDA scheduling is that it can maintain a high level of QoD,

even when the update processing capacity is not enough or when there are surges in the incoming

update rate. The most important discriminator of QoDA over FIFO is the speed of restoring QoD

after update surges. QoDA rapidly restores QoD while FIFO does it slowly and sometimes never

recovers.

In the next section we summarize the results from a workload study that we recently performed

on Quote.com. In Section 3 we define the QoD metrics, and in Section 4 we present the QoD-

aware update scheduling algorithm. Section 5 contains the experiments we performed using real

and synthetic trace data. Section 6 briefly presents the related work. We conclude in Section 7.

2 A Workload Study of a Web Server with Continuous Updates

We recently performed a workload study on Quote.com [LR00b], one of the most popular stock

quote servers. We focused our study on the stock information pages of about 9000 stocks and

used the server log traces from Quote.com to explore the access workload. We then correlated

these logs with the Trade and Quote Database from the New York Stock Exchange (NYSE), which

contains all the stock “ticks” (buy or sell activity), i.e. the update logs.
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We found that, as is the case with static web pages [BCF+99], the access request workload of

dynamically generated pages is highly skewed: a small percentage of the web pages is responsible

for a big percentage of the overall request load (Figure 1 & Table 1). For example, the 25 most

popular stock symbols generate over 50% of the total request load for Quote.com. The update

workload is also highly skewed, although not as much as the access workload (Figure 2 & Table 2).

For example, the ten most update-intensive stocks receive 15% of the updates. The highly skewed

access and update workloads mandate the use of popularity measuring the QoD for the accessed

data and also in the update scheduling algorithm.

We also identified an overlap between the list of the most accessed symbols and the list of the

most updated stocks, indicating that there is correlation between the access and update patterns.

To verify our hypothesis we computed the Linear Correlation Coefficient, r, [PTVF92] for the

number of accesses and the number of updates per stock for a few days. The average value for r

was 0.71461, indicating a correlation between the number of accesses and the number of updates

for each stock. Recent workload characterization studies on less update-intensive environments

reached similar conclusions: [DF97] found that the most frequently accessed resources have the

shortest intervals between modifications, whereas [PQ00] established a strong correlation between

document age and popularity.

Figure 3 and Figure 4 illustrate the access rates for the Quote.com web server and the update

rates from the NYSE trace for April 4, 2000, reported on one minute intervals. In addition to the

big, but predictable, variations at the beginning or end of the session, there is significant variance

in the access and update rates during market hours. WebView Materialization inherently deals

with access surges. However, for update surges, it is the update scheduling algorithm that must

tolerate them and rapidly adapt to the incoming update rates. For example, the NYSE workload

had update rates of up to 696 updates per second. Furthermore, since access rate variations can

lead to increased load in the system, the update scheduling algorithm must also tolerate decreased

server capacity. In general, we need an adaptive algorithm that will react rapidly to changes in the

1A value of r = 0 for the Linear Correlation Coefficient translates to no correlation, a value of r = 1 translates
to perfect correlation and a value of r = �1 translates to perfect negative correlation. r 2 [�1; 1].
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Figure 4: Distribution of updates over time

update workloads and system conditions.

We found that sudden increases in the incoming update rate, or update surges, are frequent

in the update workload. We modeled “sudden” to be within a ten-second sliding window, during

which we compute the maximum positive update rate difference and report it as a percentage in-

crease. Therefore a 200% percentage increase would correspond to a three-fold update surge. We

measured the intensity and the frequency of update surges in the NYSE workload and plot them

in Figure 5. Clearly, the peak of the curve is around the 100% mark, which suggests that two-fold

update surges are the most common. However, there are also a lot of cases with higher update

surges, up to 500% or six-fold.
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Figure 5: Surges in Update Rate for April 4, 2000

Finally, we found that both the update stream exhibits temporal locality: recently updated

views are more likely to be updated again. This suggests that the update scheduling algorithm

must exploit it and attempt to “merge” consecutive updates to the same WebView.

3 Quality of Data for Materialized Views

In this section we present a probabilistic model for measuring the Quality of cached data that are

derived from a DBMS. We assume a web server architecture similar to that of Figure 6. The web

server is the front-end for serving user requests. All requests that require dynamically generated

data from the DBMS are intercepted by the asynchronous cache and are only forwarded to the

DBMS if the data is not cached. Unlike traditional caches in which cached data is invalidated on

updates, in the asynchronous cache data elements are materialized [LR00a] and constantly being

refreshed in the background. A separate module, the update scheduler is responsible for schedul-

ing the DBMS updates and the refresh of the data in the asynchronous cache. Updates must be

performed online and our goal is to serve content with as high QoD as possible to the users. The

system architecture in Figure 6 implies that the updates arrive at the back-end and that the requests

at the web server are read-only. In general, this is not a requirement for our work and we do al-

low updates to originate at the web server, provided that there are no consistency issues and the
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updates still go through the update scheduling module before being applied to the DBMS.

DBMS

relation
updates

accesses

cache
async

web 
server

update
scheduler

Figure 6: System Architecture

Furthermore, although our work is motivated by database-backed web servers and materialized

WebViews, it applies to any system that supports online updates. For the rest of the paper, we

will use the more general term views instead of WebViews. We assume a database schema with N

relations, r1, r2, : : :, rN and M views, v1, v2, : : :, vM . Views are derived from relations or from

other, previously derived views. There is no restriction on the types of views or their complexity.

We distinguish two types of views: virtual, which are generated on demand from relations or other

views, and materialized, which are precomputed, stored in the asynchronous cache and refreshed

asynchronously. All user requests are expressed as view accesses, whereas all incoming updates

are applied to relations only and schedule view refreshes. Finally, we assume that incoming re-

lation updates must be performed in the order received, whereas materialized view refreshes can

be performed in any order.

3.1 Data Freshness

The incoming update stream contains relation updates which modify one or more tuples. The up-

date schedule lists the order in which the relation updates along with materialized view refreshes

are to be performed. A valid update schedule in our framework must have the following three

properties: (1) relation updates or view refreshes cannot overlap, (2) all relation updates must be

performed in the order of arrival, and, (3) stale materialized views must be refreshed.

When an update to a relation is received, the relation and all views that are derived from it be-
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come stale. Database objects remain stale until an updated version of them is ready to be served to

the user. Note that we start counting staleness at the earliest possible point to bring the QoD stal-

eness metric as close as possible to the time of the originating source of the update. We illustrate

this definition with the following example.

t 1 t 2 t 3 4t t 5

time

r vm

r
INCOMING UPDATE STREAM

SCHEDULE
UPDATE

&

m

r

v

are stale
vv

is stale

Figure 7: Staleness Example

Assume a database with one relation r and two views: vv which is virtual and vm which is

materialized. Also assume that at time t1 an update for relation r arrives (Figure 7). Relation r

will become up to date after it is updated. If the update on r starts at time t2 and is completed

at time t3, then relation r will have been stale from time t1 until t3. Virtual view vv will become

fresh after its parent relations/views are updated (r in this example). Since relation r was updated

at time t3, view vv inherits its staleness from r, and thus will have been stale from time t1 until

t3. Finally, materialized view vm will become up to date after it is refreshed. If the refresh of vm

starts at time t4 and is completed at time t5, then view vm will have been stale from time t1 until

t5. Clearly, the total time that relation r and views vv & vm are stale will be minimized if there is

no “wait” time, i.e. when t1 = t2 and t3 = t4.

A database object di is considered to be fresh, when it is not stale. We define the freshness

function for object di, bfresh(di)t, as following:

bfresh(di)
t =

8>><
>>:

0; if object di is stale at time t

1; if object di is not stale at time t
(1)
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The definition implies a boolean treatment of staleness: data objects are marked as stale because

of at least one unapplied update. In other words, if multiple consecutive relation updates render a

materialized view vm stale, view vm will be fresh only after the last refresh is performed, even if we

refresh vm multiple times. This may penalize materialized views affected by frequently-updated

relations, but also gives the opportunity to perform other relation updates or view refreshes in-

stead.

If we want to measure the freshness of a database object di over an entire observation time

period T = [ti; tj], we have that

bfresh(di)
T = bfresh(di)

[ti;tj] =
1

T
�
Z tj

ti

bfresh(di)
t (2)

This definition is equivalent to computing the percentage of time during the observation period

that the database object di is stale. Since we are mostly interested in continuous update streams,

T is expected to be a sliding time window which ends at the current point of time.

So far the definitions of freshness for database objects did not consider accesses to them. In

order to measure the quality of the accessed data, we need a “normalized” metric that will account

for the probability of accessing a fresh version of a view.

Definition 1 We define the Freshness Probability for a view v, pfresh(v), as the probability of ac-

cessing a fresh version of view v during the observation interval T .

If we assume a uniform probability of accessing view v during the observation interval, then the

probability of accessing a fresh version of v is equal to the percentage of time that the view is

fresh, or the freshness as was defined in Eq. 2. In other words,

pfresh(v) = bfresh(v)
T =

1

T
�
Z tj

ti

bfresh(di)
t (3)

The higher the values for pfresh(v) the higher the quality of the accessed data.
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3.2 Overall QoD based on Freshness

Although the freshness probability for a given view vi, pfresh(vi), is an accurate QoD metric for

that view, we need to be able to aggregate QoD over the entire database. In other words we want

to estimate the probability that a database access returns fresh data, which we will denote as

pfresh(db).

In order to calculate the aggregate QoD over the entire database, pfresh(db), we could just add

the freshness probabilities for all views. However, since views are accessed with different fre-

quencies and web workloads exhibit highly skewed access patterns (Section 2), we must take into

account the access frequency of each view when aggregating QoD over the entire database. We

want the overall QoD to be influenced more by the freshness probabilities of popular views than

those of unpopular views.

Let us assume that fa(vi) is the access frequency of view vi, expressing the ratio of vi requests

over the total number of requests. We have that
P

vi
fa(vi) = 1. We compute the overall QoD as

the weighted sum of the freshness probabilities of all views, as follows:

pfresh(db) =
X
vi2V

fa(vi)� pfresh(vi) (4)

This definition implies that 0 � pfresh(db) � 1. We associate QoD with freshness, so the higher

the value of pfresh(db) the better the overall QoD.

4 Update Scheduling

In this section we will show that QoD is entirely dependent on the update scheduling of material-

ized data. For a given set of relations and materialized views, and an incoming update stream, we

will develop the update schedules which maximize the QoD. Relation updates must be performed

in the order received, but they could be delayed to yield to “hot” materialized views. Materialized

views can be refreshed in any order, chosen to produce the highest QoD possible. For example,
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scheduling the refresh of “hot” materialized views ahead of a “cold” relation could increase the

overall QoD compared to a FIFO schedule.

Given a database schema, the set of views that are materialized and an incoming relation up-

date stream, the Update Scheduling Problem consists of determining the update schedule which

maximizes the overall Quality of Data (QoD). We assume a database with n relations, r1, r2, : : :,

rn and m views, v1, v2, : : :, vm. We use a directed acyclic graph, the View Dependency Graph,

to represent derivation paths for the views. Views can be of arbitrary complexity, including SPJ-

views, aggregation views, etc. The nodes of the view dependency graph correspond to either rela-

tions or views, and are marked to distinguish between virtual and materialized views. Nodes that

have zero in-degree correspond to relations. An edge from node a to node b exists only if node

b is derived directly from node a. No other views can be derived from virtual views. Finally, we

assume that for each relation we know the cost to update it and for each materialized view the cost

to refresh it. We do not actually need the real update costs for relations and materialized views,

but rather the relative update costs.

The incoming update stream contains relation updates that trigger materialized view refreshes.

The definition of valid update schedules on page 8 implies that we can (1) delay relation updates,

as long as we perform all of them and in the order received, (2) postpone materialized view re-

freshes and not necessarily perform them immediately after they were triggered, and (3) reorder

materialized view refreshes.

4.1 Motivating Example

Let us assume a database with two relations r1, r2 and eight views v1, : : :, v8. Views v1 through

v6 are materialized, whereas views v7 and v8 are virtual. Figure 8 displays the view dependency

graph for this example. Table 3 has the access frequencies for this example (which follow the

Zipf distribution) and the cost to update each relation or materialized view. For simplicity, we

will assume that all update and refresh operations take one time unit except for views v2 and v3.

Finally in this example, we only have two updates, one for r1 that arrives at time 0, and one for
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r2 that arrives at time 3.

v5

v7

r1

v8

r2

v6

v1 v v v2 3 4

object fa() cost type

r1 0 1 relation
r2 0 1 relation

v1 0.12 1 mat. view
v2 0.37 2 mat. view
v3 0.19 3 mat. view
v4 0.09 1 mat. view
v5 0.07 1 mat. view
v6 0.06 1 mat. view
v7 0.05 - virtual view
v8 0.05 - virtual view

Figure 8: View Dependency Graph for the Motivating
Example

Table 3: Access Frequencies

Under a FIFO update propagation schedule, we should perform the refresh of all the affected

views right after the update to the parent relation is completed. When we have multiple deriva-

tion paths for one view, we must avoid scheduling unnecessary refreshes. For example, once we

receive an update for r2, we would rather use schedule r2 v3 v4 v5, instead of r2 v3 v5 v4 v5, thus

avoiding refreshing v5 twice. Our implementation of the FIFO update schedule avoids unneces-

sary refreshes, by performing a breadth-first traversal of the view dependency graph to compute

the refresh order.

Figure 9 has the FIFO update schedule for the motivating example. If we calculate the overall

QoD for this schedule (T = 16), we have pfresh(db) = 0.513125.

r1 v1 v2 v3 v5 v6 v3 v4 v5 v6r2

receive
update
for r1

0 1 2 3 4 5 6 7 8 9 10

receive
update
for r2

11

time

14 15 1612 13

Figure 9: Motivating Example - FIFO Update Schedule

We also consider a variation of the FIFO schedule , where we refresh the most popular views

first. Figure 10 has the update schedule under this schedule which we refer to as FIFO Popularity-

Aware Schedule. The overall QoD for this schedule, is pfresh(db)= 0.49875, slightly worse than the
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simple FIFO Schedule. In other words, there are cases when blindly refreshing the most popular

views first will not lead to higher QoD.

r1 v3 v5 v6 v3 v4 v5 v6r2v2 v1

receive
update
for r1

0 1 2 3 4 5 6 7 8 9 10

receive
update
for r2

11

time

12 13 14 15 16

Figure 10: Motivating Example - FIFO Popularity-Aware Update Schedule

Finally, we consider the optimal off-line update schedule for this example. Assuming that we

have the entire incoming update stream in advance, we compute the optimal update schedule by

enumerating all possible schedules and finding the one with the highest QoD. Figure 11 has the

optimal off-line update schedule. The overall QoD for this schedule (T = 16, same as in the FIFO

schedules), is pfresh(db) = 0.679375, a 32.4% improvement over the FIFO Schedule.

r1 v2 v1 r2 v4 v3 v5 v6

receive
update
for r1

0 1 2 3 4 5 6 7 8 9 10

receive
update
for r2

11

time

14 15 1612 13

Figure 11: Motivating Example - Optimal Update Schedule

We see that even with a simple two-update example, there is a lot of room for improvement

over the FIFO refresh schedule (more than a 32% QoD gain). As we will demonstrate in the ex-

periments, the scheduling of the updates has a dramatic impact on the overall QoD.

4.2 Visualizing Quality of Data

We use a two-dimensional plot of view staleness to illustrate the difference in the overall Quality

of Data among the various refresh schedules. On the X-axis we list all views in the order they

appear in the update schedule, spacing them proportionally to their frequency of access (relations

have zero frequency of access). On the Y-axis we report the amount of time that each view was

stale before it was refreshed (Figure 13). The dark-shaded area for each view (the box with the

diagonal) corresponds to staleness because of the cost to refresh or generate the view, whereas
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the light-shaded area underneath corresponds to view staleness because of scheduling delay. The

smaller the overall shaded area is, the less staleness we have and therefore the higher the overall

QoD is.

Figure 12 is the QoD visualization of the FIFO schedule (Figure 9) for the motivating exam-

ple. Figure 13 is the QoD visualization of the optimal update schedule (Figure 11) for the same

example and illustrates a smaller shaded area compared to that of Figure 12, which agrees with

the QoD calculation for the two cases that was performed earlier.

By observing the QoD visualization of the optimal update schedule (Figure 13) we see that

the views are scheduled by increasing slope, where slope is the angle � between the diagonal of

the dark-shaded box for each view and the X-axis. If for each view vi, we define the rank R(vi) =

fa(vi)
c(vi)

, where fa(vi) is the frequency of vi accesses and c(vi) is the time required to refresh view

vi, then the optimal update schedule refreshes the views in decreasing rank order (since slope is

proportional to 1
rank). This is intuitive because in order to minimize the shaded areas in the staleness

plot and thus get better QoD, we should choose to schedule for refreshment views that are either

popular or cheap to refresh. We examine this idea in detail in the next section.
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4.3 QoD-Aware Update Scheduling Algorithm

In this section we present the QoD-Aware update scheduling algorithm, QoDA (pronounced koda).

QoDA unifies the scheduling of relation updates and view refreshes under one framework. We saw

in the previous section that in the optimal update schedule views were refreshed by order of rank

R(vi) = fa(vi)
c(vi)

. This idea cannot be applied directly in our framework for two reasons. First of

all, we have a view derivation hierarchy which forces precedence constraints. Secondly, we need

to be able to also schedule relation updates in the same way, although fa(ri) = 0, for all ri, since

relations are not accessed directly in our framework.

In order to estimate the rank for either a relation or a view, we consider its popularity along

with the popularities of all the views that are derived from it, either directly or indirectly. With

this approach we can assign popularity estimates to relations even though they are not accessed

directly.

Definition 2 The Popularity Weight of a relation or view si, pop(si), is defined as the sum of the

access frequencies of si and all of its descendants.

We have that:

pop(si) = fa(si) +
X

vj2desc(si)
fa(vj) (5)

where desc(si) is the set of descendants of si in the view dependency graph. Note that if more than

one path exist from si to a view vj , only one instance of vj is inserted in desc(si). If si is a relation,

then fa(si) = 0, whereas when si is a virtual view, desc(si) = ;. The popularity weight calculation

is similar to that for the LAP Schema [Rou82]. The main difference is that we use a generic view

dependency graph which does not differentiate over the type of operation that generates each view

(e.g. select, join, union, etc) as is the case for LAP Schemas.

Figure 14 illustrates the popularity weight calculation for the motivating example (Section 4.1).

Note that the popularity weight of a parent node is not necessarily equal to the sum of the popu-

larity weights of its children, for example pop(r2) = :46 6= :83 = pop(v3)+pop(v4)+pop(v5)+

pop(v6) + pop(v8).
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v5

v7

r1

v8

r2

v6

v1 v v v2 3 4

0.12 0.370.05

0.27

0.460.86

0.13

0.32

0.06

0.05

view fa(vi)

v1 0.12
v2 0.37
v3 0.19
v4 0.09
v5 0.07
v6 0.06
v7 0.05
v8 0.05

Figure 14: Popularity-Weight Calculation Table 4: Access Frequencies

The intuition behind the QoD-Aware update scheduling algorithm is that in order to improve

QoD, we schedule to update the relation or materialized view that will have the biggest negative

impact on QoD, if it is not updated. The impact of delaying the refresh of a relation or view is the

modified rank value, as follows:

impact(d) =
pop(d)
c(d)

(6)

This implies that between two objects with the same popularity values, QoDA will select the one

with the smallest refresh cost, since it will have the biggest impact value. By selecting the database

object with the smallest refresh cost, we will be able to “squeeze” in more refresh operations and

thus improve the overall QoD.

Dirty Counting We want to enforce a topological sort order on the view refresh schedule, based

on the view dependency graph. In other words we want to guarantee that a materialized view will

only be refreshed after all of its parent views or relations that were stale have been updated. Con-

sider for example the view dependency graph of Figure 14. Regardless of the view popularities,

it makes no sense to refresh v5 before v3, since v5 will be recomputed from an old version of v3

and therefore will remain stale. To implement this idea we instrument all views with dirty coun-

ters, which correspond to the number of stale ancestors each view has. Views are allowed to be

refreshed only when their dirty counters reach zero. In addition to the dirty counters, we also have

a visited flag for each view which is initially false and is used to block recursively visiting the de-

scendants of the same node. When an update on relation ri arrives, we call mark all r(ri) in
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order to increment the counters of all the descendants of ri (see Figure 15). On the other hand,

when an update on a relation or a view is scheduled, we call unmark all() in order to decrement

the counters of all their descendants.

� mark all r (node)
if (!node!visited)

node!visited = true
foreach tmp in node!descendants

tmp!dirtycnt ++
mark all r (tmp)

� unmark all (node)
node!visited = false
foreach tmp in node!descendants

tmp!dirtycnt – –

QoD-aware Update Scheduling algorithm
(1) candset = ;
(2) schedule = ;
(3) while (candset != ; and 9 incoming updates)
(4) foreach ri in (incoming updates)
(5) candset.append(ri)
(6) select d from candset with max impact(d)
(7) schedule.append(d)
(8) candset.remove(d)

Figure 15: Dirty Counting Functions Figure 16: Pseudo-code for the QoDA Algorithm

QoDA Algorithm In Figure 16 we present the pseudo-code for the QoDA algorithm, which

schedules relation updates and view refreshes in order to maximize QoD. The algorithm main-

tains a set of stale database objects, the Candidates Set (candset), and at each step it selects the

object with the maximum impact value (which will have the biggest negative effect on QoD if not

scheduled). The impact value of an object d is calculated using the following equation (adapted

from Equation 6 to support dirty counters):

impact(d) =

8>><
>>:

pop(d)
c(d) ; if the dirty counter for d is zero

0; if the dirty counter for d is not zero
(7)

When an object is appended to the Candidates Set, (Figure 16, line 5), all of its descendants are

appended to the Candidates Set, and mark all r() is called. Note, that if a node already exists

in candset it is not appended, i.e. we allow no duplicates. On the other hand, when an object is

removed from the Candidates Set (Figure 16, line 8), unmark all() is called (Figure 15). The

algorithm terminates when the candidate set is empty and there are no more incoming updates.

Note that the implementation of the QoDA update scheduling algorithm can be very fast, adding
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very little overhead to the system, since it has no time-dependent computation.

Example In order to illustrate the way QoDA works, we will go through its execution on the

motivating example (Section 4.1). The schema for this example is in Figure 14, and the update

costs are listed in Table 3. The first update, on r1, arrives on time t = 0, whereas the second update,

on r2, arrives on time t = 3. With the arrival of the first update, the following data objects are

inserted in the candidates set: r1 (0), v1 (1), v2 (1), v3 (1), v5 (2), v6 (3), v7 (1), where the numbers

in parentheses are the dirty counters for each view. Since only relation r1 has a zero dirty counter, it

has the highest impact value and thus is scheduled to be updated first. After relation r1 is updated,

all the dirty counters of all its descendants are decreased by one. v2 has the highest impact value

from the remaining views, so it is scheduled next. At time t = 3, the update on relation r2 arrives,

so r2, v4, v8 are added to the candidate set. The candidate set now has the following items: r2 (0),

v4 (1), v5 (3), v1 (0), v3 (1), v6 (4), v8 (1). With the arrival of the update on r2, only r2 and v1 have

zero dirty counters and since impact(r2) > impact(v1), r2 is scheduled to be updated next. The

process of updating the dirty counters and picking the element with the highest impact value is

repeated until the candidate set is depleted.

r1 v2 v3 v5 v6r2 v4 v1

receive
update
for r1

0 1 2 3 4 5 6 7 8 9 10

receive
update
for r2

11

time

14 15 1612 13

Figure 17: Motivating Example - QoDA Refresh Schedule

Figure 17 has the QoDA update schedule for the motivating example of Section 4.1. The QoD

metric for this schedule, is pfresh(db) = 0.673125. This is a 31.2% improvement over the best FIFO

schedule (Figure 9) and corresponds to 99% of the QoD for the off-line optimal schedule (Fig-

ure 11).
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5 Experiments

We implemented a high-level update scheduling simulator which takes as input the database re-

lations, the materialized and virtual views, the access frequencies for the views, the update cost

for the relations, the refresh cost for the views and the incoming update stream. The simulator

generates the update schedule under the specified algorithm (FIFO or QoDA) and also reports the

Quality of Data at each time instant of the simulation. The simulator’s internal clock ran at the

milli-second level, but we report our findings rounded up to seconds.

An important parameter in the simulator is the update processing speed which is the number of

updates per second that the simulated system can process. Note that this speed implicitly measures

the hardware and software capacity to process updates and respond to queries. In other words, an

increase in the access request rate is expected to decrease the update processing speed. When the

update processing speed is more than the incoming update rate, we have extra update capacity in

the system. For example, if we have 1000 updates/sec for the update processing speed and the

incoming update rate is 800 updates/sec, then we have extra update capacity of 20%.

Due to space limitations we only present three experiments. In the first one we used the traces

from the Quote.com server and NYSE to drive our simulations, whereas on the other two we used

synthetically generated workloads in order to have better control on the workload parameters.

5.1 Experiments with Real Workloads

We used the web logs from the Quote.com server as our access workload and a 10-minute interval

of the Trade and Quote Database from NYSE as our update workload. We assumed a database

schema where all stock information is stored in one table, and each stock has four materialized

views (simple projections and selections on the stock symbol), which have the same refresh cost

and are accessed with equal probability (the access frequencies were derived from the Quote.com

traces). The updates correspond to any buy or sell activity on the stock symbol (which would

render the views stale). In Figure 18 we present a “zoomed-in” graph of the incoming update rate
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for the 10-minute interval of this experiment. Our first observation is that the workload is update-

intensive, which dictates an efficient update scheduling algorithm. Secondly, we see that there is

great variability in the update rates with values between 40% and 160% of the average rate of 652

updates/second.
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Figure 18: Incoming Update Rate

In Figure 19 we plot the QoD and how it varies during the simulation under the FIFO and

QoDA update scheduling algorithms, when the update processing speed of the server is equal to

the average incoming update rate. We see that the QoDA schedule (top line) consistently gives

better QoD over the FIFO schedule (bottom line), about 6% on average. Furthermore, the QoD

under the QoDA schedule is almost constant, whereas in the FIFO schedule the QoD is fluctuating.

In Figure 20 we plot the QoD under the FIFO and QoDA update scheduling algorithms when

the processing speed is less than the average incoming update rate. There are two reasons for

something like that to happen: (a) because of a surge in the update rate, or (b) because of an in-

crease in the access rate that would increase the load at the server and thus decrease the effective

update processing speed. In the case where the update processing speed is 70% of the average in-

coming update rate (Figure 20), the QoD for the QoDA schedule (top line) is on average 3.6 times

better than the QoD for the FIFO schedule (bottom line). At this rate, FIFO does not recover and

its QoD continuously deteriorates. On the other hand, when we compare the QoD for the QoDA

schedules of Figures 19-20, we see that although the update processing speed dropped from 650

updates/sec to 450 updates/sec, the QoD has decreased by only 1.5%.
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Figure 19: Real workload experiment: up-
date processing speed is equal to the average
incoming update rate
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Figure 20: Real workload experiment: up-
date processing speed is 70% of the average
incoming update rate

processing speed (upd/sec) 300 400 450 550 600 650 750 1200
% of average incoming rate 46% 61% 70% 85% 92% 100% 115% 185%

QoD for FIFO schedule 0.135 0.199 0.268 0.892 0.913 0.921 0.932 0.957
QoD for QoDA schedule 0.821 0.935 0.963 0.975 0.977 0.978 0.981 0.988

Table 5: Average QoD for real workloads under various update processing speeds

In Table 5 we list the overall QoD for the real workload experiment for both the FIFO and

QoDA update schedules when the update processing speeds ranges from 300 updates/sec (or 46%

of the average incoming update rate) to 1200 updates/sec (or 185% of the average incoming update

rate). The first row of the table is the update processing speed in updates/second for each experi-

ment, and the second row lists what percentage of the average incoming update rate the processing

speed corresponds to. We clearly see that the QoDA schedule consistently outperforms the FIFO

schedule, even when the processing speed is more than the average incoming update rate. More-

over, the QoD under the QoDA schedule remains high, even at low update processing speeds.

For example, when the update processing speed is at 46% of the average incoming update rate,

the QoD under QoDA is 0.82. For the same case, the FIFO schedule gives a 0.13 QoD, which

is six times worse than the QoDA schedule. A 0.13% QoD means that an estimated 87% of the

accesses will be served with stale data. In general, under medium update processing speeds the

FIFO schedule gives really poor QoD.

22



5.2 Exploiting the Temporal Locality of the Update Stream
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Figure 21: Effect of temporal locality on QoDA schedules

One of the major advantages of the QoDA update scheduling algorithm is that it can exploit the

temporal locality of the incoming update stream. The refresh of stale views will be postponed

while there are pending relation updates, thus preventing the system from performing unnecessary

view refreshes.

We created a synthetic database of 1000 relations with 20 materialized views each (i.e. we had

a total of 20,000 views). The view refresh cost was uniform, the frequency of accesses followed

the Zipf distribution and the average incoming update rate was 1050 updates/second. We gen-

erated three incoming update streams. The first one had all relation updates ordered by relation

name, in order to exhibit perfect temporal locality. In the second one, the relation updates were

chosen randomly and in the third one we put the updates for each relation as far as possible from

each other in the update stream, in order to exhibit zero temporal locality.

Figure 21 presents the results of our experiments for update processing speeds ranging from

105 updates/sec (or 10% of the average incoming update rate) up to 1050 updates/sec. The top

curve corresponds to the QoD for the incoming update stream with perfect temporal locality, the

middle curve to the random case and the bottom curve to the incoming update stream with zero

temporal locality. Clearly, QoDA schedules have better QoD when the incoming update stream

exhibits temporal locality, although the difference is bigger when the update processing speeds
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are low.

5.3 Tolerance to Update Surges

Tolerance to surges in the update rate is crucial for any update scheduling algorithm. Users should

not have to suffer poor QoD if there is a surge in the update volume. As we saw in the workload

study (Section 2), update surges occur often in the incoming update stream. Furthermore, the ef-

fects created by update surges can also be created indirectly, by surges in the incoming access

rate, which increase the overall load at the server and decrease the update processing speed of the

system.
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Figure 22: Incoming Update Stream with Surges

We created a synthetic database of 1000 relations with 20 materialized views each (i.e. we had a

total of 20,000 views). The view refresh cost was uniform, the frequency of access followed the

Zipf distribution and the average incoming update rate was 1050 updates/second. The incoming

update stream was 120 seconds long and consisted of three parts (Figure 22). The first 20 seconds

had a “regular” incoming update rate, the next 10 seconds had a “surge” during which the incom-

ing update rate jumped to five times that of the regular update rate, and, finally, the remaining 90

seconds also had the same “regular” update rate as the first part.

In Figure 23 we plot the QoD for the five-fold surge in the incoming update rate. Figure 23a

has the case where there is an extra update processing capacity of 20% (i.e. the “regular” incoming

update rate is 20% less than the update processing speed) and Figure 23b the case where there is
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Figure 23: Effect of a five-fold surge in the incoming update rate

10% extra update processing capacity. In both plots, the top curve belongs to the QoDA schedule,

whereas the bottom curve is for the FIFO schedule. The difference between the FIFO and QoDA

schedules is dramatic. While the QoDA schedule recovers in less than 30 seconds from the five-

fold surge, the FIFO schedule, even with an extra 20% update capacity, never recovers completely

from the five-fold surge for the duration of the experiment. For the case with 10% extra update

capacity, the QoDA schedule returns to normal after 39 seconds, whereas the FIFO schedule does

not recover in the window of the experiment.

Finally, Figure 24 has the results from a two-fold, five-fold and ten-fold update surge with a

20% extra update processing capacity for both FIFO scheduling (Figure 24a) and QoDA schedul-

ing (Figure 24b). QoDA outperforms FIFO, especially under high update surges, since it is able

to identify the views to refresh so that the QoD is maximized. For example, for the ten-fold surge,

the QoDA schedule manages to recover in approximately the same time as in the five-fold surge.

On the other hand, the FIFO schedule never recovers from the ten-fold surge and, after the surge,

the QoD drops to unusable levels (less than 0.04) and remains practically fixed. In this case, the

QoD for the QoDA schedule is about two orders of magnitude higher than the QoD for the FIFO

schedule.

Note the shape of the QoD curves for QoDA after the update surges (Figure 24b). This is
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Figure 24: Effect of update surges on scheduling algorithms with 20% extra update processing
capacity

attributed to the fact that the QoDA update schedule refreshes first the views that will have the

greatest impact on the QoD, therefore the rate of improvement on the QoD decreases during the

recovery from the update surge. In practice, the limiting factor to how quickly the QoDA sched-

ule recovers from update surges is the amount of relation updates that have to be performed (and

cannot be postponed like materialized view refreshes).

Unfortunately, we cannot compare QoDA with the off-line optimal update scheduling algo-

rithm (as we did for the motivating example), because the off-line optimal algorithm would require

enumerating all the possible update schedules, which is infeasible for more than 15-20 updates.

6 Related Work

The update scheduling problem is to some extent similar to the problem of scheduling tasks on a

single machine in order to minimize the weighted completion time under precedence constraints

[CM99], which has been proven to be NP-hard for the general case [Law78]. In the update schedul-

ing problem the objective is to maximize QoD, which can be translated to minimizing the weighted

staleness for all views. There are, however, a lot of differences between the two problems. First of

all, the update scheduling problem has multiple classes of “tasks”: updates for relations, material-
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ized views, and virtual views, as opposed to one type for the weighted completion time problem.

Relation updates must be scheduled in the order of arrival which is not the case for any of the

tasks in the weighted completion time problem, and also, their staleness is not measured in the

overall QoD metric. Furthermore, we have the option of postponing materialized view refreshes

in the update scheduling case, whereas in the weighted completion time problem all tasks must

be performed. Also, although virtual views do not have to be refreshed, they are “counted” when

reporting staleness. Finally, for the update scheduling problem we must have an online algorithm,

whereas most approximation algorithms for the weighted completion time problem are off-line.

[PSM98, YV00, OLW01] deal with consistency issues for update propagation in the context of

replicated databases. [AGMK95] and [AKGM96] deal with the scheduling of updates in the con-

text of real-time databases, where update operations have to compete with transaction processes

that have soft deadlines. [AGMK95] considers the scheduling of updates only and suggests algo-

rithms to improve transaction timeliness without sacrificing data timeliness. [AKGM96] focuses

on recomputation strategies: how and when to perform refreshes of derived data in order to reduce

cost without sacrificing data timeliness. They propose delaying recomputations slightly (forced

delay), so that several related source updates can be combined in a single step. However they do

not provide the means to determine the forced delay interval. Moreover, they do not consider view

derivation hierarchies, differences in update costs or allow for the ability to reorder view refreshes

and tolerate update surges like we do.

[CGM00] deal with the issue of when to poll remote sources in order to update local copies

and improve the database freshness. They provide synchronization policies which are mostly

suited for web crawlers. However, their freshness metric is not popularity-aware. With the highly

skewed access patterns on web servers (as we saw in Section 2, even one page can correspond to

as much as 17% of the entire web server traffic), we must weigh the freshness of each page ac-

cordingly when reporting the overall freshness.

The update scheduling problem is somewhat similar to data broadcast scheduling. [SRB96]

adapt the broadcast content based on the “misses” using a temperature-based model. [AF99] sched-
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ule data items for broadcast based on the product of the number of requests for an item times the

amount of wait time since it was first requested. An important difference between update schedul-

ing and data broadcast scheduling is that update scheduling must handle precedence constraints

(as a result of a view computation hierarchy) and non-uniform view refresh costs which are not

considered in data broadcast scheduling algorithms.

7 Conclusions

We studied the workload of a commercial update-intensive web server and found highly skewed

access & update patterns, as well as frequent surges in the update load. Inspired by this study, we

have developed a framework for measuring Quality of Data in web server caches, which is based

on freshness. We focused on the update scheduling problem: ordering the relation and materi-

alized view updates to maximize QoD. We introduced QoDA, a QoD-Aware update scheduling

algorithm that unifies the scheduling of relation updates and materialized view refreshes under

one framework.

We compared QoDA update scheduling to FIFO scheduling through extensive experiments

on real and synthetic workloads. QoDA schedules consistently exhibited higher QoD than FIFO

schedules by up to two orders of magnitude. Especially for update surges, FIFO schedules de-

generate to unusable QoD levels, whereas QoDA schedules quickly recover and maintain high

QoD.

Update surges are a fact of life and in panic situations they exceed any server capacity. Brute-

force solutions of increasing hardware and software capacity to tolerate surges are not financially

sound. Instead, we envision QoDA acting as an “update surge protector” for guaranteeing high

Quality of Data under rapidly changing load conditions, in the same way that caching of static

web pages is used to guarantee high QoS under access surges.
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