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Invariant SubspacesandCapital Punishment(A Participatory Paper)G. W. Stewart�1 IntroductionThe notion of an invariant subspace of a matrix or a linear operator is usefulin many branches of mathematics, both pure and applied. Unfortunately,many students have di�culty with the elementary facts about invariantsubspaces even though they correspond exactly to equivalent facts abouteigenvectors. The purpose of this note is to exhibit this correspondence bydeveloping the theory of a simple eigenvalue and its eigenvectors in such away that the generalization to invariant subspaces is obvious. We shall beconcerned with two aspects of the subject: the constructive algebraic theoryand �rst order perturbation expansions.To make the relation between eigenvectors and invariant subspaces clear,we must be careful about our notation. In this note, scalars will be denotedby lower-case Greek letters, vectors by lower-case Latin letters, and matricesby upper-case Latin letters. The symbol k�kwill denote the Euclidean norm;i.e., kxk2 = xHx;where xH is the conjugate transpose of x. The same symbol will also denotethe spectral norm of a matrix, which is de�ned bykAk = maxkxk=1 kAxk: (1:1)We shall have occasion to refer to linear operators that map matrices intomatrices, and the norms of such operators will be de�ned in analogy with(1.1). For example if T is an operator, thenkTk = maxkPk=1 kTPk:For more on norms see [4] or [12].�Department of Computer Science and Institute for Physical Science and Technology,University of Maryland, College Park, 20742.



Invariant Subspaces 22 Eigenvectors and eigenvaluesSimply stated, an eigenvector of an n�n matrix A is a nonzero vector whosedirection remains the same when it is multiplied by A. It may stretch, orshrink, or even change its orientation; but it always emerges a scalar multipleof itself. Thus if x1 6= 0 is an eigenvector of A, there is a unique scalar �1such that Ax1 = �1x1:The scalar �1 is called the eigenvalue of A corresponding to x1.I will suppose that the reader is familiar with the following elementaryfacts about eigenvalues and eigenvectors, which can be found in any re-spectable textbook on linear algebra. The eigenvalues of A are the zerosof the characteristic polynomial det(�I � A), and hence a matrix of ordern has n eigenvalues, counting multiplicities. If X is nonsingular, then thesimilarity transformation X�1AX leaves the eigenvalues of A unchanged.Moreover, the eigenvector x1 is transformed into X�1x1. Finally, if A canbe partitioned in the form A =  A11 A120 A22 ! ; (2:1)where A11 is m�m, then the m eigenvalues of A11 are a subset of those ofA, while the n�m eigenvalues of A22 form the complementary subset (here,as always, we count multiplicities).We will be concerned with two questions about eigenvectors and theireigenvalues. First, there is the problem of left eigenvectors. If �1 is aneigenvalue of A then �1I �A is singular and has a left null vector. In otherwords, there is a vector y1 such thatyH1 A = �1yH1 :The vector y1 is called a left eigenvector of A, and it is natural to ask ifthere is any nice relation between left and right eigenvectors belonging tothe same eigenvalue.Another question concerns the behavior of an eigenvalue and its eigen-vector when A is perturbed. Speci�cally, suppose A is replaced by ~A = A+Efor some small matrix E. Then we may ask how the eigenvalues and eigen-vectors of ~A behave as a function of E.Unfortunately, there is no easy answer to these questions. Part of theproblem is that an eigenvalue may have two or more linearly independent



Invariant Subspaces 3eigenvectors. Moreover, the eigenvalues of ~A need not be nice, smooth func-tions of E. For example consider the matrix~A =  1 1� 1 ! : (2:2)The eigenvalues of ~A are easily seen to be 1�p�, neither of which is di�er-entiable at � = 0.There is, however, a case where these questions have straightforward an-swers. When �1, regarded as a zero of the characteristic polynomial, hasmultiplicity one, it is called a simple eigenvalue. Its eigenvector x1, whichis unique up to a scalar multiple, is called a simple eigenvector. In the nextthree sections, we will show that there is a pretty algebraic theory relating asimple eigenvector with its corresponding left eigenvector. Moreover, simpleeigenvectors and eigenvalues behave nicely under perturbations. Through-out these three sections, we will assume that the pair �1 and x1 are simple.Anticipating some later generalizations, we will express this fact as follows.Let �1 = f�1g and let �2 be the set consisting of the remaining n � 1eigenvalues of A. Then �1 is simple if and only if �1 \ �2 = ;.One �nal assumption. Since x1 remains an eigenvector when it is mul-tiplied by a nonzero constant, we may assume without loss of generalitythat xH1 x1 = 1:3 The constructive algebraic theory1,2The principal result of this section is that to �1 and x1 there corresponds ay1 of the same dimensions as x1 such thatyH1 A = �1yH1 :Moreover yH1 x1 = 1, so that x1 and y1 are not orthogonal. However, theway we achieve this result is as important as the result itself. We shall showhow to construct a similarity transformation that reduces A to the blockdiagonal form  �1 00 L2 ! :1Do not read the footnotes the �rst time through the next three sections: they willonly confuse you.2Do not read the footnotes the second time through: they will only distract you



Invariant Subspaces 4The formulas that de�ne this transformation are themselves of theoreticalinterest.The �rst step is to construct a matrix Y2 with orthonormal columns suchthat (x1 Y2) is unitary. This can be done constructively by any of severalnumerical techniques.3Next consider the matrix xH1Y H2 !A(x1 Y2) =  xH1Ax1 xH1 AY2Y H2 Ax1 Y H2 AY2 ! :Since Ax1 = x1�1, xH1 x1 = 1, and Y H2 x1 = 0, we have xH1Y H2 !A(x1 Y2) =  �1 bH0 L2 ! ;where bH = xH1 AY2 and L2 = Y H2 AY2:Thus this unitary similarity transformation reduces the problem of �ndingthe eigenvalues of A to that of �nding those of L2, since by the commentsconcerning equation (2.1) the eigenvalues of L2 form the set �2.4The next step is to remove the vector bH by a similarity transformationof the form 1 �pH0 I ! �1 bH0 L2 ! 1 pH0 I ! =  �1 00 L2 ! (3:1)If we equate the (1; 2)-blocks on each side of (3.1), we get the followingequation for pH: �1pH � pHL2 = bH: (3:2)3For example, (X1 Y2) can be computed as a product of Householder transformations.See [4] or [12].4The above reduction can be repeated on L2 and so on. When an eigenvector isused at each stage, the result is that A is reduced to upper triangular form by a unitarysimilarity transformation|a very useful decomposition due to Schur [9]. When a sequenceof invariant subspaces is used, one arrives at a block triangular form. A particularlyimportant application occurs when A is real but �1 is complex. If we take the columns ofX1 to form a real basis for the two dimensional space spanned by the eigenvector of �1and and its conjugate transpose, which is an eigenvector of ��1, then the transformationis real, and L1 is a real 2 � 2 matrix whose eigenvalues are �1 and ��1. Continuing inthe same manner, we get a variant of the Schur decomposition in which all the complexeigenvalues are contained in 2� 2 blocks on the diagonal, a form computed by the widelyused QR algorithm [4, Ch. 7].



Invariant Subspaces 5We are not quite �nished, since it is possible that (3.2) has no solution ormore than one solution. However, (3.2) is equivalent to the linear operatorequation SpH = bH, where S is de�ned bySpH def= �1pH � pHL2:Now it can be shown that a necessary and su�cient condition for S to benonsingular is that �1 \ �2 = ;, which is true since x1 is simple.5 Thus pHexists and is unique.Let us now multiply out the two transformations by which we reducedA to the block diagonal form (3.1). On the right we have(x1 Y2) 1 pH0 I ! = (x1 x1pH + Y2) = (x1 X2);where X2 = x1pH + Y2:On the left we have 1 �pH0 I ! xH1Y H2 ! =  xH1 � pHY H2Y H2 ! =  yH1Y H2 ! ;where yH1 = xH1 � pHY H2 :Thus we have shown that we can replace the original unitary matrix (x1 Y2)by two matrices (x1 X2) and (y1 Y2) such that yH1Y H2 ! (x1 X2) =  1 00 I ! (3:3)[i.e., (x1 X2)�1 = (y1 Y2)H] and yH1Y H2 !A(x1 X2) =  �1 00 L2 ! : (3:4)5This is obvious for eigenvectors, since the operator is represented by the matrix �1I�L2. The proof in the general case is more di�cult. One approach is to use Schur's theoremto reduce L1 and L2 to upper triangular matrices [1]. This results in a constructivealgorithm for solving (3.2).



Invariant Subspaces 6If we use (3.3) to rewrite (3.4) in the form yH1Y H2 !A =  �1 00 L2 ! yH1Y H2 ! ;it immediately follows that yH1 A = �1yH1 ; i.e. y1 is invariant with respect toAH, just as x1 is invariant with respect to A. Moreover, from (3.2) it followsthat yH1 x1 = 1, which is what we set out to prove.6The equations (3.3) and (3.4) can be cast in another useful form. LetP1 = x1yH1 ;and let z be an arbitrary vector. From (3.3) we see that z can be written inthe form z = x1
1 +X2g2, where 
1 = yH1 z and g2 = Y H2 z. It then followsthat P1z = x1
1:Geometrically this says that P1 projects z onto the space spanned by x1along the direction of the space spanned by X2. For this reason, P1 issometimes called the spectral projection associated with x1.Now let P2 = X2Y H2and Ai = PiAPi (i = 1; 2):Then it is easily veri�ed that A1A2 = A2A1 = 0 andA = A1 +A2: (3:5)Equation (3.5) is sometimes called a spectral decomposition of A. It saysthat the matrix A, regarded as an operator, can be decomposed into thedirect sum of two operators, one mapping the space spanned by x1 ontoitself and the other mapping the space spanned by X2 onto itself.76We have actually established more. It is easily veri�ed that AX2 = X2L2. Thus thespace spanned by X2 is also an invariant subspace of A. It is called the complementaryinvariant subspace.7If we are given a sequence of independent invariant subspaces X1;X2; . . . ;Xm thatspan Rn, then we may construct corresponding left invariant subspaces Y1; Y2; . . . ; Ym andspectral projections Pi = XiY Hi . The analogue of (3.5) then becomes A =Pmi=1 PiAPi.When A is Hermitian, m = n, and we replace the sum by a Stieltje's integral, we ob-tain a �nite dimensional analogue of the spectral representation theorem for self-adjointoperators in Hilbert space.



Invariant Subspaces 74 Perturbations of �1In the next two sections we will consider what happens to �1 and x1 whenA is replaced by ~A = A+E, where E is a small error matrix. We will use animportant technique, called �rst order perturbation theory, for computingapproximations to the perturbations. As a general method, it begins witha nonlinear equation that implicitly de�nes the perturbed quantity as afunction of the error. In our case, we shall be interested in the perturbedvalues ~�1 and ~x1. Next we throw out of the equation all terms that areproducts of the error, either with itself or with the perturbation; i.e., allterms of order higher than the �rst. This gives us a linear equation whichholds with increasing precision as the error approaches zero. If this linearequation has a unique solution, then the solution must approximate theperturbation with increasing accuracy as the error approaches zero.It is clear that if we are going to cast o� products of errors and pertur-bations, we must �rst show that the perturbation approaches with the error.The easiest way to do this is to establish that the perturbed quantity is adi�erentiable function of the error.For our problem, there is the complicating factor that x1 needs somekind of normalization to make it unique. We shall require thatwH~x1 = 1 (4:1)for a �xed w which we will choose later.8 It can then be shown that ~x1 as afunction of E has derivatives of all orders in some neighborhood of E = 0.9The same is a fortiori true of~�1 = (~xH1 ~x1)�1~xH1A~x1:All this justi�es the following procedure for approximating ~�1 up to �rstorder terms in E. Write ~�1 = �1 + �and ~x1 = x1 + u:Then (A+ E)(x1+ u) = (x1 + u)(�1+ �): (4:2)8Other normalizations in which w varies are possible. The most common is w = ~x1,which amounts to imposing the condition k~x1k = 1. The role of normalization in theperturbation theory for eigenvectors is treated in detail in [7].9This result is not trivial to establish. See for example [6].



Invariant Subspaces 8Since �; u = O(kEk), we may discard cross products to obtain10Ax1 +Ex1 + Au = x1�1 + u�1 + x1� +O(kEk2);or since Ax1 = x1�1,Ex1 + Au = u�1 + x1�+ x1� +O(kEk2): (4:3)To solve (4.3) for � we will choose wH = yH1 . It is easy to show thatthe normalization equation (4.1) will be satis�ed if and only if u = X2q forsome q. Hence from (4.3)x1� = Ex1 +X2q�1 +AX2q +O(kEk2): (4:4)Now yH1 X2q�1 = 0 and yH1 AX2q = �1yH1 X2q = 0. Hence on multiplying(4.4) by yH we get � = yH1 Ex1 + O(kEk2);so that our approximation to ~�1 becomes~�1 �= yH1 (A+E)x1 = yH1 ~Ax1The quantity yH1 ~Ax1 is sometimes called the generalized Rayleigh quotientbecause it generalizes the usual Rayleigh quotient for a Hermitian matrix.Since kx1k = 1, we havek�k � ky1kkEk+ O(kEk2): (4:5)Since 1 � ky1kkx1k = ky1k, the number ky1k in (4.5) can be interpreted asa factor which tells how kEk is magni�ed in its e�ect on ~�1. Such a numberis often called a condition number by numerical analysts.11It is worth observing that ky1k = kP1k, where P1 is the spectral projec-tion introduced in x3. Thus the condition number of �1 is the norm of itsspectral projector.1210Actually, we are being a little heavy handed here, as was pointed out to me by B. N.Parlett. If we multiply by Y H2 before we drop second order terms we obtain the equationY H2 EX1 + Y H2 EU =M;from which it is clear that the second order e�ects of the error will depend on how sensitiveX1 is to perturbations. As a general rule, one should try to get rid of higher order termsby algebraic means, before simply throwing them away.11J. H. Wilkinson [13] appears to be the �rst to explicitly point out the role of thisnumber, or rather its reciprocal.12When it is a matter of eigenvalues, ky1k can be regarded as the secant of the anglebetween x1 and y1. Thus a simple eigenvalue becomes increasingly ill conditioned as itsleft and right eigenvectors approach orthogonality. Observe that for the matrix (2.2) theleft and right eigenvectors are exactly orthogonal when � = 0.



Invariant Subspaces 95 Perturbations of x1The �rst step toward approximating ~x1 is to derive an equation, like (4.2),from which we may cast out second order terms. To do this we make thefollowing observation. Let ~Z be a matrix whose columns span the orthogonalcomplement of the space spanned by ~x1. Since ~A~x1 = ~x1~�1, we must have~ZH ~A~x1 = ~ZH~x1~�1 = 0:Conversely if ~ZH ~A~x1 = 0; (5:1)then ~A~x1 must lie in the orthogonal complement of ~Z; that is, in the spanof ~x1. Consequently (5.1) characterizes the space spanned by ~x1.To use (5.1) we require an explicit representation of ~x1. In this case, itis most convenient to choose w = x1 as the normalizing factor in (4.1),13which means that ~x1 can be written in the form~x1 = x1 + Y2r;for some r to be determined. If we now take ~Z = Y2 � x1rH, then it iseasily veri�ed that ~ZH~x1 = 0, so that ~Z is orthogonal to ~x1. Moreover, sinceY H2 ~Z = Y H2 Y2 = I , the columns of ~Z are independent for any value of r, andhence they form a basis for the orthogonal complement of ~x1.With these de�nitions, it follows from (3.4) that (5.1) can be written�r�1 + Y H2 Ex1 � rxH1Ex1 + L2r� rbHr + Y H2 EY2r � rxH1EY2r = 0:Discarding second order terms, we getr�1 � L2r = Y H2 Ex1 +O(kEk2):Because �1 \ �2 = ;, the operator de�ned byTr def= r�1 � L2ris nonsingular. Hence r = T�1Y H2 Ex1 + O(kEk2);13The careful reader will note that the normalizing factor is di�erent from the one wechose in the last section. This means that the perturbed representation ( ~XH1 ~X1)�1 ~XH1 A ~X1will be di�erent from the representation ~L1 of x4, although the two will be similar. It isan interesting exercise to verify that the approximate representations in this and the lastsection are similar up to terms of order kEk2.



Invariant Subspaces 10and k~x1 � x1k � kT�1kkEk+O(kEk2):Thus T�1 is a condition number for ~x1.Although there are no simple expressions for kT�1k, we can relate it tothe eigenvalues of A as follows. It can be shown that the set of eigenvaluesof T is the set �1��2; i.e., the set of pairwise di�erences of members of �1and �2. Hence the eigenvalues of T�1 are the reciprocals of the membersof �1 � �2. Since the norm of any operator is an upper bound for themagnitudes of the eigenvalues of the operator, we havekT�1k � 1min j�1 � �2j :Thus if a member of �1 is poorly separated from the members of �2, then ~x1is necessarily sensitive to perturbations in A. Unfortunately, the converse isnot true.146 Invariant SubspacesWe noted in x2 that the space spanned by an eigenvector does not changewhen it is multiplied by A. A natural generalization of this is to say thata k-dimensional subspace X1 is an invariant subspace of A if each vector inX1 is mapped by A back into X1; that is, ifAX1 def= fAx : x 2 X1g � X1:To establish some of the elementary properties of invariant subspaces,let the columns of X1 form a basis for X1. Then the column space of AX1can be written as a linear combination of X1; that is, there is a k�k matrixL1 such that AX1 = X1L1: (6:1)14As an exercise consider the sensitivity of the eigenvector (1; 0; . . . ; 0)T of the matrixdiag(0;Wn�1), where Wk is the matrix illustrated below for k = 4:0B@ 1 �1 �1 �10 1 �1 �10 0 1 �10 0 0 1 1CA :



Invariant Subspaces 11Note that since the columns of X1 are linearly independent, XH1 X1 is non-singular, and L1 can be writtenL1 = (XH1 X1)�1XH1 AX1:There is a nice relation between the eigenvectors of A and those of L1.First suppose that L1z = z�. Then from (6.1)AX1z = X1L1z = X1z�;so that X1z is an eigenvalue of A. Conversely if z is a vector with theproperty that A(X1z) = (X1z)�, then X1L1z = �X1z, and it follows uponmultiplying by (XH1 X1)�1XH1 that L1z = z�. Thus to any eigenvector X1zof A that lies in X1 there corresponds and eigenvector z of L1 and viceversa.15Even more is true. It can be shown (and you are going to show it in justa moment) that if � is an eigenvalue of multiplicity m of L1, then � is aneigenvalue of multiplicity at least m of A. This allows us to partition theeigenvalues of A into two sets: the set �1 of eigenvalues of L1 and the set�2 of the remaining eigenvalues of A. Since we count multiplicities, if � isan eigenvalue of multiplicity m of L1 and of multiplicity greater than m ofA, the � belongs to both �1 and �2.We shall say that an invariant subspace is simple if the sets �1 and �2are disjoint. We are going to verify that simple invariant subspaces haveproperties analogous to those of simple eigenvectors. Before we do this,note that without loss of generality we may take X1 to be an orthonormalbasis for X1, so that XH1 X1 = Iand L1 = XH1 AX1:7 Capital punishmentReturn to xx3-5 with pencil and paper in hand. Write down each equationas it occurs, replacing each lower-case letter with the corresponding capitalLatin letter; e.g., � L, x  X , etc. Wherever it is appropriate replace 1with I . As you do this exercise re
ect on the meaning of the equations interms of invariant subspaces.Now reread the same sections once more along the footnotes.15By replacing z� by ZL, we see that the correspondence is actually between invariantsubspaces of L1 and invariant subspaces of A lying in X1.



REFERENCES 128 CodaIf you have faithfully performed the exercise of the last section you will havelearned some important facts about invariant subspaces. However, there ismuch more.The algebraic theory of invariant subspaces becomes quite complicatedwhen the subspace is not simple. For example, the subspace may fail to havea complementary invariant subspace. A treatment of some of the problemsis given in [3].A standard reference for perturbation theory is Kato's comprehensivebook [6]. The passage from �rst order expansions to rigorous bounds hasbeen treated by the author [10,11]. Davis and Kahan [2] have developed anelegant perturbation theory for Hermitian matrices (see also [8]).People who calculate a invariant subspaces usually end up with matricesX1 and L1 for which R = AX1 �X1L1 is not zero but is merely small. Animportant question, treated in the references cited in the last paragraph,is how near the space spanned by X1 is to an invariant subspace of A. Inmany cases it is su�cient to know that there is a small matrix E such thatthe space spanned by X1 is an invariant subspace of A+ E. An exhaustivetreatment of this question is given in [5].9 AcknowledgementsI would like to thank my friends and colleagues at Fudan University inShanghai for encouraging me to write this material down and especiallyProfessor Jiang Erxiong, who made made my visit there possible. BersefordParlett read the paper and gave me the bene�t of his pointed observations.Finally, thanks to Gil Strang of MIT for the bon mot which gave the paperits title.References[1] R. H. Bartels and G. W. Stewart, \Algorithm 432: The Solution of theMatrix Equation AX � BX = C," Communications of the ACM 15(1972) 820-826.[2] C. Davis and W. M. Kahan, \The Rotation of Eigenvectors by a Per-turbation, III," SIAM J. Numer. Anal. 7 (1970) 1-46.



Invariant Subspaces 13[3] I. Gohberg, P. Lancaster, and L. Rodman, Invariant Subspaces of Ma-trices with Applications, John Wiley, New York, 1986.[4] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns HopkinsUniversity Press, Baltimore, 1983.[5] W. Kahan, B. N. Parlett, and E. Jiang, \Residual Bounds on Approx-imate Eigensystems of Nonnormal Matrices," SIAM J. Numer. Anal.19 (1982) 470-484.[6] T. Kato, Perturbation Theory for Linear Operators, Springer Verlag,New York, 1966.[7] C. Meyer and G. W. Stewart, \Derivatives and Perturbations of Eigen-vectors," to appear in Lin. Alg. Appl.[8] B. N. Parlet The Symmetric Eigenvalue Problem, Prentice Hall, Engle-wood Cli�s, New Jersey, 1980.[9] I. Schur, \�Uber die charakteristischen W�urzeln einer linearen Substi-tution mit einer Anwenduug auf die Theorie der Integralgleichuugen,"Mathematische Annallen 66 (1909) 448-510.[10] G. W. Stewart \Error Bounds for Approximate Invariant Subspaces ofClosed Linear Operators," SIAM J. Numer. Anal. 8 (1971) 796-808.[11] G. W. Stewart \Error and Perturbation Bounds for Subspaces Asso-ciated with Certain Eigenvalue Problems," SIAM Review 15 (1973)727-764.[12] G. W. Stewart Introduction to Matrix Computations, Academic Press,New York, 1974.[13] J. H. Wilkinson The Algebraic Eigenvalue Problem, Oxford UniversityPress, Oxford, 1965.


