TR-1923 September 1987

INVARIANT SUBSPACES
AND
CAPITAL PUNISHMENT
(A PARTICIPATORY PAPER)

G. W. STEWART*

ABSTRACT

The notion of invariant subspaces is useful in a number of the-
oretical and practical applications. In this paper we give an
elementary treatment of invariant subspaces that stresses their
connection with simple eigenvalues and their eigenvectors.
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1 Introduction

The notion of an invariant subspace of a matrix or a linear operator is useful
in many branches of mathematics, both pure and applied. Unfortunately,
many students have difficulty with the elementary facts about invariant
subspaces even though they correspond exactly to equivalent facts about
eigenvectors. The purpose of this note is to exhibit this correspondence by
developing the theory of a simple eigenvalue and its eigenvectors in such a
way that the generalization to invariant subspaces is obvious. We shall be
concerned with two aspects of the subject: the constructive algebraic theory
and first order perturbation expansions.

To make the relation between eigenvectors and invariant subspaces clear,
we must be careful about our notation. In this note, scalars will be denoted
by lower-case Greek letters, vectors by lower-case Latin letters, and matrices
by upper-case Latin letters. The symbol ||-|| will denote the Euclidean norm;
ie.,

la[* = 2™,
where zH is the conjugate transpose of z. The same symbol will also denote
the spectral norm of a matrix, which is defined by
||A|| = max ||Az|. (1.1)
ll=|=1
We shall have occasion to refer to linear operators that map matrices into
matrices, and the norms of such operators will be defined in analogy with
(1.1). For example if T is an operator, then

IT]| = max [T
IPlI=1

For more on norms see [4] or [12].

*Department of Computer Science and Institute for Physical Science and Technology,
University of Maryland, College Park, 20742.
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2 Eigenvectors and eigenvalues

Simply stated, an eigenvector of an n X n matrix A is a nonzero vector whose
direction remains the same when it is multiplied by A. It may stretch, or
shrink, or even change its orientation; but it always emerges a scalar multiple
of itself. Thus if 21 # 0 is an eigenvector of A, there is a unique scalar Aq
such that

A$1 = A1$1.

The scalar Ay is called the eigenvalue of A corresponding to z;.

I will suppose that the reader is familiar with the following elementary
facts about eigenvalues and eigenvectors, which can be found in any re-
spectable textbook on linear algebra. The eigenvalues of A are the zeros
of the characteristic polynomial det(A] — A), and hence a matrix of order
n has n eigenvalues, counting multiplicities. If X is nonsingular, then the
similarity transformation X "' AX leaves the eigenvalues of A unchanged.
Moreover, the eigenvector z; is transformed into X ~'z;. Finally, if A can
be partitioned in the form

[ A A
i (), o

where Ay is m X m, then the m eigenvalues of Ay are a subset of those of
A, while the n —m eigenvalues of A form the complementary subset (here,
as always, we count multiplicities).

We will be concerned with two questions about eigenvectors and their
eigenvalues. First, there is the problem of left eigenvectors. If Ay is an
eigenvalue of A then A1 — A is singular and has a left null vector. In other
words, there is a vector y; such that

yitd = \yil.

The vector gy is called a left eigenvector of A, and it is natural to ask if
there is any nice relation between left and right eigenvectors belonging to
the same eigenvalue.

Another question concerns the behavior of an eigenvalue and its eigen-
vector when A is perturbed. Specifically, suppose A is replaced by A = A+ E
for some small matrix F. Then we may ask how the eigenvalues and eigen-
vectors of A behave as a function of E.

Unfortunately, there is no easy answer to these questions. Part of the
problem is that an eigenvalue may have two or more linearly independent
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eigenvectors. Moreover, the eigenvalues of A need not be nice, smooth func-
tions of F. For example consider the matrix

~ 1 1
A:(el)' (2.2)

The eigenvalues of A are easily seen to be 1+ V€, neither of which is differ-
entiable at € = 0.

There is, however, a case where these questions have straightforward an-
swers. When Ay, regarded as a zero of the characteristic polynomial, has
multiplicity one, it is called a simple eigenvalue. Its eigenvector z1, which
is unique up to a scalar multiple, is called a simple eigenvector. In the next
three sections, we will show that there is a pretty algebraic theory relating a
simple eigenvector with its corresponding left eigenvector. Moreover, simple
eigenvectors and eigenvalues behave nicely under perturbations. Through-
out these three sections, we will assume that the pair Ay and x; are simple.
Anticipating some later generalizations, we will express this fact as follows.
Let Ay = {A\1} and let Ay be the set consisting of the remaining n — 1
eigenvalues of A. Then Ay is simple if and only if Ay N Ay = 0.

One final assumption. Since x1 remains an eigenvector when it is mul-
tiplied by a nonzero constant, we may assume without loss of generality
that

xlfxl =1

3 The constructive algebraic theory!'?

The principal result of this section is that to Ay and z{ there corresponds a
y1 of the same dimensions as z1 such that

yiA = \yil.

Moreover ylz; = 1, so that 2; and y; are not orthogonal. However, the
way we achieve this result is as important as the result itself. We shall show
how to construct a similarity transformation that reduces A to the block

diagonal form
M0
0 Ly |-

Do not read the footnotes the first time through the next three sections: they will
only confuse you.
2Do not read the footnotes the second time through: they will only distract you




INVARIANT SUBSPACES 4

The formulas that define this transformation are themselves of theoretical
interest.

The first step is to construct a matrix Y5 with orthonormal columns such
that (z1 Y2) is unitary. This can be done constructively by any of several
numerical techniques.?

Next consider the matrix

H H H
xq [ Az 2P AY,
( YQH ) A($1 YQ) - ( YQHA$1 Y2HAY2 ) :

Since Axq = x1Aq, x?xl =1, and YQHxl = 0, we have

H H
Ty . Al b

where b1 = zH AY; and
Ly, = YAy,

Thus this unitary similarity transformation reduces the problem of finding
the eigenvalues of A to that of finding those of L,, since by the comments
concerning equation (2.1) the eigenvalues of L, form the set Ay.*

The next step is to remove the vector b by a similarity transformation
of the form

1 —pH A bH 1 pH A O
) L)) (0 ) e

If we equate the (1,2)-blocks on each side of (3.1), we get the following
equation for pt:
AlpH — pHL2 = bH (32)

*For example, (X1 Y2) can be computed as a product of Householder transformations.
See [4] or [12].

*The above reduction can be repeated on L, and so on. When an eigenvector is
used at each stage, the result is that A is reduced to upper triangular form by a unitary
similarity transformation—a very useful decomposition due to Schur [9]. When a sequence
of invariant subspaces is used, one arrives at a block triangular form. A particularly
important application occurs when A is real but A; is complex. If we take the columns of
X1 to form a real basis for the two dimensional space spanned by the eigenvector of Ay
and and its conjugate transpose, which is an eigenvector of A, then the transformation
is real, and L is a real 2 X 2 matrix whose eigenvalues are A, and A1 Continuing in
the same manner, we get a variant of the Schur decomposition in which all the complex
eigenvalues are contained in 2 X 2 blocks on the diagonal, a form computed by the widely

used QR algorithm [4, Ch. 7].
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We are not quite finished, since it is possible that (3.2) has no solution or
more than one solution. However, (3.2) is equivalent to the linear operator
equation SpH = bH, where S is defined by

def
sp = App™ — pM L.

Now it can be shown that a necessary and sufficient condition for S to be
nonsingular is that Ay N Ay = 0, which is true since z; is simple.> Thus pH
exists and is unique.

Let us now multiply out the two transformations by which we reduced
A to the block diagonal form (3.1). On the right we have

H
(21 Ys) ( (1) pI ) = (14 zpt + Yy) = (21 X2),

where
Xy = apf 4 Yo

On the left we have
1 —pH et N e =Y )
0 I Y Y yi )

H H H+y -H
yp =z —p Yy

where

Thus we have shown that we can replace the original unitary matrix (21 Y3)
by two matrices (21 X2) and (y; Y2) such that

H
( T ) (21 Xz) = ( o ) (3.3)

[i.e., (z1 X2)7! = (y1 Yo)H] and

( 1@//; )A(acl X,) = ( o L02 ) . (3.4)

This is obvious for eigenvectors, since the operator is represented by the matrix Ay I —
L>. The proof in the general case is more difficult. One approach is to use Schur’s theorem
to reduce L1 and L, to upper triangular matrices [1]. This results in a constructive

algorithm for solving (3.2).
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If we use (3.3) to rewrite (3.4) in the form

Y 0 I yibo o

it immediately follows that y'A = A;ylls i.e. 4y is invariant with respect to
AM | just as 21 is invariant with respect to A. Moreover, from (3.2) it follows
that ylzy = 1, which is what we set out to prove.®

The equations (3.3) and (3.4) can be cast in another useful form. Let

H
Py =2y,

and let z be an arbitrary vector. From (3.3) we see that z can be written in
the form z = 2171 + Xag2, where v1 = y{{z and go = YQHZ. It then follows
that

P12’ = T171-

Geometrically this says that P, projects z onto the space spanned by zq
along the direction of the space spanned by Xs. For this reason, P; is
sometimes called the spectral projection associated with xq.
Now let
Py = X,vH

and
A= PAP, (1=1,2).
Then it is easily verified that A1 43 = A3 A3 = 0 and
A=A+ A, (3.5)

Equation (3.5) is sometimes called a spectral decomposition of A. It says
that the matrix A, regarded as an operator, can be decomposed into the
direct sum of two operators, one mapping the space spanned by z; onto
itself and the other mapping the space spanned by X, onto itself.”

5We have actually established more. It is easily verified that AX; = X2 L. Thus the
space spanned by X5 is also an invariant subspace of A. It is called the complementary
invariant subspace.

"If we are given a sequence of independent invariant subspaces X1, Xa,..., X, that
span R", then we may construct corresponding left invariant subspaces Y1,Y2, ..., Y}, and
spectral projections P; = XlYlH The analogue of (3.5) then becomes A = Z:Zl PAP;.
When A is Hermitian, m = n, and we replace the sum by a Stieltje’s integral, we ob-
tain a finite dimensional analogue of the spectral representation theorem for self-adjoint
operators in Hilbert space.
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4 Perturbations of )\

In the next two sections we will consider what happens to Ay and 21 when
A is replaced by A = A+ FE, where F is a small error matrix. We will use an
important technique, called first order perturbation theory, for computing
approximations to the perturbations. As a general method, it begins with
a nonlinear equation that implicitly defines the perturbed quantity as a
function of the error. In our case, we shall be interested in the perturbed
values ;\1 and #1. Next we throw out of the equation all terms that are
products of the error, either with itself or with the perturbation; i.e., all
terms of order higher than the first. This gives us a linear equation which
holds with increasing precision as the error approaches zero. If this linear
equation has a unique solution, then the solution must approximate the
perturbation with increasing accuracy as the error approaches zero.

It is clear that if we are going to cast off products of errors and pertur-
bations, we must first show that the perturbation approaches with the error.
The easiest way to do this is to establish that the perturbed quantity is a
differentiable function of the error.

For our problem, there is the complicating factor that z; needs some
kind of normalization to make it unique. We shall require that

wliy =1 (4.1)

for a fixed w which we will choose later.® It can then be shown that #; as a
function of E has derivatives of all orders in some neighborhood of £ = 0.?
The same is a fortiori true of

Ay = (@) tell Az,
All this justifies the following procedure for approximating A1 up to first
order terms in F. Write
A=A+ p
and
fl =T + u.

Then
(A+ E)or+ 1) = (21 + 1) + p). (4:2)

8Other normalizations in which w varies are possible. The most common is w = &1,
which amounts to imposing the condition ||Z1]| = 1. The role of normalization in the
perturbation theory for eigenvectors is treated in detail in [7].

°This result is not trivial to establish. See for example [6].
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Since w,u = O(||F|]), we may discard cross products to obtain'?

Ay + Exy 4 Au = 210 + ud + 200+ O(|| E)?),
or since Az = z1)q,
Exy 4 Au=ul + 2+ zp + O(| E|%). (4.3)

To solve (4.3) for p we will choose wf = yH. Tt is easy to show that
the normalization equation (4.1) will be satisfied if and only if u = X3¢ for
some ¢. Hence from (4.3)

Now yXy¢)\; = 0 and ¢ AXy¢ = Ayl Xo¢ = 0. Hence on multiplying
(4.4) by y™ we get
=i B+ O(|E)1%),

so that our approximation to A; becomes
A 2y (A+ E)ey =yl Any

The quantity yleixl is sometimes called the generalized Rayleigh quotient
because it generalizes the usual Rayleigh quotient for a Hermitian matrix.

Since ||z1|] = 1, we have
il < N E N+ OLE]). (4.5)
Since 1 < |ly1ll[|z1]] = [|y1l], the number [|y;]| in (4.5) can be interpreted as

a factor which tells how || £|| is magnified in its effect on A1. Such a number
is often called a condition number by numerical analysts.!!

It is worth observing that ||y1|| = || 1|, where P; is the spectral projec-
tion introduced in §3. Thus the condition number of Ay is the norm of its
spectral projector.'?

19 Actually, we are being a little heavy handed here, as was pointed out to me by B. N.
Parlett. If we multiply by Y& before we drop second order terms we obtain the equation

YREX1 + YPEU = M,

from which it is clear that the second order effects of the error will depend on how sensitive
X1 1s to perturbations. As a general rule, one should try to get rid of higher order terms
by algebraic means, before simply throwing them away.

117, H. Wilkinson [13] appears to be the first to explicitly point out the role of this
number, or rather its reciprocal.

2When it is a matter of eigenvalues, ||y1]| can be regarded as the secant of the angle
between z1 and y1. Thus a simple eigenvalue becomes increasingly ill conditioned as its
left and right eigenvectors approach orthogonality. Observe that for the matrix (2.2) the
left and right eigenvectors are exactly orthogonal when ¢ = 0.
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5 Perturbations of 1

The first step toward approximating #; is to derive an equation, like (4.2),
from which we may cast out second order terms. To do this we make the
following observation. Let Z be a matrix whose columns span the orthogonal
complement of the space spanned by #1. Since AZ; = #;\;, we must have

ZH Az, = 7850 = 0.
Conversely if o
ZMAE =0, (5.1)

then A#; must lie in the orthogonal complement of Z: that is, in the span
of 1. Consequently (5.1) characterizes the space spanned by Z;.

To use (5.1) we require an explicit representation of Z;. In this case, it
is most convenient to choose w = z; as the normalizing factor in (4.1),!3
which means that #; can be written in the form

T =z + Yor,

for some 7 to be determined. If we now take 7 = Y, — 2171, then it is
easily verified that Z"%; = 0, so that Z is orthogonal to ;. Moreover, since
YQHZ =YY, = I, the columns of Z are independent for any value of 7, and
hence they form a basis for the orthogonal complement of Z;.

With these definitions, it follows from (3.4) that (5.1) can be written

—rM + Y By — rallEay 4 Lor — v + Y EYyr — r2llEYyr = 0.
Discarding second order terms, we get
rAL — Lor = Y B2, + O(||E|?).

Because Ay N Ay = (), the operator defined by

T rA1 — Lor

is nonsingular. Hence

r=T Y By + O(|E)%),

13The careful reader will note that the normalizing factor is different from the one we
chose in the last section. This means that the perturbed representation (XFXl)_lXFAXl
will be different from the representation L; of §4, although the two will be similar. It is
an interesting exercise to verify that the approximate representations in this and the last
section are similar up to terms of order ||E||*.
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and

121 = a1l < ITHIIEN+ OULE]?).

Thus T~ is a condition number for #;.

Although there are no simple expressions for || T™}||, we can relate it to
the eigenvalues of A as follows. It can be shown that the set of eigenvalues
of T is the set Ay — Ag; i.e., the set of pairwise differences of members of Ay
and Ay. Hence the eigenvalues of T~! are the reciprocals of the members
of Ay — A;. Since the norm of any operator is an upper bound for the
magnitudes of the eigenvalues of the operator, we have

1

T > —m.
H H B min|A1 —A2|

Thus if a member of Ay is poorly separated from the members of A5, then #4
is necessarily sensitive to perturbations in A. Unfortunately, the converse is

not true.l4

6 Invariant Subspaces

We noted in §2 that the space spanned by an eigenvector does not change
when it is multiplied by A. A natural generalization of this is to say that
a k-dimensional subspace A} is an invariant subspace of A if each vector in
A1 is mapped by A back into Aj; that is, if

AN YAz e 1) C .

To establish some of the elementary properties of invariant subspaces,
let the columns of Xy form a basis for A;. Then the column space of AX;
can be written as a linear combination of Xy; that is, there is a k£ X k matrix
Ly such that

AXy = X114, (6.1)

' As an exercise consider the sensitivity of the eigenvector (1,0,..., O)T of the matrix
diag(0, Wy,_1), where W} is the matrix illustrated below for k = 4:

1 -1 -1 -1
0 1 -1 -1
0 0 1 -1
0 0 0 1
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Note that since the columns of X; are linearly independent, XX is non-
singular, and L; can be written

Ly = (XXX AX,.

There is a nice relation between the eigenvectors of A and those of L.
First suppose that L1z = zA. Then from (6.1)

AXlz = X1L12’ = Xlz’A,

so that X7z is an eigenvalue of A. Conversely if z is a vector with the
property that A(X;1z) = (X12)A, then X112 = AX;2, and it follows upon
multiplying by (XJ'X1)7' X! that L;2 = 2\. Thus to any eigenvector Xz
of A that lies in A} there corresponds and eigenvector z of L; and vice
versa.!?

Even more is true. It can be shown (and you are going to show it in just
a moment) that if A is an eigenvalue of multiplicity m of Ly, then A is an
eigenvalue of multiplicity at least m of A. This allows us to partition the
eigenvalues of A into two sets: the set Ay of eigenvalues of L; and the set
Ag of the remaining eigenvalues of A. Since we count multiplicities, if A is
an eigenvalue of multiplicity m of Ly and of multiplicity greater than m of
A, the A belongs to both Ay and As.

We shall say that an invariant subspace is simple if the sets Ay and A,
are disjoint. We are going to verify that simple invariant subspaces have
properties analogous to those of simple eigenvectors. Before we do this,
note that without loss of generality we may take X; to be an orthonormal
basis for A7, so that

Xix, =1
and
Ly = X11AX;.

7 Capital punishment

Return to §§3-5 with pencil and paper in hand. Write down each equation
as it occurs, replacing each lower-case letter with the corresponding capital
Latin letter; e.g., A — L., & «— X, etc. Wherever it is appropriate replace 1
with I. As you do this exercise reflect on the meaning of the equations in
terms of invariant subspaces.

Now reread the same sections once more along the footnotes.

5By replacing zX by Z L, we see that the correspondence is actually between invariant
subspaces of 11 and invariant subspaces of A lying in A;.
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8 Coda

If you have faithfully performed the exercise of the last section you will have
learned some important facts about invariant subspaces. However, there is
much more.

The algebraic theory of invariant subspaces becomes quite complicated
when the subspace is not simple. For example, the subspace may fail to have
a complementary invariant subspace. A treatment of some of the problems
is given in [3].

A standard reference for perturbation theory is Kato’s comprehensive
book [6]. The passage from first order expansions to rigorous bounds has
been treated by the author [10,11]. Davis and Kahan [2] have developed an
elegant perturbation theory for Hermitian matrices (see also [8]).

People who calculate a invariant subspaces usually end up with matrices
X1 and Ly for which R = AXy — X Lq is not zero but is merely small. An
important question, treated in the references cited in the last paragraph,
is how near the space spanned by X, is to an invariant subspace of A. In
many cases it is sufficient to know that there is a small matrix ¥ such that
the space spanned by X, is an invariant subspace of A + F. An exhaustive
treatment of this question is given in [5].
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