Undergraduate Report

REU Report: An Implementation of the MDLe Platform

by Jacqueline Cockrell
Advisor: P.S. Krishnaprasad

U.G. 99-2

ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical, heterogeneous and dynamic problems of engineering technology and systems for industry and government.
ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technology/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Undergraduate Research Report

University of MD, College Park

Research Experiences for Undergraduates August, 1999

Jacqueline Cockrell
Advisor: Dr. Krishnaprasad

Introduction to MDLe

Motion description language (MDLe) is a language that enables people to develop systematic solutions to tasks of robot motion planning. The ideas of am MDLe system have suggested the possibility of the "implementation of a framework that will integrate a set of tools to provide a platform with an interface of standard language acting as a protocol between the user and the implementational details of a specific robot."

Such a platform could possibly be used to test different algorithms for motion planning, or to create a virtual internet laboratory, making it possible for people to control robots remotely.

The purpose of this project is to create a possible implementation of this MDLe platform.

The Mathematical Model

The robot's motion is restricted by a non-holonomic constraint (like an automobile), and thus cannot move in a sideways motion. Modeled as a drift-less three wheeled cart, the robot's steering and translation are achieved by differentially driving the two front wheels, with the rear wheel serving as a supporting castor.

The kinematic model is:

$$
g=g(A 1 v 1+A 2 v 2)
$$

where $\mathrm{g}, \mathrm{A} 1, \mathrm{~A} 2$ are given by:

$$
g=\left[\begin{array}{ccc}
\cos \theta-\sin \theta & x \\
{\left[\begin{array}{ccc}
\operatorname{Sin} \theta \cos \theta & y &] \\
0 & 0 & 1
\end{array}\right]}
\end{array}\right.
$$

$$
\mathrm{A} 2=0 \quad 01
$$

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$$
000
$$

and the angular velocity, v1, and transnational velocity, v2, are given by:
$\mathrm{v} 1=\frac{(\mathrm{ul}-\mathrm{ur})}{\mathrm{W}} \quad \mathrm{v} 2=\frac{(\mathrm{ul}+\mathrm{ur})}{2}$
where ul and ur are the velocities of the left and right wheels, respectively.
W is the distance between the two front wheels.

Plans, Behaviors and Atoms

The simplest unit of the MDLe motion language is the atom. Examples of common atoms are: move forward, turn right, turn left, turn parallel to something, and turn perpendicular to something. In MDLe, a finite set of atoms define a number of simple motions. There is an interrupt (any condition requiring the robot to discontinue execution of the atom) associated with each atom.

A group of atoms can be strung together to create a behavior. As with atoms, there is an interrupt associated with each behavior. An example of a behavior is exiting a room.

Finally, a sequence of behaviors can be assembled to create a plan. A plan is a specific task, such as navigating through the hallways to find a specific room. As can be expected, there is also an interrupt associated with each plan.

"The Mailman"

The purpose of my project was to create a plan that would enable the robot to deliver mail to Dr. Krishnaprasad's office, starting off in the ISL laboratory. The plan was written in the C_{++}programming language. Following are the atoms and behaviors that make up this plan.

Note: The robot has 16 sonars, spaced evenly and circling around the upper side of the robot.

Behavior \#1: Exit Lab: (A1, A2, A3)*

Behavior interrupt: any of the back 5 sonars detects something

Atom \#1: go forward

Atom interrupt: any of these 5 conditions are met:

1. Sonar \#1 finds something <= L1 (distance away)
2. Sonar \#2 finds something <= L2
3. Sonar \#3 finds something with dcos2 $<=\mathrm{R}$ (radius of robot)
4. Sonar \#16 finds something $<=$ L1
5. Sonar \#14 finds something with $\operatorname{dcos} 2 \theta<=R$

Atom \#2: turn slightly to the left
Atom interrupt: condition \#3 from above is no longer true
Atom \#3: turn slightly to the right
Atom interrupt: condition \#5 from above is no longer true
Behavior \#2: Prepare to Head Down Hall: (A4, A5)
Behavior interrupt: sonar \#12 and \#14 get same reading
Atom \#4: go forward until wall is reached
Atom interrupt: 2 of these sonars detect something: 1,2,3,15 and 16
Atom \#5: turn left until parallel to wall
Atom interrupt: same as behavior interrupt

Behavior \#3: Proceed down hallway:

(A1,A12,A1(A6,A8,A10)(A7,A9,A11)*
Behavior interrupt: intersection is reached (judgment made by comparing line angles to determine whether a wall is in front - if there is, intersection has been reached)

Atom \#1: mentioned under behavior \#1 Atom interrupt: same as in behavior \#1

Atom \#6: turn left
Atom interrupt: robot is perpendicular to side wall (sonar \#8 gets same reading as sonar \#10)

Atom \#7: turn right
Atom interrupt: robot is perpendicular to side wall (sonar \#8 gets same reading as sonar \#10)

Atom \#8: go forward
Atom interrupt: left side is clear (no conditions of interrupt for atom \#1 are true)
Atom \#9: go forward
Atom interrupt: right side is clear (no conditions of interrupt for atom \#1 are true)
Atom \#10: turn right
Atom interrupt: robot is parallel to side wall (sonar \#12 gets same reading as sonar \#14)

Atom \#11: turn left
Atom interrupt: robot is parallel to side wall (sonar \#12 gets same reading as sonar \#14)

Atom \#12: stop and wait (to see if object in the way moves) Atom interrupt: 5 seconds have passed

Behavior \#4: Proceed to Dr. Krishnaprasad's Office: (A5,A1)

Behavior interrupt: robot has reached Dr. Krishnaprasad's office (sonars on right side have lost something)

Atom \#5: turn left until parallel to wall
Atom interrupt: sonar \#12 and \#14 get same reading
Atom \#1: go forward
Atom interrupt: any of these 5 conditions are met:

1. Sonar \#1 finds something <= L1 (distance away)
2. Sonar \#2 finds something <= L2
3. Sonar \#3 finds something with dcos2 $<=R$ (radius of robot)
4. Sonar \#16 finds something <=L1
5. Sonar \#14 finds something with $\operatorname{dcos} 2 \theta<=R$

Acknowledgments

I would like to thank Dr. Krishnaprasad, who was my advisor for the duration of this program. Also, I would like to express my appreciation for all the guidance and assistance that Fumin Zhang and Sean Andersson gave me throughout the course of the project.

References

Handouts made by Sean Andersson and Fumin Zhang

