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Abstract

In this paper we describe an adaptive block transform speech coding system based
on vector quantization of LPC parameters. In order to account for the power fluc-
tuations, the speech signal is normalized to have a unit-energy prediction residual.
The temporal variations in the short-term spectrum, on the other hand, are taken
into account by vector quantizing the LPC parameters associated with the vector
of speech samples and transmitting the codeword index. For each block, based on
the codevector associated with the input vector, an optimum bit assignment map is
used to quantize the transform coeflicients. We consider two types of zero-memory
quantizers for encoding the transform coeflicients, namely the Llyod-Max quantizer
and the entropy-coded quantizer. The performance of these schemes is compared
with other adaptive transform coding schemes. We show by means of simulations
that the system based on entropy-coded quantizer design leads to very high perfor-
mance and in most cases as much as 5 dB performance improvement in terms of
segmental signal-to-noise ratio is observed over the adaptive block transform cod-
ing scheme of Noll and Zelinski [1]. The effects of the bit-rate and the size of the
codebook on the performance of the systems are also studied in detail.

TThis work was supported in part by National Science Foundation grants NSFD MIP-86-57311 and
NSFD CDR-85-00108 and in part by grants from Martin Marietta Laboratories and General Electric
Company.



1 Introduction

Block transform coding (BTC), when made adaptive to the changing characteristics of the
speech, has proven to be a promising medium-band speech coding scheme. In a nonadaptive
block transform speech coding system, each block of speech samples is transformed into
a set of transform coefficients; these coefficients are quantized independently by scalar
quantizers and transmitted. An inverse transform is taken at the receiver to obtain a
corresponding block of reconstructed samples. Such a scheme will perform well for a source
which is stationary as shown by Huang and Schulthesis [7] for the particular case of a
Gaussian stationary source. However, in practical situations such as speech coding, the
source is at best quasi-stationary and the BTC scheme needs to be made adaptive to the
changing statistics of the incoming signal. Typical speech waveforms exhibit temporal
variations in the signal power and the short-term spectrum. Various adaptive schemes for
block transform coding of speech have been reported in the literature [1], [2], [3].

In the scheme described in [1], estimates of the variances of transform coefficients are
made by local averaging of the transform coefficients. These estimates, which are also sent
to the receiver as side information, are used to adaptively vary the bit allocation among the
transform coeflicients. In [2], the speech signal is modeled by an autoregressive Gaussain
hidden Markov process [4]. The short-term spectrum of speech is then determined from a
maximum-likelihood estimate of the state and is used for adaptive bit allocation. Again
the state estimate is sent to the receiver as side information.

In this paper, we consider an alternative method to model the short-term spectrum of
the speech signal based on ideas borrowed from [3]. Specifically, we vector quantize the LPC
parameters (LPCVQ) associated with each speech block [5] and transmit the index of the
codevector as overhead information; this codevector will determine the short-term spectrum
corresponding to that block and, in turn, can be used for optimal bit allocation among the
transform coefficients. In addition, we consider entropy-coded zero-memory quantization
of the transform coefficients as an alternative to Lloyd-Max quantization. We will develop
an adaptive BTC scheme based on LPCV(Q and using entropy-coded quantizers. We will
show via extensive simulations that this scheme performs considerably better than that of
[1].

The rest of the paper is organized as follows. In Section 2, we develop notation and

briefly discuss the basic operation of the BTC scheme. Section 3 describes the structure
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of LPCVQ-based adaptive BTC speech coding system, while Section 4 discusses a similar
adaptive scheme which uses entropy-coded quantization for encoding the transform coeffi-
cients. In Section 5, simulation results are presented, followed by Section 6 which provides

a summary and conclusions.

2 Preliminaries and Notation

Let {X,,n = 0,1,...} be a zero-mean stationary source with variance 6. An L-dimensional
nonadaptive BTC scheme operates as follows. A typical vector of length L denoted by
X = (Xo,X1,..., Xr_1)7T is operated upon by a linear unitary L x L transformation T to

obtain the transformed vector Y described by
Y = (Yo, Y,..., Yo )F =TX.

The components of Y, called the transform coefficients, are subsequently quantized in-
dependently by zero-memory Llyod-Max quantizers to give the quantized version Y =
(%,171, cees YL_l)T of the transformed vector. The quantized transform coefficients are
subsequently encoded and transmitted. At the receiver (assuming a noiseless channel), a

replica of X, say X, is obtained by an inverse transformation on Y according to
X=T"'Y.
For the squared-error distortion criterion, the average per-sample distortion is given by
1 & 112
D= LE(IX - X|} ,
which, under the assumption of unitary transformation T, reduces to
1 " 2 1 L—-l R 9
D=<E{IY-Y|} =+ > E{(¥i-1))*} .
L L =0
Fach term in the summation above is the mean squared-error (MSE) caused by zero-
memory quantization of a transform coeflicient. Adopting the notation of [2], let us assume
that ); is the variance of the :*P transform coefficient and let d;(b;) denote the MSE asso-
ciated with the b;-bit Lloyd-Max quantization of the :*! transform coefficient after normal-

ization to unit-variance. Using this notation, the per-sample MSE for the overall system

can be written as
1 L-1

D(b) =7 3 Aidi(by) , (1.2)

1=0
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where b = (bg, b1,..., br_y) is called the bit assignment map in which b; is the number of
bits assigned to the ¢*! transform coefficient. For a prescribed average number of bits per
sample, say by,, the optimum bit assignment map b* = (5,85,..., b5_;), is that which
minimizes the per-sample MSE given by (1.a) subject to a constraint on the average number

of bits per sample given by
1 L-1
R(b) = T > bi < by (1.b)

i=0
Additional details about the BTC scheme can be found in [6]. Various algorithms for bit
assignment can be found in [6], [7] and [8].

The above analysis is carried out under the assumption of a stationary source. In
practical situations, such as speech coding, this assumption does not hold. In fact, both the
signal variance 0% and power spectral density (hence, the variances of transform coeflicients)
vary with time. In such cases, some type of adaptation of the BTC scheme to the changing
statistics of the signal is needed. To do this, it is assumed that the signal is quasi-stationary
in the sense that its statistical characteristics do not change within a block - hence the
adaptation takes place on a block-to-block basis.

A well-known scheme for adaptive block transform coding of speech is described in
[1]. In [1], to account for the variability in the input variance, the signal variance is
computed for each block and then used to normalize the source output vectors. The
variance normalization can be thought of as some type of adaptive quantization [6]. To
account for the variability in the speech spectrum, an estimate of the variance of the
transform coefficients is obtained for each block. These estimates are then used to adapt
the allocation of bits among the quantizers used for the transform coefficients. Both the
variance of the input block and the estimates of the variances of the transform coeflicients
are transmitted to the receiver through a side channel. As a consequence of the adaptive
quantization and adaptive bit allocation, an improvement of about 6 dB in segmental signal-
to-noise ratio is observed over the nonadaptive block transform speech coding system [1].

In [1], the variances of the transform coeflicients are estimated in an “ad hoc” fashion
and the overhead information accounts for 2 Kbits/sec (0.25 bits/sample). In what follows,
we describe an alternative means to estimate the variances of the transform coefficients
which not only results in improved system performance but also requires lower overhead

information.



3 Adaptive BTC Scheme Based on LPCVQ

The basic idea in the adaptive scheme to be developed revolves around the LPC model of
speech. Specifically, it is assumed that during short time intervals (10-30 msec), the speech
signal can be described by the linear predictive model described by

p

X, =- Z a; Xn_i + gW,,

i=1
in which p is the order of the model and {gW,} is the prediction residual [9]. Here it is
assumed that {W,} is a unit-energy signal; the parameter g is referred to as the gain factor
and the vector a = (a1, 4as2,...,a,) is called the LPC vector.

Due to the quasi-stationary nature of speech, the LPC vectors need to be updated
for every frame of speech. There are various algorithms in the literature for computing
the LPC parameters [9] and therefore we will not elaborate on this issue. From now
on, the LPC vector and the gain factor associated with the #*® frame of speech x; =
(%i0, Tir41,-- - TiL+L—-1) , will be denoted by a; = (a},al,. .. ,a}) and g;, respectively.

Notice that the knowledge of ¢; and a; enables us to determine the energy and spectrum
of the t™ speech frame. Therefore, this information can be used to adaptively vary the
parameters of the BTC scheme. However, these parameters need to be transmitted to
the receiver as well which amounts to some additional overhead information. To reduce
the overhead information, we vector quantize the LPC vectors [10]. That is, instead of
transmitting the vector a;, we transmit an index corresponding to the closest codevector
in the vector quantizer (VQ) codebook. In what follows, we will describe the details of the
system implementation.

Let us assume that for the gain-normalized Itakura-Saito (GNIS) distortion measure
[10] an M-level LPC vector quantizer (LPCVQ) has been designed using the algorithm
described in [10], [11]. We denote the resulting codebook by C = {c1,c2,...,car}, where

C; = (aj,laaj,Zy---, aj,p), 1=12,...,M,

and aj;, i =1,2,..., p, are the LPC coeflicients corresponding to the 5 codevector.

For convenience of presentation, we introduce the notion of “state” in the following
sense: we say that the system is in state j at time ¢ if the codevector resulting from vector
quantization of the frame x; is ¢; (i.e., the codevector index is 7).

An algorithm which uses LPCVQ to adapt the BTC scheme is described below.
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3.1

The Coding Algorithm

The adaptive coding scheme can be described in the following steps:

1.

For the input vector x;, the LPC vector a; and the gain factor g; are computed
(using standard LPC analysis techniques [9]). A quantized version of g, say §, is

transmitted over a side channel.

The input vector is normalized to unit residual energy. Specifically, for each input
vector X;, the normalized vector X, is obtained according to X; = x;/¢;. Therefore, as
a result of this normalization, the vector %; will always have a unit-variance prediction

residual.

The codebook C is searched to obtain the codevector which is closest to X; in the

GNIS sense [10]. Specifically, the codevector index (or, equivalently, state) at time ¢

is given by
P
S = arg min{r,,(0)r:(0) + 2 Z J(m)rym)}, (2)
86{1,2,..., M} m=1
where
Te,(m) = Z Us,iCs,m+i »
i=0
and tL+L~1
ri(m) = E Zi&irm
i=tL

Using the above classification technique (nearest-neighbor rule), a codevector can
be associated with each input vector X;, t = 1,2,..., resulting in a state sequence

s = {s1, S2,...} of the system. The state sequence is transmitted over a side channel.

The linear transformation T is performed on X; to obtain y;, the vector of transform

coefficients.

The components of y; are quantized and encoded separately. The bit assignment
map used in encoding this vector is given by a vector bj,, optimized for the state s,

as described in the next subsection.

The decoding process is essentially the reverse of the encoding process. Upon receiving

the index s; and the quantized version of g; through the side channel, the vector ¥;, the

quantized version of y;, is reconstructed based on s; and b},. This vector is then inverse
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transformed to obtain X; which is subsequently denormalized to give a replica of x; given

by X; = gtfct . We shall refer to this coding scheme by LPCVQ-LMBTC.

3.2 Variance Computation and Bit Assignment

In this paper, the linear transformation used is the discrete cosine transformation (DCT).
The rationale behind using the DCT is that it is a signal independent, computationally
efficient transformation with good performance [1], [6]. Moreover, to make fair comparisons
against the results in [1], we had to use the same transformation.

The L-point DCT of a vector X = (&g, &1,...,%L-1) is a vector y whose components
are given by [6]

Lt 2n + 1)k
ykzz-gﬁmoincos(—ﬁ—;"z)—z,k=0,1,...,L—1, (3)

where Co = ;}5, Cv=1,%k=12,...,L -1
Given the LPC model of speech, the variances of the transform coefficients can be
computed explicitly. Specifically, given that s, = s, (i.e., system is in state s), it is easily

shown that the variance of the k" transform coefficient is given by

CE Lkt 2 + 1k 27 + 1)k
sh = =1 20 Yo (li=dl)e (H" FT os (J;"L) T k=01,..,L-1 (4
=0 j=0

Empirical evidence has shown that the transform coefficients have a distribution close
to Gaussian [1]. With the above assumption and noting that the DCT is a linear trans-
formation, the transform coefficients will also be Gaussian. Therefore, the MSE associated
with state s, denoted by D, is given by

1 L-1
D Z /\S kd(bs k) (5.&)
where b, is the number of bits used for encodmg the k" transform coefficient when the
system is in state s, and d(b) denotes the variance-normalized MSE associated with b-bit

Lloyd-Max quantization of a Gaussian source.

Assuming the same average bit rate for all states, T the bit assignment problem is that

TNote that the imposition of assigning equal average bit rates to each state leads to a suboptimal bit
allocation and hence results in some degradation in the performance as compared to the system with an
optimal bit allocation. However, if the state average bit rates are allowed to vary from state to state, the
overall average bit rate becomes a function of state probabilities and hence the overall average bit rate
.will be data dependent - an undesirable property. In this work we maintain the assumption that the state
average bit rates are the same.



of determining the bit assignment map vector b = (54,85 1,...,0; r_;) which minimizes
Dy(b;) described by ( 5.a) subject to
1 L-1
f Z bs,k < bav . (Sb)
k=0
This constrained optimization problem is solved using a steepest-descent, integer program-
ming algorithm developed by Trushkin [8]. The bit assignment maps b%, s = 1,2,..., M,
are used in encoding the transform coefficients in step (5) of the coding algorithm.
The scheme described in this section is similar to that of [2], in which the speech signal
is modeled as an autoregressive Gaussian hidden Markov process. A brief description of

this system is provided below.

3.3 HMM-Based Adaptive Scheme

In [2], the speech process is modeled by an autoregressive Gaussian hidden Markov model
(AGHMM). This process is described by a finite-state homogeneous Markov chain associ-
ated with each state of which is an L-dimensional vector source corresponding to the output
of a p'f-order stationary Gaussian source [4]. In the AGHMM-based block transform cod-
ing scheme, the state of the underlying Markov chain is estimated for each frame based on
a maximum likelihood state estimation procedure. Then an optimum bit assignment map
which depends on the state is used to quantize the transform coeflicients associated with

the frame.
Subsequently, we shall refer to the scheme described in [2] by AGHMM-LMBTC;

LMBTC will jointly refer to LPCVQ-LMBTC and AGHMM-LMBTC. The basic difference
between AGHMM-LMBTC and LPCVQ-LMBTC is that in the latter we use an LPCVQ
in place of an AGHMM to model the short-term spectrum of speech. The LPCVQ-based
scheme was motivated mainly due to numerical problems associated with the design of the
AGHMM for large M and long training sequence and also, because the design of AGHMM-
LMBTC was found to be computationally more expensive than LPCVQ-LMBTC.

4 Entropy-Coded Adaptive BTC Scheme

In the LMBTC scheme described in the previous section, the transform coefficients are
quantized using zero-memory Lloyd-Max quantizers. In this section, we consider entropy-

coded zero-memory quantization of the transform coefficients. The entropy-coded BTC
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system (ECBTC), as is confirmed by the simulation results of Section 5, results in an
improved performance in the rate-distortion theoretic sense in comparison with LMBTC.
The reason for the improvement is twofold. First, the optimum zero-memory entropy-
constrained quantizer performs better than the zero-memory Lloyd-Max quantizer since it
is optimal in the rate-distortion theoretic sense. Second, the bit-rate associated with each
scalar quantizer in ECBTC is not constrained to be an integer as in the case of LMBTC; the
removal of this constraint leads to additional performance improvements. In what follows,
we provide the details of the adaptive ECBTC scheme.

Let us assume that when the system is in state s, the k*® transform coefficient is
quantized by means of an optimum entropy-constrained zero-memory quantizer with output
entropy H,j bits/sample. Thus, according to Shannon’s noiseless source coding theorem
[12], the average number of bits necessary to represent the output of the k** quantizer in
state s is H, bits/sample. Also, let Js,k(H,,k) be the variance-normalized MSE associated
with quantizing the k*! transform coefficient when the system is in state s. Then our
problem is to find the optimum vector H} = (H}o, Hyy,..., Hi, )%, s=1,2,..., M,
that minimizes the average distortion given by

M L-1

. 1 5
D(H) = "E Z Z Ps/\s,kds,k(Hs,k)’ (6&)
s=1 k=0
subject to
1 M L-1
- Z; :";o PyH,i < Ry, (6.b)

where R,, is the constraint on the overall average output entropy, H is the matrix
(H;,Ha,...,Hy) and P, is the probability that the system is in state s.

Here, Js,k(Hs,k) and H;j are related to one another through the quantization thresholds
Tl(s'k), £=1,2,..., N,y —1 and the quantization levels Qgs’k), £=1,2,..., N, where
N, is the number of levels associated with the k"™ quantizer in state s. Solving the
problem described by (6) involves the determination of % LZ_:I(QN&,;c — 1) threshold levels
and quantization levels, which in general is very diﬂicults.=1 =

It is shown by Gish and Pierce [13] that at high bit rates and for a large number of
quantization levels, the optimum quantizer has uniformly spaced levels. Furthermore,

the experimental results of Farvardin and Modestino .[14] have revealed that, for a

wide class of memoryless sources, even at low bit rates, uniform-threshold quantizers



(UTQ’S)T perform very close to the optimum performance for large N. In view of these ob-
servations, we have used UTQ’s to quantize the transform coefficients. Let us use dy z (A, ;)
and Hs,k(A,,k) to denote, respectively, the MSE and output entropy of the UTQ with step-
size A, for the k*® transform coefficient and state s. Then the problem posed by (6) is

reformulated as that of determining A* to minimize

1ML1

——ZZP/\Skdsk sk) (7.a)

s—'l k=0
subject to

T Z Z PoHo(Ask) < Rao, (7.b)

L 3=

where A = (A1,A2,...,Apy) and Ay = (D50, Ag1y-- -, As11)T, s =1,2,..., M.
It is also shown by Gish and Pierce [13] that in zero-memory quantization of memoryless
sources, when the number of quantization levels is large and when the output entropy is
high, under certain mild conditions on the source p.d.f, the variance-normalized MSE and

output entropy can be expressed as a function of quantizer stepsize according to

. A%y
d(Asx) = 12/\Sk (8.2)
and
H(A, ) = hyp —log, A, g, bits/sample, (8.b)

where A, is the differential entropy associated with the &*" transform coefficient in state
s. Invoking Kuhn-Tucker theorem [15] and using the approximate expressions of (8) we

obtain

1
= -Fal =12 ...,M, k=0,1,...,L -1, (9.a)

/\s,k

where

ML
Z Z Phs . (9.b)

s=1 k=0
For reasons discussed before, the transform coeflicients will be Gaussian and the differential
entropy h;x is given by
1
hex = §log2 2meAs k, bits/sample.

TAn N-level UTQ is a symmetric quantizer with T, — Ty = A, £ = 2,..., N —1, and @,’s as the
center of probability mass of their respective quantization interval.



The operation of the ECBTC system is the same as the LMBTC scheme with only one
difference that we use entropy-coded zero-memory quantizers for encoding the transform
coefficients in ECBTC in place of zero-memory Lloyd-Max quantizer as in the LMBTC
system.

Note that for any state s, A} in ECBTC will determine the quantizers’ operating
rate similar to b} in LMBTC. Our simulation results revealed that for A,; < 1.0 the
actual MSE and output entropy are well approximated by the expressions in (8); for larger
values of A,, the differences between the actual results and those suggested by (8) were
more noticeable. However, the transform coefficients with large values of A, have small
variances and their contribution to the overall system performance is masked by that of
coefficients with large variance (small stepsize). Therefore, the exact expression for d(A, ;)
and H (As ) for large A, is not very critical as far as the overall system performance is
concerned. For simplicity of analysis, therefore, we have used expressions (8) for all values
of Ag k.

The above analysis holds for AGHMM-based BTC scheme of [2] as well as the LPCVQ-
based BTC described in Section 3. Hereafter, we refer to ECBTC system based on LPCVQ
by LPCVQ-ECBTC, while AGHMM-ECBTC refers to ECBTC based on AGHMM. The

simulation results for the two schemes are provided in the next section.

5 Simulation Results

We performed extensive simulations to compare the LPCVQ-based BTC systems of Sections
3 and 4 with the schemes described in [1] and [2]. The performance measures used are
signal-to-noise ratio (SNR) and segmental signal-to-noise ratio (SNRSEG). We denote by

beot the total average bit rate including the overhead information (b,4), i.€., biot = bay + ok

5.1 Performance on the in-training test sequence

The AGHMM- and LPCVQ-based BTC systems were designed for p = 10, L = 128 and
M = 1,2,4,8,16 and 32. The database used for these designs was a sequence of speech
samples consisting of 60 seconds of speech sampled at 8 KHz and uttered by two male

speakers.
The performances of the LPCVQ-LMBTC and AGHMM-LMBTC on the training se-

quence are tabulated in Table 1. We also include the performance results obtained using the
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scheme of [1] (denoted by Z-N) for comparison purposes. Study of Table 1 indicates that at
bio: = 1.25 bits/sample AGHMM-LMBTC performs better than LPCVQ-LMBTC in terms
of SNRSEG by about 1 dB on the average, while in terms of SNR, LPCVQ-LMBTC out-
performs AGHMM-LMBTC by 2.5 dB on the average. Subjectively, the two schemes are
comparable. However, the design of the LPCVQ-LMBTC is found to be computationally
less expensive than the AGHMM-LMBTC. Both LPCVQ-LMBTC and AGHMM-LMBTC
with M = 32 perform better than the Z-N scheme at b;,; = 1.25 bits/sample . Under
these conditions, LPCVQ-LMBTC is 1.36 dB better than Z-N in terms of SNRSEG, while
AGHMM-LMBTC is better by over 2 dB. The SNR for LPCVQ-LMBTC is about 5 dB
higher than Z-N scheme, while AGHMM-LMBTC performs better by over 3 dB. The study
of tabulated results in Table 1 shows a similar trend at b;,; = 2.25 bits/sample.

The performance of LPCVQ-ECBTC, AGHMM-ECBTC and Z-N schemes for b;,; =
1.25 and 2.25 bits/sample are illustrated in Tables 2. In terms of SNRSEG, while LPCVQ-
ECBTC and AGHMM-ECBTC perform closely, the two schemes outperform the Z-N
scheme by over 3.5 dB when M = 32. On the average, LPCVQ-ECBTC performs better
than AGHMM-ECBTC and Z-N schemes by about 1 dB and 5 dB respectively, in terms of
the SNR. Subjectively, LPCVQ-ECBTC and AGHMM-ECBTC schemes are comparable
and both are noticeably superior to the Z-N scheme.

In order to assess the efficacy of LPCVQ-ECBTC f and LPCVQ-LMBTC for larger val-
ues of M, we designed LPCVQ’s for p = 10, L = 128 and M =1,2,4,8,16,32, 64,128, 256,
512,1024. In this case the training sequence consisted of several sentences uttered by 12
male and 10 female speakers. The database consisted of approximately 14 minutes of speech
sampled at 8 KHz.

Table 3 shows the performance of LPCVQ-LMBTC in terms of SNRSEG and SNR on
a test sequence of duration 60 seconds taken from the training sequence for b;,; = 1.25
bits/sample and 2.25 bits/sample. While AGHMM could not be trained for this long
database due to numerical problems encountered, we provide the performance of the Z-N
scheme for the sake of comparison. Actually the test sequence used is the same as the
training sequence described in the beginning of this section. From Table 3, it is observed
that for by = 1.25 bit/sample, LPCVQ-LMBTC outperforms Z-N scheme when M = 128;
for M = 1024, LPCVQ-LMBTC is better than Z-N scheme by 2 dB in SNRSEG and by

TWe could not obtain results for LPCVQ-ECBTC system with M greater than 256 due to limitation
on computing facility.
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6 dB in SNR. The trend is similar for b;,; = 2.25 bits/sample. For M = 1024, SNRSEG
difference is 1.75 dB, while SNR differs by 10 dB.

The performance of LPCVQ-ECBTC system on the training sequence is tabulated in
Table 4. LPCVQ-ECBTC performs considerably better than the Z-N scheme in both
subjective and objective sense. For M = 128 and b, = 2.25 bits/sample, improvements
in terms of SNRSEG and SNR are of the order of 5.5 dB and 11 dB, respectively. An
interesting observation is that even with a one-codevector codebook (no adaptation of bit
assignment maps), LPCVQ-ECBTC performs better than the Z-N scheme at b,,; = 1.25
and 2.25 bits/sample.

5.2 Performance on the out-of-training test sequence

The performance of LPCVQ-LMBTC on a test sequence chosen from outside the training
sequence is summarized in Table 5. The test sequence was 55 seconds of speech sampled
at 8 KHz. It consisted of three different sentences spoken by six male and three female
speakers. The performance results of the Z-N scheme on the same test sequence is also
included for comparison purposes. It is observed that for b;,; = 1.25 and 2.25 bits/sample,
the SNRSEG of LPCVQ-LMBTC with M = 1024 is close to that of Z-N scheme, while the
SNR is better by about 3 dB at &;,; = 1.25 bits/sample and 4 dB at b;,; = 2.25 bits/sample.
Subjectively, LPCVQ-LMBTC is slightly better than Z-N.

Table 6 shows the performance of LPCVQ-ECBTC on the aforementioned test sequence.
These results clearly highlight the superiority of the LPCVQ-ECBTC system. Even with
M =1, LPCVQ-ECBTC system performs better than the Z-N scheme and when M = 128,
increase in SNRSEG over Z-N system is 4 dB at b;,; = 1.25 and 5.5 dB at b,y = 2.25
bits/sample. The corresponding improvements in SNR are 8 dB and 11 dB, respectively.

Also comparisons of Table 5 with Table 6 and Table 1 with Table 2 support our earlier
contention that ECBTC scheme is better than LMBTC. For example, study of Table 5
and 6 shows that at b;,; = 1.25 bits/sample, LPCVQ-ECBTC with M = 256 outperforms
LPCVQ-LMBTC with M = 1024 by 4.5 dB in SNRSEG and 5.5 dB in SNR and when
M = 256 for both systems (for fair comparison), the corresponding figures are 5.5 dB and
6 dB, respectively.
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6 Summary and Conclusions

We have used LPCVQ to design an adaptive block transform speech coding system. The
basic operation of this scheme is similar to the scheme described in [2] where an AGHMM
was used to model the source. The LPCVQ-based system was motivated mainly due to
certain design problems with AGHMM for large values of M. We have also developed an
entropy-coded version of this adaptive BTC scheme. The simulation results indicate that
the LPCVQ-ECBTC performed better than LPCVQ-LMBTC by at least 3 dB in both SNR
and SNRSEG; similar behavior is observed for the AGHMM-based scheme. Furthermore,
both AGHMM- and LPCVQ-based BTC schemes performed better than the Z-N scheme.
The most interesting results are obtained for LPCVQ-ECBTC (with large M). This scheme
offers significant objective and subjective improvements over Z-N for test data from inside

and outside the training sequence.
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bor = 1.25 bror = 2.25

AGHMM-LMBTC | LPCVQ-LMBTC || AGEMM-LMBTC | LPCVQ-LMBTC
M |SNRSEG SNR |SNRSEG SNR [[SNRSEG SNR |SNRSEG SNR
1 15.17 11.97 13.21  14.59 18.57 14.33 18.23  18.38
2 14.91 12.06 13.14  14.73 19.85 15.37 19.42  19.69
4 16.46 13.57 15.27  15.88 21.80 17.18 21.12 21.58
8 16.80 13.73 15.22 16.81 22.47 17.37 21.55  23.18
16 17.47 14.76 16.27  17.54 23.62 18.76 22.46  24.07
32 17.85 16.04 17.13° 17.78 24.00 20.27 23.28  24.63

[Z-N] 15.77 12.86 | [ 22.56 17.63 |

Table 1: SNRSEG and SNR Performance of Different Adaptive BTC Schemes at by, =
1.25 and 2.25 bits/sample on the Training Sequence.

btot = 125 btot = 225

AGHMM-ECBTC | LPCVQ-ECBTC | AGHMM-ECBTC | LPCVQ-ECBTC
M | SNRSEG SNR |SNRSEG SNR || SNRSEG SNR | SNRSEG SNR
1 16.25 16.77 16.54 17.91 22.24 20.70 22.71 23.75
2 17.28 17.36 18.01 18.80 23.60 21.31 24.63 25.36
4 18.26 18.01 18.37 19.22 25.16 21.95 25.10 25.99
8 18.64 18.23 18.57 19.41 25.60 22.43 25.58 26.53
16 18.86 18.44 19.04 19.84 26.41 22.51 26.20 26.91
32 19.20 18.78 19.35 20.12 26.48 22.67 26.61 26.93

[ZN] 1577  12.86 | [ 2256  17.63 | ]

Table 2: SNRSEG and SNR Performance of ECBTC and Z-N Schemes at b;,; = 1.25

and 2.25 bits/sample on the Training Sequence.
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LPCVQ-LMBTC
btot = 125 btot - 225
M | SNRSEG SNR || SNRSEG SNR
1 10.01  13.06 14.94  17.63
2 10.54  13.64 16.63  19.59
4 12.89  15.06 18.67  20.20
8 14.33  15.86 20.39  22.04
16 14.80  16.60 20.41  23.35
32 15.28 16.95 21.38  24.04
64 15.66  16.99 21.98  24.11
128 16.40  17.53 22.65  24.35
256 17.03  17.85 23.22  24.83
512 17.36  18.27 23.98  25.82
1024 | 17.70  18.63 2428  27.39
[Z-N] 1577 1286 | 2256  17.63 |

Table 3: Performance of LMBTC and Z-N
Schemes at b,,; = 1.25 and 2.25 bits/sample
on a Test Sequence Chosen from the Training

Sequence.
LPCVQ-ECBTC
bior = 1.25 biot = 2.25
M | SNRSEG SNR || SNRSEG SNR
1 16.30  17.65 22.76  23.95
17.67  18.70 2452  25.65
4 1791 18.69 25.28  26.24
8 18.18  18.94 25.53  26.33
16 18.65  19.42 26.28  27.00
32 18.95  19.71 26.58  27.28
64 19.19  19.93 27.44  28.14
128 | 19.76  20.50 27.92  28.57
256 |  20.23  20.98
[Z-N] 1577 12.86 [ 22.56  17.63 |

Table 4: Performance of ECBTC and Z-N
Schemes at b, = 1.25 and 2.25 bits/sample
on a Test Sequence Chosen from the Training
Sequence. '
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LPCVQ-LMBTC

btot = 125 btot = 225
M | SNRSEG SNR || SNRSEG SNR
1 7.81 10.13 11.54 13.72
2 7.82 10.04 12.00 14.16
4 8.94 11.01 13.01 15.40

8 10.28 11.72 14.59 16.06
16 10.58 11.97 15.08 17.06
32 11.38 12.29 16.21 17.32
64 11.71 12.65 17.08 18.07
128 12.76 12.96 18.04 18.38
256 13.44 13.03 18.37 18.68
512 13.90 13.29 19.57 19.25

1024 14.66 13.39 20.21 19.35

[Z-N] 1423 1021] 20.16 15.03 |

Table 5: Performance of LMBTC and Z-N
Schemes at b,y = 1.25 and 2.25 bits/sample
on a Test Sequence Chosen from Outside the
Training Sequence.

LPCVQ-ECBTC
biot = 1.25 bior = 2.25
SNRSEG SNR || SNRSEG SNR
14.79 14.83 20.25 20.68
16.10 15.92 21.60 22.28
16.55 16.28 22.47 22.72
17.08 16.85 23.23 23.36
17.23 17.03 23.43 23.69
17.52 17.33 24.26 24.47
64 17.95 17.96 2448 25.01
128 18.25 18.36 24.86 25.43
256 19.11 19.13

[Z-N] 1423 1021 20.16 15.03 |

B 5 oo | ol =

Table 6: Performance of ECBTC and Z-N
Schemes at b;,; = 1.25 and 2.25 bits/sample
on a Test Sequence Chosen from Outside the
Training Sequence. ’
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