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The present thesis discusses the consensus problem from a unification per-

spective. A general stability theory is developed discussing the majority of linear

and nonlinear consensus networks with emphasis on the rate of convergence as an

explicit estimate of the systems’ parameters.

The discussion begins from the classical deterministic linear consensus problem

in discrete and continuous-time setting. Vital assumptions are dropped and new

types of non-uniform convergence are proven. All the related past results turn out

to be only special cases of the developed framework, the central contribution of

which is the derivation of explicit estimates on the rate of convergence. We proceed

with the study of communication regimes that are governed by stochastic measures

and we show that this setup is general enough to include many proposed stochastic

settings as special cases. We highlight the strong interdependence between stochastic

and deterministic signals and comment on how the imposed probabilistic regularity

simply recaptures the deterministic sufficient conditions for consensus.



An important variant of the linear model is the delayed one where it is dis-

cussed in great detail under two theoretical frameworks: a variational stability anal-

ysis based on fixed point theory arguments and a standard Lyapunov-based analysis.

The investigation revisits scalar variation unifying the behavior of old biologically

inspired model and extends to the multi-dimensional (consensus) alternatives. We

compare the two methods and assess their applicability and the strength of the

results they provide whenever this is possible.

The obtained results are applied to a number of nonlinear consensus networks.

The first class of networks regards couplings of passive nature. The model is consid-

ered on its delayed form and the linear theory is directly applied to provide strong

convergence results. The second class of networks is a generally nonlinear one and

the study is carried through under a number of different conditions. In additions the

non-linearity of the models in conjunction with delays, allows for new type of syn-

chronized solutions. We prove the existence and uniqueness of non-trivial periodic

solutions and state sufficient conditions for its local stability. The chapter concludes

with a third class of nonlinear models. We introduce and study consensus networks

of neutral type. We prove the existence and uniqueness of a consensus point and

state sufficient conditions for exponential convergence to it.

The discussion continues with the study of a second order flocking network of

Cucker-Smale or Motsch-Tadmor type. Based on the derived contraction rates in the

linear framework, sufficient conditions are established for these systems’ solutions to

exhibit exponentially fast asymptotic velocity. The network couplings are essentially

state-dependent and non-uniform and the model is studied in both the ordinary and



the delayed version. The discussion in flocking models concludes with two “noisy”

networks where convergence with probability one and in the rth square mean is

proved under certain smallness conditions.

The linear theory is, finally, applied on a classical problem in electrical power

networks. This is the economic dispatch problem (EDP) and the tools of the linear

theory are used to solve the problem in a distributed manner. Motivated by the

emerging field of Smart Grid systems and the distributed control methods that are

needed to be developed in order to fit their architecture we introduce a distributed

optimization algorithm that calculates the optimal point for a network of power

generators that are needed to operate at, in order to serve a given load. In particular,

the power grid of interconnected generators and loads is to be served at an optimal

point based on the cost of power production for every single power machine. The

power grid is supervised by a set of controllers that exchange information on a

different communication network that suffers from delays. We define a consensus

based dynamic algorithm under which the controllers dynamically learn the overall

load of the network and adjust the power generator with respect to the optimal

operational point.
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Chapter 1: Introduction

Self-organized dynamics lie in the core of modern complex dynamical systems, a

most interesting branch of which is their application in the field of networked control

systems.

Examples of networks that illustrate a collective behavior as a result of local

interaction among the nodes of the network are ubiquitous both in nature and in

human societies. Ants cooperate together to form a nest or to transfer provisions

and birds form flocks and fly together enhancing their hunting abilities. Humans

interact and socialize by exchanging opinions and sometimes may converge to a

fairly common view (especially after choosing a leader). Engineers build mobile

communication or robotic networks which coordinate their behavior by local ex-

change of information. These are all examples of what in the control community is

called collaborative control of multi-agent systems. The self-organized aspect of the

aforementioned examples is usually understood by a decentralized, local exchange

of information. The central phenomenon is the manner with which agents, as indi-

viduals, exchange information on a state of interest and update this state, so that

eventually all agents’ states concentrate around a common value. These problems

are known as consensus problems and enjoy a durable interdisciplinary interest in

1



the applied sciences. As a result several mathematical models have been introduced

to appraise the so-called emergence of consensus among agents.

The problem of consensus is very old in the literature and it has been pro-

posed under numerous variations. From the classical linear model to complex non-

linear variations, all these systems basically sustain a common underlying mecha-

nism that essentially characterizes the asymptotic convergence to a common value.

Researchers use consensus-based algorithms to model the computational aspect of

biological, robotic, social and other communication networks in the process of ex-

changing information in order to agree on a particular state of interest. From the

seminal work of Tsitsiklis et al. on distributed computation [17] to the monograph

of Smith on the Theory of Competitive and Cooperative Systems [18] and from the

biological model of bird co-ordination, proposed by Vicsek et al. [19] to the math-

ematical proof for its asymptotic speed alignment proved by Jadbabaie et al [20]

and from there to an ocean of related results, consensus systems carry the beacon

of research in the networked control community and applied mathematics for over

20 years.

The related mathematics, however, go even more back in time. The term

“consensus” was initially introduced in the work of DeGroot [21] in 1974 whereas

the central mathematical concept was first appeared in a paper of Markov [22] in

1906. This tool, known as the contraction coefficient, measures the contraction effect

of a stochastic matrix applied on a vector with respect to a particular sub-space.

Despite the enormous literature in consensus networks there is still a number

of aspects of the problem yet to be explored. For instance, while the question of con-
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vergence and its sufficient conditions is pretty clear, the rate at which this happens

remains open for the generic case of the continuous-time model, even in its linear

version. This issue is not only important in real world applications but also vital

in certain nonlinear 2nd order consensus systems, known as flocking networks, for

proving simple asymptotic convergence. The same question is yet to be answered

in an important variation of the problem that involves delayed signals. All these

questions can be repeated for nonlinear variations of the problem causing a multi-

plicative increase on the new research problems, a researcher is called to shed light

upon. Furthermore, stochastic variations are to be considered within a universal

framework the special cases of which are the very many probabilistic setups for the

network communication topology proposed in the literature.

1.1 Contribution of the Thesis

The present thesis discusses the consensus problem from its most fundamental form

and develops a general theory for the stability of the solutions of these systems.

The analysis concentrates on the rate of convergence as an explicit estimate of the

systems parameters.

The discussion begins from the classical deterministic linear consensus problem

in discrete and continuous-time setting. Vital assumptions are dropped and new

types of non-uniform convergence are proven. All the related past results turn out

to be only special cases of the developed framework, the central contribution of

which is the derivation of explicit estimates on the rate of convergence. We proceed
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with the study of communication regimes that are governed by stochastic measures

and we show that this setup is general enough to include many proposed stochastic

settings as special cases. We highlight the strong interdependence between stochastic

and deterministic signals and comment on how the imposed probabilistic regularity

simply recaptures the deterministic sufficient conditions for consensus.

An important variant of the linear model is the delayed one where it is dis-

cussed in great detail under two theoretical frameworks. The connection between

the different types of delays that are present in linear system and their effect on

the stability of the solutions is the main objective of the discussion. The study of

stability with emphasis on the rate of convergence leads us to investigate a scalar

functional equation and effectively a very old problem on the subject of delayed

differential equations with asymptotically constant solutions emanating from math-

ematical biology and population growth models. The stability analysis is based on

fixed point theory for the linear time invariant case and on a Lyapunov-Razumikhin

argument for the general linear case. The results that were derived for the scalar

case are extended to the multidimensional one, i.e. the consensus networks. We

compare the two methods and assess their applicability and the strength of the

results they provide whenever this is possible.

The obtained results are applied to a number of nonlinear consensus networks.

The first class of networks regards couplings of passive nature. The model is consid-

ered on its delayed form and the linear theory is directly applied to provide strong

convergence results. The second class of networks is a generally nonlinear one and

the study is carried through under basically two sets of conditions. The first set will
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be called “non-monotonic” and it is considered as a small deviation of the linear

consensus system. The analysis relies on stability in variation and fixed point theory.

The second set of assumptions is imposed on the first derivative of the nonlinear

coupling functions and it essentially enables certain crucial features of the behavior

of solutions in the classical linear consensus systems. Non-linearity allows for new

type of synchronized solutions. We prove the existence and uniqueness of non-trivial

periodic solutions and state sufficient conditions for its local stability. The chapter

concludes with a third class of nonlinear models. We introduce and study consensus

networks of neutral type. We prove the existence and uniqueness of a consensus

point and state sufficient conditions for exponential convergence to it.

The analysis continues with the study of a second order flocking network of

Cucker-Smale or Motsch-Tadmor type. Based on the derived contraction rates in the

linear framework, sufficient conditions are established for these systems’ solutions to

exhibit exponentially fast asymptotic velocity. The network couplings are essentially

state-dependent and non-uniform and the model is studied in both the ordinary and

the delayed version. The discussion in flocking models concludes with two “noisy”

networks where convergence with probability one and in the rth square mean is

proved under certain smallness conditions.

The linear theory is, finally, applied on a classical problem in electrical power

networks. This is the economic dispatch problem (EDP) and the tools of the linear

theory are used to solve the problem in a distributed manner. Motivated by the

emerging field of Smart Grid systems and the distributed control methods that are

needed to be developed in order to fit their architecture we introduce a distributed
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optimization algorithm that calculates the optimal point for a network of power

generators that are needed to operate at, in order to serve a given load. In particular,

the power grid of interconnected generators and loads is to be served at an optimal

point based on the cost of power production for every single power machine. The

power grid is supervised by a set of controllers that exchange information on a

different communication network that suffers from delays. We define a consensus

based dynamic algorithm under which the controllers dynamically learn the overall

load of the network and adjust the power generator with respect to the optimal

operational point.

1.2 Organization of the Thesis

In the rest of this introductory note I briefly present the chapters the thesis consists

of.

Chapter 2 develops the basic principles that will be used throughout this work.

We introduce basic notations and definitions and we review the main concepts that

will come at hand from various mathematical theories. The contribution is a number

of non-trivial extensions of the central mathematical concept of the contraction

coefficient. These results constitute the foundation of the analysis on which the

main theorems of the subsequent sections rely.

Chapter 3 discusses the linear consensus model in the discrete and the continuous-

time settings, under both deterministic and stochastic variants.

Chapter 4 introduces the problem of delays in consensus networks and studies

6



its effect on the stability and rate of convergence.

Chapter 5, 6 and 7 are applications of the results obtained in Chapter 3 and

Chapter 4.

Chapter 5 examines the first three types of nonlinear models, i.e. passive

systems, general nonlinear systems and systems of neutral type.

Chapter 6 nonlinear second order consensus (flocking) networks.

Chapter 7 applies the results of Chapter 4 to solve the EDP in a distributed

manner and a Smart-Grid compatible setup.

Finally, in Chapter 8 an overall discussion is held where the derived results

are enveloped and open questions and prospects for future research are posed.
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Chapter 2: Fundamentals

This thesis employs various mathematical theories in order to state its results in a

rigorous way. Consequently, a large number of notations and symbols will be used,

the majority of which will be defined locally. On condition that there is no direct

notation conflict, each chapter will preserve its own nomenclature. Nevertheless,

some symbols are to be reserved globally representing common ground concepts.

Here, we introduce these universal symbols and we review elements of mathematical

theories and fields that will come at hand throughout this work.

The purpose of this chapter is, therefore, primarily preparatory. It introduces

the basic symbols and it serves as a quick reference of the results, the main chapters

of the thesis rely on. The contribution of this chapter is limited. We provide a

number of generalizations of the contraction coefficient. Additionally, a secondary

result on the completeness property of a metric space will be provided.

The discussion is drawn from classical textbooks such as [23, 24, 25] for Graph

Theory and Algebraic Methods in Multi-Agent Systems, [26, 27, 28] for the theory

of Non-Negative Matrices and the contraction coefficient, [29, 30] for Dynamical

Systems Theory, [31, 32, 33] for Stochastic Differential Equations, [34, 35, 36] for

Fixed Point Theory and applications in the Stability of Differential Equations and
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[37] for Convex Analysis and Linear Inequatilies.

2.1 Notations and Definitions

Z denotes the set of integers, N the set of natural numbers and R the set of the real

numbers. For N ∈ N

[N ] := {1, . . . , N}

denotes the set of the first N positive integers. RN is the N -dimensional Euclidean

space and x ∈ RN is considered as a column vector, unless otherwise stated. The

agreement or consensus space ∆ ⊂ RN is defined as

∆ = {x ∈ RN : x1 = x2 = · · · = xN}

A rank-1 matrix is the N × N matrix M that has identical rows. For a rank-1

matrix M , Mx ∈ ∆, ∀ x ∈ RN . The spread of a vector x ∈ RN is

S(x) = max
i
xi −min

i
xi. (2.1)

This quantity will serve as a pseudo-norm for the stability analysis to follow. Indeed

it is always non-negative and satisfies the triangle inequality, but

S(x) = 0⇔ x ∈ ∆.

By 1 we understand the N−dimensional vector with all entries equal to 1 and

obviously S(1c) = 0 for any c ∈ R. IN×N stands for the N × N identity matrix,

|| · ||p stands for p-norm so that xTx = ||x||22. | · | will usually denote the absolute

value of a number and || · || an arbitrary norm of a linear space.
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For a closed subset I of R, L1(I,RN) denotes the space of integrable functions

defined on I and taking values in RN . Similarly C l(I,RN) denotes the space of

functions with l ≥ 0 continuous derivatives defined accordingly. For z ∈ L1 or

z ∈ C l we define the set

WI,z =
[

max
i

max
s∈I

zi(s),min
i

min
s∈I

zi(s)
]

in particular if I = {t} is a singleton then we will use the notation

Wt,z =
[

min
i
zi(t),max

i
zi(t)

]
.

The length of WI,z is the spread of z

SI(z) = max
i

max
s∈I

zi(s)−min
i

min
s∈I

zi(s). (2.2)

This is a natural generalization of (2.1). It serves as a pseudonorm with respect to

the agreement function space

∆I =
{
z ∈ L1(I,RN) : zi(t) = zj(t), t ∈ I, i = 1, . . . , N

}
.

For function spaces the norm is defined to be the as |z| = supt∈I |z(t)|.

Let for any t ∈ R, xt ∈ L1(I,RN) or C1(I,RN) for some compact I ⊂ R

defined as xt(s) = x(t+ s), s ∈ I. We will write

x(t)→ ∆ as t→∞ ⇔ xi(t)→ k, i = 1, . . . , N as t→∞

for some k ∈ R.

Due to potential discontinuities in the systems’ parameters, the solutions of

continuous-time dynamics are occasionally defined to be absolutely continuous func-

tions of time. The appropriate time derivative d
dt

to be used is the upper righ Dini

11



derivative. For a real-valued function f(t) this is defined as

d

dt
f(t) = lim sup

h→0+

f(t+ h)− f(t)

h
.

The thesis systematically discusses the asymptotic behavior of solutions of

differential equations emphasizing on the rate of convergence. For fixed t0 ∈ R,

a rate function h : [t0,∞) → [1,∞) is an integrable function with h(t0) = 1,

monotonically increasing so that h(t)→∞ as t→∞. An example of rate function

is the exponential eθ(t−t0) for some θ > 0 that will be reserved to denote the explicit

rate estimate.

2.2 Algebraic Graph Theory

By a topological directed graph G we define the pair ([N ], E) where [N ] is the (static)

set of nodes or nodes, E = {(i, j) : i, j ∈ [N ]} is the set of edges where (i, j) 6= (j, i) .

The degree Ni of a node i ∈ [N ] is defined as the subset Ni := {j ∈ [N ], (i, j) ∈ E},

all the nodes adjacent to i. The graph G is routed-out branching if there exists a

node i ∈ [N ] (called the route of the graph) such that for any j 6= i ∈ [N ] there is

a path of edges (lk, lk−1)|mk=0 such that l0 = i and lm = j. The graph G is connected

if any node is a route. For two graphs G1 = ([N ], E1) and G2 = ([N ], E2), we say

that G1 is a sub-graph of G2 if E1 ⊂ E2. The adjacency matrix A is a 0− 1, N ×N

matrix with elements Aij = 1 ⇔ (i, j) ∈ E. The degree matrix D := Diag
[
di
]
.

Finally, the Laplacian of G is the matrix L := D − A with the sum of its rows be

identically equal to zero. The spectral properties of L are vital in this work. In

particular, 0 is a always an eigenvalue of L and for any other eigenvalue λ ∈ C of

12



L it holds that <{λ} > 0 if and only if G is connected (see also Proposition 2.2.1,

below).

Let us now introduce a terminology that comes from the theory of non-negative

matrices and describes similar ideas. We say that two nodes i, j ∈ [N ] communicate

if there is a path from i to j and a path from j to i. A node is essential if whenever

there is a path from i to j then there is a path from j to i. A node is called inessential

if it is not essential. All essential nodes are divided into communication classes and

all inessential nodes that communicate with at least one node may be divided into

inessential classes such that all nodes within a class communicate. All such classes

are self-communicating. Each remaining inessential node communicates with no

nodes and individually forms an inessential class called non self-communicating.

These definitions will also be of use in the present work.

By S we denote the family of graphs with fixed N nodes and self-edges on

every node, and by T ⊂ S the set of graphs each of which is routed-out branching.

A weighted graph is a graph where the edge between two nodes is associated

with a positive number. This coupling weight, or coupling rate, is a positive number,

usually denoted by aij, and it quantifies the effect of j on i. Unless otherwise specified

aii ≡ 0. The corresponding degree, the adjacency and the Laplacian matrices are

defined as D = Diag[
∑

j aij], A = [aij], L = D − A accordingly.
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2.2.1 Agreement dynamics

The term agreement dynamics will be used to describe the elementary static time

invariant linear consensus system:

ẋ = −Lx, x(0) = x0 ∈ RN (2.3)

where

L =



∑
j a1j −a12 −a13 . . . −a1N

−a21

∑
j a2j −a23 . . . −a2N

...
...

...
...

...∑
j aNj −aN2 −aN3 . . .

∑
j aNj


is the weighted Laplacian matrix and aij ≥ 0 are the constant coupling weights. The

dynamics of (2.3) can be analyzed by standard linear algebra tools (see for example

[38]), much of which is summarized below.

Proposition 2.2.1. Let G be a routed-out branching graph and denote by L its

Laplacian matrix. The following properties hold:

1. Lp = 0 if and only if p ∈ ∆.

2. The spectrum of L, {λi}|Ni=1, can be enumerated so that λ1 = 0 and

0 < <(λ2) ≤ <(λ3) ≤ · · · ≤ <(λN).

3. The left eigenvector of L, c is unique, up to normalization and non-negative

elementwise.
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4. There exists J > 0 : ||e−Lt − 1cT || ≤ Je−<(λ)t where <{λ} := <{λ2}, i.e. λ

stands for the eigenvalue with the smallest non-zero real part.

5. e−LtL is a Laplacian matrix that vanishes exponentially fast as t → ∞, with

rate no worse than <(λ).

Proof. For (1 ), (2 ) see Propositions 3.8 and 3.11 of [25] respectively.

For (3 ) we work as follows: (2 ) implies that the rank of L equals N − 1.

Then if c1, c2 are two left eigenvectors of L associated with the zero eigenvalue then

c1 = εc2 for some ε > 0. From the normalization condition cT1 1 = εc21 = 1 so

that in fact c1 = c2 and uniqueness follows. To conclude it suffices to show that the

elements of c are of the same sign. Assume, for the sake of contradiction that the

result does not hold and without loss of generality let c1, c2, . . . , cr be the negative

components of c. Then cT1 = 1 implies r ≤ N − 1. Next, cTL = 0 gives

N∑
j=1

aijci =
r∑
j=1

ajicj +
N∑
j=r

ajicj, i = 1, . . . , N

Take the sum of the first r equations and after cancelling the common terms observe

that the resulting equation has negative left hand-side and positive right hand side,

a contradiction. The zero terms of c were neglected as they play no role in the proof.

For (4 ), consider the Jordan canonical form of L := PJ(L)P−1 so that e−Lt =

Pe−J(L)tP−1 =. For the Jordan blocks, we know that J(λ1) = J(0) = 0 so that

both LP = PJ and P−1L = JP−1 have a zero first row. So the first row of P−1

is the left eigenvector c, canonicalized so that cT1 = 1 and the first column of L is

the right eigenvector of L chosen to be 1. The projection of any vector ζ onto ∆

is 1cTζ. Let L have q ≤ N distinct eigenvalues. Again λ1 = 0 and <{λi} > 0 for
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i ≥ 2. Since any ζ ∈ CN can be written as ζ = w1 + · · · + wq where wj ∈ M(λj),

the generalized eigenspace for λj and in particular, w1 = 1cTζ. Then by standard

calculations

e−Ltζ = 1cTζ +

q∑
j=2

e−λjt
ι(−λj)−1∑
k=0

(−L+ λjI)k
tk

k!
wj (2.4)

where ι(λj) is the maximum degree of the generalized vectors for λj. The rest of

the proof follows exactly this of Theorem 5.8 in [38].

For (5 ), observe that e−LtL is a Laplacian by the definition of the exponential

of a matrix and the fact that any power of a Laplacian matrix is Laplacian as

well as the sum of two Laplacian matrices is a Laplacian matrix. Finally, since

e−LtL = (e−Lt − 1cT )L we obtain

||Le−Lt|| ≤ ||L||Je−<(λ)t.

2.2.1.1 On Laplacians of non-negative symmetric matrices

In the special case of an undirected network, the Laplacian is a symmetric positive

semi-definite matrix with real spectrum: {0 < λ2 ≤ · · · ≤ λN} and this makes the

analysis significantly simpler[5, 7]. In particular,

c ∈ RN : ci ≥ 0,
∑
i

ci ≡ 1, cTL = 0⇒ c = 1
1

N

and the convergence to cTx0 is exponential with rate λ2 = λ. The second smallest

eigenvalue of a symmetric Laplacian L is called the Fiedler number of the adjacency
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matrix A [39] and its variational definition is

λ = inf
x/∈∆

xTLx

xTx
.

Clearly the Fiedler number is positive if and only if the corresponding graph G is

(simply) connected. See also [40, 39, 25]. For more on Graph Theory and relevant

methods on multi-agent systems, the interested reader is referred to [23, 24, 25].

2.3 Non-Negative Matrix Theory

A non-negative matrix P = {pij} is such that pij ≥ 0 for all i, j.1 The non-negative

matrix P is generalized stochastic, or m-stochastic, if

∑
j

pij = m, ∀ i = 1, . . . , N.

A crucial property of an m-stochastic matrix is that m is always an eigenvalue of

the matrix. For m = 1 we have the well-known stochastic matrix. Let M denote

the collection of m-stochastic matrices for some m ∈ R. We will now introduce and

discuss the standard mathematical tool that handles infinite products of stochastic

matrices.

Given an m-stochastic matrix P = [pij], the quantity

κ(P ) =
1

2
max
i,j

∑
s

|pis − pjs| = m−min
i,j

∑
s

min{pis, pjs} (2.5)

is the coefficient of ergodicity of P , a crucial set of properties of which is presented

below:

1Unless otherwise specified each matrix is supposed to be square and of dimension N ×N .
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Theorem 2.3.1. For any m-stochastic matrix P and z ∈ RN the following proper-

ties hold:

1. ||δP || ≤ κ(P )||δ||, for all real row vectors δ such that δ1 = 0.

2. S(Pz) ≤ κ(P )S(z)

3. |λ| ≤ κ(P ), for any (possibly complex) eigenvalue λ of P with the property

that λ 6= m.

Proof. See [26].

The coefficient of ergodicity measures the averaging effect of stochastic ma-

trices and it will play an instrumental role in the present thesis. The majority of

the convergence results are critically based on it. Its history dates back to one of

Markov’s first papers [22]. There exists an abundance of similar ideas in the liter-

ature: the coefficient of ergodicity is also known as contraction coefficient, Markov

coefficient, Dobrushin coefficient, Birkhoff coefficient, Hajnal diameter, as each cor-

responding researcher has arrived at it independently and/or under different setups,

[27, 28]. For a recent review on the coefficients of ergodicity we refer to [41].

Remark 2.3.2. Property 1 of Theorem 2.3.1 leads to the sub-multiplicative prop-

erty: If P1 and P2 are m-stochastic matrices, their product P1P2 constitutes an m2

stochastic matrix and it satisfies

κ(P1P2) ≤ κ(P1)κ(P2).

The sub-multiplicative property becomes particularly useful when m = 1 ex-

actly because the set of stochastic matrices becomes closed under matrix multipli-
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cation. As Theorem 2.3.1 suggests, the coefficient κ applies to dynamics of the

type

w = Pz (2.6)

with P being m-stochastic.

We will prove two important extensions of Theorem 2.3.1. The first one ex-

plains that similar results can be applied when (2.6) is replaced by a double inequal-

ity.

Theorem 2.3.3. Let P = [p
ij

] and P = [pij] be two m-stochastic matrices and

z,y ∈ RN . If Py ≤ z ≤ Py, then

S(z) ≤
(
m− min

h,h′∈[N ]

∑
j

min{p̄hj, ph′j}
)
S(y).

Proof. For fixed h, h′ ∈ [N ], zh − zh′ ≤
∑

j pjyj with pj := phj − ph′j.

Let j′,j′′ denote the indices in [N ] such that pj′ > 0 and pj′′ < 0 and note that∑
j pj ≡ 0.

0 < θ : =
∑
j′

pj′ =
∑
j′

|pj′ | = −
∑
j′′

pj′′ =
∑
j′′

|pj′′ | =

=
1

2

∑
j

|pj| =
1

2

∑
j

|pj| =
1

2

∑
j

|ph′j − phj|

and see that for appropriate h, h′ ∈ [N ]

S(z) = zh − zh′ = θ

(∑
j′ pj′yj′∑
j′ pj′

−
∑

j′′ pj′′yj′′∑
j′′ pj′′

)
≤ θS(y)

and the expression for θ = m − minh,h′∈[N ]

∑
j min{p̄hj, ph′j} can be obtained in

view of the identity |α − β| = α + β − 2 min{α, β} and the fact that P and P are

m-stochastic.
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The proof of Theorem 2.3.3 follows the steps of the original proof of the con-

tractive property of κ, provided by Markov in [22] (see also [26]).

Another extension of Theorem 2.3.1 considers the case when the P acts as an

abstract linear operator an appropriate space of functions and it is summarized in

the following result:

Theorem 2.3.4. Let I be a compact subset of R and assume that for any compact

I ′ ⊂ I, WI′ =
∫
s∈I′ P (s) ds ∈ M and WI is m-stochastic. If w =

∫
s∈I P (s)z(s) ds,

then

S(w) ≤ κ(WI)S(z∗)

for some z∗ =
(
z1(s1), . . . zN(sN)

)
for si ∈ I and

κ(WI) =
1

2
max
h,h′

N∑
k=1

∫
s∈I
|phk(s)− ph′k(s)| ds

= m−min
h,h′

N∑
k=1

min

{∫
s∈I

phk(s) ds,

∫
s∈I

ph′k(s) ds

} (2.7)

The proof of this result relies on the first mean value theorem for integration

and a technical lemma, both of which are cited below:

Lemma 2.3.5 (The first mean value theorem for integration). If G ∈ C0[J,R] and

φ is integrable that does not change sign on J then there exists x ∈ J such that

G(x)

∫
J

φ(t) dt =

∫
J

G(t)φ(t) dt.

We recall that two vectors x,y are sign compatible if xiyi ≥ 0 for all i.

Lemma 2.3.6. Suppose δ ∈ RN such that δT1 = 0 and δ 6= 0. Then there is an

index I = I(δ) of ordered pairs (i, j) with i, j ∈ [N ] such that

δT =
∑

(i,j)∈I

Tij
2

(ei − ej)
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where Tij > 0, ei is the row vector (0, . . . , 0, 1, 0, . . . , 0) with 1 at the ith position,

ei − ej is sign compatible to δ for all i, j. Thus ||δ||1 =
∑

(i,i)∈I Tij.

Proof. This is Lemma 1.1 of [26].

Proof of Theorem 2.7. Pick h, h
′ ∈ [N ]. Then for ph,ph′ the hth and h

′th rows of P

respectively, we have ∫
s∈I

(
ph(s)− ph′(s)

)
z(s) ds

Since N <∞, there is a partition {Il}ml=1 of I which depends on h, h′ such that for

any Il, phk(s) − ph′k(s) does not change sign in for s ∈ Il, k ∈ [N ] and it is not

identically zero. Then for fixed Il we apply Lemma 2.3.5 to obtain

∑
k

∫
s∈Il

(
phk(s)− ph′k(s)

)
zk(s) ds =

∑
k

∫
s∈Il

(
phk(s)− ph′k(s)

)
dszk(s

∗
k) = δTl z∗l

for some s∗k = s(Il, h, h
′) and

δTl =

∫
Il

(
ph(s)− p′h(s)

)
ds 6= 0, z∗l = (z1(s∗1), . . . zN(s∗N))T .

By Assumption
∫
Il
P (s) ds ∈ M and therefore δTl 1 = 0. Hence, Lemma 2.3.6 is

applied and together with the triangle inequality

|δTl z∗l | ≤
1

2
||δl||1S(z∗l )

(see also [26]). Then if we let S(z∗) = maxl S(z∗l ), we obtain the bound

S(w) = max
h,h′

∣∣∣∣ ∫
s∈I

(
ph(s)− ph′(s)

)
z(s) ds

∣∣∣∣
=
∑
l

|δTl z∗l | ≤ max
h,h′

1

2

∫
I

||ph(s)− ph′(s)||1dsS(z∗).

Finally, from the identity

|x− y| = x+ y − 2 min{x, y}, ∀x, y ∈ R
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and the fact that ∀h, h′ ∈ [N ]

∑
k

∫
s∈I

phk(s)ds =
∑
k

∫
s∈I

ph′k(s) ds = m

we get:

1

2
max
h,h′

∑
k

∫
s∈I
|phk(s)−ph′k(s)| ds =

= m−min
h,h′

∑
k

min

{∫
s∈I

phk(s) ds,

∫
s∈I

ph′k(s) ds

}
.

Similarly, for

w =

∫
s∈I1

P1(s)

∫
q∈I2(s)

P2(q)z(q) dqds

one can show following the proof of Theorem 2.3.4 that if

W
(2)
I =

∫
s∈I1

P1(s)

∫
q∈I2(s)

P2(q) dqds

is stochastic, then

S(w) ≤ κ(W
(2)
I )S(z∗)

for some z∗ =
(
z1(s

(1)
(ij)), z2(s

(2)
(ij)), . . . , zN(s

(N)
(ij))

)
all s

(l)
(ij) of which are in I1∪I2. Finally,

the sub-multiplicativity property for pairs of stochastic matrices of the particular

form discussed in this section, applies to expressions of the type

w =

∫
s∈I1

P1(s)

∫
q∈I2(s)

P2(q)z(q) dqds

so long as
∫
s∈I1 P1(s)

∫
q∈I2(s)

P2(q) dqds is stochastic.

Regardless if we are working with products of matrices in integrals or not, a

crucial point is to ask for which values {pij} does

κ < m.
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It is this feature that characterizes the contractive (averaging) nature of the stochas-

tic matrices and it is equivalent to

min
i,j

∑
s

min{pis, pjs} > κ > 0

for some constant κ that will denote this lower bound or the corresponding extension

in (2.7). The latter condition is true for any m-stochastic matrix P that possesses

a strictly positive column. These matrices are called scrambling and they lie in the

core of the analysis of non-homogeneous discrete Markov Chains [27, 28].

A note on the scrambling index The properties of stochastic matrices and their

products play a crucial role in the stability analysis held in the subsequent chapters

as they serve as an appropriate tool to model the various imposed communication

schemes. A standard approach for the characterization of these properties is through

graph theory: Any non-negative (and in particular stochastic) matrix P can be

represented as a graph GP with its adjacency matrix AP the elements of which

satisfy the property Aij = 1⇔ Pij 6= 0. For two stochastic matrices P1 and P2, we

write P1 ∼ P2 if GP1 = GP2 (consequently P1 = P2). This way we can study P from

the point of view of graph theory and use the terminology of § 2.2.

A non-negative matrix P is called irreducible if GP consists of a single essential

class and a stochastic matrix P is called regular if GP is routed-out branching.

A classical result in the theory of products of stochastic matrices is that for a

regular matrix P there is a power of it that makes it scrambling: i.e.

∃ γ ≥ 1 : κ(P γ) < 1
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so that from the sub-multiplicative property P n → 11
T c for some c ∈ R, as n→∞.

The power of P that makes it scrambling is known as the scrambling index and

the aforementioned statement on the asymptotic behavior of P t is the ergodic the-

orem of stochastic matrices [26]. As the product of stochastic matrices is stochas-

tic as well, the preceding notions can be extended to study the behavior of the

non-homogeneous products of stochastic matrices. We exclusively study backward

products of stochastic matrices defined as

Pp,h := Pp+hPp+h−1 · · ·Pp+1 = [pp,hij ]. (2.8)

for p ≥ 0, h ≥ 1.

We recall now the set S and its subset T . Let R = RN denote the cardinality

of T . Each member Gi of it has a scrambling index γi. In fact, T can be partitioned

in such mutually disjoint subsets: T =
⊔
v Yv so that for G1 ∈ Yz1 , G2 ∈ Yz2 , z1 6= z2

if and only if γz1 6= γz2 . Consequently, we can enumerate

1 = γ0 < γ1 < · · · < γmax ≤
[
N

2

]
For instance, Y0 is the subclass of routed-out branching graphs, each member GY0

of which has scrambling index, γ0 = 1, i.e. there exist i such that [GY0 ]ji ∈ EGY0
.

Next we note that for any G1,G2 ∈ T with G2 being a sub-graph of G1, it holds

that γ1 ≤ γ2, and thus we understand that by adding an edge to any graph, the

scrambling index will certainly not increase. In particular, there exists a sufficient

number of new edges that will decrease the scrambling index. Fix j < i. Then for

any Gi ∈ Yi there exists a positive number li,j such that the graph Gj formed out of

Gi with li,j additional edges will be a member of
⋃j
v=0 Yv, in which case γj ≤ γi− 1.
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Remark 2.3.7. The minimum number of edges needed to be added on an arbitrary

member of Yi so that the resulting graph is a member of
⋃i−1
v=0 Yv, denoted by

l∗ := maxi{li,i−1}.

The latter quantity is very important for the stability analysis of network con-

sensus systems, and characterizes the convergence rate estimates to be established.

For more on the dynamics of products of non-negative matrices the reader is referred

to [26, 27, 28].

2.4 Dynamical Systems Theory

Let (X,B, µ) be a finite measure space (that is µ(X) < ∞) and actually, without

loss of generality, we will take µ(X) = 1. We define a measurable transformation

T : X → X, as a map with the property that T−1(B) ⊂ B. T : X → X is measure

preserving if µ(T−1B) = µ(B) for any B ∈ B. A measure preserving transformation

is called ergodic if for any B ∈ B with the property that T−1B = B either µ(B) = 0

or µ(B) = 1.

For a collection of probability spaces,
{

(Xn,Bn, µn)
}
n≥0

, we define the product

probability space in the natural way: X =
∏

n≥0 Xn and a point χ ∈ X is considered

to be the sequence χ = χ0χ1χ2 . . . where χn ∈ Xn. The σ-algebra B(X) generated

by subsets of X is the product of σ-algebras Bi and it is defined as the intersection

of all σ-algebras that contain the collection of subsets of X:

J =

{ ∏
j≤n1−1

Xj ×
∏

n1≤j≤n2

Aj ×
∏

j≥n2+1

Xj

}

=
{
χ ∈ X : χj ∈ Aj, j ∈ [n1, n2]

}Aj∈Bj
0≤n1≤n2
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each of which is a measurable rectangle (or a cylinder). On each of the above rect-

angles we attach the value
∏n2

n=n1
µt(At) and this can be extended to a probability

measure µ on (X,B) in the standard way [30], concluding the definition of the prod-

uct probability space (X,B, µ). A measurable transformation T : X → X on the

product space, known as shift, is defined by

T (χ0χ1χ2 . . . ) = χ1χ2 . . .

and it may attain all the desired properties of measure preserving and ergodicity.

By T nχ we mean the element χnχn+1 . . . and we will also use the projection map

{T nχ} = χn, χn ∈ Xn.

For more on dynamical systems and ergodic theory we refer to [29, 30].

2.5 Fixed Point Theory

An arbitrary metric space is defined axiomatically.

Definition 2.5.1. A pair (M, ρ) is a metric space if M is a set and ρ : M ×M →

[0,∞) such that when x, y, z are in M then

(i.) ρ(x, z) ≥ 0, ρ(y, y) = 0 and ρ(y, z) = 0 implies y = z.

(ii.) ρ(y, z) = ρ(z, y) and

(iii.) ρ(y, z) ≤ ρ(y, x) + ρ(x, z)

A metric space is complete if every Cauchy sequence in M converges in M.

A set L in a metric space (M, ρ) is compact if each sequence {xn} ⊂ L has a sub-

sequence with limit in L.
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Definition 2.5.2. Let U be an interval on R and {fn} be a sequence of functions

with fn : U → RN .

(a) {fn} is uniformly bounded on U if there exists M > 0 such that |fn(t)| ≤ M

for all n and all t ∈ U .

(b) {fn} is equi-continuous if for any ε > 0 there exists δ > 0 such that t1, t2 ∈ U

and |t1 − t2| < δ imply |fn(t1)− fn(t2)| < ε for all n.

The definition provides the standard method for proving compactness accord-

ing to the following result that can be found in an text on real analysis.

Theorem 2.5.3. If {fn(t)} is a uniformly bounded and equi-continuous sequence

of real functions on an interval [a, b] then there is a sub-sequence which converges

uniformly on [a, b] to a continuous function.

Proof. See [35].

Since our t-intervals are possibly infinite, we need an extension of that result.

We can extend it by using a weighted norm as follows:

Theorem 2.5.4. Let R+ = [0,∞) and let q : R+ → R+ be a continuous function

such that q(t) → 0 as t → ∞. If {φk(t)} is an equi-continuous sequence of RN -

valued functions on R+ with ||φk(t)|| ≤ q(t) for t ∈ R+, then there is a sub-sequence

that converges uniformly on R+ to a continuous function φ(t) with ||φ(t)|| ≤ q(t)

for t ∈ R+.

Proof. See [34].
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Definition 2.5.5. An operator Q : M → M is a contraction in (M, ρ) if for any

y1, y2 ∈M

ρ(Qy1,Qy2) ≤ αρ(y1, y2)

for α ∈ [0, 1).

Banach’s fixed point theorem The major result of Fixed Point Theory is the fol-

lowing result also known as the Contraction Mapping Principle:

Theorem 2.5.6. Let (M, ρ) be a complete metric space and let Q : M→M to be a

contraction. Then there exists a unique y ∈M such that Qy = y.

In the present work we are interested in special types of spaces which we will

now prove that they attain this desired property by a verbatim use of the definition

of completeness.

Proposition 2.5.7. For any fixed γ, p, τ > 0, k ∈ R and ψ ∈ C0([−p, τ ],RN), the

pair (M, ρ)

M =

{
y ∈ B : y = ψ|[−p,τ ], sup

t≥τ
eγt||y(t)− 1k|| <∞

}
(2.9)

with

ρ(y1,y2) = sup
t≥−p

eγt||y1 − y2||, (2.10)

constitutes a complete metric space.

Proof. It is trivial to show that ρ as defined in (2.10) is a metric function according

to Definition 2.5.1. It then suffices to show that a Cauchy sequence in M has a limit
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in M. Let {φi} be such a sequence. Then

||φj(t)− φi(t)|| ≤ eγt||φj(t)− φi(t)|| ≤ ρ(φi, φj)

implies that φj(t) is a Cauchy sequence in (RN , || · ||) for all t, so φj(t) → φ(t).

We will show that φ ∈ M and this is the result of the following claims. The

first claim is to prove that φ is continuous: Given ε > 0 there exists Q such that

supt≥t0 ||φi(t)− φj(t)|| < ε for j, i > Q. Fix such j > Q and let i →∞ from above

we get ||φ(t)−φj(t)|| < ε for all t. So φk ⇒ φ and thus φ is continuous.2 The second

claim is that φ is bounded. Indeed,

||φ(t)|| ≤ sup
t
||φ(t)− φj(t)||+ sup

t
||φj(t)|| <∞

The third claim is that φ→ ∆: For any ε > 0 take Q > 0 such that j > Q implies

||φ(t) − φj(t)|| < ε
2

Fix j > Q and t > T such that supt≥T ||φ(t) − φj(t)|| < ε
2

for

j > Q and ||φj(t)− limt φj(t)|| < ε
2

for t > T . Then

||φ(t)− lim
t
φj(t)|| ≤ ||φ(t)− φj(t)||+ ||φj(t)− lim

t
φj(t)|| < ε

Finally for any R > 0 pick i, j large enough so that ρ(φi, φj) < R which implies that

||φi(t)− φj(t)|| ≤ Re−γt and taking the limit for i, ||φ(t)− φj(t)|| ≤ Re−γt for all t.

Then

||φ(t)− 1k|| ≤ ||φj(t)− 1k||+ ||φj(t)− φ(t)|| ≤ (Rj +R)e−γt

so that supt e
γt||φ(t)− 1k|| <∞.

Fixed Point Theory is, in fact, a collection of theorems that prove the exis-

tence and/or uniqueness of fixed points of mappings in various spaces. Beyond the

2the symbol ⇒ stands for uniform convergence.
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contraction mapping principle, two important results on linear spaces are presented

below as they will also be of use in this work.

Schauder’s fixed point theorem In 1930 Schauder published a paper [42] that gen-

eralizes the fixed point theorem of Brower to the case of linear spaces.

Theorem 2.5.8. Let M be a non-empty compact convex subset of a Banach space

and let Q : M→M be continuous. Then Q has a fixed point.

Proof. See [42] or [36].

Krasnoselskii’s fixed point theorem Krasnoselskii [43] studied a paper of Schauder

[44] and obtained the following working hypothesis: The inversion of a perturbed

differential operator yields the sum of a contraction and a compact map. Accord-

ingly, he formulated the following fixed point theorem which is a combination of the

contraction mapping principle and Schauder’s fixed point theorem.

Theorem 2.5.9. Let M be a closed, convex non-empty subset of a Banach space

(B, || · ||). Suppose that A and B map M into B such that

(i) Ax+ By ∈M, ∀x, y ∈M

(ii) A is continuous and AM is contained in a compact set,

(iii) B is a contraction with constant α < 1.

Then there is y ∈M with Ay + By = y.

Proof. See [36].
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Theorems 2.5.8 and 2.5.9 differ from Theorem 2.5.6 in many ways. A first is

that the latter theorem works with complete metric spaces while Theorems 2.5.8

and 2.5.9 work with compact spaces. The second is that the Contraction Mapping

Principle proves both existence and uniqueness.

In the study of stability of solutions of differential equations, it is occasionally

desirable to derive estimates on the rate of convergence to a limit state. As this will

persistently be the case in my thesis, stability by means of fixed point theory proves

to be a particularly convenient tool. The existence of a fixed point of a solution

operator in a weighted complete metric space implies that the solution (i.e. the

fixed point) attains the property of convergence with the prescribed rate (weight).

This weight will be a rate function as it was previously defined.

2.6 Stochastic Differential Equations

For given t0 ∈ R and a probability space (Ω,U ,P), a collection of random variables

{Yt : t ≥ t0}, each of which Yt : Ω → RN is U -measurable, consists a stochastic

process. The σ-algebra generated by Yt is the smallest sub σ-algebra of U to which

Yt is U -measurable. Let B be an N -dimensional Brownian motion defined on [t0,∞)

and Y0 is an N -dimensional random variable independent of B(t0). The σ-algebra

generated by Y0 and the history of the Brownian motion up to (and including) time

t ≥ t0 is

Ut := U
(
B(s)|t0≤s≤t,Y0

)
.
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The family {Ut} is called a filtration and a process Yt is adapted to Ut if Yt is Ut-

measurable for all t ≥ t0. The set (Ω,U ,Ut,P) consists a complete filtered probability

space. Fix T > t0 and let b : RN × [t0, T ] → RN , B : RN × [t0, T ] → MN×N are

given vector valued and matrix valued deterministic functions, respectively. Then

an RN -valued stochastic process Yt is a solution of the Itô stochastic differential

equation 
dYt = b(Yt, t)dt+B(Yt, t)dBt

Yt0 = Y0

t0 ≤ t ≤ T

provided:

1. Yt is a Ut-adapted process.

2. E
[ ∫ T

t0
|bi(Yt, t)|dt

]
<∞.

3. E
[ ∫ T

t0
|B2

ij(Yt, t)|dt
]
<∞.

4. ∀t ∈ [t0, T ]

Yt = Y0 +

∫ t

t0

b(Ys, s)ds+

∫ t

t0

B(Ys, s)dBs, a.s.

The existence and uniqueness (in probability) of a solution to the above initial value

problem is guaranteed assuming a local Lipschitz condition on b and B and a linear

sub-growth of |b(x, t)| and |B(x, t)| with respect to x. For more on Itô calculus and

explicit types of solutions in certain linear stochastic differential equations as well as

in asymptotic behavior of stochastic processes the reader is referred to [31, 32, 33].
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2.7 Linear Inequalities

We will draw the following result from [37], Section 22.

Theorem 2.7.1. Let ai ∈ Rm and αi ∈ R for i = 1, . . . ,m and let k be an integer,

1 ≤ k ≤ m. Assume that the system

aTi ξ ≤ αi

for i = k+1, . . . ,m is consistent. Then one and only one of the following alternatives

hold:

1. There exists a vector ξ ∈ Rn such that

aTi ξ < αi, i = 1, . . . , k

aTi ξ ≤ αi, i = k + 1, . . . ,m

2. There exist non-negative real numbers ζi|mi=1 such that at least one of ζi|ki=1 is

not zero and
m∑
i=1

ζiai = 0 and
m∑
i=1

ζiαi ≤ 0.
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Chapter 3: Linear Networks

Linear consensus algorithms are perhaps the most fundamental example of a self-

organized distributed system. Due to their structural simplicity, they have been

particularly famous and they have attracted the attention of researchers in miscel-

laneous scientific communities.

In its classic version, the setup of a consensus network involves a finite number

of agents N ≥ 2, each agent i ∈ [N ] of which possesses a value of interest. Denoted

as xi ∈ R, this value evolves under the following averaging schemes, expressed either

in discrete or continuous-time:

xi(n+ 1) =
∑
j

aijxj(n), ẋi(t) =
∑
j

aij
(
xj(t)− xi(t)

)
. (0.1)

The quantities aij’s are non-negative numbers that model the influence of agent j on

i and essentially characterize the interdependence of agents, the connectivity regime

and eventually the process of the asymptotic alignment.

For the discrete-time model,
∑

j aij ≡ 1, and for the continuous-time model,∑
j aij ≡ 0. These two conditions imply that the updated states occurs due to a

dynamic convex averaging among the current ones.

The extensive amount of proposed frameworks, much of which is discussed

below, are concerned with different versions of the weights aij. Systems of type (0.1)
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are also known as 1st order consensus schemes. In what follows we conduct a

thorough, yet by no means complete, review of the existing models in the literature.

The interest in distributed iterative schemes has a long history in the math-

ematical community [21, 26, 27, 28] laying the ground for the modern theory of

Non-negative Matrices and Markov Chains.

In the control community, distributed computation over networks begins with

the work of Tsitsiklis et. al. [17] where problems of asynchronous agreement and

parallel computing were considered for (0.1). A theoretical framework for solving

consensus problems was introduced by Olfati-Saber et al. in [45] while in their sem-

inal paper Jadbabaie et al. [20] studied a model of asymptotic alignment proposed

by Viscek et al. [19]. Both these works consider populations of autonomous agents

that exchange information under the assumption of symmetric communication, i.e.

aij = aji. While Olfati-Saber et al. followed algebraic graph theory methods [40],

Jadbabaie et al. based their results on the theory of non-negative matrices and non-

homogeneous Markov Chains, [28]. The novelty of these works is that it includes

switching communication networks, i.e. communications weights aij(t) that vary

over time and may be positive or zero at each t. In [20] this switching connectivity

regime asks for a connectivity condition to ensure asymptotic coordination, known

as recurrent connectivity.

Essentially, any positive value of aij signifies the existence of connection be-

tween j and i (in the sense that j affects i e.g. by signal transmission). Real-world

networked systems, however, suffer from various communication failures or creations

between nodes. For example, when agents are moving, some existing connections
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may fail as obstacles may appear between agents or assuming proximity graphs, one

agent may enter the effective region of other agents.

An appropriate abstraction is this when agents are connected through a net-

work that changes with time due to link/node failures, packet drops etc. Such

variations in topology can happen randomly and this motivates the investigation

of consensus problems in a connectivity regime that suffers from stochastic uncer-

tainty. Hatano et al. consider in [46, 25] a linear agreement problem over random

information networks where the existence of an information channel between a pair

of elements at each time instance is probabilistic and independent of other chan-

nels. In [47], Porfiri and Stilwell provide sufficient conditions for reaching consensus

almost surely in the case of a discrete linear system, where the communication flow

is given by a directed graph derived from a random graph process, independent

of other time instances. Under a similar communication topology model, Tahbaz-

Salehi and Jadbabaie in [48] provide necessary and sufficient conditions for almost

sure convergence to consensus and in [49] they extend the applicability of their nec-

essary and sufficient conditions to strictly stationary ergodic random graphs. In [50]

Matei et al. consider the linear consensus system (0.1) under the assumption that

the communication flow between agents is modeled by a randomly switching graph.

The switching is determined by a homogeneous, finite-state Markov chain and each

communication pattern corresponds to a state of the Markov process. Then nec-

essary and sufficient conditions are provided to guarantee convergence to average

consensus in the mean square sense and in the almost sure sense.
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Motivation and Contribution .Based on the works mentioned above, we make a

number of remarks that effectively constitute the contribution of the present chapter.

The non-uniform hypothesis. In their vast majority all the aforementioned

works, both in the deterministic and the stochastic framework rely on a fundamental

assumption: The exchange of information between any two communicating nodes

occurs under established connection with a time varying weight that is, uniformly

bounded away from zero. This allows the applicability of an abundance of results

from linear algebra, algebraic graph theory, probability theory etc. [28, 40, 23, 25,

26, 27] towards proving asymptotic convergence. The following elementary example

shows that if the uniform lower bound assumption is lifted, consensus does not

occur.

Example 3.0.2. Consider the 2-D dynamical systemx(n+ 1)

y(n+ 1)

 =

 1−f(n) f(n)

g(n) 1− g(n)


x(n)

y(n)


where n ≥ 1, f(n) = Kf/n

2, g(n) = Kg/n
2 and Kf , Kg < 1. Now,

|x(n+ 1)− y(n+ 1)| = (1− f(n)− g(n))(x(n)− y(n))

= |x(0)− y(0)|
n∏
i=0

(1− f(i))→ C sin(π
√
Kf +Kg)

for some positive constant C according to the Euler-Wallis formula, whenever |x(0)−

y(0)| 6= 0. So for
√
Kf +Kg /∈ Z consensus is not achieved.

The importance of this assumption has been noted before [51] and we strenu-

ously remark that whichever work does not explicitly state it, it should be subject
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to criticism. Distributed consensus systems that bear non-uniform positive weights

have appeared in the literature [52, 53] and it is this condition that makes the

corresponding stability problems particularly challenging.

Rate of convergence. Most works in the literature are concerned with prov-

ing convergence only. Indeed, the linearity of (0.1), together with the aforementioned

uniformity assumptions imply uniform asymptotic, hence exponential convergence,

[51]. However, to the best of my knowledge, there are no explicit estimates of these

rate of convergence for the general, asymmetric case that can include switching com-

munication signals. The results of Chapter 2 critically contribute in the development

of a unified theory of linear consensus systems both in discrete and continuous-time

with emphasis on the rate of convergence. The theory is general enough to include

special connection topologies such as the well-known leader-follower model.

Necessary Conditions. They are less frequent than the sufficient ones. The

stochastic frameworks often provide a convenient tool for establishing both necessary

and sufficient conditions for convergence as the imposed statistical regularity is

especially designed to enforce asymptotic agreement for any initial conditions or

disagreement for some special initial conditions [50]. We will make a comment on

necessary conditions in the non-stochastic environment. We show that convergence

to a common state presupposes a perpetual diffusion of information throughout the

network. This propagation is guaranteed only if a critical subset of coupling weights

is non-summable.

A new framework for stochastic networks. The stochastic linear consen-

sus models satisfy certain probabilistic laws. We develop a unified framework using
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measure-preserving dynamical systems and ergodic theory. We demonstrate that

all these systems are, in fact, special cases of our framework. We pose the claim

that the connection between the deterministic mild connectivity and its probabilistic

counterpart is merely semantic.

3.1 Discrete Time Dynamics

Consider N agents with values xi ∈ R and fix n0 ∈ Z+. On each iteration n ≥ n0,

agent i updates its value xi(n) ∈ R according to

i ∈ [N ] :


xi(n+ η)− xi(n) = η

∑
j∈Ni aij(n)

(
xj(n)− xi(n)

)
, n ≥ n0

xi(n0) = x0
i

(3.1)

for η > 0 fixed. Hereafter, we set η = 1. We will discuss the stability of the solution

x(n) =
(
x1(n), . . . , xN(n)

)
and our objective is to derive sufficient conditions for

asymptotic convergence to consensus under different connectivity schemes and the

following assumption:

Assumption 3.1.1. The connectivity weights aij(n) : [n0,∞)→ R+ satisfy

∑
j∈Ni

aij(n) ≤ m < 1, aij(n) > 0⇒ aij(n) ≥ f(n), i 6= j

where f(·) is a positive function with the property that there exists M ∈ [0,∞) so

that f(n) ∈ (0, 1−m] for n ≥M .

Remark 3.1.2. It is an easy exercise to see that if we take m ≤ N
N+1

for m as

defined in Assumption 3.1.1, then f(n) ≤ 1−m.
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We are interested in the solutions of (3.1) with the property that

xi(n)− xj(n)→ 0 as n→∞

∀i, j ∈ [N ]. The next Lemma shows that this is equivalent to

x(n)→ ∆ as n→∞.

Lemma 3.1.3. Let Assumption 3.1.1 hold. Then the solution x of (3.1) satis-

fies xi(n) ∈ Wn0,x for all n ≥ n0. Moreover, S(x(n)) → 0 as n → ∞ implies

limn xi(n) = k, ∀i ∈ [N ] for some k ∈ Wn0,x.

Proof. Since aii(n) = 1 −
∑

j aij(n) > 0 it is an easy exercise to see that xi(n) ∈

Wn0,x. Indeed, the first time n∗ and agent i∗ such that x∗i (n
∗) = maxi x

0
i , then

x∗i (n+ 1) ≤ x∗i (n) and likewise for the lower limit. Consequently, the forward limit

set, ω(x0), is non-empty, closed subset of Wn0,x and it is invariant with respect

to (3.1). Then if xi(n)− xj(n)→ 0, any point in the forward limit set will lie in ∆.

Indeed for x0 ∈ ω, we have x0 ∈ ∆ as well and the solution x
(
n, n0,x

0
)

will be in

∆ for all n ≥ n0.

In vector form, (3.1) reads:

x(n+ 1) = P (n)x(n)

with

P (n) =



1−
∑

j 6=1 a1j(n) a12(n) · · · a1N(n)

a21(n) 1−
∑

j 6=2 a2j(n) · · · a2N(n)

...
...

. . .
...

aN1(n) aN2(n) · · · 1−
∑

j 6=N aNj(n)


(3.2)
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Remark 3.1.4. Under Assumption 3.1.1, P (n) is a stochastic matrix with strictly

positive diagonal elements. Consequently, for any P (n1), P (n2), the product P (n2)P (n1)

is structurally similar to (3.2): It is also a stochastic matrix and it has non-zero el-

ements the union of the non-zero ones of P (n1) and P (n2).

The analysis is conducted with the following schemes:

* Type I : ∃ B ≥ 1,M ≥ n0 such that for n ≥M , the collection
{
P (s)

}n+B−1

s=n
of

stochastic matrices contains at least one scrambling matrix.

* Type II : ∃ B ≥ 1,M ≥ n0 such that for n ≥ M , the collection
{
P (s)

}n+B−1

s=n

of stochastic matrices contains at least one regular matrix.

Type I connectivity is significantly stronger than Type II. Reasonably so, the

proof of stability is much simpler. This will be made clear in the continuous-time

case in §3.2 where this distinction allows for a completely different type of proofs. A

deeper insight, in fact, reveals that Type I connectivity supports a non-decentralized

communication scheme as there exists a (central) node that affects the rest of the

group at the same time. As an illustrative example of Type I connectivity, one may

think of a star-graph communication.

Theorem 3.1.5. Let Assumption 3.1.1 hold. Under Type I connectivity, the solution

x = x(n, n0,x
0), n ≥ n0 of (3.1) satisfies

x(n)→ ∆ as n→∞

if
∑

l f(sl) =∞, where {sl}l≥1 is the sequence for which P (sl) is scrambling.
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Proof. Consider the sub-sequence l : sl ≥M . We will estimate κ(P (sl)) and for this

we are asked to find the two rows i, j that minimize

∑
k

min{aik(sl), ajk(sl)}.

But, by assumption, P (sl) is scrambling and this means that there exists a column

k∗ with strictly positive elements. Then for arbitrary i, j

∑
k

min{aik, ajk} ≥ min{aik∗ , ajk∗}

from which two alternatives occur:

1. i, j 6= k∗ and min{aik∗ , ajk∗} = aik∗ so that

aik∗ ≥ f(sl),

2. i = k∗ or j = k∗ and min{aik∗ , ajk∗} = aik∗ so that

ajk∗ ≥ ak∗k∗ = 1− di(sl) ≥ 1−m.

The structure of P (n), in (3.2) and Assumption 3.1.1 implies that

κ
(
P (sl)

)
≤ 1−min

{
1−m, f(sl)

}
= 1− f(sl).

For any x0 ∈ RN , the general solution of (3.1) at time n is

x(n) = P (n− 1)P (n− 2) · · ·P (0)x0 = P−1,nx
0

and for n ≥M + 1,

S
(
x(n)

)
≤ κ

(
P (n− 1)

)
S
(
x(n− 1)

)
≤

n−1∏
s=M

κ
(
P (s)

)
S
(
x(M)

)
≤

n−1∏
s=M

κ
(
P (s)

)
S
(
x0
)
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Fix ε > 0 and pick n̄ ≥ 1 large enough so that
∑n̄−1

l=1 f(sl) > − ln ε
S(x0)

. Then for

n ≥M + (n̄+ 1)B − 1

S(x(n)) ≤
n̄−1∏
l=1

(
1− f(sl)

)
S(x0) ≤ e−

∑n̄−1
l=1 f(sl)S(x0) < ε.

Several special cases of interest occur. If B = 1 then P (n) is scrambling for

any n ≥M and hence the non-summability of f(·) suffices for convergence. On the

other hand if f(n) ≥ f > 0 then the convergence occurs exponentially fast, as we

shall state below.

Type I connectivity allows for the graph GP (n) = ([N ], E(n)) to be time-

dependent only to the point where it is sufficiently connected. This is an unneces-

sarily strong condition.

On the other hand, in Type II connectivity is by no means clear that κ(P (n)) <

1. Therefore, the contraction effect of P (n) is not captured by κ. It is true, however,

that under certain conditions the product Pn,h, as defined in (2.8), may be scram-

bling. In the example to follow we illustrate a simple communication condition and

the effect of non-uniform connectivity weights.

Example 3.1.6. Consider a network of 4 agents, characterized by the stochastic

matrix

P (n) =



1− a12(n) a12(n) 0 0

a21(n) 1− a21(n)− a23(n) a23(n) 0

0 a32(n) 1− a32(n) − a34(n) a34(n)

0 0 a43(n) 1− a43(n)


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with aij(n) ≥ f(n) > 0 and f(n) a monotonically decreasing function. It is easy to

check that κ
(
P (n)

)
= 1 for all n. In the static case where B = 1, any product of

such two matrices is scrambling and in our example a straightforward calculation

reveals that P (n)P (n−1) is scrambling with the first and fourth row to have nonzero

entries that sum up to

a12(n)a23(n− 1) + a32(n− 1)a43(n) ≥ 2f 2(n)

so that for n >> 1

κ
(
P (n)P (n− 1)

)
= 1− 2f 2(n)

and

S
(
x(n)

)
≤

n∏
i=1

κ
(
P (i)P (i− 1)

)
S
(
x0
)
≤ S

(
x0
)
e−2

∑[ t2 ]−1

i=1 f2(2i−1) → 0

as n→∞, on condition that
∑

i f
2(2i− 1) diverges.

We now make this point more rigorous.

Lemma 3.1.7. For fixed p ≥ 0, h ≥ 1, consider the matrix product Pp,h for each

P (s)|s=p+1...p+h defined as in (3.2) with the property that κ
(
Pp,s
)

= 1 for s ∈ 1 . . . h−

1 and κ
(
Pp,h

)
< 1. If a := mins∈{p+1...p+h}{aij(s)} ∈ [0, 1 −m] where

∑
j aij(s) ≤

m < 1, then

κ
(
Pp,h

)
≤ 1− ah.

Proof. We will use induction on h. For h = 2, Pp,2 = Pp+2Pp+1. Since κ
(
Pp+1

)
= 1

and κ
(
Pp,2
)
< 1 then there exists a strictly positive column of P (p + 2)P (p + 1) =
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[pij]. Let i be this column. Then

pii = (1− di(p+ 2))(1− di(p+ 1)) +
∑
j

aij(p+ 2)aji(p+ 1) ≥ (1−m)2

pji =
∑
k

ajk(p+ 2)akj(p+ 1) ≥ min{(1−m)a, a2} = a2

from the bound on a the result follows. If the statement is true for h = l, then for

h = l + 1, similar calculations yield the bounds pii ≥ (1−m)l+1, pji ≥ al+1 so that

κ
(
Pp,l+1

)
≤ 1− al+1.

We elevate the analysis now to consider Type II connectivity. This is the

mildest type of communication for convergence to consensus, reported in the liter-

ature [20] and it is also known as recurrent connectivity condition.

Theorem 3.1.8. Let Assumption 3.1.1 hold. Under Type II connectivity, the solu-

tion x = x(n, n0,x
0), n ≥ n0 of (3.1) satisfies

x(n)→ ∆ as n→∞

if
∑

l f
σ(M + lσ − 1) = ∞, where σ = l∗([N/2] + 1)B and l∗ with the meaning of

Remark 2.3.7.

Proof. Type II connectivity implies that for some M > 0 and B ≥ 1 it holds that

Pn,B is regular with γ = γn,B or equivalently GPn,B ∈ T and GPn+B,B
∈ T as well.

Now,

γn,2B ≤


max{γn,B, γn+B,B} − 1, GPn,B ⊂ GPn+B,B

or GPn+B,B
⊂ GPn,B

max{γn,B, γn+B,B}, o.w.
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If GPn,B is not a sub-graph of GPn+B,B
and GPn,B is not a sub-graph of GPn+B,B

or

vice-versa, it holds that EC
Pn,B
∩EC

Pn+B,B
6= ∅. An element of this set is the pair (i, j)

such that [GPn,B ]ij = 0 and [GPn+B,B
]ij > 0 or vice versa. This element, however,

will be a member of EPn,2B since [GPn,2B ]ij ≥ [GPn+B,B
]ij[GPn,B ]jj > 0. From the

discussion on the partitioning of T with respect to the scrambling indexes and for

l∗ = maxi{li,i−1},

γn,l∗B ≤ max{γn,B, γn+B,B} − 1.

For n ≥ M , Pn,l∗([N/2]+1)B will be scrambling. Set σ = l∗([N/2] + 1)B and so by

Lemma 3.1.7

κ(PM−1,lσ) < 1− fσ(M + lσ − 1)

for any l ≥ 1. Since

x(n) = P (n)P (n− 1) · · ·P (0)x0,

for fixed ε > 0 and pick n̄ large enough so
∑n̄

l=1 f
σ(M + lσ − 1) > − ln ε

S(x0)
. Finally,

for n ≥M + (n̄+ 1)σ − 1

S
(
x(n)

)
≤ e−

∑
l f
σ(M+lσ−1)S(x0) < ε.

The section is concluded with a straightforward application of Theorems 3.1.5

and 3.1.8 stated as a Corollary without proof and an illustrative example.

Corollary 3.1.9. Let the system (3.1) with aij(n) ≥ f > 0 uniformly in n. Set

κ = min
{

(1 − m), f
}
∈ (0, 1). The following estimates hold for the solution x

of (3.1):
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1. Under Assumption 3.1.1 and conditions of Theorem 3.1.5, x satisfies

S(x(n)) ≤ S(x0)

1− κ
(1− κ)

n−M
B , n ≥M.

2. Under Assumption 3.1.1 and conditions of Theorem 3.1.5, x satisfies

S(x(n)) ≤ S(x0)

1− κσ
(1− κσ)

n−M
σB , n ≥M.

Example 3.1.10. Consider the system (3.1) and its solution x with f(n) ≥ ω(n−α)

i.e. for large n, f(·) dominates a function that vanishes as slow as n−α. Then under

Assumption 3.1.1, x(n) converges to ∆, if

(i) Type I connectivity holds and α ∈ [0, 1], in view of Theorem 3.1.5, or

(ii) Type II connectivity holds and α ∈ [0, 1/σ], in view of Theorem 3.1.8.

Theorems 3.1.5, 3.1.8 and Corollary 3.1.9 form a set of results on discrete-time

linear consensus that generalize the existing ones in the literature [20]. In case of

uniformly bounded weights all past results are recovered in a more concise manner.

The case of static simple connectivity calls for a time invariant scrambling index

γ and Theorem 3.1.8 holds for σ = γ. Finally, in the vanishing communication

topology, we remark the interdependence between the connectivity regime and the

rate at which the connections are allowed to vanish.

Discrete-time dynamics will not be reconsidered but in two circumstances.

The first is in §3.3 where the analysis of the effect of stochastic uncertainty in the

connectivity regime is held. The second occasion is in §6.1.1 where a 2nd order

consensus (flocking) network is analyzed. The latter case is primarily utilized to

make the case that discretization of such systems often leads to instabilities.
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3.2 Continuous Time Dynamics

The linear continuous-time model reads:

i ∈ [N ] :


ẋi(t) =

∑
j aij(t)

(
xj(t)− xi(t)

)
, t ≥ t0

xi(t0) = x0
i

(3.3)

We recall that ẋi = d
dt
xi denotes the right Dini time-derivative of xi. The solution

x(t) = x(t, t0,x
0) is an absolutely continuous function that is defined in [t0,∞) and

takes values in RN . The reason for considering x to be absolutely continuous is

that we want to include the case of switching connectivity weights, i.e. the ability

of aij(t) to jump from a non-zero value to a zero in an abrupt manner. As already

remarked, such discontinuities in real world applications can model for instance, a

technical failure of connection in a communication system and although they prevent

xi from being continuously differentiable, they do not affect either their existence or

uniqueness and, most importantly, they play no role on the integral representation

of the solutions [54]. The next conditions is the partial continuous-time alternative

of Assumption 3.1.1 and it is instrumental for the analysis to follow:

Assumption 3.2.1. The connectivity weights aij are upper bounded, right continu-

ous, non-negative functions of time.

This, although hardly an assumption, together with N <∞ implies that

sup
t≥t0

max
i

∑
j

aij(t) <∞.
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For the purposes of the analysis set

m > sup
t≥t0

max
i

∑
j

aij(t) (3.4)

Recall now the matrix representation of the graph GP (t) in terms of the degree

matrix D = D(t) and the adjacency matrix A = A(t). Then

W (t) := mIN×N −D(t) + A(t) (3.5)

is m-stochastic. We begin the discussion with two elementary yet crucial remarks:

Lemma 3.2.2. Under Assumption 3.2.1 the solution x = x(t, t0,x
0), t ≥ t0 of (3.3)

satisfies xi(t) ∈ Wt0,x, ∀ t ≥ t0, i ∈ [N ].

Proof. Let t∗ be the first time that xi(t
∗) escapes to the right of maxi x

0
i . Then it

should hold that xi(t
∗) ≥ xj(t

∗) for all j 6= i and ẋi(t
∗) > 0. This is an unfeasible

condition from the systems equations (3.3). Similar argumentation can be made for

the lower bound mini x
0
i .

Lemma 3.2.3. If x = x(t, t0,x
0), t ≥ t0 is the solution of (3.3) such that S

(
x(t)

)
→

0 as t→∞ then the forward limit set ω(x0) is a singleton with a point in ∆.

Proof. From Lemma 3.2.2 we have that ω(x0) is non-empty, compact and connected

and any element of which must lie in ∆. Take xω ∈ ω(x0) and consider the solution

x(t, t0,x
ω). Since xω ∈ ∆ as well, we have that ẋ ≡ 0, i.e. the solution is constant.

Just like the discrete-time case, the communication signals are classified in

Type I and Type II with exactly the same meaning. In Type I, P (t) is scrambling
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on the “average” and we have a very simple and elegant proof of the consensus

problem.

Theorem 3.2.4. Let Assumption 3.2.1 hold. If

f(t) := min
i,j

∑
s

min{ais(t), ajs(t)}

satisfies ∫ ∞
f(s) ds =∞

then the solution x = x(t, t0,x
0), t ≥ t0 of (3.3) satisfies

x(t)→ ∆ as t→∞.

Proof. We write (3.3) in vector form

ẋ = −D(t)x + A(t)x = −mx +
(
mIN×N −D(t) + A(t)

)
x = −mx +W (t)x

equivalently

d

dt
(emtx) = emtW (t)x.

From Theorem 2.3.1 we obtain the bound

S

(
d

dt

(
emtx(t)

))
≤ emt

(
m− f(t)

)
S
(
x(t)

)
then

d

dt
S
(
x(t)

)
= −me−mtS

(
emtx(t)

)
+ e−mt

d

dt
S
(
emtx(t)

)
≤ −mS

(
x(t)

)
+ e−mtS

(
d

dt

(
emtx(t)

))
≤ −mS

(
x(t)

)
+ (m− f(t))S

(
x(t)

)
≤ −f(t)S

(
x(t)

)
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which implies

S
(
x(t)

)
≤ e

−
∫ t
t0
f(s) ds

S
(
x0
)

and the result follows in view of the condition on f(·) and Lemma 3.2.3.

This is a generalization of the results obtained in [55] concerning continuous-

time consensus algorithms. On condition that there is always an agent i = i(t) ∈ [N ]

that affects every other agent j in the group it then suffices for

∫ ∞
f(s) ds =∞

This is a Type I connectivity. The non-integrability condition on f is the continuous-

time counterpart of the non-summability of f(·) imposed on Theorem 3.1.5. We

escalate the analysis now, with the study of the dynamics of (3.3) under the recurrent

connectivity condition. Define for B ≥ 0, s ∈ [t−B, t]

C(t, s) = e−mBδ(s− (t−B))IN×N + e−m(t−s)W (s)

with δ(·) the delta function, m as in (3.4) and W (s) as in (3.5).

Proposition 3.2.5. Let Assumption 3.2.1 hold. For any B > 0, l ≥ 1, the matrix

P
(l)
B (t) :=


∫ t
t−B C(t, s1) ds1, l = 1

∫ t
t−B C(t, s1)P

(l−1)
B (s1) ds1, l > 1

is stochastic.

Proof. The matrix

PB(t) :=

∫ t

t−B

(
e−mBδ(s1 − (t−B))IN×N + e−m(t−s1)W (s1)

)
ds1
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is stochastic. Indeed, the ith row of PB(t) consists of the positive diagonal element

e−mB +

∫ t

t−B
e−m(t−s1)(m− di(s1)) ds1 = 1−

∫ t

t−B
e−m(t−s1)di(s1) ds1

and the non-negative off-diagonal elements

∫ t

t−B
e−m(t−s1)aij(s1) ds1.

since di(s1) =
∑

j aij(s1), PB(t) is stochastic. We proceed with induction:

For l = 2,

P
(2)
B (t) =

∫ t

t−B

∫ s1

s1−B

(
e−mBδ(s1 − (t−B))IN×N + e−m(t−s1)W (s1)

)
·

·
(
e−mBδ(s2 − (s1 −B))IN×N + e−m(s1−s2)W (s2)

)
ds2ds1

=

∫ t

t−B

∫ s1

s1−B
e−2mRδ(s1 − (t−B))δ(s2 − (s1 −B)) ds2ds1IN×N+

+

∫ t

t−B

∫ s1

s1−B
e−mRδ(s1 − (t−B))e−m(s1−s2)W (s2) ds2ds1+

+

∫ t

t−B

∫ s1

s1−B
e−m(t−s1)W (s1)e−mRδ(s2 − (s1 −B)) ds2ds1+

+

∫ t

t−B

∫ s1

s1−B
e−m(t−s1)W (s1)e−m(s1−s2)W (s2) ds2ds1

and straightforward calculations yield

P
(2)
B (t) = e−2mBIN×N +

∫ t−B

t−2B

e−m(t−s2)W (s2) ds2

+ e−mB
∫ t

t−B
e−m(t−s1)W (s1) ds1+

+

∫ t

t−B

∫ s1

s1−B
e−m(t−s2)W (s1)W (s2) ds2ds1

Now, every element of P
(2)
B (t) is non-negative as a sum of non-negative matrices.

It is only left to verify that
∑

j[P
(2)
B (t)]ij = 1 for any i. Indeed, the first matrix

contributes e−2mB, the second and the third e−mB−e−2mB and the fourth (1−e−mB)2,
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so eventually

e−2mB + 2(e−mB − e−2mB) + (1− 2e−mB + e−2mB) = 1

Let P
(l)
B (t) be stochastic. Then the elements of P

(l+1)
B (t) are non-negative by the

same reasoning as above and finally, since

P
(l+1)
B (t) =

∫ t

t−B
C(t, s1) · · ·

∫ sl

sl−B
C(sl, sl−1) ds

= e−mBP
(l)
B (t) + (1− e−mB)P

(l)
B (t)−

−
∫ t

t−B

∫ s1

s1−B
· · ·
∫ sl

sl−B
C(t, s1)C(s1, s2) · · ·

(
D(sl+1)− A(sl+1)

)
dsl+1 . . . ds1

= P
(l)
B (t)−

−
∫ t

t−B

∫ s1

s1−B
· · ·
∫ sl

sl−B
C(t, s1)C(s1, s2) · · ·

(
D(sl+1)− A(sl+1)

)
dsl+1 . . . ds1

the sum of the ith row of P
(l+1)
B (t) equals 1 because the corresponding sum in the

final integrand is zero (as it is a left multiplication of a matrix with a Laplacian

matrix).

Remark 3.2.6. It can be easily seen that whereas P
(l)
B (t) is stochastic, the collection

of matrices∫
s1∈It

∫
s2∈Is1

. . .

∫
sl∈Isl−1

C(t, s1)C(s1, s2) . . . C(sl, sl−1) dsl . . . ds1

for Isl ⊂ Isl−1
and It ∈ [t, t−B] is a member of M as it was defined in § 2.3.

Assumption 3.2.7. ∃B > 0,M ≥ t0 such that ∀ t ≥M , GPB(t) ∈ T .

In addition to the upper boundedness of aij(t), the weights are also assumed

to satisfy the dwelling time condition [20]. This ensures that in any subset of R+

with positive and bounded measure, the number of discontinuities must be finite.
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Assumption 3.2.8. For any t ≥ t0 there exists ε > 0 independent of t such that

aij(t) 6= 0 ⇒ aij(s) ≥ f(s) for s ∈ Iε(t
∗) = [t∗ − ε, t∗ + ε] for some t∗ ∈ R and

t ∈ Iε(t∗).

Theorem 3.2.9. Let Assumptions 3.2.1, 3.2.7 and 3.2.8 hold. The solution x =

x(t, t0,x
0), t ≥ t0 of (3.3) satisfies

x(t)→ ∆ as t→∞

if ∃ {tn}n≥1, tn ≥ M with tn+1 − tn ≥ σB, such that
∑

n f
σ(tn) = ∞, with f(·) as

defined in Assumption 3.2.8, σ = l∗([N/2] + 1) and l∗ with the meaning of Remark

2.3.7.

If, in addition, the connectivity is static (with time-varying weights), then

σ = γ, where γ is the scrambling index of GPB(t) and B > 0 can be chosen arbitrarily

small.

Proof. The solution x of (3.3) satisfies

ẋ = −mx +
(
mI −D(t) + A(t)

)
x⇒ d

dt

(
emtx

)
= emtW (t)x

emtx(t)− em(t−B)x(t−B) =

∫ t

t−B
emsW (s)x(s) ds

By Assumption 3.2.7, PB(t) =
∫ t
t−B C(t, s0) ds0 is routed-out branching, for any

t ≥ t0 +B. Then

x(t) =

∫ t

t−B

(
e−mBδ(s− (t−B))I + e−m(t−s)W (s)

)
x(s) ds

=

∫ t

t−B
C(t, s1)x(s1) ds1

=

∫ t

t−B

∫ s1

s1−B
· · ·
∫ sσ−1

sσ−1−B
C(t, s1)C(s1, s2) · · ·C(sσ−1, sσ)x(sσ) dsσ · · · ds1
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for t ≥ t0 + σB. Choosing σ large enough, P
(σ)
B (t) should be scrambling. At this

point the proof is identical as this of Theorem 3.1.8, thus It can be shown that

for σ = l∗([N/2] + 1) the matrix P
(σ)
B (t) is scrambling. In view of Remark 3.2.6,

Theorem 2.3.4 applies and by Lemma 3.2.2 and Proposition 3.2.5 we have

S
(
x(t)

)
≤ κ

(
P

(σ)
B (t)

)
S(x

(
t− σB)

)
for σ = l∗([N/2] + 1) and κ

(
P

(σ)
B (t)

)
< 1 on the assumption of static connectivity.

The next step is to estimate κ
(
P

(σ)
B (t)

)
. Since P

(σ)
B (t) is scrambling, there exists

j∗ ∈ V such that [P
(σ)
B (t)]j∗i > 0. By direct calculations we have:

[P
(σ)
B (t)]j∗j∗ ≥∫ t

t−B

∫ s1

s1−B
· · ·
∫ sσ−1

sσ−1−B

σ∏
k=1

(
e−mBδ

(
sk − (sk−1 −B)

)
+

+ e−m(sk−1−sk)
(
m− di(sk)

))
dsσ · · · ds1

> e−σmB

and for i 6= j∗

[P
(σ)
B (t)]j∗i ≥

∫ t

t−B

∫ s1

s1−B
· · ·

· · ·
∫ sσ−1

sσ−1−B

∑
l0,...,lσ−1

e−m(t−sσ)ail0(s1)al0l1(s2) . . . alσ−1j∗(sσ) dsσ · · · ds1

>

∫ t

t−B

∫ s1

s1−B
· · ·
∫ sσ−1

sσ−1−B
e−m(t−sσ) dsσ · · · ds1f

σ(t) =
(1− e−mε)σ

mσ
fσ(t)

where f and ε > 0 have the meaning of Assumption 3.2.8. For t′ ≥M large enough

so that f(t) ≤ me−mB

1−e−mε whenever t ≥ t′, from the definition of κ we obtain the

estimate:

κ
(
P

(σ)
B (t)

)
≤ 1− (1− e−mε)σ

mσ
fσ(t) (3.6)
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Then, for the aforementioned sequence {tn}, for any t ≥ t′, there exists n̄ such

that t ∈ [tn̄, tn̄+1] so that

S
(
x(t)

)
≤ S

(
x(tn̄)

)
≤
(

1− (1− e−mε)σ

mσ
fσ(tn̄)

)
S
(
x(tn̄ − σB)

)
≤
(

1− (1− e−mε)σ

mσ
fσ(tn̄)

)
S
(
x(tn̄−1)

)
For any ε > 0, pick n1 and n2 large enough so that tn1 ≥ t′ and

∑n2

j=n1
f(tj) ≥[ (1−e−mε)σ

mσ

]−1
log( ε

S(x0)
). Then for t ≥ tn1

S
(
x(t)

)
≤

i2∏
k=i1

(
1− (1− e−mε)σ

mσ
fσ(tk)

)
S
(
x0
)

≤ e−
(1−e−mε)σ

mσ
∑i2
k=i1

fσ(tk)S
(
x0
)
≤ ε.

The rate of convergence is dictated by the non-summability of
∑

n f
σ(tn) and

in the general case implies convergence to consensus in a non-uniform sense. Just as

in the discrete case an elegant result is obtained if we assume f(t) to be uniformly

lower bounded.

Corollary 3.2.10. Let the conditions of Theorem 3.2.9 hold with M = t0 and B, ε, σ

the same parameters defined in its statement. If f(t) as defined in Assumption 3.2.8

satisfies f(t) ≥ f > 0, then

S
(
x(t)

)
≤ S(x0)

1− κ
e−θ(t−t0)

for θ = − ln(1−κ)
σB

, κ = min
{
e−σmB,

( (1−e−mε)f
m

)σ} ∈ (0, 1), m as in (3.4).

Corollary 3.2.10 is a direct application of Theorem 3.2.9 and its proof is omit-

ted. We remark that Theorem 3.2.4, 3.2.9 and Corollary 3.2.10 unify and extend
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previous results [20, 51, 55]. Examples and simulations that illustrate the results of

this section are postponed until Chapter 4.

3.2.1 A leader-follower scheme

In a consensus network, a leader is considered to be an agent that only affects the

rest of the group, yet it cannot be affected by it. Non-negative matrix theory assures

that the corresponding graph G of such a network can be routed-out branching if

there is at most one leader [28] (which is actually the root of the graph). Take,

without loss of generality, the leader to be agent number 1. Then the network

dynamics can be written as

i ∈ [N ] :



ż1(t) = g
(
t, z1(t)

)
, t ≥ t0

żi(t) =
∑

j aij(t)
(
zj(t)− zi(t)

)
, i 6= 1, t ≥ t0

zi(t0) = z0
i , t = t0

(3.7)

The dynamics of the leader’s state z1(t) are assumed to evolve free of any

interaction with the rest of the group under the assumption that they eventually

converge to a constant value. Thus, we assume, without loss of generality, that the

following condition is true:

|z1(t)− k| ≤ 1

h(t)
(3.8)

for some appropriate rate function h. Then the long-run behavior of (3.7) is asso-

ciated with this of (3.3) via a stability in variation argument. The idea is for all
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i ∈ [N ] such that ai1 6= 0 to write

żi(t) =
∑
j 6=1

aij(t)
(
zj(t)− zi(t)

)
+ ai1(t)

(
z1(t)− zi(t)

)
=
∑
j 6=1

aij(t)
(
zj(t)− zi(t)

)
+ ai1(t)

(
k − zi(t)

)
+ ai1(t)

(
z1(t)− k

)
so that we can introduce a consensus system with a virtual leader of constant state

z∞, the perturbation of which will produce z. Convergence is then guaranteed if

there exists sufficient connectivity among the network of the virtual leader.

Theorem 3.2.11. Let the solution z = z(t, t0, z
0) t ≥ t0 of (3.7) and the dynamics

of the leader together with condition (3.8) to hold. Assume uniform lower bounds

of the connectivity weights and the connectivity conditions of Corollary 3.2.10. Let

θ > 0 to characterize the rate of convergence of (3.3) with leader. Assume that there

exists a rate function c with the properties

1. supt≥t0 e
−θ(t−t0)c(t) <∞ and

2. supt≥t0 c(t)
∫ t
t0

e−θ(t−s)

1−κ maxi
ai1(s)
h(s)

ds <∞.

Then there exists K > 0 such that

||z(t)− 1k||∞ ≤
K

c(t)
.

Proof. The proof relies on an elementary variation argument. Equation (3.3) can

be written in vector form

ẋ = −L(t)x

The dynamics of x are governed by the fundamental matrix Φ(t, s) such that x(t, t0) =

Φ(t, t0)x0. Theorem 3.3 and the existence of leader implies that Φ(t, s) is also en-
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dowed with the stability property:

∣∣∣∣(Φ(t, s)− 1(1, 0, . . . , 0)
)
x0
∣∣∣∣
∞ ≤

S(x0)

1− κ
e−θ(t−s),

a bound obtained by the equivalence of norms in RN . Based on these remarks we

will study the dynamics of

ż = −L(t)z + η(t) (3.9)

where η(t) =
(
η1(t), . . . , ηN(t)

)
with

ηi(t) =


ai1(t)

(
z1(t)− k

)
, 1 affects i

0, o.w.

Now, η is a state independent perturbation which vanishes as fast as 1
h(t)

. Using the

linear variation of constants formula, the solution z satisfies

z(t, t0, z
0) = x(t, t0, z

0) +

∫ t

t0

Φ(t, s)η(s) ds.

Now since Φ(t, s) projects any vector to ∆, exponentially fast with the common

element, the first component of the vector but η(s) is by construction orthogonal

to (1, 0, . . . , 0), we see that∫ t

t0

U(t, s)η(s) ds =

∫ t

t0

(
Φ(t, s)− 1(1, 0, . . . , 0)

)
η(s) ds

also
∣∣∣∣x(t, t0, z

0)− 1k
∣∣∣∣
∞ ≤

S(z0)
1−κ e

−θ(t−t0) so z satisfies

z(t)− 1k =
(
x(t, t0, z

0)− 1k
)

+

∫ t

t0

(
Φ(t, s)− 1(1, 0, . . . , 0)

)
η(s) ds

and this implies

||z(t)− 1k||∞ ≤
S(z0)

1− κ
e−θ(t−t0) +

∫ t

t0

e−θ(t−s)

1− κ
max
i

ai1(s)

h(s)
ds
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In view of the imposed conditions and (3.8)

sup
t≥t0

c(t)||z(t)− 1k||∞ <∞

and the proof is concluded.

3.2.2 Symmetric coupling rates

Let us take a digression and consider (3.3) with the additional condition that

aij(t) = aij(t), ∀j ∈ Ni, t ≥ t0.

The analysis of this system is then significantly simplified if we consider the metric

Λ(x) =
1

2

∑
j<i:j∈Ni

(xi − xj)2 = xTx

for x /∈ ∆. Λ(·) is a smooth function and the standard derivative can be used to

show that along the solution x(t) of (3.3)

d

dt
Λ
(
x(t)

)
=
∑
j

(xi(t)− xj(t))
(
ẋi(t)− ẋj(t)

)
= −xTLx

From §2.2.1.1 we have that

xTLx =
∑

aij(t)6=0

aij(t)(xi − xj)2 ≥ min
aij 6=0

aij(t)
∑

aij(t)6=0

(xi − xj)2

≥ min
aij 6=0

aij(t)λ · xTx

where λ is the Fiedler number of the simply connected topological graph G. Finally,

d

dt
Λ
(
x(t)

)
≤ −f(t)λΛ

(
x(t)

)
so that

Λ
(
x(t)

)
≤ e

−λ
∫ t
t0
f(s) ds

Λ(x0).
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This result highlights the discrepancy between the contraction coefficient used so far

and the Fiedler number. The symmetry of the weights favors the use of the smooth

metric Λ and stronger results are provided. In the simple connectivity case, while

Theorem 3.2.9 effectively asks for

∫ ∞
fγ(s) ds =∞

the Fiedler estimate asks for

∫ ∞
f(s) ds =∞.

The latter condition is what the contraction coefficient delivers only under the Type

I connectivity assumption. Moreover note that 1
T

N
x is an integral of motion and

therefore the consensus point is 1
T

N
x0. That’s why the symmetry hypothesis is also

known as average consensus. This, in turn, is a special case of the family of networks

with connectivity weights that define Laplacian matrices L(t) under a common left

eigenvector, c, of the zero eigenvalue, i.e. cTL(t) ≡ 0. Then the integral of motion

of this system is cTx(t) and the limit point is cTx0.

3.2.3 A note on necessary conditions

The discussion has so far exclusively revolved around sufficient conditions for asymp-

totic convergence to ∆. Analysis on necessary conditions usually requires tedious

arguments and are, therefore, more rare. Here we comment on this aspect of the

consensus problem. For the sake of the argument we adopt symmetrical weights

aij(t) = aji(t) so that aij(t) 6= 0⇒ aij(t) ≥ f > 0 with a simple static connectivity
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regime. This way we avoid the, previously noted, unnecessary discrepancy of the

results while at the same time can ensure a convenient exponential behavior for the

“sufficiently” connected part of the network.

Theorem 3.2.12. Consider the system (3.3) and its solution x = x(t, t0,x
0), t ≥ t0

with Assumption 3.2.1 to hold and the communication graph to be simply connected.

Assume that over a population of N autonomous agents there is a cut of [N ] such

that [N ] = V1 t V2 so that for any (i, j) ∈ V1 × V2 or (j, i) ∈ V1 × V2, aij(t) >

0 implies
∫∞

aij(s) ds < ∞. If for any l1, l2 ∈ [N ], xl1(t) − xl2(t) → 0 implies

|xl1(t)− xl2(t)| ≤ e−θtS(x0) then there exist initial conditions such that S
(
x(t)

)
> 0

for any t ≥ t0

Proof. Let the initial conditions be set such xl(0) < xn(0) for l ∈ V1 and n ∈ V2.

Consider then the subset V11 of V1 and accordingly the subset V22 of V2 which

by assumption they must have connections between them. Let i ∈ V11 such that

xi(t) ≤ xi∗(t) for any i∗ ∈ V11 and j ∈ V22 such that xj(t) ≥ xj∗(t) for any j∗ ∈ V22.

ẋi(t) ≤ dij
(
xj(t)− xi(t)

)
+ zi(t)

ẋj(t) ≥ dji
(
xi(t)− xj(t)

)
+ zj(t)

where zi(t) =
∑

l∈V1
ail
(
xl(t) − xi(t)

)
, zj(t) =

∑
l∈V2

ajl
(
xl(t) − xj(t)

)
are functions

that signify the interconnections among agents on the separated subsets. Now,

d

dt

(
xj(t)− xi(t)

)
≥ −

(
dij(t) + dji(t)

)(
xj(t)− xi(t)

)
+ zj(t)− zi(t)

if either zi(t) or zj(t) do not vanish then S(x(t)) will not converge to zero and there

is nothing to prove. On the other hand we have by assumption that |zi(t)− zj(t)| ≤
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2(N−1)Ce−γtS(x0) for (N−1)C to play the role of the uniform upper bound of aij(t)

according to Assumption 3.2.1. Next we set for simplicity Q(s) =
(
dij(s) + dji(s)

)
Now,

∫∞
t0
Q(s) ds <∞ and this means that there is a sequence {tn}n≥1 and a

constant J1 > 0 such that ∫ tn

0

Q(s) ds ≥ J1.

Since

xj(t)− xi(t) ≥ e−
∫ t
0 Q(s) ds(x0

j − x0
i ) +

∫ t

0

e−
∫ t
w Q(s) ds

(
fj(w)− fi(w)

)
dw,

we have that

|xj(tn)− xi(tn)| ≥
∣∣∣∣e−J1|x0

ji| −
∫ tn

0

e−
∫ tn
w Q(s) ds2(N − 1)Ce−γwdwS(x0)

∣∣∣∣.
Choosing

∣∣e−J1|x0
ji| −

2(N−1)CS(x0)
θ

∣∣ > ε we obtain |xij(t)| > ε for infinitely many t

and the proof is concluded.

3.3 Stochastic Consensus

As already mentioned in the introduction, the stochastic part in consensus systems

was initially implemented for the purpose of modeling the uncertainty in the inter-

connection status among agents. Heuristically speaking, the statistical regularity

smooths out the condition of recurrent connectivity, that was characterized by sev-

eral researchers as too stringent [46]. Indeed, imposing strong and time-invariant

statistical rules, the dynamics of inter-connections, the assumption of connectivity

over uniformly bounded intervals of time is satisfied almost surely and it can be

essentially omitted.

64



The purpose of this section is to re-formulate the discrete-time linear consensus

problem with modeling the communication topology in a measure theoretic frame-

work. Thus, we recall the discussion, the notations and the terminology developed

in §2.4.

We claim that this setting is general enough to unify many results proposed

in the literature. The idea is to consider an appropriate finite measure space and a

dynamical shift T over infinite products of stochastic matrices. Asymptotic consen-

sus depends on the probability of a particular T invariant event and the properties

of the imposed measure that preserves T . If, in addition, the shift T is ergodic then

any T -invariant event is of either full or zero measure. In the examples section we

will review related results from the literature and show how they constitute special

cases of our setup.

As in the deterministic case, it is important to separate the existence of a

connection among two agents from the strength (weight) of this connection, exactly

because we are under the non-uniform lower bound condition. It is this condition

that plays a critical role in the analysis of the system. In fact, unless the probabilistic

regime concerning the connection failures is trivial, asymptotic consensus is never

guaranteed in full probability whenever the weights are free to vanish.

3.3.1 Topology driven by measure-preserving dynamical systems

For N < ∞ we define the discrete set Y of all possible (directed) connections

among N nodes. The cardinality of Y is finite. The product measure space is
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(X,B, µ) =
∏

n≥0(Y, 2Y,m) for some measure function m and µ is the induced

product measure as it was discussed in §2.4. The shift operator T : X → X is a

measure preserving transformation since for any A ∈ J , µ(T−1A) = µ(A) (see also

[30]). We understand χi as an N × N , 0 − 1 matrix with all diagonals zero and

the off-diagonal values to attain value 1 if there is a connection from the agent of

the column to the agent of the row, otherwise attain the zero value, as well. Recall

now (3.1) and its solution

x(n) = P (n− 1)P (n− 2) . . . P (0)x(0) (3.10)

for GP (n) ∈ S. We would want the steering force that generates the matrices P (n)

at every instant n, to be effectively characterized by the projection map of the shift

T : X → X. Let the family of functions {aij(n)}i 6=j, so that for n ≥ 0 and any

i 6= j ∈ [N ], aij(n) ∈ [f(n), a) for a uniform finite upper bound a and some fixed

non-increasing positive function f(·) that vanishes as n → ∞. Let the stochastic

matrix

P (n) = φ({T nχ}) (3.11)

to be defined through the following measurable function φ : X→ S:

[φ({T nχ})]ij =


aij(n)

ε
∑
l:[{Ttx}il]=1 a

if
[
{T nχ}

]
ij

= 1 and i 6= j

0 if
[
{T nχ}

]
ij

= 0 and i 6= j

for some fixed ε > 1 so that [φ(T nχ)ii] := 1 −
∑

j

[
φ({T nχ})

]
ij
> 0. We are

interested in the the following set

QB =
{
χ ∈ X : GPn,B is routed-out branching ∀n ≥ 0

}
∈ B,
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where Pn,B is defined in (2.8). Because of the uncertainty on the connection status

we chose a slightly different version on the weights. We re-scaled the connectivity

weights, in order to preserve the stochastic structure for P (n), regardless of the

probabilistic generator that controls the existence of connections. It should be noted

that P (n) may not symmetric.

The setting clearly proposes that the solution x is a stochastic process defined

on a probability space (Ω,F ,P) closely related to (X,B, µ) . The consensus problem

becomes equivalent to the convergence of x to ∆. We are basically interested in

convergence in the almost sure sense.1

Consensus may be achieved if µ assigns a positive value to QB for some B and

in particular, it is this value of µ(QB) the probability with which consensus occurs,

in exactly the same way as in Theorem 3.1.8 and therefore we can readily state the

following result without proof:

Theorem 3.3.1. Let (X,B, µ) be the direct product measure space on products of

stochastic matrices and T : X → X a shift. Consider the solution x(n) of (3.10)

with P (n) as in (3.11) and also consider the set QB. Then x(t) satisfies

x(n)→ ∆, n→∞, w.p. µ(QB)

if ∑
l

fσ(lσ) =∞

with σ = l∗([N/2] + 1)B and l∗ to have the meaning of Remark 2.3.7.

1Since P
(
|x(n)| ≤ N maxi |xi(0)|

)
= 1 we have E[|x(n)|r <]∞ and from these two facts we have

that almost sure convergence implies convergence in the rth mean for any r ≥ 0.
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This theorem is simply the measure theoretic analogue of Theorem 3.1.8 and

little does it contribute to our discussion. It illustrates, however, the interdepen-

dence between the non-uniform lower bounds of aij, the induced statistical regu-

larity and it is only of theoretical interest. Almost sure convergence is ensured if

the event
⋃
B≥1 PB is of full measure. The most common processes in the literature

(e.g. i.i.d, markov or stationary) obey probability laws that are invariant in time

and they yield almost sure consensus only under the uniform bound condition (i.e.

aij(n) 6= 0 ⇒ aij(n) ≥ f > 0). It is exactly this case where there is no difference

between the existence of connection and its weight, when one studies the asymptotic

convergence to ∆.

For this reason, in the rest of this section we will strengthen to aij(n) ∈

{0} ∪ (0, 1) uniformly in n so that we can focus on the processes, produced by the

shift T , which guarantee the asymptotic convergence of P0,n to a rank-1 matrix.

Corollary 3.3.2. Let T : X→ X be an ergodic shift on the product space (X,B, µ),

P (n) with the form of (3.11) and aij(n) ∈ {0}∪(0, 1) for i 6= j. Then the solution x

of (3.10) converges to consensus with probability one if µ(QB) > 0 for some B ≥ 0.

Proof. At first we show that the set W =
⋃
B QB is T -invariant. Fix B > 0. Then

for χ ∈ QB we have T−1χ ∈ QB+1.

T−1W = T−1
⋃
B

QB =
⋃
B

T−1QB ⊂
⋃
B

QB+1 ⊂ W

Also, χ ∈ QB ⇒ Tχ ∈ QB so that QB ⊂ T−1QB and this is true over the union for

all B ≥ 0. Consequently

W ⊂ T−1W
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and we conclude that W is T -invariant. The ergodicity condition makes T an

indecomposable transformation on T invariant sets, i.e. µ(W ) = 0 or µ(W ) = 1 but

the first case is excluded because µ(W ) ≥ µ(QB) > 0. Then the only realization of

shifting over X is this concerning processes with routed-out branching graphs over

B intervals for some B <∞. Any other event occurs with zero probability and the

result follows in view of the uniformly bounded weights.

It should be noted here that P (n) is not a stationary process. By construction

the measure µ does not concern the weights aij(n). The stationarity property can

be observed in GP (n) which, as we mentioned above, is the only key feature for the

stability analysis.

Example 3.3.3 (Stationary Ergodic processes [49]). The problem of consensus

over stationary ergodic processes assumes that the matrix P (n) is essentially such

a process. It is very well known that a measure preserving shift can be used to

generate stationary processes and, conversely, that any stationary process is equal

(in distribution) to a process generated by a measure preserving shift [33]. Given a

stationary ergodic process that produces stochastic matrices P (n) process one can

easily verify whether this particular shift is ergodic after applying Birkhoffs ergodic

theorem: If for some B > 0

lim
n̄

1

n̄

n̄−1∑
n=0

1T (Pn,B) > 0

where 1A(s) is a dual function that takes value 1 if s ∈ A and 0 otherwise, T is the

set of routed-out branching graphs, then the corresponding shift that is ergodic and

consensus is proved in the almost sure sense. Corollary 3.3.2 reproduces the results
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of [49] but in a broader setting as not only does it allow for connectivity over B

intervals of time, but it is also not concerned with the stationarity of the weighted

graph. It exclusively describes the existence of a connection and not the strength of

it.

Our setting may also include stationary processes that occur from determin-

istic systems that exhibit a non-trivial stochastic behavior, such as chaotic maps or

nonlinear differential equations, so long as their solutions produce a (natural) in-

variant measure on the state space (see [29]). Then one can read these dynamics as

stochastic and consider the consensus problem with communication topology driven

by chaotic signals.

Example 3.3.4 (IID processes [46, 48]). One of the first works on the topic of

probabilistic consensus in [46], formulated (3.1), as a stochastic linear equation with

symmetric connectivity weights (aij = aji) to randomly take values at each time

n ∈ N. The partition of interest would be aij(n) 6= 0 with probability p and

aij(n) = 0 with probability 1− p, independently of the rest of the connections and

times.

Let us digress for a moment and see P (n) = Pn(y) as a random process

defined on a probability space (Y, 2Y,P). Then P (n) takes values in the space of

stochastic matrices with positive diagonals and uniformly bounded weights. Then

the backward product Pn,B(y) is a homogeneous sequence of independent random

trails and it forms a stationary process. By the independence assumption it is easy

to directly calculate the probability of the event the corresponding graph GPn,B to
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be routed-out branching: If p is the probability that aij(t) 6= 0 then the probability

of j affecting i through a B time interval is by the binomial theorem 1− (1− p)B.

For G a graph on N nodes, let q ∈ [1, N(N − 1)) denote the minimal number of

edges so that each additional edge will keep G routed-out branching. Then for QB

as defined before

P
(
QB

)
>

N(N−1)∑
l=q

(
N(N − 1)

l

)(
1− (1− p)B

)l
(1− p)B((N−1)2−l)

= 1−
q−1∑
l=0

(
N(N − 1)

l

)(
1− (1− p)B

)l
(1− p)B(N(N−1)−l)

= 1−O
(
(1− p)B)→ 1, as B >> 1

To see why the event E =
{

supB GPn,B is not connected,∀n ≥ 0
}

is a zero proba-

bility event, note that PB are nested for B decreasing and for this reason P(Ec) =

limB→∞ P(QB).

To adapt this example to our framework we work as follows. Let the set

{0, 1} and (p, 1 − p) the probability vector for some fixed p ∈ (0, 1), so that {0} is

assigned to 1 − p and {1} is assigned to p. This is an elementary measure space.

On this space, we define the triplet (Y, 2Y,m) over N(N − 1) pairs of nodes (i.e.

without self-connections) each fixed pair of which will be considered connected and

take values in an open subset of [0, 1] with probability p or it will be zero with

probability 1 − p, independently of the rest of the pairs. Eventually, (X,B, µ) =∏∞
j=0(Y, 2Y,m) is the product space of interest on which the shift T : X → X is

defined, as T (χ0χ1χ2 . . . ) = χ1χ2 . . . . If J is the semi-algebra of all measurable

rectangles then µ(T−1A) = µ(A) for any A ∈ J and by Theorem 1.1 of [30], T is

measure preserving. It is a standard exercise to show that T is ergodic [30]. It is
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only left to show that for some B > 0, µ(QB) > 0, a calculation very similar to the

one carried before and Corollary 3.3.2 applies.

Example 3.3.5 (Markov processes [50]). The authors considered (3.1) with a

switching communication topology driven by a Markovian jump process and in par-

ticular a process on a homogeneous Markov chain over l states defined by a stochastic

matrix Z, each state of which, corresponds to a connectivity regime among N nodes.

The result is summarized as follows: Unconditional asymptotic consensus is achieved

if and only if Z is irreducible and the union of states of the chain correspond to a

routed-out branching graph. We note that the irreducibility of Z implies the exis-

tence of an invariant measure π ∈ Rl > 0 with
∑

i πi = 1 with the property that

πTZ = π. In the shift oriented framework, we have a transformation T on (π, Z)

known as Markov shift which is ergodic if and only if Z is irreducible [30]. Then the

event of connectivity over a B-interval of times is dictated by the invariant measure

to be of positive measure and Corollary 3.3.2 applies.

Continuous time The results of the previous section can be modified to deal with

the problem in continuous-time and there are numerous different settings to choose

upon. Let us recall the deterministic case and the system (3.3). The stability of

its solution with respect to ∆ is decided upon the product of the matrices P γ
B(t).

Just as in the discrete-time case, the stochastic nature is implemented exclusively

to model the communication failure. Taking into account the necessary dwelling

time condition (Assumption 3.2.8) we will use the same measure preserving shift

on the same product space which will operate every ε > 0 time: More specifically,
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consider continuous deterministic functions aij that satisfy Assumptions 3.2.1 and

m as define (3.4). For fixed ε > 0, q ∈ N and t ∈ [t0 + (q − 1)ε, t0 + qε), we define

the m−stochastic matrix W (t) = mIN×W −D(t) + A(t) with

[Wij(t)] =


aij(t)[{T qχ}ij], i 6= j

m−
∑

j wij(t), i = j

where T : X→ X is the measurable transformation defined in the preceding section.

Consequently the matrices P
(l)
B (t) : X → S from Proposition 3.2.5 are well-defined

processes as measurable mappings.

Example 3.3.6. Let (Ω,F ,P) be a probability space and for ω ∈ Ω, x(t, ω) ∈

RN × F a random process such that x(t0) = x0, it is sample continuous, product

measurable, it has a sample right derivative and it is a solution of the stochastic

differential equation

ẋi(t, ω) =
∑
j

aij(t, ω)
(
xj(t, ω)− xi(t, ω)

)
, xi(t0) = x0

i

if it satisfies this equation with probability one for all t ≥ t0. The stochastic part of

this equation lies in aij(t, ω) which are assumed to be stochastic processes generated

by the shift T : X→ X and in particular we assume to be just as the one described

in the Example 3.3.4. Then we are interested in the integral∫ ∞
t0

f(s, ω) ds

where f(t, ω) = mini,j
∑

l min{ail(t, ω), ajl(t, ω)}, since

P
(
ω ∈ Ω : lim

t→∞
S
(
x(t, ω)

)
6= 0
)

= 1− P
(
ω ∈ Ω :

∫ ∞
t0

f(s, ω) ds =∞
)

73



and it can be easily calculated that at every Iq = [t0 + (q − 1)ε, t0 + qε),

µ
(
x ∈ X : GP (t) scrambling, t ∈ Iq

)
> pN−1 > 0

and by the non-summability and independence of the above events, the sum over

q diverges and the Borel-Cantelli Lemma assures that P (t) will be scrambling for

infinitely many ε intervals of time. Hence P
(
ω ∈ Ω :

∫∞
t0
f(s, ω) ds = ∞

)
= 1 and

almost sure asymptotic consensus occurs.

3.4 Supplementary Remarks

An issue that needs clarification with this implementation is the seemingly mystic

role of B > 0. Inverting the system of differential equations to a system of integral

equations, we asked for a positive number B > 0, that will allow the solution to

“run” over [t−B, t] first. This is a central part of the analysis. Interestingly enough,

B has its roots in the classification of states in finite state continuous-time Markov

Chains. For the sake of simplicity, recall a static connectivity version of (3.3). Then

as B > 0 is the necessary length interval of time for the contraction to act, so is

the necessary time needed for the state classification into communication classes:

Indeed, a pair of states i, j of the chain belongs to the same communication class if

the probability starting from i to arrive in j is strictly positive for positive times,

i.e. P(Xt+B = j|Xt = i) > 0 for B > 0 (see p. 260 of [32]). In other words, B > 0

is the necessary time the system needs to identify the communication classes in the

network.

The use of the contraction coefficient allows for asymmetric couplings but the
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price to pay is weak estimates; an undesirable and unavoidable situation. The sym-

metric connectivity achieves stronger estimates as it relies on the Fiedler number; a

spectral tool that of topological (un-directed) graphs. Additionally, the dropping of

the uniform hypothesis allows for nonuniform type of convergence to ∆, very impor-

tant turn of events for the analysis of the 2nd order consensus (flocking) networks

in Chapter 6. We will see that the analysis of the linear model developed here, can

serve as an appropriate base towards a unified approach in distributed co-operation

and agreement dynamics.

Simulation examples of Theorems 3.2.4 and 3.2.9 are postponed for §4.4 where

the effect of delays will be taken into account.

For the stochastic case we developed a general framework and we outlined the

fact that the statistical regularity imposed, is in fact of little help to ease the, char-

acterized as too demanding, recurrent connectivity regime of the deterministic case.

Measure preserving ergodic dynamical systems generate precisely the statistical al-

ternative of the recurrent connectivity. Finally, the analysis of stochastic networks

was restricted to the discrete-time case for technical reasons only as we described

the appropriate modifications needed for a continuous-time setting analysis.
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Chapter 4: The Effect Of Delays

In many applications a central hypothesis is that the system under consideration

is governed by a principle of causality; that is, future states of the system are

independent of the past states and it is determined solely by the present. If, in

addition, the system is governed by an equation involving both the state and the

rate of change of the state then, generally, one is considering either ordinary or

partial differential equations. However, under closer scrutiny, it becomes apparent

that this setup is often only a first approximation to the true situation and that

a more realistic model would include some of the past states of the system. The

simplest type of past dependence in a differential equation is that in which the

past dependence is through the state variable, the so-called retarded functional

differential equations, expressed in the general form

ẋ(t) = F
(
t, x(t), x(t− τ)

)
The investigator almost always feels that delays cause difficulties. But there

are striking incidents of simplifications wrought by delays. A delay can cause bound-

edness, stability, continuation, integrability or oscillation.
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Example 4.0.1. The initial value problem
ẋ(t) = x2(t), t ≥ 0

x(0) = 1

has a solution that escapes to infinity in finite time. But if τ(t) is positive for all

t ≥ 0 then

ẋ = x2
(
t− τ(t)

)
has all solutions exist for all t ≥ 0. To see this, let an initial function in [−τ(0), 0]

be given and let x(t) be a solution defined on [0, T ) with lim supt→T− |x(t)| = +∞.

Then there is a τ̄ > 0 with τ(t) ≥ τ̄ on [0, T ] so that t − τ(t) ≤ T − τ̄ for t ≤ T .

But x(t) is continuous on [0, T − τ̄ ] and hence it is bounded by some number M .

Thus |ẋ| ≤M2 for 0 ≤ t ≤ T and so |x(t)− x(0)| ≤M2T , a contradiction.

For a thorough discussion on the theory of functional differential equations

there is an abundance of solid textbooks [56, 34, 57, 58, 59].

4.1 Delays In Consensus Networks

Time delays are inevitable in the study of real-world complex systems. Modern

research advances persistently point to the direction of understanding delays and

explaining their deeper effect on the behavior of dynamical systems. The literature

is steadily enriched with advances regarding the modeling of time-delay systems, the

stability of their solutions as well as efficient and/or optimal control techniques in

order to respond to nowadays increasing need for knowledge about of these systems

from the Applied Science community [60, 61, 62, 63, 64]
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A most important member of the complex systems are the networked co-

operative systems with the consensus dynamics standing among the most distin-

guished ones. Delays in consensus networks are the result of either finite speed of

information propagation between agents, known as communication or propagation

delays, or finite speed of information processing, known as input or processing de-

lay. In both cases, delays tend to weaken the performance of the system and in

some cases destabilize it [45]. In consensus networks the mathematical model that

incorporates delays reads

i ∈ [N ] :


ẋi(t) =

∑
j∈Ni aij

(
xj(t− τ)− xi(t− ν)

)
, t ≥ 0

xi(s) = φi(s), s ∈ [−max{ν, τ}, 0]

In real-world applications it is often essential to study the stability problem

not only on the level of simple convergence but also to be able to estimate the

rate of convergence. From an application point of view it is desirable to obtain

mathematically tractable expressions on the effect of delays in the performance of

these systems. Expressions that are explicit functions of the system’s parameters.

Nevertheless, there are no strong results in the literature concerning the effect

of delays in distributed consensus systems. To the best of my knowledge we mention

a number of relative results. A simple delayed consensus algorithm was proposed

and discussed in [45] where the model

ẋi(t) =
∑
j

aij(xj(t− τ)− xi(t− τ))

With τ > 0 constant and uniform for all agents, a frequency method analysis was

carried through. The authors used frequency methods to show that a necessary and
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sufficient condition for convergence is

τ <
2π

λN

where λN is the largest eigenvalue of the Laplacian matrix (see § 2.2.1). The prob-

lem with this method is that it does not apply if the delays are multiple and in-

commensurate or if the system is time-varying or even nonlinear. In [65, 17] the

authors consider a discrete time version of (4.24) without processing delays and with

time-varying information propagation delays τ(t). On condition that the delay is

uniformly bounded from above, the strategy towards this problem is to extend the

state space by adding artificial agents which played no actual role in the dynam-

ics other than transmitting a pre-described delayed version of an agent’s state. It

is unclear how one would extend the state space in a continuous-time framework,

unless the system is discretized. Next, in [66] the authors discuss the convergence

properties of a nonlinear model which has the form

ẋi(t) =
∑
j

aijfij
(
xj(t− τ)− xi(t)

)
Using passivity assumptions on fij they apply Invariance Principles to derive delay-

independent convergence results. The main setback of that approach, however, is

that nothing can be said for either the rate of convergence to the consensus point or

the consensus point itself. Another similar argument is made in [51] for the linear

consensus model with information propagation delays. The author relies on the

linearity argument to conclude exponential stability from asymptotic stability.

The last family of models concerns rendezvous type of algorithms. In [67] the

authors propose a second order consensus based algorithms, where agents asymp-
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totically meet in a common place as their speed vanishes to zero. This algorithm is

of the form

v̇i(t) = −cvi(t) +
∑
j

aij(rj(t− τ ij)− ri(t))

The authors establish a Lyapunov-Krasovskii argument based on Invariance Princi-

ples and give delay-dependent results. Again, nothing can be said about the rate of

convergence of this system since Invariance principles guarantee convergence.

In a very different vein, multi-dimensional systems with delays appear in the

study of Monotone Dynamical Systems. In his monograph [18], Smith discusses

systems of the type

ẋ1(t) = −ax1(t) + ax2(t− τ)

ẋ2(t) = −bx2(t) + bx1(t− τ)

(4.1)

The dynamical systems involved, are categorized either as competitive or as

cooperative, depending on their monotonicity (here again the sign of the parameters,

a and b in the example above). Whenever a, b are positive the system is cooperative

and the asymptotic behavior is a constant value for any bounded τ . Systems of the

type of (4.1) are known from the control community as linear distributed agreement

(consensus) dynamics and in the un-delayed case (τ = 0) are treated with Algebraic

Graph Theory methods [24] and form the core of Networked Control Theory [25].

Despite the abundance of results in the control community, the case of distributed

delayed dynamics is treated only on the part of simple convergence results. It is

still an open problem to estimate the rate of convergence to a constant value for the

general case as a function of the delay.
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Fixed points. The lack of strong results on the effect of delay on the rate of conver-

gence of the consensus systems motivated me to develop a general framework based

on stability by fixed point theory involving linear and nonlinear versions of consensus

systems [3, 4, 5, 7, 6]. Stability by Fixed Point Theory has been recently developed

with the seminal work of T.A. Burton [34]. This is a Lyapunov-free method that

consists of three crucial steps. Firstly, the solution form needs to be expressed in

a non-trivial way, usually with the use of a variation of parameters formula [68].

Secondly, the researcher is called upon to decide on an appropriate metric space.

Having defined the solution operator based on the solution form from the variation

of parameters, the third step is to derive sufficient conditions for showing using a

fixed point theorem to prove that the operator has a fixed point in this metric space.

This point is in our case the solution of the differential equation and it automatically

inherits all the properties of the members of the metric space it is proved to exist

in. If the metric space is endowed with stability properties, proving the existence

of a fixed point of a solution operator in a metric space is a de-facto solution of the

stability problem.

The sufficient conditions derived in the aforementioned works were proved to

be too demanding. For example in the linear time-invariant system

i ∈ [N ] :


ẋi =

∑
j∈Ni aij

(
xj(t− τ)− xi(t)

)
, t ≥ 0

xi(t) = φi(t), t ∈ [−τ, 0]

(4.2)

This system has no processing delays but it has a uniform constant propagation

delay. The derivation of the solution operator was based on a naive approximation
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of (4.2) with the undelayed linear time-invariant model of (2.3). This led the authors

impose severe conditions on the the smallness of the allowed delay in order for the

solution operator to satisfy the necessary contraction property. Such a condition

is unreasonable since it is very well known that processing delays do not alter the

asymptotic stability of such systems. To give a perspective, the approach asked for

τ <
1

(N − 1) maxi,j aij

The explanation that the severity of condition is only due to the variational

argument is not totally convincing. Such severe conditions can also be found in

fairly simple scalar differential equations of the type

ẋ = −ax+ bx(t− τ). (4.3)

In the above scalar delayed equation the exponential stability with respect to x = 0

is guaranteed for any τ <∞, if |b| < a and a > 0. At b = a, this condition seizes to

exist.

Motivation and contribution. The contribution of this chapter concerns scalar and

multidimensional linear functional differential equations. The analysis has two parts.

The first part concerns the study of a class of important scalar functional equations.

The second part deals with consensus networks where we apply the techniques de-

veloped for the scalar case. Our persistent goal is to prove asymptotic stability

emphasizing on providing explicit estimates on the rate of convergence.

More specifically, we take a long digression studying the stability of the solu-

tions of scalar functional equations. We will attempt to find answers on the above,
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seemingly trivial, peculiarity concerning the behavior when b = a. Our quest is

leading us to the study of old models on biological growth and the large discussion

in the applied mathematics community that followed and lasted for over a decade.

We consider the scalar problem in two versions and adopt two different solution

approaches.

1. The first is the time-invariant one: It involves constant weights and multiple

delays. We develop a fixed point theory argument with the use of a combina-

tion of solution forms. We provide general and unified results and we show by

example that the rate estimates are significantly improved. Its main drawback

is that it is difficult to be implemented in linear time-varying or nonlinear sys-

tems. It generally fails to yield delay-independent results, despite its strong

estimates on the rate of convergence.

2. The second version is the general linear one: It involves multiple time-varying

weights and delays. Here, a Lyapunov-Razumikhin type of argument is de-

veloped and asymptotic stability with respect to ∆ is proved and explicit

estimates on the rate of convergence are stated. We provide conditions on the

sign of the time-varying weights so that the convergence is delay-independent.

The derived estimates recover older results from the literature in a much sim-

pler way. The disadvantage is that these estimates are in general very weak.

We will compare our results by example and simulations the two approaches.

For the second part, we apply the scalar results for the study of the multidimen-

sional alternative. The analysis is split to the time invariant and the time-varying
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case, accordingly. The linear time-invariant (LTI) consensus networks are consid-

ered with multiple constant propagation and processing delays. Similar to the scalar

version, a fixed point theory argument is developed on the base of a combination of

two integral representations of the solution. We establish sufficient conditions for

stability with emphasis on the rate of convergence. The second part concerns the de-

velopment of general theory of time-varying consensus dynamics with time-varying

delays along the lines of the scalar time-varying case and the use of the contraction

coefficient from Chapter 3. Several examples and simulations are provided in every

step in order to illustrate and compare the various results.

4.2 A Remarkable Scalar Equation

In the theory of delayed differential equations, probably the simplest example one

can discuss is (4.3). There is, indeed, hardly a textbook in the field not mentioning

this equation at the chapter of stability of solutions [57, 58, 59]. It is in that

particular chapter where the text focuses on equations of the type (4.3) with the

parameters a, b satisfying a > 0 and |b| ≤ a. The zero solution is then shown to

be stable for any τ > 0. In the vast majority of these texts, the next sentence goes

pretty much as follows:

“Moreover, if |b| < a, then the zero solution is asymptotically stable.[...]”.

In any advanced textbook or technical paper one may find the proof that the asymp-

totic stability of such systems is exponential. This can be shown using any of the
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conventional stability analysis methods. It is the purpose of the next subsection, to

briefly review these tools in the stability of (4.3) for |b| < a.

4.2.1 The case |b| < a.

Equation (4.3) is stated as the following initial value problem
ẋ(t) = −ax(t) + bx(t− τ), t ≥ 0

x(t) = φ(t), t ∈ [−τ, 0]

(4.4)

where a > 0 and b ∈ R such that |b| < a. It is the latter condition which guarantees

that both x(t) and eθtx(t) are qualitatively equal for θ > 0 small enough. If x(t) is

a solution of (4.4) then y(t) = eθtx(t) satisfies:
ẏ(t) = −(a− θ)y(t) + beθry(t− τ), t ≥ 0

y(t) = eθtφ(t), t ∈ [−τ, 0]

(4.5)

We choose θ > 0 small enough so that

|b|eθτ

a− θ
< 1 (4.6)

and such θ always exist only because |b| < a.

We will review the main stability analysis methods for the asymptotic behavior

of y with respect to the zero solution as asymptotic stability of y implies exponential

stability of x with rate θ.

Frequency Methods. We choose the direct method (§2.2.3 of [58]). The quasi-

polynomial of (4.5) is

a(s, e−τs) = s+ (a− θ)− beθτe−sτ = a0(s) + a1(s)e−sτ
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with a0(s) = s+ (a− θ) and a1(s) = −beθτ . At τ = 0, a(s, 1) = s+ (a− θ)− b and

it is stable a(s, 1) = 0 if and only if <(s) < 0. Then∣∣∣∣a1(jω)

a0(jω)

∣∣∣∣ =
|b|eθτ√

ω2 + (a− θ)2
< 1, ω ∈ R.

in view of (4.6). Then there is no solution of a(s, esτ ) = 0 with <(s) > 0 and the

stability result follows.

Liapunov-Krasovskii[59]. For the problem (4.5), the appropriate functional to be

selected is V (φ) = 1
2
φ2(0) + µ

∫ 0

−τ φ
2(θ)dθ so that

V̇ (φ) = −(a− θ − µ)φ2(0) + |b|eθτφ(0)φ(−τ)− µφ2(−τ) ≤ 0

if µ ∈
( |b|eθτ

2
, a− θ − |b|e

θτ

2

)
which exists in view of (4.6). Then the result follows in

view of (4.6) and Theorem 2.1 of [59].

Liapunov-Razumkhin[59]. The Lyapunov function in this case is V (x) = x2

2
. Then

V̇ (x(t)) ≤ −(a− θ)x2(t) + |b|eθτ |x(t)| · |x(t− τ)| ≤ −(a− θ − |b|eθτ )x2(t) ≤ 0

whenever |x(t)| ≥ |x(t− τ)|. Then the result follows in view of (4.6) and Theorem

4.1 of [59].

Fixed Point Theory[34]. This technique does not directly rely on the transforma-

tion y(t) = eθtx(t). The condition |b| < a suffices to prove that the solution operator

defined by inverting (4.4) as

(Qx)(t) =


e−atφ(0) + b

∫ t
0
e−a(t−s)x(s− τ) ds, t ≥ 0

φ(t), t ∈ [−τ, 0]

(4.7)
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is a contraction in the complete metric space (M, ρ) where

M = {x ∈ C0[−τ,∞) : x = φ|[−τ,0], sup
t≥−τ

eθt|x(t)| <∞}

and ρ(x1, x2) = supt≥0 e
θt|x1(t) − x2(t)|, whenever condition (4.6) holds. Then by

Theorem 2.5.6, Q attains a unique fixed point in M. This is a de facto proof of the

asymptotic convergence of the solution to zero (see p. 41 of [34]).1

There is no doubt that the critical condition which characterizes (4.3) as “sim-

ple” is |b| < a and consequently condition (4.6). Neither the constancy of the weights

a and b nor the nature of delay (large, time/state dependent) play any substantial

role in the asymptotic behavior of the solution x. So long as the magnitude of the

undelayed term dominates the magnitude of the retarded term the effect of delay

acts as a harmless perturbation of the the solutions in the qualitative sense. This

property can be readily generalized to more complex systems and it is therefore

exploited in different contexts for the establishment of delay-independent stability

results [58]. The crucial condition (4.6) seizes to hold when a = b.

4.2.2 The case b = a.

At this “bifurcation” value, a number of new phenomena occur. Since condition

(4.6) does not hold, one cannot use the transformation y(t) = eθtx(t). Also (4.3)

reads

ẋ(t) = −ax(t) + ax(t− τ) (4.8)

1This approach does not include the step of the stability of solutions with respect to the classical

definition. This part must be handled separately (usually with an ε− δ argument).
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and every real constant is a solution. In particular if from (4.4), φ ∈ ∆I then the

solutions stay in ∆I for all times. However, no solution in ∆I is asymptotically

stable in the classical sense: if y1, y2 ∈ ∆ with |y1 − y2| < ε for any ε > 0, with

φ = y1 then y(t) ≡ y1 and it will never converge to y2. As a result, none of the above

methods is applicable any more. For instance, the direct method of Section 4.2.1

gives for (4.4)

a√
ω2 + a2

≤ 1, ω ∈ R

which by no means imply asymptotic stability of the solutions, let alone the con-

vergence rate. However, we may still conclude stability. The same result occurs for

the Liapunov-Krasovski and Liapunov-Razumikhin methods, whereas the mapping

Q in the Fixed Point Theory approach seizes to be a contraction for any value of τ .

It is this class of delayed differential equations for which Invariance Principles

may take over in the Liapunov-based approaches and prove asymptotic stability of

the solutions with respect to the invariant set ∆ [69]. These techniques however

suffer from the standard drawback that they provide no information on the rate at

which the solutions convergence to such an invariant subset. A feature that is of

utmost importance for real-world problems.

The Cook-Yorke hypothesis. To the best of my knowledge, the first occurrence of

this equation dates back in 1973 with the seminal work of Cooke and Yorke [70].

The authors developed a theory of biological growth and epidemics by introducing

and analyzing the system

ẋ = g(x(t))− g(x(t− τ)) (4.9)
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where g is an arbitrary Lipschitzian function. The authors proved that whenever the

solution of (4.9) exists in the large and does not diverge, it approaches asymptoti-

cally a constant value. Their work has ever since attracted enormous attention from

the mathematical community and caused an abundance of convergence results of

these types of functional differential equations, known in the literature as equations

with asymptotic constancy of solutions [71, 72, 73, 34, 74, 75, 76, 77, 78].

A similar field of study where such equations appear is this of the motion

of a classical radiating electron [79]. In the following, we will review a number

of past works that emphasize both on the asymptotic stability and on the rate of

convergence.

In [72, 71] the authors develop conditions which ensure that all solutions of

certain functional differential equations are asymptotically constant as t → ∞.

Equation (4.8) is a special case of their work for which it must hold that

|aτ | < 1 (4.10)

so that solutions x tend to a constant so that x ∈ L1
(
[t0,∞),R

)
. In [71], it is proved

that the rate is exponential with exponent θ ∈ (0,− ln (aτ)
τ

).

In his monograph [34], T.A. Burton explains that, since the solution operator

of (4.8) can be expressed as

x(t) = −a
∫ t

t−τ
x(s) ds+ x(0) + a

∫ 0

−τ
φ(s) ds,

condition (4.10) ensures that this solution form can be a contraction in the complete

metric space (M, ρ) defined in § 4.2.1 with the origin translated to the fixed constant

k =
φ(0) + a

∫ 0

−τ φ(s) ds

1 + aτ
(4.11)
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and θ small enough to satisfy |a| eθτ−1
θ

< 1. The approach of Burton is more general

in the sense that it sheds light upon the asymptotic value k as well as it can be

readily applied to nonlinear versions of (4.8) such as (4.9).

Finally, Krisztin [78], developed a Liapunov-Razumikhin argument, based on

the monotonicity of (4.8) (i.e. the fact that we can take a > 0). He estimated the

rate of convergence without the condition (4.10). In particular, assuming

aτ <∞

he proved that the rate of convergence of solutions to a constant is exponential with

rate proportional to

ln(1− e−aτ )
2τ

(4.12)

which is a delay-independent result. The main conclusion of the discussion should be

that as far as (4.8) is concerned, the convergence to a constant value is independent

of the magnitude of the delay τ only when a > 0 but is restricted to conditions like

(4.10) whenever a < 0.

The fixed-point argument. Within the context of fixed point theory this peculiarity

occurs as a result of the way the solutions are expressed and the corresponding

solutions operators are defined.

Motivated by this shortcoming, we discuss the scalar problem expressed in (4.8).

In fact, within the framework of fixed point theory we develop a new form of the

solution operator on the base of the following observation: (4.10) reveals that this

condition simply neglects the sign of a. Indeed, the solution x for (4.8) also con-

verges to a constant exponentially fast if (4.10) holds. Moreover one may suspect
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that instability occurs at |aτ | = 1 exactly because it may mean aτ = −1 for which

value k as defined in (4.11), is not finite. The first remark is that for the solution

of (4.8) can be expressed either as

x(t) = −a
∫ t

t−τ
x(s) ds+

(
φ(0) + a

∫ 0

−τ
φ(s) ds

)
(4.13)

or as

x(t) = e−a(t−t0)x(t0) +

∫ t

t0

e−a(t−s)ax(s− τ) ds (4.14)

for any t, t0 with t ≥ t0. These are two forms with different information on the

dynamics of x. (4.13) shows that the value of x(t) exclusively depends on the infor-

mation of x in [t− τ, t] and (4.14) shows that x(t) is based on the information of x

in [t0− τ, t0] whereas this form also exploits the dissipative nature of the dynamics,

due to a > 0. The problem with (4.14) is that, unlike (4.7), it is not a contrac-

tion in any useful metric space with regards to asymptotic stability. This is exactly

because a = b from (4.3). Since in the FPT framework it is the representation of

the solution as of much importance as the form of the Lyapunov function in the

Lyapunov theory, we will combine (4.13) and (4.14), to obtain a new representation

of the solution that in many cases will yield asymptotic stability results independent

of the magnitude of the delays.

Notation. Fix N < ∞ and t0 ∈ R. τi ∈ [t0,∞) → R+ is a continuous func-

tion such that λi(t) := t − τi(t) is non-decreasing with limt→∞ λi(t) = ∞, for any

i = 1, . . . , N . Whenever the subscript i is omitted we understand the maximum

over i, i.e. τ(t) := maxi τi(t) whereas λ(t) = t − τ(t) = mini λi(t). Also λ(j)(t)
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will denote the jth composition of λ(t) and for t ≥ t0 Iλ(j−1)t := [λ(j)(t), λ(j−1)(t)]

with the convention Iλ(0)(t) = It. For any a ∈ R, a+ := max{0, a} and a− :=

min{0, a}. A solution of a scalar functional differential equation is denoted as

x(t, t0, φ) where φ is the initial function so that x(t0, t0, φ) = φ as and equiva-

lent to x(t0, t0, φ)(s) = φ(s) for s ∈ It0 . In general xt = x(t + s) for s ∈ It.

Also WIt,φ =
[

mins∈It φ(s),maxs∈It φ(s)
]

and SIt(φ) = maxs∈It φ(s) − mins∈It φ(s)

in agreement with the notation in § 2.1 from where we recall for the rest of the

symbols.

4.2.3 Time-invariant dynamics

The first set of results concerns the following initial value problem
ẋ(t) = −

∑N
i=1 aix(t) + aix(λi(t)), t ≥ t0

x(t) = φ(t), t ∈ I0

(4.15)

with ai ∈ R constant λi(t) = t − τi for τi constant and φ given initial datum. We

re-write (4.15) as

ẋ = −ax(t) +
∑
i

a+
i x(λi(t)) +

∑
i

|a−i |
d

dt

∫ t

λi(t)

x(s) ds

so as to separate the dissipation dynamics from the non-dissipation ones. Then the

solution x satisfies both

x(t) =e−aτx(λ(t)) +

∫ t

λ(t)

e−a(t−s)
∑
i

a+
i x(λi(s)) ds+

+

∫ t

λ(t)

e−a(t−s)
∑
i

|a−i |
d

ds

∫ s

λi(s)

x(w) dwds, t ≥ τ

(4.16)

and
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x(t) = c0 −
N∑
i=1

ai

∫ t

λi(t)

x(s) ds (4.17)

with c0 := φ(0) +
∑

i ai
∫ 0

−τi φ(s) ds. For t ≥ τ we substitute x(λ(t)) of the first form

with the right hand-side equivalent of the second form and we derive the following

form of the solution of (4.15):

x(t) = e−aτc0 +
∑
i

∫ λ(t)

λi(λ(t))

(
e−a(t−w−τi) − e−aτ

)
a+
i x(w) dw

+
∑
i

∫ λi(t)

λ(t)

e−a(t−w−τi)a+
i x(w) dw +

∑
i

|a−i |
∫ t

λi(t)

x(w) dw

−
∑
i

∫ t

λ(t)

e−a(t−s)a|a−i |
∫ s

λi(s)

x(w) dwds

= e−aτc0 +
∑
i

∫ λ(t)

λi(λ(t))

[(
e−a(t−w−τi) − e−aτ

)
a+
i −

−
∫ gi(w)

λ(t)

e−a(t−s)a|a−i | ds
]
x(w) dw

+
∑
i

∫ λi(t)

λ(t)

[
e−a(t−w−τi)a+

i −
∫ gi(w)

w

e−a(t−s)a|a−i | ds
]
x(w) dw

+
∑
i

∫ t

λi(t)

|a−i |
[
1−

∫ t

w

ae−a(t−s) ds

]
x(w) dw

(4.18)

where the last step is due to the change of the order of integration on the term∑
i

∫ t
t−τ e

−a(t−s)a|a−i |
∫ s
s−τi x(w) dwds. This will be our solution operator, for t ≥ τ .

We exploit the monotonicity of the integrand functions to arrive in the following

condition

Assumption 4.2.1. There exists α ∈ [0, 1) such that

1− e−aτ −
N∑
i=1

[
τi|ai|e−aτ −

|a−i |
a

(
1− e−aτi − e−aτ + e−a(τ−τi)

)]
≤ α
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Remark 4.2.2. We outline the following two special cases:

1. a−i ≡ 0: The condition reduces to 1 − e−aτ −
∑

i aiτie
−aτ =: α < 1 and it is

satisfied for any magnitude of τi, ai <∞.

2. a+
i ≡ 0: Then a = 0 and the condition reduces to

∑
i |aiτi| ≤ α < 1.

For θ ∈ (0, a) we define the quantities

Θ1(i, θ) = |a−i |eaτie−(a−θ)τ 1− e−(a−θ)τi

a− θ
− |a−i |eθτ

eθτi − 1

θ

Θ2(i, θ) = |a−i |(eaτi − 1)
e−(a−θ)τi − e−(a−θ)τ

a− θ

Θ3(i, θ) = |a−i |
e(a−θ)τi − 1

a− θ

and we pick θ small enough so that

∑
i

a+
i

(
eθτi

1− e−aτ

a− θ
− e−aτ e

θτi − 1

θ

)
+

3∑
j=1

Θj(i, θ) ≤ 1. (4.19)

One can always find such θ to satisfy this condition since in the limit θ ↓ 0 (4.19)

coincides with Assumption 4.2.1.

Theorem 4.2.3. Under Assumption 4.2.1, the solution x = x(t, 0, φ), t ≥ 0 of

(4.15) is exponentially asymptotically stable with respect to ∆. More specifically, x

converges to

k =
φ(0) +

∑N
i=1 ai

∫ 0

−τi φ(s) ds

1 +
∑N

i=1 aiτi
(4.20)

exponentially fast with exponent θ that satisfies (4.19).

Proof. At first, we see that k is well-defined as if, 1 +
∑N

i=1 aiτi ↓ 0 then the left

hand side of the expression in the Assumption 4.2.1 becomes greater than 1.
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Next, we prove stability of the solution with respect to ∆. Fix ε > 0 and k.

We pick φ and δτ = δτ (ε, k) < ε so that |x(t, φ) − k| < δτ for t ∈ [−τ, τ ]. Such a

δτ can always be found by the continuous dependence on initial conditions. Next

we pick δ ≤ δτ satisfying δ(1 +
∑

i aiτi)e
−aτ + αε < ε, consider the first time t∗ ≥ τ

such that |x(t∗, φ) − k| = ε and express x as in (4.18) to arrive in a contradiction.

Finally, we prove exponential convergence to k by a fixed point argument. Consider

the metric space (M, ρ) with

M =
{
y ∈ C0([−τ,∞),R) : y = x̃|[−τ,τ ], sup

t≥τ
eθt|y(t)− k| <∞

}
and ρ(x1, x2) = supt≥τ e

θt|x1(t)−x2(t)|. From Proposition 2.5.7, (M, ρ) is a complete

metric space. Next, we define the operator

(Px)(t) =


x̃(t), t ∈ [−τ, τ ]

x(4.18)(t), t ≥ τ

To show that P is a member of M we observe that it is continuous and it agrees in

[−maxi τi, τ ] with any member of M, by definition. Next supt≥τ e
θt|(Px)(t) − k| is

finite, for θ < a. Finally, we show that P is a contraction in (M, ρ): For x1, x2 ∈M

we calculate an upper bound of eθt
∣∣(Px1)(t)− (Px2)(t)

∣∣ and we arrive at

eθt
∣∣(Px1)(t)− (Px2)(t)

∣∣ ≤ Θ(t, θ)ρ(x1, x2)

where supt≥τ Θ(t, θ) is equal to (4.19). Then Theorem 2.5.6 can be applied conclud-

ing the proof.
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4.2.4 Time-varying dynamics

The natural extension of (4.15) is
ẋ(t) = −

∑N
i=1 ai(t)x(t) + ai(t)x

(
λi(t)

)
, t ≥ t0

x(t) = φ(t), t ∈ It0 .

(4.21)

where ai(t) are functions to be determined and λi(t) = t− τi(t) as defined in § 4.2.2.

There are a number of reasons to focus on the dynamics of the first derivative of the

state ẋ for (4.21), rather than the study of x itself. It should be intuitively clear that

there is no hope to try to express the asymptotic value k in a closed form because

the time-varying components of the system supply the orbit with new information.

Hence it is not possible for an integral of motion to be derived. Since x always

converges to R whenever
∫∞

ẋ(s) ds exists, it is desirable to seek the solution ẋ in

(4.21) in L1
[t0,∞). To outline this method, consider the simplified system

ẋ(t) = −a(t)x(t) + a(t)x(λ(t)).

We note that ẋ satisfies both

ẋ(t) = −a(t)

∫ t

λ(t)

ẋ(s) ds

and

ẍ(t) = −a(t)ẋ(t) + a(t)ẋ(λ(t))λ̇(t)− ȧ(t)

∫ t

λ(t)

ẋ(s) ds

Anyone trying to apply the same approach as before, will find themselves

with an integrodifferential equation. The analysis is held in [14]. Unfortunately,

the results are far from satisfactory. The method yields strong delay-dependent
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conditions, even for a(t) ≥ 0; it becomes too dysfunctional and it is thus abandoned.

For (4.21) we follow a different approach that restricts for ai(t) ≥ 0.

Lemma 4.2.4. The solution x = x(t, t0, φ), t ≥ t0 of (4.21) satisfies x(t) ∈ WIt0 ,φ

for all t ≥ t0.

Proof. Let t∗ be the first time that x escapes to the right. Then x(t∗) = maxs∈It∗x(s)

and ẋ(t∗) > 0. This is a contradiction in view of (4.21) and a similar argument can

be made for the lower bound.

A first crucial remark is that

SIt̄(x) ≤ SIt(x) (4.22)

for any t̄ ≥ t ≥ t0.

Theorem 4.2.5. Consider the system (4.21) and assume that

m = sup
t≥t0

∫ t

λ(t)

a(s) ds <∞

and that λ(t) → ∞ as t → ∞. Then the solution x = x(t, t0, φ), t ≥ t0 of (4.21)

satisfies

SIt(x) ≤ eln(1−e−m)ltSIt0 (φ)

for l the maximum natural number so that λ(l)(t) ≥ t0.

Proof. For any t ≥ t0 consider the interval It = [t − τ(t), t] and pick the points

t1, t2 ∈ It so that x(t2) = maxs∈It x(s), x(t1) = mins∈It x(s). Moreover, assume
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without loss of generality that t2 > t1. Then

x(t2) = e−
∫ t2
t1
a(s) dsx(t1) +

∫ t

t1

e−
∫ t
s a(s) ds

∑
i

ai(s)x(s− τi(s)) ds

=

∫ t2

t1

e−
∫ t
s a(s) ds

∑
i

ai(s)
(
x(s− τi(s))− x(t1)

)
ds+ x(t1)

by Lemma 4.22. Then

SIt(x) = x(t2)− x(t1) ≤
(
1− e−

∫ t2
t1
a(s) ds

)
SI

λ(2)(t)
(x)

and the result follows from a simple recursive argument.

Note that for a(t) ≤ a we must have τ(t) ≤ τ so that m = aτ from Theorem

4.2.5 and

SIt(x) ≤
SIt0 (φ)

1− e−m
e

ln(1−e−m)
2τ

(t−t0), (4.23)

implying exponential convergence. The above result is a simple and elegant proof

of stability for (4.21) and it reaffirms the rates obtained in [78], following a much

simpler way. Note that here we ask for ai ≥ 0 so that the crucial Lemma 4.22

holds. In [14] the same bounds are obtained via a different, much harder, way. One

way to treat (4.21) for general functions ai(t) is if we separate the positive from the

negative parts of ai and make a stability in variation argument. Indeed, one can set

a+
i (t) = max{0, ai(t)} and a−i (t) = min{0, ai(t)} so that

ẋ(t) = −
∑
i

a+
i (t)xi(t) +

∑
i

a+
i (t)x

(
λi(t)

)
−
∑
i

a−i (t)xi(t) +
∑
i

a−i (t)x
(
λi(t)

)
then x can be expressed as a variation of solution y that satisfies

ẏ(t) = −
∑
i

a+
i (t)y(t) +

∑
i

a+
i (t)y

(
λi(t)

)
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using appropriate techniques presented in [68]. The details of this method are dis-

cussed in [14] where several examples are worked to illustrate and compare the

strength of the different rates obtained. Some of them are presented right below.

4.2.5 Examples and Simulations

Example 4.2.6 (Stability bounds in LTI systems). Consider the initial value prob-

lem
ẋ(t) = −1.2x(t) + 1.2x(t− τ) + 2.3x(t)− 2.3x(t− ν), t ≥ 0

x(t) = φ(t), t ∈ [−max{τ, ν}, 0]

We discuss the asymptotic behavior of solutions with respect to τ and ν and we

compare the results of § 4.2.3 and § 4.2.4.

ν = 0: Both methods are applicable, so we will compare the estimates that

Theorems 4.2.3 and 4.2.5 provide for τ = 1, . . . , 10.

Theorem 4.2.3 asks for

Θ(τ, 0) = 1− e−1.2τ − 1.2τe−1.2τ < 1

which is always satisfies and thus we have delay-independent exponential stability

with respect to ∆ with rate θ which satisfies

G(τ, θ) = 1.2eθτ
1− e−1.2τ

1.2− θ
− 1.2e−1.2τ e

θτ − 1

θ
≤ 1.

Theorem 4.2.5 calculates from (4.23)
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|x(t)− k| ≤ SI0(φ)

1− e−1.2τ
e

1
2τ

ln(1−e−1.2τ )t

so that the estimated rate is θ = − 1
2τ

ln(1− e−1.2τ ).

In Fig. 4.2.6 we compare the two curves

θ : G(τ, θ) = 1

θ = − 1

2τ
ln(1− e−1.2τ )

for τ = 1, . . . , 10. We conclude that the estimates of Theorem 4.2.3 clearly outper-

form these of Theorem 4.2.5. Simulations for τ = 5 indicate that, in general both

estimates are still away from the numerically verified ones by an order of 10 (see

Fig. (4.2.6)).

ν > 0: Here only Theorem 4.2.3 applies and convergence is guaranteed for

small values of ν. In particular Assumption 4.4.1 asks for F (τ, ν) < 1 where

Θ(τ, ν) := 1− e−1.2τ −
[
1.2τe−1.2τ + 2.3νe−1.2τ−

− 1.9
(
1− e−1.2ν − e−1.2τ + e−1.2(τ−ν)

)]
In Fig. (4.2.6) the function ν = ν(τ) is plotted for the values such that F (τ, ν(τ)) =

1 which is the stability bounds of the system.

As a numerical application take τ = 1. Fig. (4.2.6) yields stability for ν ≤

0.325 so we fix ν = 0.32. Then condition (4.19) of Theorem 4.2.3 yields a rate equal

to θ = 0.175. Numerical inspection of this condition gives for ν ≈ 0.001 an estimate

near 0.071. Fig. (4.2.6) has the solution for τ = 1, ν = 0.32 and the estimated

rate is near 0.4. Both simulations were carried through with MATLAB and the ddesd
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Figure 4.1: Example 1. (a): ν = 0, τ = 5 and φ(s) = sin(8s) + 2s , s ∈ [−5, 0] and

the (t, y(t)) curve defined by y(t) = ±(x(0)− k)e−0.05t + k. (b) The rate estimates

between Theorem 4.2.3 (θ1) and Theorem 4.2.5 (θ2).

function.

Example 4.2.7 (Direct linearization of a nonlinear system). In this example we

will show how our results can be applied in the study of nonlinear systems
ẋ = a(t)f

(
x(t− τ(t))− x(t)

)
, t ≥ t0

x(s) = φ(s), s ∈ It0

where 0 ≤ a(t) ≤ a, τ(t) ≤ τ and f satisfies f(q)
q
> 0 for q 6= 0 and |f(q)| ≤ |q|.

Claim 4.2.8. The solutions of the system satisfy x(t) ∈ WIt0 ,φ
.

Proof. Let the first time t∗ ≥ t0 such that x(t∗) = maxs∈It0 φ(s) with ẋ(t∗) > 0.

But ẋ(t∗) = a(t∗)f
(
x(t∗ − τ(t∗)) − x(t∗)

)
< 0 by virtue of the property of f , a

contradiction. Similarly for the lower bound.
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Figure 4.2: Example 1. (a) ν 6= 0. and the stability curve ν = ν(τ). The shaded

region is the region of stability i.e. (ν < ν(τ)). (b) The solution of Example 1 with

τ = 1, ν = 0.32. The rate curves (t, y(t)) are defined by y(t) = ±(x(0)−k)e−0.4t+k.

Given the unique solution x of the system ẋ = f(t, xt) we define the linear

system

ż = a(t)c(t)
(
z(t− τ(t))− z(t)

)
with c(t) = c(x(t)) := f(x(t−τ(t))−x(t))

x(t−τ(t))−x(t)
> 0. We observe that the solution z is indis-

tinguishable from x. From Claim 4.2.8 we conclude that cM := supx∈Mt0,φ

f(x)
x

> 0

is well defined and thus c(t) ≥ cM . Then Theorem 4.2.5 can be applied with (4.23)

and we get the estimate:

|z(t)− k| ≤Mt0,φ(1− e−cMaτ )−1e
1
2τ

ln(1−e−cMaτ )(t−t0).

We can extend this example to include negative a(t) and work similarly to the

case (1) if we ask f to grow sub-linearly, e.g. f(x) = sin(x).
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4.3 LTI Delayed Consensus Networks

In this section, we will apply the argument of § 4.2.3 for the multidimensional case

and in particular a consensus network under linear time-invariant static connectivity

and multiple constant processing and propagation delays. For this, we recall the

discussion held in § 2.2 with the notation used. Fix τ ij , ν
j
i ∈ [0,∞) with τ :=

maxi,j{τ ij}, ν := maxi,j{νji } and let I0 = [−max{τ, ν}, 0]. Consider the following

initial value problem:

i ∈ [N ] :


ẋi(t) =

∑
j aij

(
xj(t− τ ij)− xi(t− ν

j
i )
)
, t ≥ 0

xi(t) = φi(t), t ∈ I0

(4.24)

where φi ∈ C0(I0,R) are given initial data. For the analysis we will make use of the

following three hypotheses:

Assumption 4.3.1. The communication graph G is routed-out branching.

Assumption 4.3.2. The system parameters aij, τ
i
j , ν

j
i and c satisfy

1 +
N∑

i,j=1

ciaij
(
τ ij − ν

j
i

)
> 0

From Proposition 2.2.1 and Assumption 4.3.1 we can conclude that e−LtL =

(e−Lt−1cT )L is a matrix function with elements that converge to zero exponentially

fast. In particular, e−LtL = [κij(t)]ij satisfies
∑

j 6=i κij = −κii and κij(t)→ 0 in the

order of O(e−<{λ}t) . These functions are calculated from the connectivity weights

and are assumed known. Define

gil(θ) := sup
t≥τ

∫ t−τ

0

|κil(t− τ − s)|eθ(t−s) ds (4.25)
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a quantity that is well-defined for θ < <{λ} and

hl,j,i(θ) := |alj − aij|
eθτ

l
j − 1

θ
+ aij

eθmax{τ ij ,τ lj} − eθmin{τ ij ,τ lj}

θ
(4.26)

Define

fij(θ) :=aije
θτ ij

1− e−(di−θ)τ

di − θ
− aije−(di−θ)τ e

θτ ij − 1

θ
+ e−diτ

∑
l 6=i

hl,j,i(θ)gil(θ)+

+ e−diτ
∑
l

gij(θ)ajl
eθν

l
j − 1

θ

if i 6= j and

−fii(θ) := 1−
∑
l 6=i

ail
eθν

l
i − 1

θ

(
1 + di

1− e−(di−θ)τ

di − θ

)
− e−diτ

∑
l 6=i

hl,i,i(θ)gil(θ)

− e−diτ
∑
l 6=i

gii(θ)ail
eθν

l
i − 1

θ
.

Finally form the matrix F (θ) = [fij(θ)].

Assumption 4.3.3. There exists q ∈ R+ so that

F (0)
1

q
< 0

where 1
q

:= (1/q1, . . . , 1/qN).

We are now ready to state the central theorem of this section:

Theorem 4.3.4. Under Assumptions 4.3.1, 4.3.2 and 4.3.3, the solution x =

x(t, 0,φ), t ≥ 0 (4.24) converges to 1k where

k =

∑N
i=1 ci

[
φi(0) +

∑
j∈Ni aij

( ∫ 0

−τ ij
φj(s) ds−

∫ 0

−νji
φi(s) ds

)]
1 +

∑N
i=1 ci

∑
j∈Ni aij

(
τ ij − ν

j
i

) (4.27)
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exponentially fast with rate θ ∈ (0,min{di,<{λ}}) that satisfies

F (θ)
1

q
≤ 0.

Assumption 4.3.1 is a minimal connectivity condition which requires that there

can be at most one i∗ ∈ [N ] with di∗ = 0, usually called the leader of the group, in

which case for c = (c1, . . . , cN)T the the left eigenvector of L = LG associated with

λ1 = 0, we have c = ei∗ . This means that i∗ remains unaffected and all other agents’

states asymptotically converge to the state of i∗. For the rest of the paper we will

quietly assume that di > 0,∀i ∈ [N ] without essentially effecting any of the derived

results. The hypothesis on the boundedness of the delays is necessary in order to

maintain exponential convergence of the system to the consensus state. This state

is, in turn, analytically calculated from the initial conditions and the topological

structure of the graph. Employing FPT methods in the study of the stability of the

solutions of (4.24), we extract sufficient conditions for their asymptotic behavior of

its solutions.

Although our analysis is in principle based on the smallness of the maximum

allowed delays ν and τ (Assumption 4.3.3) in the Examples section we will consider

special cases where the conditions become delay-independent.

Proof of Theorem 4.3.4. The proof is an application of Theorem 2.5.6 and it con-

sists of several steps. These involve the preparation of the solution operator, the

definition of an appropriate metric space, the proof that the solution operator maps

this space into itself and the proof that this operator is a contraction.

Preparing the solution operator. Following § 4.2.3, we will express the
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solution x(t, 0,φ) of the system (4.24) in two different ways and we will combine

both of them to create a new one which will serve as the solution operator. For

i ∈ [N ] we write from (4.24):

ẋi =
∑
j∈Ni

aij
(
xj − xi

)
−
∑
j∈Ni

aij
d

dt

[ ∫ t

t−τ ij
xj(s) ds−

∫ t

t−νji
xi(s) ds

]

In vector form this equation reads

ẋ = −Lx−
∑
i,j

Aij
d

dt

∫ t

t−τ ij
x(s) ds+

∑
i,j

Bij
d

dt

∫ t

t−νji
x(s) ds

where Aij = [alkδliδkj] and Bij = [aijδliδki]. Using the variation of constants and the

integration by parts formulae we see that the solution of (4.24) satisfies

x(t) = e−Ltφ(0)−
∫ t

0

e−L(t−s)
∑
i,j

[
Aij

d

ds

∫ s

s−τ ij
x(w) dw−

−Bij
d

ds

∫ s

s−νji
x(w) dw

]
ds

= e−Ltr0 −
∑
i,j

[
Aij

∫ t

t−τ ij
x(s) ds−Bij

∫ t

t−νji
x(s) ds

]
+

+

∫ t

0

e−L(t−s)L
∑
i,j

[
Aij

∫ s

s−τ ij
x(w) dw −Bij

∫ s

s−νji
x(w) dw

]
ds

(4.28)

where

r0 := φ(0) +
∑
i,j

[
Aij

∫ 0

−τ ij
φ(s) ds−Bij

∫ 0

−νji
φ(s) ds

]
(4.29)

An alternative way to express the solution of (4.24) in vector form is

ẋ(t) = −Dx(t) +
∑
i,j

Aijx(t− τ ij) +
∑
i,j

Bij
d

dt

∫ t

t−νji
x(s) ds

and inversion from t− τ to t yields

x(t) = e−Dτx(t− τ) +

∫ t

t−τ
e−D(t−s)

∑
i,j

[
Aijx(s− τ ij)+

+Bij
d

ds

∫ s

s−νji
x(w) dw

]
ds

(4.30)
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Following the discussion in § 4.2.3 we combine these two forms of solution to a new

one. From (4.30)

x(t) =

= e−Dτx(t− τ) +

∫ t

t−τ
e−D(t−s)

∑
i,j

[
Aijx(s− τ ij) +Bij

d

ds

∫ s

s−νji
x(w) dw

]
ds

= e−Dτx(4.28)(t− τ) +

∫ t

t−τ
e−D(t−s)

∑
i,j

[
Aijx(s− τ ij) +Bij

d

ds

∫ s

s−νji
x(w) dw

]
ds

So that for t ≥ τ

x(t) := e−Dτe−L(t−τ)r0+

+
∑
i,j

[ ∫ t−τ

t−τ−τ ij

(
e−D(t−τ ij−s) − e−Dτ

)
Aijx(s) ds+

+

∫ t−τ ij

t−τ
e−D(t−τ ij−s)Aijx(s) ds

]
+

+
∑
i,j

[
Bij

∫ t

t−νji
x(w) dwds−

∫ t

t−τ
e−D(t−s)DBij

∫ s

s−νji
x(w) dwds

]
+

+ e−Dτ
∫ t−τ

0

e−L(t−τ−s)L
∑
i,j

[
Aij

∫ s

s−τ ij
x(w) dw−

−Bij

∫ s

s−νji
x(w) dw

]
ds

(4.31)

For asymptotic stability with prescribed convergence estimate we will need an es-

pecially designed metric space.

The space of solutions. Fix ψ ∈ C0([−p, τ ],RN), θ > 0, k ∈ R. By

B = C0([−p,∞),RN) we define the set of continuous bounded (in the sense of the

supremum norm) functions defined in [−p,∞) and which take values in RN . Define

M =

{
y ∈ B : y = ψ|[−p,τ ], sup

t≥τ
eθt||y(t)− 1k||q <∞

}
(4.32)
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together with the function

ρ(y1,y2) := sup
t≥τ

eθt||y1(t)− y2(t)||q (4.33)

where we define

||x||q = max
i
qi|xi|

for some q, a vector with strictly positive elements.

This is the space of RN -valued continuous functions each member of which

agrees on [−p, τ ] with a prescribed function φ and it converges to 1k exponentially

fast with rate θ. We can readily attach this space to our problem by picking τ =

maxi,j τ
i
j , p = max{ν, τ}, ψ(t) = φ(t) for t ∈ [−p, 0] and ψ(t) = x(4.24)(t) t ∈ [0, τ ],

i.e. the unique solution of (4.24) in [0, τ ]. This formulation considers the existence

and uniqueness for the solution of (4.24) in [0, τ ] which is hardly an assumption due

to the linearity of the model. It is easy to see that the pair of equations (4.32) and

(4.33) is equivalent to the pair in (2.9), (2.10) in Proposition 2.5.7, from § 2.5 so

that (M, ρ) is a complete metric space.

The solution operator. We define P : M→ B as follows:

(Px)(t) =


ψ(t), t ∈ [−max{τ, ν}, τ ]

x(4.31)(t), t ≥ τ.

(4.34)

where x(4.31)(t) is the right hand-side of (4.31). The next step is to show that P

maps M into itself. The following lemma ensures that this is true for specific k and

θ.

Proposition 4.3.5. P : M→M if k is defined as in (4.27) and θ < <(λ).
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Proof. The proof consists of two parts. The first is the calculation k and the second

is the estimate of θ. For the first part we will need the following result:

Lemma 4.3.6. Let L be the weighted Laplacian matrix of a routed-out branching

graph G with c its normalized left eigenvector as defined in Proposition 2.2.1. Let

z ∈ C1([0,∞),RN) such that limt→∞ z(t) ∈ RN . Then

lim
t→∞

∫ t

0

e−L(t−s)Lz(s) ds = (IN×N − 1cT )z(∞)

We calculate the t limit of (Px)(t) as the sum of the four quantities defined

in (4.35).

For x ∈M, limt→∞Pi(t) yields

lim
t
P1(t) = lim

t
e−Dτ

(
e−L(t−τ) − 1cT

)
r0 + e−Dτ1cT r0 = e−Dτ1cT r0

lim
t
P2(t) = e−Dτ

( ∑
j∈N1

a1j

d1

(
ed1τ1

j − 1
)
, . . . ,

∑
j∈NN

aNj
dN

(
edN τ

N
j − 1

))T
k

− e−Dτ
( ∑
j∈N1

a1jτ
1
j , . . . ,

∑
j∈NN

aNjτ
N
j

)T
k

+

(
1− e−Dτ

( ∑
j∈N1

a1j

d1

ed1τ1
j , . . . ,

∑
j∈NN

aNj
dN

edN τ
N
j
)T)

k

lim
t
P3(t) = e−Dτ

( ∑
j∈N1

a1jν
j
1, . . . ,

∑
j∈NN

aNjν
j
N

)T
k

Finally, from Lemma 4.3.6 with z(t) =
∑

i,j

[
Aij
∫ t
t−τ ij

x(s) ds−Bij

∫ t
t−νji

x(s) ds

]
we

obtain

lim
t
P4(t) = e−Dτ (I − 1cT )

( ∑
j∈N1

aij(τ
1
j − ν

j
1), . . . ,

∑
j∈NN

aNj(τ
N
j − ν

j
N)
)T
k

Take w =
(∑

j∈N1
aij(τ

1
j − ν

j
1), . . . ,

∑
j∈NN aNj(τ

N
j − ν

j
N)
)T

and cancel the common
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terms to obtain

lim
t

(Px)(t) = 1k + e−Dτ1

(
cT r0 − k − cTwk

)
= 1k

if k is defined as in (4.27). For the second part, Proposition 2.2.1 implies

∣∣∣∣(e−Lt − 1cT
)
r0
∣∣∣∣ = O(tr(λ)−1e−<(λ)t)

whereas for x ∈ Mθ,k the rest of the terms of (Px)(t) are of order O(eθt). Then

supt≥p e
θt||(Px)(t)− 1k|| is finite for any θ < <(λ).

Proof of Lemma 4.3.6. Set zc(t) := z(t)− 1cTz(t). Then

Q(t) : =

∫ t

0

e−L(t−s)Lz(s) ds =

∫ t

0

(
e−L(t−s) − 1cT

)
Lzc(s) ds

=

∫ t

0

d

ds

(
e−L(t−s) − 1cT

)
zc(s) ds =

∫ t

0

d(e−L(t−s))zc(s) ds

= zc(t)− (e−Lt − 1cT )zc(0)−
∫ t

0

(e−L(t−s) − 1cT )żc(s) ds.

The result follows from Assumption 4.3.1 and hence the observation that the integral

asymptotically vanishes because it is a convolution of an L1 function with a function

that tends to zero.

The quantity k as defined in (4.27) is the consensus point and it is, as expected,

a function only of the parameters of the system, the initial data and it is well-defined

in view of Assumption 4.3.2.

Finally, it is shown that P satisfies the contraction property for some θ.

Lemma 4.3.7. Under Assumption 4.3.3, P : M → M is a contraction for some

θ ∈ (0,min{di,<(λ)}).
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Proof of Lemma 4.3.7. From the definition of P in (4.34) we observe that for t ≥ τ

it can be written as the sum

P = P1 + P2 + P3 + P4 (4.35)

where

P1(t) := e−Dτe−L(t−τ)r0

P2(t) :=
∑
i,j

∫ t−τ

t−τ−τ ij

(
e−D(t−τ ij−s) − e−Dτ

)
Aijx(s) ds+

+
∑
i,j

∫ t−τ ij

t−τ
e−D(t−τ ij−s)Aijx(s) ds

P3(t) :=
∑
i,j

Bij

∫ t

t−νji
x(s) ds−

∫ t

t−τ
e−D(t−s)DBij

∫ s

s−νji
x(w) dwds

P4(t) := e−Dτ
∫ t−τ

0

e−L(t−τ−s)L
∑
i,j

[
Aij

∫ s

s−τ ij
x(w) dw −Bij

∫ s

s−νji
x(w) dw

]
ds

Take x1,x2 ∈M. Then

ρ((Px1), (Px2)) = sup
t≥τ

eθt||(Px1)(t)− (Px2)(t)||q

≤
4∑
l=1

sup
t≥τ

eθt||(Plx1)(t)− (Plx2)(t)||q.

The contribution of each Plx1 − Plx2 is studied separately. At first, P1x1 − P1x2

contributes nothing. For the rest we work as follows.

P2: We estimate the upper bound of eθtqi|(P2x1)(i)(t)− (P2x2)(i)(t)|. Observe that

e−di(t−s−τ
i
j ) − e−diτ is non-negative for s ∈ [t− τ − τ ij , t− τ ] and for convenience set
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x12(s) := x1(s)− x2(s) and ρ := supt≥τ e
θt||x12(t)||q.∣∣∣∣ ∫ t−τ

t−τ−τ ij

(
e−di(t−s−τ

i
j ) − e−diτ

)
aijx

(j)
12 (s) ds+

∫ t−τ ij

t−τ
e−di(t−s−τ

i
j )aijx

(j)
12 (s) ds

∣∣∣∣ ≤
≤
[ ∫ t−τ

t−τ−τ ij

(
e−di(t−s−τ

i
j ) − e−diτ

)
aije

−θs ds+

∫ t−τ ij

t−τ
e−di(t−s−τ

i
j )aije

−θs ds

]
1

qj
ρ

⇒ where the two integrals give

eθt
∫ t−τ

t−τ−τ ij

(
e−di(t−s−τ

i
j ) − e−diτ

)
aije

−θs ds =

=
aij

di − θ

(
edi(τ

i
j−τ)+θτ − e−(di−θ)τ+θτ ij

)
− aij

θ
e−(di−θ)τ

(
eθτ

i
j − 1

)
,

eθt
∫ t−τ ij

t−τ
e−di(t−s−τ

i
j )aije

−θs ds =
aij

di − θ

(
eθτ

i
j − edi(τ ij−τ)+θτ

)
Check that the first and last term cancel and that summing over j ∈ Ni we obtain

the following estimate

qi
∑
j∈Ni

[
aije

θτ ij
1− e−(di−θ)τ

di − θ
− aije−(di−θ)τ e

θτ ij − 1

θ

]
1

qj
ρ (4.36)

Remark 4.3.8. As θ ↓ 0, the last expression becomes

qi
∑
j∈Ni

aij

[
1− e−diτ

di
− τ ije−diτ

]
1

qj
ρ

P3: Similar manipulation yields

qie
θt

∣∣∣∣∑
j∈Ni

aij

∫ t

t−νji
x

(i)
12 (s) ds

∣∣∣∣+ eθt
∣∣∣∣∑
j∈Ni

aij

∫ t

t−τ
die
−di(t−s)

∫ s

s−νji
x

(i)
12 (w) dwds

∣∣∣∣
≤
∑
j∈Ni

aij
eθν

j
i − 1

θ
ρ+

∑
j∈Ni

aij
eθν

j
i − 1

θ
di

1− e−(di−θ)τ

di − θ
ρ

Note that in this case the weights qi’s are canceled and so we get the estimate

∑
j∈Ni

aij
eθν

j
i − 1

θ

(
1 + di

1− e−(di−θ)τ

di − θ

)
ρ. (4.37)
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Remark 4.3.9. As θ ↓ 0, the last expression becomes

∑
j∈Ni

aijν
j
i

(
2− e−diτ

)
ρ

P4: Finally,

P4(t) : = e−Dτ
∫ t−τ

0

e−L(t−τ−s)L
∑
l,m

[
Alm

∫ s

s−τ lm
x12(w) dw−

−Blm

∫ s

s−νml

x12(w) dw

]
ds

Let κij be the (i, j)th element of e−LtL so that κii = −
∑

j 6=i κij. A careful

calculation for on the ith row of e−LtL
∑

l,mAlm
∫ s
s−τ lm

x12(w) dw yields

N∑
l=1

κil

N∑
j=1

alj

∫ s

s−τ lj
x

(j)
12 (w) dw =

κii

N∑
j=1

aij

∫ s

s−τ ij
x

(j)
12 (w) dw +

N∑
l 6=i

κil

N∑
j=1

alj

∫ s

s−τ lj
x

(j)
12 (w) dw =

∑
l 6=i

κil

[ N∑
j=1

(
alj

∫ s

s−τ lj
x

(j)
12 (w) dw − aij

∫ s

s−τ ij
x

(j)
12 (w) dw

)]
=

∑
l 6=i

κil

[ N∑
j=1

((
alj − aij

) ∫ s

s−τ lj
x

(j)
12 (w) dw + aij

∫ s−min{τ lj ,τ ij}

s−max{τ lj ,τ ij}
x

(j)
12 (w) dw

)]
Recall the notations gil and hl,j,i as in (4.25) and (4.26) respectively. Then the first

bound is

qie
−diτ

∑
l 6=i

N∑
j=1

hl,j,i(θ)gil(θ)
1

qj
ρ.

The second bound is

qie
−diτ

N∑
l=1

N∑
j=1

gil(θ)alj
eθν

j
l − 1

θ

1

ql
ρ.
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We add them both to obtain

qie
−diτ

[∑
l 6=i

N∑
j=1

hl,j,i(θ)gil(θ)
1

qj
+

N∑
l=1

N∑
j=1

gil(θ)alj
eθν

j
l − 1

θ

1

ql

]
ρ. (4.38)

Remark 4.3.10. As θ ↓ 0, the last expression becomes

qie
−diτ

[∑
l 6=i

N∑
j=1

hl,j,i(0)gil(0)
1

qj
+

N∑
l=1

N∑
j=1

gil(0)aljν
j
l

1

ql

]
ρ.

Combine Remarks 4.3.8, 4.3.9, 4.3.10 and reorder the weights qi to obtain the

condition of Assumption 4.3.3.

4.3.1 Examples and simulations

We will review now a number of illustrative applications of Theorem 4.3.4, compare

it with older results and/or with other approaches. In particular we will be propose

a way to prove the existence of the weights qi and hence define an appropriate metric

of proving stability under supplementary symmetry assumptions.

Example 4.3.11. For N = 2, (4.24) becomes

ẋ(t) = −ax(t− ν1) + ay(t− τ1)

ẏ(t) = −by(t− ν2) + bx(t− τ2)

(Ex.1)

where with a, b so that Assumption 4.3.1 holds and νi, τi ≥ 0. Without loss of

generality we take τ1 ≥ τ2. For convenience set Λ = ab
a+b

. Since c = { b
a+b

, a
a+b
}

Assumption 4.3.2 requires

1 + Λ
(
τ1 + τ2 − ν1 − ν2

)
> 0 (4.39)
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Next,

e−LtL =

 a −a

−b b

 e−(a+b)t

The matrix G(θ) = {gij(θ)} reads

G(θ) =

a a

b b

 eθτ1

a+ b− θ

whenever θ < a+ b. Then we consider the elements of F (θ)

f12 := ae−θτ1
1− e−(a−θ)τ1

a− θ
− ae−(a−θ)τ1 e

θτ1 − 1

θ
+

+ ae−aτ1
eθτ1 − 1

θ

a

a+ b− θ
eθτ1 + e−aτ1

abeθτ1

a+ b− θ
eθν2 − 1

θ

f11 := −
(

1− ae
θν1 − 1

θ

(
1 +

a

a− θ
(1− e−(a−θ)τ1)

)
−

− e−aτ1Λ
(eθτ2 − 1

θ
+
a

b

eθν1 − 1

θ

))
f21 := be−θτ2

1− e−(b−θ)τ1

b− θ
− be−(b−θ)τ1 e

θτ2 − 1

θ

+ be−bτ1
eθτ2 − 1

θ

b

a+ b− θ
eθτ1 + e−bτ1

abeθτ1

a+ b− θ
eθν1 − 1

θ

f22 := −
(

1− be
θν2 − 1

θ

(
1 +

b

b− θ
(1− e−(b−θ)τ1)

)
−

− e−bτ1Λ
(eθτ1 − 1

θ
+
b

a

eθν2 − 1

θ

))
and for θ ↓ 0, the elements of F (0)

f12 :=
(
1− e−aτ1 − Λτ1e

−aτ1 + e−aτ1Λν2

)
f11 := −

(
1− aν1

(
2− e−aτ1

)
− e−aτ1Λ

(
τ2 +

a

b
ν1

))
f21 :=

(
1− e−bτ1 − Λτ2e

−bτ1 + e−bτ1Λν1

)
f22 := −

(
1− bν2(2− e−bτ1)− e−bτ1Λ

(
τ1 +

b

a
ν2

))
.
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Then Assumption 4.3.3 requires finding q1, q2 > 0 so that

f12
1

q2

< (−f11)
1

q1

and f21
1

q1

< (−f22)
1

q2

a set of linear inequalities which is consistent if and only if

f11f22 > f12f21 (4.40)

whenever fii < 0, fij > 0. Eqs. (4.39) and (4.40) describe the allowed bounds for

the processing and propagation delays.

As a numerical application we take a = 0.5 and b = 1.3, τ1 = 1 τ2 = 0.2 and

ν1 = ν2 = 0.215. Then (4.40) remains consistent for θ ≤ 0.045 which is our estimate

for the rate of convergence. Next we focus on two extreme cases:

No propagation delays. In this case the bounds are rightfully much stricter. As the

necessary condition by Assumption 4.3.2 suggests it is impossible to obtain stability

for any bounded ν. The conditions imposed are

ν1 + ν2 <
1

Λ

by Assumption 4.3.2 and

1 + 2abν1ν2 >
2(a2ν1 + b2ν2) + ab(ν1 + ν2)

a+ b

from condition (4.40). More specifically, for ν1 = ν2 = ν we ask

ν <
1

2

a+ b

ab
, and ν2 − a2 + b2 + (a+ b)2

2ab(a+ b)
ν +

1

2ab
> 0.
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No processing delays. If we ignore the processing delays, the requirement of As-

sumption 4.3.2 is automatically satisfied and condition (4.40) is simplified to

(
1− Λτ1e

−bτ1
)(

1− Λτ2e
−aτ1

)
>
(
1− e−aτ1 − Λτ1e

−aτ1
)(

1− e−bτ1 − Λτ2e
−bτ1
)

Consequently, so long as the above inequality is satisfied, there are always q1, q2 >

0 and hence a weighted metric ρ so that the operator as defined in (4.34) is a

contraction in (M, ρ).

Note that the above inequality does not hold for any a, b, τ1, τ2. It is true

however either when a = b > 0 and arbitrary τ1, τ2 ≥ 0 or when τ1 = τ2 and

arbitrary a, b ≥ 0. This allows us to establish bounds around any nominal value w∗

in the vicinity of which for any given τ1, τ2 there exists a radius r so that a, b can lie

in B(w∗, r) and similarly for τ1, τ2. In our numerical example we take ν1 = ν2 = 0

and the rate estimate we get is θ = 0.4545.

Remark 4.3.12. In [7] we considered (4.24) with ν = 0 and we used an operator

based exclusively on the solution expression of (4.28). Then under the L1 norm,

|| · ||1 we derived the following contraction condition

Ãτ

(
1 +

√
N ||L||1
λ2

)
< 1 (4.41)

where Ã =
∑N

i=1

∑
j∈Ni aij and aij = aji. It should be intuitively clear that 4.41 is

much stricter than the condition (4.3.3) and we will illustrate this difference within

this example. Applying the bound (4.41) stability is ensured if

τ <
1

2(1 +
√

2)a
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Remark 4.3.13. Taking a = b and τi = νi we can compare our results with [45]

where the necessary and sufficient condition is

τ <
2π

λN
=
π

a

while our bounds ask

τ <
1

2a

Remark 4.3.14. We conclude this example by mentioning a candidate Lyapunov

functional in the case τ1 = τ2 = τ .

V (x, y) = bx2 + ay2 + ab

∫ t

t−τ
x2(s) + y2(s) ds

This functional on R2 is obviously continuous and

V̇ = −ab[(x− yt)2 + (y − xt)2]

Then the set, S, such that V̇ (t) ≡ 0 is the one where x(t) = y(t−τ) and y(t) = x(t−

τ) for all t. The largest subset of S that is invariant with respect to these dynamics

is ∆. Then standard Invariance Theory arguments yield asymptotic convergence to

the consensus subspace (Section 5.3 of [59]) independent of the magnitude of the

delay (but without any estimate on the rate of convergence).

Example 4.3.15 (A Delayed Complete Graph.). Let (4.24) with aij ≡ θ, νji ≡ 0

τ ij = τi. Under this communication scheme every agent is connected with everyone

else with identical connectivity weight and they receive the signals with propagation
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delay that depends on agent i only. The complete graph on N agents has the

edge set E = {(i, j) : i 6= j}. The Laplacian of this graph has the spectrum

λ1 = 0, λi = Nθ|Ni=2. Then

[e−LtL]ij =


θN−1

N
e−Nθt, i = j

θ−1
N
e−Nθt, i 6= j

and di ≡ (N − 1)θ and the left eigenvector of L is c = 1
1
N

. Assumption 4.3.2 is

automatically satisfied whereas for Assumption 4.3.3 we have

fij(0) =
1

N − 1
(1− e−(N−1)θτ )− θτie−(N−1)θτ+

+
θ

N2
e−(N−1)θτ

∑
l 6=i

(max{τi, τl} −min{τi, τl})

fii(0) = −1 +
θ

N2
e−(N−1)θτ

∑
l 6=i

τl

We will apply Theorem 2.7.1 and for this we will need the following condition.

Let for i ∈ [N ], Ni denote the number of l 6= i such that τl ≥ τi. We ask that

1 +
N2 + 2Ni −N

N
θτi −

N − 1

N2
θ

[ ∑
l:τl≥τi

τl −
∑
l:τl<τi

τl

]
> 0 (4.42)

Note that this condition is satisfied if for example τi ≡ τ . From Theorem 2.7.1

we choose m = 2N , ai :=
(
fi1, . . . , fiN

)
for i = 1, . . . , N , ai < 0 elementwise for

i = N + 1, . . . , 2N , αi = 0 for i = 1, . . . , N and αi < 0 for i = N + 1, . . . , 2N . Then

for the sake of contradiction if the second case holds there exist ξi|2Ni=1 ≥ 0 so that

at least one of ξ|i≤N is positive and
∑2N

i=1 αiξi =
∑2N

i=N+1 αiξi ≤ 0 and ξi|i≥N+1 ≥ 0.

From the second condition
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2N∑
i=1

aiξi = 0⇒
N∑
j=1

fijξj +
N∑
j=1

aijξj = 0, ∀i

Since the second part of the last equation is non-positive from the imposed condition

(4.42) it can be verified that it implies
∑

j fij < 0 for all i, hence a contradiction

because not all ξ|i≤N can be zero. So there exists a set of positive numbers (i.e. a

weighted metric) to satisfy the Assumption 4.3.3.

Example 4.3.16 (Uniform Delays in a topological Star Graph). We consider the

star graph among N agents and we enumerate the central node of the graph to be

the first agent. We take the communication weights identically equal to the unity.

It can be shown that

[e−LtL]ij =



(N − 1)e−Nt, i = j = 1

−e−Nt, i = 1, j 6= 1orj = 1, i 6= 1

1
N−1

e−Nt + N−2
N−1

e−t, i = j, i 6= 1

1
N−1

e−Nt − 1
N−1

e−t, o.w.

so that gii(0) = N−1
N

and gij(0) = 1
N

otherwise. Assumption 4.3.2 asks for

1 +
1

N

∑
j 6=1

(τ 1
j − ν

j
1) +

1

N

∑
j 6=1

(τ j1 − ν1
j ) > 0, i ∈ [N ]

In particular if τ ij ≡ τ and νji ≡ 0 the condition is automatically satisfied. Finally,

for Assumption 4.3.3 we calculate the elements of F (0)

f1j =


−1 + N−1

N
τe−(N−1)τ j = 1

1
N−1

(1− e−(N−1)τ )− τe−(N−1)τ + N−1
N
τe−(N−1)τ o.w.
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and for i > 1

fij =



−1 j = i

1− e−τ − τe−τ + τ
N
e−τ j = 1

τ
N
e−τ o.w.

A simple calculation shows that
∑

j fij < 0 and the argument proceeds as in

the Example 4.3.15.

Let us now turn to a numerical example where FPT methods suffer from the

asymmetry of the delays and the weighted topology and hence the derived conditions

ask for a very small bound on the maximum allowed delay τ .

Example 4.3.17. Consider a weighted graph with 4 nodes and the symmetric

Laplacian matrix L

L =



6.3 0 −2 −4.3

0 4.8 −3 −1.8

−2 −3 6.1 −1.1

−4.3 −1.8 −1.1 7.2


We also assume the distribution of delays:

T1 =



0 0.6241 0.9880 0.7962

0.5211 0 0.0377 0.0987

0.2316 0.3955 0 0.2619

0.4889 0.3674 0.9133 0


τ
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with the control parameter τ . We calculate the allowed bound for (4.41) <(λ) =

4.534, ||L||1 = 14.400, Ã = 24.400 and we obtain τ(4.41) < 0.0057. Now we will

Apply Theorem 4.3.4. We execute the following calculations.

e−LtL =



−20.66 −11.80 8.07 24.39

−11.80 −2.51 4.84 9.47

8.07 4.84 −3.15 −9.76

24.39 9.47 −9.76 −24.10


e−4.53t+

+



0.06 −0.37 0.61 −0.3

−0.37 1.82 −3.01 1.56

0.61 −3.01 5.00 −2.60

−0.30 1.56 −2.60 1.34


e−8.23t+

+



26.88 12.17 −10.67 −28.38

12.17 5.50 −4.84 −12.83

−10.67 −4.84 4.25 11.26

−28.38 −12.83 11.26 29.95


e−11.63t

where we used Putzer’s Algorithm [80] and MAPLE. Next for τmax = 0.988τ

the matrix G(0) is approximated as

G(0) =



2.454 1.603 0.993 2.999

1.603 0.413 0.494 1.215

0.993 0.494 0.535 1.502

2.999 1.215 1.502 2.826


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also and with the use of MAPLE we calculate F (0) as a function of τ :

F := [F1 : F2 : F3 : F4]

where

F1 =



6.76τe−6.22τ − 1

2.78τe−4.74τ

0.32(1− e−6.02τ ) + 3.25τe−6.02τ

0.59(1− e−7.11τ ) + 9.55τe−7.11τ


,F2 =



3.16τe−6.22τ

1.38τe−4.74τ − 1

0.49(1− e−6.02τ ) + 2.72τe−6.02τ

0.25(1− e−7.11τ ) + 5.68τe−7.11τ



F3 =



0.31(1− e−6.22τ ) + 6.00τe−6.22τ

0.62(1− e−4.74τ ) + 11.39τe−4.74τ

3.52τe−6.02τ − 1

0.16(1− e−7.11τ ) + 4.67τe−7.11τ


,F4 =



0.69(1− e−6.22τ ) + 15.16τe−6.22τ

0.38(1− e−4.74τ ) + 5.47τe−4.74τ

0.19(1− e−6.02τ ) + 3.38τe−6.02τ

10.91τe−7.11τ − 1


then

∑
j

fij =



31.08τe−6.22τ − e−6.22τ

21.02τe−4.74τ − e−4.74τ

9.35τe−6.02τ − e−6.02τ

30.81τe−7.11τ − e−7.11τ


and the first τ such that

∑
i fij = 0 is τ ∗ = 0.0414, so stability is ensured for τ < τ ∗

with the same argument as in the Example 4.3.15. This is an improvement of the

bound in (4.41) by almost an order of 10.

Example 4.3.18. [A simulation example] Consider the weighted network
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L =


0.2 −0.2 0

−0.1 0.1 0

−0.4 0 0.4


and the distribution of the processing and propagation delays

Σ(ν) =


0 ν

2
0

ν
6

0 0

ν
10

ν
7

0

 , T (τ) =


0 τ

10
0

7τ
10

0 0

τ τ
6

0


Then

e−LtL =


0.2e−0.3t −0.2e−0.3t 0

−0.1e−0.3t 0.1e−0.3t 0

−1.2e−0.4t + 0.8e−0.3t 0.8e−0.4t − 0.8e−0.3t 0.4e−0.4t


and

G(θ, τ) =


0.2

0.3−θ
0.2

0.3−θ 0

0.1
0.3−θ

0.1
0.3−θ 0

0.8
0.3−θ −

0.4
0.4−θ

0.8
0.3−θ −

0.8
0.4−θ

0.4
0.4−θ

 e
θτ .

For τ = 2, ν = 0.4 the matrix F (0.2) is calculated to be

F (0.2) =


−0.539 0.441 0

0.221 −0.934 0

6.198 0.175 −0.952


and then we can pick q1 = 1, q2 = 1, q3 ∈ (0, 0.145) to apply Theorem 4.3.4. The

simulation results are depicted in Fig. 4.3 (see captions for details).
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Figure 4.3: Numerical investigations for Example 4.3.18. The initial conditions are

φ1(t) = sin(8t) + 3t, φ2(t) = 3 sin(800t) + 3, φ3(t) = sin(4t) + 5 and correspond to

the solutions of the system x1 (blue), x2 (green) and x3 (red). The rate function

y(t) = |y0|e−0.2t is the dashed line. The simulation was done with the use of the

ddesd function in MATLAB.
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4.3.1.1 Remarks on the FPT Method

We developed a Lyapunov-free argument to the study the stability of a linear dis-

tributed consensus system with multiple delays. Our main goal was to establish

explicit estimates on the rate of convergence of the solutions, as functions of the

system’s parameters.

We studied the dynamics of system (4.24) by combining two forms of its solu-

tion. The first form, (4.28), is a perturbation of the un-delayed system. This way we

exploit the valuable kernel e−Lt that describes the global dynamics of the distributed

algorithm. The second one, (4.30), characterizes the dynamical behavior of the sys-

tem in a local manner. It expresses the rate at which each agent converges to the

weighted sum of the delayed states of its neighboring agents. This representation

illustrates the dissipative convex averaging of the algorithm but sheds no light on

the global dynamics. Due to the processing delays, (4.30) is, in turn, a perturbation

with respect to the model with just propagation delays.

Given the initial conditions φ and the system parameters, we considered the

unique solution of (4.24) on [−max{τ, ν}, τ ] and defined a space of functions each

member of which agrees on [−max{τ, ν}, τ ]. This extension of the solution is due

to the way we combined the two solution operators (4.28) and (4.30) and has no

effect in the study of the stability of solutions. Next, each member of this function

space converges exponentially fast to a constant value k according to a metric with

weights q and exponent rate θ. Based on the solution operator (4.31), we adapted

our metric space so that the operator maps this space into itself. In particular,
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the rate cannot be faster than the local and global exponential rates di and <{λ}

respectively. Also due to (4.28), the convergence point has a closed form, explicitly

defined from the system parameters and the initial data. Another point of interest

is that only if k is finite, the conclusion that our metric space is complete and this

is guaranteed by Assumption 4.3.2. An assumption which puts an upper bound on

the difference between the propagation and processing delays.

We turn our attention to the metric function ρ as defined in (2.10). This is a

generalized weighted metric. The supremum over t is necessary for our space to be

complete. We chose to work on the maximum over i ∈ [N ] metric because we are

dealing with integral equations of a primarily asymmetric system. We introduced

the weights qi > 0 as a design feature in an attempt to capture the geometry of

the state space of solutions as it depends on aij ν
j
i and τ ij . This idea is motivated

by Lyapunov’s first method in the stability analysis of the general linear system

ẋ = Ax, where one the investigator is asked to derive the classical Lyapunov matrix

P in the Lyapunov equation. This way we essentially transformed the contraction

problem into a system of linear inequalities problem and applied existence theorems

from Convex Analysis in order to ensure that we can find an appropriate metric

to make our operator a contraction one. This is achieved with the application of

Theorem 2.7.1.

Advantages. Using fixed one needs not to encounter the difficult task of finding a

Lyapunov function. As it is already stated, the derivation of a Lyapunov function

for these systems is limited to the case of no processing delays or with increased
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connectivity and they shed no light on the rate of convergence.

On the other hand, the solution operator is usually obtained with a stability

in variation technique and it is an essentially metric-free process. Metrics are used

in the step to prove that the operator is a contraction and they are of course of

utmost importance. The whole process allows for the investigator to attain an

overall control of the dynamic behavior of the system. Additionally, in every step of

the argument important information are extracted such as the consensus point and

the rate of convergence. The latter one is a function that depends explicitly on the

systems parameters.

Disadvantages. FPT methods generally appear to provide a lot information and

they are able to handle distributed systems in utmost generality. At the same time,

they ask for a lot, in terms of computations and analysis. For the sake of justice,

we should mention a number of drawbacks on account of this approach.

One notices that FPT is a lengthy method requiring several different steps,

each of which involves tedious algebraic calculations. The deeper we are willing to

dig to sharpen our results, the more calculations we are forced to make. In particular,

the process of deriving the contraction property can be very painful exactly because

the method will take any supplementary information the investigator is willing to

provide. This difficulty lies in the heart of distributed algorithms exactly because a

global governing kernel does not exist, other than this of the completely undelayed

linear time-invariant model which Algebraic Graph Theory provides.

Although our result is stated in utmost generality, we encounter serious difficul-
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ties in proving delay independence results when we neglect processing delays. There

are different factors that contribute to this situation. The first factor comes from the

solution operator. We effectively considered (4.24) as a perturbation to the original

un-delayed system. It is only reasonable then to expect delay dependent results (see

also [7]). On the other hand, the dimensionality of the problem forced us to make

use of the maximum norm. Under this norm one encounters the overall dynamics

from the point of view of the local dynamical behavior of an arbitrary agent. This is

a serious defect which we managed to partially remedy by introducing the weights

q. We tested the results of this approach in the Examples 4.3.11, 4.3.15 and 4.3.16

where we managed to obtain semi-delay independent stability. Unfortunately, q

imposes additional computational complexity to the problem. It is intuitively clear

that the more asymmetrical a system is the more difficult its analysis becomes. Ex-

ample 4.3.17 clearly illustrates that any such asymmetry must be compensated with

smaller and smaller maximum allowed delay.

4.4 General Linear Delayed Networks

The drawbacks of the fixed point methods aggravate when we consider more general

systems. For this, we follow the approach developed in § 4.2.4. For this we will need

Theorem 2.3.4. For fixed t0 ∈ R, we consider the initial value problem

i ∈ [N ] :


ẋi(t) =

∑
j aij(t)

(
xj(t− τij(t))− xi(t)

)
, t ≥ t0

xi(t) = φi(t), t ∈ It0

(4.43)
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where φ =
(
φ1(t), . . . , φN(t)

)
∈ L1(It0 ,RN) are given initial data aij is the strength

at which node j affects i and τij(t) the imposed delay between with which i receives

the state of j at time t. The solution of (4.43), x(t, t0,φ) =
(
x1(t), . . . xN(t)

)
is an

absolutely continuous vector valued function that defined in [λ(t0),∞] and it takes

values in RN as in the undelayed case in (3.3) of § 3.2. It is noted that, contrary to

the linear time-invariant case, here we neglect any processing delays. We recall the

discussion in § 2.1 and especially the notation introduced in the beginning of this

chapter.

The assumptions to accompany (4.43) are now stated. Regarding the connec-

tivity weights the assumptions are identical to § 3.2. We put them here again for

quick reference.

Assumption 4.4.1. The connectivity weights aij are upper bounded, right continu-

ous, non-negative functions of time.

For the sake of simplicity we exclude the non-uniform cases discussed in § 3.2

from the general theory. We will return in such a scenario investigating an interesting

case of unbounded delays for a 2×2 network. We recall the assumption of recurrent

connectivity and switching communications in § 3.2 to state the next hypothesis:

Assumption 4.4.2. For any t ≥ t0 there exists ε > 0 independent of t such that

aij(t) 6= 0 implies that there exist a neighborhood of t, Ut ⊂ I[t0,∞) of length ε such

that aij(s) ≥ f > 0 for any s ∈ Ut.

Assumption 4.4.3. The delay functions τij ∈ C1([t0,∞),R+) for all i 6= j so that
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t− τ(t) = λ(t)→∞ as t→∞ and

sup
t≥t0

∫ t

λ(t)

aij(s) ds <∞ ∀ j ∈ Ni, i ∈ [N ].

The last condition on Assumption 4.4.3 implies that whenever aij is bounded

from below then τ(t) is necessarily bounded from above. From Assumption 4.4.2 we

conclude that this will be the central case.

Bounds on x(t, t0,φ). The following two technical lemmas are instrumental in the

analysis to follow for both the solution of (4.43).

Lemma 4.4.4. Under Assumption 4.4.1, for any t2 ≥ t1 ≥ t0, the solution x
(
t2, t1,xt1

)
of (4.43) satisfies

xi(t2) ∈ WIt1 ,xt1
,∀i ∈ [N ]

Proof. Let t∗ ≥ t1 be the first time that xi(t) escapes WIt1 ,x
say, to the right. Then

it must hold both that xi(t
∗) = minj∈[N ],s∈[λ(t1),t1] xj(s) and ẋi(t

∗) > 0, which is a

contradiction in view of the dynamics in (4.43). The same argument can be made

for escaping to the left.

Lemma 4.4.5. If x = x(t, t0,φ), t ≥ t0 is the solution of (4.43) with the property

that SIt
(
x
)
→ 0 as t → ∞, then the forward limit set ω(φ) is a singleton with a

point in ∆I .

Proof. From Lemma 4.4.4 we have that ω(φ) is non-empty, compact and connected

and any element of which must lie in ∆. Since λ(t0) < ∞ any point φω ∈ ω(φ) is

actually a vector valued function with the property that φωi (s) = φωj (s) ∀i, j ∈ [N ].
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It is obvious however that x(t, t0,φ
ω) ≡ φω(t0) and at the same time a member of

ω(φ). By the uniqueness of solutions it follows that φω must be a constant vector

valued function in RN ∩∆ and the result follows.

Lemma 4.4.4 and Lemma 4.4.5 are the time-delayed analogues of Lemma 3.2.2

and in Lemma 3.2.3 of § 3.2, respectively.

The idea here, relies on the elementary observation that for any t ≥ t′ ≥ t0

the solution x(t) =
(
x1(t), . . . , xN(t)

)
satisfies

xi(t) = e−
∫ t
t′ di(s) dsxi(t

′) +

∫ t

t′
e−

∫ t
s di(w) dw

∑
j

aij(s)xj(λij(s)) ds, (4.44)

and the results are expected to reveal exponential type of convergence. We will

study the rate at which SIt(x) contracts by combining (4.44) with Theorem 2.3.4

and Lemma 4.4.4. Revealing the way the solution function contracts over intervals

of time, we conclude that the limit point must be in ∆I , i.e. the solutions contract

to a constant, just like the un-delayed case.

Theorem 4.4.6. Let Assumptions 4.4.1, 4.4.2 and 4.4.3 hold such that aij(t) 6= 0

implies aij(t) ≥ f > 0 uniformly in t and supt≥t0 τ(t) ≤ τ <∞. If there exists B > 0

so that for any t ≥ t0 the graph GPB(t) is routed-out branching, then unconditional

asymptotic consensus for the solution x = x(t, t0,φ), t ≥ t0 of (4.43) is achieved.

In particular, there exists k ∈ WIt0 ,φ
such that

max
i
|xi(t)− k| ≤

SIt0 (φ)

1− κe−N̄aτ
e−θ(t−t0)

where θ = − ln(1−κe−N̄aτ )
σB+2τ

, κ := inft≥t0 mini,j
∑

l min{ptil, ptjl} ∈ (0, 1) with ptij the

elements of P
(σ)
B (t), σ = l∗([N/2] + 1), N̄ = maxj∈[N ] Nj is the maximum degree
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over [N ] and l∗ has the meaning of Remark 2.3.7.

Theorem 4.4.6 provides explicit estimates on the rate of convergence as a

function of the parameters, the connectivity signal and the imposed delays. This

is a delay-independent result and in the next section we will show that it can be

extended to unbounded delays in view of Assumption 4.4.3.

Proof. Fix t ≥ t0. Under the imposed connectivity conditions, Proposition 3.2.5

implies that the stochastic matrix P
(σ)
B (t) is scrambling. Then by Theorem 2.3.4

and Lemma 4.4.4 we have the estimate:

S(x(t)) ≤ (1− κ)SIt−σB−τ (x) (4.45)

for a strictly positive κ := inft≥t0 mini,j
∑

l min{ptil, ptjl} < 1 with ptij the elements

of P
(σ)
B (t). As SIt(x) = maxi∈[N ],s∈[λ(t),t] xi(s) − mini∈[N ],s∈[λ(t),t] xi(s) this leads us

to consider t1, t2 ∈ It and i, j such that indeed SIt(x) = xi(t1) − xj(t2). Assume

without loss of generality that t1 ≥ t2. Then from (4.44) and Lemma 4.4.4 we have

SIt(x) = xi(t1)− xj(t2)

= e−
∫ t2
t1
di(s) ds

(
xi(t2)− xj(t2)

)
−

−
∫ t2

t1

e−
∫ t
s di(w) dw

∑
j

aij(s)
(
xj(λij(s))− xj(t2)

)
ds

≤ e−
∫ t2
t1
di(s) dsS(x(t2)) +

(
1− e−

∫ t2
t1
di(s) ds

)
SIt−2τ (x)

≤ e−
∫ t2
t1
di(s) ds(1− κ)SIt−σB−2τ

(x) +
(
1− e−

∫ t2
t1
di(s) ds

)
SIt−2τ (x)

≤ (1− κe−
∫ t2
t1
di(s) ds)SIt−σB−2τ

(x)

≤ (1− κe−N̄aτ )SIt−σB−2τ
(x)
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Then for any t ≥ t0 + σB + 2τ there exists l ≥ 1 such that t0 + l(σB + 2τ) ≤ t ≤

t0 + (l + 1)(σB + 2τ) and so a recursive argument implies that

SIt(x) ≤
SIt0 (φ)

1− κe−N̄aτ
e

ln(1−κe−N̄aτ )
σB+2τ

(t−t0)

and the proof is concluded in view of Lemma 4.4.5 which ensures that the limit set

is a singleton, say k, and Lemma 4.4.4 which ensures that k ∈ Wt0,φ.

4.4.1 A leader-follower with delays

Here we repeat the scenario of a leader-follower topology discussed in § 3.2.1. Let

agent 1 with state z1 to evolution according to the differential equation

ż1(t) = g
(
t, z1(t)

)
The network dynamics is

i ∈ [N ] :



ż1(t) = g
(
t, z1(t)

)
, t ≥ t0

żi(t) =
∑

j aij(t)
(
zj(t− τij(t))− zi(t)

)
, i 6= 1, t ≥ t0

zi(t) = φi(t) t ∈ It0

(4.46)

where It0 = [t0 − τ(t0), t0] and τ(t) = maxij τij(t), the usual notation. Again, the

dynamics of the leader’s state z1(t) are free of any interaction with the rest of the

group and they satisfy (3.8) which we restate here for quick reference:

|z1(t)− k| ≤ 1

h(t)
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for some rate function h(t). We write for i 6= 1

żi(t) =
∑
j 6=1

aij(t)
(
zj(t− τij(t))− zi(t)

)
+ ai1

(
k − zi(t)

)
+ ai1(t)

(
zj(t− τij(t))− k

)
The result below, is the delayed alternative of Theorem 3.2.11.

Theorem 4.4.7. Let the solution z = z(t, t0,φ), t ≥ t0 of (4.46) and the dynamics

of the leader together with (3.8). Assume uniform lower bounds of the connectivity

weights and the connectivity conditions of Theorem 4.4.6. If θ > 0 is the rate

exponent of the convergence of the system with the virtual leader and and if there

exists a function c(t) : [t0,∞)→ (0,∞) with the properties that

1. c(t)→∞ as t→∞

2. supt≥t0 e
−θ(t−t0)c(t) <∞

3. supt≥t0 c(t)
∫ t
t0

e−θ(t−s)

1−κe−N̄ατ maxi
ai1(s)

h(s−τi1(s))
ds <∞

Then there exists a constant K such that

||z(t)− 1k||∞ ≤
K

c(t)
. (4.47)

Proof. Since (4.43), written as

ẋ = −L(t)xt

has the solution x(t, t0,φ) that can be expressed as

x(t, t0,φ) = U(t, t0)φ
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Figure 4.4: The communication topology in Example 7.1.1. The star graph.

for an operator U(t, t0)φ = x(t, t0,φ), linear and continuous so that the solution

z(t, t0,φ) can be written as

z(t, t0,φ) = T (t, t0)φ+

∫ t

t0

T (t, s)η(s) ds

where η(t) = (η1(t), . . . , ηN(t))T with ηi(t) = ai1(t)
(
z(t− τi1(t))− k) (see also [68],

Eq. (3.1.18)). The rest of steps are identical to the proof of Theorem 3.2.11 and are,

therefore, omitted.

4.4.2 Examples and simulations

In this section, we discuss a couple of illustrative examples. The first is a 4 × 4

linear network with linear switching coupling and bounded delays. The second is

a 2 × 2 time-varying network with static connectivity and unbounded delays. All

simulations were carried out in MATLAB with the ddesd route.

4.4.2.1 A 4× 4 graph

Let a network of N = 4 agents with communication weights aij(t), i, j = 1, . . . , 4.

We classify two communication schemes:
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1 2 3 4

Figure 4.5: The communication topology in Example 7.1.2. The path graph.

Star topology Depicted in Figure 4.4, in this scheme the adjacency matrix reads

Astar(t) =



0 a12(t) a13(t) a14(t)

a21(t) 0 0 0

a31(t) 0 0 0

a41(t) 0 0 0


We assume here the switching (on/off) transmission signal to be defined as follows:

There exist B, ε, f̄ , f > 0 such that for any B interval of time, there exists a ε-

subset so that f̄ ≥ aij(s), aji(s) ≥ f > 0 for s ∈ [t, t + ε]. In this scenario, the

analysis is very simple because Theorem 3.2.4 applies: Take di(t) =
∑

j aij(t) and

m > supt maxi∈[N ] di(t). Then W (t) := mI4×4 −D(t) + A(t) is

W (t) =



m− d1(t) a12(t) a13(t) a14(t)

a21(t) m− d2(t) 0 0

a31(t) 0 m− d3(t) 0

a41(t) 0 0 m− d4(t)


and it is obviously scrambling during some ε interval over any B-interval of time.

For m large enough the coefficient of ergodicity κ is bounded from below by f for

s ∈ [t, t + ε]. This implies that for any t > t0 + B, there exists n ≥ 0 such that

t0 + nB ≤ t ≤ t0 + (n+ 1)B and by Lemma 3.2.2

S(x(t)) ≤ S(x0)efεe−(k+1)fε ≤ S(x0)e−
fε

B
(t−t0).
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Figure 4.6: Example 7.1.1. (a): The convergence of 4 agents with a star graph

topology. The detail on the upper right part is to denote the effect of the switching

signal. (b): Convergence under the effect of delays. In both figures the dashed

lines depict the theoretical rate estimates. It is remarked that in (b) the estimate

is significantly weak.

In the presence of delays, τij(t) ≤ τ < ∞ the discussion in Sect. 4.4 applies.

We can easily calculate κ = min{e−mB, 1−e−mε
m

f} and by Theorem 4.4.6 exponential

convergence is guaranteed with rate θ = − ln(1−κe−3f̄τ )
B+2τ

.

As a numerical example take a12(t) = 0.02u(t), a13(t) = 0.05u(t), a14(t) =

0.03u(t), a21(t) = 0.2(0.01 + e−t)u(t), a31(t) = 0.07u(t),a41(t) = 0.06u(t) for u(t) =

2, t ∈ [n + 1/2, n + 1] n ∈ N and 0 otherwise. Then
fε

B
= 0.002 and this is the

estimated rate of convergence for the un-delayed system. See Fig. 4.6(a). In the

case of delays we set τ12(t) = 8 − 0.5 cos(t), τ13(t) = 3 − 0.2 sin(2t), τ14(t) = 9,

τ21(t) = 10 τ31(t) = 5 − 0.9 sin(t2), τ41(t) = 2 so that τ = 10, κ = 0.0019 and

θ = 0.00008031. See Fig. 4.6(b).
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Path topology Depicted in 4.5, the adjacency matrix is

Apath(t) =



0 a12(t) 0 0

a21(t) 0 a23(t) 0

0 a32(t) 0 a34(t)

0 0 a43(t) 0


Now we consider the switching signal to be defined as follows: For all t ≥ 0 it holds

that aij(t) 6= 0⇒ 0 < f ≤ aij(t) <
1
2

and also



a23(t) = a32(t) = a34(t) = a43(t) = 0 & a12(t), a21(t) 6= 0, t ∈ [3lε, (3l + 1)ε)

a12(t) = a21(t) = a34(t) = a43(t) = 0 & a23(t), a32(t) 6= 0, t ∈ [(3l + 1)ε, (3l + 2)ε)

a23(t) = a32(t) = a12(t) = a21(t) = 0 & a34(t), a43(t) 6= 0, t ∈ [(3l + 2)ε, (3l + 3)ε)

for some fixed ε > 0 and l ∈ Z+. Here B = 3ε, m = 1 and

C(t, s) =



d̄1(t, s) e−(t−s)a12(s) 0 0

e−(t−s)a21(s) d̄2(t, s) e−(t−s)a23(s) 0

0 e−(t−s)a32(s) d̄3(t, s) e−(t−s)a34(s)

0 0 a43(s)e−(t−s) d̄4(t, s)


where d̄i(t, s) = e−3εδ(s − (t − 3ε)) + e−(t−s)(1 − di(s)). This is a non-scrambling

matrix so Theorem 3.2.4 is of no use and we need to escalate to Theorem 3.2.9 and

especially to Corollary 3.2.10. From this we obtain

S(x(t)) ≤ S(x(3(l − 1)ε)) ≤ (1− 2f 2(1− e−ε)2)l−1S(x(0))

≤ S(x(0))

1− 2f 2(1− e−ε)2
e−θt
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Figure 4.7: Example (a): The convergence of 4 agents with a path graph topology.

(b): Convergence under the effect of delays. In both figures, the dashed lines depict

the theoretical rate estimate. It is remarked that in (b) the estimate is significantly

weak.

where θ :=
ln(1−2f2(1−e−ε)2)

3ε
. Together with the switching signal, we now consider a

common bounded propagation delay 0 ≤ τ(t) ≤ τ <∞. We apply Theorem 4.4.6 to

estimate the rate of convergence as follows: κ = 2f 2(1− e−ε)2, supt
∫ t
λ(t)

di(s) ds ≤ τ

so that the rate of convergence with the delay is

θ =
ln(1− 2α2(1− e−ε)2e−τ )

3ε+ 2τ
.

As a numerical example, take ε = 2, B = 6, f = 0.1 and a12(t) = 0.2u(t), a21(t) =

0.3u(t), a23(t) = 0.21, a32(t) = 0.2u(t), a34(t) = 0.25u(t) a43(t) = 0.1u(t) by an

appropriate switching function u(t). The rate of convergence is θ = 0.00251, see

Fig. 4.7(a). In the presence of the common delay with supt≥0 τ(t) = 10 the rate is

θ = 2.61 · 10−8, see Fig. 4.7(b).
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4.4.2.2 A 2× 2 network with unbounded delays

Fix t0 > 0 and consider the network of two agents to satisfy

ẋ1(t) = 1
αt

(
x2(βt)− x1(t)

)
ẋ2(t) = 1

γt

(
x1(εt)− x2(t)

)
, t ≥ t0

(
x1(t), x2(t)

)
=
(
φ1(t), φ2(t)

)
, t ∈ (βt0, t0)

for some α, γ > 0 and β, ε ∈ (0, 1). This system lies beyond the theory devel-

oped in the preceding sections. In fact, it only takes few elementary, yet tedious,

modifications to include systems with unbounded delays. These are, in fact, easily

illustrated for N = 2. Without loss of generality assume β < ε and α > γ. Now

τ1(t) = (1− β)t and τ2(t) = (1− ε)(t) so that τ(t) = (1− β)t. We work as follows:

Firstly, we introduce the rate function h(t) =
(
t
t0

)η
for t > t0 and η > 0. It is easy

to see that x1(t), x2(t) satisfy the system of integral equations:

x1(t) = t−η
∫ t
λ(t)

[
ηsη−1 − sη−1

α
+ sηδ(s− λ(t))

]
x1(s) ds+

+t−η
∫ t
λ(t)

sη−1

α
x2(βs) ds

x2(t) = t−η
∫ t
λ(t)

[
ηsη−1 − sη−1

γ
+ sηδ(s− λ(t))

]
x2(s) ds+

+t−η
∫ t
λ(t)

sη−1

γ
x1(εs) ds

It is easy to check that for small η the matrix

P =

1− η
α

(1− β)η η
α

(1− β)η

η
γ
(1− β)η 1− η

γ
(1− β)η


is stochastic and obviously scrambling. Then

κ = min

{
1− η

α
(1− β)η,

η

γ
(1− β)η

}
+ min

{
η

α
(1− β)η, 1− η

γ
(1− β)η

}
> 0
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Figure 4.8: Example (a): Graphs of the elements pij(η) for selected values of α, β, γ

demonstrating the dependence of κ in η. (b) The convergence of the 2 × 2 static,

time-varying network with unbounded delays.

Then similar analysis as in Theorem 2.3.4 and Lemma 4.4.4 yields:

SIt(x) ≤ (1− κe
ln β
α )SI

λ(2)(t)
(x) ≤ (1− κβ1/α)SI

λ(2)(t)
(x)

Now as for any t there exists l ∈ Z+ such that λ(2l)(t) ≤ t0
β2 or equivalently l ≥

ln(t0/(tβ2))
2 lnβ

. So

max
i
|xi(t)− k| ≤ ZSt0(φ)

(
t0
t

)ζ
where Z = eηβ

1/α
and ζ = −ηβ1/α

2 lnβ
> 0. The rate is sub-exponential exactly because

of unbounded delays.

As a numerical example we take t0 = 1, α = 3, γ = 2, ε = 0.5, β = 0.3.

Fig. 4.8(a) depicts the dependence of the elements of P as η varies. The selection

of η determines the estimates of κ. If we take η = 1.22 we obtain κ = 0.655 and

we calculate Z = 1.953 and ζ = 0.1821. The simulation of the solution x1, x2 is

presented in Fig. 4.8(b).
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4.5 Supplementary Remarks

The setback of the naive fixed point approach on delayed consensus networks [3, 4,

5, 6, 7] drove me into a deeper study of the dynamic behavior in terms of stability in

variation methodologies. The research was cut down to the simplest possible, scalar

alternatives of these models, which are nothing but a special case of functions that

sustain asymptotically constant solutions. Depending on the sign of the coupling

we conclude on the range of the stability bound one is allowed to take for delay,

thus unifying a large number of related results. For the case simple time-invariant

parameters, almost complete results can be derived. The method of combining so-

lution operators, however, limbs in the case of general linear dynamics [14]. Thus,

we resorted to an simple Lyapunov-Razumikhin type of argument for stability in

terms of function spaces re-affirming in a much less involved way past results [78].

The price to pay is that the latter estimates, although delay-independent, are sig-

nificantly weaker than the time invariant ones. In fact, one of the major claims of

[14] is that whenever the fixed point methods apply then the derived rate estimates

are much stronger than the delay-independent Lyapunov-Razumikhin ones.

Both these methods are developed so as to be applied for the corresponding

time-invariant and general linear multi-dimensional networks, respectively, in the

last two sections.

The argument developed to prove asymptotic stability with respect to ∆ fol-

lows the theory developed in § 3.2. Similarly, to the scalar alternative we provided

delay-independent results with explicit estimates on the rate of convergence. If the
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weights are uniformly bounded from below, then it is necessary that the delays are

bounded and the rate is exponential. We showed by example how unbounded pro-

cessing delays can also be considered downgrading the estimates to sub-exponential.

Similarly to the scalar case these rates not strong, as the examples suggest. This

weakness is partially due to the use of the contraction coefficient as this is proven a

weak estimator on its own.

The approach followed for the general linear consensus network with delays

uses fundamentally different mathematical tools. What should be noted, though, is

that the principle of combining two different forms of the solutions is again heavily

exploited. The first form is the integral representation of the solution that outlines

the local “convex averaging”. This is (4.44), the time-varying equivalent of (4.30)

in the case where the latter one is σ = 0. The second form of the solution is due

to the coefficient of ergodicity (applied together with Lemma 4.4.4). This form is a

time-varying equivalent of (4.31).

The stability results of this chapter build a theoretical framework for the anal-

ysis of the asymptotically constant solutions in a family of linear functional differen-

tial equations. They lay the ground for the analysis of nonlinear systems discussed

in Chapters 5, 6 as well as the analysis of the application problem in Chapter 7.
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Chapter 5: Nonlinear Networks

Distributed cooperative dynamics have been vividly stimulating the attention of

the engineering and applied mathematics community for at least the past decade.

The latest advances are nowadays past the linearity point. Recent works investigate

nonlinear variations of consensus networks supplying the literature with a fruitful of

impressive results. In the section to follow we will review a few of the most notable

works on nonlinear 1st order consensus schemes in the field.

Nonlinear versions of (0.1) exist in the literature primarily as extensions of the

linear scheme, because they preserve its vital qualitative features [81, 82, 83, 84, 85].

In his seminal work [83], Moreau studied the generic system:

i ∈ [N ] :


xi(n+ 1) = fi(n, x1(n), . . . , xN(n)), n ≥ n0, n ∈ Z+

xi(n0) = x0
i , n = n0

(5.1)

where he built an asymptotic stability argument with respect to ∆, based on set-

valued Lyapunov functions. He showed that agreement among agents emerges as

n→∞, on condition that

xi(n+ 1) ∈ co
{
x1(n), . . . , xN(n)

}
, n ≥ n0.

The latter equation is telling us that each agent’s new state lies in the interior

of the set defined as the convex hull of their neighbors’ current states. A different
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approach was adopted, by the same researcher, for the continuous time linear version

of the (0.1) (see [51]). In that paper he provided a semi-rigorous proof for the rate

of contraction of the spread S
(
x(t)

)
. Finally, a fairly similar type of of distributed

consensus is considered in [82].

The nonlinear nature of (5.1) is essentially sine qua non. Carathéodory’s

Theorem assures that

xi(n+ 1) ∈ co
{
x1(n), . . . , xN(n)

}
⇔ xi(n+ 1) =

∑
j

aij(n)xj(n)

where aij(n) ≥ 0,
∑

j aij(n) ≡ 1 [37].

An alternative of the linear model is also obtained assuming nonlinear cou-

plings on agents’ state difference under passivity conditions. The authors in [81, 84]

introduce and study the asymptotic properties of

i ∈ [N ] :


ẋi(t) =

∑
j gij

(
t, xj(t)− xi(t)

)
, t ≥ t0

xi(t0) = x0
i

(5.2)

with gij(t, z) being a passive function in z (see Assumption 5.1.1 below). This is an

interesting extension of (0.1) as the form gij(t, xi − xj) is quite general. Indeed, it

bears great similarities with the prominent Kuramoto model [86] for synchronization

of oscillators as well as Krause’s opinion dynamics model [53] with gij(x) = a(|xi −

xj|)(xj − xi).

In [84] the authors analyze (5.2) with multiple constant propagation delays

and a possibly switching communication network. They argue, employing Invari-

ance Principles for functional differential equations, that asymptotic stability to

∆I is achieved for delays of arbitrary magnitude. The adopted approach does not
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tackle the issue of the rate of convergence because Invariance Principles can only

prove asymptotic convergence for the ordinary or the functional case [69, 87]. The

authors note this issue and its importance, suggesting that the question of the rate

of convergence for such systems remains open.

A different type of linear extension is presented in [85]. The authors introduce

the system

i ∈ [N ] :


ẋi(t) =

∑
j aij(t)

(
gij(xj(t))− gij(xi(t))

)
, t ≥ t0

xi(t0) = x0
i

(5.3)

as an extension to [45] and prove convergence including both static and switching

connectivity conditions. Their work relies on Lyapunov stability and Invariance

Principles under a prescribed functional, thus strong assumptions on gij had to be

considered.

All the aforementioned works as well as the models discussed in this thesis so

far, study distributed algorithms under the instrumental assumption that the rate of

change of the state of an agent i ∈ [N ] strictly depends on the agents current state.

This is an assumption that although mathematically important it is over-simplistic

for a number of reasons.

In real world applications the agents ability to operate cannot exclusively

depend on its current state. Robots have terminals that may take some time to

keep processing data after a while, or birds may get tired after maneuvering way

beyond their physical abilities. This phenomenon is very important as it affects both

the performance and the stability of the network. The mathematical equations
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now read as functional differential equations of neutral type. To the best of our

knowledge, there is no work towards this path in the theory of consensus systems

and for good reason. For one, the classical ordinary differential equation theory is

no longer applicable and one needs to switch to the theory of functional differential

equations [59]. Although the theory of neutral equations has been fully developed,

the stability tools are by no means as strong as the ones used in the ordinary (or even

the functional case) let alone when we are focused in the Lagrange type stability, the

consensus systems enjoy (i.e. stability with respect to a subset of the state space).

Contribution At first, we revisit and discuss (5.2) and (5.3) under our framework.

We make the case that, with fairly mild assumptions, these classes of systems can be

effectively studied within the theory developed in Chapters 3 and 4 so that explicit

estimates about the rate of convergence can be provided.

In addition, we comment on how the autonomous version of (5.2), yields also

information on the consensus point in the sense of (4.27) in §4.3. Furthemore,

we will explain how the effect of delays in (5.2) may yield the existence of non-

trivial periodic solutions and we provide sufficient conditions for asymptotic stability

of these solutions in a synchronized manner. We outline these results with an

illustrative simulation.

Finally, we introduce and analyze consensus networks of neutral type by means

of fixed point theory. We provide sufficient conditions for asymptotic convergence

with prescribed rate to an implicitly defined point that is a function of the network

topology and the imposed delays.
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For the rest of this chapter we recall the discussion in §2.1 and §4.2.2 and the

notation used therein.

5.1 The Passivity Hypothesis

The system presented in (5.2) is perhaps the one closest to the linear model. Indeed

a simple transformation, known as direct linearization, will reveal that we one can

readily deal with the linear models. We will work with the delayed versions of these

systems because the un-delayed version is only a special case.

A network of N agents exchanges information according to:

i ∈ [N ] :


ẋi(t) =

∑
j∈Ni gij

(
t, xj(λij(t))− xi(t)

)
, t ≥ t0

xi(t) = φi(t), t ∈ It0

(5.4)

For any t ≥ t0 there may or may not exist a connection between j and i. This

defines a connectivity regime that can be described by a graph Gg(t) = (V,E(t))

with (i, j) ∈ E(t) if and only if gij(t, ·) 6= 0. The equations assume no self-loops, i.e.

gii ≡ 0. The passivity condition for gij is summarized next.

Assumption 5.1.1. For any i, j ∈ [N ] : (i, j) ∈ E(t), gij(t, x) : [t0,∞) × R → R

is continuous in x, right-continuous in t and for t ≥ t0 it satisfies the following

properties:

1. gij(·, x) : [t0,∞)→ [0, g) uniformly in x,

2. gij(t, 0) = 0 for any t ≥ t0,

3. gij(t, ·) 6= 0⇒ gij(t,x)

x
> 0, ∀ x 6= 0 , uniformly in t,
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4. gij(t, ·) 6= 0⇒ limx→0
gij(t,x)

x
∈ R+ independent of t.

The form of gij sustains the two most crucial features of the linear consensus

scheme: The first is that, by construction, gij are compatible with the previously

discussed connectivity regimes (switching connectivity) and the second is the pas-

sivity property which makes the solutions to behave in a qualitative identical way,

as the following technical Lemma shows:

Lemma 5.1.2. Let Assumption 5.1.1 hold. For t2 ≥ t1 ≥ t0 the solution x(t2, t1,xt1)

of (5.4) satisfies x(t2) ∈ WIt1 ,xt1
.

Proof. Let t∗ > t0 be the first time that the solution x(t, t0,φ) of (5.4) escapes

WIt1 ,xt1
. Then there exists i ∈ [N ] such that

xi(t
∗) = max

j∈[N ]
max
s∈It1

xj(s) & ẋi(t
∗) > 0,

a contradiction, according to Assumption 5.1.1. Similarly, for the lower bound of

WIt1 ,xt1
.

The result of this section is, in fact, so straightforward that it will be stated

as a Corollary to Theorem 4.4.6.

Corollary 5.1.3. Consider the initial value problem (5.4) and let Assumption 5.1.1

hold. The solution x = x(t, t0,φ), t ≥ t0 of (5.4) satisfies

x(t)→ ∆I as t→∞

exponentially fast if Gg(t) satisfies the conditions of Theorem 4.4.6.
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Proof. The passivity assumption obviously ensures that the solution of (5.4) exists

in the large. Let x(t, t0,φ), t ≥ t0 be the fixed solution of (5.4). Define

aij(t) :=
gij(t, xj(λij(t))− xi(t))

xj(λij(t))− xi(t)

and rewrite the initial value problem (5.4) as

i ∈ [N ] :


ẏi(t) =

∑
j aij(t)

(
yj(λij(t))− yi(t)

)
, t ≥ t0

yi(t) = φi(t), t ∈ It0

so that the solutions y and x are indistinguishable. Then one can study the behavior

of y to conclude about x. This is known in the literature as direct linearization

technique (see [34]). Define U := [−SIt0 (φ), SIt0 (φ)]. Under Assumption 5.1.1 we

see that there exists a lower bound inft≥t0 mini,j∈[N ] minx∈U
g(t,x)
x
≥ f > 0 and that

aij(t) satisfies

min
i,j∈[N ]

min
x∈U

g(t, x)

x
≤ aij(t) ≤ max

i,j∈[N ]
max
x∈U

g(t, x)

x

that it is also bounded from above. Theorem 4.4.6 readily applies to prove expo-

nential convergence.

Explicit estimates can now be provided following Theorem 4.4.6 with the lower

and upper bound of aij defined in the proof of the Corollary 5.1.3. We finally

remark that we provided unconditional consensus results assuming that gij satisfy

the passivity properties globally. Since this is may not be usually the case, if gij

are passive in a common, non-empty subset of R, then initial functions φi that are

restricted in this subset guarantee convergence to consensus. This is a conditional

type of consensus as it is heavily based on the initial data. A standard example is
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this when gij(x) = sin(x) as this function is passive in (−π, π) and the results of

this section hold if φi(t) ∈ (−π
2
, π

2
), ∀t ∈ It0 , i ∈ [N ].

5.2 General Nonlinearities

The next category is the one that considers the following scenario: Each agent

observes both a nonlinear and delayed view of its neighboring agents’ state. Such a

model updates dynamically the states of the agents as follows:

i ∈ [N ] :


ẋi =

∑
j gij

(
t, xj(λij(t))

)
− gij

(
t, xi(t)

)
, t ≥ t0

xi(t) = φi(t), t ∈ It0

(5.5)

The long-term behavior of the solutions of (5.5) can be treated with similar tech-

niques, under appropriate conditions. Indeed, Assumption 5.2.4 (stated below)

makes all the linear theory tools useful, after being slightly adapted. Then sta-

bility of the solutions of (5.5) can be proved along the same lines. This will be the

subject of §5.2.2. Otherwise, we will resort to stability in variation techniques and

heavy assumptions to prove similar results. This will be the case presented right

below.

5.2.1 Stability in variation

To the best of our knowledge, there is no appropriate framework for general nonlinear

consensus systems. If we are dealing with a system similar to (5.5) but we have no

information on gij other than a conventional growth estimate. The analysis may

proceed with a stability in variation argument. Here we will provide such a result
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for the ordinary system, i.e.

λij(t) ≡ t (5.6)

Next, we assume the following condition on the gij functions:

Assumption 5.2.1. For any t ≥ t0, i, j ∈ [N ] there exist non-negative integrable

functions aij(t, x) and kij(t) such that for all x1, x2 ∈ R

∣∣(aij(t, x1)− gij(t, x1)
)
−
(
aij(t, x2)− gij(t, x2)

)∣∣ ≤ kij(t)|x1 − x2|.

We understand that our purpose is to approximate (5.5) with the linear sys-

tem (3.3). In addition, the connectivity scheme for can be relaxed to match the

Type II connectivity that characterizes Theorem 3.2.9.

Theorem 5.2.2. Let Assumptions 3.2.1, 3.2.7, 3.2.8 and 5.2.1 hold. Suppose that

there is a rate function w(t) such that

sup
t≥t0

w(t)h(t, t0) <∞ & sup
t≥t0

w(t)

∫ t

t0

h(t, s)
k(s)

w(s)
ds ≤ β < 1,

where h(t, t0) is the rate function with which the linear system (4.43) in §4.4, Chapter

4 converges to ∆ and k(t) = maxi,j
∑

l kil(t) + kjl(t). If h(,̇t0) ∈ L1
[t0,∞) then the

solution x = x(t, t0,φ), t ≥ t0 of (5.5) satisfies

x(t)→ ∆, t→∞

as fast as 1/w(t).

Proof. We set G̃(t,x) =
[
g̃1(t,x), . . . , g̃N(t,x)

]T
where

G̃(t,x) :=

[∑
j

a1j(t, xj)− g1j(t, x1), . . . ,
∑
j

aNj(t, xj)− gNj(t, xN)

]T
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We add and sub-tract (5.5) and write it in vector form as follows:

ẋ = −L(t)x + G̃(t,x)

The classic variation of constants formula implies

x(t) = Φ(t, t0)x0 +

∫ t

t0

Φ(t, s)G̃(s,x(s)) ds (5.7)

Now, y(t) = Φ(t, t0)x0 is the solution of (3.3) for which we know that under the im-

posed conditions that have Φ(t, t0)x0 → αTx0 for some α ∈ RN with the properties

that αi ≥ 0,
∑

i αi = 1. In terms of the semi-norm S(·), there exists a bounded rate

function h(t, t0) such that h ∈ L1
[t0,∞) for any fixed t0 ∈ R:

S
(
y(t)

)
= S

(
Φ(t, t0)x0

)
≤ h(t, t0)S(x0) (5.8)

Under Assumption 5.2.1 we obtain S
(
G̃(t,x)

)
≤ k(t)S

(
x
)

where

k(t) = max
i,j

∑
l

kil(t) + kjl(t) (5.9)

Now we will express a variation of constants formula for S
(
x(t)

)
following the

proof of Theorem 1.3.1 in [68]. Consider the spread S
(
y(t, s,x(s))

)
for t0 ≤ s ≤ t

so that for all s, the right Dini derivative yields

d

ds
S
(
y(t, s,x(s))

)
= Sy

(
y(t, s,x(s))

)T[ ∂

∂t0
y(t, s,x(s)) +

∂

∂y0
y(t, s,x(s))ẋ(s)

]
= Sy

(
y(t, s,x(s))

)T
Φ(t, s)G̃(s,x(s))

from the basic property of the transition matrix ∂
∂s

y(t, s,x(s)) = Φ(t, s)L(s)x(s)

∂

∂y0
y(t, s,x(s))ẋ(s) = Φ(t, s)

(
− L(s)x(s) + G̃(s,x(s))

)
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Integrating from t0 to t we finally obtain

S
(
x(t)

)
= S

(
y(t, t0,x

0)
)

+

∫ t

t0

Sy

(
y(t, s,x(s))

)T
Φ(t, s)G̃(s,x(s)) ds

For any fixed t, s a bound for the integrand can be calculated to be:

Sy

(
y(t, s,x(s))

)T
Φ(t, s)G̃(s,x(s)) ≤ max

h,h′

∑
j

(
φhj(t, s)− φh′j(t, s)

)
g̃j
(
s,x(s)

)
≤ h(t, s)k(s)S

(
x(s)

)
according to Eqs. (5.8) and (5.9). Consequently,

S
(
x(t)

)
≤ h(t, t0)S(x0) +

∫ t

t0

h(t, s)k(s)S
(
x(s)

)
ds

This inequality implies that S
(
x(t)

)
is in fact bounded from above by q(t), which

satisfies the integral equation

q(t) = h(t, t0)q(t0) +

∫ t

t0

h(t, s)k(s)q(s) ds, q(t0) = S(x0) (5.10)

We study the stability of (5.10) with respect to zero via a fixed point theory argu-

ment. Recall the discussion in §2.5 and consider the space

M = {z ∈ C0[(t0,∞),R] : z(t0) = S(x0), sup
t≥t0

w(t)|z(t)| <∞}

which together with the weighted metric ρ(y1, y2) = supt≥t0 w(t)|z1(t) − z2(t)| con-

stitute a weighted complete metric space [34]. In this space we will apply Theorem

2.5.6 as follows: Define the operator

(Qz)(t) :=


S(x0), t = t0

h(t, t0)S(x0) +
∫ t
t0
h(t, s)k(s)z(s) ds, t ≥ t0
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and note that under for any z ∈ M, (Qz)(t) → 0 as the first term vanishes by

the imposed conditions and the second term vanishes as the convolution of an L1

function with a function that goes to zero. The same holds for the weighted quantity

w(t)|(Qz)(t)| in view of the imposed conditions. It is, finally, easy to see that Q is

a contraction in (M, ρ) since

ρ(Qz1,Qz2) ≤ sup
t≥t0

w(t)

∫ t

t0

h(t, s)
k(s)

w(s)
dsρ(y1, y2) ≤ αρ(z1, z2).

Theorem 2.5.6 then ensures that Q attains a unique fixed point in M and the proof

is concluded with argumentation similar to this of Lemma 3.2.3.

Example 5.2.3. Consider the system
ẋ = g(t, x)− g(t, y)

ẏ = f(t, y)− f(t, x)

Theorem 5.2.2 ensures convergence to ∆ if one can find positive numbers a, b > 0

such that

sup
t

sup
x,y

|a+ g′(t, x)|+ |b+ f ′(t, y)|
a+ b

< 1

Take, for instance,

g(t, x) = −k
(
2 + sin(t)

)
x+

x2

1 + x2
, f(t, x) = 2x+ cos(t)

x3

1 + x2

It can be easily verified that the above condition reads |a−k|+b+2.89
a+b

< 1 and it is true

for any a > k > 2.89. Numerical inspection for values of k is presented in Figure

5.1. We observe that instability occurs for small values of k.

The problem with non-monotonic systems is that there are no mathematical

tools to effectively study their solutions. The theory at this point lacks strong
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Figure 5.1: Example 5.2.3. Stability for large k and instability for small. The

simulation is run with the dde23 routine in MATLAB.

results. Indeed if gij ∈ C1 then the mathematical toolbox provides frameworks only

after distinguishing between the ∂
∂x
gij > 0 and ∂

∂x
gij < 0 [18]. The general case

cannot be easily handled and that is why we resorted to stability in variation.

5.2.2 Monotonic Dynamics

The just mentioned approach is too restrictive because, heuristically speaking, we

allowed “too much freedom” on the way gij is allowed to vary. However, the sim-

ple type of gij, mentioned just above, makes the dynamics of (5.5) not only to

mimic those of the linear case but also it permits its solutions to be analyzed in a

mathematically tractable way. In particular, we will ask the following monotonicity

condition

Assumption 5.2.4. For any t ≥ t0 and for any compact, connected M ⊂ R,

∃ c < c̄ ∈ R+ that depend on M and integrable functions Lij = LMij , Uij = UM
ij :
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[t0,∞)→ [c, c̄] such that

Lij(t) ≤
gij(t, x)− gij(t, y)

x− y
≤ Uij(t), ∀x, y ∈M.

This assumption characterizes the functions gij and it is another generalization

of the linear (3.2). A straightforward observation is that Assumption 5.2.4 implies

uniform boundedness, hence existence in the large for the solutions of (5.5).

Lemma 5.2.5. Let Assumption 5.2.4 hold. For any t2 ≥ t1 ≥ t0, the solution

x(t2, t1,xt1) =
(
x1(t2), . . . , xN(t2)

)
of (5.5) satisfies xi(t2) ∈ WIt1 ,xt1

.

Proof of Lemma 5.2.5. Let t∗ ≥ t1 to be the first time such that for some i ∈ [N ],

xi(t
∗) = maxi maxs∈It1 xi(s) and ẋi(t

∗) > 0. Then i attains the maximum state over

the rest of the agents. By Assumption 5.2.4

gij
(
t∗, xj(t

∗ − τij(t∗))
)
− gij

(
t∗, xi(t

∗)
)
≤ LMij (t∗)

(
xj(t

∗ − τij(t∗))− xi(t∗)
)
≤ 0

for all j ∈ Ni so that ẋi(t
∗) ≤ 0 and this is a contradiction in view of (5.5). A

similar argument can be made for the first time the solution escapes WIt1 ,xt1
to the

left.

By Lemma 5.2.5 one can set the parameters LMij , U
M
ij based on the initial

data φ and in particular taking M = WIt0 ,φ
. Next we characterize the necessary

connectivity regime which for the sake of simplicity it is considered of Type I:

Assumption 5.2.6. ∀ t ≥ 0 the network is static and ∃ i∗ ∈ [N ]: gii∗(t, ·) 6= 0.

Assumption 5.2.7. ∀i, j ∈ [N ], τij(t) ∈ C1([t0,∞), [0, τ ]) for some τ <∞.
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Pick m > (N − 1)c̄, B > 0 and set

κ := min

{
c(1− e−mB)

m
, e−mB

}
, θ :=

ln(1− e−κN̄c̄τ )
2τ +B

.

Theorem 5.2.8. Under Assumptions 5.2.4, 5.2.6 and 5.2.7, the solution x =

x(t, t0,φ), t ≥ t0 of (5.5) satisfies

max
i∈[N ]
|xi(t)− k| ≤

SIt0 (φ)

1− κe−N̄ c̄τ
e−θ(t−t0) (5.11)

for some k ∈ WIt0 ,φ
.

Proof. Consider the solution x(t, t0,φ) = (x1, . . . , xN) of (5.5). From Assumption

5.2.4 we set M = WIt0 ,φ
so that Lij(t) = LMij (t), Uij(t) = UM

ij (t) ≥ 0 are well-defined.

Observe that

∑
j

ãij(t)
(
xj(λij(t))− xi(t)

)
≤ ẋi(t) ≤

∑
j

b̃ij(t)
(
xj(λij(t))− xi(t)

)
(5.12)

where

ãij(t) :=


Uij(t), xj(λij(t)) > xi(t)

Lij(t), xj(λij(t)) < xi(t)

and

b̃ij(t) :=


Lij(t), xj(λij(t)) > xi(t)

Uij(t), xj(λij(t)) < xi(t)

Observe that from (5.12), xi(t) satisfies

N∑
j=1

∫ t

t−B
aij(t, s)xj

(
λij(s)

)
ds ≤ xi(t) ≤

N∑
j=1

∫ t

t−B
bij(t, s)xj

(
λij(s)

)
ds (5.13)

where

aij(t, s) :=


e−m(t−s)ãij(s), i 6= j

e−mBδ(s− (t−B)) + e−m(t−s)(m−∑j ãij(s)
)
, i = j
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bij(t, s) :=


e−m(t−s)b̃ij(s), i 6= j

e−mBδ(s− (t−B)) + e−m(t−s)(m−∑j b̃ij(s)
)
, i = j

and δ(·) is the delta function. In vector form (5.13) reads∫ t

t−B
A(t, s)x(s) ds ≤ x(t) ≤

∫ t

t−B
B(t, s)x(s) ds (5.14)

where A(t, s) := [aij(t, s)], B(t, s) := [bij(t, s)] so that the inequalities hold element-

wise and x(s) is the vector assembled by the delayed states of x as they occur

from (5.13). Next, it can be easily shown that
∫ t
t−B A(t, s) ds and

∫ t
t−B B(t, s) ds are

stochastic matrices with the properties that ∀t1, t2 ∈ [t−B, t]

1.
∑

j

∫ t2
t1
aij(t, s) ds =

∑
j

∫ t2
t1
bij(t, s) ds ≡ const.

2.
∑

j

∫ t
t−B aij(t, s) ds =

∑
j

∫ t
t−B bij(t, s) ds ≡ 1

For h, h′ ∈ [N ] we have from (5.13)

xh(t)− xh′(t) ≤
∑
j

∫ t

t−B

(
bhj(t, s)− ah′j(t, s)

)
xj(s) ds (5.15)

Now, for fixed t > B, we consider the partition t0 < t1 < t2 < · · · < tl where

t0 = t − B and tl = t such that for any [tk−1, tk], bhj(t, s) − ah′j(t, s), s ∈ [tk−1, tk]

does not change sign. Within this interval we apply Theorem 2.3.5 to obtain:∫ tk

tk−1

(
bhj(t, s)− ah′j(t, s)

)
xj(s) ds =

∫ tk

tk−1

(
bhj(t, s)− ah′j(t, s)

)
dsxj(s

∗
j)

for some s∗j ∈ [tk−1, tk]. Now we take:

a. j′ : ukj′ :=
∫ tk
tk−1

(
bhj′(t, s)− ah′j′(t, s)

)
ds > 0

b. j′′ : ukj′′ :=
∫ tk
tk−1

(
bhj′′(t, s)− ah′j′′(t, s)

)
ds < 0
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From Property 1, we have that
∑

j u
k
j ≡ 0 for any k ≥ 1 and we set

θk =
∑
j′

ukj′ =
∑
j′

|ukj′ | = −
∑
j′′

ukj′′ =
∑
j′′

|ukj′′ | =
1

2

∑
j

|ukj |

so that θk > 0. Then

xh(t)− xh′(t) ≤

≤
∑
k≥1

N∑
j=1

∫ tk

tk−1

(
bhj(t, s)− ah′j(t, s)

)
xj(s) ds =

∑
k≥1

N∑
j=1

uj(k)xj(s
∗
j(k))

≤
∑
k≥1

θk

(∑
j′ |uj′|xj′(sj′(k))

θk
−
∑

j′′ |uj′′ |xj′(sj′(k))

θk

)

≤
[∑
k≥1

θk

](
max
k,i

xi(si(k))−min
k,i

xi(si(k))
)

≤ 1

2
max
h,h′

∑
j

∫ t

t−B
|bh′j(t, s)− ah′j(t, s)| ds

(
max
k,i

xi(si(k))−min
k,i

xi(si(k))
)

In view of Lemma 5.2.5, the identity |x− y| = x+ y− 2 min{x, y} and the fact that∑
j

∫ t
t−B bij(t, s) ds =

∑
j

∫ t
t−B aij(t, s) ds ≡ 1, i ∈ [N ], (Property 2) we have that

the above inequality holds for arbitrary h, h′ ∈ [N ]. Consequently, we obtain the

estimate:

S
(
x(t)

)
≤
(
1− κ(t)

)
SIt−B−2τ

(x) (5.16)

For κ(t) := minh,h′
∑

j min
{ ∫ t

t−B bhj(t, s) ds,
∫ t
t−B ah′j(t, s) ds

}
. As the matrices∫ t

t−B A(t, s) ds,
∫ t
t−B B(t, s) ds are stochastic, it can be easily shown that ρ ≤ 1.

Also, by the uniform condition Lij(t) 6= 0⇒ Lij(t) ≥ c as imposed by Assumptions

5.2.4 and 5.2.6 we obtain the positive uniform lower bound:

sup
t≥t0+B

κ(t) ≥ κ = min

{
c(1− e−mB)

m
, e−mB

}
> 0
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observe that c < m and hence ρ ∈ (0, 1). Next, for any t ≥ t0 + B + τ consider

the set WIt,xt together with the spread SIt let i ∈ [N ] be the agent the state that

achieves the maximum over all states throughout It = [t − τ(t), t] and j ∈ [N ] be

the agent with respective minimum value. Denote these states by with xi(t
′) and

xj(t
′′), with t′, t′′ ∈ It respectively. Let t′ > t′′. Then SIt(x) = xi(t

′)− xj(t′′) so that

xi(t
′)− xj(t′′) ≤

≤ e−
∫ t′
t′′

∑
j b̃ij(w) dwxi(t

′′)− xj(t′′) +

∫ t′

t′′
e−

∫ t′
s b̃ij(w) dw

∑
j

bij(s)xj(λij(s)) ds

≤ e−
∫ t′
t′′

∑
j b̃ij(w) dw

(
xi(t

′′)− xj(t′′)
)
+

+

∫ t′

t′′
e−

∫ t′
s b̃ij(w) dw

∑
j

bij(s)
(
xj(λij(s))− xi(t′′)

)
ds

≤ e−
∫ t′
t′′

∑
j b̃ij(w) dwS

(
x(t′′)

)
+
(
1− e−

∫ t′
t′′

∑
j b̃ij(w) dw

)
SIt−B−2τ

(x)

≤ e−
∫ t′
t′′

∑
j b̃ij(w) dw(1− ρ)SIt−B−2τ

(x) +
(
1− e−

∫ t′
t′′

∑
j b̃ij(w) dw

)
SIt−B−2τ

(x)

≤
(
1− κe−

∫ t′
t′′

∑
j b̃ij(w) dw

)
SIt−B−2τ

(x)

≤
(
1− κe−N̄cτ

)
SIt−B−2τ

(x)

in view of (5.14) and (5.16). The same bound is achieved if t′ ≥ t′′ where one

must begin by taking the left part of the double inequality of (5.14). Consequently,

following the same recursive argument as in Theorem 4.4.6 we obtain the desired

estimate (5.11). Finally, we follow the same argumentation as in Lemma 4.4.5 so

that the forward limit set must consist of a singleton which by Lemma 5.2.5 is in

WIt0 ,φ
concluding the proof.

A first remark on the proof is that, contrary to the method developed in the

previous sections, the base of which is Theorem 2.3.1, here we followed the steps
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of the original argument of Markov [22] on the effect of the averaging property of

stochastic matrices. That proof can be found in [26]. reverse statement would yield

a conditional consensus result that is a direct consequence of Theorem 5.2.8 and it

is stated without proof.

Corollary 5.2.9. Let Assumption 5.2.6 be true. If one can find M ⊂ R such that

Assumption 5.2.4 is true as well, then for φi ∈ C0([−τ, 0],M), ∀i ∈ [N ], the solution

of (5.5) exhibits exponential asymptotic consensus with estimates as in Theorem

5.2.8.

On the consensus point If gij(t, x) ≡ gij(x) and τij(t) ≡ τij then (5.5) turns to an

autonomous system and we can characterize the limit point k under a supplementary

symmetry assumption:

Assumption 5.2.10. ∀i 6= j ∈ [N ], gij ∈ C1(R,R) with the property g′ij = g′ji.

For the main result we will need the next technical lemma:

Lemma 5.2.11. Set I = [−τ, 0] and let Assumption 5.2.10 hold. Given φi ∈

C0(I,R), i = 1, . . . , N then ∃ ! k ∈ WI,φ to satisfy

k =
∑
i

αiφi(0) +
∑
i,j

βi

(∫ 0

−τij
gij(φj(s)) ds− τijgij(k)

)

where α,β ∈ RN are non-negative vectors with
∑

i αi =
∑

i βi = 1.

Proof. Define the function J : WI,φ → R

J(k) := k −
∑
i

αiφi(0)−
∑
i

βi
∑
j 6=i

∫ 0

−τ
gij(φj(s)) ds+

∑
i

βi
∑
j 6=i

gij(k)
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We begin by excluding the trivial cases. This is for WI,φ being a singleton, i.e.

WI,φ = {k} and hence φi ≡ k and automatically J ≡ 0. If WI,φ is not a singleton,

then we take

k1 := min
i∈V

min
s∈[−τ,0]

φi(s) < max
i∈V

max
s∈[−τ,0]

φi(s) =: k2

by continuity of φi and gij we conclude that

k1 ≤ φi(0) & gij(k) ≤ gij(φi(s))

but with some i, j such that gij(k) < gij(φ(s)) for some s ∈ I ⊂ [−τ, 0]. Conse-

quently, J(k1) < 0 and similar analysis will yield J(k2) > 0. Then by the elementary

theorem of Bolzano there exists k ∈ W such that J(k) = 0. The uniqueness of k

follows from the monotonicity of J . Indeed,

J ′ = 1 +
∑
i,j

βig
′
ij(k) > 0.

Theorem 5.2.12. Consider the system (5.5) with gij(t, x) = gij(x) and τij(t) ≡ τij.

Let Assumptions 5.2.4 5.2.6 and 5.2.10 hold. The solution x = x(t, t0,φ), t ≥ t0

of (5.5) converges to the unique solution of

k =
∑
j

αjφj(0) +
∑
i,j

1

N

∫ 0

−τij
gij
(
φj(s)

)
ds−

∑
i,j

1

N
τijgij(k)

exponentially fast with rates dictated by Theorem 5.2.8.

Proof. It suffices to show that x indeed converges to a point satisfying the afore-

mentioned nonlinear algebraic equation. We rewrite (5.5) as follows:

ẋi(t) =
∑
j∈Ni

gij(xj)− gij(xi)−
d

dt

∫ t

t−τij

[
gij
(
xj(s)

)
− gij(k)

]
ds
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Consider the solution y(t, 0,φ0) of

i ∈ [N ] :


ẏi =

∑
j∈Ni gij(yj)− gij(yi), t ≥ 0

yi(0) = φ0
i

(5.17)

Set

G(y) :=



∑
j g1j(yj)− g1j(y1)∑
j g2j(yj)− g2j(y2)

...∑
j gNj(yj)− gNj(yN)


so that in vector form (5.17) reads,

ẏ = G(y), y(0) = φ0

For t ≥ s ≥ 0, V(s) := y
(
t, s,x(s)

)
and differentiate with respect to s

d

ds
V(s) =

∂y
(
t, s,x(s)

)
∂s

+
∂y
(
t, s,x(s)

)
∂ξ

ẋ(s)

=
∂y
(
t, s,x(s)

)
∂ξ

(
ẋ(s)−G(x(s))

)

= −
∂y
(
t, s,x(s)

)
∂ξ

d

ds



∑
j

∫ t
t−τ1j

[
g1j(xj(s))− g1j(k)

]
ds∑

j

∫ t
t−τ2j

[
g2j(xj(s))− g2j(k)

]
ds

...∑
j

∫ t
t−τNj

[
gNj(xj(s))− gNj(k)

]
ds


= −

∂y
(
t, s,x(s)

)
∂ξ

d

ds
H(xs)

Note that ∂y(t,s,x(s))
∂ξ

is the principal matrix solution of the following linear non-

autonomous system

ż = G′
(
y(t, s,x(s))

)
z.
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This is a consensus network with symmetric weights. From Proposition 2.2.1 and

Remark 2.2.1.1 we deduce that regardless y(t, s,x(s)), z(t) → 11
T

N
z0 exponentially

fast. Consequently, ∂y(t,s,x(s))
∂ξ

satisfies∣∣∣∣∂y(t, s,x(s))

∂ξ
− 11

T

N
z0

∣∣∣∣ ≤ Re−r(t−s) (5.18)

for some R, r > 0 that depend on the connectivity weights g′ij and the norm. Next,

we integrate from 0 to t to obtain the following expression for the solution of (5.5)

x(t, 0,φ) = y(t, 0,φ0)−
∫ t

0

∂y
(
t, s,x(s)

)
∂ξ

d

ds
H(xs) ds

Next, integration by parts and change of the order of integration yields

x(t) = y(t, 0,φ0)−H(xt) +
∂y
(
t, 0,x0

)
∂ξ

H(φ) +

∫ t

0

d

ds

[
∂y
(
t, s,x(s)

)
∂ξ

]
H(xs) ds

= y(t, 0,φ0)−H(xt) +
∂y
(
t, 0,x0

)
∂ξ

H(φ)+

+
∑
i,j

{∫ 0

−τij

[(
∂y
(
t, w + τij,φ(w + τij)

)
∂ξ

−
∂y
(
t, 0,φ0

)
∂ξ

)
H(φ(w))

]
ij

dw+

+

∫ t−τij

0

[(
∂y
(
t, w + τij,x(w + τij)

)
∂ξ

−
∂y
(
t, w,x(w)

)
∂ξ

)
H(x(w))

]
ij

dw

+

∫ t

t−τij

[(
IN×N −

∂y
(
t, w,x(w)

)
∂ξ

)
H(x(w))

]
ij

dw

}
As t→∞

y(t, 0,φ0)→ 1

∑
j

αjφj(0)

in view of Theorem 5.2.8, for some αj ≥ 0 such that
∑

j αj = 1. Also since x(t)→ 1k

again in view of Theorem 5.2.8

H(xt)→ 0 &

∫ t

t−τij

(
IN×N −

∂y
(
t, w,x(w)

)
∂ξ

)
H(x(w)) dw → 0

Next, in view of (5.18)

∂y
(
t, w + τij,φ(w + τij)

)
∂ξ

−
∂y
(
t, 0,φ0

)
∂ξ

→ 0
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and ∫ t−τij

0

(
∂y
(
t, w + τij,x(w + τij)

)
∂ξ

−
∂y
(
t, w,x(w)

)
∂ξ

)
H(x(w)) dw =∫ t−τij

0

(
∂y
(
t, w + τij,x(w + τij)

)
∂ξ

− 11
T

N

)
H(x(w)) dw−∫ t−τij

0

(
∂y
(
t, w,x(w)

)
∂ξ

− 11
T

N

)
H(x(w)) dw.

From (5.18) we deduce that both of these integrals asymptotically vanish because

they are convolutions of L1 functions, i.e. ∂y(t,w,x(w))
∂ξ

− 11
T

N
, with a function that

goes to zero, i.e. H(x(w)). Thus, in the limit t =∞ we are left with

1k = 1

∑
j

αjφj(0) + 1

∑
i,j

1

N

∫ 0

−τij
gij
(
φj(s)

)
ds− 1

∑
i,j

1

N

∫ 0

−τij
gij(k) ds

which, by Proposition 5.2.11, we know that it attains a unique solution in WIt0 ,φ
.

5.2.3 Periodic synchronized solutions

The effect of delays in co-operative systems may cause more complex behavior than

simply weakening the rate of convergence to consensus in the networks we considered

so far. Indeed, whenever the dynamics are nonlinear and the type of delays is

distributed, there seems to be a possibility of a periodic solution. We are mainly

interested in the following type of periodic solutions.

Definition 5.2.13. A function y(t) ∈ RN is synchronized if it is bounded and it

satisfies S(y(t)) ≡ 0.

This is an extended concept of agreement that basically accepts consensus

solutions along a non-trivial orbit. Fix t0 ∈ R and τ > 0 and consider the initial
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value problem

i ∈ [N ] :



ẋi(t) = −
∑

j gij
(
t, t, xi(t)

)
+

+
∑

j

∫ 0

−τ gij
(
t, s, xj(t+ s)

)
p(t, s) ds, t ≥ t0

xi(t) = φi(t), t ∈ [t0 − τ, t0]

(5.19)

where p ∈ C0([t0,∞)× [−τ, 0],R+) has the property

∫ 0

−τ
p(t, s) ds = 1, t ≥ 0 (5.20)

This network is a significant variation of the ones studied so far. The structural

hypothesis so far imposes the following condition: Agent i receives the signal with

the state xj from agent j with a coupling weight which suffers from no processing

delay. This condition would makes sense only if the particular rate is a parameter

controlled exclusively by i. Otherwise, if the information on the coupling rate is also

transmitted from j should suffer from delays. We will show here that if this is the

case, periodic solutions can occur. We study the generic scenario where uncertainty

is put in an interval of possible delays. This is typically expressed via a distribution

function that smoothly weights the different possible delays.

We open the discussion with an unorthodox result. The following theorem

comments on the non-existence of non-trivial periodic synchronized solutions.

Theorem 5.2.14. Consider the solution x = x(t, 0,φ), t ≥ 0 of (5.19). If x is

synchronized and periodic with period T and either of the following two conditions

holds

A: ∀i 6= j, gij(t, s, x) = gij(s, x) is continuous in s and x with the property that
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gij(s+T, x) = gij(s, x), τ = T and p(t, s) = δ(s+ τ), ∀t for δ(·) to be the delta

function,

B: ∀i 6= j, gij(t, s, x) = aij(t)x with the property that aij(t + T ) = aij(t) for any

t and p(t, s) = δ(s + τ(t)), ∀t for δ(·) to be the delta function and τ(t) is

T -periodic with τ(t) ≤ τ̄ ,

then x is constant.

Proof. Let the initial data φ ∈ ∆ such that for any t ≥ 0 the solution x(t) satisfies

xi(t) = xj(t) for any i 6= j and x(t) = x(t+T ). Along this solution pick an arbitrary

i ∈ [N ] and observe that the solution satisfies

ẋi(t) =
∑
j

∫ 0

−τ
gij
(
t, s, xi(t+ s)

)
p(t, s) ds− gij

(
t, t, xi(t)

)
(5.21)

Condition A: (5.21) reads

ẋi(t) =
∑
j

gij
(
t− T, xi(t− T )

)
− gij

(
t, xi(t)

)
= − d

dt

∑
j

∫ t

t−T
gij
(
s, xi(s)

)
ds

then

xi(t) = φi(0) +

∫ 0

−T

∑
j

gij
(
s, φi(s)

)
ds−

∫ t

t−T

∑
j

gij
(
s, xi(s)

)
ds

if xi(t) = xi(t + T ) then this implies that the integral of
∑

j gij
(
s, xi(s)

)
over

any T− interval is constant, hence xi(t) ≡ φi(0) and it is constant.

Condition B:

If x is not constant, the y := ẋ is not constant. In such case (5.21) reads

yi(t) =
∑
j

aij(t)

∫ t

t−τ(t)

yi(s) ds (5.22)
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so that yi(t+T ) = yi(t) implies that the integral of yi over [t, t+T ] is constant. Then

yi(t) must have the form k
∑

j aij(t). Substituting this form to (5.22), we obtain

k
∑
j

aij(t) =
∑
j

aij(t)k

∫ t

t−τ(t)

∑
l

ail(s) ds. (5.23)

From the above necessary condition we have the cases:

a. k = 0 or
∑

j aij(t) ≡ 0 so that y ≡ 0 and xi(t) ≡ φi(0), i.e. x must be a

constant,

b.
∫ t
t−τ(t)

∑
j aij(s) ds ≡ 1 and this leads to xi(t) = φi(0) + k

∫ t
0

∑
j aij(s) ds

being unbounded, i.e. a contradiction.

The above result suggests that constant solutions are more or less the canon for

the majority the delayed consensus systems. As the objective is to introduce a case

of non-trivial periodic synchronized solution as a result of the delay in consensus

systems, exhaustive simulations have suggested the following modification of the

consensus networks considered so far.

Delay induced synchronization For T > 0 we consider the following initial value

problem

i ∈ [N ] :



ẋi(t) = −
∑

j gij
(
t, xi(t)

)
+

+
∑

j

∫ t
t−T gij

(
s, xj(s)

)
p(s− t) ds, t ≥ 0

xi(t) = φi(t), t ∈ [−T, 0]

(5.24)

where p is a distributed delay satisfying (5.20) with τ = T . The conditions we are

imposing on gij are significantly harder than the ones considered so far.
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Assumption 5.2.15. ∀i, j ∈ [N ], t ≥ 0, x ∈ R, the following properties hold:

(i.) gij(t, x) > 0, uniformly in t, if and only if j ∈ Ni and zero otherwise.

(ii.) gij(t, x) = gji(t, x) & gij(t+ T, x) = gij(t, x),

(iii.) ∂
∂x
gij(t, x) ∈ C0

(
[0,∞) × R, [K, K̄]

)
for j ∈ Ni and some 0 < K ≤ K̄ < ∞

that are independent of t

(iv.) ∂
∂x
gij(t, x) = ∂

∂x
gji(t, x).

(v.)
∑

j gij(t, x) is independent of i.

Assumption 5.2.16. The connectivity graph is static and with increased connec-

tivity: i.e. there exists j ∈ [N ] : gij 6= 0 for all i ∈ [N ]\{j}.

Recalling the discussion in Chapter 3 this is a Type I static connectivity.

Proposition 5.2.17. Let Assumption 5.2.15 hold. If

K̄

∫ 0

−T
p(s)(−s) ds < 1

there exists a unique synchronized periodic solution of (5.24) with period T . The

solution is constant only if there is k such that

∑
j

gij(t, k) =

∫ 0

−T
p(s)

∑
j

gij(t+ s, k) ds

Proof. We begin with the second statement. If x is synchronized and T−periodic

then x(t) =
(
x1(t), . . . , xN(t)

)
=
(
ζ(t), . . . , ζ(t)

)
for some appropriate function. By

Assumption 5.2.15(v.),

ζ̇(t) = −
∑
j

gij
(
t, ζ(t)

)
+
∑
j

∫ t

t−T
gij
(
s, ζ(s)

)
p(s− t) ds
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independent of i. If ζ(t) ≡ k for some k ∈ R, then the last equation reads

0 = −
∑
j

gij
(
t, k
)

+
∑
j

∫ t

t−T
gij
(
s, k
)
p(s− t) ds

= −
∑
j

gij
(
t, k
)

+

∫ 0

−T
p(s)

∑
j

gij(t+ s, k) ds

We proceed with proving the existence and uniqueness of a periodic solution x(t) =

1ζ(t). Adding and subtracting gij
(
t, xj(t)

)
we arrive at the following equivalent

functional differential equation for xi

ẋi(t) =
∑
j

gij
(
t, xj(t)

)
− gij

(
t, xi(t)

)
− d

dt

∫ 0

−T
p(s)

∫ t

t+s

gij
(
w, xj(w)

)
dwds

Next we follow the steps of the proof of Theorem 5.2.12. We set l(s) = x
(
t, s, z(s)

)
,

differentiate with respect to s and integrate from 0 to t, in the sense of we express
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the solution x(t) = x(t, 0,φ) of (5.24) as follows:

x(t) =

= z(t, 0,φ0)−
∫ t

0

∂z
(
t, s,x(s)

)
∂ξ

d

ds

∫ 0

−T
p(q)

∫ s

s+q

G
(
w,x(w)

)
dwdqds

= z(t, 0,φ0)−
∫ 0

−T
p(q)

∫ t

t+q

G
(
w,x(w)

)
dwdq

+
∂z
(
t, 0,φ0

)
∂ξ

∫ 0

−T
p(q)

∫ 0

q

G
(
w,φ(w)

)
dwdq

+

∫ t

0

d

ds

[
∂z
(
t, s,x(s)

)
∂ξ

] ∫ 0

−T
p(q)

∫ s

s+q

G
(
w,x(w)

)
dwdqds

= z(t, 0,φ0)−
∫ 0

−T
p(q)

∫ t

t+q

G
(
w,x(w)

)
dwdq

+
∂z
(
t, 0,φ0

)
∂ξ

∫ 0

−T
p(q)

∫ 0

q

G
(
w,φ(w)

)
dwdq

+

∫ 0

−T
p(q)

∫ 0

q

[
∂z
(
t, w − q,x(w − q)

)
∂ξ

−
∂z
(
t, 0,φ0

)
∂ξ

]
G
(
w,φ(w)

)
dwdq

+

∫ 0

−T
p(q)

∫ t+q

0

[
∂z
(
t, w − q,x(w − q)

)
∂ξ

−
∂z
(
t, w,x(w)

)
∂ξ

]
G
(
w,x(w)

)
dwdq

+

∫ 0

−T
p(q)

∫ t

t+q

[
IN×N −

∂z
(
t, w,x(w)

)
∂ξ

]
G
(
w,x(w)

)
dwdq

= z(t, 0,φ0) +
∂z
(
t, 0,φ0

)
∂ξ

∫ 0

−T
p(q)

∫ 0

q

G
(
w,φ(w)

)
dwdq

+

∫ 0

−T
p(q)

∫ 0

q

[
∂z
(
t, w − q,x(w − q)

)
∂ξ

−
∂z
(
t, 0,φ0

)
∂ξ

]
G
(
w,φ(w)

)
dwdq

+

∫ 0

−T
p(q)

∫ t+q

0

[
∂z
(
t, w − q,x(w − q)

)
∂ξ

−
∂z
(
t, w,x(w)

)
∂ξ

]
G
(
w,x(w)

)
dwdq

−
∫ 0

−T
p(q)

∫ t

t+q

∂z
(
t, w,x(w)

)
∂ξ

G
(
w,x(w)

)
dwdq

(5.25)

Let
(
S, | · |

)
be the Banach space of continuous T -periodic synchronized functions.

Define the operator Q : S→ B as follows:

(Qx)(t) = x(5.25)(t)
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where x(5.25)(t) is the right hand-side of (5.25) as it was expressed above. Interest-

ingly enough, Q, restricted to S, becomes particularly simplified. Indeed, for x ∈ S

under Assumption 5.2.15:

1. z(t, 0,φ0) ≡ φ0,

2. G
(
w,x(w)

)
∈ ∆ for any fixed w ≥ −T .

Consequently, the principal matrix ∂z
∂ξ

acts on ∆ and thus has no effect on any such

element of ∆. So for instance,

∂z
(
t, 0,φ0

)
∂ξ

∫ 0

−T
p(q)

∫ 0

q

G
(
w,x(w)

)
dwdq ≡

∫ 0

−T
p(q)

∫ 0

q

G
(
w,x(w)

)
dwdq

Additionally, the last three integrals are identically equal to zero. What is left then,

is

(Qx)(t) = φ0 +

∫ 0

−T
p(q)

∫ 0

q

G
(
w,φ(w)

)
dwdq −

∫ 0

−T
p(q)

∫ t

t+q

G
(
w,x(w)

)
dwdq

and it is easy to see that (Qx)(t+ T ) = (Qx)(t).

Finally, under the stated condition Q becomes a contraction under the metric

ρ(x,y) = supt maxi |xi(t)− yi(t)| and Theorem 2.5.6 applies to prove the existence

and uniqueness of a fixed point in S, concluding the proof.

Proposition 5.2.17 states a sufficient condition for existence and uniqueness

of a periodic synchronized solution. We will see now that this condition actually

suffices for the local asymptotic stability of 1ζ.
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Theorem 5.2.18. Let Assumptions 5.2.15 and 5.2.16 hold. The synchronized so-

lution 1ζ(t) of Proposition 5.2.17 is locally exponentially stable if

sup
t≥0

∫ 0

−T

∫ t

t+s

[∑
j

∂gij(w, ζ(w))

∂x

]
dwp(s) ds < 1.

Proof. We will make a first variation orbital stability argument. Assumption 5.2.15

imply that the right hand-side of (5.24) has continuous first order partial derivatives

globally. Let 1ζ(t) be the T -periodic solution of (5.24) defined from Proposition

5.2.17 and x(t, 0,φ) a solution of (5.24) so that φ is in the vicinity of 1ζ. For

t ≥ 0, set z(t) = maxi |xi(t) − ζ(t)| and take d
dt

to be the right Dini derivative. If

xi(t)− ζ(t) ≥ 0 then the Taylor theorem implies that

dt

dt
z(t) = ẋi(t)− ζ̇(t) =

= −
∑
j

(
gij
(
t, xi(t)

)
− gij(t, ζ(t))

)
+

+
∑
j

∫ t

t−T

(
gij
(
g(s, xj(s)

)
− gij

(
s, ζ(s)

))
p(s− t) ds

= −
∑
j

∂gij
(
t, ζ(t)

)
∂x

z(t)+

+
∑
j

∫ t

t−T

(
∂gij

(
s, ζ(s)

)
∂x

(
xj(s)− ζ(s)

))
p(s− t) ds+ o(|z|)

≤ −
∑
j

∂gij
(
t, ζ(t)

)
∂x

z(t) +

∫ t

t−T

∑
j

∂gij
(
s, ζ(s)

)
∂x

z(s)p(s− t) ds+ o(|z|).

A similar argumentation for xi(t)− ζ(t) < 0 yields the same upper bound for ż(t).

Consequently, for initial data near the periodic orbit we omit the higher order terms

o(|z|) and observe that ż(t) ≤ q̇(t) for

q̇(t) = −
∑
j

∂gij
(
t, ζ(t)

)
∂x

q(t) +

∫ t

t−T

∑
j

∂gij
(
s, ζ(s)

)
∂x

q(s)p(s− t) ds
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In view of (5.20) we write

d

dt
q(t) = − d

dt

∫ 0

−T

∫ t

t+s

[∑
j

∂gij
(
w, ζ(w)

)
∂x

]
q(w) dwp(s) ds

and this will yield

q(t) = −
∫ 0

−T

∫ t

t+s

[∑
j

∂gij
(
w, ζ(w)

)
∂x

]
q(w) dwp(s) ds+ q0 (5.26)

with q0 = q(0) +
∫ 0

−T

∫ t
t+s

[∑
j
∂gij(w,ζ(w))

∂x

]
q(w) dwp(s) ds. For z(·) as defined above

and χ > 0 we consider the functional space

V = {v(t) ∈ C0([−T,∞),R) : v(s) = z(s)|s∈[−T,0] & sup
t≥0

eχt|q(t)| <∞}

which, together with the weighted metric, ρ(v1, v2) = supt e
χt|v1(t) − v2(t)| consti-

tutes a complete metric space (see Proposition 2.5.7 of §2.5 in Chapter 2 or [34]).

Define the mapping Q : V→ B

(Qv) =


z(t), t ∈ [−T, 0]

q(5.26)(t), t ≥ 0

where q(5.26)(t) stands for the right hand-side of (5.26). It is easy to see that Q :

V→ V and under the imposed condition one can pick χ > 0 small enough so that

sup
t≥0

eχt
∫ 0

−T

∫ t

t+s

[∑
j

∂gij(w, ζ(w))

∂x

]
e−χw dwp(s) ds < 1.

Then Q becomes a contraction in V and Theorem 2.5.6 applies to ensure a unique

fixed point. So q(t) converges to 0 exponentially fast and so does ζ(t).

Example 5.2.19. Consider the 3× 3 network

ẋi = −
3∑
j=1

aij(t)gij
(
xi(t)

)
+

∫ t

t−1

3∑
j=1

aij(s)gij
(
xj(s)

)
p(s) ds
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with

G(x) = ḡ


0 0.01x+ x3

1+x2 3x+ sin2(x)

0.01x+ x3

1+x2 0 3x+ sin2(x)

3x+ sin2(x) x2

1+x2 0


for some ḡ > 0 and

A(t) =


0 2 + sin(2πt) 3 + sin(4πt)

2 + sin(2πt) 0 3 + sin(4πt)

2 + sin(2πt) 3 + sin(4πt) 0

 .

It can be easily verified that the system satisfies Assumptions 5.2.15 and 5.2.16.

Moreover, if p(s) ≡ 1, (5.20) is satisfied, as well. Choosing ḡ < 1
6.14

both the con-

ditions of Proposition 5.2.17 and Theorem 5.2.18 hold and this means that there is

a unique solution that is exponentially stable with rate χ = 0.0015. See Figure 5.2

for a numerical calculation of the solution. A simulation study of the solutions of

the network reveals that the upper bound of ḡ is conservative. Indeed the mono-

tonicity of gij suggests that periodic solutions exist and are asymptotically stable

for arbitrary values of ḡ and arbitrary initial data.

5.3 Networks Of Neutral Type

A finite population of autonomous agents is connected over a linear time invariant

communication network with the corresponding graph to be sufficiently connected

as discussed in §2.2. Based on this (nominal) system we consider its neutral vari-

ation. Our aim is to establish sufficient conditions for asymptotic convergence to

a constant value via a stability in variation argument and application of Theorem
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Figure 5.2: Simulation of Example 5.2.19 with the ddesd routine in MATLAB.

2.5.9. More specifically, a network of N < ∞ autonomous agents evolves its state

x = (x1, . . . , xN)T according to

i ∈ [N ] :


d
dt

(
xi(t) +

∫ 0

−τ fi(xi(t+ s))pi(s) ds
)

=
∑

j aij
(
xj(t)− xi(t)

)
, t ≥ 0

xi(t) = φi(t), t = [−τ, 0]

for ∫ 0

−τ
pi(s) ds ≡ 1.

The latter condition models a delay, the uncertainty of which implies the integrable

distribution function pi : [−r, 0]→ R. Equivalently

d

dt

(
xi(t) +

∫ 0

−τ
f̃i(xi(t+ s))pi(s) ds

)
=
∑
j

aij
(
xj(t)− xi(t)

)
where f̃i(xi(t+s)) = fi(xi(t+s))−fi(k) for some real constant k to play the consensus

point and it is to be determined below. All in all, we arrive at the following initial
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value problem 
d
dt

(
x +

∫ t
t−τ F̃

(
x(q),p(q − t)

)
dq

)
= −Lx, t ≥ 0

x(s) = φ(s),−τ ≤ t ≤ 0.

(5.27)

At the moment, we know very little about the solution x = x(t, 0,φ). We don’t

know if it exists or if it is unique. The analysis starts the same way as so far. We

impose the necessary set of Assumptions that will come in hand.

Assumption 5.3.1. The communication graph is routed-out branching.

This is a necessary and sufficient condition for convergence of the ordinary

model and all the properties of the Laplacian discussed in the previous section to

hold. From this Assumption and Proposition 2.2.1 we know that

|e−LtL|1 = Ke−<(λ)t (5.28)

for some K > 0 that essentially depends on the norm (here we use the 1-norm thus

| · |1 denotes the corresponding induced matrix norm) and <{λ} > 0 is the second

smallest real part of the eigenvalues of L. The left eigenvector associated with the

zero eigenvalue is c and it satisfies cTL = 0 and
∑

i ci = 1.

Next, we will use a condition on the nonlinear neutral terms fi, the most

reasonable of which is a global Lipschitz condition.

Assumption 5.3.2. For every i = 1, . . . , N , fi : R → R is integrable and there

exist Ui ∈ R+ such that

|fi(x)− fi(y)| ≤ Ui|x− y|, ∀x, y ∈ R.
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Although reasonable, this assumption is at the same time very restrictive.

Possible extensions and relaxations are to be discussed in the discussion section,

below. For the moment we keep in mind that such a condition at least ensures

uniqueness of a solution [59]. The existence (in the large) property is yet to be

established together with stability.

Assumption 5.3.3.(
1 +

K

<(λ)− γ

)
max
i

{
Ui

∫ 0

−τ
|pi(q)| dq

}
< 1.

Theorem 5.3.4. Let Assumptions 5.3.1, 5.3.2 and 5.3.3 hold. If in addition
∑

i ciUi <

1 then the solution x(t) = x(t, 0,φ) of (5.27) satisfies

||x(t)− 1k||1 ≤ Ce−γt

where k is the unique solution of (5.31), C > ||φ(0)− 1k||1 is some finite constant

and γ < <(λ) small that explicitly depends on the systems parameters.

The proof of this result is an application of Theorem 2.5.9. For this we need

some preparatory steps:

Derivation of the solution operator Using the standard variations of constants for-

mula we see that the solution x of (5.27) satisfies

x(t) = e−Ltφ(0)−
∫ t

0

e−L(t−s) d

ds

∫ s

s−τ
F̃
(
x(q),p(q − s)

)
dqds

= e−Ltφ̃−
∫ t

t−τ
F̃
(
x(q),p(q − t)

)
dq +

∫ t

0

e−L(t−s)L

∫ s

s−τ
F̃
(
x(q),p(q − s)

)
dqds

(5.29)

where φ̃ = φ(0) +
∫ 0

−τ F̃
(
φ(q),p(q)

)
dq.
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The space of solutions Let C0 = C([−τ,∞),RN) be a subspace an appropriate

Banach space (B, |·|) of bounded continuous functions. This set is defined in [−τ,∞)

and takes values in RN . For fixed φ ∈ C0([−τ, 0],RN), k ∈ R, C > 0 and γ > 0 we

define the following set

M =
{
z ∈ C0 : z(s) = φ(s)|s∈[−τ,0], sup

t≥0
eγt
∣∣∣∣z(t)− 1k

∣∣∣∣
1
≤ C

}
(5.30)

This paragraph ends with the following technical result:

Lemma 5.3.5. The set M as defined in (5.30) is closed, convex and non-empty, if

C ≥ ||φ(0)− 1k||1.

Proof. The set is obviously closed because it is constructed to contain all of its limit

points. M is also convex: For any pair z1, z2 ∈ M, z3 := βz1 + (1 − β)z2 is also

a member of M for any β ∈ [0, 1]. Indeed z3(t) = βφ(t) + (1 − β)φ(t) = φ(t) for

−τ ≤ t ≤ 0 and for z3(t) − 1k = β(z1(t) − 1k) + (1 − β)(z2(t) − 1k) it holds that

eγt||z3(t)− 1k||1 ≤ βC + (1− β)C = C. Finally, under the imposed condition, the

function

z(t) =


φ(t), t ∈ [−T, 0]

1k + (φ(0)− 1k)e−γt, t ≥ 0

is a member of M so the set is not empty.

The consensus point

Lemma 5.3.6. Let Assumptions 5.3.2 and 5.3.1 hold. If

∑
i

ciUi < 1
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then there exists a unique k ∈ R such that

k =
∑
i

ci

(
φi(0) +

∫ 0

−τ

(
fi(φi(q))− fi(k)

)
pi(q) dq

)
(5.31)

Proof. Consider the complete metric space (R, ρ) where ρ(x, y) = |x − y| is the

standard distance between two points on the line. Then it is easily seen that for the

operator F (k) =
∑

i ci
(
φi(0) +

∫ 0

−τ

(
fi(φi(−q)) − fi(k)

)
pi(q) dq

)
that maps R into

itself

ρ(F (k1), F (k2)) ≤
(∑

i

ciUi

)
ρ(k1, k2), ∀k1, k2 ∈ R

and the result follows from Theorem 2.5.6.

Now that we have obtained these easy yet significant results we can proceed

to the full proof of Theorem 5.3.4.

Proof of Theorem 5.3.4. The proof of our main result is based on Theorem 2.5.9.

Having defined k and established a first estimate of C we are ready to further

elaborate on our solution space and the solution operator. The first step is to show

that the function P : M→ R

(Pz)(t) =


φ(t), −τ ≤ t ≤ 0

z(5.29)(t), t ≥ 0

(5.32)

is under conditions an operator P : M → M. The first step towards this is to

examine limt→∞(Pz)(t). Indeed we see that

e−Ltφ̃→ 1cT φ̃ = 1cT φ̃(k)

but ∫ t

t−τ
F̃
(
z(q),p(q − t)

)
dq → 0
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and ∫ t

0

e−L(t−s)L

∫ s

s−τ
F̃
(
z(q),p(q − s)

)
dqds→ 0

exactly because e−LtL is an L1 function and the last equation is justified as it is the

convolution of an L1 function with a function that goes to zero. Finally,

lim
t→∞

(Pz)(t) = 1

∑
i

ci

(
φi(0) +

∫ 0

−τ

(
fi(φi(−q))− fi(k)

)
dq

)

so that if k is defined as in (5.31) we conclude on

(Pz)(t)→ 1k

Now we define two operators A,B : M→ B as follows:

(Az)(t) =

∫ t

0

e−L(t−s)L

∫ s

s−τ
F̃
(
z(q),p(q − s)

)
dqds

(Bz)(t) = e−Ltφ̃−
∫ t

t−τ
F̃
(
x(q),p(q − t)

)
dq

We now proceed to check the conditions of Theorem 2.5.9 one by one:

Condition (i) Let z1, z2 ∈M. Then (Az1)(t)+(Bz2)(t) behaves in the limit exactly

as (Pz)(t), simply because it is only the time-varying (state-independent) part that

contributes to the limit point. Hence, since z1 ≡ z2 in [−τ, 0], it is only left to prove

the convergence estimate: Note that if γ < <(λ) simple calculations yield

sup
t
eγt||(Az1)(t)||1 ≤

K maxi Ui
∫ 0

−τ e
−γqpi(q) dq

<{λ} − γ
C

and

sup
t
eγt||(Bz2)(t)||1 ≤ ||φ̃||1 + max

i
Ui

∫ 0

−τ
e−γqpi(q) dqC
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so from Assumption 5.3.3 the first condition of Krasnoselskii’s Theorem is satisfied

as this way it is always possible to pick C large enough so that

sup
t
eγt||(Az1)(t)||+ sup

t
eγt||(Bz2)(t)||1 ≤ C.

In fact it suffices to pick C > max{||φ(0)− 1k||, D} where

D =
||φ̃||1

1−
(

K
<{λ}−γ + 1

)
maxi Ui

∫ 0

−τ e
−γqpi(q) dq

> 0

for γ small enough again in view of Assumption 5.3.3.

Condition (ii) We note that AM is a subset of B since it maps M to a subset of

functions which vanish to zero as fast as e−γt, in view of γ < Re{λ}. It really suffices

to show that AM is equicontinuous because then it follows that it is continuous with

respect to the supremum norm in B. The former can be shown by differentiating

(Az)(t) with respect to t:

d

dt
(Az)(t) =

∫ 0

−τ
F̃
(
z(t+ q),p(q)

)
dq −

∫ t

0

e−L(t−s)L2

∫ 0

−τ
F̃
(
z(s+ q),p(q)

)
dqds

and it is only a tedious algebraic exercise to show that for z ∈M

sup
t

∣∣∣∣∣∣∣∣ ddt(Az)(t)

∣∣∣∣∣∣∣∣
1

≤ C ′

a constant that is independent of the element z and depends only on M. This

uniform condition implies equi-continuity and hence Proposition 2.5.4 applies to

show that A is a compact map that is also continuous.
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Condition (iii) Now, since M is a closed subset of B it also constitutes a (complete)

metric space under the weighted metric

ρ(z1, z1) = sup
t
eγt||z1(t)− z2(t)||1

Then

ρ
(
Bz1,Bz2

)
≤
[

max
i
Ui

∫ 0

−τ
e−γq|pi(q)| dq

]
ρ(z1, z1)

which is automatically a contraction in view Assumption 5.3.3. Then every condition

of Theorem 2.5.9 is satisfied, hence P = A+ B has as fixed point in M.

We would like comment on conditions as imposed by the Assumption 5.3.2.

Taking a look in (5.31) we are tempted to consider for a moment a linear version of

fi(x) = −|Ui|x. Then the consensus point is

k =

∑
i ciφi(0)−

∑
i ci|Ui|

∫ 0

−r φ(q)pi(q) ds

1−
∑

i ci|Ui|

and this creates instability k =∞ at values of |Ki| close to 1. We conclude that, so

long as, we are searching for asymptotic consensus solutions the smallness on Ui is

not unnecessarily strict.

Finally, Assumption (5.3.3) is undoubtedly the hardest one as it imposes ad-

ditional restricting conditions on both Ui and τ , which is the result of the stability

in variation argument. It is shown however that such strict conditions occur very

regularly in the literature and examples can be constructed that justify them for

the sake of stabilization of solutions (see also [59]).
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5.4 Supplementary Remarks

We approached a number of significant extensions of linear consensus networks.

Whenever the nonlinear systems incorporate features that support the cooperative

behavior among agents, such as the passivity or the monotonic hypotheses, the linear

theory machinery applies with minor modifications.

The passive systems bear the greatest resemblance with the linear ones while

the general nonlinear ones, presented in §5.2 are separated into two categories.

Our analysis distinguishes the co-operative (monotonic) mode from non-cooperative

(nonmotonotnic) one and convergence results were provided for both. The mono-

tonic mode is characterized by the non-negative first derivative the functions gij(t, x)

with respect to x and it is a straightforward generalization of the linear case and

can be analyzed with the use of the same fundamental tools from the non-negative

matrix theory. Although a simplified increased connectivity regime was considered,

the results can be easily extended to the case of simple/recurrent connectivity as

follows. The double inequality in (5.14) can be naturally extended as

x(t) ≥
∫ t

t−Q
A(t, t1)

∫ t1

t1−Q
A(t1, t2) · · ·

∫ tσ−1

tσ−1−Q
A(tσ−1, tσ)xt1,σ dtσdtσ−1 · · · dt1

x(t) ≤
∫ t

t−Q
B(t, t1)

∫ t1

t1−Q
B(t1, t2) · · ·

∫ tσ−1

tσ−1−Q
B(tσ−1, tσ)xt1,σ dtσdtσ−1 · · · dt1

since A(t, s), B(t, s) ≥ 0. The notation xt1,σ follows the one in the proof of Theorem

5.2.8. The analysis continues for the lower and upper product of matrices, each of

which can be shown to be stochastic.

The autonomous case also provides information on the consensus point. The
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monotonicity condition implies that the consensus point serves as a unique solution

of a nonlinear algebraic equation.

The competitive model is studied without delays, through a stability in vari-

ation and a fixed point argument. The results rely on the “smallness” of the non-

linear effect and are essentially considered as a perturbation to a monotonic linear

system. Simulations suggest that instability occurs when the non-cooperative mode

prevails. In the particular 2 × 2 example, the cooperative agent tries to follow the

non-cooperative one. Stability then can only occur when the rate at which the

former agent cooperates is faster than the rate the latter agent diverges.

In the next section we pointed out that although the standard type in synchro-

nization solutions of consensus systems is the constant solutions, in an interesting

turn of events we showed that for the special type of distributed delays, nonlinear-

ity provides an alternative: the existence and asymptotic stability of synchronized

yet non-constant periodic solutions. We proved the existence and uniqueness of a

periodic solution with a fixed point theorem approach and its local stability using

the standard variational approach.

For the solution of neutral networks, we developed a fixed point theory argu-

ment based on a combination of the contraction mapping principle and Krasnosel-

skii’s result on perturbed operators. The derived sufficient conditions are based on

the smallness of the delays and/or the Lipschitz constants. The linearity of the

problem produced very elegant results that characterize both the convergence, the

rate as well as the consensus point. Our primary goal was to open the subject of

neutral distributed networks. We claim that proving simple convergence to a com-
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mon constant is the first step yet less exciting phenomenon a research might come

across. Theorem 5.3.4 is a combination of conservative imposed conditions and the

over-simplistic static communication network. We conjecture that the methods de-

veloped in this work can be adapted to the study of networks with more realistic

and more interesting neutral components or networks with time varying or nonlinear

couplings or even delayed state arguments. Then one could investigate the existence

(and perhaps stability) of more interesting asymptotic phenomena such as periodic

or chaotic solutions.

Another serious difficulty is the derivation of the solution operator. Although

the method of variation of parameters in dynamical systems is very popular and

well-studied over the years [68], experience has proved that regardless if we are to

follow a Lyapunov or a Fixed Point Method, stability problems are to be studied

on a case by case basis. In our model, the nominal system, exhibits extraordinary

robust stability, but the derivation of the solution operator to a useful form required

integration by parts step. It is not clear how one could proceed for example if the

nominal system, involved propagation delays or if the nominal system was nonlinear.

In the latter case we would be forced to use a nonlinear variation of parameters

formula, that would result in excessive technical problems.
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Chapter 6: Flocking Networks

In a series of papers, [52, 88] Felipe Cucker and Steve Smale introduced an interesting

communication scheme for speed alignment among a finite population of birds. In

its elementary version the model reads

i ∈ [N ] :



ẋi = ui

u̇i =
∑

j aij(x)(uj − ui)

xi(0) = x0
i , ui(0) = u0

i , given

(6.1)

where xi denotes the position of the bird i and ui denotes its speed. Therefore, a

bird i ∈ [N ] is an autonomous agent the state of which is adequately defined with

the pair (xi, ui). Without loss of generality we will assume xi, ui ∈ R so that the

state vectors

x = (x1, . . . , xN) and u = (u1, . . . , uN) ∈ RN .

The communication rate is assumed to have the explicit form

aij(x) = aCSij (x) =
K

(α2 + |xi − xj|β)
. (6.2)

The idea behind (6.2) is based on the intuitively reasonable assumption that the

further the bird j is from bird i the weaker the effect on one another should be.
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Therefore, the interest concentrates on the solutions (x,u) that satisfy the so-called

asymptotic flocking condition, first introduced in [89]:

Definition 6.0.1. The asymptotic flocking condition for the solution (x,u) is

|ui(t)− uj(t)| → 0 and sup
t
|xi(t)− xj(t)| <∞

The goal is to derive sufficient conditions for asymptotic flocking. These will

typically be an expression that involves both the system’s parameters and the initial

configuration x0,u0. If such a condition is true, then Definition 6.0.1 implies that

the flock of birds will align its speed while at the same time it remains in shape.

The first result on the model is presented below:

Theorem 6.0.2. Let the system (6.1) with aij as defined in (6.2) with its solution

(x,u). Assume that one of the three hypotheses holds

1. β < 1/2.

2. β = 1/2 and 1
2

∑
i 6=j(u

0
i − u0

j)
2 < ( K

3N
)2/8.

3. β > 1/2 and

[(
1

2β

) 1
2β−1

−
(

1

2β

) 2β
2β−1

]
>
∑
i 6=j

(x0
i − x0

j)
2 + α2.

Then (x,u) satisfies the flocking condition according to Definition 6.0.1.

Proof. See [52, 88].

These systems are known in the literature as 2nd order consensus models and

they have attracted enormous attention from the Applied Mathematics community

192



[90, 91, 92, 93, 94, 89, 55], to name a few. It was, in fact, very soon realized that

the model could accept a number of non-trivial improvements. Firstly, the idea

behind (6.2) is due to an early work of the authors on language evolution [95]

and the proof of Theorem 6.0.2 is based on this particular form of communication

weights. This is a restrictive condition that was remedied with the introduction of

a Lyapunov functional in [89] that produces clear and elegant sufficient conditions

for asymptotic flocking with generic symmetric connectivity weights. On the other

hand, recent results support the claim that birds make use of topological rather than

euclidean metrics as they attempt to synchronize their velocity [96]. Based on this

assumption, in [97] a significant improvement of (6.1) is proposed by considering

the coupling

aij(x) = aMT
ij (x) =

ψ(|xi − xj|)∑
j ψ(|xi − xj|)

, (6.3)

for an arbitrary non-negative function ψ(y) such that limy→∞ φ(y) = 0 just as aCSij

does. This is a state-dependent, non-symmetric coupling that generates a consensus

system, the study of which requires the use of the contraction coefficient κ [55]. The

authors could not however avoid asking for small couplings such that
∑

j aij ≡ 1 as

well as increased (Type I) connectivity.

We conclude this introductory note with reviewing works on stochastic/noisy

flocking networks. A stochastic 2nd order consensus family, different from the one

discussed in §3.3, is proposed for the 2nd order model in [90, 92, 93]. These models,

known as noisy-flocking dynamics, involve additive Brownian noise in the equations

and sufficient conditions for consensus in the almost sure sense are derived. In [93]
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the authors study the following stochastic variation of (6.1)
dxi = uidt

dui =
∑

i a(|xi − xj|2)
(
uj − ui

)
dt+

∑
j cijdBj, t ≥ t0

(6.4)

subject to given initial data x0
i and u0

i , where dBj stands for white noise induced

from the agent j and weighted by cij when agent i updates its speed. The objective

is to obtain conditions for asymptotic flocking in the mean-square sense based on

the smallness of the noisy perturbation. Their argument relies on the algebraic

properties of the symmetric communication weights (of aCSij type) so that a Lyapunov

stability argument for stochastic stability is developed.

Contribution We apply the results and methods developed in the previous chapter

to derive sufficient conditions for asymptotic flocking on a number of old and new

flocking networks. The models we are concerned here are the standard second or-

der consensus flocking model with asymmetric coupling rates and simple/switching

connectivity. The analysis is based on Theorems 2.3.1, 3.2.9, respectively. After

taking a small digression commenting on the discrete time version of our model,

we elevate the analysis to completely non-linear flocking networks regarding the

monotonic nonlinear first order model of Chapter 5. Next, we comment on delayed

versions of the flocking networks applying the Results of Chapter 4 and the discus-

sion is concluded with results concerning the stochastic/noisy versions of flocking

were conditions for asymptotic flocking in the almost sure sense and the rth mean.
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6.1 Ordinary Flocking

This section is divided into two parts. The first one concerns the classic state-

dependent flocking network in (6.1). We essentially revisit this scheme and apply

the results of Chapter 3 to derive general sufficient conditions for flocking in the

event of Type I or Type II connectivity. We point out that despite the non-linear

dependence of the coupling strength on the relative distance, the algorithm remains

essentially linear. In the next section we proceed to introduce a non-linear version

of (6.1) by applying the results of Chapter 5. We will see that the conditions are

fairly similar.

6.1.1 Linear averaging

A finite population of N birds act as a group of autonomous agents and exchange

information according to

i ∈ [N ] :



ẋi(t) = ui(t)

u̇i(t) =
∑

j∈Ni aij(t,x)
(
uj(t)− ui(t)

)
xi(0) = x0

i , ui(0) = u0
i , given.

(6.5)

In this work, for a solution (x,u) of (6.5) we assume

aij
(
t,x(t)

)
6= 0⇒ aij

(
t,x(t)

)
≥ f

(
S(x(t))

)
(6.6)

for some positive non-increasing function f(·) with the property that

f(y)→ 0 as y →∞ (6.7)
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and

sup
t,y

aij(t, y) ≤ a <∞. (6.8)

The objective is to derive sufficient conditions so that the solution (x,u) of

(6.5) exhibits asymptotic flocking in the sense of Definition. 6.0.1. The problem

clearly fits the framework developed in Ch. 3. Firstly, Lemmas 3.2.2 and 3.2.3,

apply directly to ensure boundedness of the u, therefore existence in the large, as

well as, that the first part of Definition 6.0.1 implies u(t)→ ∆ as t→∞. Secondly,

the derivation of sufficient conditions for asymptotic flocking will be based on the

contraction rates obtained in §3.2. These rates effectively depend on the different

types of connectivity schemes that were thoroughly discussed in §3.1. We restate

these schemes here for quick reference but also slightly modified for the purposes of

the particular analysis.

1. TYPE I & static: Here there is always one bird i to affect the rest of flock,

all the time. There is no switching or failing signals. If a connection between

two birds exists for some t ≥ t0, then it does so for all times.

2. TYPE II & static: This is a relaxed, simple routed-out branching connectivity

condition. While no switching/failing signaling is assumed, there is no central

agent (bird) to affect the rest of the flock at the same time. This is a static

and decentralized scheme.

3. TYPE II & switching: This is the mildest connectivity assumption where we

allow switching connectivity. We recall the Assumptions 3.2.7, 3.2.8 and the

Remark 2.3.7 with the notation used there.
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Finally from (6.8) we define m := maxi supt,y
∑

j aij(t, y) < ∞ and we are

now ready to state the first result of this chapter.

Theorem 6.1.1. Consider (6.5) with conditions (6.6), (6.7) and (6.8) to be true

and let
(
x,u

)
be its solution.

1. TYPE I & static: The solution exhibits asymptotic flocking if

S(u0) <

∫ ∞
S(x0)

f(w) dw (6.9)

2. TYPE II & static: The solution exhibits asymptotic flocking if

S(u0) <
(1− e−mB)γ

mγγB

∫ ∞
P γ,B
x0,u0

fγ(s) ds (6.10)

where P γ,B
x0,u0 = max

{
S(x0), |S(x0)− S(u0)γB|

}
.

3. TYPE II & switching. Let Assumptions 3.2.7 and 3.2.8 hold. The solution

exhibits asymptotic flocking if

S(u0) <
(1− e−mε)σ

mσσB

∫ ∞
Pσ,B
x0,u0

fσ(s) ds (6.11)

where σ = l∗([N/2] + 1), l∗ with the meaning of Remark 2.3.7 and ε > 0 with

the meaning of Assumption 3.2.8.

Proof. We begin with the first connectivity condition, where there is at least one

agent affecting the rest of the group. We follow the same path as in Theorem 3.2.4

for u and show that

d

dt
S
(
u(t)

)
≤ −f

(
S
(
x(t)

))
S
(
u(t)

)
⇒ S

(
u(t)

)
≤ e−

∫ t
0 f(S(x(w))) dwS

(
u0
)
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so that asymptotic flocking will occur with exponential rate of convergence if S
(
x(t)

)
≤

r for some r > 0. For this, we follow [55] and introduce the functional

V1(x,u) = S(u) +

∫ S(x)

0

f(w) dw (6.12)

so that along a solution of (6.5)
(
x(t),u(t)

)
we have

d

dt
V1(t) =

d

dt
V1

(
x(t),u(t)

)
≤ −f

(
S
(
x(t)

))
S
(
u(t)

)
+ f
(
S
(
x(t)

))
S
(
u(t)

)
= 0

so that V1(t) ≤ V1(0). This is equivalent to

S(u(t)) +

∫ S(x(t))

0

f(w) dw ≤ S(u0) +

∫ S(x0)

0

f(w) dw

From the imposed condition (6.9) on the initial data we deduce that there exists r′

such that

S(u0) =

∫ r′

S(x0)

f(w) dw

so that S
(
x(t)

)
≥ S

(
x0
)
. Now,

0 ≤ S
(
u(t)

)
≤
∫ r′

S(x0)

f(w) dw −
∫ S(x(t))

S(x0)

f(w) dw

which makes sense if S
(
x(t)

)
≤ r′. Pick r = max{r′, S(x0)} to conclude that

condition (6.9) ensures that the flock of birds will remain connected, hence they will

coordinate their speeds exponentially fast.

For the second part, the flock is static and routed-out branching, hence it is

routed-out branching over the interval [t − B, t], for any t > 0 and B > 0. Let

W (x(s)) = mIN×N −D(x(s)) + A(x(s)) and

C(t, s) = e−mBδ(s− (t−B))IN×N + e−m(t−s)W (x(s))
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For the scrambling index γ ≥ 1 of the topological graph GP (x(t)) (which is inde-

pendent of time) P
(γ)
B

(
x(t)

)
is stochastic from Proposition 3.2.5 and has the same

scrambling index as P
(
x(t)

)
. Since the corresponding graph GW is independent of

time, so will be the scrambling index γ. Following the proof of Theorem 3.2.9

S
(
u(t)

)
≤ κ

(
P

(γ)
B (x(t))

)
S(u

(
t− γB)

)
≤
(
1− cfγ(S(x(t)))

)
S
(
u(t− γB)

) (6.13)

with c := (1−e−mB)γ

mγ
and S

(
x(t)

)
≥ r for r such that f(r) ≤ me−mB

1−e−mB . Define

V2(x,u) =

∫ t

t−γB
S
(
u(s)

)
ds+ c

∫ S(x)

0

fγ(s) ds.

The derivative of V̇2 along
(
x(t),u(t)

)
is

V̇2(t) = S
(
u(t)

)
− S

(
u(t− γB)

)
+ cfγ

(
S(x(t))

)
S
(
u(t)

)
≤ 0

in view of Lemma 3.2.2 (from which it is deduced that S
(
u(t)

)
≤ S

(
u(t− γB)

)
,∀t

and (6.13). Then for t ≥ γB we have V2(t) ≤ V2(γB) which is equivalent to

∫ t

t−γB
S
(
u(s)

)
ds+ c

∫ S(x(t))

0

fγ(s) ds ≤
∫ γB

0

S
(
u(s)

)
ds+ c

∫ S(x(γB))

0

fγ(s) ds

Let the following condition hold∫ γB

0

S
(
u(s)

)
ds < c

∫ ∞
S(x(γB))

fγ(s) ds (6.14)

and we pick r′ such that∫ γB

0

S
(
u(s)

)
ds = c

∫ r′

S(x(γB))

fγ(s) ds

then from the last inequality, S
(
x(t)

)
≤ S

(
x(γB)

)
implies

0 ≤
∫ r′

S(x(t))

fγ(s) ds⇒ S
(
x(t)

)
≤ r′
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so that the flock remains bounded and exponential speed alignment is ensured.

Finally, we show that (6.10) implies (6.14). Indeed,∫ γB

0

S
(
u(s)

)
ds ≤ γBS(u0)

from Lemma 3.2.2. We look for a lower bound of S
(
x(t)

)
. If S

(
x(t)

)
≥ S(x0) from

the form of (6.5) the rate at which S(x(t)
)

may shrink can be deduced from the

extreme initial configuration

x0 = (x0, 0, . . . , 0) & u0 = (u0, . . . , 0)

with x0, u0 6= 0 so that S(x0) = x0 and S(u0) = |u0|. Neglecting the averaging effect

which will inevitably diminish S
(
u(t)

)
, x0 < 0 implies that the first bird at t will

have approached (or bypassed) the rest of the group by −|x0|+ |u0|t. All in all, at

t = γB

S
(
x(γB)

)
≥ max

{
S(x0), |S(x0)− S(u0)γB|

}
= P γ,B

x0,u0

so that ∫ ∞
S(x(γB))

fγ(s) ds ≥
∫ ∞
P γ,B
x0,u0

fγ(s) ds

then

S(u0) <
(1− e−mB)γ

mγγB

∫ ∞
P γ,B
x0,u0

fγ(s) ds.

The case of switching connectivity is treated as in Theorem 3.2.9 and V2 is used in

a similar way after substituting γ with σ. Then (6.11) substitutes (6.10) to ensure

asymptotic flocking and the proof is concluded.

Remark 6.1.2. In the case of static connectivity, γ = 1 implies that (6.9) and

(6.10) coincide as B ↓ 0.
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Remark 6.1.3. With respect to each connectivity scheme, when either∫ ∞
f(s) ds =∞,

∫ ∞
fγ(s) ds =∞,

∫ ∞
fσ(s) ds =∞,

we have unconditional asymptotic flocking.

6.1.1.1 A discrete-time version

We take a brief digression into the discrete time case for flocking networks. Discrete

time dynamics are normally easier to handle and they are preferred in computational

applications. However, discretization of flocking networks such as (6.1) requires very

small mesh step, otherwise they may lead to instability [52]. In discrete time (6.1)

reads

i ∈ [N ] :



xi(k + η) = xi(k) + ηvi(k)

vi(k + η) = vi(k) + η
∑

j aij
(
x(k)

)(
vj(k)− vi(k)

)
,

xi(0) = x0
i , vi(0) = v0

i , given

(6.15)

for k ∈ Z+ and η > 0 the fixed mesh value. For simplicity, we assume

a ≥ aij(x) ≥ f
(
S(x)

)
(6.16)

∀j 6= i for a < ∞ and f a non-negative, non-increasing function. To simplify

notation we write x(k) for x(kh) and the same for v. The next result stems out of

Theorem 3.1.5.

Corollary 6.1.4. Consider (6.15) and its solution
(
x(k),v(k)

)
. Let the assump-

tions of Theorem 3.1.5 hold. Set

C := lim sup
x→∞

xf(x) ≤ ∞ and 0 < η <
1

(N − 1)a
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If

S(v0) < C − f
(
S(x0)

)
S(x0)

then (x,v) exhibits asymptotic flocking in the sense of Definition 6.0.1.

Proof. The smallness on the mesh η is imposed to make the second part of (6.15)

a well posed consensus algorithm. Then, under the Assumption 3.1.1 of Theorem

3.1.5, the corresponding graph is GP (x(k)) is scrambling for every k and hence it

justifies the contraction bound

S
(
v(k)

)
≤
(
1− ηf

(
S
(
x(k)

)))
S
(
v(k)

)
Proving that supt S

(
x(t)

)
<∞ implies that the flock will always remain sufficiently

connected so that aij will be uniformly lower bounded and a direct application of

Theorem 3.1.5 suffices to prove velocity alignment. Indeed let k∗ be the first time

that S
(
x(k∗)

)
≥ S

(
x(k∗ − 1)

)
. Then for the “functional”

V (t) = S
(
v(t)

)
+ f
(
S
(
x(t)

))
S
(
x(t)

)
we have

V (k∗)− V (k∗ − 1) ≤

≤
(
1− ηf

(
S
(
x(k∗ − 1)

)))
S
(
v(k∗ − 1)

)
− S

(
v(k∗ − 1)

)
+

+ f
(
S
(
x(k∗)

))
S
(
x(k∗)

)
− f

(
S
(
x(k∗ − 1)

))
S
(
x(k∗ − 1)

)
≤ −ηf

(
S
(
x(k∗ − 1)

))
S
(
v(k∗ − 1)

)
+

+ f
(
S
(
x(k∗ − 1)

))[
S
(
x(k∗)

)
− S

(
x(k∗ − 1)

)]
≤ −ηf

(
S
(
x(k∗ − 1)

))
S
(
v(k∗ − 1)

)
+ ηf

(
S
(
x(k∗ − 1)S

(
v(k∗ − 1)

)
= 0
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but V (k∗ − 1) ≤ S(v0) + ηf
(
S(x0)

)
S(x0) = V (0). Consequently, V (k∗) ≤ V (0) or

equivalently

0 ≤ S
(
v(k∗)

)
≤ S(v0) + f

(
S(x0)

)
S(x0)− f

(
S
(
x(k∗)

))
S
(
x(k∗)

)
choosing C ′ < C small enough so that S(v0) = C ′ − S(x0) and this implies

0 ≤ C ′ − f
(
S
(
x(k∗)

))
S
(
x(k∗)

)
which in turn implies that S

(
x(k∗)

)
is bounded.

Remark 6.1.5. If limx xf(x) = ∞ then we have asymptotic flocking without any

condition on the initial data just like the continuous time case.

The above simple proof provides a generalization of the discrete models known

in the literature [52, 88] in the sense that aij are not assumed to be either symmetric

or to have any particular expression. The above result can be generalized to the

case of simple and/or switching schemes, (i.e. Theorem 3.1.8). We understand that

the smallness condition on η is clearly technical, hence undesirable. This partially

explains our persistent preference to the continuous time setting throughout the

thesis.
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6.1.2 Nonlinear averaging

An interesting variation of (6.1) can come from the results obtained in Chapter 5.

In the algorithm to be studied here the speed coordination is achieved through

i ∈ [N ] :



ẋi = ui

u̇i =
∑

j∈Ni aij(t,x)
(
gij(uj)− gij(ui)

)
, t ≥ t0

xi(t0) = x0
i , ui(t0) = u0

i , given

(6.17)

This is a form of (5.5) with λ(t) ≡ t and it will satisfy the monotonic conditions

of §(5.2.2). For the sake of simplicity, here we will assume here full and static

connectivity. More specifically,

Assumption 6.1.6. The functions aij(t,y) ∈ C0([t0,∞) × RN , [0, a]) for some

a <∞ whenver i 6= j such that

aij(t,y) ≥ f
(
S(y)

)
for some integrable non-increasing f(·) with the property that limz→∞ f(z) = 0.

Assumption 6.1.7. For fixed W ⊂ R there exist numbers 0 < c ≤ c (possibly

depending on W ) such that

c ≤ gij(x)− gij(y)

x− y
≤ c, ∀x, y ∈ W.

For the purposes of this section κ := minh,h′∈[N ]

∑
j min{p(1)

hj , p
(2)
h′j}. Under

Assumption 6.1.7, Lemma 5.2.5 directly applies. So for any initial data, W =

[mini u
0
i ,maxi u

0
i ] is an appropriate compact set that characterizes c and c̄. We

recall Theorem 2.3.3 on which the vital contraction rates will be based.
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Theorem 6.1.8. Let the Assumptions 6.1.6 and 6.1.7 hold. The solution (x,u)

of (6.17) exhibits asymptotic flocking if the initial conditions satisfy:

S(u0) < Nc(u0)

∫ ∞
S(x0)

f(s) ds

for c(u0) in the sense of Assumption 6.1.7.

Proof. At first, the initial velocity u0 defines the constants c and c from Assumption

6.1.7 and Lemma 5.2.5. Next, it can be easily shown that throughout the solution

(x,u) ∑
j

bij(t)
(
uj(t)− ui(t)

)
≤ u̇i(t) ≤

∑
j

bij(t)
(
uj(t)− ui(t)

)
where:

1. bij(t) =


caij(t,x(t)), if uj(t) ≥ ui(t)

caij(t,x(t)), if uj(t) < ui(t)

2. bij(t) =


caij(t,x(t)), if uj(t) ≥ ui(t)

caij(t,x(t)), if uj(t) < ui(t)

for all i ∈ [N ]. Next we pick m > (N − 1 + c)a such that

P (t)u(t) ≤ e−mt
d

dt

(
emtu(t)

)
≤ P (t)u(t)

where P (t) = [pij(t)] with pij(t) = bij(t) and pii(t) =
(
m −

∑
j bij(t)

)
and similar

205



for P (t). We are interested in obtaining an upper bound for d
dt
S(u):

d

dt
S(u) =

d

dt

(
e−mtS

(
emtu

))
= −mS(u) + e−mt

d

dt
S(emtu)

≤ −mS(u) + S

(
e−mt

d

dt
(emtu)

)
≤ −mS(u) +

(
m− κ(t)

)
S(u) = −κ(t)S(u)

in view of Theorem 2.3.3. From the choice of m a direct calculation of κ(t) yields

the lower bound κ(t) > Ncf
(
S(x(t))

)
so that

d

dt
S
(
u(t)

)
≤ −Ncf

(
S(x(t))

)
S
(
u(t)

)
(6.18)

If supt≥t0 S
(
(t)
)
< S(x0) then from (6.18) we have

d

dt
S
(
u(t)

)
≤ −Ncf

(
S(x0)

)
S
(
u(t)

)
(6.19)

i.e. exponential fast speed alignment and therefore flocking. Otherwise, consider

the functional

W (x,u) = S(u) +Nc

∫ S(x)

0

f(s) ds

the time-derivative of which along the solution (x,u) yields d
dt
W ≤ 0 in view of

(6.18). Then from the imposed condition on the initial data there is r∗ such that

S(u0) = Nc

∫ r∗

S(x0)

f(s) ds (6.20)

and since W (t) ≤ W (t0) for t ≥ t0 we have

S
(
u(t)

)
+Nc

∫ S(x(t))

0

f(s) ds ≤ S(u0) +Nc

∫ S(x0)

0

f(s) ds
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and substituting from (6.20) we have that

0 ≤ S
(
u(t)

)
= Nc

(∫ r∗

S(x0)

f(s) ds+

∫ S(x0)

0

f(s) ds−
∫ S(x(t))

0

f(s) ds

)

from which it is deduced that
∫ r∗
S(x(t))

f(s) ds > 0 and this implies that S(x(t)) ≤ r∗

a valuable upper bound for the range of the flock so that again from (6.18)

d

dt
S
(
u(t)

)
≤ −Ncf(r∗)S

(
u(t)

)
and that exponential speed alignment implies

S(x(t)) ≤ S(x0) +
S(u0)

Ncf(r∗)
<∞,

concluding the proof.

6.2 Delayed Flocking

In this section we apply the results of Chapter 4 and especially the framework

developed in §4.4. For this we recall the notation used there. The delayed version of

(6.1) to be discussed in this section involves time-varying propagation delays only

i ∈ [N ] :



ẋi(t) = ui(t)

u̇i(t) =
∑

j∈Ni aij
(
x(t)

)(
uj(λij(t))− ui(t)

)
, t ≥ t0

xi(t0 − τ(t0)) = x0
i , ui(t) = φi(t), t ∈ It0

(6.21)

where x0 and u = φ are sufficient given initial data for the problem to be well-posed

as

x(t) = x0 +

∫ t

λ(t0)

u(s) ds, t ≥ λ(t0)
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The working hypothesis with this setup is that the bird i receives a delayed

version of the speed of its neighboring birds but not of the position. This is partially

because it is exactly this dynamic variable that it can suffer from delays. We will

shortly describe how similar results can be obtain if one imposes delays on the

position of the neighbors as well.

The analysis relies on the rate at which SIt(u) contracts. This is an estimate

already obtain in the proof of Theorem 4.4.6.

Theorem 6.2.1. Consider the solution (x,u) of (6.21). Assume TYPE II & Static

network connectivity over the network so that aij(·, ·) satisfy conditions (6.6), (6.7)

and (6.8). If τ = supt≥t0 maxi,j τij(t) <∞, then asymptotic flocking occurs accord-

ing to Def. 6.0.1, if for some B > 0, the initial data satisfy

SIt0 (φ) <
(1− e−mB)γ

mγ(2τ +B)
e−N̄aτ

∫ ∞
P 2τ+B

x0,φ

fγ(s) ds (6.22)

where P 2τ+B
x0,φ = max{S(x0), |S(x0)− SIt0 (φ)(2τ +B)|} and N̄ = maxi |Ni|.

Proof. The contraction estimate from Theorem 4.4.6 is

SIt(x) ≤
(

1− (1− e−mB)γ

mγ
fγ(S(x(t)))e−Naτ

)
SIt−γB−2τ

(x) (6.23)

At first we note that

d

dt
S
(
x(t)

)
≤ S

(
u(t)

)
≤ SIt(u) ≤ SIt′ (u)

for any t′ ≥ t in view of Lemma 4.4.4 that directly applies. We introduce the

functional

V (x,u) =

∫ t

t−2τ−B
SIs(u) ds+ C

∫ S(x)

0

fγ(s) ds. (6.24)
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for C = (1−e−mB)γ

mγ
e−N̄aτ . We then evaluate it along x(t),u(t) and take the time

derivative to obtain

d

dt
V (t) ≤ 0⇒ V (t) ≤ V (t0)

or equivalently∫ t

t−2τ−B
SIs(u) ds+ C

∫ S(x(t))

0

fγ(s) ds ≤

≤
∫ 2τ+B

0

SIs(u) ds+ C

∫ S(x(2τ+B))

0

fγ(s) ds

(6.25)

Assume the condition:

∫ 2τ+B

0

SIs(u) ds < C

∫ ∞
S(x(2τ+B))

fγ(s) ds (6.26)

Then we can pick r′ such that

∫ 2τ+B

0

SIs(u) ds = C

∫ r′

S(x(2τ+B))

fγ(s) ds (6.27)

Substituting (6.27) into (6.25) we get

∫ S(x(t))

0

f(s) ds ≤
∫ r′

S(x(2τ+B))

fγ(s) ds+

∫ S(x(2τ+B))

0

fγ(s) ds

so that if S(x(t)) ≥ S(x(2τ +B)) then necessarily S(x(t)) ≤ r′ which implies

sup
t
S(x(t)) <∞

throughout the solution and the exponentially fast alignment of the flock velocity is

achieved. It is only left to show that the imposed (6.22) implies (6.26).

On the one hand ,the left part of the inequality (6.26) is upper bounded by

SIt0 (φ)(2τ + B). On the other hand, unless S(x(t)) ≤ S(x0), the rate at which
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S(x(t)) may shrink can be deduced from the extreme scenario x0 = (x0, 0, . . . , 0)

with x0 < 0 so that S(x0) = x0 and φ(s) = (φ1(s), 0, . . . , 0), s ∈ [−τ, 0]. Neglecting

the averaging effect which will inevitably diminish |SIt(u)|, x0 < 0 implies that the

first agent will have approached or bypassed the rest of the group by −|x0|+ |u0|t.

Finally, at t = 2τ +B the spread of x(2τ +B) is lower bounded by

S(x(2τ +B)) ≥ max{S(x0), |S(x0)− |Wφ
t0 |(2τ +B)|}

and the proof is concluded.

A direct corollary occurs when fγ is not summable. Indeed, based on the

type of connectivity we imposed in Theorem 6.2.1, unconditional, delay-independent

asymptotic flocking in the sense of Definition 6.0.1 occurs if

∫ ∞
fγ(s) ds =∞.

6.3 Noisy Flocking

A standard application where a system of differential equations of Itô type occurs is

a stochastic perturbation of a deterministic nominal system. In this section we will

study two flocking models, both of which are simplifications of a general non-linear

system of stochastic differential equations. For the rest of the section we recall the

discussion in §2.6.

Consider the set [N ] of autonomous agents and fix t0 ∈ R, T ≥ t0. The two

vector valued stochastic processes

Xt = (X
(1)
t , . . . , X

(N)
t

)
, Ut =

(
U

(1)
t , . . . , U

(N)
t

)
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stand for the positions and the velocities of the members of the flock. In fact,

(Xt,Ut) are considered to be the solution of the system of Itô stochastic differential

equations

i ∈ [N ] :


dX

(i)
t = U

(i)
t dt

dU
(i)
t =

∑
j aij(t,Xt)

(
U

(j)
t − U

(i)
t

)
dt+ gij(t,Xt,Ut)dB

(ij)
t

(6.28)

for t ∈ [t0, T ], subject to initial data

i ∈ [N ] : X
(i)
t0 = X0

i , U
(i)
t0 = U0

i .

Equivalently, they are the solution of

dXt = Utdt

dUt = −L(t,Xt)Utdt+
N∑
i=1

Gi(t,Xt,Ut)dB
(i)
t

(6.29)

for t ∈ [t0, T ], subject to initial data

Xt0 = X0,Ut0 = U0.

Provided Xt,Ut are Ut-measurable and L(X, t)Ut ∈ L1
N(0, T ), G ∈ L2

N×N(0, T ) the

processes Xt,Ut satisfy
Xt = X0 +

∫ t
t0

Us ds

Ut = U0 −
∫ t
t0
L
(
s,Xs

)
Us ds+

∑N
i=1

∫ t
t0
Gi(s,Xs,Us)dB

(i)
s

a.s. (6.30)

Now

B(i)(·) =
(
B(i1)(·), B(i2)(·), . . . , B(iN)(·)

)
(6.31)

is an N -dimensional Brownian motion and X0,U0 are two N -dimensional random

variables independent of B(·). Since we analyze the asymptotic behavior of solutions,
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we are essentially interested in the collection
{

(Xt,Ut)
}
t≥t0

as solution of the above

system of SDE’s. We adapt Definition 6.0.1 in the present stochastic setting:

Definition 6.3.1. The system (6.28) exhibits asymptotic strong stochastic flocking

if and only if the position-velocity processes X
(i)
t , U

(i)
t , i ∈ [N ] satisfy the conditions

lim
t→∞

∣∣U (i)
t − U

(j)
t

∣∣ = 0, a.s. and sup
t≥t0

∣∣X(i)
t −X

(j)
t

∣∣ <∞, a.s.

Furthemore, (6.29) exhibits asymptotic strong stochastic flocking in the mean

square sense if the aforementioned processes converge accordingly. Our aim is to

prove convergence results for the following two simplified stochastic networks:

1. Time invariant flocking with state-independent multiple diffusions:

i ∈ [N ]


dX

(i)
t = U

(i)
t dt

dU
(i)
t =

∑
j aij

(
U

(j)
t − U

(i)
t

)
dt+ gij(t)dB

(j)
t

(6.32)

2. Time varying flocking model with state-dependent stochastic disturbance and

uniform time-varying diffusion coefficient:

i ∈ [N ] :


dX

(i)
t = U

(i)
t dt

dU
(i)
t =

∑
j aij(t)

(
U

(j)
t − U

(i)
t

)
dt+ g(t)

(
U

(j)
t − U

(i)
t

)
dB

(j)
t

(6.33)

6.3.1 LTI flocking with noise

We begin with the study of (6.32) subject to initial data X0,U0. In the absence of

noise, (6.32) reduces to (2.3).

Assumption 6.3.2. The associated graph GA of the matrix A = [aij], is routed-out

branching.
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We recall the discussion in §2.2. From Assumption 6.3.2 we there exists a

unique normalized left eigenvector of the Laplacian matrix with respect to the zero

eigenvalue, c ∈ RN . The solution of (2.3) with initial data U0 is e−LtU0 and it

satisfies

|e−Ltu0 − 1cTu0| ≤ Ke−<{λ}t

for some K > 0 that depends both on the norm |·|, the parameters aij and <{λ} > 0,

i.e. the second smallest real part of the eigenvalues of L.

Proposition 6.3.3. The solution
(
Xt,Ut

)
of (6.32) satisfies

Xt = X0 +

∫ t

t0

Us ds

Ut = e−L(t−t0)U0 +

∫ t

t0

e−L(t−s)G(s)dBs

for t ∈ [t0, T ].

Proof. The form of Xt is the definition of the process so we will only prove the

expression of Ut. Define the process

Vt := U0 +

∫ t

t0

eL(s−t0)G(s)dBs

the differential of which is dVt = eL(t−t0)G(t)dBt. We will use Itô’s product rule to

calculate the differential of e−L(t−t0)Vt which is identical to Ut:

d
(
e−L(t−t0)Vt

)
= G(t)dBt − Le−L(t−t0)Vtdt = −LUtdt+G(t)dBt

and the result follows.

We see that in this simple case, the solution Ut is expressed in closed form.

Asymptotic stochastic flocking is determined by the behavior of the local martingales∫ t
t0
gij(s)dB

j
s as t→∞.
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Theorem 6.3.4. Let Assumption 6.3.2 hold. If E[(U0)2],E[(X0)2] < ∞ and for

any i, j ∈ [N ], gij(·) satisfy

lim
t→∞

∫ t

t0

g2
ij(s) ds <∞ and

∫ ∞
t

g2
ij(s) ds ∈ L1

[t0,∞]

then asymptotic stochastic flocking occurs in the sense of Definition 6.3.1.

In particular, the agents align their speed around the U∞-measurable random

variable

k := cTU0 +
∑
i,j

∫ ∞
t0

cigij(s)dB
(j)
s .

and they exhibit asymptotic stochastic flocking in the almost sure and in the mean

square sense.

Proof. At first, we clarify that k is well-defined since
∫∞
t0
gij(s)dB

(j)
s is almost surely

finite exactly because the first imposed condition on gij yields almost sure finiteness

by the Martingale Convergene Theorem [33]. Next,

Ut − 1k =
(
e−L(t−t0) − 1cT

)
U0 +

∫ t

t0

(
e−L(t−s) − 1cT

)
G(s)dBs + 1cT

∫ ∞
t

G(s)dBs

From the Properties of Itô’s integral and the Cauchy-Schwarz inequality we

obtain the following bound:

E
[
||Ut − 1k||22

]
≤

≤ K2e−2<{λ}(t−t0)E[||U0||22]+

+ E
[(∫ t

t0

(
e−L(t−s) − 1cT

)
G(s)dBs

)2]
+ E

[(∫ ∞
t

1cTG(s)dBs

)2]
≤ K2e−2<{λ}(t−t0)E[||U0||22]+

+
∑
i,j

∫ t

t0

K2e−2<{λ}(t−s)g2
ij(s) ds+

∑
i,j

∫ ∞
t

c2
i g

2
ij(s) ds

(6.34)
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By assumption g2
ij(·) vanishes. Next, E

[
||Ut−1k||22

]
is bounded from above by three

terms, each of which converges to zero as t→∞: the first, after Assumption 6.3.2,

the third by the imposed condition on gij(s)’s and the second as a convolution of

an L1 function with a function that goes to zero.

Then the random variable Ut converges asymptotically to ∆ in the mean

square sense. To prove almost sure speed coordination we first see that from the

Chebyshev inequality for any, ε > 0

P
(
|U (i)

t − U
(j)
t | ≥ ε

)
≤ 1

ε2
E
[
|U (i)

t − U
(j)
t |2

]
≤ 1

ε2
E
[
||Ut − 1k||22

]
it is an easy exercise to show that all of the terms that bound E

[
||Ut − 1k||22

]
from above in (6.34) are integrable over [t0,∞) (the second term can be proved

by a simple change in the order of integration). Then because P
(
|U (i)

t − U
(j)
t |
)

is

summable, almost sure convergence to 1k ∈ ∆ follows (see Theorem 4(c) of §7.2 in

[32]).

Finally,

|X(i)
t −X

(j)
t | ≤ |X

(i)
t0 −X

(j)
t0 |+

∫ t

t0

|U (i)
s − U (j)

s | ds <∞ a.s.

and hence X
(i)
t − X

(j)
t is bounded in probability, therefore it is bounded in the

2nd-mean (see Theorem 4(b) of §7.2 in [32]).

It is noted that since gij are deterministic functions, k is a normally distributed

random variable with mean
∑

i ciE[U0
i ] and variance

∑
i,j c

2
i

∫∞
t0
g2
ij(s) ds.

The results of this section can be trivially generalized to the case of time-

varying connectivity weights aij(t). In this case the kernel Φ(t, t0) behaves similarly

in the case of Sec. 3.2, whatever the connectivity regime may be.
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6.3.2 LTV flocking with noise

Algebraic methods do not apply in general linear systems whereas stability in vari-

ation can effectively work in the case of state-independent noise as it was analyzed

above. When a version with state-dependent noisy compartments is considered, one

would not want to disregard its stabilizing contribution. Given (6.33) subject to the

initial data X0,U0 we will derive expressions based on the coefficient of ergodicity.

Assumption 6.3.5. The functions aij(·) introduced in (6.33) are continuous and

uniformly bounded functions of time.

Assumption 6.3.6. The adjacency matrix of Ag of the diffusion compartment,

corresponds to a complete graph.

The necessity of Assumption 6.3.6 stems from the fact that the white noise

dBt as an integrator obeys no rules of monotonicity with respect to its integrand.

For simplicity we introduce the notation S(U2
t ) = maxi,j(U

(i)
t − U

(j)
t )2

Proposition 6.3.7. Under Assumptions 6.3.5 and 6.3.6, the solution (Xt,Ut) of

(6.33) satisfies

d
(
S(U2

t )
)
≤ 2

(
g2N

2
− f(t)

)
S(U2

t )dt− g(t)S(U2
t )
∑
l

dB
(l)
t

where f(t) = mini,j
∑

l min{ail(t), ajl(t)}.

Proof. We fix t ≥ t0 and we will always consider the elements i = it, j = jt ∈ [N ]

that maximize U
(ij)
t :=

(
U

(i)
t −U

(j)
t

)
. Firstly, we need an expression of the differential

d
(
e2mt(U

(ij)
t )2

)
, For this we compute the differentials dU

(ij)
t and d

(
U

(ij)
t

)2
using Itô
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calculus:

dU
(ij)
t =

∑
l

(
ailU

(li)
t − ajlU (lj)

t

)
dt+ g(t)

∑
l

U (li)dB
(l)
t − g(t)

∑
l

U
(lj)
t dB

(l)
t =

=
∑
l

(
ailU

(li)
t − ajlU (lj)

t

)
dt− g(t)U (ij)

∑
l

dB
(l)
t

d
(
U

(ij)
t

)2
= 2U

(ij)
t

[∑
l

(
ailU

(li)
t − ajlU (lj)

t

)
+Ng2U

(ij)
t

]
dt− 2g

(
U

(ij)
t

)2
∑
l

dB
(l)
t

Eventually,

d
(
e2mt(U

(ij)
t )2

)
=

= 2me2mt(U
(ij)
t )2dt+ e2mtd

(
U

(ij)
t

)2

= 2e2mtU
(ij)
t

[(
m+

Ng2

2

)
U

(ij)
t +

∑
l

(
ailU

(li)
t − ajlU (lj)

t

)]
dt−

− 2ge2mt
(
U

(ij)
t

)2
∑
l

dB
(l)
t

= 2e2mtU
(ij)
t

∑
l

(
ail − ajl

)
U l
tdt− 2ge2mt

(
U

(ij)
t

)2
∑
l

dB
(l)
t

where aii = m + Ng2

2
−
∑

l ail which is positive for m large enough. At this point

we shall focus on
∑

l(ail − ajl)U
(l)
t for which we notice that aij > 0 and Q =∑

l(ail − ajl) = 0 for all i, j ∈ [N ]. Then, if we let wl := ail − ajl, we note that

θ =
∑
l:wl>0

wl = −
∑
l:wl<0

wl
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so

Q =
∑
l:wl>0

wlU
(l)
t +

∑
l:wl<0

wlU
(l)
t

=
∑
l:wl>0

wlU
(l)
t −

∑
l:wl<0

|wl|U (l)
t

= θ

(∑
l:wl>0wlU

(l)
t

θ
−
∑

l:wl<0 |wl|U
(l)
t

θ

)
≤ θ
(

max
l
U

(l)
t −min

l
U

(l)
t

)
= θU

(ij)
t

then since θ ≤ 1
2

maxi,j
∑

l |ail−ajl| = m+g2(t)N
2
−mini,j

∑
l min{ail, ajl} we obtain

the bound for f(t) = mini,j
∑

l min{ail(t), ajl(t)}

d
(
e2mt(U

(ij)
t )2

)
≤ 2e2mt

(
m+

Ng2(t)

2
− f(t)

)(
U

(ij)
t

)2
dt− 2g(t)e2mt

(
U

(ij)
t

)2
∑
l

dB
(l)
t

and finally

d(U
(ij)
t )2 = d

(
e−2mte2mt(U

(ij)
t )2

)
= e−2mtd

(
e2mt(U

(ij)
t )2

)
− 2m(U

(ij)
t )2dt

≤
(
Ng2(t)− 2f(t)

)(
U

(ij)
t

)2
dt− 2g(t)

(
U

(ij)
t

)2
∑
l

dB
(l)
t

as i, j are chosen to be the maximizers of
(
U

(i)
t − U

(j)
t

)2
the proof is concluded.

Now we are ready to prove the flocking result :

Theorem 6.3.8. Under Assumptions 6.3.5 and 6.3.6, asymptotic stochastic flocking

for the system (6.33) occurs if

e
∫ t
t0
Ng2(s)−2f(s) ds ∈ L1

[t0,∞).
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Proof. From Proposition 6.3.7 the solution (Xt,Ut) satisfies [31]

S(U2
t ) ≤ e

∫ t
t0

(
N
2
g2(s)−2f(s)

)
ds+

∑
l

∫ t
t0
g(s)dB

(l)
t S(U2

t0
), a.s.

so that the second moment is calculated from the properties of the martingales∫ t
t0
g(s)dBs as :

E
[
S(U2

t )] ≤ e
∫ t
t0
Ng2(s)−2f(s) dsE

[
S(U2

t0
)]

and the rest of the proof is identical to this of Theorem 6.3.4.

We note here that if g2 ∈ L1
[t0,∞) then the non-summability of f suffices to

prove consensus and in addition e
∫ t f(s) ds ∈ L1

[t0,∞) suffices to prove flocking. Other

wise,
∫∞
t0
g2(s) ds =∞ implies that |

∫ t
t0
g(s)dBs| behaves asymptotically as√

2

∫ t

t0

g2(s) ds log log

∫ t

t0

g2(s) ds, a.s.

by the iterated logarithm for martingales [32, 33]. With this in mind it is possible

that the assumption of the integrability of g2 can be relaxed.

The two results above are improvements of [93, 90] as we allow weights to be

non-symmetric and the diffusion coefficient to be time-varying. In the particular

case of time independent weights we also allow minimal connectivity as well as we

are able to identify the consensus point of the velocities. Furthermore, one is free

to assume non-linear state-dependent connections on condition that they are lower-

bounded away from zero. Initial conditions as for example (6.9) that automatically

imply a bounded distance among agents as in the deterministic case do, are yet to

be established.
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6.4 Supplementary Remarks

This chapter provides non-linear flocking convergence results based on the derived

rate estimates of Chapters 3, 4 and 5.

For the ordinary models we provide two types of results: The first type con-

cerns a model with convex and linear averaging and the other type a nonlinear

monotonic averaging. For the former model we state sufficient conditions for flock-

ing under simple and/or switching connectivity regime. The non-linear averaging,

on the other hand, assumes increased connectivity but it can be extended to simple

connectivity along the lines discussed in §5.4. The delayed case involves arbitrary

time-varying propagation delays in the sense of the general theory for linear delayed

networks in §4.4.

All these results involve the use of Lyapunov functionals that combine the

time evolution of S(u) and S(x). Asymptotic flocking occurs if the corresponding

metrics of the solutions satisfy particular inequality conditions. Based on the growth

of solution (or special extreme scenarios) provide sufficient relations on the initial

configuration which imply the solutions conditions, i.e. asymptotic flocking.

The case of noisy stochastic flocking is different. New results were provided for

time invariant and time varying (state-independent) asymmetric couplings. The for-

mer is based on elementary algebraic analysis and its main interest revolves around

the consensus point that becomes a random variable with certain distribution. The

latter is derived with yet another variation of the proof of the contraction coeffi-

cient. Due to purely technical reasons, the coupling weights aij(t) were considered
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as state-independent. The main drawback in the noisy flocking dynamics is that

we could not drop the uniform lower bound condition, just like the former works

[90, 93] could not either. We conjecture that stochastic flocking in the sense of the

deterministic models, can only be provided with some probability on the event that

some sufficient initial conditions are satisfied.
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Chapter 7: An Application In Power Networks

Modern Energy Supply is typically a structure of interconnected power generation

plants that independently produce power to serve a load over a common distribution

network [98, 99, 16]. Since every power unit produces energy at some cost (see § 7.2),

a fundamental power optimization problem, is the determination of the optimal

combination of outputs of all generating units to minimize the total cost while

satisfying the load demand and operational constraints. This is the very well-known

Economic Dispatch Problem (EDP).

Over the past years, many optimization methods for the EDP have been pro-

posed in the literature. The conventional ones include the lambda iteration al-

gorithm, or gradient-based search methods [98, 16] ,whereas modern heuristic op-

timization techniques are based on operational research and artificial intelligence

concepts such as evolutionary algorithms [100, 101, 102, 103, 104, 105], simulated

annealing [106, 107] artificial neural networks [108, 109, 110], taboo search [111, 112]

and particle swarm optimization techniques [113, 114, 115, 116].

Although the performance and applicability of economic dispatch has been

improved by these optimization techniques, it is still essential to maintain a single

control center that can access the state of the entire system. Indeed, all the afore-
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mentioned algorithms actually require operations at a central computing station

that needs to have a priori knowledge of the entire network parameters. This cen-

trally controlled framework may cause some performance limitations in the future

power grid.

Since 1990, many electric utilities including both government- and private-

owned electric utilities were liberated. This has had profound effects on the opera-

tion of electric systems where implemented, most of which is the economic value to

the network operator. The EDP is a relevant procedure in the operation of a power

system. The deregulation of the electric utilities has, therefore, led to research on a

decentralized model of control where utilities, transmission system operators (TSO)

and independent power producers (IPP) cooperate and compete using market and

other mechanisms [16].

Smart-Grid architecture The next generation of power systems is expected to sat-

isfy high standards of efficiency, resilience and reliability against cyber-attacks or

natural disasters, improved integration of renewable energy resources and plug-in

hybrid electrical vehicles. Such electrical grids, known as Smart-Grid, are designed

to monitor, predict and intelligently respond to the behavior of all electric power

suppliers and consumers connected to it in order to deliver such standards [117, 118].

Figure 7 is an abstract illustration of a Smart-Grid architecture. A necessary

requirement towards this is the development of advanced control and communica-

tion technology both in the physical and the algorithmic layer. In a smart grid

environment, the communication and measurement requires a multiagent systems
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(MAS) technology [118]. MAS are a computational system in which several agents

cooperate to achieve a desired task. The performance of a MAS can be decided by

the interactions among various agents. Agents cooperate to achieve more than if

they act individually. Increasingly, MAS are the preferential choice for developing

distributed systems such as the Smart-Grid [118]. The development of monitor-

ing and measurement in Smart Grid with the use of MAS technology involves a

combination of several agents working without human intervention, in collaboration

pursuing assigned tasks to achieve the overall goal of the system. The distributed

Figure 7.1: A Smart-Grid electric network with multiple communication and control

sensors.

solution of the EDP for power systems has been recently introduced in the literature

generators [119, 120, 121, 122]. We are particularly interested in [120, 121, 122] that

bear the greatest resemblance with the present work. Zhang et al. propose the use

of averaging consensus schemes for solving the EDP problem in an identical scenario
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of power sources, loads and sensors with and without the presence of communication

delays.

Contribution The successful and reliable implementation of complex electrical net-

works such as the Smart-Grids, require advanced measurement and control methods

that operate in a distributed way. Recent advances in consensus systems [8, 11, 14]

provide results that could be effectively applied to solve the fundamental EDP of

an electric network in such a manner. The present work introduces and studies by

theory and simulation a distributed solution of the EDP using a variation of lambda

iteration [16], under the presence of arbitrary signal propagation delays.

We consider a scenario of several power generators and loads connected to

a common transmission network (see Figure 7.2). This is a grid enhanced with

autonomous sensors, each of which controls at most one power generator and one

power load. The sensors are connected to a common communication network and

share certain information. The central characteristic of the communications is that

they suffer from multiple time-varying delays. The network topology among the

sensor is assumed time varying and complete, that is every agent communicates

with each other even via arbitrary delayed signals. The objective is the solution of

the EDP under the power generation constraints that each unit must meet and the

delayed communication regime between the sensors. In particular every sensor will

be designed to receive, process and transmit back information and will act both as

a follower and as a leader in multiple computational levels so that the EDP is to be

solved in a decentralized manner. The theoretical results will be supported with an
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illustrative example.

Our work differs on a number of points. At first, their model is primarily dis-

crete and follows simplified average consensus schemes introduced in the early work

of [45] both in ordinary and delay form. These systems are too symmetric, hence un-

realistic, both in the communication rate and the imposed delays. In particular, the

delayed case is treated in too much uniformity: each sensor receives the information

from its neighbors under the same delay while it averages all the information with a

delayed version of its own information. The working hypothesis is that the system

dynamics evolve under both propagation and processing constant delays of identical

magnitudes; a fairly unrealistic scenario. Moreover, the proposed algorithms solve

the distributed EDP only in part. A leader sensor needs to be chosen so as to control

the overall power mismatch and dynamically adjust the incremental cost value.

We propose a decentralized version of the lambda iteration algorithm. Each

sensor controls a part of the electric grid, sends and receives information and executes

multiple and simultaneous dynamic consensus iterations. This way it learns all the

information needed to concur with the optimal operation point values that solve

the EDP. Our scenario takes into account the presence and the effect of multiple

delays, different for every iteration algorithm. Every sensor serves both as a leader

and a follower in the network and in its utmost generality it needs to know the

static parameters of the network, i.e. the connectivity weights and the delays each

sensor operates under. However this is a knowledge on the communication level,

no information on the transmission network is needed as the sensors, through the

consensus scheme, learn the information (loads and generator powers) dynamically.
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The rate at which the agents learn depends on the communication parameters and

of course it plays a vital role in the stability of the system.

7.1 Delayed Consensus Re-stated

For the present section we will need the results of § 4.4 and particularly Theorems

4.4.6 and 4.4.7, the results of which, together with the model, we restate here for

quick reference.

A set of N autonomous agents each of which possess a value of interest,

say xi for i = 1, . . . , N , that shares and updates it dynamically so that x(t) =(
x1(t), . . . , xN(t)

)
satisfies

ẋi(t) =
∑

j 6=i aij(t)
(
xj(t− τij(t))− xi(t)

)
xi(t) = φi(t), t ∈ It0

(7.1)

where It0 = [t0 − τ(t0), t0]. The set WIt0 ,φ
is

[min
i

min
s∈It0

φi(s)−min
i

max
s∈It0

φi(s)]

and its length is denoted by SIt0 (φ). For the communication network we assume

that it is fully connected and static but with time varying weights, i.e. ∀i 6= j,

aij(t)⇒ aij(t) ∈ [α, ᾱ]. Then for every B > 0 and t ≥ t0,

∫ t

t−B
A(s) ds

has every non-diagonal strictly positive and the matrix

P (t) = e−mBIN×N +

∫ t

t−B
e−m(t−s)(mIN×N −D(s) + A(s)) ds
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is stochastic such that

κ = inf
t≥t0

min
i,j

∑
l

min{pil(t), pjl(t)} > N min
{
e−mB,

1− e−mB

m
α
}
∈ (0, 1).

If

1. supt≥0 maxi,j τij(t) = τ <∞,

2. for every B > 0 and all t ≥ t0, the matrix
∫ t+B
t

A(s)ds has every non-diagonal

element strictly positive,

then Theorem 4.4.6 implies that ∃k ∈ WIt0 ,φ
such that

max
i
|xi(t)− k| ≤

SIt0 (φ)

1− κe−(N−1)ᾱτ
e−θ(t−t0)

where θ = − ln(1−κe−(N−1)āτ )
B+2τ

> 0.

A leader in a consensus network, is an agent that affects the rest of the group,

but it cannot be affected by it. In the presence of a leader, say agent 0 with state

z0 to satisfy a generic differential equation ż0(t) = g
(
t, z0(t)

)
modeling possibly

internal dynamics under the hypothesis

|z0(t)− z̄| ≤ Ze−ζ(t−t0) (7.2)

for some constants Z, ζ > 0.

The “leader-follower” system can be written as

ż0(t) = g
(
t, z0(t)

)
żi(t) =

∑
j 6=0 aij

(
zj(t− τij(t))− zi(t)

)
+ ai0

(
z0(t− τi0(t))− zi(t)

)
, t ≥ t0

xi(t) = φ(t), t ∈ It0
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where i = 1, . . . , N . Then

|zi(t)− z̄| ≤ K1e
−θ(t−t0) +K2

e−ζ(t−t0) − e−θ(t−t0)

ζ − θ

where

K1 =
SIt0 (φ)

1− κe−(N−1)ᾱτ
, K2 =

2Zᾱeζτ(
1− κe−(N−1)ᾱτ

) .
as Theorem 4.4.7 enforces.

Remark 7.1.1. The aforementioned results hold for simple (recurrent) connectivity

regimes, as well. In this case the rate estimates change for the worse and they are

beyond the scopes of our work.

The presence of a leader does not alternate the qualitative behavior of the

system other than the consensus point. This is the limit point of the leader. It

is important to understand that the network eventually synchronizes to a constant

value only when the leader converges to this value. Otherwise the followers, although

never stop following the leader, they will not synchronize with it.

7.2 The Elementary EDP

A system of N power generating units, connected to a single bus bar serves a received

electrical load Pload (Figure, 7.2). The input to each unit, shown as Fi represents the

cost rate of the unit. The output of each unit Pi is the electrical power generated

by that particular unit. The total cost rate of this system is the sum of the costs

of each of the individual units. The essential constraint on the operation of this
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system is that the sum of the output powers must equal the load demand.

FT = F1 + F2 + · · ·+ FN

FT =
N∑
i=1

Fi(Pi)

φ = 0 = Pload −
N∑
i=1

Pi

This is a constrained optimization problem that may be attacked formally using

advanced calculus methods that involve the Lagrange function:

L = FT + λφ (7.3)

The necessary conditions for an extreme value of the objective function result when

we take the first derivative of L with respect to each independent variables and set

the derivatives equal to 0:

∂L
∂Pi

=
dFi(Pi)

dPi
− λ = 0 (7.4)

Following [16] we will assume that the cost functions Fi(Pi) are smooth and quadratic:

Fi(Pi) =
1

2
χiP

2
i + ψiPi + ωi (7.5)

for some strictly positive parameters χi, ψi, ωi assumed to be known.

Together with (7.4) we must add the constraint that the sum of the power

outputs must be equal to the power demanded by the load. All in all, we have

the following systems of equations that it is necessary be satisfied in the optimal

operation point:

i = 1, . . . , N :


dFi(Pi)
Pi

= λ

∑
i Pi = Pload

(7.6)
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1
F1 P1

2
F2 P2

....

N
FN PN

Pload

Figure 7.2: N units committed to serve Pload. The schematics follow [16]. The

rectangular symbolize the boiler fuel input that determines the fuel cost function.

The triangle sumbolizes the steam turbine and the circle is the power generator.

In the distributed case, a sensor-controller is attached to a part of the network to

supervise one power generatore and one load (part of Pload)) as well as to execute

an optimization problem.
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We characterize this problem as elementary because important parameters

were ignored. In the discussion session we will explain interesting and more realistic

generalizations within the theoretical context which is to be developed in the section

to follow.

7.3 Distributed Solution of the Loss-less EDP

Assume that at each thermal unit we have a controller that has full access to the

parameters of its area of duty (load and generator) but it has limited information

for the parameters of the other areas. The latter information is propagated through

the communication network and it suffers from delays. In particular each controller

i has

1. Instant information of the load in its section P
(i)
load and transmission of it over

the network. Here the ith controller will be a leader of a consensus algorithm

responsible to communicate this information to the rest of the controllers. We

will adopt the notation p
(i)
(load,j) the state of the follower j 6= i on this algorithm.

All in all, the vector

p
(i)
load =

(
. . . , p

(i)
(load,i−1), p

(i)
(load,i+1), . . .

)
symbolizes the states the sensor-followers, each of which seeks to learn the

load the ith controller transmits. These are all dynamic variables that follow

a leader-follower consensus model. All in all we have N such models with

possible different communication weights and delays of the type of (7.1) each
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of which has a leader i with z0 ≡ P
(i)
load. We will assume that all, but the

leader’s, initial functions are set to zero. The vital characteristics of such a

model are the lower and upper bounds of the communication weights and the

maximum imposed delay. These are denoted as αi, ᾱi, τ̄i. The convergence of

this model is guaranteed under a simple connectivity assumption as Remark

7.1.1 suggests. The vital parameters for th

2. Instant information on the power the ith generator produces, denoted by P
(i)
gen.

This will be dynamically updated and transmitted over the network satisfying

the equation

P (i)
gen(t) =

λi(t)− ψi
χi

. (7.7)

Here, the ith controller communicates over the network the state P
(i)
gen(t) with

some delay.

3. Delayed received information of the signal P
(j)
gen from all over the network.

The ith controller serves as a receiver of the generated power of the rest of the

controllers with some delay.

7.3.1 The incremental cost algorithm

Each sensor chooses to update its state λi by averaging it with the rest of the sensors,

as follows:

λ̇i(t) =
∑
j

wij
(
λj(t− τij(t))− λi(t)

)
+ wbi

(
P c
load,i(t)− P c

gen,i(t)
)

(7.8)
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were wbi is a coupling positive control constant, P c
load,i(t) is the cumulative informa-

tion of the load on the network, sensor i has at time t and P c
gen,i(t) is the cumulative

information on the produced generator, sensor i has at time t. Using the notation

above we deduce that

P c
load,i(t) = P

(i)
load + 1

Tp
(i)
load(t) (7.9)

P c
gen,i(t) = P (i)

gen(t) +
∑
j 6=i

P (i)
gen(t− τij(t)) (7.10)

7.3.2 Analysis

The target of the sensors on a consensus value is λi(t) ≡ λ∞. From (7.5) we have

the fixed point of Pgen,i

P∞gen,i =
λ∞ − ψi

ωi
.

Then the optimal operation point is

P∞gen =
N∑
l=1

P∞gen,l = Pload = λ∞

N∑
l=1

1

χl
−

N∑
l=1

ψl
χl

(7.11)

Then limit consensus point, the sensors try to reach is:

λ∞ =
Pload +

∑N
l=1

ψl
χl∑N

l=1
1
χl

(7.12)

λ̇i(t) =
∑
j∈Ni

wij
(
λj(t− τij(t)

)
− λi(t)) + wbi

(
Pload − P c

gen,i(t)
)
+

+ wbi
(
P c
load,i(t)− Pload

)
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Now,

P c
load,i(t)− P c

gen,i(t) =
λ∞ − λi(t)

χi
+
∑
j 6=i

(
P∞gen,j − P (i)

gen(t− τij(t))
)

=
λ∞ − λi(t)

χi
+
∑
j 6=i

λ∞ − λj(t− τij(t))
χj

=

(∑
j

1

χj

)(
λ∞ − λi(t)

)
+
∑
j

1

χj
(λi(t)− λj(t− τij(t)))

=

(∑
j

1

χj

)(
λ∞ − λi(t)

)
+
∑
j

1

χj

(
λi(t)− λj(t− τij(t))

)
so the consensus algorithm is written as

λ̇i(t) =
∑
j

(
wij −

wbi
χj

)(
λj(t− τij(t))− λi(t)

)
+

+

(∑
j

wbi
χj

)(
λ∞ − λi(t)

)
+ gi(t)

(7.13)

where

gi(t) = wbi
(
P c
load,i(t)− Pload

)
. (7.14)

Equation (7.13) is a perturbed consensus system with a virtual leader of constant

value λ∞. The weights of the new network A = [aij]i,j∈{0,N}

aij(t) =



aii = 0, i = j

0, i = 0

∑N
j=1

wbi (t)

χj
, j = 0

wij(t)− wbi (t)

χj
, i 6= 0, j 6= 0

(7.15)

Then using Theorem 3.2.4 we deduce that λ(t) converges to the optimal economic

point if there is an c > 0 such that

inf
t≥t0

(
wij(t)−

wbi
χj

)
≥ c > 0 ∀i 6= j (7.16)
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the convergence of the algorithm occurs exponentially fast and the spread of the

vector λ, supt≥0(mini λi(t)−maxi λi(t)), is upper bounded by the constants K1 and

K2 as they were defined in § 7.1 as explicit functions of the systems’ parameters

and Z is the constant determined accordingly as it is the consensus system under

which each sensor communicates (learns) the load of the network acting as a leader

(follower). Consequently,

|Z| ≤
N−1∑
i=1

P
(i)
load

1− ρ̄ie−(N−1)ᾱiτ̄i
(7.17)

as it was explained in the beginning of this section.

7.4 A Simulation Example

We will outline the previous analysis with an illustrative example taken from [16]

(page 65). Here a network of N = 3 units generates power to serve a cumulative

load of

Pload = 850 MW

Each sensor is set to control part of this load and one generator as follows

1. Sensor 1: 200 MW of load and generates P
(1)
gen. The fuel cost function is

F1(P (1)
gen) = 561 + 7.92P (1)

gen + 0.001562(P (1)
gen)2

2. Sensor 2: 300 MW of load and generates P
(2)
gen. The fuel cost function is

F2(P (2)
gen) = 310 + 7.85P (2)

gen + 0.00194(P (2)
gen)2
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3. Sensor 3: 350 MW of load and generates P
(3)
gen. The fuel cost function is

F3(P (3)
gen) = 78 + 7.97P (3)

gen + 0.00482(P (3)
gen)2

The units of Fi are in $/hr. Using (7.4) and the condition
∑3

i=1 P
(i)
gen = 850 we

derive the economic (consensus) point

λ∞ = 9.148$/MWhr.

For the distributed solution of the above EDP we set t0 = 0 and we consider the

primary time-varying communication network

A =


0 0.5 0.7+t2

t2+1

1 + cos2(1 + t2) 0 6(1 + e−t)

0.9 0.7+t
0.5+t

0


and the delays

T =
[
τij(t)

]
=


0 1 1

0.23 0 0.23

0.8 cos(16πt) 0.8 cos(16πt) 0


The secondary network involves the dynamic process of P

(i)
load from p

(i)
load. In partic-

ular:

Sensors 1, 2 learn P 3
load with the state vector (p

(3)
load,1, p

(3)
load,2) under the network

d
dt
p

(3)
load,1(t) = 1.2 sin2(t)

(
P

(3)
load − p

(3)
load,1(t)

)
d
dt
p

(3)
load,2(t) = 0.02

(
p

(3)
load,1(t− 0.5)− p(3)

load,2(t)
)
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Sensors 1, 3 learn P 2
load with the state vector (p

(2)
load,1, p

(2)
load,3) under the network

d
dt
p

(2)
load,1(t) = 0.8 sin2(2πt)

(
p

(2)
load,3(t− 0.23)− p(2)

load,1(t)
)

d
dt
p

(2)
load,3(t) = 0.6 sin2(3πt)

(
P

(2)
load − p

(2)
load,3(t)

)
Sensors 2, 3 learn P 1

load with the state vector (p
(1)
load,2, p

(1)
load,3) under the network

d
dt
p

(1)
load,2(t) = 0.3

(
p

(2)
load,3(t− 0.5)− p(1)

load,2(t)
)

d
dt
p

(1)
load,3(t) = 1.7

(
P

(1)
load − p

(1)
load,3(t)

)
Finally, the balance vector (

wb1, w
b
2, w

b
3

)T
is set to a common control constant wbi ≡ w. It is easy to see that the primary

consensus system corresponds to a fully connected communication graph and the

secondary consensus systems correspond to a simple connected graph. Also, all the

delays are bounded. Then the results of § 7.1 together Remark 7.1.1 apply and

the aforementioned analysis holds with numerically calculated parameters ζ < 0.02,

Z ≤ 855, α = 0.35, ᾱ = 6 and the largest delay is τ = 1 and it is only a simple

calculation to K1 and K2. The most important criterion however is (7.16). This

imposes the smallness condition

w < w∗ = 0.00194

Simulations are provided in Figure 7.3 for control values below and beyond w∗. We

observe that whenever w is above this critical value the algorithm slows down or

does not converge.
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Figure 7.3: Simulations run in MATLAB with the ddesd routine. The distributed

incremental cost solutions λi(t) appears to converge very fast for small w. (b) As w

increases beyond w∗ we still see oscillatory and slower convergence. (c) For w large

the algorithm does not converge and for even larger values it diverges.
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Chapter 8: Discussion- Future Research

The present thesis investigates distributed consensus schemes and develops a unified

framework for the study of the stability of their solutions. The discussion spans from

discrete and continuous schemes, linear and nonlinear facets, static and switching

connectivity regimes drive by signals of deterministic or stochastic nature. The

analysis is primarily focused on the stability of solution with respect to the consensus

space. In this concluding part we will discuss the main results chapter by chapter

from the point of view of posing new questions for future research.

Chapter 3 The purpose of this chapter is to pose a unified perspective on the

old problem of linear consensus. We studied the deterministic and the stochastic

variations separately. For the first case the objective was to derive the strongest

convergence results possible, under the mildest assumptions. This requires clear es-

timates on the rate of convergence taking into account scenarios of switching/failing

signals and essentially asymmetric couplings. The most important novelty is the

adaptation of the contraction coefficient to the continuous time framework.

The utilization of the contraction coefficient for the study of consensus dynamic

yields simple and concise convergence results without strong assumptions on the

coupling weights or the connectivity regime for both the ordinary and the delays
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case. The rate estimates depend on the coupling weights, the switching signal, the

parameter B > 0 and the magnitude of the delays. On the positive side, we have a

rigorous theory that provides a deep insight in the behavior of these very important

family of systems. The framework is flexible enough to be effectively applied to

other consensus systems. On the negative side, the rate estimates are very weak, as

the simulations clearly suggest.

The following questions occur only naturally: How one should choose the

values of m > 0 or B > 0 (the role of which has been clarified in §3.4) and,

eventually, for what type of weights and connections can these rates be improved.

Certain types of topological graphs known as expander graphs achieve high efficiency

when executing the consensus algorithm with sparse connectivity [123]. The main

feature is that whereas N increases, the second smallest eigenvalue λ2 does not

decrease. What is (if there exists one) the connection between these communication

graphs and the contraction coefficient?

In the stochastic framework we demonstrated that the mildest sufficient con-

nectivity conditions, the recurrent connectivity is essentially reproduced. Although

there are counter-examples that show that for milder connectivity, consensus may

not be achieved [65], there is no definitive result on the “bifurcation” connectivity

regimes between which consensus is always achieved and consensus is not achieved.

Necessary conditions, some of them also appear here involve the strenght of the com-

munication rates and not their appearance/disappearance throughout the evolution

of the system dynamics.
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Chapter 4 Delays play a very important role in the existence, uniqueness and stabil-

ity of the solutions of functional differential equations. The objective of the chapter

is to develop a rigorous framework for the study of the stability of linear systems

with asymptotically constant solutions both in the scalar and the multi-dimensional

case. The emphasis is, yet again, concentrated on explicit estimates on the rate of

convergence. Each subject has an interest of its own. While consensus networks lie

in the heart of distributed control dynamics, the scalar dynamics resurrect an old

discussion, started nearly 30 years ago, and concerned problems on simple biological

processes. Our approach extends and unifies the majority of the mentioned results

under a framework that is partitioned between a fixed point theory approach for

the systems with time-invariant parameters and a Lyapunov-Razumikhin approach.

The latter measures the contraction rate of sets constructed out of segments of the

solution for the systems with time-varying parameters.

The conclusion for the scalar case revolves around the sign of the weight pa-

rameters. Following the notation of the chapter, whenever the weights are positive,

the systems exhibit a co-operative behavior that yields convergence to a constant

value regardless of the magnitude of the delay. The magnitude has effect only on the

rate of the asymptotic convergence. The larger the delay is, the slower the rate esti-

mate. Whenever the sign is negative, the system exhibits competitive behavior and

instability occurs for large delays. The scalar equation with constant parameters

incorporates both types of coupling weights and fully illustrates this phenomenon.

In the general linear case however, the analysis becomes more complex. Coupling

rates of processing delays were systematically neglected and we merely commented
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on ways of solving the problem in the general case.

An important distinction is this between the time-varying and time-invariant

case for a number of reasons. Regardless the dimension of the problem, time-

invariant parameters are not only easier to handle, but they also provide additional

information such as the closed form of the consensus point. The simplicity of these

dynamics allowed us to consider multiple processing delays as well, a feature not

present in the general model.

A central open question is whether fixed point and Lyapunov-Razumikhin

methodologies could be combined to enhance the rate estimates in the presence

of both propagation and processing delays. Indeed, several different approaches

may be implemented. All of them follow the spirit of variational approximation of

systems and each option is to be chosen on the base of the particular perspective

the researcher wants to impose. For example, in the LTI network, Eq. (4.30) is

an approximation of the system without the processing delay σ. Then the analysis

can hold only for sufficiently small values of σ. The variation of parameters method

could possibly be used more efficiently. Based on the stability

ẏ = −ay(t− σ)

for certain values of a and σ, we can express the solution of

ẋi = −
∑
j

aijxi(t− σ) + aijxj(t− τ)

as a variation of the y. The price to pay is that this approach may weaken even

more the stability bounds for τ . Eventually, it is only a matter of choice and taste
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on behalf of the researcher. He is the one who will determine the corresponding

necessary assumptions.

Chapter 5 The research in the non-linear alternatives reveals a number of inter-

esting topics for discussion. While passivity or monotonicity properties clearly

resemble the linear dynamics so that the same machinery can be used, the case

of non-monotonicity signifies the need for developing more efficient mathematical

tools. The contraction coefficient is clearly unsuitable to deal with this case. As

it is remarked in [18] competitive dynamics exhibit much richer behavior. A very

interesting problem would be to study the effect of non-linear (i.e. state-dependent)

delays in competitive systems. We recall from Chapter 4 that for a competitive

scalar equation a large delay induces instability. A state-dependent delay would

then establish an interplay between stability and instability creating a much more

interesting behavior such as this of periodic or chaotic solutions. The case can then

be elevated to the multidimensional consensus based networks that will not converge

to an agreement value but possibly to new chaotic invariant sets.

Finally, the dynamics of neutral consensus systems were introduced and stud-

ied on a primary and epidermal level. The motivation of this model occurred from

the observation that the dynamics of a living organism or a modern computing

machine should evolve in time as a function of the current or previous state only,

may be an over-simplistic hypothesis. In real world problems the rate of change of

a state also depends on the rate of change of the same state at a previous time.

In Nature, for example, the acceleration of a flying bird at a particular moment
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cannot but be also a function of its acceleration at a previous time. These sorts

of correlations are consistently ignored when designing mathematical models, ex-

actly because their analysis is particularly difficult. In this end of this chapter we

introduced and developed a framework on such distributed systems of autonomous

agents that execute a simple consensus algorithm with a supplementary non-linear

neutral term. A next step is to further clarify the form of the term under more real-

istic scenarios and exploit these assumptions to establish clearer results on the long

term behavior of the systems in question and to investigate the potential physical

meaning of its solutions. For example, if we really want to model the neutral term

as a term of dynamic weakening of the stamina of the agent, then the function must

clearly satisfy a monotonic condition, the effect of which is obviously crucial for the

stability of the solutions and should be taken into account in the rigorous analysis.

Consensus couplings are a special case of synchronization networks [124]. A

natural question is if we can extend the analysis for this type of systems. Do, for

instance, networks of coupled chaotic oscillators accept the methodologies developed

in the thesis? If yes, to what extent? Can stability in variation provide an, alterna-

tive to the standard Lyapunov methods, approach for the study for these systems,

as well? Would the method of combining the solution lead to any efficient, or at

least meaningful, convergence conditions?

Chapter 6 In the case of nonlinear flocking networks we have a much clearer view

for future research. A first generalization is to consider processing delays as well.

This is not an easy problem as the general approach developed in Chapter 4 does not
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apply any more. In addition, sharpening the noisy flocking results along the lines

explained at the end of Chapter 6 is a feasible extension of the results derived so

far. Furthermore, the development of flocking algorithms with collision avoidance

along the lines of [91] is an interesting future research topic. Also, the effect of

state-dependent delays in these systems considered not only on the microscopic

scale (differential equations) but also on the mesoscopic / macroscopic scales (partial

differential equations) (see for example [94, 89, 55]) pave the way for many interesting

research topics. We conjecture that the effect of state-dependent delays on the

meso/macro-scopic scale may allow for more important behavior especially on the

transient level.

Chapter 7 The solution of the EDP problem in a distributed manner is very im-

portant for the modern smart grid architectures. In this paper, we introduced

a consensus based optimization algorithm that greatly improves the existing ones

[119, 121, 120, 122]. The theory develops a decentralized version of the lambda

iteration algorithm with emphasizing on the communication network that controls

the process. The optimal economic point is dynamically achieved via a communi-

cation network that suffers from multiple and complex delays. The present work is

but a small step towards merging two very interesting fields of networked control

systems: this of agreement dynamics and this of the modern electric power networks

in the smart grid environment. Several things are yet to be addressed concerning

this work.

The elementary EDP which we basically analyzed, neglects the fact that every
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power generator operates within limits. For the classical EDP one must substitute

(7.6) with

i = 1, . . . , N :



dFi
Pi

= λ

Pi,min ≤ Pi ≤ Pi,max

∑
i Pi = Pload

Within the developed setup, this issue can be tackled in two steps. The first is

to recall that theory predicts explicit bounds on the difference of mini λi −maxi λi.

Since P
(i)
gen can be expressed as a linear function of λi we are half way far from

explicit bounds on the generated power P
(i)
gen. Indeed every sensor needs information

on all the cost parameters αj, βj. Unless one is willing to set these parameters within

universal standard bounds, these are information a sensor needs to learn from the

network. Note that an important point is that for the EDP to have a solution, λ∞

to be within the operation region of the generators. This is not always the case.

Therefore a first extension is to develop algorithms that will, or attempt, to solve

the EDP with given operating constraints.

A second problem with our approach is that we require an all-to-all connectiv-

ity even with arbitrary delays. It is very important to decentralize the architecture

even further. It is not clear, however, how this could be achieved without critically

destabilizing the algorithm. Even in the toy example of Section 7.4, this complete

communication regime could not suffice to stabilize the algorithm. This reveals the

sensitivity of the consensus algorithm on perturbations and delays. Future research

along this line would require a study on the connectivity regimes and how these
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affect the rate estimates and the stability bounds.

Another simplification assumption followed here, is that the power network

is loss-less. If the energy network has energy losses, the EDP derives a slightly

more complex Langrangian with an extra incremental cost value. Incorporating this

factor on the dynamic algorithm is also a necessary step for designing more realistic

theoretical algorithms. Given both Fi(Pi) and the cost function of the transmission

lines Floss(Pi) in quadratic form we conjecture that our theory could be adequately

extended.

All the above observations unavoidably point to the final remark of our work:

The form of the cost functions and the quadratic assumption. All the aforementioned

questions can (and should) be repeated for more general cost functions. This is a

fairly challenging issue even for the conventional methods [16].

We conclude by repeating the importance of applying distributed learning

techniques as part of the MAS technology in networks where the main objective

is fast managing operations handled automatically and effectively, with respect to

strict quality standards, by as few central authorities as possible. A most typical

network of this type is the electric Smart Grid. This engineering vision automatically

highlights the importance of consensus based optimization algorithms and their

contribution to even elementary problems such the one we studied here.
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