Carry-Over Round Robin: A Simple Cell Scheduling Mechanism
for ATM Networks *

Debangjan Sahal Sarit Mukherjeet Satish K. Tripathd®

Abstract

We propose a simple cell scheduling mechanism for ATM networks. The proposed mechanism,
named Carry-Over Round Robin (CORR), is an extension of weighted round robin scheduling.
We show that albeit its simplicity, CORR achieves tight bounds on end-to-end delay and near
perfect fairness. Using a variety of video traffic traces we show that CORR often outperforms
some of the more complex scheduling disciplines such as Packet-by-Packet Generalized Processor

Sharing (PGPS).

*This work is supported in part by NSF under Grant No. CCR-9318933 and Army Research Laboratory under
Cooperative Agreement No. DAAL01-96-2-0002. A short version of the paper appeared in the proceedings of IEEE
Infocom’96.

'IBM T.J. Watson Research Center, Yorktown Heights, NY 10598. Email:debanjan@watson.ibm.com.

‘Dept. of Computer Science & Engg. University of Nebraska, Lincoln, NE 68588. Email:sarit@cse.unl.edu.

$Dept. of Computer Science, University of Maryland, College Park, MD 20742. Email:tripathi@cs.umd.edu.

1 Introduction

This paper presents a simple yet effective cell multiplexing mechanism for ATM networks. The
proposed mechanism, named Carry-Over Round Robin (CORR), is a simple extension of weighted
round robin scheduling. It provides each connection a minimum guaranteed rate of service at the
time of connection setup. The excess capacity is fairly shared among active connections. CORR
overcomes a common shortcoming of most round robin and frame based scheduler, that is, coupling
delay performance and bandwidth allocation granularity. We show that despite its simplicity, CORR
often outperforms some of the more sophisticated schemes, such as Packet-by-Packet Generalized
Processor Sharing (PGPS) in terms of delay performance and fairness.

Rate based service disciplines for packet switched network is a well studied area of research [1, 2,
4,7, 11, 8]. Based on bandwidth sharing strategies, most of the proposed schemes can be classified
into one of the two categories — (1) fair queuing mechanisms, and (2) frame-based or weighted
round robin policies. Virtual clock [11], packet-by-packet generalized processor sharing (PGPS) [3,
7], self clocked fair queueing (SFQ) [6], are the most popular examples of schemes that use fair
queueing strategies to guarantee a certain share of bandwidth to a specific connection. The most
popular frame-based schemes are Stop-and-Go (SG) [4, 5] and Hierarchical-Round-Robin (HRR) [2].
While fair queueing policies are extremely flexible in terms of allocating bandwidth in very fine
granularity and fair distribution of bandwidth among active connections, they are expensive in
terms of implementation. Frame-based mechanisms on the other hand are inexpensive in terms of
their implementation. However, they suffer from many shortcomings, such as inefficient utilization
of bandwidth, coupling between delay performance and bandwidth allocation granularity, unfair

allocation of bandwidth.

CORR strives to integrate the flexibility and fairness of the fair queueing strategies with the sim-
plicity of frame-based/round robin mechanisms. The starting point of our algorithm is a simple
variation of round robin scheduling. Like round robin, CORR divides the time-line into allocation
cycles, and each connection is allocated a fraction of the available bandwidth in each cycle. However,
unlike slotted implementations of round robin schemes where bandwidth is allocated as a multiple
of a fixed quantum, in our scheme bandwidth allocation granularity can be arbitrarily small. This
helps CORR to break the coupling between framing delay and granularity of bandwidth allocation.
Another important difference between CORR and frame based schemes, such as SG and HRR is
that CORR is a work conserving service discipline. It does not waste the spare capacity of the
system, rather share it fairly among active connections. A recent paper [10] proposed a similar idea
for efficient implementation of fair queuing. However, the algorithm proposed in [10] has not been
analyzed for delay and other related performance metrics.

We have presented detailed analysis of CORR and derived tight bounds on end-to-end delay. Our
derivation of delay bounds does not assume a specific traffic arrival pattern. Hence, unlike PGPS
(for which delay bound is available only for leaky bucket controlled sources) we can derive end-to-end
delay bounds for CORR for a variety of traffic sources. Using traffic traces from real life video sources
we have shown that CORR often performs better than PGPS in terms of the size of the admissible

region. We have also analyzed the fairness properties of CORR under the most general scenarios
and have shown that it achieves nearly perfect fairness.

The rest of this paper is organized as follows. In section 2 we present the intuition behind CORR
and its algorithmic description. We discuss the properties of the algorithm in section 3. Section 4 is
devoted to the analysis of the algorithm and its evaluation in terms delay performance and fairness.
In section 5 we compare the end-to-end performance of CORR with PGPS and SG using a variety
of traffic traces. We conclude the paper in section 6.

2 Scheduling Algorithm

Like round robin scheduling, CORR divides the time line into allocation cycles. The maximum length
of an allocation cycle is T'. Let us assume that the cell transmission time is the basic unit of time.
Hence, the maximum number of cells (or slots) transmitted during one cycle is T. At the time of
admission, each connection C; is allocated a rate R; expressed in cells per cycle. Unlike simple round
robin schemes, where R;s have to be integers, CORR allows R;s to be real. Since R;s can take real
values, the granularity of bandwidth allocation can be arbitrarily small, irrespective of the length of
the allocation cycle. The goal of the scheduling algorithm is to allocate each connection C; close to
R; slots in each cycle and exactly R; slots per cycle over a longer time frame. It also distributes the
excess bandwidth among the active connections C;s in the proportion of their respective R;s.

The CORR scheduler (see figure 1) consists of three asynchronous events — Initialize, Enqueue,
and Dispatch. The event Initialize is invoked when a new connection is admitted. If a connection is
admissible !, it simply adds the connection to the connection-list {C}. The connection-list is ordered
in the decreasing order of R; — | R;], that is, the fractional part of R;. The event Enqueue is activated
at the arrival of a packet. It puts the packet in the appropriate connection queue and updates the
cell count of the connection. The most important event in the scheduler is Dispatch. The event
Dispatch is invoked at the beginning of a busy period. Before explaining the task performed by
Dispatch, let us introduce the variables and constants used in the algorithm and the basic intuition

behind it.

The scheduler maintains separate queues for each connection. For each connection Cj, n; keeps
the count of the waiting cells, and 7; holds the number of slots currently credited to it. Note that
r;8 can be real as well as negative fractions. A negative value of r; signifies that the connection
has been allocated more slots than it deserves. A positive value of r; reflects the current legitimate
requirement of the connection. In order to allocate slots to meet the requirement of the connection
as closely as possible, CORR divides each allocation cycle into two sub-cycles — a major cycle and
a minor cycle. In the major cycle, integral requirement of each connection is satisfied first. Slots
left over from major cycle are allocated in minor cycle to connections with still unfulfilled fractional
requirements. Obviously, a fraction of a slot cannot be allocated. Hence, eligible connections are
allocated a full slot each in the minor cycle whenever slots are available. However, all the connections

1 We discuss admission control later.

Constants
T: Cycle length.
R;: Slots allocated to C;.
Variables
{C}: Set of all connections.
t: Slots left in current cycle.
n;: Number of cells in Cj;.
r;: Current slot allocation of C;.
Events
Initialize(C;) /* Invoked at connection setup time. */
add C; to {C}; /* {C} is ordered in decreasing order of R; — | R;|. */

n; «— 0; r; «— 0;

Enqueue() /* Invoked at cell arrival time. */
ni=mn; +1
add cell to connection queue;

Dispatch() /* Invoked at the beginning of a busy period. */
VG vy — 0
while not end-of-busy-period do
t—T;
1. Major Cycle:
for all C; € {C} do /* From head to tail. */
ry — min(ng, r; + RB;); ¢ — min(¢, [r:]);
et —my Ty Ty Ty Ny Ny — T
dispatch z; cells from connection queue Cj;
end for
2. Minor Cycle:
for all C; € {C} do /* From head to tail. */
z; — min(t, [r;]);
et —my Ty Ty Ty Ny Ny — T
dispatch z; cells from connection queue Cj;
end for
end while

Figure 1: Carry-Over Round Robin Scheduling.

with fractional requirements may not be allocated a slot in the minor cycle. The connections that
get a slot in the minor cycle over-satisfy their requirements and carry a debit to the next cycle. The
eligible connections that do not get a slot in the minor cycle carry a credit to the next cycle. The

allocations for the next cycle are adjusted to reflect this debit and credit carried over from the last
cycle. Following is a detailed description of the steps taken in the Dispatch event.

At the beginning of a busy period, all r;s are set to 0 and a new cycle is initiated. The cycles
continue until the end of the busy period. At the beginning of each cycle, the current number of
unallocated slots t is initialized to 7', and the major cycle is initiated. In the major cycle, the
dispatcher cycles through connection-list and, for each connection C;, updates r; to r; + R;. If the
number of cells queued in the connection queue, n;, is less than the updated value of r;, r; is set
to n;. This is to make sure that a connection cannot accumulate credits. The minimum of ¢ and
|7;] cells are dispatched from the connection queue of C;. The variables are appropriately adjusted
after dispatching the cells. A minor cycle starts with the slots left over from preceding major cycle.
Again, the dispatcher walks through the connection-list. As long as there are slots left, a connection
is deemed eligible for dispatching iff 1) it has queued packets, and 2) its 7; is greater than zero. If
there is no eligible connection or if ¢ reaches zero, the cycle ends. Note that the length of the major
and minor cycles may be different in different allocation cycles.

Example: Let us consider a CORR scheduler with cycle length 7' = 4 and serving three connections
Ci, €y, and C5 with Ry = 2, R, = 1.5, and Rz = 0.5, respectively. In an ideal system where
fractional slots can be allocated, slots can be allocated to the connections in a fashion shown in
figure 2, resulting in full utilization of the system. CORR also achieves full utilization, but with a
different allocation of slots.

For ease of exposition, let us assume that all three connections are backlogged starting from the

beginning of the busy period. In the major cycle of the first cycle, CORR allocates C;, Cy, and Cs,
|R1|] = 2, |Rz] = 1, and | R3] = 0 slots, respectively. Hence, at the beginning of the first minor
cycle, t = 1, r; = 0.0, », = 0.5, and 73 = 0.5. The only slot left over for the minor cycle goes to
C,. Consequently, at the end of the first cycle, »; = 0.0, o = —0.5, and r3 = 0.5, and the adjusted
requirements for the second cycle are

7’1:7’1+R1:00+20:20

7’2:7’2+R2:—05+15:10
7’3:7’3+R3:05+05:10

Since all the ;s are integral, they are all satisfied in the major cycle.

The main attraction of CORR is its simplicity. In terms of complexity, CORR is comparable to
round robin and frame based mechanisms. However, CORR does not suffer from the shortcomings of
round robin and frame based schedulers. By allowing the number of slots allocated to a connection
in an allocation cycle to be a real number instead of an integer, we break the coupling between the
service delay and bandwidth allocation granularity. Also, unlike frame based mechanisms, such as
SG and HRR, CORR is a work conserving discipline capable of exploiting the multiplexing gains of
packet switching. In the following section we discuss some of its basic properties.

Cycle 1 Cycle 2
sl 7777000 | W07 | I
R;=2.0 r=2.0 r,=0.0 r=2.0 r1=0.0
M VA

R,=1.5 r=1.5 ,=0.5 r,=1.0 r=0.0
R;=0.5 r=0.5 r;=0.5 r,=1.0 r,=0.0

Major Cycle Minor Major Cycle Minor

Cycle Cycle

Connection 1 [l Connection 2 [] Connection3

Figure 2: An Example Allocation.

3 Basic Properties

In this section, we discuss some of the basic properties of the scheduling algorithm. Lemma 3.1 defines
an upper bound on the aggregate requirements of all streams inherited from the last cycle. This result
is used in lemma 3.2 to determine the upper and lower bounds on the individual requirements carried

over from the last cycle by each connection.
Lemma 3.1 If > yc cioy RBi < T then at the beginning of each cycle Y yg . cicy i < 0.

Proof: We will prove this by induction. We will first show that it holds at the beginning of a busy
period, and then we will show that if it hold in the kth cycle, it also holds in the (k + 1) cycle.

Base Case: From the allocation algorithm we observe that at the beginning of a busy period », = 0

Z 7’1'20

veie{C}

for all connection C;. Hence,

Thus, the assertion holds in the base case.

Inductive Hypothesis: Assume that the premise holds in the kth cycle. We need to prove that it
also holds in the (k + 1)** cycle. We use superscript for cycles in the following proof.

S ot Y b4 Y R -T<04+T-T<0.

ve.e{cy ve,e{C} vC.e{C}

This completes the proof. O

Henceforth we assume that the admission control mechanism makes sure that 3 v 0y Bi < T at
all nodes. This simple admission control test is one of the attractions of the CORR scheduling.

Lemma 3.2 If > yc cioy Bi < T then at the beginning of each cycle

where 6; = mazi{kR; — |kR;]}, k=1,2,...

Proof: To derive the lower bound on 7;, observe that in each cycle no more than [r;] slots are
allocated to connection C;. Also, note that r; is incremented in steps of R;. Hence, the lowest r; can

get to is,

—(51 = maxk{kRi - |7le—|},]€ = 1,2, ...00
= —mazy{kR; — |kR;|},k=1,2,...00

Derivation of the upper bound is little more complex. Let us assume that there are n connections
C;,1=1,2,...,n. With no loss of generality we can renumber them, such that B, > R;, when 7 < j.
For the sake of simplicity, let us also assume that all the R;s are fractional. We show later that this
assumption is not restrictive. To prove the upper bound we first prove that r; never exceeds 1, for
all connections C;. Now, since R, is the lowest of all R;s,2=1,2,...,n, C, is the last connection in
the connection list. Consequently, C,, is the last connection considered for a possible cell dispatch in
both major and minor cycles. Hence, if we can prove that r,, never exceeds 1, so is true for all other
r;8. We will prove this by contradiction.

Let us assume that C,, enters a busy period in allocation cycle 1. Observe, that C,, experiences the
worst case allocation when all other connections also enter their busy period in the same cycle. Let
us assume that r, exceeds 1. This would happen in the allocation cycle [1/R,]. Since 7, exceeds
1, C,, is considered for a possible dispatch in the major cycle. Now, C,, is not scheduled during the
major cycle of the allocation cycle [1/R,,] if and only if the following is true at the beginning of the
allocation cycle,

1
|7 + R;| > T

1

n

%

From lemma 3.1 we know that, >, 7; < 0 at the beginning of each cycle. Since 7, > 0, 2?2—11 r, <0
at the beginning of the allocation cycle [1/R,]. But,

n—1 n—1 n—1
|7 + R;] < Z(Ti+Ri)<O+ZRi <T
i=1 i=1 i=1

This contradicts our original premise. Hence, 7, cannot exceed 1. Noting that », is incremented in
steps of R,, the bound follows.

We have proved the bounds under the assumption that all R;s are fractional. If we relax that
assumption, the result still holds. This is due to the fact that the integral part of R; is guaranteed
to be allocated in each allocation cycle. Hence, even when R;s are not all fractional, we can reduce
the problem to an equivalent one with fractional R;s using the transformation

i=1

This completes the proof. O

4 Quality of Sevice Envelope

In this section we analyze the worst-case end-to-end delay performance of CORR. Other measures
of performance such as delay jitter and buffer size at each node can also be found from the results
derived in this section. In order to find the end-to-end delay, we have first derived delay bounds for a
single node system. We then show that the end-to-end delay for a multi-node system can be reduced
to delay encountered in an equivalent single node system. Hence, the delay bounds derived for single
node system can be substituted to find the end-to-end delay. We have also presented a comprehensive
analysis of CORR’s fairness. We define a fairness index to quantify how fairly bandwidth is allocated
among active connections, and show that the fairness index of CORR is within a constant factor of
any scheduling discipline.

4.1 Delay Analysis

In this section we derive the worst case delay bounds of a connection spanning single or multiple
nodes, each employing CORR scheduling to multiplex traffic from different connections. We assume
that each connection has an associated traffic envelope that describes the characteristics of the traffic
it is carrying, and a minimum guaranteed rate of service at each multiplexing node. Our goal is to
determine the maximum delay suffered by any cell belonging to the connection. We start with a
simple system comnsisting of a single multiplexing node, and find the worst case delay for different
traffic envelopes.

Single-node Case

Let us consider a single server employing CORR scheduling to service traffic from different connec-
tions. Since we are interested in the worst case delay behavior, and each connection is guaranteed a
minimum rate of service, we can consider each connection in isolation. Qur problem then is to find

the maximum difference between the arrival and the departure times of any cell, assuming that the

cells are serviced using CORR scheduling with a minimum guaranteed rate of service. The arrival
time of a cell can be obtained from the traffic envelope defined by the traffic envelope associated
with a connection. Traffic envelope associated with a connection depends on the shaping mechanism
(see Appendix) used at the network entry point. In this paper we have considered leaky bucket and

moving window shapers.

Following, we derive the worst case departure time a cell in terms of the service rate allocated to
the connection and the length of the allocation cycle. Knowing both the arrival and the departure
functions, we can compute the worst case delay bound. Before presenting the results let us first

formally introduce the definition of a connection busy period and a system busy period.

o
P

Arrival Function

delay encountered by cell i

—.Cell Index

backlog at time t Departure Function

! oy
|

t Time

Figure 3: Computing delay and backlog from the arrival and departure functions.

Definition 4.1 A connection is said to be in the busy period if connection queue is non-empty. The

system is said to be in the busy period if at least one of the active connection is in the its busy period.

Note, that a particular connection can switch between busy and idle periods even when the system
is in the same busy period. The following theorem determines the departure time of a specific cell

belonging to a particular connection.

Theorem 4.1 Assume that a connection enters a busy period at time 0. Let d(¢) be the latest time
by which the 1** cell, starting from the beginning of the current busy period, departs the system. Then

d(7) can be expressed as,

1=20,1,...,00.

d(i) = [%} T,

where R is the rate allocated to the connection and T is the mazimum length of the allocation cycle.

Proof: Since a cell may leave the system any time during an allocation cycle, to capture the worst

case we assume that all the cells served during an allocation cycle leave at the end of the cycle. Now,

when a connection enters a busy period, in the worst case, »r = —§. If cell ¢+ departs at the end of
the allocation cycle L, the number of slots allocated by the scheduler is L X R + é and the number
of slots consumed is 7 4 1 (since packet number starts from 0). In the worst case,

1>LxR—6—(i+1)>0.

This implies that,
i+1+6+1 oI i+1+46
R - R
From the above inequality and noting that L is an integer and d(¢) = L x T, we get

= [+ r

|

Theorem 4.1 precisely characterizes the departure function d(-) associated with a connection. As
mentioned earlier, the arrival function a(-) associated with a connection is determined by the traffic
envelope and has been characterized for different composite shapers in the Appendix. Knowing both
a(4) and d(%), the arrival and departure time of the :** cell in a busy period, delay encountered by the
i*" cell can be computed as d(7) — a(7) (see figure 3). Note that this is really the horizontal distance
between the arrival and departure functions at :. Hence, the maximum delay encountered by any cell
is really the maximum horizontal distance between the arrival and the departure functions. Similarly,
the vertical distance between these functions represents the backlog in the system. Unfortunately,
finding the maximum delay, that is the maximum horizontal difference between the arrival and the
departure functions, is a difficult task. Hence, instead of finding the maximum delay directly by
measuring the horizontal distance between these functions, we first determine the point at which
the maximum backlog occurs and the index 7 of the cell which is at the end of the queue at that
point. The worst case delay is then computed by evaluating d(¢) — a(7). Following we carry out this
procedures for a(%) defined by composite leaky bucket, and moving window shapers.

Lemma 4.1 Consider a connection shaped using an n-component moving window shaper and passing
through a single multiplezing node employing CORR scheduling with an allocation cycle of length T 2.
If the connection is allocated a service rate of R, then the worst case delay encountered by any cell
belonging to the connection is upper bounded by,

A) n _ §
i RV bl R 7 e s I
[CORR/MW R =41~ U w; (R/T — m;[w;)
- 2m; + 6" " <ml_1 > [R+46 "
— | T —w; - —1]w, > 1
5 -2 0 (RIT =y wy)
when ﬁ<§<%, 7=12,...,n—1.

w; T W; 41

2We assume that the cycle length is smaller than the smallest window period.

Proof: First we will show that under the conditions stated above the system is stable. That is, the
length of the busy period is finite. To prove that, it is sufficient to show that there exists a positive
integer k such that, the number of cells serviced in kw; time is more than equal to km;. In other

words, we have to show that there exists a k such that the following holds,

kw; > d(km; —1)
b, > [km] R)+1+5h
(km; —1)+1+6
kw, > [i)+ s +1]T
6
. R—I—

— wi (R/T — my/wy)

Clearly, for there to exists a positive integer k so that the above equality is satisfied, the following
condition needs to hold.

R/T —m;/w; >0 or R/T > m;/w,

By our assumption, R/T > m;/w;. Hence, the system is stable. Now, we need to determine the
point at which the maximum backlog occurs. Depending on the value of k, the maximum backlog
can occur at one of the two places.

Case 1: k = 1. If k = 1, that is, when traffic coming in during a time window of length w; departs
the system in the same window, the maximum backlog occurs at the arrival instant of the (m; — 1)
cell . Clearly, the index of the cell at the end of the queue at that instant is (m; — 1)**. Hence,
the maximum delay encountered by any cell under this scenario is the same as the delay suffered by
the (m; — 1)** cell, and can be enumerated by computing d(m; — 1) — a(m; — 1). We can evaluate
a(m; — 1) as following,

n m; — 1 m; —1| m
ami=n) = (|2 - 5])
(m;) ;<{ my mi—1 my l

- o)

=1 my mi—1 my l

i m; =1 | my; — 1J ml_1>

* Z<{ my J mi—1 m o

(since my_; > my)

|
,?'_'\ 3
N
EIE:

|

|
T
33
HI
-
FE
=

IS

3Note that cells are numbered from 0. Since R can be non-integral, we can choose T arbitrarily small without
affecting the granularity of bandwidth allocation

= z”: <ml_1 — 1> wy.

=41 N Th
Therefore, the worst case delay is bounded by,

DCORR/MW

IN

d(m; — 1) — a(m; — 1)

e 8 ()

I=+1 T4

IN

Case 2: k > 1. When k is greater than 1, the connection busy period continues beyond the first
window of length w;. Since R/T > m;/w;, the rate of traffic arrival is lower than the rate of
departure. Still, in this case, not all cells that arrive during the first window of length w; are served
during that period and the left over cells are carried over into the next window. This is due to the fact
that unlike the arrival curve, the departure function does not start at time 0 but at time [(146)/R].
This is the case when k& = 1 also. However, in that case, the rate of service is high enough to serve
all the cells before the end of the first window. When k& > 1 the backlog carried over from the
first window is cleared in portions over the next &k — 1 windows. Clearly, the backlogs carried over
into subsequent windows diminish in size and is cleared completely by the end of the k** window.
Hence, second window is the one where the backlog inherited from the last window is the maximum.
Consequently, absolute backlog in the system reaches its maximum at the arrival of the 2m; — 1
cell. Hence, the maximum delay encountered by any cell under this scenario is the same as the delay
suffered by the (2m; — 1)** cell, and can be enumerated by computing d(2m; — 1) — a(2m; — 1). We
can evaluate a(2m; — 1) as following,

i 2m,; — 1 2m,; — 1| m_y
a(i) Z my J { mp_1 my W

{
- S)

mp_1 my

my my;_1 my I

S () P)

my mp_1 my

i 2m; 2m; _
= 04w+ Z < m]_1_< g —1> UL 1>wl (since my_y > 2my)

mp_1 my

Therefore the worst case delay is bounded by,

DEORRIMW < d(2m; — 1) — a(2m; — 1)

11

2m; + 6 " _
< [%}T_wj_zﬁ“_l)w,.

=541 ~ T4
O

Lemma 4.2 Consider a connection shaped by an n-component leaky bucket shaper and passing
through a single multiplexing node employing CORR scheduling with an allocation cycle of maxi-
mum length T. If the connection is allocated a service rate of R, then the worst case delay suffered
by any cell belonging to the connection is upper bounded by,

CORR/LB < [Bj +1+96

mazw R -‘T_(B]_b]—l_l)t]’

Nl &

1 .
when < </, 7=12,...,n.
tit1

1
L
Proof: In order to identify the point where maximum the backlog occurs, observe that the rate
1

of arrivals is more than the rate of service until the slope of the traffic envelope changes from vy
to ti This change in the slope occurs at the arrival of the Bjth cell in the worst case. Hence, the
maximum delay encountered by any cell is at most as large as the delay suffered by Bjth cell. We

can compute a(B;) as following,

a(Bj) = %(Bj — b+ 1)t [U(B; — B)) — U(B; — B_1)]
= ji(Bj b +1) 4 [U(B; — B) — U(B; — Bi_y)]
:(15’:' —b; +1)t; [U(B; — B;) — U(B; — B;_1)]
+ ni:l (B; —b,+ 1) t, [U(B; — B;) — U(B; — B;_;)]
I=j+1

Now d(B;) — a(B;) yields the result. O

The results derived in this section define tight upper bounds for delay encountered in a CORR
scheduler under different traffic arrival patterns. The compact closed form expressions make the
task of computing the numerical bounds for a specific set of parameters very simple. We would also
like to mention that compared to other published works, we consider a much larger and general set
of traffic envelopes in our analysis. Although simple closed form bounds under very general arrival
patterns is an important contribution of this work, bounds for a single node system is not very useful
in a real life scenario. In most real systems, a connection spans multiple nodes and the end-to-end
delay bound is what is of interest. In the following section we derive bounds on end-to-end delay

using the results presented in this section.

12

Multiple-node Case

In the last section we derived worst case bounds on delay for different traffic envelopes for a single
node system. In this section, we derive similar bounds for a multi-node system. We assume that
there are n multiplexing nodes between the source and the destination, and at each node a minimum

available rate of service is guaranteed.

We denote by ay(¢) the arrival time of cell 7 at node k. The service time at node k for cell ¢ is denoted
by s;(i). We assume that the propagation delay between nodes is zero*. Hence, the departure time
of cell ¢ from node k is aj41(¢). Note, that a;(%) is the arrival time of the ¢** cell in the system and

an41(1) is the departure time of the ' cell from the system.

Let us denote by Si(p,q) = Y;_, sx(4). This is nothing but the aggregate service times of cells p
through ¢ at node k. In other words, Si(p, ¢) is the service time of the burst of cells p through ¢ at
node k.

The following theorem expresses the arrival time of a particular cell at a specific node in terms
of the arrival times of the preceding cells at the system and their service times at different nodes.
This is a very general result, and is independent of the particular scheduling discipline used at the
multiplexing node and traffic envelope associated with the connection. We will use this result later

to derive the worst case bound on end-to-end delay.

Theorem 4.2 For any node k and for any cell the <, the following holds:
k-1
“() = {alm ¥ B (Z e lh+1>) } |

Proof: We will prove this theorem by induction on %k and 2.

Induction on k:

Base Case: When k =1,

0
a1(i) = ;gfg{al(j)ﬂ:l‘ggﬁlm (ZSh(lh,th))}
- -0 = h=1
= ay(%)

Clearly, the assertion holds.

Inductive Hypothesis: Let us assume that the premise holds for all m < k. In order to prove that
the hypothesis is correct, we need to show that it holds for m = k + 1.

apr1(t) = max{ar1(i— 1)+ (%), ax(z) + s1(2)}

*This assumption does not affect the generality of the results, since the propagation delay at each stage is constant

and can be included in sg(%).

13

= max{lé‘f?gix_l [al(j) -|-] . <12<I1182}lik+1_Z) (Z Sh lh,lh+1))] + sz(2),

h=1

o [m+pa, (S siinn)] 00}

T {15123{—1 [al(j) + Jeh < D mic1 (Z Swll, lh+1)) + Sk(i)] ’

h=1

3
13}2}_1 [al(j) + j:zlgglax_ - (Z (In, Iay1)) + Sk(iai)])

h

k
- maX{lgnjlgz'X—l [al(]) —I_] =l <12<m&<uli<lk+1_z (hz:l Sn lh’lh+1))] ’
13540 [al(j) +y NPT e A S (Z ol bata))] ’
k
ay(3) + ZSh(i,i)}
h=1
k
- malx{lé[?glx—l [al(J) —I—] =l <lz< <lk,<lk,+1—l (Z lh’lh+1)] ’
o8 zsh@,i)}
h=1

3
= 112?25{“’“0) -I-] o <lz< <lk<lk+1_z (Z (lhylpt1))}

Induction on 2:

Base Case: When 7 =1,

ak(l) = fgf),sxl{al(]) —|—] 1, <glax (Z Sh lhylh+1)}

Hence, the assertion holds in the base case.

Inductive Hypothesis: Let us assume that the premise holds for all » < 7. In order to prove that the
hypothesis is correct, we need to show that it holds for n = 7+ 1.

14

ar(t4+1) = max{ar(d)+sp_1(t+1),ar_1(c+ 1)+ sp_1(¢ + 1)}

1<5<i

= max{max [al(j)—l— max (Sullhylat1)] + sp_1(i 4+ 1),

= max{lzg;% [al(J)Jrj:llsgg?gglk . (Su(lny lht1)) + sp_1(24+ 1]
k
19555 [al(j) T 2% (hzls"‘ (B, Lhtr)) + St 1,04 1)] ’

ol

-1

ar(t+ 1)+) Sp(t+1,74 1)}

1

k—1
al(j) + j:l1§lzf'“12?‘1c}i1<lk:i+l (hz—:l Sh(lh’ lh+1))] ’

k-1
e [Dty T i (Z Sh<lh’lh+l>)] ’

i+ 1) +ZShz+1,i+1)}

1

k
- max{lngl?é al(j)—l_] <l <hemit (Z (B B)] ’
k
ar(i+ 1)+ > S+ 1,5+ 1)}

h=1

E—1
= max <ai(7)+ max SHll, 1
15j5i+1{ +(7) j=li<la< <l 1 =it (hz_:l AUSEERY

=
1l

L—

= max max
1<5<i

|

.

|

The result stated in the above theorem determines the departure time of any cell from any node in
the system in terms of the arrival times of the preceding cells and the service times of the cells at
different nodes. This is the most general result known to us on the enumeration of end-to-end delay
in terms of service times of cells at intermediate nodes. We believe, this result will prove to be a
powerful tool in enumerating end-to-end delay for any rate based scheduling discipline and will be

an effective alternative for the ad hoc techniques commonly used for end-to-end analysis.

Although the result stated in theorem 1 is very general, it is difficult to make use of it in its most
general form. In order to find the exact departure time of any cell from any node we need to know
both the arrival times of the cells and their service times at different nodes. Arrival times of different

cells can be obtained from the arrival function, but computing service times for different cells at each

15

node is a daunting task. Hence, computing precise departure time of a cell from any node in the
system is often quite difficult. However, accurate departure time of a specific cell is rarely of critical
interest. More often we are interested in other metrics, such as worst case delay encountered by a
cell. Fortunately, computing the worst case bound on the departure time, and then the worst case
delay is not that difficult. The following corollary expresses the worst case delay suffered by a cell
in terms of the worst case service times at each node.

Corollary 4.1 Consider a connection passing through n multiplezing nodes. Assume that there
exists a S, such that Sy, (p,q) > Su(p,q) for all ¢ > p and h = 1,2,...n. Then, in the worst case,
delay D(t) suffered by the cell ¢ belonging to the connection can be upper bounded by

D(l) S 112?'%(1{@1(]) —I_] =l <lz;n<1al}§ln+1—z {ZS lh’lh+1 }} B al()

Proof: Follows trivially from theorem 1 by substituting Sys, h = 1,2,...n by 5,. |

Corollary 4.1 expresses the worst case delay encountered by any cell under the assumption that
for any p and ¢ there exists a function S, such that S,(p,q) > Sa(p,q), for h = 1,2,...,n. The
closer 5, is to §3, the tighter is the bound. The choice of 5, depends on the particular scheduling
discipline used at the multiplexing nodes. In case of CORR it is simply the service time at the
minimum guaranteed rate of service. Following corollary instantiates the delay bound for CORR

service discipline.

Corollary 4.2 Consider a connection traversing n nodes, each of which employs CORR scheduling
discipline. Let R,, be the minimum rate of service offered to a connection at the bottleneck node, and
T be the mazimum length of the allocation cycle. Then the worst case delay suffered by the 1" cell
belonging to the connection is bounded by,

24 by

DOORR(}) < [n +(n—1)] T+ max {a1(7) + Su(J,9)} — a1(4)

w

Proof: This follows from corollary 4.1 by replacing

i l<lz< <ln+1_z{25 lh,lh+1 } with [n—l—(n—l) R, T—I—Sw(j,z)

Following steps explain the details,

i " T —1 1 1+6
E Suwllnylnyr) = E [(ht1 h—;)1+ w-‘ (from theorem 4.1)
h=1 = w

e R]
1T
Z[E. *

=
=

IN

=
=

16

2"’610- (ln+1_ll+1)+1+6w

< -1 T T
< |t (n-1) R + 7
- 51 6]
< |n+(n—-1) 7 T+ Sy(l1,lnt1) (from theorem 4.1)
: 2+ 6,] - . . .
< n+(n-1) 7 T+ S.(4,%) (putting Iy =j and l,pq = 1)
The final result follows immediately. O

The expression for DYOFE derived above consists of two main terms. The first term is a constant
independent of the cell index. If we observe the second term carefully, we realize that it is no other
than the delay encountered by the 7** cell at CORR server with a cycle time T' and a minimum rate
of service R,,. Hence, end-to-end delay reduces to the sum of the delay encountered in a single node
system and a constant. By substituting the delay bounds for the single-node system derived in the

last section we can enumerate end-to-end delay in a multi-node system for different traffic envelopes.

4.2 Fairness Analysis

In the last section we analyzed some of the worst case behavior of the system. In the worst case
analysis it is assumed that the system is fully loaded and each connection is served at the minimum
guaranteed rate. However, that is often not the case. In a work conserving server, when the system
is not fully loaded the spare capacity can be used by the busy sessions to achieve better performance.
One of the important performance metric of a work conserving scheduler is the fairness of the system.
That is how fair is the scheduler in distributing the excess capacity among the active connections.

Let us define by D,(¢), the number of packets of connection p transmitted during [0,t). We define
the normalized work received by a connection p as w,(t) = D,(t)/R,. Accordingly, w,(t1,t3) =
wy(ts) — wy(t1), where t; < ¢, is the normalized service received by connection p during (%1, 1,).

In an ideally fair system, the normalized service received by different connections in their busy state
increase at the same rate. For sessions that are not busy at ¢, normalized service stays constant.
If two connections p and ¢ are both in their busy period during [¢,?5), we can easily show that
wy(t1,t2) = we(t1,ta).

Unfortunately, the notion of ideal fairness is only applicable to hypothetical fluid flow model. In
a real packet network, a complete packet from one connection has to be transmitted before service
is shifted to another connections. Therefore, it is not possible to satisfy equality of normalized rate
of services for all busy sessions at all times. However, it is possible to keep the normalized services
received by different connections close to each other. The Packet-by-Packet Generalized Processor
Sharing (PGPS) and the Self-Clocked-Fair-Queuing (SFQ) are close approximations to ideal-fair-
gueuing in the sense that they try to keep the normalized services received by busy sessions close
to that of an ideal system. Unfortunately, the realization of PGPS and SFQ are quite complex.
In the following we will show that the CORR scheduling is almost as fair as PGPS and SFQ,
albeit its simplicity in terms of implementation. For reasons of simplicity we will assume that our

17

sampling points coincide with the beginning of the allocation cycles only. If frame sizes are small,

this approximation is quite reasonable.

Lemma 4.3 If a connection p is in a busy period during the cycles ¢, through cy, where ¢5 > ¢4, the

amount of service received by the connection during [cy, cs] is bounded by

maz{0, [(c2 — c1)Ry — 6]} < Dp(er,e2) < [(e2 — e1) Ry + 6]
Proof: Follows directly from lemma 3.2.

Corollary 4.3 If a connection p is in a busy period during the cycles ¢, through c,, where ¢ > ¢4,
the amount of normalized service received by the connection during [cy,c;] is bounded by

[(ca —c1)Ry + 6]
Rp

mazx {0, L(C2 _ Cl)Rp _ 6pJ

Rp } S Wy (61762) S

Proof: Follows directly from lemma 4.3 and the definition of normalized service. |

Theorem 4.3 If two connections p and ¢ are in their busy periods during the cycles ¢, through c,,

where ¢y > ¢1, then

1456 1+6
®(p,q) = |wp(ca,c2) — wyler, e2)] < R, £+ R, .
Proof: From the last corollary we get,
®(p,q) = [wples,ca) — wyles,ca)|
< maz {‘ [(c2—ci)Ry 4+ 6,] (2 —c1)Ry — 6] ’
R, R,
[(c2 —ci)Ry +6,] [(c2—c1)Rp — 6] }
R, R,

(ot) Bo] [(les -l =) B
< maz -)
B R, R,

(e —ed t5) R| [(le-el- %) B

R, R,
. 2 v
< maz [cs — 1] + ¢z — ¢1]
R,
+ 4,
(1= 557) = (1= -)}
R,
146, 1434, 1+5 1+ p}
<
—m“{RP R, ' R, +R,,

18

This completes the proof. O

To compare fairness of CORR with other schemes, such as PGPS and SFQ, we can use ®(p,q) as
the performance metric. As discussed earlier, ®(p, ¢) is the absolute difference in normalized work
received by two sessions over a time period where both of them were busy. We proved earlier that if
our sample points are at the beginning of the allocation cycles,

1+6, 146,
RP Rq ‘

$CORR(p, q) <

Under the same scenario described in the last section, it can be proved that in the SFQ scheme the
following holds at all times,

1 1

FSFQ 42

(p,q) < R, + R,
Due to difference in the definition of busy periods in PGPS similar result is difficult derive. However,
Golestani [6] has shown that the maximum permissible service disparity between a pair of busy
connections in the SFQ scheme is never more than two times the corresponding figure for any real

queueing scheme. This proves that,
1
7P (pg) > S8F9(p,)

Note that, 0 < §; < 1 for all connection . Hence, the fairness index of CORR is within two times

that of SFQ and at most four times that of any other queuing discipline including PGPS.

5 Numerical Results

In this section we compare the performance of CORR with PGPS and SG using a number of MPEG
coded video traces with widely varying traffic characteristics. We used four 320x240 video clips (see
Table 1), each approximately 10 minutes long in our study. The first video is an excerpt from a very
fast scene changing basketball game. The second clip is a music video (MTV) of the rock group
REM. It is composed of rapidly changing scenes in tune with the song. The third sequence is a clip
from CNN Headline news where the scene alternates between the anchor reading news and different
news clips. The last one is a lecture video with scenes alternating between the speaker talking and
the viewgraphs. The only moving objects here are the speaker’s head and hands. Figure 4 plots
frame sizes against frame number (equivalently time) for all four sequences for an appreciation of the
burstiness in different sequences. In all traces, frames are sequenced as IBBPBB and frame rate is
30 frames/sec. Observe that, in terms of the size of GoP ° and that of an average frame, BasketBall
and Lecture videos are at the two extremes (the largest and the smallest, respectively), with the

other two videos in between.

®The repeating sequence (IBBPBB in this case) is called a GoP or Group of Pictures.

19

Traces Type of Maximum | Minimum Average Variation

Frame Frame Size | Frame Size | Frame Size | (Std. Dev)

I 41912 8640 26369.14 4672.12

P 40128 6400 15570.31 1846.77

Basketball B 3h648 4288 11137.18 2856.51
Avg. Frame 14414.69

GoP 215232 59008 86488.12 6284.27

I 34496 8512 21770.88 4808.31

P 28544 9152 15833.20 1437.66

MTYV Video B 32640 4608 12211.39 3123.87
Avg. Frame 14408.27

GoP 146304 6b472 86443.91 4017.07

I 43200 17144 27728.71 3537.86

P 20160 11392 16025.23 547.62

News Clip B 26304 6208 10643.04 2691.66
Avg. Frame 14387.68

GoP 118464 81664 86326.10 839.50

I 13504 5312 10956.67 1498.87

P 13312 2048 4673.82 642.53

Lecture B 6592 768 3292.95 617.45
Avg. Frame 4800.38

GoP 33984 23424 28802.33 555.95

Table 1: Characteristics of the MPEG traces. Size is in bytes and frame sequence is IBBPBB.

Results presented in the rest of the section demonstrate (1) CORR achieves high utilization irrespec-
tive of the shaping mechanism used, (2) when used in conjunction with composite shapers CORR

can exploit the precision in traffic characterization and can achieve even higher utilization.

CORR and PGPS

PGPS is a packet-by-packet implementation of the fair queuing mechanism. In PGPS, incoming
cells from different connections are buffered in a sorted priority queue and is served in the order
in which they would leave the server in an ideal fair queueing system. The departure times of
cells in the ideal system is enumerated by simulating a reference fluid flow model. Simulation of
the reference system and maintenance of the priority queue are both quite expensive operations.
Hence, the implementation of the PGPS scheme in a high-speed switch is difficult, to say the least.

Nevertheless, we compare CORR with PGPS to show how it fares against an ideal scheme.

In the results presented below we consider a system configuration where all connections from the
source to the sink pass through five switching nodes connected via T3 (45 Mb/s) links (see figure 5).
We also assume that each switch is equipped with 2000 cell buffers on each output port. As shown

in figure 5 traffic from a source passes through shaper(s) before entering the network. For the results

20

BasketBall MusicVideo

T T T 35 T |
40 —— | Frame 1
—— P Frame 1
35 - ——— B Frame E 30
%0 W 1 =
8] $]
£ 1 5 20 | ‘ | “ ”
: : |
2 5 (I I3 ¥ ‘, N | Iig
I \‘] 2 15 A I‘ ‘ 1 I | ‘"
§ 15) l HM . % ‘ ‘ ‘ W’ r ‘ ‘H l '
g 1o u’H U ‘r i}y ”W"" Ww 1
5 i 5
0 1 1 1 1 0 1 1
0 2500 5000 7500 10000 12500 0 2500 5000 7500
Frame Number Frame Number
NewsClip Lecture
35 = T T | 15
30 8
25] =
g g 10
2 2
¥ 20 102
(0] “l ! | (0]
& My ‘ & \
o 15 N'WI‘“ il oo
& I
10] b Hu N“ W I W nl'
5 -
0 1 1 1 1 0 1 1 1 1
0 2500 5000 7500 10000 12500 0 2500 5000 7500 10000 12500

Frame Number Frame Number

Figure 4: MPEG compressed video traces. Frame sequence is IBBPBB.

reported in this section we assume that the shapers used at the network entry point employ leaky
bucket shaping mechanism.

In figures 6,7,8, and 9 we compare the number of connections admitted by CORR and PGPS for
different traffic sources, end-to-end delay requirements, and shaper configurations. In order to make
the comparison fair, we have chosen the leaky bucket parameters for different sources in such a way
that it maximizes the number of connections admitted by PGPS given the end-to-end delay, and

buffer sizes in the switch and the shaper. This is a tricky and time consuming process (we use

21

Ratio of No. of Connections

Source Shaper(s) Switch 1 Switch 2 Switch 3 Switch 4 Switch 5 Sink
P XX XX

Figure b: Experimentation model of the network. All the links are 45 Mbps. Both the shapers are

used for CORR. Only one shaper is used for other scheduling disciplines.

CORR vs PGPS: BasketBall CORR vs PGPS: BasketBall
(Shaper Buffer = 100 ms) (Shaper Buffer = 200 ms)
10.0 T T 10.0 T T
G—=o Single Shaper & T =1 | &—=o Single Shaper & T =1
5—=a Dual Shaper & T=1 5—=a Dual Shaper & T=1
80 L &—=> Single Shaper & T=10 | 80 | &—> Single Shaper & T = 10
&——4A Dual Shaper & T =10 &——4A Dual Shaper & T =10
<—=< Single Shaper & T = 20 g <—=< Single Shaper & T = 20
V—v Dual Shaper & T = 20 8 V—v Dual Shaper & T =20
]
6.0 - E 6.0F
S
O
ks
o
4.0 Z 40
S]
8
3
14
20 - A 20 -
oo e Emm=sE = S L R e e mem=s=cccosc oo
0.0 “-‘ I I 0.0 “-‘ I I
0.0 100.0 200.0 300.0 400.0 500.0 0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms) Delay (ms)

Figure 6: Relative performance of CORR and PGPS on BasketBall video with different shaper
buffers.

linear programming techniques) and requires a full scan of the entire traffic trace for each source.
For a description of this procedure please refer to [9]. We have plotted the ratio of the number of
connections admitted by CORR used in conjunction with single and dual leaky bucket shapers with
that of PGPS under this best case scenario.

In figure 6 we have compared the number of connections admitted by CORR and PGPS for the
BasketBall video. The two sets of graphs correspond to two different sizes of shaper buffers, 100ms
and 200ms in this case. Quite expectedly PGPS outperforms CORR for delay bounds less than
150ms when CORR is used in conjuction with a single leaky bucket. Note however that the ratio of
the number of connections is very close to 1 and approaches 1 for higher delay bounds. This is due
to the fixed frame synchronization overhead in CORR that is more conspicuous in low delay regions.
The effect of this fixed delay fades for higher end-to-end delays. We also observe that the lower the
frame size(T), the more competitive CORR is to PGPS in terms of number of connections admitted.

22

Ratio of No. of Connections

Ratio of No. of Connections

10.0

8.0

6.0

4.0

2.0

0.0

0.0

Figure 7: Relative performance of CORR and PGPS on

10.0

8.0

6.0

4.0

2.0

0.0

0.0

CORR vs PGPS: MusicVideo
(Shaper Buffer = 100 ms)

G—=o Single Shaper & T =1
5—=a Dual Shaper & T=1
&—> Single Shaper & T = 10
&——4A Dual Shaper & T =10
<—=< Single Shaper & T = 20
V—v Dual Shaper & T = 20

100.0

L
200.0 300.0
Delay (ms)

400.0

CORR vs PGPS: NewsClip
(Shaper Buffer = 100 ms)

G—=o Single Shaper & T =1
5—=a Dual Shaper & T=1
&—> Single Shaper & T = 10
&——4A Dual Shaper & T =10
<—=< Single Shaper & T = 20
V—v Dual Shaper & T =20

100.0

L
200.0 300.0
Delay (ms)

500.0

Ratio of No. of Connections

Ratio of No. of Connections

10.0

©
o

6.0

4.0

2.0

0.0
0.0

10.0

©
o

6.0

4.0

2.0

0.0
0.0

CORR vs PGPS: MusicVideo
(Shaper Buffer = 200 ms)

G—=o Single Shaper & T =1
5—=a Dual Shaper & T=1
&—> Single Shaper & T = 10
&——4A Dual Shaper & T =10
<—=< Single Shaper & T = 20
V—v Dual Shaper & T = 20

100.0

MusicVideo with different shaper buffers.

L
200.0 300.0
Delay (ms)

CORR vs PGPS: NewsClip
(Shaper Buffer = 200 ms)

G—=o Single Shaper & T =1
5—=a Dual Shaper & T=1
&—> Single Shaper & T = 10
&——4A Dual Shaper & T =10
<—=< Single Shaper & T = 20
V—v Dual Shaper & T = 20

100.0

L
200.0 300.0
Delay (ms)

400.0

500.0

Figure 8: Relative performance of CORR and PGPS on NewsClip video with different shaper buffers.

For traditional frame based (or round robin) scheduling a small size frame (short cycle time) leads

to large bandwidth allocation granularity and hence is not useful in practice. CORR however does

not suffer from this shortcoming and can use very small cycle time.

23

Ratio of No. of Connections

CORR vs PGPS: Lecture CORR vs PGPS: Lecture

(Shaper Buffer = 100 ms) (Shaper Buffer = 200 ms)
10.0 T T 10.0 T T
G—=o Single Shaper & T =1 | G—=o Single Shaper & T =1
5—=a Dual Shaper & T=1 5—=a Dual Shaper & T=1
80 L &—=> Single Shaper & T=10 | 80 | &—= Single Shaper & T=10 |
&——4A Dual Shaper & T =10 &——4A Dual Shaper & T =10
<—=< Single Shaper & T = 20 g <—=< Single Shaper & T = 20
V—v Dual Shaper & T = 20 8 V—v Dual Shaper & T = 20
]
6.0 - 4 & 60F A
S
8
ks
o
40 + E 4.0 + BB
S]
8
3
14
20 - A 20 - A
e/@@—e-& O/g@—e-&
0.0 4 ! L ! 0.0 4 ! ! |
0.0 100.0 200.0 300.0 400.0 500.0 0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms) Delay (ms)

Figure 9: Relative performance of CORR and PGPS on Lecture video with different shaper buffers.

When used in conjunction with dual leaky bucket shapers, CORR outperforms PGPS irrespective
of delay bounds, shaper buffer sizes, and cycle times. PGPS cannot take advantage of multi-rate
shaping. So, no matter what the delay bound is, the number of connections admitted by PGPS
depends only on the leaky bucket parameters. CORR on the other hand can choose the lowest rate
of service sufficient to guarantee the required end-to-end delay bound. The benefits of this flexibility is
reflected in figure 6 where the connections admitted by CORR outnumbers the connections admitted
by PGPS by more than 4:1 margin. For a shaper buffer size of 100ms the ratio of number of
connections admitted by CORR and that by PGPS is around 8 for end-to-end delay bound of 20ms.
The ratio falls sharply and flattens out at around 4 for end-to-end delay of 100ms or more. The
higher gain seen by CORR for lower end-to-end delay budget can be explained by its by effective
use of shaper and switch buffers. Unlike PGPS, CORR uses a much lower service rate, just enough
to guarantee the required end-to-end delay. It effectively uses the buffers in the switches and the
shaper to smooth out the burstiness in the traffic. As delay budget increases, PGPS uses a lower

rate of service. Consequently, gain seen by CORR decreases and eventually stabilizes around 4.

A trend similar to the one seen in figure 6 is observed in figures 7,8,and 9. In all cases PGPS
outperforms CORR (used in conjuction with single leaky bucket) for low end-to-end delay. For
higher delays the ratio of number of connections admitted by CORR and PGPS is practically 1.
When used in conjunction with two leaky buckets, CORR outperforms PGPS by a margin higher
than 4:1. We also observe that gain seen by CORR when used with two leaky buckets is higher
for lower delays. Careful observation reveals that gain also depends on the size of the shaper buffer
used and the traffic pattern of the source. The smaller is the shaper buffer, the higher is the gain.

24

Ratio of No. of Connections

CORR vs SG: BasketBall
(Shaper Buffer = 100 ms)

CORR vs SG: BasketBall
(Shaper Buffer = 200 ms)

20.0 T T 20.0 T T
G—=o Single Shaper & T =1 G—=o Single Shaper & T =1
5—=a Dual Shaper & T=1 5—=a Dual Shaper & T=1
16.0 - &—=> Single Shaper & T=10 | 16.0 - &—= Single Shaper & T=10 |
: &——4A Dual Shaper & T =10) &——4A Dual Shaper & T =10
<—=< Single Shaper & T = 20 g <—=< Single Shaper & T = 20
V—v Dual Shaper & T = 20 8 V—v Dual Shaper & T = 20
]
12.0 + £ 120 r b
S
O
ks
o
8.0 - Z 80°F .
i o
8
J ©
W 4
40 - 4 40 -
00 I 1 1 1 00 I 1 1 1
0.0 100.0 200.0 300.0 400.0 500.0 0.0 100.0 200.0 300.0 400.0
Delay (ms) Delay (ms)

Figure 10: Relative performance of CORR and SG on BasketBall video with different shaper buffers.

Similarly, the more bursty is the traffic, the higher is the gain. This is due to the fact that unlike
PGPS, CORR can exploit the multi-rate shaping of traffic by choosing a rate of service that is lower
than the peak rate of traffic generation. The gain due to this flexibility is more conspicuous when
delay budget is tighter. It is also evident from the graphs that the effect of cycle time has minimal
impact on the performance of CORR, especially for higher delay budget or when traffic is shaped

using multi-rate shapers.

CORR and SG

The purpose of these comparison is to demonstrate that (unlike PGPS and SG) CORR is not
constrained to be used in conjunction with a specific traffic shaping mechanism. It works equally
well with moving window shapers as it does with leaky bucket shapers. In the last section we have
seen how the performance of CORR compares with that of PGPS for leaky bucket shapers. In this
section we compare the performance of CORR with that of SG for moving window shapers. As
PGPS is constrained to work with only leaky bucket shapers, the use of SG is restricted to moving

window © shapers only.

We use the same system configuration as shown in figure b and described in the last section. As in
the case of PGPS, we choose moving window parameters that maximizes the number of connections
admitted by SG given the traffic trace, size of the shaper buffer, and the end-to-end delay. Figures 10,

®Although in the original description of SG does not use moving window shapers to smooth the traffic, the (r,T)
smoothness defined in [5] can be exactly modelled by a moving window with m = r and w=T.

25

500.0

Ratio of No. of Connections

Ratio of No. of Connections

CORR vs SG: MusicVideo
(Shaper Buffer = 100 ms)

CORR vs SG: MusicVideo
(Shaper Buffer = 200 ms)

20.0 T T 20.0 T T
G—=o Single Shaper & T =1 G—=o Single Shaper & T =1
5—=a Dual Shaper & T=1 5—=a Dual Shaper & T=1
16.0 - &—=> Single Shaper & T=10 | 16.0 - &—= Single Shaper & T=10 |
: &——4A Dual Shaper & T =10) &——4A Dual Shaper & T =10
<—=< Single Shaper & T = 20 g <—=< Single Shaper & T = 20
V—v Dual Shaper & T = 20 8 V—v Dual Shaper & T = 20
]
12.0 + £ 120 r b
S
O
ks
o
8.0 - -)
S]
8
3
W o
40 - 4 4.0
00 I 1 1 1 00 I 1 1 1
0.0 100.0 200.0 300.0 400.0 500.0 0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms) Delay (ms)

Figure 11: Relative performance of CORR and SG on MusicVideo with different shaper buffers.

CORR vs SG: NewsClip
(Shaper Buffer = 100 ms)

CORR vs SG: NewsClip
(Shaper Buffer = 200 ms)

20.0 T T 20.0 T T
G—=o Single Shaper & T =1 G—=o Single Shaper & T =1
5—=a Dual Shaper & T=1 5—=a Dual Shaper & T=1
16.0 - &—=> Single Shaper & T=10 | 16.0 - &—= Single Shaper & T=10 |
: &——4A Dual Shaper & T =10) &——4A Dual Shaper & T =10
<—=< Single Shaper & T = 20 g <—=< Single Shaper & T = 20
V—v Dual Shaper & T = 20 8 V—v Dual Shaper & T = 20
]
12.0 + £ 120 r b
S
O
©
g
8.0 - 4 Z 80+r
S]
8
o]
W 14
40 - b 40 -
00 I 1 1 1 00 I 1 1 1
0.0 100.0 200.0 300.0 400.0 500.0 0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms) Delay (ms)

Figure 12: Relative performance of CORR and SG on NewsClip video with different shaper buffers.

11, 12 and 13 plot the ratio of the number of connections admitted by CORR and SG for different

end-to-end delay and shaper configurations.

In general we observe similar trends in the plots as in the previous section, except that CORR

26

Ratio of No. of Connections

20.0

16.0

12.0

©
o

»
o

0.0

CORR vs SG: Lecture CORR vs SG: Lecture

(Shaper Buffer = 100 ms) (Shaper Buffer = 200 ms)
T T 200 T T
G—=o Single Shaper & T =1 | G—=o Single Shaper & T =1
5—=a Dual Shaper & T=1 5—=a Dual Shaper & T=1
&—> Single Shaper & T = 10 &—> Single Shaper & T = 10
| s—2 Dual Shaper & T = 10] 16.0 - s—2 Dual Shaper & T = 10]
<—=< Single Shaper & T = 20 2 <—=< Single Shaper & T = 20
V—v Dual Shaper & T = 20 '% V—v Dual Shaper & T = 20
]
= g 12.0 - A
O
ks
o
L E 80 L i
S]
8
3
14
- 40 -
I 1 1 1 00 1 1 1
0.0 100.0 200.0 300.0 400.0 500.0 0.0 100.0 200.0 300.0 400.0 500.0
Delay (ms) Delay (ms)

Figure 13: Relative performance of CORR and SG on Lecture video with different shaper buffers.

outperforms SG in most cases even when used in conjuction with a single moving window. The

observations can be summarized as follows:

When used with single moving window, CORR outperforms SG for all delay requirements and

all shaper configurations except for a few instances requiring low end-to-end delay.

When used with single moving window, CORR performs better when the cycle time is smaller.
In all frame based or round robin scheduler, the smaller the frame size (or cycle time) better
is the delay performance. The difference in the case of CORR is that a lower cycle time does

not constrain the bandwidth allocation granularity.

CORR, used in conjuction with two moving windows, always configuration SG. The perfor-
mance gap is higher for smaller shaper buffer, smaller delay budget, and more bursty traffic
sources. When used with dual moving windows, cycle time has very little impact on the number
of connections admitted by CORR.

Smaller is the end-to-end delay requirement higher is the gain seen by CORR when used with
two moving windows. However, when used with single moving window, the gain seen by CORR
is lower for tighter delay requirements and increases as the delay requirements loosen.

The results presented in this section demonstrate that despite its simplicity (1) CORR is very

competitive with PGPS and almost always out performs SG when used in conjunction with simple

shapers, (2) CORR performs equally well with leaky bucket as well as moving window shapers,

27

(3) when used in conjunction with multi-rate shapers CORR outperforms both PGPS and SG by
significant margins. The results are consistent across traffic traces of wide variability and shows the

effectiveness of CORR as a multiplexing mechanism.

6 Concluding Remarks

28

References

[1]

[2]

[3]

[10]

[11]

C. M. Aras, J. F. Kurose, D. S. Reeves, and H. Schulzrinne. Real-Time Communication in
Packet-Switched Networks. IEEE Transsactions on Information Theory, 82(1), January 1994.

S. Keshav C. R. Kalmanek, H. Kanakia. Rate Controlled Servers for Very High Speed Networks.
In Proceedings, GLOBECOM, December 1990.

A. Demers, S. Keshav, and S. Shenkar. Anslysis and Simulation of Fair Queuing Algorithm. In
Proceedings, SIGCOMM, 1989.

S. J. Golestani. A Framing Strategy for Congestion Management. IEEE Journal on Selected
Areas of Comminication, 9(7), September 1991.

S. J. Golestani. Congestion Free Communication in High-Speed Packet Networks. IEEE Trans-
action on Comminication, 32(12), December 1991.

S.J. Golestani. A Self-Clocked Fair Queuing Scheme for Broadband Applications. In Proceedings,
INFOCOM, June 1993.

A. K. Parekh and R. G. Gallager. A Generalized Processor Sharing Approach to Flow Control in
Integrated Services Network: The Single Node Case. IEFE/ACM Transactions on Networking,
1(3), June 1993.

D. Saha, S. Mukherjee, and S. K. Tripathi. Carry-over Round Robin: A Simple Cell Schedul-
ing Mechanism for ATM Networks. In Proceedings, INFOCOM. Ezxtended version available as
Technical Report CS-TR-8658/UMIACS-TR-96-45, University of Maryland, March 1996.

D. Saha, S. Mukherjee, and S.K. Tripathi. Multirate Scheduling of VBR Video Traffic in ATM
Networks. Technical Report CS-TR-3657/UMIACS-TR-96-44, University of Maryland, May
1996.

M. Shreedhar and George Varghese. Efficient Fair Queuing using Deficit Round Robin.
IEEE/ACM Transsactions on Networking, 4(3), June 1996.

L. Zhang. Virtual Clock: A New Traffic Control Algorith for Packet Switching Networks. In
Proceedings, SIGCOMM, 1990.

29

A Appendix: Shaping Mechanisms

A.1 Simple Shapers

Several shaping mechanisms defining various types of shaping envelopes have been proposed in the
literature. The most popular among them are leaky bucket, and moving window. Following we briefly
describe their working principles and the shaping envelope they enforce on a traffic flow.

Leaky Bucket Shapers: A leaky bucket regulator consists of token counter and a timer. The
counter is incremented by one each ¢ time and can reach a maximum value b. A cell is admitted into
the system/network if and only if the counter is positive. Each time a cell is admitted, the counter is
decremented by one. The traffic generated by the leaky bucket regulator consists of a burst of upto
b cells followed by a steady stream cells with a minimum inter-cell time of ¢. The major attraction of
the leaky bucket is its simplicity. A leaky bucket regulator can be implemented with two counters,
one to implement the token counter and the other to implement the timer.

Moving Window Shapers: The moving window mechanism divides the time line into fixed size
windows of length w. The number of arrivals in a window is limited to a maximum number m. Each
cell is remembered for exactly one window width. That is, if we slide a window of size w on the
time axis, the number of cells admitted within a window period would never exceed m irrespective
of the position of the window. Hence, the worst case burst size in moving window never exceeds
m. Since the departure time of each cell is remembered for a duration of one window period, the
implementation complexity depends on m, the maximum number of cells admitted within a window
period.

A.2 Composite Shapers

Simplicity is the main attraction of the shapers described in the last section. They all are quite
easy to implement, and define traffic envelopes that are easily amenable to analytical treatment.
Unfortunately, they are often too simple to capture the true characteristics of the real-life sources
[9, 8]. All the shapers described in the previous section enforce a specific rate constraint on a source,
typically a declared peak or average rate. However, most applications generate inherently bursty
traffic. Hence, enforcing an average rate results in a higher delay in the shaper buffer, and a peak
rate enforcement leads to an over allocation of system resources, and consequently lower utilization
of the system. To alleviate this problem, or in other words, to enforce a shaping envelope that is
close to the original shape of the traffic, yet simple to specify and monitor, we can use multiple
shapers arranged in series. That is, we can choose multiple leaky buckets or moving windows with
different parameters enforcing different rate constraints over different time intervals. Composite
shapers provide us with a much richer and larger set of traffic envelopes with marginal increase in
complexity.

In the rest of the section we derive the exact shapes of the traffic envelopes when multiple leaky
buckets and moving windows regulators are arranged in cascade. Our objective is to determine the

worst case bursty behavior of the traffic generated by the shaper. That is, traffic is generated by the
shaper at the maximum rate permitted by the shaping envelope. These results are used in section 4

to find the worst case bounds on end-to-end delay.

Multiple Leaky Buckets

The shaping envelope defined by a composite leaky bucket is the intersection of the shaping envelopes
of constituent leaky buckets. In figure 14 a composite leaky bucket consisting of leaky buckets LB,
LB,, LB; and LB, is shown 7. The shaping envelope is the thick line. The exact shape of the
envelope depends on the number of shapers and the associated parameters. Inappropriate choice of
shaper parameters may give rise to redundant components which may not have any role in defining
the shaping function. For example, LB, is a redundant component in the composite shaper shown
in figure 14. We call a set of leaky buckets an essential set if none of the buckets is redundant.

Let us consider n leaky buckets (b;,t;), 2 = 1,2,...,n. Without loss of generality we number the
buckets in such a fashion so that t; > ¢;, for 2 < j. We can show that if these leaky buckets from an
essential set then b; > b;, for © < j.

N

Cell Index

Shaping Envelope

o

Time

Figure 14: Shaping with multiple leaky buckets.

Definition A.1 An n-component composite leaky bucket is an essential set of n leaky buckets (b1, 1), (ba,t2),. ..

where b; > b; and t; > t; for1 < 7. For the purpose of mathematical convenience we assume that the

n-component shaper includes another pseudo leaky bucket (b,11,t,11) where b,y =0 and t,1, = 0.

"Precisely speaking the shaping function due to each leaky bucket is a burst followed by a stair case function. For ease
of exposition we have approximated the stair case function by a straight line with the same slope. This simplification
is only for the purpose of explanation. The results derived later takes the stair case function into consideration.

i

Cell Index

N
% Shaping envelope with m+1 leaky buckets Time

. Portion of the saping envelope excluded
after the m+th bucket is added

Figure 15: Departure function after adding m + 1,5 bucket.

The following theorem determines the shaping function of a composite shaper consisting of an

essential set of leaky buckets.

Theorem A.1 Consider an n-component composite leaky bucket. Define

00 k=0,
bty — biyat
B, — {MJ k=12, .n,
tr — trta
0 k=n+1.

Then the departure time of the i** cell from the composite shaper, denoted by a(t) is,
n+1
a(d) =3 (i—by+ 1)t [U(i— By) -~ U(i— By_1)], i=0,1,...,00

k=1

where U(x) is the unit step function defined as,

Proof: We will prove this theorem by induction.

Base Case: For n = 1, we have By = oo, By = b;, and B, = 0. Therefore,

a(i) = (i— by + 1) t, U(i — by).

iii

This allows a burst of size b; to depart at time 0 and a cell after every ¢; henceforth. Clearly, the
traffic envelope defined by the shaping function conforms to the traffic generated by a leaky bucket
with parameters b; and ¢;. Hence the hypothesis holds in the base case.

Inductive Hypothesis: Assume that the premise holds for all n < m. To prove that it holds for all n,
we need to show that it holds for n = m + 1.

Figure 15 shows the cumulative departure function before and after the addition of the (m + 1)
bucket. Since the set of buckets constitute an essential set, b;y; < b; for ¢ = 1,2,...m. Therefore,
the effect of (m 4 1)** bucket is observed from time 0 to the time when the shaping function of
bucket m + 1 intersects the composite shaping function before the addition of the (m + 1)“" bucket
(see figure 15). We observe that this cross over point is really the point of intersection between the
shaping functions of the m** and the (m+1)** leaky buckets. Using simple geometry we can find that
these shaping functions intersects at the departure instant of the [(bymtm — bmiy1tmi1)/(tm — tmy1)] th
cell, which, by definition, is B,,.

In other words, the bucket m + 1 excludes the segment marked by the solid shadow from the shaping
envelope as shown in figure 15. The new segment of the shaping function can be defined as,

(2= b1+ 1) tmys [U(2 = Binys) = U1 = By

After some algebraic manipulation, we can write the entire shaping function as,

m+1

a(i) = Y (i=be+1) t [U(i=By) = Ui~ Be)]
i:(li — i1 + 1) b [U(i = Bys) — U(i — By
= jij(i— bp +1) t, [U(t—By)—U(i— By_1)]
This completes the proof. O

Multiple Moving Windows

A composite moving window shaper smooths the traffic over multiple time windows. Figure 16
shows the shaping envelope of a composite shaper consisting of moving windows MW, = (wy, m4),
MW, = (w2, my), MW; = (w3, m3), where wy; = 3 X wy, wy = 4 X w3 and my = 2 X my, My = 2 X M.
The shaping envelope shown in figure 16 captures the worst case bursty behavior of the traffic
generated by a composite moving window. The worst case occurs when s burst of cells are generated
at the earliest instant satisfying the regulator constraints. In this particular example traffic is shaped
over three different time windows. The first moving window limits the number of cells dispatched
in any time window of size w; to m;. However, MW, does not impose any restriction on how these
my cells are dispatched. In the worst case, they may be dispatched as a single burst of size m;.

v

Index

A
\

Wq

Cell

Wo

- 00000

M3

Time

Figure 16: Shaping envelope of a composite moving window.

The moving window MW, determines the burst size distribution within w;. The window w; can be
broken down into three windows of duration w, each. The maximum amount of traffic that can be
dispatched during any time interval of w, is limited to m, by MW,. Hence, m, cells are dispatched
in each of the first two w, intervals. Since m; = 2 X m; no cells are dispatched in the third w,
window to satisfy the constraint imposed by the first moving window. Similarly, w, = 4 X w3, but
my = 2 X ma. Hence, ms cells are dispatched in each of the first two w; windows within a w,; window.
In the remaining two w; windows no cells are dispatched to satisfy the constraint imposed by MW,.
In the following, we formally define a composite moving window shaper and characterize its traffic
envelope.

Definition A.2 An n-component composite moving window shaper consists of n simple moving win-
dows (wy, my), k= 1,...,n, where w; > w;, m; > my, and m;/w; < m;/w;, for 1 << j<n. For
the sake of mathematical convenience we assume that an n-component composite shaper also include
another pseudo moving window (mg, we) such that me/my = 0. We also assume for the simplicity
of exposition that m;,; divides m; and w;,, divides w;, fori=1,2,...,n— 1.

Theorem A.2 Consider an n-component moving window shaper. If a(t) is the departure time of
the it* cell from the shaper then,

. L ’L ’L Mp_1 .
= — = =0,1,...
a(z) kZ:l <{ka {mk—lJ my > ks +=01 > %0

Proof: We will prove this by induction.

Base Case: For n = 1, we have a(7) = {leJ wy. This means that a burst of size m; appears at time

kwy, k = 0,1,...,00. Clearly, this represents the shaping function due to a single moving window
with parameters (w;, m;). Hence, the premise holds in the base case.

Inductive Hypothesis: Assume that the premise holds for all » < [. To prove that it holds for all n,
we need to show that it holds for n =11+ 1.

Wi
>< A - >
3 [
= I
— w
= | W1
@) WI
I+1 m
—— - |
! M4
Time™

Figure 17: Shaping envelope after adding the (! + 1)** moving window.

Consider the effect of adding (! + 1)** moving window. In the worst case, the burst always comes
at the beginning of a window. Therefore, as shown in figure 17, bursts of size m; cells appear at the

beginning of each window of length w;, for m;_; /m; windows. Now, from the hypothesis, the arrival

time of the ¢** cell is given by,
(=] - =) 5)
—| - wy,.
my MmMyg_1 my

!

a(i) =)
k=1

If a new shaper (w41, miy1) is added, the burst appearing at the beginning of each w; window will

spread out into m;/m;,; bursts of size m;,; each and separated by w;;; as shown in figure 17. Due

this spreading out of the bursts, the arrival time of the 7** cell will be postponed by,

() - [)

Hence the arrival time of the ¢*" cell after the addition of the (I + 1)** moving window is,

a(s) = qu_J L])
(Em R
(o L))

|

I+

I
]

vi

