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Chitosan has served as a robust and reproducible scaffold for biological reactions 

by electrodeposition at specific sites in microfluidic channels.  However, its growth and 

properties are not well understood as a function of deposition parameters. To better 

understand the materials and process science, in-vitro characterization techniques and 

post-deposition measurements of air-dried films were performed.  AFM images of dried 

films depicted variable, rough morphology not directly correlated to deposition 

conditions while hydration increased surface homogeneity. Dry roughness increased 

logarithmically with thickness supporting growth by nucleation. In-vitro fluorescence 

images showed fairly smooth distribution of chitosan, whereas dried films were much 

rougher, indicating non-uniform collapse of structure during drying.  Raman 

spectroscopy revealed the presence of primary amine groups active in 

biofunctionalization and served as a technique for evaluating the spatial selectivity of 

chitosan by electrodeposition. Further study of hydrated films is needed to fully 

understand chitosan as a platform for biotechnology applications.
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Chapter 1: Introduction 
 

Chitosan, an amine-rich polysaccharide composed of N-acetyl-D-glucosamine 

and D-glucosamine, is being explored as a biocompatible substrate for biological 

reactions in microfluidic channels. Chitosan is selectively electrodeposited on gold 

electrodes within the microchannels, forming an interface between inorganic material and 

biological species used in the device like enzymes, proteins, and DNA. The effectiveness 

and biocompatibility of the films are affected by the chemical and physical properties of 

the films; these properties need to be tailored for particular biological applications. For 

example, large amine site density is favorable for the attachment of biomolecules [1]. 

However, this condition is toxic to cells [2]. Different cells and molecules also thrive in 

different surface roughness conditions. These properties are affected by the many 

parameters in the electrodeposition process. 

The growth of electrodeposited chitosan biopolymer is still not clearly 

understood. Currently, reproducibility of the films is difficult in this complex system that 

is sensitive to many variables.  It is unknown exactly how the deposition parameters 

affect the physical and chemical properties of the films. The current experimental set up 

and procedures for chitosan deposition are not optimized and understanding of the growth 

of chitosan is lacking. This study will primarily examine the effect of current density and 

deposition time on the surface roughness of chitosan films using Atomic Force 

Microscopy (AFM). In addition, the chemical functionality of chitosan will be identified 

using Raman spectroscopy. 
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1.1 Chitosan 

The polysaccharide chitosan is being explored as a substrate for biological 

reactions. Besides advantageous chemistry, chitosan is environmentally friendly, 

commercially available, and inexpensive. Chitosan is synthesized by the deacetylation of 

chitin, (1,4)-2-acetoamide-2-deoxy-β-D-glucan, the second most abundant natural 

polysaccharide that is found in insect and crustacean exoskeletons and the cell walls of 

fungi [3]. The structures of chitin and chitosan are illustrated in Figure 1. At moderately 

acidic pH (pH < 6), the amine groups of the chitosan become protonated and form 

positively charged ammonium groups. The conversion from neutral polymer to positive 

electrolyte means that chitosan will dissolve in a slightly acidic, aqueous solution.  

However, if a base is added and the pH rises above 6.5, the ammonium groups are de-

protonated and converted back to neutral amines, making chitosan insoluble. This 

property provides for an easy mode of deposition based on the pH dependent solubility of 

chitosan. 

 

Figure 1. The structure of chitin and chitosan [4]. 
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Chitosan is the common name for chitin which is more than 50% deacetylated. 

This means that chitosan is really a mix of chitin and chitosan groups within one 

molecule, but that most of the identifying groups are amine rather than acetyl groups. The 

structure of chitosan, block or random copolymer, has been debated with no clear answer. 

However, the structure of the ideal polymers has been agreed upon. Ideal chitin with 0% 

deacetylation will be flexible and follow a random coil conformation. On the other hand, 

ideal chitosan that is 100% deacetylated will be a rigid structure due to electrostatic 

repulsion. The block copolymer structure is composed of sequences of mainly chitin or 

chitosan sections that alternate throughout the chain. In [5], the block copolymer structure 

was proposed after viewing TEM images. The authors proposed a ball and chain model 

consisting of spheres made of flexible coils of mainly chitin separated by rigid chains of 

mainly chitosan. Ottoy et. al. used H-NMR to study the structure of chitosan [6]. They 

made calculations of the probability of finding two acetylated or deacetylated monomers 

in sequence as a function of deacetylation time and compared them with experimental 

data from H-NMR. They found the experimental data to be very close to their 

calculations for the random model and to not agree with the block copolymer model. 

Interestingly, Aida et. al. found both models to be correct by studying chitosan with 

different degrees of deacetylation (DD). They discovered that the DD affects the type of 

copolymer formed [7]. In addition, Kurita et. al. found that the method by which the 

chitosan is prepared affects the structure [8]. 

1.2 Previous Work 

In our group, chitosan has been successfully deposited onto gold electrodes with 

spatial and temporal selectivity. Spatial resolution has been proven down to 20 microns 
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using fluorescently tagged chitosan and fluorescence microscopy. In addition, chitosan 

can be fluorescently tagged after deposition by reacting with NHS-fluorescein (5- (and 

6)-carboxyfluorescein succinimidyl ester) [9]. Chitosan films have been deposited inside 

microchannels and have been proven as adequate substrates for biological reactions 

within them. However, we have not previously studied the materials science of these 

films and still do not understand how they grow. 

Collaborators at ITC-irst in Italy have researched many properties of chitosan. 

The degree of deacetylation, DD, labels what percentage of the molecule is chitosan 

versus chitin. Reflecting the composition, this value strongly affects the chemical, 

physical, and biological properties of the molecule. However, it is difficult to obtain an 

accurate DD value for a chitosan sample. At ITC-irst, they found that the DD is highly 

dependent on the analytical mode used so that results from various methods did not often 

agree with the value provided by the supplier. However, they did find that 100% DD 

films were very rough and had problems with cell adhesion. This is probably because 

large amounts of amine groups are toxic to cells, but useful for attaching biological 

molecules. Thus the DD must be tailored for the appropriate application. In addition, they 

studied the effect of the deposition method, air dried vs. electrodeposited, and performed 

studies using actual cells. They found that different cells preferred different film 

characteristics, but that the cells thrived more on the air dried films. However, using XPS, 

they found that the surface chemistry was the same regardless of the deposition method. 

Thus the key to cell adhesion and health must lie in the physical morphology of the films 

rather than the chemistry and thus the roughness and morphology are the main subject of 

this research. 
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1.3 Motivation 

A microfluidic device with chitosan covered reaction sites is being developed 

with long-term goals of biosensing, nanostructure assembly, enzymatic reactions, and 

study of individual cells. This biological MEMS device could be used for quorum 

sensing, disease diagnosis, and contamination detection. In addition, this technology 

could be used to assemble tiny structures like carbon nanotubes in a specific manner for 

molecular electronics [1]. To make these goals attainable, an interface layer between the 

inorganic substrate and the biological molecules must be implemented. Primary amine 

groups are critical for attracting biomolecules like proteins and DNA to a surface, making 

chitosan a likely choice. Overall, the chitosan films need to attract a high density of 

biomolecules to their surfaces.  
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Chapter 2: Experimental 

2.1 Chitosan Deposition 

Growth of chitosan via electrodeposition allows for spatially and temporally 

selective deposition through the control of voltage or current. Electrodeposition exploits 

the pH dependent solubility of chitosan; deposition from solution occurs in areas of high 

pH. A mechanism for chitosan electrodeposition has been proposed by Fernandes et. al. 

[10]. When a voltage is applied between two electrodes, the positive electrode (hereon 

called counter electrode or CE) becomes positively charged and the negative electrode 

(hereon called the working electrode or WE) becomes negatively charged. A local region 

of high pH is generated electrochemically at the WE surface due to the hydrogen 

evolution reaction. The reaction rate is proportional to the current density which can be 

adjusted by changing the applied voltage.  

As indicated in Figure 2, the proton consumption at the WE is partially 

compensated for by protons generated by the dissociation of water. Thus a pH gradient 

can be initiated in the immediate vicinity of the WE surface depending on the relative 

rates of hydroxyl ion generation and hydroxyl ion diffusion from the interfacial region 

[10]. A chitosan molecule that enters the high pH region (pH > 6.3) will become 

deprotonated and subsequently insoluble, depositing on the WE. No chitosan will deposit 

on the CE because the pH is above 6.3. However, the gold of the CE dissolves with 

repeated use likely due to the low pH surrounding the CE and due to electrochemical 

reactions (Au ions are attracted to the WE so the Au dissolves). While it may be fairly 

simple to obtain growth, controlling and predicting the growth is very difficult as the 

growth is sensitive to a large number of experimental parameters.  
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Figure 2.  pH gradient drives deposition of chitosan on WE [10]. 
 

2.1.1 Making Chitosan Solution 

To perform electrodeposition of chitosan, the as-received chitosan flakes must be 

synthesized into a polyelectrolyte solution. The solution of chitosan must be prepared 

very carefully since characteristics like pH, molecular weight, and concentration (salt and 

chitosan) significantly affect the properties of the final film. Derived from crab shells, the 

chitosan was obtained from Sigma-Aldrich as minimum 85% deacetylated flakes with an 

average molecular weight of 370,000. The flakes are then ground up to increase the 

surface area and to allow for faster dissolution. Next the graduated cylinder and pH meter 

are calibrated and 2M HCl is formulated. Both precisely measured, the ground chitosan is 

added to deionized water while stirring magnetically with a stir bar. Monitored by a pH 

meter, 2M HCl is dripped from a burette into the mixture slowly to decrease the pH to 

between 2 and 3 since chitosan dissolves fastest in that range. The addition of HCl is 

interrupted once the pH reaches the desired level and the amount of acid added is 

recorded for the purpose of calculating the ion concentration. The solution is then stirred 
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until the chitosan is nearly dissolved, usually after about 8 hours. Next the solution must 

be filtered to remove the insoluble impurities that were present in the flakes. After 

vacuum filtration, 1M NaOH is added to the solution in order to raise the pH to a suitable 

range for deposition (~5). It is important to add NaOH slowly and in small drops since 

very high local pH causes chitosan precipitates that could lead to the need for more 

filtering. Lastly the concentration is calculated. The solution must be kept cold in a 

refrigerator to avoid the growth of fungi. However, the solution must warm to room 

temperature before performing the deposition. 

The chitosan solution used for deposition is critical since factors like ion 

concentration and pH affect the final properties of the film. Ion concentration is important 

because it affects the conformation of the chitosan molecules (affects the energy 

favorability) and the electrical properties (ions are conductive). The acidic chitosan 

solution is conductive because the chitosan molecules become protonated at low pH, 

making them positively charged. During deposition, a current is set up between the 

counter and working electrodes. Moreover, additional ions, like H+, Na+, and Cl- are 

present due to the chitosan solution preparation. As with the protonated chitosan, they are 

charged and they are conductive. The more charge carriers or the greater the density of 

the carriers, the less resistance that is present so that less voltage is needed to produce a 

steady current, affecting the effective current for a given voltage and thus the electrical 

data. Therefore the concentrations and amounts of acids and bases added while making 

the solution must be carefully monitored. In addition, ion concentration can affect the 

conformation of the molecules since polymers are very sensitive to their environments. In 

a good solution, it is favorable for the polymer to spread out in the solution, making it 
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long and fiber like. However, in a bad solution, contact with the molecule itself is 

preferred over the solution. This means that the molecules will ball up into spheres to 

minimize contact with the energetically unfavorable solution. Thus the interaction 

between the polymer (chitosan) molecules and the solution (water, HCl, NaOH) affects 

the conformation and thus morphology of the film. 

2.1.2 Chitosan Deposition 

 Deposition was performed in SURF for all of the depositions except for the last 

which was done in LAMP. Deposition is performed in a chamber call the “combi cell” 

(for combinatorial cell as it was designed to test a matrix of experimental parameters) as 

pictured in Figure 3. This in-house designed and built apparatus is set up for in situ 

electrical and optical measurements during deposition. Two computers running LabView 

are used to monitor and record this data. The LabView programs were created by Jung 

Jin Park.  

 

Figure 3. The combi cell is used for chitosan electrodeposition. 
 

For deposition, a wafer is loaded into the clip containing push pin electrical 

contacts. The contacts connect the electrodes to the negative side of the power supply. 
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The Pt wires, the counter electrodes, are attached to the positive side. A reference 

electrode is also used. The chamber is then filled with chitosan to cover the electrodes. 

During deposition the laser beam hits the electrode to monitor changes in the reflectivity. 

A pH meter reads the pH and temperature, while LabView records the electrical data. The 

electrical measurements tell the operator whether the film is depositing correctly. A good 

signal is signified by a large, steep increase in the voltage needed to maintain the constant 

current in the first few seconds followed by a very slight, steady increase in the voltage. 

This is because in the first stage, the electrical path is being initiated and then the 

resistance is increased gradually by the growth of the partially insulating film. 

Deposition occurs on substrates made from silicon wafers and subsequent 

microprocessing techniques. Three chips are made from a single 4” silicon wafer with a 

500 nm oxide layer. Patterns are created by photolithography. The electrodes consist of a 

5 nm Cr adhesion layer and 200 nm of Au. Au is used because it is inert, stable, and 

easily processed. The working electrodes are squares that are 1 cm x 1 cm as illustrated in 

Figure 4. Microwires connect the electrodes to the contact pads. Contact is made using 

push pins which are connected to mini banana plug sockets. The banana plugs then go to 

the back of the combi cell where the wires are connected to alligator clips from the power 

supply. Built into the combi cell are also ports for the reference electrode and for the pH 

meter. The counter electrodes consist of three Pt wires. 
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Figure 4. Wafers used for chitosan electrodeposition. 
 

2.2 Film Characterization 

 2.2.1 Film Thickness  
 

Dry thicknesses were measured by Jung Jin Park and Susan Beatty in MSAL 

using a Dektak mechanical stylus profiler by Veeco. The profiler traces the surface in a 

single line scan of user-defined length. Since the thickness often varies across the film 

from top to middle to bottom, multiple scans are useful to determine an average 

thickness. Unfortunately, the scans were not always done the same number of times for 

each electrode. Some were scanned only once while others were scanned four or more 

times. The actual film thickness was recorded as the average difference in the heights 

(from top of the film to bare SiO2) minus the thickness of the electrode, 205 nm. 

2.2.2 Atomic Force Microscopy 

Two different AFMs were used for quantitative roughness measurements and 

imaging the surface morphology. Both were used in tapping mode with silicon tips with a 

resonance frequency around 250 kHz. The first AFM that was used is located at the 

Laboratory for Physical Sciences in the Surface Characterization lab, room 1221A. It is a 
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Dimension 3100 made by Digital Instruments of Veeco Metrology.  The other AFM that 

was used is a Dimension 5000 located in Professor Michael Fuhrer’s lab in the physics 

building, room 2219. Both of these instruments can accommodate samples up to 8” in 

diameter and 12 mm thick in air, vacuum, or fluids. A He-Ne laser beam is reflected off 

the cantilever and detected by a quadrature optical detector to determine the precise 

oscillation of the cantilever. The scanner head is a piezoelectric tube scanner capable of 

up to 90 x 90 micron scans with 1% lateral accuracy and a 6.7 micron vertical range. In 

addition, the AFM includes an optical microscope with 1.5 micron resolution for ease of 

navigating the surface [11].  Further specifications for these instruments can be found 

online on the Veeco Products website at http://www.veeco.com.  

AFM scans were performed in air on dry films. Naturally, wet analysis would be 

preferred since the films are used in wet conditions and polymers are highly sensitive to 

their environment. However, tapping AFM in fluid is extremely challenging and requires 

special adapters and a different, more expensive kind of tip. In addition, resolution is 

decreased in water versus air. Therefore, tapping in air is the best method for performing 

roughness measurements. Scans were performed in sizes ranging from 500 nm to 50 µm. 

After some experience, 2 µm scans were deemed the best for optimization of scale, 

resolution, and time. All roughness calculations were made using the Nanoscope software 

provided with the microscopes. The equations used to calculate the roughness values are: 

• The RMS (Rq) roughness is the standard deviation of the z values,  
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• The mean roughness (Ra) is the arithmetic average of the deviations from 

the center plane, 
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• Rmax is the difference in height from the highest to the lowest points on the 

surface relative to the mean plane. It is not as useful as the other 

calculations because the films are so heterogeneous that it is not a good 

measure of roughness. 

 

In accordance with industry standards, the images are flattened before calculations are 

made. For all samples, a third order flatten was applied to the image. More information 

about this operation can be found in the D5000 software manual, p. 105. 

The resolution acquired by the AFM is dependent on many factors, some of which 

can also affect the roughness data. First is the size or radius of curvature of the tip. The 

smallest lateral feature size that can be imaged is limited by the tip size. The tip size often 

increases with use as it picks up dirt and dust from the atmosphere and from the sample. 

In addition, the sidewall angles of the tip and sample features affect the resolution of 

sharp features. The user can partially control the vertical (z) resolution by lowering the z 

limit. Since points can only be taken in discrete intervals, lowering the z limit lowers the 

interval size, gaining in resolution. However, the z limit must exceed the maximum 

feature size to avoid crashing the tip into the sample. Similarly, lateral resolution is 

affected by scan size and the number of points taken in one direction (128, 256, 512). For 

example, for a 50 x 50 µm scan that has 512 pixels, 98 nm is the maximum feature size 

 13 
 



 

resolved. Moreover, noise especially from external vibrations can also limit the resolution 

in all three dimensions. 

2.2.3 Raman Spectroscopy 

The Raman microscope is located at LPS in room 1208, the Organic Electronics 

lab. The HoloSpec Raman microscope used was made by Kaiser Optical Systems. It 

consists of HoloLab 5000 modular Raman spectrometer, a Leica microscope, and CCD 

camera. The spectrometer is a holographic notch type system, meaning that it acquires 

data quickly and all at once rather than by scanning the surface line by line. Because of 

this, it is faster but with a lower resolution than other types of systems. This microscope 

has a resolution of 4 k (wavenumbers). Exposure time and number of accumulations were 

increased until a spectrum was attained with good resolution, a high number of counts, 

and low noise. Exposure time was 40 seconds for each of four accumulations. Analysis of 

the peaks was performed using the HoloGRAMS software by ThermoGalactic. The He-

Ne laser sampling area is 1 µm in diameter and 2 µm in depth. This means that the 

intensity of films thinner than this will be proportional to thickness due to the number of 

scattering centers scaling with thickness.  

2.3 Hypotheses 

Based on what I knew about the deposition process and from reading previous 

results, I made several hypotheses and subsequently chose deposition parameters to help 

explore them. First, films with higher current density should be rougher than those grown 

with a lower current density. This is because with a high current density, many molecules 

are approaching the surface quickly. They should be less efficiently arranged because 
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they do not have time to arrange in an ordered fashion or to “fill in the holes.” Upon 

drying, they have more room for collapse, creating large trenches and ridges. In addition, 

hydrogen evolution is greater due to increased reaction rates, producing more bubbles in 

the film. The hydrogen does not have as long to diffuse because the film grows faster and 

thicker and so it gets trapped in the chitosan films, making them rougher and full of 

bubbles. Thus this film should have a lower density than one grown at a lower current 

density. The small current density films should be smoother, denser, and more efficiently 

packed because the deposition occurs at a slower rate and the film has time to relax.  

The roughness and morphology should be different for wet and dry films. When 

the film is wet, the molecules are swollen full of water. As the film dries, the water 

evaporates and the structure collapses in a rather random manner. The collapse makes the 

dry film rougher and more heterogeneous than when it was wet. Also, in wet conditions, 

the hydrogel-like films interact with the water, meaning that water is a favorable solution 

for chitosan.  This means that the film should be rather fibrous since the chitosan will be 

in a good solution, spreading out with a large pervaded volume, especially because of 

residual NH3
+ groups that provide for electrostatic repulsion. As the film dries, the 

molecules collapse and should want to minimize their surface area, forming spheroids.  

2.4 Experimental Parameters 

 Several chitosan depositions were performed using different experimental 

parameters to determine their effect on the roughness. The conditions are described 

below for each. For simplicity, each deposition will be referred to by letter rather than 

date of deposition (present in each sub-heading) in the remaining chapters. 
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2.4.1 Deposition A: 02/08/05  

The goals of this deposition were to study the effect of time, current density, and 

neutralization. Films were studied using AFM and Raman both before and after 

neutralization with 1M NaOH. The parameters are shown in Table 1 below. This 

experiment was a great learning experience for developing the characterization 

parameters. 

Table 1. Deposition conditions from 2/8/05. 

24051

Time (s)Current Density 
(A/m2)

Electrode #

12053

18052

6054

6048

12047

18046

24045

24051

Time (s)Current Density 
(A/m2)

Electrode #

12053

18052

6054

6048

12047

18046

24045

 

2.4.2 Deposition B: 04/13/05  

The goal of this deposition was to examine how current density affects films 

grown for the same amount of time as shown in Table 2. In addition, some finer points 

were studied like the homogeneity across an electrode, the effect of current density on 

homogeneity, the average roughness measured from day to day, and the effect of scan 

size on roughness. 
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Table 2. Deposition from 4/13/05 

18044

18055

18066

18077

18088

Time (s)A/m2Electrode  #

18044

18055

18066

18077

18088

Time (s)A/m2Electrode  #

 

2.4.3 Deposition C: 05/12/05  

This deposition is a continuation of deposition B to get more data for the smaller 

current densities because during deposition B, something went wrong for the 1-3 A/m2 

electrodes and no deposition was recorded. This low current density region is most useful 

in practice for depositing in microchannels. This deposition conditions for C are found in 

Table 3 below 

Table 3. Deposition Conditions from 5/12/05. 

6

4

2

1

4

3

2

1

A/m2

1808

1807

1806

1805

1804

1803

1802

1801

Time (s)Electrode #

6

4

2

1

4

3

2

1

A/m2

1808

1807

1806

1805

1804

1803

1802

1801

Time (s)Electrode #

 

2.4.4 Deposition D: 08/17/05  

Deposition D was used solely to gain more information about thicknesses as a 

function of current density and time. More data from the lower current densities was 
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needed to plan parameters for the next deposition to have constant thickness in order to 

ultimately determine the effect of current density on roughness independent of thickness. 

The conditions are shown in Table 4. 

Table 4. Deposition Conditions from 8/17/05 

60416

120415

60514

120513

60212

120211

180210

24029

30028

36027

42026

48025

6034

12033

18032

24031

Time (s)A/m2Electrode #

60416

120415

60514

120513

60212

120211

180210

24029

30028

36027

42026

48025

6034

12033

18032

24031

Time (s)A/m2Electrode #

 

2.4.5 Deposition E: 11/16/05  

The goal of deposition E was to create films of the same thicknesses but with 

different current densities. Data taken from deposition D was used to try to create films 

with the same thickness on each wafer. The goal for wafer 1 was 800 nm and for wafer 2 

was 1 µm. The conditions used are presented in Table 5. A broken lead prevented 
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deposition on electrode 7 and no deposition was recorded on electrode 1 due to power 

supply problems. 

Table 5. Deposition Conditions from 11/16/05 
 

12048

15536

20025

9044

12033

16022

Time (s)A/m2Electrode #

12048

15536

20025

9044

12033

16022

Time (s)A/m2Electrode #

 

 

2.4.6 Deposition F: 02/09/06   

Deposition A conditions were repeated exactly (see Table 1) but this time with the 

goal of wet characterization in the AFM. The goal was to compare wet and dry roughness 

and morphology for a variety of thicknesses using the middle current densities to study 

the growth of chitosan. 
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Chapter 3: Thickness vs. Time and Current Density

Affected by experimental conditions, the thickness is an important result that also 

affects other properties of the film. It was reported by Wu et. al. that the growth of 

chitosan films is non-linear with time [12].  We found that it is approximately linear over 

small, intermediate times. If the thickness is plotted versus the deposition time, the 

current density influences the slope of the line; the slope should increase with increasing 

current density. However, from deposition to deposition, this slope was not the same for 

the same current density; the results were not repeatable from day to day. Also, the 

measured dry thicknesses did not always follow even the very basic, expected trends; 

there were points that did not make scientific sense at all. However, data generally 

follows as predicted: for the same time, films grown with a higher current density will be 

thicker than those grown at a lower current density and increasing the time of deposition 

will increase the thickness of the film.  

3.1 Deposition A 

 In deposition A, 6 of the 8 electrodes were shown to have deposition. Electrode 4 

had no deposition due dissolution from being left in the chamber as confirmed by 

profilometry and AFM. Electrode 6 showed no deposition from the profiler results, but 

something was on the surface according to the AFM images though it did not look like 

chitosan. Thus both of these electrodes are left out of all remaining analyses. The 5 A/m2 

substrate followed an expected linear trend, but the 4 A/m2 substrate had very unexpected 

results as shown in Figure 5. The thicknesses measured on the 4 A/m2 substrate did not 

make sense because for the same current density, as time increased, the film should 

increase in thickness because more molecules are being added to the film. There is no 
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possibility that dissolution, the competing force, is faster at this current density.  

However, in the 4 A/m2 substrate, the 60s sample was thicker than the 120s sample by 

almost 50%.  In addition, electrode 7 was thicker than electrode 3, even though 7 had the 

same time with a smaller current density. The current density increases the attraction and 

flow of molecules to electrode, increasing the thickness, or at least the density of the 

films. This specimen did not follow past results or logic. 

Thickness vs. Time
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Figure 5. Thickness vs. time for deposition A. 

 
 

The 5 A/m2 substrate grew as expected with a growth rate of 14.4 nm/s using the 

slope of the linear fit. Using an intercept of 0, the slope becomes 8.7 nm/s. The slope is 

2.7nm/s for the 4 A/m2 data, and is 7 nm/s with a set intercept at (0,0). 

3.2 Deposition B 

 The thicknesses for deposition B were readily fit with an exponential curve for 

thickness vs. current density. This exponential increase for a constant time is expected. 

The data is plotted in Figure 6. Due to experimental errors, no deposition was recorded 

on the first three electrodes with low current densities. 
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Figure 6. Thickness vs. current density for deposition B. 

 

3.3 Deposition C 

 The thicknesses for deposition C did not correlate well with either an exponential 

or linear regression line for thickness vs. current density. This may be because here lower 

to medium current densities are included versus the middle to high range represented by 

deposition B. This plot is seen in Figure 7. One can also observe that the thicknesses are 

not repeated from chip one to chip two as shown in Table 6. This data shows the 

unrepeatability of the results and thus how difficult it is to compare data from deposition 

to deposition because even in the same day, data is so different (75 - 250 nm differences). 

This data from the same day with the same conditions show how complex and subject to 

error the deposition is. 
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Figure 7.  Thickness vs. current density for deposition C. 
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Table 6.  Films grown with same conditions on the same day yield different thicknesses. 

200132511254180

2426754332180

7585101180

Difference (t2 - t1)Chip 2 thickness Chip 1 thickness A/m2Time

200132511254180

2426754332180

7585101180

Difference (t2 - t1)Chip 2 thickness Chip 1 thickness A/m2Time

 

3.4 Deposition D 

 More films were grown in this deposition than usual to get a large amount of data 

on the lower current densities and to have it all from the same day due to larger variations 

in data from different depositions. The data from deposition D show how current density 

affects the slope of the thickness vs. time graph known as the growth rate. In Figure 8a, 

the thickness vs. time data is presented with linear fits with the slopes given. However, 

the slope values make more sense when an intercept of (0,0) is added and used as shown 

in Figure 8b. The growth rates for each current density are given and show how the 

intercept addition affects that value advantageously. This is explicit in Figure 8c which 

plots the slopes calculated in 8a and 8b for each current density. It is obvious that the 

(0,0) intercept data is more believable. Also the increase in growth rate is linear with 

current density, increasing by 2.21 nm/s for every one unit increase in current density. 

With this set of data, it is obvious that the growth rate depends strongly on the current 

density. 

 23 
 



 

11.25

6.64

63

3.82

Slope (nm/s)A/m2

11.25

6.64

63

3.82

Slope (nm/s)A/m2

Thickness vs. Time

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600

Time (s)

Th
ick

ne
ss

 (n
m)

3 A/m2

2 A/m2
5 A/m2
4 A/m2
Linear (2 A/m2)
Linear (3 A/m2)
Linear (4 A/m2)
Linear (5 A/m2)

Thickness vs. Time

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600

Time (s)

Th
ick

ne
ss

 (n
m)

3 A/m2

2 A/m2

5 A/m2

4 A/m2

Linear (2 A/m2)

Linear (3 A/m2)

Linear (4 A/m2)

Linear (5 A/m2)

Best fit Best fit w/ y = 0 intercept

10.85

8.464

6.333

4.152

Slope (nm/s)A/m2

10.85

8.464

6.333

4.152

Slope (nm/s)A/m2

 

Growth Rate vs. Current Density

2
3
4
5
6
7
8
9

10
11
12

2 3 4 5

Current Density (A/m2)

Sl
op

e 
of

 T
hi

ck
ne

ss
 v

s.
 T

im
e 

(n
m

/s
)

intercep
t 0

natural
int

Linear
(interce
pt 0)

 

Figure 8. Thickness vs. time for deposition D. A: Line of best fit for data with slopes representing 
growth rate. B: Line of best fit using an intercept of 0 with slopes. C: Line of best fit for growth rate 
vs. current density shows that the growth rate increases by 2.21 nm/s for every one unit increase in 

current density. 
 

3.5 Deposition E 

This deposition was a total anomaly and has no explanation. To start, the 

thicknesses were much smaller than the expected 800 and 1000 nm for each chip as 

shown in Table 7. This experiment again shows that conditions used previously do not 

necessarily produce the same results when used again. What is worse about this 

experiment is that for the same time of deposition, the lower current density film was 

thicker. At least for each current density, the film that grew the longest was the thickest. 
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Three of the films, shown in red in the table below, will be studied further since they 

have about the same thickness of 400nm.  

Table 7. Film thickness does not follow expected results for deposition E. 

401.2512048

383.7520025

418.7512033

65115536

188.33333339044

15916022

Film Thickness (nm)Time (s)A/m2Electrode #

401.2512048

383.7520025

418.7512033

65115536

188.33333339044

15916022

Film Thickness (nm)Time (s)A/m2Electrode #
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Chapter 4: Roughness vs. Thickness  

4.1 The Effect of Scan Size 

After examining the quantitative roughness data from deposition A, it was 

apparent that scan size was crucial to the interpretation. All of the 50 µm scans had much 

higher roughness values than all of the 5 µm scans, regardless of the deposition 

conditions. The hypothesis that roughness increases with scan size was further explored 

by analyzing a sample from deposition B. AFM scans were executed with scan sizes 

ranging from 500 nm to 50 µm without moving the lateral position of the sample with 

respect to the scanner. The roughness was then plotted as a function of scan size as 

shown in Figure 9. The increase is logarithmic which means that increasing the scan size 

has a much larger effect on the roughness at small scan sizes whereas an equal 

incremental increase when using larger scan sizes will have less effect. This effect is 

likely because increasing the scan area increases the probability of finding a defect like a 

very low or high spot, dust, or a crater or bubble. 
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Figure 9. Roughness increases logarithmically with scan size. 
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4.2 Deposition A 

When observing surface images with increasing time, it was apparent that the 

roughness increased as shown in Figure 10. The roughness values increased when plotted 

versus time for the 5 A/m2 films, but did not show a clear trend for the 4 A/m2 (Figure 

11a) due to the anomaly in the thickness vs. time data. Since thickness also increases with 

time, the roughness was plotted against the thickness for each. An increasing trend was 

observed when all roughness values were plotted versus thickness because this 

normalization resolved the anomaly in the 4 A/m2 thickness vs. time data. In Figure 11b, 

roughness vs. thickness was plotted for each current density according to scan size and 

type of roughness. However, the dependence is not clear with so few data points and such 

a small range of thicknesses; the dependence could be linear, parabolic, or logarithmic. 

To determine an accurate correlation, more data is needed that uses the same scan size on 

multiple locations on each electrode to account for the heterogeneous nature of the 

surfaces.  
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Time
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Mean R (nm)RMS R (nm)z range (nm)#

 

Figure 10. AFM images show that roughness increases with thickness for the same current density. 
All images use the same image processing parameters. 
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Figure 11. A (top): Roughness does not show a clear trend when plotted vs. time. B (bottom): 

Roughness increases with thickness for each current density. 
 
 

At this point it was uncertain that increasing current density increases the 

roughness because increasing the current density increases the thickness.  Because 

roughness seems to depend on thickness and thickness is dependent on deposition time, 

the effect of current density on roughness cannot be obtained for films grown for the 

same deposition time. However, in deposition A, two films were close in thickness, 

electrode 2 on the 5 A/m2 chip and electrode 5 on the 4 A/m2 chip with 1.2 µm and 1.3 

µm respectively. In this one comparison, the lower current density, despite being slightly 

thicker, had lower roughness values as presented in Table 9. These data collaborate the 

theory that films grown with higher current densities are rougher. However, this is one 
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small area on two different (and heterogeneous) samples. Further research must be 

conducted to deduce a solid conclusion. To more completely determine the effect of the 

current density, multiple films must be grown to the same approximate thickness with 

varying current densities. However, this is hard to predict since the packing efficiency 

and density will affect how much the structure collapses as it dries and because 

quantitative results have not been repeatable.  

Table 8. Roughness increases with current density. 

4327Mean R (nm)

5935RMS (nm)

54Current Density (A/m2)

4327Mean R (nm)

5935RMS (nm)

54Current Density (A/m2)

 

4.3 Deposition B 

 Using what was learned from deposition A, multiple scans were performed using 

the same scan size on each electrode. In addition to providing a larger sample size, this 

allowed for comparison of homogeneity across an electrode by comparing the standard 

deviations of the values. The average roughness for each thickness is plotted in Figure 

12a. Here the trend resembles an “s”, where the roughness increases logarithmically at 

small to medium thicknesses and then quickly increases for large thickness. For these 

medium thicknesses represented here, the change in roughness is not very large. 

Unfortunately, small thicknesses were not successfully deposited in this deposition and 

the largest thickness was not easily analyzable. Only one scan was successful on the 8 

A/m2 electrode. It was difficult to engage the tip and once engaged to get a good image 

because the sample surface was so rough. Thus the one value obtained was thrown out 

since an average over many scans could not be obtained. In Figure 12b is the standard 

deviation of the measured values about the average. The standard deviation is a measure 
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of the homogeneity; a larger standard deviation means that the film is more 

heterogeneous because the roughness varies more across the electrode. This plot shows 

that the middle thicknesses have about the same degree of heterogeneity, but that the 

thick film is highly heterogeneous. This result strongly agrees with optical images of the 

films as well as the AFM images.  
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Figure 12. Roughness and standard deviation vs. thickness for deposition B. A: The roughness vs. 
thickness curve has an “s” shape. B: Standard deviation increases with thickness indicating 

increasing heterogeneity.  

4.4 Deposition C 

The roughness was plotted against the thickness for deposition C in Figure 13a. 

The observed trend was logarithmic over all present thicknesses. This trend is in 

agreement with the previous. It follows that roughness increases quickly with small gains 

in thickness in the beginning of growth, and that roughness increases much slower for 

median thicknesses. When roughness was normalized by thickness as in Figure 13b, the 

normalized roughness decreased with increasing thicknesses. In addition, it was observed 

from the AFM images that average roughness increased with thickness and current 

density as shown in Figure 14. 
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Figure 13. A (left): Roughness increased logarithmically with thickness for deposition C. B (right): 
Normalized roughness decreases with thickness. 

 
 
 

 

Figure 14. AFM images from chip one of deposition C show that roughness increases with thickness 
and current density. 

4.5 Deposition E 

Even though deposition E was an anomaly and did not turn out as planned from 

deposition D, the experiment can be salvaged because of the six films, three had 

approximately equal dry thicknesses. Two of these three films had a similar roughness, 
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but the other was much rougher as pictured in Figure 15. Electrode 3 was rougher than 8 

which was rougher than 5 which goes in order of thickness, even with only nominal 

differences in thickness. However, there was no logical trend for the effect of the current 

density. It follows that the 2 A/m2 sample (5) would be the smoothest, but the 3 A/m2 (3) 

throws it off since it was much rougher than the 4 A/m2 (8) sample that should have been 

the roughest. It is especially strange that 3 was rougher than 8 since it was grown with the 

same deposition time yet lower current density.  

 

Figure 15. AFM show the nanostructure for films of similar thickness and different current density 
from deposition E. 

 
 

 Since the data for all six films was illogical it is likely that experimental errors 

contributed to the ill-fitting data that often followed the opposite of all previous results. 

For example, films that were supposed to have the same thickness varied widely, 

roughness actually decreased with thickness, and thicknesses were all much lower than 
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predicted. We have had problems with the power supply and it is possible that it 

malfunctioned throughout this deposition. 

4.6 Discussion 
 

Chitosan is an extremely complex and difficult molecule to work with. It is hard 

to predict and reproduce its behavior. The growth of amorphous chitosan films is 

nonlinear for both the thickness and the roughness. Examining the data from individual 

experiments, it appears that roughness increases logarithmically for small to medium 

thicknesses. For medium thicknesses, the increase is small and constant in slope and 

sometimes almost flat. For thick, hydrogel-like films, the increase in roughness is quick 

and abrupt, appearing exponential. Qualitatively, thick films are very rough and 

heterogeneous. However, there is not enough quantitative roughness data on hydrogel 

films to make a solid conclusion. When fitting together the shapes and trends from all the 

depositions together, the result is an “s” type curve for roughness vs. a large range of 

thicknesses. 

The data support a nucleation or “run away” growth model. Presumably, the first 

chitosan molecules are attracted to electrical charge concentrations caused by “bumps” 

on the gold electrode and then subsequent molecules are further attracted to the now 

larger “bumps.” This nucleation type growth causes the roughness to increase very 

quickly in the beginning of the growth. Eventually the mounds of chitosan grow into each 

other and the growth of the film’s roughness begins to slow and level off, making the 

normalized roughness decrease with thickness.  

One major disappointment was the inconsistency of results from deposition to 

deposition. It would have been nice to have grown more films in one deposition, but 
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growth is very time consuming; the combi cell cannot be left unattended. Growing just 8 

films takes all day even if everything goes nearly perfectly. When the data from all the 

depositions were plotted together to increase the sample size, the trends were less clear as 

the plots were very scattered. It was obvious that roughness increased with thickness, but 

how was not clear. Thickness increased with current density and time as expected, but 

there were tremendous variations as shown in Figure 16. When plotting roughness vs. 

thickness, the scatter is similar and in some cases worse because the error is propagated 

and also added to from the addition of the roughness measurements. 
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Figure 16. Global thickness vs. time and current density data have large variation. 

 
 

4.6.1 Deposition Error 
 

There are many possibilities for why the data vary so drastically. First off, 

chitosan itself is very complex and unpredictable. It is polydisperse, varying largely in 

molecular weight, and has an undetermined structure (block or random copolymer?). 

Chitosan film growth is sensitive to pH, temperature, concentration, molecular weight, 

ion concentration, and especially sensitive to small electrical changes. Freshly deposited 

chitosan dissolves back into the solution (pH 5 < 6.3). Thus the total time the film is in 

the solution affects the thickness to some degree (the dissolution rate was not studied). 
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Not only do the films sit in solution while others deposit (deposition is not parallel), but 

there is also usually at least 5 to 10 minutes between depositions as the laser position is 

moved, the reflectivity setup is prepared, and the data is saved. In the first few 

depositions where Jin and Susan chose the parameters, the shortest deposition was done 

first for constant current density, and for constant time, the smallest current density was 

first. For later depositions, I chose the order and had the theoretically thickest films 

deposited first down to the thinnest to equalize the percent dissolved as best as possible. 

This dissolution and order effect could have significantly affected the results. 

Because chitosan solution is so time consuming to make, for each deposition the 

chitosan is reused. The chitosan is poured into the reaction chamber and after deposition 

it is put back into the original container. Chitosan molecules are depleted from the 

solution as they deposit onto the electrodes and the electrodes are removed from solution. 

Thus the chitosan solution decreases in concentration after every deposition. After a year, 

it is possible that after many depositions the concentration has dropped enough to affect 

concentration and thus the thickness of the films.  

4.6.2 Measurement and Analysis Error 
 

There is also significant error in the quantitative roughness measurements by 

AFM. Besides the fact that the films are not homogeneous over an electrode and that the 

sample size (i.e. 2 x 2 µm) is a very small fraction of the overall surface area (1 x 1 cm), 

roughness is also highly sensitive to tip history and sharpness. As a tip is scanned, it tends 

to pick up dust and dirt. While these particles are very small, they make a large difference 

when scanning at high resolution. The dirtier or less sharp the tip, the less sensitive the tip 

is to sharp and small features. The only way to really get accurate results is by using a 
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fresh tip with every scan or to do the entire procedure from deposition to analysis in a 

clean room. However, AFM tips are very expensive, they are not all precisely the same 

size, and they are time consuming to replace. Thankfully, general trends in roughness can 

be recognized if using a large enough sample size (number of scans or electrodes) and 

difference in deposition parameters for a large difference in roughness. 

When examining AFM images, it is important to use the same parameters, like 

scan size, z height, flatten order, color contrast and offset. For surface images, also use 

the same rotation and pitch.  This is because the images and interpretation of the images 

are highly sensitive to these parameters. Images can be tweaked to “say what you want 

them to say” by changing image processing parameters. 

 

 37 
 



 

Chapter 5:  Results of Secondary Studies 
 
 Several other studies were performed parallel to the roughness and morphology 

study as a function of deposition parameters. The effect of neutralization on roughness, 

morphology, and chemistry was studied, along with spatial resolution, functionalization, 

and morphology of wet chitosan. 

5.1 Effect of Neutralization on Roughness and Morphology 

In deposition A, the effect of neutralization on roughness and morphology was 

examined. It has already been reported that neutralized films are thinner and more 

compact than they are before they were neutralized [12]. However, because of the 

apparent effect of the thickness on roughness, it is hard to know whether a reduction in 

roughness due to neutralization is due to a reduction in thickness or a change in the 

conformation and surface chemistry of the film. 

There was not a reliable trend in the effect of neutralization on roughness. While 

the neutralized roughness values were in general less than the non-neutralized roughness 

values, this was found to be likely due to the difference in dimensions of the scan (this 

was before I discovered the importance of scan size). When comparing only scans of the 

same size (5 x 5 µm), it is possible to compare the neutralized and non-neutralized 

samples, but with a sample size so small and with differences within the error bars, the 

results are inconclusive. While neutralizing the films after deposition should theoretically 

reduce the roughness, neutralizing is likely to have little effect on films that have been 

already dried for two months. 
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5.2 Morphology of Wet Chitosan Films 

While characterization of hydrated films is much more difficult, it provides 

important information about the properties of chitosan films in situ. Preliminary AFM 

results show that the surface morphology differs noticeably according to degree of 

hydration. Hydrated films, though thicker than when dry, are actually smoother. Rather 

than form rough ridges, the wet films have larger circular islands with rather smooth and 

flat plateaus as shown in Figure 17.  

Dry Wet

 

Figure 17. Dry and wet chitosan films have different morphologies. 
 

This phenomenon is in agreement with the findings of Xiaolong Luo. Luo studied 

the surfaces of fluorescently-labeled, dried chitosan films using a stylus profiler, and 

fluorescence microscopy. Fluorescence microscopy maps the spatial distribution of 
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chitosan across the deposition electrode, enabling a comparison of in-vitro and dry 

morphology of the chitosan film. Luo measured the intensity of the fluorescence across 

the electrode surface using a program called Image-J. A comparison of a cross section of 

the fluorescent profile with the physical profile from the stylus profiler showed that a 

map of fluorescent intensity correlates with physical surface dimensions. Following these 

results, he measured the intensity of the fluorescence of wet films in solution. He found 

that these films were much smoother than their dry counterparts as shown in Figure 18, 

which is in agreement with the AFM images and roughness calculations. In conclusion, 

air-dried films are much rougher, indicating non-uniform and unpredictable collapse of 

the film’s structure during drying.   
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Figure 18. Fluorescent intensity maps demonstrate that dry films are much rougher than wet ones. 
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5.3 Using Raman Spectroscopy to Identify Functional Groups 

Raman spectra were obtained for half of the films from deposition A before and 

after neutralization for determining chitosan’s functionality and the effect of 

neutralization on it. Raman spectra were analyzed for fingerprint and group frequency 

peaks. Group frequency peaks tend to occur above 1500 cm-1, while fingerprint modes 

are unique to the specific molecule and are usually found below 1500 cm-1 [13]. Before 

starting the analysis, the chemical structures of chitin and chitosan were examined for the 

groups they contained in order to know what to expect. The functional groups identified 

are presented in Table 9. 

 

 Group Char. Freq. (cm-1) 
Chitosan Alkane: C-C, C-H 

(methylene)  
2850-2960 

 Amine: NH2 
(primary) 

pair of peaks, 3350-3400 
and 3270-3330 

 Alchohol: C-OH 3600-3200 
 Ether: C-O-C 

 
1100 

Chitin Mono subst Amide: 
NH-C=O- CH3 

1260 (Amide III) 

 Amine: NH 
(secondary)  

3350-3310 

 Methyl, CH3:  bend, 1460; def 1375 
 

Table 9. Raman excitation frequencies for functional groups present in chitosan and chitin. The 
groups listed for chitin are in addition to the groups contained in chitosan with the exception of the 

primary amine group.  
 
 

While obtaining the Raman spectra requires little skill, performing the analysis is 

no easy feat. When analyzing a spectrum, start at the high frequency end and concentrate 

on the very intense peaks first. In general, do not try to account for all the peaks because 
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most are usually fingerprint peaks anyway. Also, be aware of peaks that can be an 

overtone caused by resonance [13]. Aided by reference 13, the group frequencies were 

first assigned to the spectra. The most prominent peak occurs around 2900 cm-1. This 

peak is due to alkane vibrations.  

5.3.1 Alkane Analysis 
 

Examining the molecules, chitosan contains 5 methine (C-H) groups per repeat 

unit and 1 methylene (CH2) group. Chitin contains 5 methine, 1 methylene, and 1 methyl 

group per repeat unit. According to source 13, methyl groups have a doublet at 2962 cm-1 

and 2872 cm-1, while methylene has a doublet at 2926 cm-1 and 2853 cm-1. However, 

according to reference 14, a methylene stretching doublet occurs at 2935 ±10 cm-1 due to 

asymmetrical stretching and 2883 ±10 cm-1 due to symmetrical stretching. This is in fact 

seen in the chitosan spectra in Figure 19 with values around 2883 cm-1 and 2936 cm-1 

observed. In addition, it is more likely that source 14 is correct for this application since 

chitosan is a biological material and is being analyzed using Raman rather than IR 

spectroscopy, which was the focus of that chapter in source 14. Moreover, according to 

source 13, methyl CH3 bending can be found at 1460 ±10 cm-1 and CH3 deformation at 

1375 ±10 cm-1. These peaks are present in Figure 20, indicating incomplete 

deacetylation.  
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Asym C-H stretch
2935 ± 10

Sym C-H stretch
2883 ± 10

NH2 asym
3375 ± 25 NH2 sym

3300 ± 30

Broad swelling/peak 
due to hydroxyl groups

 

Figure 19. The high wavenumber end of the chitosan spectrum contains alkane, amine, and hydroxyl 
peaks. 
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Figure 20. Methyl peaks present in the chitosan spectrum indicate chitin. 

 

5.3.2 O-H and N-H Analysis 
 
 X-H systems occur at high frequencies and do not tend to interact with any other 

vibrations except for each other, making them highly diagnostic and reliable [13]. 

Unfortunately, both O-H and N-H are present in chitin and chitosan. Alcohols have 

different characteristic frequencies depending on the substitution of the carbon the O-H is 

attached to. RH2COH is primary, R2HCOH is secondary, and R3COH is tertiary. Both 

chitosan and chitin have one primary and one secondary alcohol. Primary O-H has a peak 

at 3640 cm-1 and secondary O-H has one at 3630 cm-1 [13]. However, in Raman, all O-H 

bands are very weak, causing a very broad peak or swell as shown in Figure 19. IR 
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spectroscopy would need to be executed to examine these groups as O-H is stronger than 

N-H in IR. Thankfully, the reverse is true for Raman. 

Raman spectroscopy is very helpful for distinguishing amines from alcohols 

because the N-H stretch is distinctly stronger than is the O-H stretch [13]. Also, hydrogen 

bonding has less of an effect on amines than alcohols, which changes the spectra 

completely. There is one primary amine in the chitosan repeat unit. Aliphatic (refers to 

alkanes versus aromatic which refers to benzene rings) primary amines have peaks at 

3375 ± 25 cm-1 (out of phase or asymmetric stretch) and 3300 ± 30 cm-1 (in phase or 

symmetric stretch). These peaks are seen as shown in Figure 18. Chitosan spectra did not 

show NH2 scissoring at 1620 cm-1 or NH2 wagging at 800 cm-1. However, it is common 

for peaks to be missing so there is no cause for alarm. There is also a secondary amine in 

the chitin repeat unit. The secondary NH stretch occurs at 3300 cm-1. This is likely 

overlapping with the primary amine peak at the same frequency so it will be hard to 

distinguish between the two. The NH bend occurs at 1500 cm-1, but it also is not seen.  

5.3.3 Amide and Ether Analysis 
 
 Chitin contains one secondary amide per repeat unit. This gives an N-H stretch at 

3300 ± 20 cm-1, as well as amide I at 1650-1640 cm-1, amide II from 1570-1530 cm-1, and 

amide III in 1300-1220 cm-1. However, these peaks are strong or very strong in IR which 

means that they are not in Raman. Source 13 adds that the amide III may be seen in 

Raman better than IR, but is the only exception. Consequently, the ~1260 cm-1 peak 

could be amide III. However, source 14 says that amide I and amide II are found in 

Raman, but amide III is not.  Thus this assignment of the ~1260 cm-1 peak is tentative. 

Otherwise, no signs of an amide are present in the spectra.  
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Saturated ethers have a peak at 1100 ± 50 cm-1. This peak is present in the spectra, 

though source 13 says it is unimpressive in Raman. Three peaks are seen in this region. A 

maximum middle peak occurs around 1115 cm-1. A slightly shorter or about the same 

height peak occurs just to the right at about 1100 cm-1. A smaller shoulder to the left 

occurs around 1150 cm-1. There is no explanation other than fingerprint for the multiple 

peaks. These peaks are shown in Figure 21. 

 

Figure 21. Amide (green) and ether (purple) peaks in the chitosan spectrum. 
 

5.3.4 Effect of Neutralization on Amine Peak Intensities 

Before neutralization, there should be residual ammonium groups, NH3
+. This 

should show a difference between the before and after neutralization spectra. In an NH3
+ 

salt, the band due to stretching will be much lower than in NH2. There will often be 

several bands in the 2800-2200 cm-1 region, sometimes weak, sometimes strong [13]. 

However, no peaks are observed in this region at all. None of the spectra show evidence 
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of amine salts. ITC-irst results by XPS showed <0.5% of the groups were NH3
+. 

Assuming that the same is true here, the concentration of ammonium is too small for 

Raman to detect and thus the absence of the peaks is expected. 

Comparing the amine group intensities before and after neutralization, the peaks 

seem to intensify slightly after neutralization as shown in Figure 22. This could indicate 

that a few groups changed from NH3
+ to NH2, but that the NH3

+ groups were not 

concentrated enough to produce bands in the spectrum. However, the slight increase in 

intensity could also be due to error during Raman analysis. The intensities should be 

properly normalized by a peak that shouldn’t change with neutralization and then 

compared. 

 

Figure 22. The intensity of amine peaks increases after neutralization. 
 

5.4 Determination of Spatial Resolution using Raman Spectroscopy 

Spatial selectivity of chitosan deposition is important for further miniaturization 

of patterns for smaller devices.  Previously, we selectively deposited both fluorescently 
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labeled chitosan and chitosan that was later reacted with NHS-fluorescein onto negative 

micropatterned gold electrodes. Using fluorescence imaging, we showed spatial 

selectivity of chitosan down to 20 µm by using a wide range of pattern thicknesses and 

separations [10]. On the currently used chips, residues surrounding the gold electrodes 

were observed. Optically, it was unclear whether the residues were chitosan or residual 

salts that deposited during neutralization, rinsing, and drying steps. It was also not 

obvious through the study of surface roughness and morphology with AFM. Therefore, 

Raman microspectroscopy was implemented to chemically investigate the identity of the 

residues. Exploring the identity of the residues also provides information about the spatial 

selectivity of the electrodeposition process. Rather than reduce the size of the patterns 

and proceed as described previously, spatial resolution below 20 µm can be studied 

simultaneously.  

The expected Raman spectrum was obtained as described in Section 2.2.3 and 5.3, 

and is pictured in Figure 23a. It is possible to identify within 1 µm, the diameter of the 

laser spot, where chitosan is and is not present based on its unique spectrum. However, 

chitosan less than 100 nm thick cannot be detected with this technique as shown in Figure 

22b. The thickest sample, 3, with a thickness of 875 nm, has the most intense signal. 

Intensity decreases for sample 2 of thickness 433 nm. The 10 nm and 85 nm (not shown) 

films yield no signal above the noise level.  Signal strength or intensity is dependent on 

film thickness because the sampling depth is 2 µm, thicker than the chitosan films. Thus a 

reduction in thickness reduces the number of scattering centers reducing the intensity of 

the peaks. Therefore amine site density, a useful parameter for biological reactions, 

cannot be determined using this technique without normalizing the thickness. 
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Figure 23. Full Raman spectra of chitosan. A: Typical spectrum with peak values. B: Peak intensity 
increases with film thickness. 

 

Raman spectra were obtained near the electrodes to determine the chemical 

identity of the residues. The spectra taken just off the edge of the gold were then 

compared with typical spectra from the center of the chitosan covered gold electrode and 

from the substrate (“silicon”) far from the electrode. As shown in Figure 24, the laser, 

indicated by the red circle, samples an area with a 1 µm diameter 1-3 µm from the Au 

pad. These spectra near the gold (“edge”, “outedge”) did not have a chitosan signature; 

chitosan was identified on the border of the gold to show that Raman does indeed identify 

chitosan correctly when present. The substrate spectrum is identical to the one taken on 

the residue by the edge.  
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Intensity vs. Wavenumber: Comparison of Electrode and Substrate Spectra

1 um
Optical picture of chit03edge

 
Figure 24. Spatially selective Raman spectra show residues on substrate are not chitosan. 

 
 
 

Results show that spatial resolution is on the order of 1-2 µm, but they are not 

completely conclusive. For example, there could be residues on the substrate that do not 

appear optically, but are Raman active. Another possibility is that the residue is not 

Raman active so that only the SiO2 spectrum appears with or without residue. This is 

more likely since the residue is thick enough to produce a measurable signal assuming it 

is Raman active. Furthermore, it is possible that a very small number of chitosan 

molecules extend past the edges of the gold, but that they are so thin or sparse that Raman 

microspectroscopy cannot detect them. Further experimentation with adequate controls is 
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needed for complete certainty about the spatial resolution and the identity of the substrate 

peak and/or residues.  
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Chapter 6:  Conclusions 

6.1 Summary of Conclusions 

Chitosan is an extremely complex and difficult molecule to work with. It is hard 

to predict and reproduce its behavior. The growth of amorphous chitosan films is non-

linear for both the thickness and the roughness. For dry films, atomic force microscopy 

revealed that the roughness scales with the thickness logarithmically, at least for thin 

films and up to the hydrogel range. The trend in the hydrogel range is not wholly 

conclusive, but it appears that roughness increases rapidly in this range, creating an s-

shape curve over a large range of thicknesses. This data supports a nucleation or run 

away model where the first chitosan molecules are attracted to defects in the gold 

electrode and subsequent molecules are then further attracted to the now larger defects. 

Eventually the defects grow into each other and the growth of the film’s roughness begins 

to slow and level off.  

 In summary: 

• For same scan size and current density, as time increases: 

o thickness increases 

o roughness increases 

o the film becomes more heterogeneous 

• Wet films are thicker, smoother and have a different morphology than 

their dry counterparts 

• Spatial resolution, at least after the chitosan dries, is within 2 µm as 

confirmed by Raman microspectroscopy  
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Smaller lessons were also learned throughout the process. The first was that AFM 

scan size has a huge effect on the roughness. When comparing roughness values, data 

must be obtained from the same scan sizes. When processing, the same flattening order 

must be used for all samples since this affects the roughness as well. The industry 

standard is for flattening to be done before roughness analysis. In Raman 

microspectroscopy, the intensity of the signal is affected by thickness when less than 2 

µm of film is grown.  

6.2 Future Work 

Following the results and conclusions of this study, further research could be 

carried out in several directions. One interesting study would be to measure the density of 

the films as a function of current density. Density could be qualitatively measured using 

SEM to look at the surface structure and cross section. Theoretically, higher current 

densities produce lower density films. Lower density means that the film is more porous 

and has more surface area. More surface area is beneficial for greater attachment of 

biomolecules. In addition, the porosity could be tailored for different applications. 

Moreover, the roughness values calculated in this study were average roughnesses 

which do not account for the frequency of peaks, the periodicity. Power Spectral Density 

(PSD) analysis could be used to account for this. PSD information would probably be 

more useful and would give a more complete picture of the surface of these films, but it is 

very complex and much less user friendly. 

To test the theory of defect nucleated growth, defects could be templated into the 

gold in a regularly ordered fashion [15]. Films could be grown for short periods of time 

and the surface observed using AFM. If the films have an ordered structure 
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corresponding with the structure of the template, then the theory would be supported. If 

the films looked no different, then the theory would not be proven and another method 

would need to be developed to study the growth. 

It would be especially interesting and useful to study the surface morphology of 

wet films in solution in the AFM. The effect of pH and ion concentration could be 

studied in addition to the effect of deposition parameters. This method most accurately 

reflects real life since the films are used primarily in solution. Another interesting study 

would be to look at the effect of relative humidity on the swelling or thickness and 

surface roughness of chitosan. We already know that chitosan swells in water and shrinks 

when dehydrated, and reswells again in water. It would be interesting to know how fast 

and how effectively it reswells with repetition. 

Raman spectroscopy was initially chosen as a mode for chemical structure 

identification. However, further expertise is needed in order to use Raman spectroscopy 

to determine structural aspects of the films. Identification of chemical groups is not too 

difficult, but structural determination requires lots of time and careful analysis as well as 

experience and expertise. With this, Raman could be used for calculating amine site 

density, and the effect of different neutralizing agents and ion concentration on structure. 

These could also be performed in solution if the proper objectives are ordered. Then 

many exciting scientific experiments could be executed. 
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