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Behavioral economics aims to provide more realistic psychological foundations 

for economic models.  Experimental methods can contribute to this effort by providing 

the ability to identify causal processes and motivations that can be confounded in field 

settings. The essays in this dissertation examine three critical issues in behavioral 

economics using lab and field experiments. The first two essays examine two core 

elements of economic rationality; expected utility theory and Bayesian updating. The 

essays consider, respectively, ambiguity, and information cascades, in environments in 

which limitations of the theories can be studied. The third essay examines a contracting 

game in which other-regarding preferences are explicitly considered.  

Decision making under ambiguity has been of interest to economists since the 

1920’s (Knight (1921), Keynes (1921)). It has received renewed attention due to the work 



  

of Ellsberg (1961). In the first essay I examine the stability of ambiguity attitudes using a 

within subject design across individual choice and market environments. The evidence 

favors stability, with attitudes elicited from individuals strongly correlated with trading 

decisions in asset markets.  The comparative ignorance hypothesis of Fox and Tversky 

(1995) developed for individual choice is also supported in the market setting shedding 

light on the causes of ambiguity aversion.  

Previous empirical studies of information cascades have used either naturally 

occurring data or laboratory experiments.  In the second essay attractive elements of each 

line of research are combined by observing market professionals from the Chicago Board 

of Trade (CBOT) in a controlled environment.  Analysis of over 1500 decisions suggests 

that CBOT professionals behave differently than a student control group.  Professionals 

are better able to discern the quality of public signals and their decisions are not affected 

by the domain of earnings.  These results have important implications for market 

efficiency.  

The contracting game studies both one and two principal settings. With one 

principal, behavior is consistent with a reputational model in which principals are 

successful in structuring contracts to insure against defections by agents imitating 

inequity-averse behavior.  The complexity of the two principal setting creates more 

difficulties, but there is evidence that reciprocity between principals partially mitigates 

the adverse payoff consequences.   
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1 Ambiguity in Individual Choice and Market Environments 

1.1 Introduction 

Decision making under ambiguity has been of interest to economists at least since 

the 1920’s, when Knight (1921) and Keynes (1921) raised issues similar to those that 

distinguish risk from ambiguity in the current study.  Knight distinguished measurable 

uncertainty (risk) from unmeasurable uncertainty (ambiguity) while Keynes argued that 

equal probabilities can have different impacts on behavior as a result of the weight of the 

evidence through which they were derived.1  The inadequacy of subjective expected 

utility theory (SEU) to account for vague probabilities, as well as its empirical relevance 

for economic decision making, was brought into focus by the work of Ellsberg (1961).2   

In this paper we conduct experiments to examine the behavior of individuals 

under both sure (risk) and unsure (ambiguous) probabilities. We consider, within 

subjects, responses to risk and ambiguity in both individual choice and market 

environments and find that attitudes to ambiguity are conserved across these institutions. 

This result is interesting in its contrast to that for risk preferences which have proven 

malleable in laboratory settings, and in light of the view of Epstein (1999) and others that 

ambiguity is both a more prevalent and more fundamental aspect of economic 

environments than risk.3  

                                                 
1 Throughout the paper we consider risk (ambiguity) to be associated with the ability (inability) to 
formulate subjective probabilities. Thus, both risk and ambiguity belong under the umbrella of uncertainty.   
2 Savage (1954) also took note of the issue, remarking that “there seem to be some probability relations 
about which we seem relatively ‘sure’ as compared with others…The notion of sure and unsure introduced 
here is vague, and my complaint is precisely that neither the theory of personal probability, as it is 
developed in this book, nor any device known to me renders the notion less vague.” 
3 Mukerji and Tallon (2004) review a variety of economic applications that explicitly incorporate 
ambiguity.  
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The paper makes two additional contributions, first by extending the investigation 

of how ambiguity responses are triggered in markets. Sarin and Weber (1993) 

demonstrate that ambiguous probabilities have a significant effect on asset prices when 

trade of risky and ambiguous assets occurs simultaneously. The current design examines 

sequential exposure to risk and ambiguity for which Sarin and Weber’s results were 

inconclusive. This aspect of the inquiry investigates how information conditions affect 

ambiguity attitudes generating further tests of Fox and Tversky’s (1995) hypothesis of 

comparative ignorance, originally investigated in individual choice settings.   

A final contribution of the paper is to offer a preliminary assessment of the 

empirical relevance of two alternative approaches to modeling ambiguity.  These 

approaches differ in their conception of what constitutes an ambiguity-neutral act and 

thus in their definition of ambiguity aversion. Ghirardato and Marinacci (2002) assume 

that constant acts, in which the same outcome is achieved in all states are ambiguity 

neutral. Since constant acts also are an appropriate benchmark for risk neutrality (Yaari 

1969) the authors acknowledge that their modeling choice is restrictive. Their strategy 

implies that probabilistically sophisticated preferences that are inconsistent with SEU, 

such as the probabilistically risk averse behavior associated with the Allais paradox, are 

not ambiguity neutral. Epstein (1999) develops an alternative approach in which 

probabilistically sophisticated preferences not just those consistent with SEU are 

ambiguity neutral.4  Thus, the two approaches differ with respect to whether preferences 

                                                 
4 Probabilistic sophistication implies that beliefs over relative likelihoods for subjective events are 
consistent with probability theory. Machina and Schmeidler (1992) demonstrate that probabilistically 
sophisticated beliefs are possible outside the framework of SEU, which has beeen shown to be inadequate 
due to violations of the “sure-thing principle” as seen for example in the Allais paradox.  
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that are probabilistically risk-averse fall within the ambit of ambiguity.  Section 2 and 

Appendix 1.3 provide additional detail on these alternative approaches.  

Our empirical methods differ according to our purposes. For the measurement of 

attitudes across the choice and market institutions, we use relatively simple descriptors. 

In the individual choice setting we use a nonparametric measure of ambiguity aversion 

that assumes that ambiguity affects utility directly and by comparing responses to lottery 

choices, within subject, under both risk and ambiguity (Smith 1969). Simple counts of 

asset accumulation by subject and across risky and ambiguous asset types along with 

bidding behavior and asset prices are the focus of the analysis in the market setting.  

To investigate the empirical relevance of the alternative theoretical conceptions of 

ambiguity, maximum likelihood techniques are used in a two-stage procedure.  First, 

baseline measures of risk attitudes are estimated from the subset of risky questions, under 

the alternative assumptions regarding linearity in probabilities assumed by the SEU and 

rank dependent expected utility (RDEU) models.5  Second, ambiguity attitudes measured 

as deviations from additive probability measures are estimated for each of the theoretical 

benchmarks.  

The paper proceeds as follows: Section 2 clarifies what we mean by ambiguity in 

the experimental environments, by discussing the links between our operationalization of 

ambiguity and measurement methods and alternative conceptions of ambiguity in the 

theoretical literature. Section 2 also provides an overview of experimental findings that 

                                                 
5 RDEU accommodates probabilistically sophisticated preferences that are not SEU and thus provide our 
baseline for ambiguity neutrality in Epstein’s model.  In RDEU individuals have well-formed probabilities, 
but these probabilities are not used in decision-making. Instead transformations of the probabilities that also 
take into account the rank order of outcomes are used as decision weights. Quiggin (1982) introduced the 
decumulative transformation that insures that RDEU preferences satisfy first order stochastic dominance. 
Decumulative weights applied to ambiguity yields the CEU model (Schmeidler 1989) which is discussed in 
greater detail below.   
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shed light on the underlying causes of behavior that is sensitive to ambiguity.  Section 3 

presents the experimental design, and Section 4 provides details of the methods and 

results in the individual choice setting for both the parametric and nonparametric 

approaches to the measurement of ambiguity aversion. Section 5 reports on tests of the 

comparative ignorance hypothesis in the asset market setting.  Section 6 examines the 

conservation of ambiguity attitudes across the choice and market environments. Section 7 

concludes. 

1.2 Ambiguity Defined  

Ambiguity has been defined as “a quality depending on the amount, type, and 

‘unanimity’ of information, and giving rise to one’s degree of ‘confidence’ in an estimate 

of relative likelihoods” (Ellsberg (1961) or more concisely, as “known-to-be-missing 

information” (Frisch and Baron (1988), see also Camerer (1999) and Appendix 1.3 

below). These verbal definitions have been supplemented by axiomatic approaches that 

modify the SEU frameworks developed by Savage (1954) or Anscombe and Aumann 

(1963).  

One way to reconcile Ellsberg type behavior theoretically assumes that ambiguity 

has an effect directly on utility (Smith 1969). This approach, which is compatible with 

our nonparametric approach to measuring ambiguity attitudes, assumes that there are 

utility implications from the choice process as well as from the monetary outcomes of the 

draws from the Ellsberg urn. Under this assumption the response to ambiguity can be 

treated as a fixed effect in the utility elicitation.6  

                                                 
6 Smith conjectures that it would matter little whether decision makers were completely in the dark 
regarding the contents of the Ellsberg urn or were informed of a second order probability. While we do not 
test this conjecture, our operationalization of ambiguity does provide the second order probability in a 
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An alternative and at present, more common approach to modeling ambiguity 

assumes that utility is state independent, but adopts the view, common also to RDEU, 

that beliefs and tastes are not completely independent. As a result attitudes towards 

uncertainty are captured jointly through decision weights and the utility function 

(Schmeidler (1989); see also Diecidue and Wakker (2001)). Consider a finite set of 

states, S, and outcomes, X, with the true state unknown. Events, E, are disjoint subsets of 

states, with acts of the form ),;...;,( 11 nn xExE  mapping events to outcomes so that ix  

results if the true state is in iE .  The dependence between beliefs and tastes arises by 

assuming that decision weights depend not only on the likelihood of events, but also on 

the relative magnitude of the outcomes. Assume nxx >> ...1 .  The decision weight 

associated with the outcomes ixx ,...,1  is given by ( )i

i

k
i EEv ∪∪=∑

=

...1
1
π , and that of 

ix by ( ) ( )111 ...... −∪∪−∪∪= iii EEvEEvπ , with  ( ) 0=∅v , and  ( ) 1=Sv , and v 

monotonic. In the Choquet Expected Utility (CEU) model of Schemeidler (1989), the 

independence axiom is relaxed to apply only to comonotonic events. As a result 

ambiguity aversion is captured by convexity of v, which implies that for disjoint events 

( ) ( ) ( )2121 EvEvEEv +≥∪ .  While a convex capacity can rationalize behavior associated 

with the Ellsberg paradox, as demonstrated in Appendix 1.3, a number of 

counterexamples have been developed that show convexity is neither necessary nor 

sufficient for ambiguity aversion more generally. Alternative definitions based on 

                                                                                                                                                 
transparent way so as to reduce concerns that subjects may be responding to the potential for experimenter 
deception. This implementation is consistent with the notion that ambiguity can arise through weighting of 
multiple probability distributions (Gilboa and Schmeidler (1989), Camerer (1999)). As a result we 
conjecture that the effects observed may be considered a lower bound on ambiguity responses when the 
underlying distribution is not provided.  
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comparative foundations are presented in Appendix 1.3 and examined empirically in 

Section 1.4.2.   

 With regard to the causes of ambiguity attitudes, individual choice experiments 

have demonstrated that in situations characterized by lack of competence about a 

judgment task, an ambiguity effect is likely (Heath and Tversky (1991). However, when 

individuals feel competent in a situation in which probabilities are vague they are likely 

to prefer this vagueness, contrary to the predictions of ambiguity aversion.  Fox and 

Tversky (1995) extend investigation of this result by examining the conditions under 

which competence may arise. They find that missing information is made more salient 

when a simultaneous comparison with more complete information is possible.  In 

contrast, in between subject tests, where valuations of  ambiguous lotteries and events are 

made in isolation Fox and Tversky find no evidence of ambiguity aversion.7  

Wakker (2000) notes that “Fox and Tversky’s finding seems to place the Ellsberg 

paradox in an entirely new light,” arguing that the importance of ambiguity aversion is in 

doubt if the results are “merely…a contrast effect.” While there is mixed evidence as to 

whether ambiguity aversion is solely a contrast effect, it clearly is important 

behaviorally.8 Similar contrast effects have been shown to cause preference reversals in 

other contexts (Hsee et al. (1999), List (2002), Alevy, List, and Adamowicz (2003)). 

Further, understanding the types of contrasts that may generate an ambiguity response is 

of some interest in practical applications. In the asset market portion of this experiment 

                                                 
7 Chow and Sarin (2001) present contrasting evidence on the comparative ignorance hypothesis in 
individual choice settings. They find that while ambiguity responses are smaller, between subjects, the 
differences remain statistically significant.  
8 The question raised by the context results is whether paradoxical behavior in the settings investigated by 
Ellsberg should be explained by underlying preferences or by differences in the ability to evaluate 
information when the choices are presented jointly or in isolation.    
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we shed additional light on the importance of contrast effects, by examining sequential 

exposure to risky and ambiguous assets.  

1.3 Experimental Protocol 

An experimental session contained two protocols. In each session subjects 

completed a computerized questionnaire that elicited preferences over pairs of lotteries, 

some with known and some with unknown probabilities. Following this task, subjects 

became traders in a double auction asset market for ten rounds.  After each round of 

trade, a random draw determined the underlying state on which the asset value depended. 

In five rounds of each session the probabilities of each of the three possible states were 

known and in five rounds two of the three state probabilities were unknown. The 

underlying probabilities changed with each round. The sessions were distinguished by the 

order of presentation of the risky and ambiguous assets. Session 1 consisted of six 

subjects who traded risky assets for the first five rounds and ambiguous assets in the last 

five. Session 2 consisted of seven subjects who traded first ambiguous and then, risky 

assets also for five rounds each.  We denote these sessions “RA” and “AR” consistent 

with the order of exposure to the risky and ambiguous assets.  

Subjects were paid for the individual choice portion, through the random selection 

of an elicitation question and then by resolving the uncertainty with respect to the 

preferred lottery for that question.  The probability distribution for ambiguous lotteries 

for payoff purposes was determined by drawing a ball numbered from 1 to 100 from a 

bingo cage. The cage was spun repeatedly before releasing a ball in order to approximate 

a uniform distribution. This procedure was conducted after the double auction was 
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completed but subjects were informed of the process before making their choices.9  

Payments for the elicitation section ranged between $0 and $15 with an average payment 

of $3.75.  Subjects received an average of $27.33 for the market segment, and an 

additional $5 for timely arrival.  Total earnings ranged from $5.00 to $101.90 with an 

average of $36.08 for sessions that were about 2 hours and 30 minutes long. Subjects 

were recruited from undergraduate economics classes at the University of Arizona. 

1.4 Individual Choice Experiment: Methods and Results 

1.4.1 Elicitation Method 

The elicitation procedure implemented in the lab was a variant of the lottery 

tradeoff method introduced by Wakker (1994).  Rather than eliciting certainty or 

probability equivalents repeatedly for single lotteries, the tradeoff method asks the 

subject to compare two lotteries directly.10  The sequence of lottery comparisons a subject 

faces is generated endogenously based on their initial responses.  Lotteries under risk are 

of the form );,( ypx , where p is the probability of outcome x and p−1 the probability of 

outcome y .  The subject is asked to change one of the outcomes, the “choice outcome” 

denoted 1C below, so that they are indifferent between the two lotteries.  

                                                 
9 To mitigate concern with deception in the resolution of ambiguous probabilities, one of the subjects was 
selected at random to come to the front of the room at the time of the draw and confirm for the others that 
the distribution of the balls was as described in the instructions.  
10 Wakker  and Deneffe (1996) compare the trade-off method to probability-equivalent and certainty-
equivalent methods and show that the trade-off method yields measures of utility that are robust to 
probability distortions.   
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In the “inward”11 tradeoff method, the subject is presented with two lotteries 

);,( 1 RpC and );,( 0 rpx , with rR >  the reference outcomes, and 0x  the maximal 

payment fixed by experimental design.  The subject is asked to replace 1C with a 

value, 1x , that leaves them indifferent between the two lotteries.  Once 

);,( 1 Rpx ∼ );,( 0 rpx is elicited, the process is repeated with the subject presented with 

two new lotteries );,( 2 RpC  and );,( 1 rpx .  The questionnaire is endogenous since 1x , 

the value elicited from the first lottery comparison, becomes a potential payoff in the next 

question. Expressing the elicited indifference relations from the first two questions in an 

expected utility formulation yields the following two equalities: 

)()1()()()1()( 1 RUpxpUrUpxpU o −+=−+  

)()1()()()1()( 21 RUpxpUrUpxpU −+=−+ . 

These equations imply that ( ) )()()( 2110 xUxUxUxU −=−  with the result 

independent of p , or more generally, of a decision weight π  which may be either a 

probability weight ( )pw  under risk, or a capacity ( )Ev  under uncertainty.  Continued 

elicitation yields utility differences of equal magnitude which are normalized over the 

unit interval by setting ( ) 10 =xU  and ( ) 0=rU .  

A pilot session with hypothetical payments was conducted to test the utility 

elicitation software on four subjects. Three of the four subjects consistently violated the 

minimal rationality constraint and exhibited utility curves with substantial downward 

sloping portions.  Since rR > by design, the violation of dominance occurred when 

                                                 
11 The inward (outward) method sets a maximum (minimum) on the potential payoff to the subjects if their 
choices are consistent with first order stochastic dominance.  For this reason the inward method was used in 
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indifferences );,( rpxo ∼ );,( 1 Rpx  were indicated with oxx >1 . This result demonstrates 

the difficulties introduced by an elicitation procedure that uses an endogenous 

questionnaire. If subjects recognize that their responses will alter the subsequent 

questions and thus their potential payoffs, there is no incentive for truthful revelation.  

Since subjects in the later sessions were to be motivated by salient payments, it was 

necessary to modify the tradeoff method so that it could not be manipulated for monetary 

gain.12 

The modified tradeoff method used to generate the results reported below, asks 

the subjects only for their preference over lotteries and not for a value that makes them 

indifferent between the two.  All questions are fixed in advance and a menu of four or 

five lottery pairs is presented with the C value systematically increasing so that a 

“switching point” in which preference changed from one lottery to the other was 

observed. Indifference between lottery pairs could also be expressed directly.  A series of 

eight of these lists, four each for risk and ambiguity, was used to elicit utility measures.  

The first list is shown in Table 1.1 with the parameters 4,0,33.,15 ==== Rrpxo , and 

,10,8,6 3
1

2
1

1
1 === CCC and 114

1 =C . This series of four questions substituted for the 

single initial comparison proposed by Wakker (1994) and the elicitation method required 

that the subjects express a preference, or indifference, on alternative a) before observing 

                                                                                                                                                 
the experimental sessions. Inward and outward tradeoff methods are discussed more fully by Fennema and 
van Assen (1999).   
12 An alternative approach to the modification described below is to constrain responses to satisfy 
stochastic dominance. See for example Tversky and Kahneman (1992).  
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question b) and so on.13  Appendix 1.2 contains a sample screen and the full list of 

questions.  

Table 1.1: Sample menu of lottery choices 
 Lottery A Lottery B 

1 )0;33,.15(  )4;33,.6(  

2 )0;33,.15(  )4;33,.8(  

3 )0;33,.15(  )4;33,.10(  

4 )0;33,.15(  )4;33,.11(  

Lotteries are of the form (x,p;y) where p is the probability of receiving x and 1-p the probability of 
receiving y. The experimental protocol asks for a preference between lottery A and lottery B in each of the 
four rows  

The responses to the first menu yielded *
1C , either directly if indifference was 

indicated, or as ( ) 21
11
++ jj CC  with the switch in lottery choice occurring from menu 

point j, to j+1. For the next series of lotteries the subjects again faced a predetermined set 

of questions so that in general *
11 Cx ≠  as would be the case in the endogenous tradeoff 

method. As an example, suppose a subject indicated indifference for the lottery pair 2 in 

Table 1.1.  With the endogenous tradeoff method this would imply that 81 =x  and a 2C  

would be elicited so that )0;33,.8( ∼ )4;33,.( 2C .  With the modified method we have 

learned that )4(2)8()15( UUU =− .   

In the questionnaire implemented in the lab, 121 =x  by design and the second set 

of lottery pairs for risky utility may yield, for example with 5*
2 =C , the result that 

                                                 
13 The method is similar to that of Holt and Laury (2002) which has become a popular method for 
measuring or controlling for risk attitudes in the lab and in the field. The major differences between our 
procedure and theirs is that we present multiple (though shorter) lists and they maintain equal payoffs and 
alter probabilities within the list, while we alter the payoff structure holding probabilities constant.   
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)4(2)5()12( UUU =− .  The modified tradeoff method therefore yields a series of equal 

utility differences, as in Wakker’s original formulation, but the endpoints of the segments 

need not coincide as they would with the endogenous questionnaire.  To generate a 

piecewise linear utility function a linear program was implemented that minimized the 

utility differences of the end point of a segment with its interior point on the next 

segment, subject to the constraint of equal utility differences for each segment. Details of 

the technique and the calculation of Av are in Appendix 1.4. 

The tradeoff method was conducted for each subject under both risk (R) and 

ambiguity (A) in order to generate state dependent measures of utility. For the risk 

elicitation the probability of each lottery outcome was made explicit on the questionnaire.  

For the ambiguity elicitation the outcomes of one of the lotteries was associated with its 

probabilities and the other the probabilities were replaced by a “?” on the form.  The 

nonparametric measures of ambiguity aversion, Av, derived from this procedure were 

calculated for each subject by finding the area under the utility curves in both the risky 

and ambiguous state. Subtracting the value of the ambiguous utility from that of the risky 

utility yielded Av, so that a positive measure implies ambiguity aversion and a negative 

Av, ambiguity seeking. 

Alternative measures of ambiguity attitudes are generated parametrically, using 

maximum likelihood techniques, in a two-stage process. In stage one, cardinal utility is 

estimated using only the risk-based lottery pairs.  Separate measures of risk attitudes are 

obtained for SEU and RDEU preference functionals.14 In the second stage, weighting 

                                                 
14 The two-step procedure is motivated by the models of Epstein (1999) and Ghirardhato and Marinacci 
(2001) who develop alternative conceptions of ambiguity neutrality based on probabilistically sophisticated 
and SEU preferences (see also Appendix 1.3). The estimation results do not constitute a test of these 
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functions derived from the ambiguous lists are estimated, using the predicted utilities 

from stage one.  The functional form is used to estimate the expected utility of the 

lotteries in stage one satisfies constant relative risk aversion (CRRA), and is given by 

r
x

r
x

XU
rr

−
+

−
=

−−

11
)(

1
2

2

1
1

1 ππ , 

where  ( )21 xxX =  are the monetary payoffs with 21 xx > .  The parameter r is a 

measure of risk attitude with r = 0 indicating risk neutrality and r> (<) 0 characterizing 

risk aversion (risk seeking).  The decision weights for SEU preferences are 

2,1, == ipiiπ , and for RDEU  ( )11 pw=π  and ( ) ( ) ( )11212 1 pwpwppw −=−+=π , 

with ( ) 00 =w , ( ) 11 =w . The functional form used to estimate the RDEU decision weights 

is a one-parameter model introduced by Tversky and Kahneman (1992), which can 

reconcile optimistic and pessimistic distortions over the range of outcomes and is given 

by ( )
( )[ ] γγγ

γ

1
1 pp

ppw
−+

= . Maximum likelihood estimates of r and γ are derived from 

a probit model that estimates the probability of individual i choosing lottery A in question 

t.  The probability is given by ( ) ( )it
t

i
t

iit BUAUA εβ >−= )()(Pr|Pr  where r=β  

( )],[ γβ r=  for the SEU (RDEU) models.  

Let [ ] it
t

i
t

i BUAU ∆=− )()( , ( )•Φ  be the cumulative normal distribution with iε ~ 

( )2,0 σN , and 1=ity  when lottery A is chosen and zero otherwise. The likelihood 

function is given by  

                                                                                                                                                 
models, however, since the elicitation procedure made use of objective probabilities while the models are 
developed for situations in which objective probabilities are not available.  
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  ( ) ( )[ ] ( )[ ]i

i

i y
i

y

y
iXYL −∆Φ∆Φ=∏ 1|,|β   

where Y is the vector of responses and X a matrix containing the lottery payoffs 

and probabilities.  

1.4.2 Elicitation Results 

In this section we report on both the parametric and non-parametric approaches to 

measuring ambiguity aversion. The non-parametric results reveal that both ambiguity 

aversion and ambiguity seeking existed in the student population. Of the 13 subjects who 

used the modified trade-off method, 7 exhibited ambiguity aversion and 6 ambiguity 

seeking. The mean score was not different from zero at the 5% level.  Figure 1.1 and 

Table 1.2 present the scores for subjects participating in the auction market. A positive 

number reflects an aversion to ambiguity.  The ordinal and cardinal scores are used below 

to assess the consistency of ambiguity attitudes in choice and market environments. 

Table 1.2: Non-parametric Ambiguity Aversion Scores (Av) 
ID 1 2 3 4 5 6 7 
Session 1 1.130 1.015 0.455 0.258 -0.810 -1.691  
Session 2 0.913 0.568 0.375 -0.075 -0.287 -0.388 -0.918 
Ambiguity scores for each individual are measured as total utility in risky state minus total utility 
in ambiguous state. 
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Figure 1.1: Ambiguity Scores Derived from the Lottery Tradeoff Elicitation  

Ambiguity scores for each individual are measured as total utility in risky state minus total utility 
in ambiguous state. 

The parametric results are reported in Table 1.3 pooled over all respondents. In 

the pooled data there is evidence of significant risk aversion in the first stage estimates, 

conducted over the risky lottery choices, with the r parameter = .720 (.625) for the SEU 

(RDEU) specification. There is evidence of probabilistic risk aversion in the RDEU 

model, since RDEU reduces to SEU with γ = 1. The estimated γ = .367 is significantly 

less than this value (p = .001). Stage two estimates under ambiguity, yielded subadditive 

decision weights consistent with ambiguity aversion in the aggregate, with additional 

weight placed on the low-valued outcome in the RDEU model. The Aikake Information 

Criteria (AIC) suggests that the RDEU models are slightly more informative.  
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Table 1.3: Pooled Parametric estimates of risk and ambiguity attitudes 
 Stage one 

n = 252 
Stage two 
n = 351 

Model SEU RDEU SEU RDEU 

r .720 
(0.000) 

.625 
(0.001)   

γ 
 .367 

(0.001)   

π1   .434 
(0.023) 

.601 
(0.039) 

π2   .384 
(0.030) 

.202 
(0.427) 

AIC 
Log likelihood 

259.82 
-128.91 

259.35 
-123.28 

433.09 
-214.55 

431.84 
-213.92 

r is the CRRA risk parameter, and  γ the RDEU probabilistic risk aversion parameter. π1 (π2) is the 
estimated weight on the low (high) outcome under ambiguity in stage two. AIC is the Akaike information 
criteria which is calculated as -2ln(likelihood)+2(number of parameters). P-values are in parentheses below 
the parameter estimates. For γ the null hypothesis is γ =1. For all other parameters the null hypothesis is 
that the value is zero.  
 

1.5 Asset Market 

1.5.1 Asset Market Design and Hypotheses 

The asset market implemented in this study adopted many features of the market 

used in studies of the informational efficiency of markets under risk (Plott and Sunder 

(1988); Sunder (1992)). It is also quite similar to the design used by Sarin and Weber 

(1993). Key features of these markets are the following: 

1) Subjects are in the role of traders, able to either buy or sell assets. 

2) Traders are endowed with a single asset and with cash in each round.  

3) The asset expires at the end of each round and pays a state contingent dividend. 

4) Traders pay a fixed fee of their endowed cash in each round so that each 

trader’s profits are the sum of dividends and trading profits.  
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This design differs from that of Sarin and Weber in that it is an electronic instead 

of an oral double auction, and the asset has a three-state dividend instead of two. In 

addition, short sales are not allowed in this market but were permitted by Sarin and 

Weber.  

The three-state asset paid $0.00, $0.50, or $5.00 depending on the draw of a 

random number.  All traders faced the same draw so dividend earnings per asset were the 

same for all traders. There was 40% probability of receiving $0.50 in all rounds. The 

distribution of the balance of the probability in each round was determined by a pseudo-

random number generator. In the rounds with risky assets, the probability of all states was 

made known prior to trade. In the rounds with ambiguous assets, only the probability of 

the $0.50 payoff, uniformly 40%, was known to the subjects.  For both risky and 

ambiguous assets independent draws were made for each round of trade. 

The trading sessions exposed subjects to risky and ambiguous assets sequentially, 

with the two sessions controlling for order effects. This treatment was implemented 

rather than the direct comparison with simultaneous trade of the different assets, because 

the results of Sarin and Weber’s simultaneous treatments demonstrated significant, 

persistent evidence of an ambiguity response. Although they found ambiguous prices 

lower than risky ones in 13 out of 14 markets, price differences in the sequential markets 

were smaller, and in one treatment, equivalent to session 2 in this study, the ambiguity 

aversion disappeared completely. The sequential study of ambiguity exposure sheds light 

on the plausibility of extending the comparative ignorance hypothesis to market settings. 

These hypotheses combine within and between subject tests in the two market sessions. 
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Comparing the first five rounds across sessions yields a market analog of the 

between group test of Fox and Tversky (1995). In the individual choice setting, Fox and 

Tversky failed to reject the null hypothesis of no difference between the groups, lending 

support to the claim that comparability was important in generating a response to 

ambiguity.  In the market we consider if the order of exposure to the different types of 

assets makes a difference in market prices.  Do prices for ambiguous assets differ 

depending on previous exposure to an unambiguous asset? We test the null hypothesis 

that prices for ambiguous assets do not vary across the treatments. Also, within each 

session do prices differ for the different types of assets?  Does the market reflect 

ambiguity aversion even in this setting where assets are not compared simultaneously? 

These questions are formalized in the following hypotheses: 

1. Between subject test of comparative ignorance. (Rounds 1-5 of each session.)  
H0: Session RA risky assets are indistinguishable from Session AR 
ambiguous.  
H1: Ambiguous assets will trade at lower prices than risky assets. 

2. Between subject test of order effects in exposure to ambiguous assets. 
H0: Ambiguous assets are indistinguishable across the two sessions. 
H1: Ambiguous assets in Session RA will trade at lower prices than those 
in Session AR because of sequential comparison of exposure to risky 
assets. (Session RA:Rounds 6-10 and Session AR: Rounds 1-5) 

 
3. Within subject test of the existence of an ambiguity price effect. 
(a)  H0: Session RA risky and ambiguous assets are indistinguishable. 

H1: Ambiguous assets trade at a discount to risky assets. 
(b)  H0: Session 2 AR risky and ambiguous assets are indistinguishable.  

H1: Ambiguous assets trade at a discount to risky assets. 
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1.5.2 Asset Market Results 

Table 1.4 presents the mean prices and the mean deviations from expected value 

for each round of trade.  Charts of the prices and the deviations are in Figure 1.2 and 

Figure 1.3 respectively. The expected value of the dividend changes with each round for 

the risky assets. When ambiguous assets are traded the expected value remains constant 

at $1.70 if the unknown probability is assigned equally to each of the remaining states. In 

all cases, statistical tests of the hypotheses are conducted on the data derived from the 

deviations from expected values. The test used is a randomization test that pairs the mean 

deviations by round with those in other sessions in the order traded (Siegel (1956)).  

Table 1.4: Prices, Expected Value Deviations, and Bid/Ask Ratio 
Session  Round Mean Price EV Deviation Asset  

Type 
Bid/Ask 
Ratio 

1 1 797.67 482.67 R 0.929 
1 2 680.17 540.17 R 1.053 
1 3 652.82 367.82 R 1.111 
1 4 667.22 472.22 R 0.654 
1 5 606.43 446.43 R 0.773 
1 6 536.67 366.67 A 0.297 
1 7 503.33 333.33 A 0.355 
1 8 521.78 351.78 A 0.278 
1 9 495.13 325.13 A 0.233 
1 10 426.67 256.67 A 0.458 
2 1 584.00 414.00 A 2.625 
2 2 618.50 448.50 A 2.083 
2 3 604.67 434.67 A 1.077 
2 4 601.00 431.00 A 0.773 
2 5 615.17 445.17 A 1.118 
2 6 622.87 402.87 R 1.529 
2 7 611.37 466.37 R 0.926 
2 8 622.31 357.31 R 0.955 
2 9 625.15 430.15 R 1.077 
2 10 616.47 511.47 R 1.250 

By Session and Round of trade the mean prices and deviations are listed along with the asset type, either 
risky (R) or ambiguous (A). The ratio of bids to asks in a trading period are also listed. Session 1, periods 6 
through 10, in bold type, reveal an effect of ambiguity through lower prices and many fewer bids per offer.  
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Figure 1.2: Mean Prices 
 

 
Figure 1.3: Ambiguity Aversion and Asset Allocation 

Av is the ambiguity attitude in the individual choice setting and is measured as the difference between 
utility under risk and under ambiguity. Al is the ambiguity attitude in the market environment and is 
measured as the difference between risky and ambiguous assets accumulated by the individual during the 
session. 
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the prices of ambiguous assets differ across sessions while within sessions ambiguity has 

an effect on prices only when there is prior exposure to risky assets. In fact, the 

ambiguous assets in session RA, contain the only prices that differ significantly from any 

of the others. Thus, an ambiguity response is generated by the sequential treatment only 

when the order of the treatments provides previous exposure to an unambiguous standard. 

Without any prior exposure to risky assets the ambiguous assets do not differ from the 

risky in price either within (Hyp. 3b) or between subjects (Hyp. 1).  

Table 1.5: Hypotheses on Sequential Comparability Effects 
Hypothesis Rounds Tested P value 

1. Between Subjects: Comparative Ignorance S1:R1-5,S2:R1-5 0.15625 

2. Between Subject: Ambiguous S1:R6-10,S2:R1-5 0.03125 

3. a) Within Subjects: Session 1 S1:R1-5,S1:R6-10 0.03125 

3. b) Within Subjects: Session 2 S2:R1-5,S2:R6-10 0.46875 

Note: S stands for session and R for round. Bold indicates the rounds in which a significant 
ambiguity effect was observed. Risky (ambiguous) assets are traded in S1:R1-5 & S2:R6-10 
(S2:R1-5 & S1:R6-10).  

A parametric random-effects model complements the randomization test results. 

Rather than looking at mean trading prices per round, observations are at the level of 

specific trades, with the error components model controlling for individual-specific errors 

that are constant over time. The dependent variable, price-diff, is calculated as the 

difference between the trade price and the expected value of the asset. Independent 

variables include ambi which is zero (one) when the asset traded is ambiguous (risky); a 

dummy variable for the session which is zero (one) for the session that trades ambiguous 

(risky) assets first. Also included is the interaction between the two variables and the 

trend variable round.   
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The regression results are presented in Table 1.6 and provide further evidence of 

the importance of the contrast effects associated with the comparative ignorance 

hypothesis. While the asset type and session are not individually significant, the 

interaction between the two is both statistically and economically significant. The 

coefficient value of -160.32 indicates that in the session in which the order of exposure 

was first to risky and then ambiguous assets the prices are $1.60 lower than the other 

trading rounds. These findings extend the findings of Fox and Tversky (1995) and Sarin 

and Weber (1993) and demonstrate that in the market environment sequential trade is 

sufficient to generate the ambiguity response, contingent on the order of exposure. 

Table 1.6: Asset pricing - random-effects model 
 Coefficient Standard error p-value 

ambi 24.32 18.34 0.19 

session 25.49 19.48 0.19 

ambiXsession -160.32 33.79 0.00 

round 4.99 3.32 0.13 

Constant 401.50 25.54 0.00 

n=176 rho=0.12 2
)4(χ =  90.95 R2=0.38

The random-effects model estimates the difference between the expected-value and trade price for each 
completed transaction as a function of the asset type (risky or ambiguous), session, and the interaction of 
the two, as well as a trend variable for the round. Rho represents the proportion of the variance associated 
with individual-specific effects across rounds. 

To summarize, the rounds in bold type in Table 1.5 and, which are the ambiguous 

rounds six through ten in session RA, are the only rounds that differ significantly from 

any of the others in terms of price and also with regard to bidding behavior. The ratio of 

the number of bids and offers in the markets is also presented in Table 1.4. These ratios 
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provide a further indication of the selling pressures peculiar to these rounds and are 

summarized in Table 1.7.   

Table 1.7: Average Bid/Ask ratios by treatment 
Session Rounds Asset Avg. Bid/Ask 

1 1-5 R 0.90 

1 6-10 A 0.32 

2 1-5 A 1.53 

2 6-10 R 1.15 
This table summarizes the bids per ask that are listed by 
round in Table 1.2. 

1.6 Attitudes Across Market and Individual Choice Institutions 

In this section we investigate whether ambiguity attitudes are conserved across 

the individual choice and market institutions.  The descriptor used in the individual 

choice environment is the ambiguity score Av which measures the difference in utility in 

the risky and ambiguous settings derived from the non-parametric method.  For the asset 

market, the descriptor depends on the final allocation of risky and ambiguous assets for 

each individual. The allocation variable, jAl , is the difference between the number of 

risky and ambiguous assets accumulated by trader j in the different market 

environments.15 Thus, ∑ ∑
= =

−=
5

1

5

1i k
ijijj arAl  with i,k=1,…,5 represent the five risky and 

ambiguous trading rounds, respectively.  The test statistic for the correlation between the 

ranks of the Al and Av measures is the Spearman Rank Correlation Coefficient rs. 

Table 1.8 presents the ambiguity aversion scores and their ranks and the asset 

accumulation differences and their ranks.  Figure 1.3 charts the raw data of the 

                                                 
15 Plott and Sunder (1988) and Sunder (1992) use final allocations to test hypotheses on information 
dissemination and aggregation under risk.   
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descriptors for the statistical test.  The correlation between the ranks of the two measures, 

rs=.83, is significant at the 5% level, implying that ambiguity attitudes are conserved 

across the individual choice and market institutions.  

Table 1.8: Measures of Ambiguity Effects in Individual Choice and Market Settings 
Trader # Av Score Av Rank R A Al   (r-a) Al Rank 

1 0.45464 3 8 3 5 1 
2 1.01531 2 8 6 2 3 

3 1.12987 1 9 6 3 2 

4 0.25782 4 0 2 -2 4 

5 -0.81028 5 4 7 -3 5 

6 -1.69142 6 2 7 -5 6 
Individual choice ambiguity scores (Av)are derived as the difference in total utility under risk and 
ambiguity. Marketplace ambiguity scores (Al) are the difference in the final allocation of assets under risk 
and ambiguity. The randomization test and spearman correlation indicate a significant correlation of the 
two ambiguity scores. 
 

1.7 Conclusion  

This study implements tests to discover the role of ambiguity attitudes in 

individual choice and market environments. The evidence of conservation of ambiguity 

attitudes across institutions appears to be a new finding. This result suggests that either 

attitudes towards ambiguity are more stable than those for risk, or that we have 

implemented an individual choice elicitation technique that happens to be congruent with 

the behavior in the asset market environment. Given the importance of ambiguity in field 

environments either result is of interest and these findings deserve further study.  The 

results in the asset market in this study complement and extend the work of Sarin and 

Weber (1993). Together they demonstrate that responses to ambiguity in markets can be 

found in both simultaneous and sequential treatments. Thus the notion that comparative 
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ignorance motivates ambiguity responses, first discussed by Fox and Tversky (1995) with 

respect to individual choice behavior, receives support also in the market environment. 

With regard to alternative approaches to measuring ambiguity, our results are not 

conclusive. In the pooled data we observe that measures of ambiguity attitudes are 

slightly more informative if measured from a baseline that assumes probabilistic 

sophistication but not SEU preferences. This finding is due to the subject pool exhibiting 

probabilistic risk aversion in the questions in which they encountered risk but not 

ambiguity.  
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Appendix 1.1: The Ellsberg Paradox 

This appendix provides an overview of the two-color and three-color decision 

problems, introduced by Ellsberg (1961). For many individuals, decisions in these 

settings give rise to behavior that is paradoxical in the SEU framework, since they imply 

that well-formed probabilities do not exist. In the two-color problem two urns with 100 

balls in each are presented to the subjects. The subjects know that urn 1 contains 50 red 

and 50 black balls, while Urn 2 contains red and black balls in an unknown proportion. 

Subjects win X>0 if they predict the ball that is drawn and 0 if they are incorrect.  

Behavior that violates the axioms of expected utility occurs when the following two 

choices are made:   

1.) Subjects are indifferent between choosing red or black in both urns, which 

implies that the subjective probability of drawing either color are identical within each 

urn. That is, 111 )()( pBpRp ==   and 222 )()( pBpRp ==  where the subscript indicates 

the urn.  

2.) Subjects prefer to have a ball drawn form urn 1 with known probabilities 

which implies that the expected utility of urn 1 is greater than that of urn 2.  

)0()()0()( 2211 UpXUpUpXUp +>+  

Normalizing so that 1)( =XU  and 0)0( =U  yields the result that 21 pp > , a result 

inconsistent with additive subjective probabilities over the events in both urns.  For 

example, if the subjective probabilities in urn 1 are equivalent to the verifiable 

proportions of the balls in the urn, so that 50.)()( 11 == BpRp , this behavior yields the 

result that the sum of the probabilities in urn 2 is less than 1. 
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In the three-color problem there is one urn which contains 90 balls. Thirty are red 

and 60 are black or green in an unknown proportion.  The decision maker faces choices 

over two sets of acts.  The first set of is a choice between Act X and Act Y and the 

second a choice between Act X′ and Act Y′.  

Act X: Win on draw of red. 

Act Y: Win on draw of black. 

Act X′: Win if red or green is drawn. 

Act Y′: Win if black or green is drawn. 

Paradoxical behavior with respect to SEU results when, XfY and Y′fX′.  The 

first choice implies that )()( BpRp >  and the second that )()()()( GpRpGpBp +>+  

yielding the contradictory implication that )()( RpBp > .   

The reversal of the probability magnitudes between the original and primed 

problems can be shown to result from a failure of Savage’s P2 axiom, now known as the 

sure-thing principle.  The sure-thing principle requires that GBGRBR ++⇒ ff , and 

it fails in this setting when the act with the unambiguous number of balls is always 

chosen. The paradoxical behavior is explained by the fact that the green balls act as a 

hedge on the uncertainty, and so their importance in the decision problem depends on 

what else is known.  Decision theorists have reconciled this behavior by weakening the 

sure thing principal so that it applies only to acts that cannot serve as a hedge in this way. 

A more formal examination of this issue is found in Appendix 1.3 which discusses 

several alternative theories that reconcile the Ellsberg paradox. 
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Appendix 1.2: Individual Choice Sample Screen and Questions 

Sample screen print 
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Elicitation Questions: 

The lottery pairs used to elicit risky and ambiguous utilities are below in sequence. 

Lotteries are of the form (x,p;y), where x is a payoff received with probability p, and y a 

payoff received with probability (1-p).   “?”  implies an ambiguous lottery where the 

second probability is also  presented as “?”. 

 

Question Lottery A Lottery B  Question Lottery A Lottery B 

1 (15,33;0) (6,33;4)  19 (9,33;0) (7,?;4) 

2 (15,33;0) (8,33;4)  20 (9,33;0) (2,33;4) 

3 (15,33;0) (10,33;4)  21 (9,33;0) (3,33;4) 

4 (15,33;0) (11,33;4)  22 (9,33;0) (4,33;4) 

5 (6,33;0) (0,?;4)  23 (9,33;0) (5,33;4) 

6 (6,33;0) (1,?;4)  24 (9,33;0) (6,33;4) 

7 (6,33;0) (2,?;4)  25 (9,33;0) (7,33;4) 

8 (6,33;0) (3,?;4)  26 (12,33;0) (3,?;4) 

9 (12,33;0) (3,33;4)  27 (12,33;0) (5,?;4) 

10 (12,33;0) (5,33;4)  28 (12,33;0) (6,?;4) 

11 (12,33;0) (6,33;4)  29 (12,33;0) (7,?;4) 

12 (12,33;0) (7,33;4)  30* (9,33;0) (8,?;4) 

13 (12,33;0) (8,33;4)  31 (6,33;0) (0,33;4) 

14 (9,33;0) (2,?;4)  32 (6,33;0) (1,33;4) 

15 (9,33;0) (3,?;4)  33 (6,33;0) (2,33;4) 

16 (9,33;0) (4,?;4)  34 (15,33;0) (6,?;4) 

17 (9,33;0) (5,?;4)  35 (15,33;0) (8,?;4) 

18 (9,33;0) (6,?;4)  36 (15,33;0) (10,?;4) 

    37 (15,33;0) (11,?;4) 
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Appendix 1.3: Modeling Ambiguity  

In this appendix we provide additional details on alternative approaches to modeling 

ambiguity; an area of active research. As discussed in Appendix 1.1, the violation of SEU 

inherent in the Ellsberg paradox is associated with a failure of the sure-thing principal. A 

seminal paper modifying SEU to resolve the paradox is that of Schmeidler (1989) who 

restricted the applicability of independence to comonotonic acts and then derived a 

measure of ambiguity aversion based on sub-additive capacities (non-additive measures). 

Schmeidler’s axiom of comonotonic independence states that for ( )1,0∈α , gf f  

implies that ( ) ( )hghf αααα −+−+ 11 f  for pairwise comonotonic acts f, g, and h. Acts 

are comonotonic if for no states s and t is ( ) ( )tfsf f  and ( ) ( )sgtg f . The implications 

of comonotonicity are also discussed by Yaari (1987) who views it as a “no-hedge” 

condition. In the Ellsberg three-color problem the behavior that is paradoxical from the 

perspective of SEU is attributed to the hedge on ambiguity provided by the state G in Y ′ .   

That is, while B and G  are individually ambiguous, GB∪ is unambiguous. Convex 

capacities rationalize the ambiguity averse preferences by allowing for sub-additivity in 

beliefs such that for A and B disjoint, ( ) ( ) ( )BvAvBAv +≥∪ . Thus in the three ball 

problem ( ) ( ) ( )GvBvGBv +>∪  and a ranking of the weights such that 

( ) ( ) ( ) ( ) ( ) ( )GvBvGvRvGRvGBv +>+=∪>∪  rationalizes the observed choices.  

Following Schmeidler’s fundamental contribution, additional research has 

investigated whether convexity of the capacity is an appropriate way to define ambiguity. 

Both Epstein (1999) and Ghirardato and Marinnaci (2002; hereafter GM) demonstrate 

that convexity of a capacity is neither necessary nor sufficient for ambiguity-averse 
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preferences with examples that increase the number of ambiguous states beyond the two 

found in the Ellsberg paradox and in the experiments reported here.16  Common to both 

of these critiques is an attempt to ground the definition of ambiguity aversion using a 

comparative foundation in a way that is similar to Yaari’s (1969) contribution with regard 

to risk. The comparative approach requires choosing an ambiguity neutral benchmark, 

just as Yaari used expected value maximization as the risk neutral referent for defining 

risk aversion.  

GM argue that constant acts can play a similar role as intuitive benchmarks for 

ambiguity neutrality, as in the theory of risk and reflect the “weakest prejudgment” 

regarding acts that can be considered unambiguous. For two preference relations 1f  and 

2f , GM define 2f  as more uncertainty averse than  1f  if fxfx 21 ff ⇒ , where x (f) 

is a constant (non-constant) act. The further assumption that the two preferences share the 

same cardinal risk attitude implies that 2f  is more ambiguity averse than 1f . GM show 

that for the class of preferences under consideration SEU preferences ( SEUf ) are the only 

ones that are ambiguity neutral.  

The comparative notion of ambiguity aversion developed by Epstein (1999) 

makes use of a larger set of acts, not all of which are constant, to serve as unambiguous 

referents.  This choice implies that the absolute measure of ambiguity aversion is made 

relative to probabilistically sophisticated preferences, PSf .  Probabilistic sophistication 

implies that acts are evaluated with respect to a (subjective) probability distribution over 

outcomes, and thus that acts are lotteries over pure risk (Epstein (1999); p.585).  The set 

                                                 
16 Ghirardato and Marinacci (2002) argue that Epstein’s critique also has some unintuitive characteristics. 
In particular the sum of unambiguous events in his example do not add up to one. 
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of probabilistically sophisticated preferences is larger than that of the SEU preferences 

considered by GM. It includes preferences in which probabilities exist, but may be 

transformed, for example to reflect optimism or pessimism.  Thus, preferences 

explainable by Quiggin’s (1982) rank dependent expected utility model are consistent 

with ambiguity neutrality in Epstein’s formulation but not in GM’s.   
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Appendix 1.4: Calculating Non-parametric Ambiguity Scores 

Ambiguity scores in the individual choice setting were calculated by generating 

piecewise linear utility functions for each subject for both the risky and ambiguous 

lottery sequences.  Consider the two segment example presented in the text in which 

indifference between  ( ) ( )4;33.,80;33.,15 11 UU =  and ( ) ( )4;33.,50;33.,12 22 UU =  are 

postulated, implying )4()4()5()12()8()15( 212211 UUUUUU +=−=−  where 2,1, =iU i  

represents the utility along the first and second elicited segments respectively..  The 

piecewise linear utility function is calculated by minimizing the difference between the 

endpoints that are common to both segments as follows 

)5()12()8()15(..)8()8()12()12(min 22112121 UUUUtsUUUU −=−−+− ;

2,1, =iU i  represents the utility along the first and second elicited segments respectively. 

More generally, over the four segments the following linear program was implemented.  
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2 Information Cascades: Evidence from a Field Experiment 
with Financial Market Professionals17 

2.1 Introduction 

In economic and financial environments in which decision makers have imperfect 

information about the true state of the world, it can be rational to ignore one’s own 

private information and make decisions based upon what are believed to be more 

informative public signals.  In particular, if decisions are made sequentially and earlier 

decisions are public information, “information cascades” can result. Information cascades 

arise when individuals rationally choose identical actions despite having different private 

information.18  Cascades may arise in myriad settings, including technology adoption, 

medical treatment, and environmental hazard response.  Arguably, however, the most 

well-known herds or cascades occur in financial markets, where bubbles and crashes may 

be examples of such behavior.19  

Since the private information of cascade followers is not revealed, information 

cascades can be suboptimal.  Moreover, because the small amount of information 

revealed early in a sequence has a large impact on social welfare, cascades can be fragile, 

with abrupt shifts or reversals in direction when new information becomes available 

                                                 
17 This chapter is authored jointly with Michael Haigh and John List.  
18 Herding is a more general phenomenon than an informational cascade though both result in behavioral 
conformity.  The homogeneity of a herd may arise through other than informational means such as payoff 
externalities, preferences for conformity, or sanctions.  A comprehensive taxonomy of herd behavior is 
developed by Hirshleifer and Teoh (2003) and Smith and Sorenson (2000). Devenow and Welch (1996) 
and Bikhchandani and Sharma (2000) also discuss alternative sources of herd behavior and review the 
extant literature. 
19 It has been argued, also, that information cascades can explain a large variety of social behaviors such as 
fashion, customs, and rapid changes in political organization.  Anderson (1994), Banerjee (1992), 
Bikhchandani, Hirshleifer, and Welch (1992, 1998), and Welch (1992) discuss a variety of interesting 
examples.  A number of historical anecdotes can be found in MacKay (1980) and Garber (2000). 
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(Bikhchandani, Hirshleifer, and Welch (1992, 1998; hereafter BHW), Gale (1996), 

Goeree et al. (2004)).  Indeed, some argue that the volatility induced by herding behavior 

can increase the fragility of financial markets and destabilize the broader market system 

(Eichengreen et al. (1998), Bikhchandani and Sharma (2000), Chari and Kehoe (2004)). 

Previous empirical approaches that examine cascade behavior can be divided into 

two classes; regression-based tests that use naturally occurring data and laboratory 

experiments that use data gathered from student subjects.  In a review of the extant 

regression-based results for herding in financial markets, Bikhchandani and Sharma 

(2000) note the difficulty of controlling for underlying fundamentals, and argue that as a 

result of this difficulty there is often “a lack of a direct link between the theoretical 

discussion of herding behavior and the empirical specifications used to test for 

herding.”20  The laboratory environment, in contrast, allows one to control for public and 

private information and thus to make explicit tests of theoretical predictions more easily.  

Yet an important debate exists about the relevance of experimental findings from student 

subjects for understanding phenomena in the field.  For example, professional behavior in 

the field might differ from student behavior in laboratory experiments due to training or 

regulatory considerations, which may affect the development of decision heuristics, as 

well as the overall naturalness of the experimental environment (see, for example, 

Harrison and List (2004)).  Locke and Mann (2005) argue that financial market research 

that ignores the effect of professional expertise is likely to be received passively because 

“ordinary” individuals, as opposed to professional traders, are too far removed from the 

price discovery process.  Bikhchandani and Sharma (2000, p. 13) also argue that “to 

                                                 
20 Fama (1998) discusses the interpretation of empirical results as evidence of irrational behavior. 
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examine herd behavior, one needs to find a group of participants that trade actively and 

act similarly.”   

We find these arguments compelling and therefore combine the most attractive 

aspects of these two classes of empirical research, that is, we observe professionals in a 

controlled environment, and extend the literature in several new directions.  First, we 

compare the behavior of market professionals from the floor of the Chicago Board of 

Trade (CBOT) with that of college students in an experimental setting in which the 

underlying rationality of herd behavior can be identified.  Second, given the vast 

normative implications of work that has established the importance of the domain of 

earnings for decision making under risk (Kahneman and Tversky (1979), Shefrin and 

Statman (1985), Odean (1998)), we examine the behavior of each group in the gain and 

loss domain.  We further examine whether, and to what extent, cascade formation is 

influenced by both private signal strength and the quality of previous public signals, as 

well as decision heuristics that differ from Bayesian rationality.  Finally, within the group 

of market professionals, we examine the extent to which differences in cascade formation 

are associated with individual characteristics such as whether the participant is a day 

trader.  

Empirical findings gained from an examination of more than 1,500 individual 

decisions lend some interesting insights into cascade behavior.  A key finding is that 

market professionals tend to make use of their private signal to a greater degree and base 

their decisions on the quality of the public signal to a greater extent, than do students.  As 

a result, the professionals are involved in weakly fewer overall cascades and significantly 

fewer reverse cascades (cascades that lead to inferior outcomes).  This result is novel to 



 

 37

the literature and has important implications for financial markets.21  Further, while the 

behavior of students is consistent with the notion that losses loom larger than gains, 

market professionals are unaffected by the domain of earnings.  This finding is consistent 

with Locke and Mann (2005), Genesove and Mayer (2001), and List (2003, 2004), who 

find, in varying environments, that market experience is associated with a decline in 

deviations from classical assumptions.   

Note that we observe behavioral differences not only across subject pools, but 

also within the market professional group.  For example, Bayesian play is correlated with 

market experience and day traders are much more likely to join an informational cascade 

than are non-day traders.  Finally, we present data on the prevalence of non-Bayesian 

decision heuristics, an area in which the two subject pools demonstrate similarities.   

The remainder of the study is crafted as follows.  Section II outlines the basic 

theory and experimental design.  Section III presents our empirical results.  Section IV 

considers implications of our results for financial markets and briefly discusses the use of 

professionals in experimental practice more broadly.  Section V concludes.   

2.2 Theory and Experimental Design 

Imitative behavior associated with herding has often been viewed as the product 

of irrational decision-making (Keynes (1936); Shleifer and Summers (1990); Hirshleifer 

(2001)).  Alternatively, models such as Banerjee (1992), BHW (1992), and Welch (1992) 

consider the conditions under which it is rational to join a cascade.  The model we 

                                                 
21 Combined with the insights gained from the models of Barberis, Shleifer, and Vishny (1998), Daniel, 
Hirshleifer, and Subrhamanyam (2001), and from Hirshleifer (2001), our results indicate that the ability of 
the strength and weight of the evidence to have a differential impact on asset pricing is a potentially 
powerful phenomenon.   
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present below, and the experimental environment we implement, is consistent with the 

work of this second set of authors in that it is predicated on Bayesian updating of beliefs, 

given private signals and a history of observable actions.22  The empirical investigation of 

the cascade phenomenon raises interesting questions beyond whether agents update 

information in a manner that is consistent with Bayes’ rule.23  Since the formation of 

informational cascades is a social phenomenon, individual behavior may depend on how 

agents view the rationality of others.  Accordingly, we examine how our two subject 

pools respond to uncertainty about the quality of information that arises due to potential 

deviations from Bayesian rationality by others.  We adopt two approaches.  First, we use 

a model in which the null hypothesis is that Bayesian rationality is universally applied 

and is common knowledge.  Second, we estimate a quantal response equilibrium (QRE) 

model that assumes decision error (McKelvey and Palfrey (1998), Goeree, Holt, and 

Palfrey (2005)). 

2.2.1 Theoretical Model and Predictions 

Consider an environment in which there are two possible underlying states of 

nature { }BA,=Ω , with the true state denoted by Ω∈ω .  Each of a set of { }nI ,..,2,1=  

agents receives an independent private signal, { }basi ,∈ , that is informative in the sense 

                                                 
22 As we discus below, our experimental environment makes use of a binary signal, binary state, and fixed 
payoff regardless of the history of announcements. Avery and Zemsky (1998), Lee (1998), Chari and 
Kehoe (2004), and Cipriani and Guarino (2005a) explore more general settings in which variable pricing 
reduces but does not eliminate the potential for information cascades. Chamley (2004) provides a 
comprehensive review of rational herding models.    
23 The ability of humans to reason in a Bayesian manner seems to depend on how information is presented. 
Studies that present base rates as percentages often show that we are poor “intuitive statisticians” (Tversky 
and Kahneman (1974)).  Decisions tend to be more consistent with Bayesian rationality when individuals 
experience probability distributions through repeated exposure (see Gigerenzer and Murray (1987)).  Our 
experiment is consistent with protocols that have been shown to give Bayesian decision making its best 
chance.   
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that )|Pr()|Pr( aBaA >  and )|Pr()|Pr( bBbA < .  Signal precision, given by 

)|Pr( ωω=s , is identical for all agents. After receiving their signal, each agent chooses 

either A or B with their choice, ic .  If ω=ic , individual i receives a reward normalized to 

one. , If ω≠ic , individual i receives zero. Each individual receives their signal in an 

exogenously determined choice order.  Along with their private signal is , each agent 

observes the history of choices, { }11 ,..., −= ii ccH .  The prior probability of an underlying 

state, given by pA == )Pr(ω  and pB −== 1)Pr(ω , is common knowledge.  If all 

individuals update beliefs according to Bayes’ rule and this updating is common 

knowledge, the posterior probability ),|Pr( ii sHω is easily derived.  We demonstrate the 

formation of an information cascade in this setting via a simple example, parameterized 

with the probabilities from one of our experimental treatments.  

Let 2/1)Pr()Pr( ===== pBA ωω  be the prior probability, with the precision 

of the symmetric signal given by 3/2)|Pr()|Pr( == BbAa , with complementary 

probabilities  3/1)|Pr()|Pr( == BaAb .  Suppose that as =1 .  Bayes’ rule implies that  

(2.1) 
3
2

)Pr()|Pr()Pr()|Pr(
)Pr()|Pr()|Pr( 1 =

+
===

BBaAAa
AAaasAω  

An expected utility maximizer would therefore predict A as the state of nature 

since expected profits for announcing A, Aπ , exceed those for announcing B, Bπ .24  If the 

second subject also receives an a signal, updating according to Bayes’ rule yields  

                                                 
24 In the gain treatments, 

3
$W

BA =−ππ  after an initial a signal, where $W is the win amount.  

Treatments over gains and losses yield identical predictions (i.e., expected losses are minimized by picking 
the most probable urn). 
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(2.2) 
5
4

)|Pr()|Pr(
)|Pr(),|Pr(

22

2

22 =
+

====
BaAa

AaasAHAω  

That is, two consecutive identical announcements yield a posterior probability of 

0.80 in favor of the indicated urn.25  As a result, the third decision maker should “follow 

the herd” and choose A=ω  regardless of her signal, as can be seen by examining the 

posterior in which an opposing b signal is the private draw of the third player after two 

consecutive A announcements: 

(2.3) 
3
2

)|Pr()|Pr()|Pr()|Pr(
)|Pr()|Pr(),,|Pr( 22

2

33 =
+

====
BbBaAbAa

AbAabsAAHAω  

We classify a decision of this type—consistent with Bayesian rationality, but 

inconsistent with one’s own private signal—as a cascade decision.  In this example, the 

decision maker in the third position reveals nothing about their private information and 

thus the positive externality associated with learning from other’s choices is blocked by a 

cascade.  The analysis implies that, with this parameterization, public announcements are 

uninformative whenever the number of public signals of one type exceeds the other by 

two or more.  As a result, if a cascade has not started, two consecutive low probability 

draws can result in a reverse cascade whereby everyone rationally herds on the incorrect 

state.  

                                                 
25 A second A announcement could arise in this setting if the second subject receives a b signal. We 
consider an announcement of A given the history Ab to be inconsistent with Bayesian rationality, although 
alternative interpretations are possible.  Since the posterior probability is 0.5 in this case, a tie-breaking rule 
must be invoked. We follow Anderson and Holt (1997) in assuming that individuals who are indifferent 
announce their own signal. This is sensible if individuals recognize the possibility of decision error in 
previous announcements.  Alternative tie-breaking rules include random choice as in BHW (1992) and a 
“nonconfident” rule in which one ignores one’s own information (Koessler and Zieglemeyer (2000)).  In 
our treatments the Anderson and Holt rule is followed 81% of the time, with most of the deviations 
occurring in the early rounds of play.      
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2.2.2 Experimental Design  

Anderson and Holt (1997) present a seminal experimental investigation of 

cascade formation using a subject pool of undergraduates.  To ensure comparability of 

our results to the extant literature, we use experimental protocols that are closely related 

to those of their work.26  The parameterization in the example above is consistent with 

their symmetric treatment ( ).)|Pr()|Pr( BbAa =  The experimental sessions we conduct 

comprise 15 rounds of the basic game for a group of either five or six players whose 

choice order in each round — either first, second, third, …., sixth ― is determined by a 

random draw.   

A round begins with the experimental monitor selecting the state of nature with a 

roll of a die that is unobserved by the subjects. Subjects gain information about the state 

by drawing a single ball out of an unmarked bag into which the contents of the selected 

urn have been transferred. The draw is made while the subject is isolated from the other 

players. The monitor is informed of the choice of the state, and announces it publicly. 

After all subjects have made their choices, the true state is revealed.  

To provide exogenous variation in the informational content of the private signal 

across treatments, we use two urn types.  In the symmetric treatment, Urn A contains two 

type-a balls and one type-b ball, while Urn B contains two type-b balls and one type-a 

ball.  To create the asymmetric treatment, we add four a balls to both urns, yielding 6 (5) 

                                                 
26 Our experimental instructions are available upon request.  Note that Anderson and Holt (1997) find that 
cascades form in roughly 70 percent of the rounds in which they are possible.  Deviations from Bayesian 
cascade formation occur most often when a simple counting rule gives a different indication of the 
underlying state.  Extensions to the experimental literature introduce relevant complications to the cascade 
process that include costly information, endogenous sequencing of choice order, collective decision 
making, expanded signal spaces, and payoff externalities (Celen and Kariv (2004, 2005), Cipriani and 
Guarino (2005b); Drehmann, Oechssler, and Roider (2005), Huck and Oechssler (2000), Hung and Plott 
(2001), Kubler and Weizsacker (2004), Noth and Weber (2003), Sgroi (2003), Willinger and Ziegelmeyer 
(1998)).   
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a signals and 1 (2) b signal in the A (B) state.  This modification results in a significant 

dilution of the strength of an a signal, the relative weakness of which can be observed in 

Table 2.1, which provides posterior probabilities for all possible signal histories for both 

the symmetric and asymmetric urn types.  As an example, the two-thirds probability that 

arises after a single a draw in the symmetric treatment arises after four consecutive a 

draws in the asymmetric setting.  One consequence of the change in signal strength is that 

in the asymmetric treatment, a cascade on the B state should take place after one b signal 

even with either one or two a signals in the game’s history.   

The difference in signal strength across urn types allows us to investigate the 

relationship between Bayesian updating and a choice heuristic based on a counting rule.  

In the symmetric treatment, the optimal decision is always consistent with choosing the 

state with the most informative signals.  In the asymmetric case, four sequences violate 

this counting rule in that it is optimal to choose B even when there are fewer b signals;  

these noncounting rule sequences are { })2,4(),2,3(),1,3(),1,2(),( ∈ba , as indicated by 

bold type in Table 2.1. Thus, the asymmetric treatment allows us to gain insights into the 

extent to which decisions are better characterized as following a counting heuristic rather 

than Bayesian updating.  
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Table 2.1: Posterior Probabilities-Symmetric (upper) and Asymmetric (lower) Urns 
            a   \     b 0 1 2 3 4 5 6

0 0.500 
0.500 

0.330
0.333

0.200
0.200

0.110
0.111

0.060 
0.059 

0.030 
0.030 

0.020
0.015

1 0.670 
0.545 

0.500
0.375

0.330
0.231

0.200
0.130

0.110 
0.070 

0.060 
0.036 

2 0.800 
0.590 

0.670
0.419

0.500
0.265

0.330
0.153

0.200 
0.083 

 

3 0.890 
0.633 

0.800
0.464

0.670
0.302

0.500
0.178

  

4 0.940 
0.675 

0.890
0.509

0.800
0.341

  

5 0.970 
0.713 

0.940
0.554

  

6 0.980 
0.749 

  

Entries represent the posterior probabilities for all possible sequences of draws for both symmetric (upper) 
and asymmetric (lower) treatments based on choice histories (a, b).  The prior probability of an urn is 0.5 in 
(0,0). Bold entries for the asymmetric urn are those in which counting and the posterior probability make 
different predictions about the state. 
 

To provide exogenous variation in the earnings domain, we randomly place 

subjects in either a gain or a loss treatment for all 15 rounds.  The treatment is 

implemented so that in gain (loss) space a correct (incorrect) inference about the 

underlying state results in positive (negative) earnings of $1 for students and $4 for  

market professionals.27  An incorrect (correct) choice in gain (loss) space results in no 

earnings. To generate similar monetary outcomes across treatments, in the loss 

treatments, students and market professionals are endowed with $6.25 and $25.00, 

respectively.28  We believe that this is the first study to vary the gain/loss domain in 

cascade games. 

                                                 
27  CBOT officials suggest that designing a 30-minute game with an expected average payout of 
approximately $30 is more than a reasonable approximation of an average trader’s earnings for an 
equivalent amount of time on the floor. In our experiments the median earnings for the market 
professionals are slightly in excess of this amount and therefore likely to be salient.  
28 To ensure that subjects depart with positive money balances we have both subject pools participate in 
other unrelated games during the experimental session.   
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Experimental subjects in a particular session consist entirely of one of the two 

subject types, students or market professionals.  The experimental sessions with market 

professionals are conducted at the Chicago Board of Trade (CBOT) and the student data 

are gathered from undergraduates at the University of Maryland in College Park.  The 

CBOT (student) subject pool includes 55 (54) subjects recruited from the floor of CBOT 

(the university).  The resulting experimental design is a 2x2x2 factorial across urn type 

(symmetric (S) or asymmetric (A)), domain type (gains (G) or losses (L)), and subject 

type (college undergraduates (C) or market professionals (M)).  Each experimental 

session consists of a group of either five or six participants making decisions within the 

same treatment type over 15 rounds.  Table 2.2 summarizes our experimental sessions.  

Table 2.2: Experimental Design 
 Symmetric Urn Asymmetric Urn 
 Gains Losses Gains Losses 

Panel A: Ten Market Professional Sessions 
Number of Sessions 3 1 3 3 
Participants in Session 5 5 One with 5, two 

with 6 
6 

Total Decisions 225 75 255 270 
Average Earnings  $43.20 -$20.80 $39.06 -$22.89 

Panel B: Ten Student Sessions 
Number of Sessions 3 1 3 3 
Participants in Session One 

with 5, 
two with 

6 

5 One with 5, two 
with 6 

5 

Total Decisions 267 75 255 225 
Average Earnings  $11.61 -$2.80 $11.00 -$6.40 
Panel A (B) shows that Market Professionals (Students) are exposed to either the Symmetric or 
Asymmetric urn and play the game in either the gain or the loss domain.  The symmetric urn consists of 
three balls — two a and one b in Urn A, and one b and two a in Urn B.  The Asymmetric urn consists of 
seven balls — six a and one b in Urn A, and five a and two b in Urn B.  The number of decisions is a 
function of the number of players, the number of games, and the number of rounds in each game. 
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2.3 Experimental Results 

Table 2.3, Panel A presents descriptive statistics from the experiment.  We report 

the rate of Bayesian decision making and the rate of cascade formation, with a Bayesian 

decision defined assuming common knowledge of Bayesian rationality (no decision 

error).  Pooled, the 20 experimental sessions yield a total of 1,647 decisions, 1,284 (78%) 

of which are consistent with a perfect Bayesian equilibrium.29  Cascade decisions (i.e., 

Bayesian decisions inconsistent with the private signal) occur in 15% of the choices.  Of 

these, just under one-quarter (55 out of 245) are “reverse” cascades, resulting in the 

wrong inference about the underlying state.   

Perhaps more revealing than the aggregate number of cascades is the proportion 

of cascade decisions made when the opportunity arises.  Recall that a cascade decision is 

possible only when the private draw is inconsistent with the probability weight derived 

from the choice history and one’s own private signal.  In our data, cascade formation is 

possible in 441 of the decisions, representing 27% of the total; cascades are realized in 

245 (56%) of these cases.  These results are presented in the potential and realized 

cascades columns of Table 2.3, Panel A.   

Table 2.3, Panel A also reports statistics disaggregated by subject and treatment 

type.  In aggregate, 81% (75%) of the students’ (market professionals’) decisions are 

consistent with Bayesian Nash equilibrium.  Decisions of individual subjects range from 

38% to 100% Bayesian (these results are not shown to conserve space), and of the 14 

                                                 
29 In the discussion that follows we use the term “Bayesian decision” to mean that the decision is consistent 
with the predictions of perfect Bayesian equilibrium. 
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subjects perfectly consistent with Bayesian rationality, 10 were students.30  In situations 

in which Bayesian behavior requires that one ignore private information, fewer agents are 

Bayesian: The final column of Table 2.3, Panel A shows that 61% (49%) of students 

(market professionals) ignore their signal when doing so leads to a cascade.  

Interestingly, rates of cascade formation and Bayesian decision making are lower in the 

asymmetric treatments for both subject pools.   

Table 2.3: Aggregate Decision Making 
Treatment Bayesian Cascades 

(total) 
Reverse 

Cascades 
Potential 
Cascades 

Realized 
Cascades 

Panel A: Decision Making Pooled and by Treatment 

Pooled Data 
C & M 
n=1,647 

0.780 
1,284 

0.149 
245 

0.033 
55 

0.268 
441 

0.556 
245/441 

 College Student Treatments (C) 
C 

n = 822 
0.814 
669 

0.178 
146 

0.045 
37 

0.292 
240 

0.608 
146/240 

SGC 
n = 267 

0.940 
251 

0.157 
42 

0.041 
11 

0.172 
46 

0.913 
42/46 

SLC 
n = 75 

0.960 
72 

0.067 
5 

0.013 
1 

0.080 
6 

0.833 
5/6 

AGC 
n = 255 

0.682 
174 

0.251 
64 

0.051 
13 

0.451 
115 

0.557 
64/115 

ALC 
n = 225 

0.764 
172 

0.155 
35 

0.053 
12 

0.324 
73 

0.480 
35/73 

 Market Professional Treatments (M) 
M 

n = 825 
0.745 
615 

0.120 
99 

0.021 
18 

0.244 
201 

0.493 
99/201 

SGM 
n = 225 

0.818 
184 

0.098 
22 

0.022 
5 

0.142 
32 

0.688 
22/32 

SLM 
n = 75 

0.867 
65 

0.147 
11 

0.067 
5 

0.213 
16 

0.688 
11/16 

AGM 
n = 255 

0.714 
182 

0.133 
34 

0.008 
2 

0.275 
70 

0.486 
34/70 

ALM 
n = 270 

0.681 
184 

0.133 
32 

0.022 
6 

0.307 
83 

0.385 
32/83 

                                                 
30 Thirteen of the 14 who are perfectly consistent with Bayesian rationality are in the symmetric urn 
treatment. One market professional is perfectly Bayesian in the asymmetric setting. 
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Table 2.3 (cont.): Aggregate Decision Making 
Treatment Bayesian Cascades 

(total) 
Reverse 

Cascades 
Potencial 
Cascades 

Realized 
Cascades 

Panel B: Decision Making by Counting Rule Predictions (Asymmetric Treatments) 

Pooled Data 
C & M 

n = 1,005 
0.709 
712 

0.164 
165 

0.033 
33 

0.339 
341 

0.477 
165/341 

Count = Baye 
n = 843 

0.759 
640 

0.152 
128 

0.024 
20 

0.267 
225 

0.565 
128/225 

Count ≠ Baye 
n = 162 

0.444 
72 

0.228 
37 

0.080 
13 

0.716 
116 

0.313 
37/116 

College Student Treatments (C) 
C  

n = 480 
0.721 
346 

0.206 
99 

0.052 
25 

0.392 
188 

0.527 
99/188 

Count = Baye 
n = 412 

0.760 
313 

0.189 
78 

0.036 
15 

0.325 
134 

0.582 
78/134 

Count ≠Baye 
n = 68 

0.485 
33 

0.309 
21 

0.147 
10 

0.794 
54 

0.389 
21/54 

Market Professional Treatments (M) 
M 

n = 525 
0.697 
366 

0.126 
66 

0.015 
8 

0.291 
153 

0.431 
66/153 

Count = Baye 
n = 431 

0.759 
327 

0.116 
50 

0.011 
5 

0.211 
91 

0.550 
50/91 

Count ≠Baye 
n = 94 

0.415 
39 

0.170 
16 

0.032 
3 

0.660 
62 

0.258 
16/62 

The Bayesian column represents the total proportion and number of decisions consistent with a perfect 
Bayesian equilibrium.  Cascade decisions (those that are Bayesian but for which private information is 
ignored) and reverse cascades (cascades in which the wrong inference of the underlying state occurs) 
occupy the next two columns.  The potential cascades category represents the proportion (and number) of 
cascades that could have occurred when it was possible to make one, and the realized cascades category 
represents the proportion of those potential cascades that were actually realized. “n” = number of decisions. 
Treatment codes are S = symmetric, A = asymmetric, G = gain, L =  loss, C =  college student, and M =  
market professional.  Panel A includes all decisions and Panel B restricts attention to those sequences in 
which the Bayesian posterior and a counting rule make different predictions. 

 

The final set of descriptive statistics is presented in Table 2.3, Panel B, which 

displays results from the asymmetric treatments first pooled and then parsed by subject 

pool and sequence type, where the type is either a counting rule or a noncounting rule 

sequence.31  Table 2.3, Panel B demonstrates that both Bayesian decision making and 

                                                 
31 We will see below that there are differences between the symmetric and asymmetric treatments even 
after controlling for the counting rule sequences.  As a result, we do not pool the symmetric results in this 
table.  
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cascade formation decline when the rules are not reinforcing:  The proportion of 

Bayesian decisions by students (market professionals) declines from 76% (76%) to 49% 

(42%), and the rate at which cascades obtain declines from 58 percent (55%) to 39% 

(26%).  These results suggest that the non-counting rule sequences pose a challenge for 

both subject pools.32  

To permit more formal inference, we apply a variety of parametric and non-

parametric statistical techniques and group our results into five categories.  Three of the 

categories compare students and market professionals to consider differences in (1) 

Bayesian decision making, (2) cascade formation, and (3) behavior across the gain/loss 

domain.  A fourth category concentrates on data from market professionals by making 

use of additional demographic data collected during the experiment.  The fifth category 

considers the exogenous alteration of signal strength through the use of the symmetric 

and asymmetric urns.  Our analysis leads to the following insight: 

Result 1:  Market professionals are less Bayesian than students.  Despite this 

behavioral discrepancy, earnings are not significantly different across subject 

pools. 

To provide evidence of this result we employ both unconditional and conditional 

statistical tests.  When using unconditional tests, we account for the data dependencies 

within an experimental session by using session-level aggregates to yield the most 

conservative statistical tests.  Our unconditional test used to support Result 1 is a non-

                                                 
32 Anderson and Holt (1997) find that the rate of Bayesian behavior in the noncounting rule sequences is 
50%, comparable to our student population rate of 49% and close to the pooled rate of 44%.  
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parametric Mann-Whitney U test, which indicates that the rate of Bayesian decision 

making differs across subject pools at a level of significance of p = 0.052.33   

To complement this analysis, we employ conditional tests that recognize the panel 

nature of our data; in particular, we use a random effects probit specification of the form 

(2.4) Bayeit = β`Xit + eit,  eit ~N[0,1],      

where Bayeit equals unity if agent i is a Bayesian in round t under the assumption 

of no decision error by preceding players, and zero otherwise, and Xit includes treatment 

effects (gain, sym, and trader) and other variables predicted to influence play (order_x, 

diff, and heurist).  The treatment variables are as defined above: gain equals one (zero) 

for sessions in the domain of gains (losses), sym equals one (zero) for the symmetric 

(asymmetric) sessions, and trader equals one (zero) for market professionals (students).   

The remaining variables are defined as follows.  The categorical variable order_x 

(x=2,..,6) indicates the positional order in which the individual choice is made.  The 

posterior probability is incorporated in the variable diff, which is calculated as 

( ) 5.0,|Pr −= sHAω  and measures the accrued public and private information at the 

disposal of each decision maker; note that diff, therefore, varies from zero to one-half, 

increasing with evidence of the underlying state.34  The variable heurist is equal to one 

(zero) for noncounting rule (counting rule) sequences.  In a perfect Bayesian equilibrium, 

the coefficients of these latter two variables should not differ from zero.   

We specify eit = uit + αi, where the two components are independent and normally 

distributed with mean zero: Var(eit) = σu
2 + σα

2.  We estimate equation (2.4) using the 

                                                 
33 There are 10 session-level observations for each subject pool as summarized in Table II. 
34 The posterior, and thus the diff variable, remains constant once a cascade has formed, unless a decision 
breaking the cascade is observed. 
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maximum likelihood approach derived in Butler and Moffitt (1982).  Estimation of this 

model is amenable to Hermite integration.  To estimate the model, we use a 12 point 

quadrature and the method of Berndt et al. (1974) to compute the covariance matrix. 

Empirical results are reported in Table 2.4, which presents the marginal effects 

associated with a change in each of the regressors computed at the overall sample 

means.35  Concerning subject pool effects, results from both a likelihood ratio test and the 

trader dummy variable in the pooled regression model (Panel 4a) support the non-

parametric finding that market professionals are less Bayesian than students.36  The 

estimated marginal effect in the pooled model suggests that traders are 6% less likely to 

be Bayesian, and this effect is significant at the p < 0.05 level.   

Despite the noisier environment (fewer professionals are Bayesian), market 

professionals and students choose the correct underlying state at similar rates.  Indeed, 

using a Mann-Whitney U-test, we find that we cannot reject the homogenous null that 

success rates are similar at conventional levels (p= 0.29), leading to the result that 

earnings are similar across the subject pools.  To dig a level deeper into this finding, we 

estimate a model similar in spirit to equation (2.4), but make the dependent variable win 

be dichotomous and equal to unity (zero) if the individual chooses correctly (incorrectly). 

We include an additional independent variable, round, to identify learning during 

the course of the session;  round is a time trend and increases from 1 to 15 within a 

session.37 

                                                 
35 The alternative approach of computing the marginal effects for each observation and taking the means 
yields very similar results. Results are also robust to the inclusion of a time trend for round or time 
dummies (categorical time dummy variables for each round of play).  We discuss our evidence of learning 
further, below.   
36 A Chow test rejects the null hypothesis of no differences across the subject pools at the p< 0.01 level. 
37 We test several specifications of the model for learning and find no such effect.  
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The empirical results summarized in Table 2.5 support the nonparametric finding 

concerning earnings and provide more formal evidence of the second half of Result 1.  In 

particular, the trader variable in Table 2.5, Panel 5a is not significantly different from 

zero at conventional levels (p = 0.27).  This result suggests that traders and students 

choose the correct urn at similar rates.  The two groups differ in their temporal play, 

however, as evidenced by the significant (insignificant) and positive marginal effect of 

round for the traders (students), consistent with learning effects among traders.  

Besides providing empirical support for Result 1, the models in Table 2.4 and 

Table 2.5 reveal some of the important effects of the other independent variables.  For 

example, the diff and heurist coefficient estimates in the pooled model of Table 2.4 

indicate that a marginal change in the posterior probability has a large positive effect 

(66%), while decisions in the counting rule sequences are 23% less likely to be Bayesian 

than those in which counting and Bayesian posterior imply the same result.  Similar 

insights arise when we split the sample by subject type, as summarized in Panels 4b and 

4c of Table 2.4.  In addition, the effect of diff is statistically significant for both subject 

pools in the Table 2.5 win models.   

Interestingly, urn symmetry, as captured by the sym dummy variable, is not 

significant for the market professionals in either model, implying that, for the traders, the 

difference across urn types is captured by the counting rule distinction.  In contrast, the 

urn difference has a significant influence on students, who are much more likely to be 

Bayesians in the symmetric treatment (see Table 2.4, Panel 4b).   
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Table 2.4: Bayesian Decisions- Probit Model 
Dependent 
variable:  
baye 

4a: Pooled Model  
n = 1,647 

 
Pr(baye=1)=0.818 

4b. Student Model 
n = 822 

 
Pr(baye=1)=0.868 

4c. Market Professionals Model 
n = 825 

 
Pr(baye=1)=0.772 

Ind. 
Variables:  

Marginal 
Effect 

 

z stat P>|z| Marginal 
Effect

z stat P>|z| Marginal 
Effect

z stat P>|z|

Diff 0.655 5.53 0.000 0.769 5.06 0.000 0.546 3.11 0.002
Heurist -0.232 -4.95 0.000 -0.161 -2.51 0.012 -0.284 -4.47 0.000
Gain -0.030 -1.13 0.259 -0.060 -2.19 0.028 0.015 0.34 0.737
Sym 0.102 3.64 0.000 0.145 4.88 0.000 0.037 0.79 0.430
Trader -0.060 -2.32 0.020 - - - - - -
order_2 -0.023 -0.66 0.507 0.019 0.54 0.590 -0.084 -1.42 0.157
order_3 -0.041 -1.06 0.291 0.017 0.42 0.673 -0.120 -1.86 0.063
order_4 -0.120 -2.91 0.004 -0.052 -1.13 0.261 -0.205 -3.12 0.002
order_5 -0.035 -0.95 0.343 0.017 0.46 0.649 -0.107 -1.71 0.087
order_6 -0.040 -0.83 0.408 -0.035 -0.56 0.577 -0.080 -1.05 0.294
 Log Likelihood: -766.49, 

Wald 2
(10)χ =141.03,  Prob > 2

(10)χ =  
0.000

Log Likelihood: -328.95, Wald 2
)9(χ =  

87.77, Prob > 2
)9(χ  =   0.000

Log Likelihood: -427.28, Wald 2
)9(χ =  

68.91, Prob > 2
)9(χ  =   0.000

 

The dichotomous dependent variable in all three probit models (pooled, student, and market professional) is coded one for a decision consistent with the Bayesian 
posterior and zero otherwise.  Independent variables include diff, which is ( ) 5.0−= Aurnprob , where ( )Aurnprob =  is the posterior probability arising from 
the combination of public and private information at the disposal of each decision maker.  The variables gain, sym, and trader (in the case of the pooled model) are 
dichotomous and distinguish the treatments. Heurist is a dummy variable equal to one for the noncounting rule sequences and zero for all others. Order_x (where x=2,..6) 
is a categorical variable indicating where in the round of play the decision was made. The Wald statistic tests the null hypothesis that all coefficients are zero. 
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Table 2.5: Winning Decisions - Probit Model  
Dependent 
variable:   
Win 

5a: Pooled Model  
n = 1,647 

 
Pr(win=1)=.702 

5b. Student Model 
n = 822 

 
Pr(win=1)=.729 

5c. Market Professionals Model 
n = 825 

 
Pr(win=1)=.670 

Ind. 
Variables:  

Marginal 
Effect 

z stat P>|z| Marginal 
Effect

z stat P>|z| Marginal 
Effect

z stat P>|z|

Diff 1.070 7.85 0.000 1.039 5.51 0.000 1.053 5.55 0.000
Heurist -0.008 -0.19 0.846 -0.009 -0.14 0.886 -0.050 -0.31 0.754
Gain 0.083 2.65 0.008 0.113 2.52 0.012 0.158 1.26 0.207
Sym -0.028 -0.81 0.418 -0.013 -0.31 0.759 -0.122 -0.86 0.388
Trader -0.033 -1.10 0.272 - - - - - -
Round 0.005 1.95 0.051 0.003 0.68 0.499 0.022 2.06 0.040
order_2 0.008 0.22 0.824 0.014 0.29 0.774 0.008 0.05 0.960
order_3 0.019 0.49 0.627 0.016 0.30 0.767 0.073 0.45 0.656
order_4 0.048 1.26 0.206 -0.001 -0.02 0.988 0.293 1.79 0.074
order_5 0.057 1.53 0.126 0.081 1.64 0.102 0.010 0.62 0.534
order_6 0.063 1.33 0.184 0.046 0.63 0.528 0.192 0.96 0.337
 Log Likelihood: -964.06, Wald ( )

2
11χ = 

99.52, Prob > ( )
2
11χ  =  0.000

Log Likelihood: -462.25, Wald 2
(10)χ =  

54.39, Prob > 2
(10)χ  =  0.000

Log Likelihood: -498.55, Wald 2
(10)χ =  

48.30, Prob > 2
(10)χ  =   0.000

 
The dichotomous dependent variable in all three probit models (pooled, student, and market professional) is coded one for a decision that correctly predicts the underlying 
state and zero otherwise.  Independent variables include diff, which is ( ) 5.0−= Aurnprob , where ( )Aurnprob =  is the posterior probability arising from the 
combination of public and private information at the disposal of each decision maker.  The variables gain, sym, and trader (in the case of the pooled model) are 
dichotomous and distinguish the treatments. Heurist is a dummy variable equal to one for the noncounting rule sequences and zero for all others. Round represents a time 
trend that increases from 1 to 16 with each completed play of the cascade game.  Order_x (where x=2,..6) is a categorical variable indicating where in the round of play 
the decision was made. The Wald statistic tests the null hypothesis that all coefficients are zero.    
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A final important difference across subject pools is that the order_x variables 

indicate a decline in Bayesian behavior among market professionals who choose in the 

third through fifth positions.  The magnitude of the effect is rather large, having from 

one-third to two-thirds of the effect of the counting rule sequences as represented in the 

heurist variable (Table 2.4, Panel 4c).  In contrast, the students show no such effect.  The 

behavior reflected in this finding is consistent with the idea that the market professionals 

recognize that no new additional information is added by choices once a herd has been 

formed.  

Given the significance of the diff and heurist variables, we explore the individual 

data further in a QRE model, which examines the degree to which incentives affect error 

rates in decision making.  Following Anderson and Holt (1997), we focus on data from 

our symmetric sessions and make use of the QRE model developed by McKelvey and 

Palfrey (1995, 1998); (see also Goeree et al. (2004), Goeree, Holt, and Palfrey (2005)).  

The QRE model assumes that the probability of choosing an urn is increasing in its 

expected value.  Given the positive and significant coefficient on the diff variable in 

Table 2.4, the usefulness of such a model for both the students and market professionals 

appears evident.  For parsimony, we reserve detailed discussion of the QRE model for the 

appendix, however, we briefly describe the results below.   

Table 2.10 in Appendix 2.1 reports estimates of the lambda parameter in the QRE 

model.  The lambda parameter indicates the extent to which noise affects decision 

outcomes; as ∞→λ , the choice converges to the Bayesian outcome; as 0→λ , the 

decisions become purely random.  Significant differences in lambda across the subject 

pools are observed at choice orders one, two, and five as reflected in the p-values in 
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column “p” of Table 2.10.  Particularly notable is the difference at choice order two, 

where the students exhibit few errors.  The differences in noise in the first two choice 

orders lead to quite different behaviors in choice order three, despite the fact that 

estimates of the lambda parameter are indistinguishable.  

The lambda estimates imply that the two subject pools have similar deviations 

from Bayesian rationality at choice order three.  Thus, the market professionals’ tendency 

to rely on their own signal due to errors in earlier rounds is as rational as the students’ 

decision to ignore theirs and join the cascade.  Table 2.11 clarifies the meaning of this 

result by examining in detail the impact of the noisy decision process on revealed public 

information and choice probabilities for the first three rounds of play.  For comparison, 

we present the posteriors and choice probabilities assuming a perfect Bayesian 

equilibrium, as well as the actual individual decisions.   

Consider the posterior probability for choice order three in Table 2.11, the first 

choice at which a cascade may form in the symmetric treatment, when the signal history 

is AAb (or BBa).  In this case, the posterior probability of urn A has dropped from 0.67 

for the most likely urn to 0.51 (0.59) for the market professionals (students).  Thus, while 

ignoring one’s private information is optimal for both groups, the noise in prior decisions 

dilutes the strength of the signals, with the market professionals facing essentially a 

random choice.  The probability that urn A is chosen is 0.54 (0.83) for the market 

professionals (students).  The differences across the sequences in choice order three 

highlights the fact that noise in the decision-making process dilutes the value of the 

public signal. 
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Despite the evidence from the QRE estimation of the noisier environment for the 

market professionals we find that the two groups do not differ significantly in their 

earnings,.  Further exploration into this observation leads to the following two results: 

Result 2a:  In aggregate, the rate of cascade formation is not significantly 

different for students and market professionals; however market professionals 

enter into fewer reverse cascades in the asymmetric treatments.   

Result 2b:  Market professionals are better able to discern the quality of the 

signal associated with other players’ announcements than are students. 

 
Evidence in favor of Results 2a and 2b follows from both nonparametric and 

parametric statistical tests.  Even though the rate at which cascades are realized is roughly 

60% for the students and only 50% for the market professionals (see Table 2.3, Panel A), 

using a Mann-Whitney test the homogeneous null cannot be rejected at conventional 

levels (Mann-Whitney p=0.33).   

While the rate of cascade formation indicates that there is only weak evidence that 

students enter into a greater number of cascades than do professionals, there are 

significant differences across subject pools in the rate of cascade formation in the 

asymmetric urn treatment.  Table 2.3, Panel A reveals that in the asymmetric treatment 

only 12% (8 of 66) of the cascades entered by market professionals are reverse cascades.  

This is roughly half of the rate observed for students (25 of 99), a difference that is 

statistically significant at the p < 0.05 level using a Mann-Whitney test. 

To complement these nonparametric insights, we estimate models similar to 

equation (2.4), but set the dependent variable equal to one when a cascade is formed and 

zero otherwise.  To conserve space, we do not formally tabulate these results since they 
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reinforce the nonparametric insights gained above.  We find that in the model that pools 

the symmetric and asymmetric data cascade formation is similar across the students and 

market professionals.  When we focus, instead, on reverse cascades and use only the data 

from the asymmetric urn treatments, we find that students enter significantly more 

reverse cascades than do professionals.   

These results cannot be explained by our model of decision making based on 

posterior probabilities derived from signals and actions.  We therefore investigate the 

hypothesis that market professionals use auxiliary information that the students ignore in 

order to avoid reverse cascades.  To do so, we augment the cascade formation model 

discussed above by considering whether subjects use information specific to individuals 

selecting prior to them in the current round.   

Specifically, we construct two variables that each provides an indication of the 

Bayesian decision making of subjects who preceded each player in a particular round:   

othb_max (othb_min) measures the extent of previous Bayesian decisions by the most 

(least) Bayesian players.  For example, for player i whose choice order is x in round t, we 

calculate othb_min as 

(2.5) othb_min x
it
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In this case, the proportion of Bayesian decisions for the individual with the 

lowest proportion among all j agents preceding the current decision maker is used as the 

independent variable, although the empirical results are robust to other specifications 

including replacing the min operator with the mean or max.  In the case of othb_max, we 

simply replace “min” with “max” in equation (2.5).  Note that these variables are 
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calculated for each t (round of the game) so that they include only those decisions that 

have already occurred.  The variables diff, heurist, and gain are also included, and are 

defined as in the previous models.  

Empirical results are presented in Table 2.6.  Since the results across models yield 

similar insights concerning the nature of interpreting signals, we focus on the othb_min 

results.  Although othb_min is insignificant in the pooled specification in Panel 6a, this 

result masks a difference in how the two subject pools respond to the announcements of 

others.  Results in Table 2.6, Panel 6c suggest that cascade formation for the market 

professionals is significantly and substantially associated with the quality of the others’ 

signals.  The marginal effect of a higher minimum in the preceding players’ share of 

Bayesian decisions is 47%, which is the largest of the variables that are statistically 

significant and is an indication of the impact of the inferred signal quality on the 

willingness to make a decision that relies on others.  This variable is significant and 

negative in the student sample (Panel 6b). 
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Table 2.6: Cascade Formation: Probit Model  
Dependent 
variable:  
cascade 

6a: Pooled Model 
n = 416 

 
Pr(cascade=1)=.588 

6b. Student Model 
n = 226 

 
Pr(cascade=1)=.676 

6c. Market Professionals Model 
n = 190 

 
Pr(cascade=1)=.493 

IND. 
VARIABLES
:  

MARGINAL 
EFFECT 

 

Z STAT P>|Z| MARGINAL 
EFFECT 

Z STAT P>|Z| MARGINAL 
EFFECT 

Z STAT P>|Z| 

DIFF 0.861 0.75 0.453 -0.136 -0.08 0.939 1.689 1.13 0.259
Othb_min -0.014 -0.09 0.924 -0.572 -2.54 0.011 0.469 2.11 0.035
Heurist -0.354 -4.35 0.000 -0.331 -2.49 0.013 -0.394 -3.95 0.000
Gain 0.133 1.67 0.095 0.021 0.19 0.846 0.120 1.12 0.261
Sym 0.126 1.03 0.303 0.389 4.09 0.000 -0.200 -1.16 0.246
Trader -0.111 -1.44 0.151 - - - - - -
order_2 -0.146 -1.13 0.260 0.064 0.39 0.696 -0.332 -2.33 0.020
order_3 0.078 0.72 0.469 0.167 1.24 0.214 0.039 0.24 0.810
order_4 0.042 0.39 0.696 0.048 0.33 0.744 0.066 0.44 0.658
order_5 0.233 2.35 0.019 0.169 1.21 0.225 0.308 2.13 0.033
 Log Likelihood: -245.22, Wald 2

)10(χ = 

46.24, Prob > 2
)10(χ  =    0.000

Log Likelihood: -125.20, Wald 2
)9(χ =  

27.78, Prob > 2
)9(χ  =    0.001

Log Likelihood: -111.06, Wald 
2

)9(χ =27.42, Prob > 2
)9(χ  =    0.0012

The dichotomous dependent variable in all three probit models (pooled, student, and market professional) is coded one for a cascade decision and zero otherwise.  
Independent variables include diff, which is ( ) 5.0−= Aurnprob , where ( )Aurnprob =  is the posterior probability arising from the combination of 
public and private information at the disposal of each decision maker.  The variables gain and trader (in the case of the pooled model) are dichotomous and 
distinguish the treatment/subject type.  Othb_min is the proportion of Bayesian decisions by the individual with the lowest proportion among all agent’s 
preceding the decision maker, and is calculated in each round of the game to include only those decisions that have already occurred. Heurist is a dummy 
variable equal to one for the noncounting rule sequences and zero for all others.  Order_x  is a categorical variable indicating where in the round of play the 
decision was made.  Note: Because the othbys variable is not applicable for those in the first round or first in choice order in subsequent rounds (they do not 
observe others’ decisions in the current round), these observations are excluded. This results in the exclusion of 25 of the 441 potential cascades. The order_6 
dummy variable is also excluded and choice order two serves as the baseline to which others are compared. The Wald statistic tests the null hypothesis that all 
coefficients are zero. 
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Using othb_max in the regression yields an insignificant effect for the students, 

while the market professionals again respond positively, with a marginal effect of 57% 

(detailed results omitted).38  We therefore conclude that the market professionals make 

better use of available public information, incorporating evidence on others’ rationality in 

their decision making in a way that is payoff relevant.39  Note also that, in contrast with 

what we found with respect to all decisions (Table 2.4), the diff variable is not significant 

for either group when we restrict our attention to the subset on cascade formation.  

One may wonder whether the result on signal quality is due to market 

professionals having a greater level of previous interaction with one another than 

students, or, alternatively, whether there is evidence of learning in the experiment.  To 

explore this issue, we again examine changes in behavioral patterns during an 

experimental session.  The evidence is consistent with the view that market professionals 

learn over these 15 rounds.  Comparing behavior from the first and last three rounds of a 

session, we find that market professionals: a) significantly reduce the rate at which they 

join reverse cascades (from 13% to 2%), and b) increase the rate at which they join 

cascades with good outcomes (from 24% to 46%).  Both results are statistically 

significant in probit specifications that include the cascade type as the dependent variable 

and the temporal variable along with the control variables as independent variables (full 

                                                 
38  We estimated six models that included variables designed to measure the quality of previous agent’s 
decision-making on cascade formation. In addition to the three that used other Bayes variables (othb_min, 
othb_max, and othb_mean) we considered whether individuals who had previously revealed their private 
signal were followed when cascades were possible. These other_reveal models also tested the min, max, 
and mean operators. In all six cases market professionals followed those with higher levels of reliability 
into cascades. Among the students, in five of six cases there was no significant effect of signal quality, with 
othb_min the sole exception as reported in Table VI, Panel 6b. 
39 Support for the significant differences between subject pools found in the parametric results is also found 
in nonparametric (Mann-Whitney) tests. 
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results omitted to conserve space).  By contrast, there are no significant changes in the 

rate of cascade formation for either type of cascade for the student subjects.   

Our final insight concerning the comparison between students and professionals 

concerns the domain of earnings of the game: 

Result 3:  Bayesian behavior of the student population is affected by whether 

earnings are in the gain or loss domain, while market professionals are 

unaffected.  

 
Summary evidence in favor of this result can be found in Table 2.3, Panel A, 

where we observe that professionals exhibit a similar degree of Bayesian decision making 

across the gain and loss domains (roughly 75%), whereas for students Bayesian play 

increases in the loss domain.  For example, considering the asymmetric treatments, we 

find that a Mann-Whitney test indicates that college students are less Bayesian in the gain 

treatment than in the loss treatment, while market professionals are unaffected by the 

domain of earnings (students:  p < 0.08; traders: p = 0.61).40 

Empirical estimates in Table 2.4 provide additional evidence of this result.  In the 

pooled data (Panel 4a), the dummy variable gain is not significant at conventional levels, 

and it remains insignificant for the market professionals’ specification (Panel 4c).  For the 

students, however, the parameter estimate is both significant (p=0.028) and negative, 

indicating a 6% increase in Bayesian behavior in the loss domain.  This result is 

consistent with the notion that, for the student population, losses loom larger than gains.  

This result is consonant with results in List (2003, 2004), who explore loss aversion in a 

                                                 
40 Due to the small number of sessions at the individual treatment level, p-values for the Mann-Whitney test 
are reported for observations aggregated at the individual participant level.   
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much different environment.  Nevertheless, consistent with the notion that repetition 

might attenuate such anomalies (see, for example, Knez et al. (1985); Coursey et al. 

(1987)), analysis of the data from the student sessions provides some evidence that the 

effect of the domain is mitigated via repetition.   

While Results 1-3 highlight differences between the professional and student 

subjects, we also find important differences within the group of market professionals that 

are relevant for understanding their decision processes. We supplement our data with a 

survey implemented at the end of the experimental session. Upon exploring these data 

more closely, we find:    

Result 4:   Behavioral differences exist within the professional subject pool.    

Evidence of this result can be obtained by augmenting equation (2.4) using the 

additional demographic data collected from the CBOT floor personnel after the 

experiment.  We focus on data collected from a group of 28 of the 55 traders who 

reported information on intensity (the average number of contracts traded per day), 

gender (one for female, zero otherwise), yrs (years of experience), income, and overnight, 

(a dichotomous variable that equals one if the trader takes overnight positions and zero 

otherwise).  Panel A. of Table 2.7 reports on the Bayesian decision making and Panel B 

reports on the cascade formation for these traders.  
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Table 2.7: Bayesian and Cascade Behavior of Traders 
 7a: Trader subset of CBOT Market Professionals 

n = 227 
Dependent Variable: baye 

Pr(baye=1)=.745 

7b.Trader subset of CBOT Market Professionals 
n = 66 

Dependent Variable: cascade 
Pr(cascade=1)=.388 

Ind. Variables:  Marginal 
Effect 

z stat P>|z| Marginal 
Effect  

z stat P>|z|

Diff 0.467 1.34 0.181 3.710 0.65 0.517
Heurist -0.391 -3.05 0.002 0.001 0.05 0.997
Gain  -0.023 -0.24 0.81 0.163 0.59 0.552
Sym 0.009 0.08 0.938 0.498 0.79 0.432
order_2 0.061 0.64 0.523 n/a n/a n/a
order_3 -0.029 -0.28 0.778 -0.185 -0.48 0.629
order_4 -0.095 -0.86 0.392 -0.219 -0.68 0.498
order_5 -0.024 -0.22 0.828 0.474 1.22 0.221
order_6 0.089 0.67 0.504 0.229 0.36 0.721
Intensity 0.004 2.44 0.015 -0.029 -1.91 0.056
Gender 0.069 0.58 0.561 -0.955 -0.2 0.838
Experience (yrs) -0.001 -0.18 0.859 0.011 0.34 0.735
Income 0.013 0.55 0.582 0.394 1.58 0.115
Overnight -0.173 -2.03 0.042 -0.804 -2.24 0.025
 Log Likelihood: -93.93, Wald ( )

2
14χ   =   52.74,

 Prob >  ( )
2
14χ  =    0.0000

Log Likelihood: -15.62, Wald  ( )
2
13χ   =   34.20, 

Prob >  ( )
2
13χ  =    0.0011

The dichotomous dependent variable in Panel A is coded one for a decision consistent with the Bayesian posterior and zero otherwise. For Panel B cascade 
formation is indicated by a one and cascade failure by a zero. Independent variables include diff, which is ( ) 5.0−= Aurnprob , where ( )Aurnprob =  is 
the posterior probability arising from the combination of public and private information at the disposal of each decision maker.  The variables gain and sym are 
dichotomous and distinguish the treatments. Heurist is a dummy variable equal to one for the non-counting rule sequences and zero for all others.  Order_x 
(where x=2,..6) is a categorical variable indicating where in the round of play the decision was made.  Intensity reflects the level of trading intensity among 
participants, measured as the number of contracts traded per day. Gender is one for female and zero for male. Experience (years), income (dollars), and overnight 
(one for holding overnight positions, zero for daytrader) are additional control variables.  
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Concerning Bayesian decision making, we find that diff is not significantly 

different from zero.  Indifference to the magnitude of the posterior, for the Bayesian 

models, does not occur elsewhere in our study, and as we discuss previously is consistent 

with Bayesian rationality and inconsistent with theories of decision error.  Variables that 

are significant include heurist, intensity, and overnight.  As with the previous results 

reported in Table 2.4, heurist has a strong negative effect (-39.1%).  Trading intensity 

increases Bayesian behavior slightly (0.4%) and overnight trade has a significantly 

negative impact on the rate of Bayesian decision making (-17.8%). The probit estimates 

in Panel B reveal that day traders are much more likely to join an informational cascade, 

as are traders with lower trading intensity, with marginal effects of -80% on overnight 

and -2.9% on intensity. 

For those making consequential trading decisions, the link between trading 

intensity and Bayesian rationality is consistent with the empirical results of Locke and 

Mann (2005), Genovese and Mayer (2001), and List (2003, 2004), who find similar 

results in diverse settings that include financial, housing, and memorabilia markets.  We 

believe that the result on trading style is novel, and we offer some thoughts on its 

implications in the discussion section below.   

Results 1-4 highlight differences in cascade formation and Bayesian decision 

making across subject types, and include the exogenous alteration of signal strength due 

to urn type through the heurist variable.  Our final result looks more closely at the impact 

of signal strength: 

Result 5: Deviations from Bayesian norms are greatest when the counting rule 

and Bayesian updating make different predictions.  
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Our probit specifications reveal that when counting and Bayesian rationality yield 

different predictions, both market professionals and students are less Bayesian.  Table 2.8 

presents all of the observed signal patterns for the asymmetric treatment.  Those in which 

the counting rule and Bayesian posteriors yield different predictions are in bold type.  

Statistical tests confirm what a visual scan of the data suggests:  Bayesian behavior is 

significantly reduced in the non-counting rule sequences.41  In fact, the four non-counting 

rule sequences have lower rates of Bayesian decision making than any of the other 

sequences, despite the fact that others have smaller diff values.   

Table 2.8: Posterior Probability Urn is A and Proportion of Bayesian Decisions  
   a\     b 0 1 2 3 4 5 6

0 0.50 
 

0.33
0.85

0.20
1.00

0.11
1.00

0.06 
1.00 

0.03 
0.89 

0.02
1.00

1 0.55 
0.76 

0.38
0.56

0.23
0.72

0.13
0.64

0.07 
0.95 

0.04 
0.63 

2 0.59 
0.87 

0.42
0.46

0.26
0.63

0.15
0.69

0.08 
0.79 

 

3 0.63 
0.84 

0.46
0.30

0.30
0.52

0.18
0.58

  

4 0.67 
0.76 

0.51
0.76

0.34
0.29

  

5 0.71 
0.87 

0.55
0.78

  

6 0.75 
0.80 

  

The amount of information associated with urns A and B are given in the first row and first column, 
respectively.  The pairs of numbers within an (a,b) pair represent the Bayesian posterior (upper number) 
and the proportion of Bayesian decisions (lower number). Those in bold type are the sequences in which 
counting and the Bayesian posterior make different predictions.  Thus (2,1) has a posterior probability 
of 42% that the urn is A (diff=0.08). Forty-six percent made the Bayesian decision in this case. By 
contrast the (2,0) sequence (in which diff=0.09) has a posterior probability of 0.59, and 87% of those 
decisions were Bayesian. 

                                                 
41 We use a Wilcoxon matched pairs test with the variable of interest equal to the proportion of Bayesian 
decisions aggregated at the session level. The diff variable for the counting rule sequences is in the range 
from 0.0 to 0.2, and all other sequences with diff variables in this range are included for the paired 
comparison. Using data from the 12 asymmetric sessions we find that the counting rule sequences reflect 
less Bayesian decision making despite roughly equivalent diff scores at p<.01.   
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Figure 2.1 illustrates this insight by presenting the proportion of Bayesian 

decisions for all observed histories of play as a function of the posterior probability.   

Figure 2.1: Counting Rule Heuristic, Signal History and Bayesian Behavior 
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The proportion of Bayesian decisions for every realized posterior probability is presented as a data point. 
The choice histories in which the counting rule and Bayesian posterior yield different predictions are 
presented as open squares. All other sequences are presented as black diamonds. Note that the sequences in 
which Bayesian behavior and the counting rule heuristic make different predictions have a uniformly lower 
proportion of Bayesian decisions than the others. 

 

The non-counting rule sequences (square entries) are uniformly lower than the 

other choice histories, represented as black diamonds.  Compiling the results from Figure 

2.1, we find that Bayesian behavior occurs at a rate of 44% in the non-counting rule 

choice histories and at a rate of 81% in the remaining choice histories in the asymmetric 

treatments.  There is an important difference in the rate of Bayesian behavior in non-

counting rule sequences that depends on whether one’s decision involves choosing to join 
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a cascade.  The difference is best explained by considering whether individuals rely on 

their private signal.  Restricting attention to non-counting rule sequences, we find that 

individuals are Bayesian in 31% of the cases when the decision involves choosing to 

enter a cascade.  Therefore, 69% follow their own signal.  By contrast 74% of decisions 

are Bayesian when there is no potential cascade and the decision is consistent with one’s 

private information (see Table 2.9).  Thus, when the signal history requires that Bayesian 

agents ignore their own signal, agents generally fail to do so.  As a result, the failure of 

cascade decisions implies that 69% rely on their own information – a result statistically 

indistinguishable from the 74% who rely on their own signal when doing so is optimal.  

We conclude that for the noncounting rule sequences, a Bayesian perspective provides a 

less accurate description of decision making than the simple rule of using private 

information.  

 

Table 2.9: Bayesian Behavior According to Cascade Potential - Asymmetric 
Treatments 
   No Potential 

Cascade 
Potential 
Cascades 

Total  

All  
n = 1,005 

 

.82 
541/657 

.48 
166/348 

.70 
707/1,005 

Noncounting Rule 
n = 843 

 

.83 
512/618 

.57 
128/225 

.76 
640/843 

Counting Rule 
n = 162 

.74 
29/39 

.31 
38/123 

.41 
67/162 

 
The proportion of Bayesian decisions both when a cascade is possible and when one is not for both 
counting rule and non-counting rule sequences in the asymmetric treatments are provided in the table.  
When there is no potential cascade the proportion of Bayesian decisions (.74) is the proportion in which 
one follows the private signal. When there is a potential cascade (1-.31=.69) is the proportion of decisions 
that follow the private signal.  
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2.4 Discussion 

Our cascade game data yield interesting evidence of heterogeneity both across the 

two subject pools and within the market professional group.  Simple measures of 

performance indicate that the students outperform the market professionals.  Controlling 

for learning about signal quality, however, makes clear that the market professionals use 

a more sophisticated decision process, more finely parsing the quality of public 

information and relying on their own signal more frequently.  Within the market 

professional group, trading style has a strong effect on behavior, with those taking 

overnight positions entering cascades much less frequently. 

We view these results as having potentially interesting implications for financial 

markets, although care must be taken with the interpretation, in part because of the fixed 

payoff that subjects received in our experiment.42  However, fixed prices are not 

irrelevant in financial markets as variability in order size means that prices need not 

change with each transaction.  Thus, it is reasonable to study cascade decisions occurring 

at a constant price as well as those that lead to a change in price.  

We believe it is plausible that the heterogeneity among traders regarding cascade 

formation may be related to differences in their trading practices, including those around 

fixed prices.  Local floor traders who do not take overnight positions typically specialize 

as market makers and are more likely to face situations in which herding, including 

herding at a constant price, is part of their trading practice.  This type of herding may 

                                                 
42 There is a long and important debate on the relevance of cascade models for financial markets (Vives 
(1996)).  Avery and Zemsky (1998) show that the introduction of variable prices to the BHW model can 
eliminate informational cascades (herding in their terminology) under certain conditions.  Lee (1998), Chari 
and Kehoe (2004) and Cipriani and Guarino (2005a) demonstrate the potential for informational cascades 
in the variable price setting by introducing transaction costs, endogenous timing, and preference 
heterogeneity. 
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occur, for example, when several floor traders each take a portion of a large institutional 

order.  Manaster and Mann (1999) provide evidence that market makers are willing to 

give up their advantage in executions, narrowing or eliminating the bid-ask spread, when 

they have an informational advantage over the outside order.  If information is dispersed 

among traders heterogeneously, the situation is similar to the cascade environment we  

study here.  A crucial difference is that timing and transaction size in the market is 

endogenous, and ultimately, of course, prices do change.43    

Avery and Zemsky (1998) introduce flexible pricing into the BHW model and 

find that for cascades to form, the value uncertainty, which we implement in our 

experimental protocol, needs to be accompanied by event uncertainty (the possibility of a 

change in asset value) and composition uncertainty (which implies that the distribution of 

trader types is not common knowledge).  Our results on the discernment of the quality of 

public announcements suggest that experienced professionals are better able to estimate 

the composition of the distribution of trader types, and so may act to mitigate price 

bubbles and crashes.44  Clearly, while additional research regarding the impact of trader 

specialization is warranted, our findings highlight the benefits of controlled 

experimentation with nonstudent subject pools.  

                                                 
43 One mechanism through which cascades might arise is, in the jargon of the trading floor, when local 
traders “lean on” large orders by trying to enter the market on the same side and at the same price. Locals 
who trade alongside an institutional order accumulate a position knowing that they can transact with the 
institution and avoid a loss. The decision process associated with deciding to trade with the institution has 
the character of a fixed price cascade.  In the context of option markets Berkman (1996) discusses how 
market makers supply liquidity in the presence of large fixed price orders.  Chamley and Gale (1994) 
introduce endogenous timing in a cascade model that predicts the least informed would trade later, and 
potentially face adverse prices.   
44 Drehmann, Oechssler, and Roider (2005) test experimentally a version of the Avery and Zemsky (1998) 
model that omits event and composition uncertainty and find behavior fairly consistent with its predictions, 
though subject to decision error and contrarian behavior.   
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We believe that our findings may also shed light on other types of cascade 

behavior.  Consider Welch’s (1992) interesting model of initial public offerings (IPOs), 

for example, which addresses cascade formation at a fixed price due to regulatory 

requirements for IPOs.  Welch finds that issuing firms have an interest in pricing to 

generate an informational cascade in order to increase the probability of a successful 

offering.  Our results that emphasize the potential for cascade fragility arising from 

variation in the ability to interpret signal quality may be important in this context.  One 

possible implication is that when underpricing of offerings is optimal in the Welch 

model, heterogeneity in signal strength and interpretation might play an instrumental role 

since reverse cascades in which no investment occurs will be fragile.  The welfare 

implications, however, are not immediately obvious given that the resulting cascades are 

of shorter duration.  Further, the importance of the effect may differ across firms or 

industries depending on the economies of scale of the investment and thus the need to 

have full or only partial subscription (Welch (1992), p. 709).   

Both the differences due to specialization and the heterogeneity in signal quality 

and processing abilities suggest fruitful directions for future research. How the 

specialized skills of market participants interact in price discovery could be explored in 

experiments that move towards a full market setting, but in which liquidity and 

informational conditions are varied in a controlled manner.  A natural part of this 

research program would be to extend the current environment to study the impact of 

heterogeneity on the IPO model of Welch (1992).  In a recent study that provides 

evidence from asset market experiments with student subjects Dufwenberg, Lundqvist, 

and Moore (2005) find that mixed experience levels can reduce the incidence of bubbles 
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and crashes.  Heterogeneous subject pools that include professionals would shed crucial 

light on this issue, and help to identify the mechanisms underlying cascade formation and 

fragility in settings that mix fixed and variable prices.  

2.5 Concluding Comments 

In this study, we introduce market professionals from the CBOT floor to a 

controlled experimental environment.  Making use of information cascades games, we 

report several insights.  While student subjects more closely follow Bayes’ rule, they do 

not perform significantly better than the market professionals along the important 

dimension of earnings.  This puzzle is explained by the fact that professionals are more 

sophisticated in their use of public information, as manifested over the course of the 

decision process:  Market professionals are less Bayesian when making decisions later in 

the choice order in a cascade game, consistent with recognizing that the quality of initial 

announcements is variable, altering the payoffs of joining cascades.  

While market professionals learn over the course of an experimental session to 

account for the quality of others’ decisions, student subjects fail to do so.  A further 

insight is that market professionals are consistent in behavior over the gain and loss 

domains, while in aggregate, students’ behavior is consistent with the notion of loss 

aversion.  Perhaps most provocatively for the operation of markets, we find an important 

heterogeneity among the market professionals that depends on their trading style.  In 

summary, our data reveal that the decisions of market professionals are consistent with 

behaviors that may mitigate informational externalities in market settings, and thus 

reduce the severity of price bubbles due to informational cascades.  



 

 72

Besides revealing both positive and normative insights, our work also offers a 

methodological contribution.  For example, it highlights the potential for experiments 

with students and professionals to be complementary inputs to research when field data is 

suggestive but inconclusive.  Indeed, in transferring the insights gained in the laboratory 

with student subjects to the field, a necessary first step is to explore how market 

professionals behave in strategically similar situations.  In this spirit, we focus on the 

representativeness of the sampled population to lend insights into which empirical results 

are similar across subject pools.  A related issue concerns the representativeness of the 

environment, which also merits serious consideration.  For example, before we can begin 

to make reasonable arguments that behavior observed in the lab is a good indicator of 

behavior in the field, we must explore whether the other dimensions of the laboratory 

environment might cause differences in behavior, including the abstract task, the stakes, 

the good, and the institution.  While our research represents a necessary first step in the 

discovery process, we hope that future efforts will explore more fully other potentially 

important dimensions of the controlled laboratory experiment.    
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Appendix 2.1: QRE Estimation Results 

Results in Table 2.4, indicate that deviations from a perfect Bayesian equilibrium 

are associated with the payoff consequences of a decision. This result leads us to estimate 

the quantal response equilibrium (QRE) developed by McKelvey and Palfrey (1995, 

1998).  By accounting for how decision error affects those later in the choice order the 

QRE yields alternative measures of the public belief.  While the QRE has been almost 

universally applied to experimental results on information cascades, there have been two 

significant criticisms of the model.  Haile, Hortaçsu, and Kosenok (2004) argue that when 

the assumption that errors are i.i.d. is relaxed, the QRE can rationalize choices that 

violate monotonicity.45  Goeree, Holt, and Palfrey (2005), however, show that 

economically sensible properties, including monotonicity and responsiveness, can be 

obtained with less restrictive assumptions.46     

A further criticism of the QRE questions the plausibility of the assumption that 

players have rational expectations about the others errors.  Two approaches have been 

used test this hypothesis, yielding mixed results. In a two parameter model that separately 

measures the rationality of beliefs and actions, Goeree et al. (2004) find support for 

rational expectations.  Kubler and Weizsacker (2004)) estimate a more complicated 

model that generalizes the belief parameter for different depths of reasoning and reject 

the hypothesis of rational expectations. To our best knowledge these models have not 

been tested on the same dataset, however an evaluation of the two approaches is in 

                                                 
45 That is, the QRE can assign to outcomes with low payoffs probabilities that are arbitrarily close to one. 
46 Monotonicity implies that in a comparison across strategies those with higher payoffs are played with 
greater probability. Responsiveness implies that when the payoff of a given strategy increases the 
probability with which it is played does not decline (Goeree, Holt, and Palfrey (2005)).   
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process using the dataset from this paper (Alevy 2006). Preliminary results support the 

rational expectations hypothesis using the model of Goeree et al. (2004).   

The current results are derived from the following model which retains the i.i.d 

assumption.47 Let the probability of choosing urn A be given by 

( ) ( )A
ii

B
i

B
i

A
i

A
iiii prprsHAcpr πεεπεπ 21),|( −>=+>+== , 

where B
iii

A
i WWsHApr ππ −== $$*),|( , and B

i
A
ii εεε −= . For comparability across 

subject pools we normalize earnings so that $W = 1 for both subject pools.  If the errors 

have an extreme value distribution, then the conditional probability of the urn choice is 

given by the logistic choice rule  

( )( )( )1...121exp1
1),|( −−+

== iA
ii

iii sHAcpr
λπλ

. 

The lambda parameter indicates the extent to which noise affects decision 

outcomes.  As ∞→λ , the choice converges to the Bayesian outcome; as 0→λ , the 

decisions become purely random.  Note that the posterior probability that the urn is A, 

A
iπ , is a function of the  lambda estimates from previous choice orders, with ( )1...1 −iλ  

representing the vector of previous estimates.    

Embedding the earlier errors in the choice probabilities that follow is what 

generates interesting insights from this model.  As shown below in a comparison of the 

error rates of students and market professionals, equal levels of rationality, as reflected in 

                                                 
47 In addition to monotonicity and responsiveness, the i.i.d. assumption imposes strong substitutability and 
translation invariance. Strong substitutability requires that when the probability of a choice of one outcome 
increases the probability for all other outcomes declines. This is not objectionable in the two-state case 
considered here. Translation invariance implies that when payoffs are multiplied the probability of a choice 
does not change. Given that payoffs are constant within a session this assumption does not appear 
restrictive.   
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comparable magnitudes of iλ can predict very different behaviors that depend on the 

errors in previous rounds. 

In our estimation, we follow Anderson and Holt (1997) and focus on the 

symmetric data.  The QRE results using these data are displayed in Table 2.10 and Table 

2.11.   

Table 2.10: Lambda estimate for Quantal Response Equilibrium, Symmetric Gain 
Treatment 

Choice Order 
 

M C p

1 4.59 7.12 0.094
2 4.56 27.75 0.012
3 8.67 8.62 0.505
4 3.90 4.99 0.258
5 2.48 6.34 0.026

Columns M and C report the lambda parameter for market professionals and college students. Column p 
reports the one-tailed p-value for the null hypothesis that the lambda parameter does not differ across the 
two groups. All lambda estimates differ significantly from zero.   

 

Our results emphasize the fact that not only the numbers of each signal, but also 

the order in which they are revealed have an important impact on behavior.  For example, 

note the posterior probability for order choice three in Table 2.10, the first choice where a 

cascade may form in the symmetric treatment, when the signal history is AAb.48  In this 

case the posterior probability of urn A has dropped from 0.67 for the most likely urn to 

0.51 (0.59) for the market professionals (students).  Thus, while ignoring one’s private 

information is optimal for both groups, the noise in prior decisions dilutes the strength of 

the signals, with the market professionals facing essentially a random choice with the 

probability that urn A is chosen being  0.539 (0.833) for the market professionals 

(students). In comparison the ABa sequence, which has an identical posterior probability 

                                                 
48  Due to the symmetry of the game, in Table 2.10 the AAb sequence also includes the BBa results.  All  
other symmetric choice sequences are treated similarly. 
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when there is no noise, the posterior 0.64 (0.65) for market professionals (students), and 

the optimal decision is made uniformly by both subject pools. This difference across the 

sequences in choice order three highlights the fact that noise in the decision making 

process dilutes the value of the public signal.  In particular, the noise associated with the 

market professionals at choices 1 and 2 results in a dependence on the private signal at 

choice 3. The decisions revealing the private signal provide those that follow with a 

richer information set.  
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 Table 2.11: Posterior Probabilities and Choice Probabilities with QRE Decision Error 
Choice 
Order 

History & 
Signal 

Choice Probability 
),,|( λsHAcpr =  

 
 

Posterior Probability 
),,|( λω sHApr =  

  
Actual Decisions 

  Bayes QRE  Bayes QRE   
   M C   M C  M  C 

          A B Share A  A B Share A
1 A 1.00 0.82 0.92  0.67 0.67 0.67  37 8 0.82  43 4 0.92 
2 Aa 1.00 0.91 0.99  0.80 0.76 0.78  23 3 0.89  27 0 1.00 
2 Ab 0.00 0.36 0.15  0.50 0.44 0.47  4 15 0.21  3 17 0.15 
3 AAa 1.00 0.99 0.99  0.89 0.81 0.85  14 0 1.00  17 1 0.94 
3 AAb 1.00 0.54 0.83  0.67 0.51 0.59  7 6 0.54  12 0 1.00 
3 ABa 1.00 0.94 0.92  0.67 0.65 0.64  10 0 1.00  8 0 1.00 
3 ABb 0.00 0.05 0.03  0.33 0.32 0.31  1 7 0.13  0 9 0.00 

Calculations are for the first three choices of the symmetric gain treatment for market professionals (M) and college students (C), with the choice probability and 
the posterior probability adjusted for decision error.  For comparison, the probabilities assuming a perfect Bayesian equilibrium (Bayes) are also presented as are 
the actual decisions.  Due to the symmetry of the treatment, the history and signal combination also represents its complement. For example the row reporting 
history and signal “ABa” also includes the “BAb” sequences. 
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Appendix 2.2: Experimental Instructions – SGS Treatment  

Instructions:  
 
In this experiment, you will be asked to decide from which of two urns balls are being drawn.  
We will begin by rolling a six-sided die.  If the die roll yields a 1,2, or 3, we will draw from Urn 
A.  If the roll of the die yields a 4,5, or 6, we will draw from Urn B. However, the roll of the die 
will be done behind a screen so that you will not know which urn has been chosen. 
  
The urns differ in the following way: 
 
 
 
 
 
 
 
 
 
 
 
 
Once an urn is determined by the roll of the die we will empty the contents of that urn into a 
container.  (The container is always the same, regardless of which urn is being used.)  
 
After the urn has been chosen each of you will come behind the screen one at a time and draw a 
ball from the container. The order in which you will draw has been determined randomly.  
The result of your draw is your private information and MUST NOT be shared with other 
participants.  
 
After each draw, we will return the ball to the container before making the next private draw.  
Each person will have one private draw, with the ball being replaced after each draw. 
 
After each person has seen the results of their own draw, we will ask them to record the letter of 
the urn  (A or B) that they think is more likely to have been used.  When the first person to draw 
has indicated a letter, we will display that letter.  After displaying the first person’s decision, we 
will call out the next registration number, and the person with that number will draw a ball and 
record a letter (A or B).  Again, their decision will be displayed on the overhead projector. This 
process will be repeated until everyone has made a draw and made a decision about which urn 
they believe is being used. After everyone has made a decision, the monitor will announce which 
of the urns was actually used. Everyone who chose the correct urn earns $1.  All others earn 
nothing. 
 
This session will consist of 15 periods of the procedure just described. 
 
Now I will describe the use of the record sheet, which is at the back of these instructions. 
 
 

             Urn A     Urn B 
(used if die is 1,2,or 3)  (used if die is 4,5,or 6) 
 
2 Striped Balls   1 Striped Ball  
 
1 Terp Ball   2 Terp Balls 
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The results for each period are recorded on a separate row on the record sheet.  Period numbers 
are listed on the left side of each row.  Next to the period number record your draw (S or T) in 
column “Own Draw”.  In columns “choice1” through “choice10” record each participants 
decisions (A or B) as they are displayed. (If there are less than 10 players the last choice columns 
remain blank.) This means that when you are asked to make a decision about which Urn is being 
used the decisions of participants who have drawn before you will be available.  Write your 
decision in the appropriate column depending on the order in which you draw, and circle your 
decision to distinguish it from other’s decisions. 
 
When all participants have made their choices, the monitor will announce the letter of the Urn 
that was actually used. Record this letter in the column headed “Urn” for that period.  If your 
circled decision matches the letter of the urn used, record your earnings of $1 in the “Payoff” 
column.  If your choice does not match the urn used record your earnings of $0. You should keep 
track of your cumulative earnings in column “Total Payoff”. 
 
Before we begin we will conduct a demonstration. During the demonstration, the roll of the die 
and the draw of the ball from the container will be publicly visible.  When we move to Period 1 
the roll of the die will be visible only to the monitor, and the draw will be visible only to the 
monitor and the person called behind the screen.  Remember that urn A contains 2 striped balls 
and 1 terp ball. It is used if the throw of the die is 1,2, or 3.  Urn B contains 1 striped ball and 2 
terp balls, and is used if the throw of the die is 4,5, or 6.  
 
Before we begin, be sure that your registration number is on the Record Sheet. 
 
Here is an overview of the procedure that will be followed in each period: 
   
1. The monitor rolls the die to determine which urn is used and transfers balls from that urn to 

the container. 
  
2. The monitor calls on a participant.  
 
3. The participant goes behind the screen: (Be sure to bring your record sheet) 

a) Makes a draw from the container 
b) records the draw on record sheet in “Own Draw” column 
c) records urn choice and circles their choice 

 
4. The monitor displays the participant’s choice and the other participants record the urn choice 

on their record form. 
  
5. Repeat steps 2 – 4 until all participants have made their choice. 
 
6. The monitor reveals the urn used in that period by displaying the balls in the container. 
 
7. Subjects record the urn used in that period and record their earnings, and their cumulative 

earnings. 
 
Please refrain from conversation during all periods of play, and keep the information on your record sheet 
confidential. 
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3 Common Agency with Other-regarding Preferences 

3.1 Introduction 

The insights of agency theory have broadened as theoretical and empirical work 

has explored more realistic and complex environments, such as those with many agents, 

many tasks, and many principals. Because of the importance of asymmetric information 

and hidden action in principal-agent models, they are amenable to testing in laboratory 

environments, where information and preferences can be more readily controlled. Efforts 

in this area, as well as in simpler proposer-responder games have led to the creation of 

the sub-field of behavioral contract theory (Charness and Dufwenberg 2003).  

In this chapter we extend the scope of behavioral contract theory by examining a 

model of common agency in which the agent performs multiple tasks.  We consider the 

work “behavioral” since theoretical predictions are developed and tested that explicitly 

account for the role of inequity, intentions, and reciprocity on economic outcomes. 

Exploring the implications of distributional concerns and intentions has been identified as 

one area in which experimental methods can inform economic theory (Samuelson 2005). 

Agency theory is an area where this investigation is particularly relevant, since many 

principal-agent models include unequal bargaining settings similar to ultimatum games.   

The paper proceeds by first formalizing in a single-principal setting a simple 

model that incorporates inequity-averse preferences. Contracts can be composed of piece 

rates, fixed fees, or some combination of the two instruments. The results are intuitive, 

with inequity aversion leading to more equal splits of the resulting surplus.49 Extending 

                                                 
49 The model formalizes much of the intuitive discussion by Anderhub, Gachter, and Konigstein (2002), 
whose experiment in a single principal setting is similar to our baseline treatment. The theoretical 
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the model to the case of common agency, results in interesting complications. In contrast 

to the single-principal case, principals consider the agent’s level of inequity aversion 

when choosing incentives, which may be higher or lower than under the self-interested 

baseline. In addition to considering the impact of distributional concerns on efficiency, an 

alternative model of the common agency problem is developed that has differing 

implications for the potential efficiency of the contracting environment. The theoretical 

results are tested experimentally in one- and two-principal settings.  

The chapter continues in section 3.2 with a review of existing models that identify 

the diversity of the settings in which common agency comes into play, as well as 

previous experimental work that informs the current study. Section 3.3 presents the 

theoretical framework and section 3.4 summarizes the theoretical results. Section 3.5 

introduces the experimental protocol and 3.6 presents the experimental results. Section 

3.7 concludes.  

3.2 Motivation and Literature Review 

The analytical lens of common agency has been used to study a variety of 

economic and political processes as disparate as manufacturer/wholesaler relationships, 

joint federal/state regulation of firms, privatization, aid effectiveness, debt and equity as 

tools for controlling corporate behavior, and separation of powers in a constitutional 

democracy. Common to these diverse issues is the question of how the addition of one or 

more principals to an agency relationship affects the provision of incentives, agent effort, 

and the allocation of the surplus among players. Interesting questions arise when the 

                                                                                                                                                 
predictions of Anderhub et al. (2002) were based on a model with self-interested players. Additional 
discussion of their work is in the section 3.2. 
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principals’ objectives differ or, in the case of multiple tasks, when there are interactions 

among them in the agent’s cost function.   

A seminal contribution to a general formulation of the problem of common 

agency is Bernheim and Whinston’s (1986a) model which extends the basic insights of 

the Grossman and Hart (1983) single principal model to the case of multiple 

principals.Their contribution focuses on an environment with hidden action, although 

discussion of the “truthful equilibrium” that is their solution concept, is developed in a 

complete information setting (1986b). The complete information approach allows the 

authors to distinguish the effects of common agency from second-best results arising in 

bilateral agency due to risk sharing. Our experiment follows a similar strategy due to the 

complexity of the common agency environment relative to previous experimental 

investigations of contracting relationships. As a result, theoretical predictions are 

developed in a setting where actions are observable though not enforceable. 

The framework employed below is most closely associated with the work of Dixit 

(1996, 1997) who employs linear contracts to explore some general questions in political 

economy.  Dixit demonstrates, in a setting with hidden action, that common agency can 

have equilibria similar in character to a prisoner’s dilemma. Dixit’s model, in the 

terminology of Laussel and Le Breton (1996), is a game of private common agency, since 

each principal has a direct interest in only one of the agent’s tasks. Two mechanisms give 

rise to incentive problems in this model.  First, the structure of the cost function matters. 

Dixit considers the case of efforts that are strategic substitutes so that each principal is 

affected by all efforts regardless of his benefit function. He shows that this case gives rise 

to tight competition between the principals and thus to low powered incentives. 
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In addition to interactions through the cost function, the strategy space in which 

contracts are created can give rise to conflict between principals since each can devise 

incentives for the other’s tasks. Imposing a negative incentive on the tasks that benefit the 

other principals leads to reduced incentives overall.  Dixit shows that, in equilibrium, 

negative incentives for these “off tasks” are imposed. While a unique equilibrium in 

incentives arises in the linear contracting model, multiple equilibria arise from the use of 

the fixed component that determines the final distribution.50   

In the model that follows we extend Dixit’s approach to modeling common 

agency by incorporating other-regarding preferences directly in the utility specification of 

the agent.  This extension is motivated by earlier experimental work that suggests 

monetary payoffs cannot entirely explain behavior in simpler games of proposal and 

response (see Camerer 2003 for a review).  In an agency setting, Anderhub, Gachter, and 

Konigstein (2002; AGK hereafter) create a single principal environment in which both 

incentives and fixed contract components are available. The authors find that while 

incentive constraints were often recognized, participation constraints generally did not 

bind. In addition, agent effort choices were often not optimal for a money maximizing 

agent and were shown to be related to the division of the surplus suggested by the 

principal’s contract offer. These two deviations, AGK argue, imply the existence of 

behaviorally important “equity” and “reciprocity” constraints.  The single principal 

model, presented in Appendix 3.1 formalizes these results.  

                                                 
50 In addition to Dixit’s work in the hidden action setting, Olsen and Torsvik (1995) explore linear 
contracting under hidden information. Both investigations acknowledge but do not address the 
distributional issues arising from the multiple-equilibria in the two-principal setting that we discuss below.   
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Also relevant to our modeling exercise is the series of experiments initiated by 

Ernst Fehr and his colleagues on gift exchange.  These experiments have demonstrated a 

relationship similar to that found in AGK.  High wage offers are reciprocated with high 

effort levels, when shirking is the optimal response for self-interested agents. By 

backwards induction, high wages should not be observed.  Of the gift exchange 

experiments, perhaps the most relevant to this study is that of Gachter and Falk (2002) 

which investigates the interaction between other-regarding preferences and reputation 

effects, showing that reciprocal motivations are at work in both one-shot and repeated 

game environments.  Gachter and Falk’s design includes a treatment similar to the one 

implemented here in that players are exogenously assigned, and remain assigned, to 

interacting groups.  The critical difference between our protocol and the gift exchange 

settings is that, in our setting (as in AGK’s) contracting opportunities are available that 

can yield high output without relying on gift exchange, which enables a more direct study 

of intentions.  

Experimental investigations of common agency are few. To our best knowledge, 

multiple principals were first studied by Kirchsteiger and Prat (1999, 2001), although 

their concerns were somewhat different than those motivating the current research.  In 

particular, Kirchsteiger and Prat limit their investigation to the case of a robotic agent 

programmed to maximize its monetary income over a single task. Thus the iinvestigation 

of effort choices and their relation to inequity, reciprocity, or reputation formation is not 

germane to their work. Instead, their goal was to investigate the behavioral validity of 

Bernheim and Whinston’s (1986b) truthful equilibrium.  They found that the truthful 
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equilibrium is rarely chosen by the principals, and instead subjects appear to play a less 

efficient ‘natural’ equilibrium, which is computationally less complex.  

We build on this previous work first by developing equilibrium predictions in the 

single principal case under both self-interested and inequity-averse preferences and show 

that in the linear contracting setting it is optimal in both cases for principals to offer high 

powered incentives.  We show also that when reciprocating agents infer intentions from 

the structure of the contract, low powered incentives can yield higher rents for the 

principal than the full incentive benchmark. We also consider issues related to repeated 

play, and show that some inefficiency in the form of low-powered incentives may be 

optimal so that the principal can gather information on the agent’s type. Thus information 

elicitation in repeated play may be an alternative explanation for the contracts that have 

the “gift-exchange” structure.  

Extending the investigation to the setting of private common agency we consider 

how the power of incentives can be affected by the additional principal. Two alternative 

solutions to the principals’ problem are developed, each implying different beliefs about 

the other principal’s decision process. The solution concept chosen has important 

implications, since in one, low powered incentives are part of any equilibrium. In the 

alternative solution high-powered incentives equivalent to the first-best in the single 

principal setting can be achieved.  Inequity-averse preferences in the two-principal setting 

result in different contracting strategies than in the single-principal benchmark. In 

particular, the optimal incentive is sensitive to the inequity aversion of the agent under 

common agency. Further, principal competition causes the efforts associated with an 
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optimal response to contract incentives to remain constant over a broad range of agent 

types. 

3.3 A Model of Common Agency  

This section introduces two finite proposer-responder games, 1Γ , with one 

principal and one agent, and 2Γ , with two principals and one agent. Actions are 

completely observable, though not enforceable. Thus, while the agent’s effort choices are 

known to the principal(s) he (they) can neither prescribe effort levels ex-ante, nor alter 

the agent’s compensation after effort choices are made.  

In 1Γ , { }1,0=N , and the set of feasible actions available to player 1, the 

principal, is finite and consists of a contract choice ( )βαα ,, 211 =a , which consists of 

piece rate incentives { } 2,1: =≤≤∈ iA iiiii αααα α  for each task and 

{ }ββββ β ≤≤∈ :1A   is a fixed payment, with α1A and β1A partitions of 1A .51  The set of 

feasible actions for player 0, the agent, consists first of an option to accept or reject the 

principal’s contract offer. An indicator { }1,000 ≡∈ ZAZ  takes on the value of 1 when the 

contract is accepted. Conditional on acceptance, the agent makes effort choice 

{ } 2,1,..0 =≡∈ ieeAe iiei , with 0>ie . The agent’s effort cost function is increasing and 

convex.  To generate precise predictions for the experimental tests of the theory I assume 

the cost function is quadratic and is given by ( )
2

2
2

2
1

0
eeCeeec +

=′=  for [ ]21 eee =′ .  

                                                 
51 The sign of the parameters are not restricted.  In the experimental implementation, 2,1, =−= iii αα , 

and ββ −=  and so negative and positive incentives and fixed fees are allowed.  
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The timing of players’ moves in the extensive form are identical for 1Γ and 2Γ .  

At τ = 0, the principal or principals make their contract selection, ai. At τ = 1 the agent 

decides whether to accept or reject the offered contract, and conditional on acceptance the 

agent makes their effort choices.  At τ = 2, payoffs are allocated. If the contract is 

rejected all parties receive their reservation payments of zero.  If accepted, the agent’s 

efforts and the principals’ contract choices determine the payoffs.  

3.3.1 The Case of One Principal 

The material payoff functions for the players in 1Γ  are given by  

(3.1) (a) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−++=

2

2
2

2
1

22110
eeeeZo βααπ    

(b) ( ) ( )[ ]βααπ −−+−= 22211101 ebebZ .       

In the agent’s payoff function the 2,1, =ieiiα  terms represent the payoff from the 

incentive portion of the contract. Through these instruments the principal chooses the 

agent’s marginal benefit of effort.  The amount of the fixed payment is β .  The agent 

also incurs costs of effort. For the principal, [ ]21 bbb =′  are the marginal benefits of the 

agent’s effort which are exogenous to the model. 

The analysis begins by exploring, in 1Γ , the effects of  money-maximizing (M) 

and inequity averse (I) payoff functions on contract choice, effort levels, and size and 

distribution of the surplus. The payoff function for a money-maximizing player, M, is 

simply the monetary payoff, ( ) 1,0,, =∈= iAaau i
M
i π , where iπ  is defined for each 

player in equation (3.1). Preferences for an inequity-averse player are captured by the 

utility function  



 

 88 
 

(3.2) ( ) ( ) ( )[ ]{ 1,0,0,max0,max0 =∀−−−−= jiZau jiiijii
I
i ππγππδπ   

The specification of inequity aversion is consistent with the model developed by 

Fehr and Schmidt (1999).  The first component of the utility function for the inequity-

averse player is the monetary payoff.  The weighted difference of the inequity in payoffs 

is subtracted from the monetary outcome with the weight given to inequity associated 

with the parameters iδ and iγ .  The max operators in the inequity-component imply that 

only one of the weights is operative for a payoff comparison between two players, with 

iδ  ( iγ ) utility relevant when player i is behind (ahead of) player j in monetary terms.  

Following Fehr and Schmidt we define 10 <≤ iγ  and ii δγ ≤  which reflects the intuition 

that inequity is more disadvantageous when one is behind in monetary terms than when 

one is ahead.52  The inequity-averse formulation captures the intuition that for a given 

level of surplus, utility is maximized when inequity is absent. 

Inequity-averse preferences incorporate the material outcomes of other players in 

utility. An alternative is to consider intention-based reciprocity (R preferences).  The 

intention-based model implies that kind actions are rewarded and unkind actions 

punished through effort choices that deviate from the agent’s optimal choice under M 

preferences.  Effort choices greater (less) than optimal are costly to the agent and reward 

(punish) the principal in material terms.53  The payoff function that accommodates 

reciprocal motivations must incorporate beliefs about the intentions of others, and not 

only the concern for material outcomes as in M
iu  and I

iu .  As a result, identical monetary 

                                                 
52 Alternatively, 0<iγ  suggests competitive or status-seeking preferences in which utility is increasing 
with one’s own advantage.  
53 Inequity aversion can also motivate these effort deviations as will be discussed below.  
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outcomes can yield different utilities to the players depending on the process through 

which the outcomes are achieved.  The specification of reciprocity based preferences 

employed here is very similar to that developed by Falk and Fischbacher (2006) and is 

introduced in Appendix 3.2. Since the functional form for reciprocal preferences 

incorporates optimal responses for money-maximizing players as a reference from which 

intentions are inferred, and in order to present our baseline results, we turn next to the 

model with M preferences which will yield expressions for these optimal actions.  

3.3.1.1 Equilibrium Predictions: 1Γ   

Equilibrium predictions for 1Γ  for M and I preferences are developed, and a 

numerical example is considered that clarifies the relationship between I and R 

preferences.   The predictions are generated from a two-stage process. In the first stage 

the agent’s optimal response to all feasible contracts is determined, and in the second the 

principal maximizes his own objective conditional on the first-stage result. Results on the 

efficiency of the two-part contract, on the impact of other-regarding preferences on 

distribution and on the optimal contract form are presented.  We begin with the baseline 

case of a self-interested principal and agent. 

In stage one of the solution, a self-interested agent chooses an effort level that 

maximizes monetary payoffs subject to a participation constraint requiring that payoffs 

are nonnegative.  

(3.3)     ( )Caae o
A

,;maxarg* 10
0

π≡ ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−++=

2
max

2
2

2
1

22110,

eeeeZ
Ze

βαα  

(3.4) ( ) 0,; 1
*

0 ≥caeπ      
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The solution [ ]211 ,)(* αα=ae defines a money-maximizing best reply to the 

principal’s contract. 

The principal maximizes his own payoffs by maximizing social welfare and then 

using the fixed fee to keep the agent at his reservation utility.  The principal’s problem is 

therefore to maximize his own objective net of the agent’s costs 

(3.5) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡ +
−−+−=

2
maxmax

*
2

*
1*

222
*
111,

*
1

1

eeebebe
A

ααπ
βα

         

subject to [ ]211 ,)(* αα=ae  

First order conditions reveal the 1
*
1 b=α  and 2

*
2 b=α  and implementing these 

incentives yields the social surplus 
2

2
2

2
1* bbW +

= . Given the contract structure the initial 

distribution of the surplus is ( ) ( )0,0,
2

, *
2
2

2
1

10 WbbD =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
== ππ .  The principal can 

improve his return by using the fixed component to extract the entire surplus, thus the 

optimal fixed fee is given by 
2

2
2

2
1* bb +

−=β .  Result 1 follows.  

Result 1: Both contract instruments are used in equilibrium. The principal 

maximizes the total surplus and sets the fixed fee so that the agent is held to his 

reservation value. 

Given this behavior, the optimal contract, agent response, and final distribution of 

surplus are given by  

(3.6) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==

2
,,

2
***

1
bba βα ;  

( ) ( )beZa ,1, ***
0 == ,  
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( ) ( )***
2

10
* ,0,

2
, WbD =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+== ββππ  

 Incorporating inequity aversion in the utility of the agent yields a change in the 

distribution of surplus that is easily understood. The aversion to inequity requires the 

principal to leave some of the monetary surplus with the agent, in order to avoid contract 

rejection.  It remains optimal to maximize social surplus and the fixed fee is used to alter 

the distribution so that the participation constraint is not violated,   

Result 2: Optimal incentives and efforts under inequity aversion are unchanged 

from the case of M preferences. A proof is in Appendix 3.1 

In considering the effect of I preferences we restrict attention to the case of 

disadvantageous inequality for the agent so that the relevant portion of the other-

regarding functional is associated with the parameter 0δ . This restriction is intuitive since 

an inequity-averse agent will always accept a contract resulting in an equal split of the 

surplus and so the principal need never offer the agent a share greater than one-half.  

Result 2 on the level of effort and the power of incentives follows immediately from the 

solution to the game that incorporates inequity-averse preferences for the agent. The 

inequity-averse agent must solve: 

(3.7) ( ) ( )
⎥
⎥
⎦
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⎠
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I  

To understand the impact, consider how the participation constraint of an 

inequity-averse agent affects the final distribution. A binding participation constraint for 

the inequity-averse agent requires that ( )[ ]00100 =−− ππδπ  which, rearranged, yields  
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(3.8) 1
0

0
0 1

π
δ

δ
π ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

= .  

Result 2 implies that the available surplus remains the same as in the case of a 

self-interested agent so that 1
0

0
10

2
*

1
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participation constraint binds, the optimal contract is  ( ) ⎟
⎟
⎠

⎞
⎜
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1  yielding 

the distribution 
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Note that the distribution approaches an equal split of the surplus as 0δ  grows 

large.  

3.3.1.2 Reciprocity and Gift Exchange 

For agents with R preferences it can be optimal for principals to offer gift-

exchange contracts which are interpreted by the agent as ‘kind’ offers. As a result the 

agent may reciprocate with efforts, conditional on the contract offer, greater than those 

under either M or I preferences. Appendix 3.2 presents the details of the intention based 

model which closely parallels that of Falk and Fishbacher (2006).  The key implication of 

the model is presented in Result 3.  

Result 3: If agents have R preferences it is optimal to offer reduced incentives 

and more generous fixed fees than in the baseline result for M preferences.  

To understand the gift exchange contract first consider the implications of a non-

optimal effort relative to the M preference benchmark which occurs when the first order 
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condition is violated and α≠e .54  A positive deviation, with α>e , rewards the 

principal by increasing his monetary payoff, while a negative deviation lowers his 

monetary rewards. Effort levels that are not optimal are, of course, always costly for the 

agent. Thus, while low powered incentives are inefficient when the agent responds 

optimally, an agent who reciprocates intentions may reward the principal through high 

effort if the fixed component of the contract compensates. 

The intention-based model can alter equilibrium predictions as demonstrated by 

the following “mini-game” for which numerical utilities are calculated.  The choice sets 

in 1Γ  are restricted so that { }6,41 ≡mA α , { }9,21 −≡mA β , and the possible contract pairings of 

incentives and fixed fees are limited so that ( ){ } ( ) ( ){ }{ }9,6,2,4,:,1 −∈≡ βαβαmA , where 

the m superscript indicates the set of feasible actions in the mini-game.  The agent can 

respond with { }6,4∈e . The mini-game is parameterized so that b=6, c=.5, 5.0 =δ , 

25.0 =γ , and for the intention-based utility specification 10 =ρ .55    

Given these parameters, define ( ) ( )9,6, −=≡ βαFI  the full incentive contract, 

since 6== bα . With an optimal effort choice FI yields an equal split of the surplus 

between the principal and agent.  Define the contract ( ) ( )2,4, =≡ βαGE  the gift-

exchange contract since it contains a reduced incentive that leads to inefficient effort for a 

self-interested agent, and a positive fixed component that, given an optimal response, 

yields greater monetary payoff than the FI contract for the agent.  To fix beliefs for the 

reciprocal preferences we assume that the agent believes the principal will offer the FI 

                                                 
54 Due to the symmetry of the tasks this discussion restricts attention to a single task, dropping the 
identifying subscripts. 
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contract which implies an equal share of the surplus to each player when the efficient 

effort level is chosen.56 This belief implies that kindness is indicated when the principal 

offers more than half of the resulting surplus arising from the FI contract. 

Figure 3.1 presents the extensive form of the game and highlights equilibrium 

outcomes for the different preference structures. Table 3.1 provides additional detail on 

the components of the payoff functions. The GE contract is optimal for the self-interested 

principal when the agent has R preferences.   The principal achieves a payoff of 10 with 

GE since the agent responds with effort of 6 that rewards the principal rather than the 

optimal effort of 4. For the inequity-averse and money-maximizing agent the GE contract 

yields low effort and the principal therefore chooses the FI contract when the preference 

structure is known.   

In the mini-game when the GE contract is offered the inequity-averse agent’s 

utility involves the 0γ  parameter since 10 ππ > . In determining the optimal contract for an 

inequity-averse agent this parameter did not come into play since it is never optimal for 

the principal to offer more than one-half of the surplus. Note that the inequity aversion 

parameter does not have an impact on effort choices in the mini-game. The numerical 

results show that agents with M and I preferences make the same effort choice of 4.  A 

simple alteration in the choice set of the agent, however, yields an additional result. 

 

                                                                                                                                                 
55 The behavioral parameters, δ, γ, and ρ are within the ranges inferred from previous experimental results 
(Falk and Fischbacher (2006), Fehr and Schmidt (1999))  
56 Falk and Fischbacher (2006) present survey evidence that equality is a focal distribution for weighing the 
kindness of offers.  
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Figure 3.1: Single Principal "mini-game" 

 

In this extensive form of the mini-game for a single principal, the principal chooses one of two contracts, 
( ) ( ) ( ){ }9,6,2,4,1 −∈≡ βαmA ,  and the agent one of two efforts ( ) { }6,40 ∈≡ eAm

e . If the agent’s 
behavior is based on reciprocal preferences he will choose the high effort despite the low incentives, 
motivating a gift exchange contract by the principal. Recall that “M” refers to money-maximizing 
preferences and “m” to the mini-game restriction on the feasible actions. I preferences are inequity-averse 
and R preferences are reciprocal. 
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Table 3.1 Mini-Game Utilities 
 Gift Exchange 

( )2,41 =ma  
Full incentive 

( )9,61 −=ma  
Effort ( )0a   4 6 4 6 
Inequity* -2 -1 -1 0 
Kindness** 1 1 0 0 
Reciprocity*** 0 4 0 0 

MM uu 01 ,  6,10 10,8 9,7 9,9 
IM uu 01 ,  6,9 10,7 9,6 9,9 
RM uu 01 ,  6,10 10,12 9,7 9,9 

Utilities for money-maximizing (M), inequity-averse (I) and reciprocal (R) preferences.  Equilibrium 
choices for each pairing (row) are in bold.  The equilibrium predictions are also identified as the shaded 
squares in Figure 3.1.  
*Inequity = ( ) ( )[ ]010011 ,,5. aaaa ππ −−  when SS uu 01 >  and 

 Inequity = ( ) ( )[ ]011010 ,,25. aaaa ππ −−  when SS uu 01 < . 

**Kindness = ( ) ( )[ ]0
*
01

*
0 aa ′−ππ  

***Reciprocity = ( ) ( )[ ]1
*
1011 , aaa ππ −  

 
 

Result 4: Given a sufficiently dense set of feasible efforts, inequity-averse agents 

will reward the principal with effort greater than Me*  when offered gift-

exchange contracts. A proof is in Appendix 3.1.  

Consider adding the intermediate effort level, 5, to the agent’s set of feasible 

actions to create the mini-game m′so that { }6,5,40 ≡′m
eA . With these alternatives the 

inequity-averse agent chooses effort level 5 in response to the GE contract.  Monetary 

payoffs and utility for m′ are presented in Table 3.2, which shows that the agent prefers 

the monetary outcomes ( ) ( )85.910 =ππ  resulting from an effort level of five to the 

payoffs ( ) ( )61010 =ππ due to the reduction in inequity. Thus, although it is not 

optimal to offer an inequity-averse agent the GE contract, the comparative static effect is 

the same as would be found for the reciprocal agent when it is offered.  In both cases 

maximizing utility causes the agent to make additional, costly effort which benefits the 
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principal. Result 4 demonstrates that the agent’s response to the GE contract is similar for 

I and R preferences.  As a result our theoretical examination of other-regarding 

preferences in 2Γ focuses on the the case of inequity aversion. 

Table 3.2 Optimal Efforts in Expanded Mini-Game 
 Gift Exchange 

( )2,41 =ma  
Effort ( )0a   4 5 6 

MM uu 01 ,  6,10 8, 9.5 10,8 
IM uu 01 ,  6,9 8, 9.1 10,7 

The inequity-averse agent chooses effort 5, when the feasible 
set is expanded to {4,5,6} in game m´ sacrificing own payoff 
for increased equity. 

3.3.1.3 Some Rudimentary Dynamics 

The results so far have focused on the stage game solutions for 1Γ .  Given the 

assumptions of common knowledge of game and utility parameters, in a finitely repeated 

version of the game the results for the stage game extend naturally to a consideration of 

final period play.   An argument based on backwards induction suggests that anticipation 

of the final stage game should cause potential deviations in all previous rounds to 

“unravel” and so the results presented above should hold in all rounds (Selten (1978); see 

also Anderhub, Gachter, and Konigstein (2002)).   

A drawback of this model is the strong assumption that utility parameters 

associated with inequity aversion are common knowledge. Rather than developing a 

complete model of reputation formation, in the empirical section, the behaviors of the 

agent are examined to distinguish self-interested play, which may be influenced by 

reputational concerns, from that associated with other-regarding preferences.  Effort 

levels that are correlated with the fixed component of the contract or with the equity of 

payoffs are indicators of other-regarding motives, however, the repeated game gives self-
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interested players the opportunity to earn surplus, by imitating other-regarding behavior. 

This strategy would be costly in the last round of play, which comprises the only one-shot 

game in the session, and so we should observe low-effort “defections” in the last period 

by money-maximizing players.   In addition, since the payoffs to cooperation diminish 

with the time remaining in a repeated relationship, a reputational model predicts smaller 

rewards to the principal over time, and not just in the last round of play (Fudenberg and 

Tirole (1991)).  

The empirical investigation of these alternatives is similar to the approach taken 

by Falk and Gachter (2002) who analyze one-shot and repeated interactions in a gift-

exchange game without developing a model of reputation. Our analysis is complicated 

due to the dual contracting instruments available in this game. In particular, the principal 

can create gift-exchange contracts early in the game to observe the agent’s efforts and so 

estimate their inequity aversion parameter. High powered incentives and a fixed fee that 

arranges a distribution consistent with this behavior reduce the returns to defection in the 

final period. As a result under uncertainty about agent type we expect to see increasing 

incentives and a falling fixed fee over time in order to lock in desired behaviors while 

avoiding the risk of contract rejection.  

Result 5: With uncertainty regarding the extent of inequity aversion we expect to 

observe an increase in incentives and a falling fixed fee over time.  

3.3.2 The Case of Two Principals 

The addition of a second principal defines 2Γ .  Player 1 and Player 2 have actions 

defined identically to those of player 1 in 1Γ .  The agent thus faces the aggregate contract 
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derived from both principal’s choices, ( )2122122111 ,,2 ββαααα +++=Γa , with 

ijα principal i’s choice of incentive for task j, jiji ≠= ,2,1, .    

The critical difference between 1Γ  and 2Γ  is that the principals must consider not 

only the effort and acceptance behavior of the agent, but also the contract choices of the 

other principal. The solution concept developed by Dixit (1996) in the multiple principal 

setting mirrors that of the single principal example just examined. The principals derive 

the optimal response through backwards induction, incorporating the fact that the other 

principal is also setting incentives non-cooperatively. In our baseline case with C 

diagonal, there is a dynamic similar to the prisoner’s dilemma that yields low powered 

incentives relative to the single principal benchmark. The final allocation is then 

determined through the fixed fee which contains a component set by each of the two 

principals.   

One difficulty with this solution is that, while there is a unique equilibrium in 

incentives, there are multiple equilibria with regards to the fixed fee that may yield 

uncertainty for the players.  An alternative solution concept consists of the simultaneous 

choice of incentives and fixed components, and we show that players who anticipate the 

non-cooperative solution in incentives can unilaterally improve their position with 

cooperative incentives and an altered fixed fee.  As a result the non-cooperative 

equilibrium unwinds and something close to the fully cooperative solution may be 

implemented.  

As with 1Γ  we begin solving a simple version of 2Γ for M preferences, restricting 

the parameters of the cost function so that 212211 == cc , and 02112 == cc  .   Following 

Dixit (1997), we model private common agency in which each principal has an interest in 
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a single task.  In the extension to two principals, benefits are distributed across the 

principals so that [ ]12111 bbb =′ , and [ ]22212 bbb =′ , with the first subscript referring to 

the principal, the second to the task. Private common agency implies that 02112 == bb  

and marginal benefits are therefore [ ]0111 bb =′  and  [ ]222 0 bb =′ , with 0, 2211 >bb .  

Interactions between principals are still relevant in the case of private common agency, 

due to instruments that allow principals to penalize or reward the agent for effort on the 

other’s task. 

The extensive form of 2Γ  is as in the single principal case. Both principals, create 

components of the aggregate contract for the agent at 0=τ . Each principal can create 

incentives for both of the tasks and so that principal i selects from 

{ } 2,1,,1,...,1, =−+∈ jiijijijijij ααααα , where 2,1, =−= jiijij αα . The agent’s 

acceptance and effort decision solves  

(3.10) ( ) ( ) ( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
−+++++=≡Γ

2
maxarg

2
2

2
1

2122212121110
,

*

0

2 eeeeZae o
eZ

ββααααπ .    

The solution to the first stage problem takes into account the aggregate incentives 

provided by both principals, and is given by 

(3.11) ( ) jijie jiiii ≠=+= ,2,1,,* ααα . 57 

In thinking about the principal’s problem, consider first that a cooperative 

agreement to provide full incentives leaves opportunities for defection. One way to see 

this is to consider the aggregate contract in which each principal offers full incentives for 

his own task and ignores the other. This contract yields the same results for each task as 

                                                 
57 In what follows we restrict attention to 2Γ and so simplify notation by eliminating the identifying 
superscript unless a comparison is made to 1Γ  . 
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in the single-principal benchmark.  That each principal has a potentially profitable 

deviation from this cooperative full incentive contract can be seen in the formulation of 

their maximization problem:  

(3.12) ( ) ( ) jijieeb ijijiiiii
ijii

≠=−−+− 2,1,0max ** βαα
αα

.  

Equation (3.11) shows that e* is the response to the aggregate incentives. That 

defection from the cooperative solution may be beneficial can be inferred from the 

second term of equation (3.12) since the product ( ) 0* >− jij eα  when 0<ijα  and the 

contract is accepted.  This increase is mitigated by lower agent efforts since jjje α<* in 

this case. The tradeoffs involved in the choice of incentives are clarified by examining 

the first order conditions from equation (3.12) which yield 
3

2 11*
11

b
=α ,

3
22*

12
b

−=α , 

3
2 22*

22
b

=α , and  
3
11*

21
b

−=α .  The resulting optimal aggregate incentives are therefore, 

3
11*

21
*
11

*
1

b
=+= ααα  and, symmetrically, 

3
22*

12
*
22

*
2

b
=+= ααα , which are one-third of the 

power of those in the cooperative first-best.58  The resulting low-powered incentives 

constitute Result 6. 

Result 6: With M preferences and C diagonal, incentives are reduced from the 

cooperative first best. A consequence is that the resulting surplus per task is 

                                                 
58 When the cost function is not diagonal aggregate incentives are given by  

( )( ) ( )[ ]( )
⎥
⎦

⎤
⎢
⎣

⎡

−+
++++

−=+=
2211

2
2112

11
2

2112221122211211
21111 36)(

128
cccc

bccccbccc
ααα .  This expression is 

increasing and convex and so generates an increase (decrease) in incentives from the baseline if 
( )2112 cc +  is greater than (less than) zero.  
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smaller than under the single principal regime and is given by 

12 *
22

*

218
5 ΓΓ =<= WbbW

.  

This solution yields a unique equilibrium in incentives and the preliminary 

distribution is { } ( ) ( ) ( ){ }9,9,18,, 2
22

2
11

2
22

2
11

2
22

2
11210 bbbbbbMMMD +++==  prior to 

reallocation of the surplus due to the fixed component of the contract. While the optimal 

aggregate fixed fee is also uniquely defined as ( ) 182
22

2
11 bb +−=β  there are multiple 

equilibria with respect to the contribution of each principal to the aggregate β . The 

equilibrium contract offer is ( ) ( )( )jjjiiiijiii bbbba ββαα −+−−== 18,3,32,, 2
22

2
11 , for 

principal i.   

The dependence of iβ on jβ  poses a problem for equilibrium selection that can 

be resolved in a number of ways. The simplest, which may be sensible in a symmetric 

situation, is to assume a focal point with each principal demanding one-half of the 

remaining surplus leaving the agent at his reservation utility. Alternatives to this scenario 

are also plausible. Consider for example the reasoning of a player who thinks that a 

tremble or some other violation of rationality by the other principal may result in a 

contract that violates the agent’s participation constraint. In this setting it is plausible to 

leave a portion of the surplus with the agent.  A contract of this type, with low powered 

incentives due to principal competition, and with a rent to the agent, is from the 

perspective of the agent qualitatively similar to the GE contract considered in the single 

principal setting.   In addition to the complication arising from the multiple equilibria, the 

possibility that the agent is inequity-averse may cause additional surplus to be left with 

the agent.   
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Before examining 2Γ with an inequity-averse agent, we consider an alternative 

solution concept in which contract components are chosen simultaneously by each 

principal rather than through the two-stage process examined above.59  To examine this 

alternative a numerical example extends the mini-game presented for 1Γ  to include the 

second principal, and a larger set of feasible actions.  The feasible actions for each 

principal are { }18,17,...0,...,17,18 −−∈iβ , { }6,5,...,0,...,5,6 −−∈ijα  for i,j=1,2.  Agent 

effort choices are restricted so that 61 ≤≤ ie .60  One would be hard-pressed to call this a 

“mini-game” since it yields 37x13 = 481 possible contract choices for each principal, and 

6 possible effort responses to each contract choice. This game can be presented in normal 

form as six matrices with 4812 = 231,361 cells in each, a total of 1,388,166 possible 

outcomes. The iterated elimination of dominated strategies yields 830 pure strategy Nash 

equilibria, 222 of which leave all players with profits greater than or equal to zero. 

Interestingly, the incentive pair 2,4 −== jiii αα , the solution derived from equation 

(3.12) for the parameters used in this example is not among the strategies that survive. A 

small number of cells from the normal form are presented in Table 3.3 to clarify this 

result.  

Result 7: A solution that has the potential to yield high powered incentives in the 

common agency game arises from the iterated elimination of dominated 

strategies.  

Table 3.3 presents, symmetrically, three strategies for each principal in normal 

form.  Principal 1 is the row player and principal 2 the column player and strategy 

                                                 
59 The simultaneity is conceptual in that with either solution concept the extensive form timing does not 
change. 
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choices are numbered { }iiiis 3,2,1∈  for player i = 1, 2.  Each player’s numbered strategy 

is associated with a contract choice that consists of ( ) 2,1,,, == jia iijiii βαα , and the 

payoffs in the cells assume optimal responses by a self-interested agent. The strategy pair 

(11,12) is the equilibrium found when incentives are chosen non-cooperatively, and the 

fixed component holds the agent to his reservation utility while yielding the principals an 

equal split of the surplus.  Each principal has a profitable deviation through strategy (2) 

which encourages output by increasing incentives and retains a larger share through the 

fixed fee. Note that unilaterally shifting strategy 2 increases the surplus of both principals 

and so is interpreted as a kind act in the reciprocity model.  The strategy pair (2, 2) is not 

an equilibrium, however since each can deviate profitably through strategy (3).  Thus the 

two solution concepts, offer competing hypotheses about the outcome of 2Γ .  When 

contract components are chosen simultaneously, the incentive portion includes the 

cooperative solution ( ) ( ) 2,1,0,6,, === jia ijiii ααα  among the equilibria.61 

Table 3.3 Monetary Payoffs to Selected Strategies 
 (12)  4, -2, -2 (22)  6, 0, -14 (32)  6, 0, -18 

(11)  4, -2, -2 0,10, 10 0,18, 14 0, 0, 0 

(21)  6, 0, -14 0,14,18 8,14,1 4 4, 14,18 

(31)  6, 0, -18 0, 0, 0 4, 18, 14 0, 18, 18 

Principal 1 is the row player and principal 2 the column player. The 
agent responds optimally to incentives. Pure strategy Nash Equilibria 
are in bold type.  

Under common agency the impact of inequity aversion is not as straightforward 

as in the single principal case.  For one, the reference group to which an inequity-averse 

                                                                                                                                                 
60 These parameters are used in the experiment below. 
61 With M preferences the incentive principal i sets for task j is, in equilibrium, always less than or equal to 
zero. With reciprocal preferences incentives for the off-task may be greater than zero.  
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player compares outcomes cannot be known a priori; an agent may be concerned with the 

principals as a unit, or comparisons with each individually.  In what follows we consider 

the case in which the comparisons are made relative to each principal individually since 

the group comparison yields the single principal results.  

When agent payoffs are compared relative to each principal, the agent’s problem 

is to choose effort to maximize  

(3.13) ( ) ( ) ( ) 2,10,max
2

0,max
2 0

0
0

0
000 =⎥

⎦

⎤
⎢
⎣

⎡
−−−−= ∑∑ iZau

i
i

i
i ππ

γ
ππ

δ
π  

The solution to the inequity aversion model is then derived by solving equation 

(3.12) which yields result 8.  

Result 8: In contrast to the single principal case, optimal incentives depend on 

the agent’s  level of inequity aversion. 

The columns of Table 3.4 contain the effort levels and incentives associated with 

the solution to this problem for the utility specifications M, γI , and δI , with the latter 

two specifications identifying the term in the I-preference functional that is utility 

relevant for the payoff comparison. Optimal incentives increase (decrease) when the 

agent is behind (ahead of) the other two players. This can be seen by comparing 

incentives in the last row of Table 3.4 and observing that δγ ααα << M .    
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Table 3.4 Efforts and Incentives in Common Agency 
 M γ  δ  

ei α  
( )

( )γ
γγα

+−
−+−

12
32 iib ( )

( )δ
δδα

+
−+

12
32 iib

iiα  
3

2 iib
 

( )
( )γ

γ
323
74

−
−iib ( )

( )δ
δ

323
74

+
+iib

jiα  
3
iib

−  
( )

( )γ
γ

323
12
−
−

− iib ( )
( )δ

δ
323

12
+
+

− iib

α  
3
iib

 
( )
( )γ

γ
323
52

−
−iib ( )

( )δ
δ

323
52

+
+iib

The first row identifies the preference structure, with M preferences 
representing those of a money-maximizing agent and γ and δ those 
of an inequity-averse agent when ahead or behind in monetary terms. 
Subsequent rows identify the efforts and incentives for task i created 
by the principals i and j.  

 

For delta contracts the optimal aggregate incentive is 

( )
( )

( )
( )

( )
( ) 2,1,

323
52

323
12

323
74

=
+
+

=
+
+−

+
+
+

=+= i
bbb

a iiiiii
jiiii δ

δ
δ
δ

δ
δ

αα δδδ , which is increasing 

and concave since 
( )

0
323

4
2 >

+
=

∂
∂

δδ

δ
iii ba

 and  
( )

0
323

8
22

2

<
+

−=
∂
∂

δδ

δ
iii ba

.  Similarly, for 

gamma contracts the optimal aggregate incentive is 

( )
( )

( )
( )

( )
( ) 2,1,

323
52

323
12

323
74

=
−
−

=
−
−−

+
−
−

=+= i
bbb

a iiiiii
jiiii γ

γ
γ
γ

γ
γ

αα γγγ , which is decreasing and 

concave since 
( )

0
323

4
2 <

−
−=

∂
∂

γγ

γ
iii ba

 and  
( )

0
323

8
22

.2

<
−

−=
∂
∂

γγ

δγ
iii ba

. 

Figure 3.2 depicts how incentives change across a relevant range of γ , and δ  

parameters for both the components of the incentive for each principal and the aggregate. 

Result 8 makes intuitive sense since, as was seen in the single-principal case, the 

inequity-averse agent punishes through low efforts when behind and rewards with high 
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effort when ahead. Thus additional incentives are required to maintain effort in the case 

of disadvantageous inequality, but may be reduced when the agent desires to reduce 

inequality when ahead materially.62  Under the γ specification the incentives rapidly 

approach zero as gamma increases and the agent responds only to the fixed fee. In this 

extreme case, the motivation for effort arises only from the desire to reduce inequity. 

Further, as the net incentives approach zero, the two-principal non-cooperative solution 

implies that each principal creates contract incentives that exactly offset each other. Thus, 

when gamma is equal to .4, the incentives offered for each task by each principal are 

equal to plus and minus 3.  The effort level obtained in all the inequity-averse cases is the 

same, however, and is equal to that under M preferences. This can be seen by substituting 

the appropriateα  from Table 3.4 in the expression for e, which in all cases yields 
3
be = .   

                                                 
62 For I2 the choice of incentives depends on the relative size of δ and γ , however the optimal effort is the 
same as in the three other cases. 
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Figure 3.2 Optimal Incentives for Inequity-Averse Agents 

Incentives in Game 2: Gamma Contracts
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Incentives Game 2: Delta Contracts
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Aggregate incentives decrease (increase) with inequity aversion when the agent is ahead of (behind) the 
principals in monetary terms.  

To determine the final distribution the relevant efforts and incentives from Table 

3.4 are substituted into the expressions for monetary returns.  For delta preferences, the 

monetary reward for each principal is then given by   

(3.14) ( ) ( )( )
( ) 2,1,

329
122 2

22
2

11 =−⎥
⎦

⎤
⎢
⎣

⎡
+

++
= ibba ii β

δ
δ

π     

which is identical for each principal if the fixed fees are the same. The agent’s monetary 

profit is given by  
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(3.15) ( ) ( )( )( )
( ) 212

2
22

2
11

0 329
31122

ββ
δ

δδ
π ++⎥

⎦

⎤
⎢
⎣

⎡

+
+++

=
bb

a   

If ( ) ( ) 02
2 021

0
00 =−+−= πππ

δ
πau  then the sum of the fixed fees is given by 

( ) ( )
δ

δπππδ
ββ

32
12 021

21 +
+−+

=+
(((

 where the iπ(  represents the profits net of the fixed 

fees, the portion within square brackets in equations (3.14) and (3.15). The resulting 

optimal contract is given by  

(3.16) ( ) ( )
( )

( )
( )
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Identical reasoning yields an optimal gamma contract of  

(3.17) ( ) ( )
( )
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3.4 Summary of Theoretical Results 

The model developed in the previous section, and the experimental treatment that 

follows, presents the subjects with a simpler agency problem than is found in the model 

of moral hazard developed by Dixit (1996, 1997). Since risk-sharing motivations are 

absent, the optimal action of a single principal is to “sell the firm” at the price of the 

entire surplus. This requires the provision of full incentives to maximize the aggregate 

surplus and the use of a negative fixed fee that holds the agent to their reservation utility 

to implement the equilibrium distribution.  

The possibility that the agent is inequity-averse introduces complications for the 

principal that are similar to those encountered in simpler games of proposal and response. 

When rationality and utility parameters are common knowledge, efficiency is preserved 

and the final distribution of surplus is more favorable to the inequity-averse agent. When 
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the inequity aversion parameter is uncertain, there are plausible conditions under which 

efficiency will be sacrificed to gain information about the agent’s parameter in a repeated 

game setting. The contract that can result from this uncertainty can look like a gift 

exchange contract in which low-powered incentives and a high fixed fee is observed. The 

power of incentives will increase over time if the principal tries to constrain opportunistic 

behavior by reciprocity imitators.  

We examine arguments for two alternative solutions to the common agency 

problem. Solving a two-stage optimization problem through backwards induction yields 

the result that efficiency is undermined as each principal punishes the agent for effort 

devoted to the other’s task. The iterated elimination of dominated strategies suggests 

however that the first best remains a potential equilibrium.  Under principal competition 

with an inequity-averse agent optimal incentives increase (decrease) when the agent is 

behind (ahead) materially, but the competition between principals implies that overall 

efforts and thus efficiency remain at the low level found under M preferences. 

3.5 Experimental Protocol 

The following sections report on the results of a controlled laboratory experiment 

that tests key elements of the theory developed in the previous sections.  The research 

subjects were undergraduate students at the University of Maryland who received cash 

payments based on their performance during the experimental sessions. Interactions were 

anonymous with subjects communicating their decisions through a computer network. 

The critical element of the investigation is the exogenous variation in the number of 

principals from one to two in the principal-agent setting. Interacting groups in all 
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treatments contained a single agent. Treatment 1 contained a single principal and 

treatment 2, two principals.  

In the experimental sessions subjects were randomly assigned to variants of 

1Γ and 2Γ .  Within each session, random assignments to the roles of either principal or 

agent were made and subjects were matched for the duration of the experiment. The roles 

were given the neutral labels (“Player X” and “Player Y” in the two person treatments, 

and “Player X”, “Player Y”, and “Player Z” in the three player treatments). Contract 

components were labeled as “multiplier” and “fixed” components, and the agent’s effort 

levels as “efforts”.  

The experimental environments were parameterized as in the mini and maxi-game 

examples discussed earlier, with bii = 6, 5.2211 == cc , 02112 == cc .  Effort choices were 

integers with 1=ie . Efficient effort for each task is given by 2,1,6 == iei  and the 

maximum output is therefore W* = 36. Each point earned was worth 25 (37.5) cents in 

treatments with 2 (3) players.63 As a result the maximum earnings in each of eight rounds 

of play were $4.50 per player yielding players who achieved efficiency average earnings 

of $36 each for the session.  

Each experimental session consisted of an introductory portion that began with 

the reading of the experimental instructions to the group.64  The introduction also 

included, two practice periods of five minutes during which the players became familiar 

with the mechanics of the experimental program.  The program included a profit 

calculator so that both principals and agents could map strategies to outcomes for any of 

                                                 
63 The difference in point values across two and three player games equalized the aggregate potential 
earnings across treatments per player. 
64 Instructions for the treatments are in Appendix 3.2. 
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the strategy combinations that were available.65  During the practice session the 

experimenter responded in private to questions raised by any of the student subjects.  At 

the conclusion of the trial periods subjects were asked to fill out a questionnaire to 

demonstrate their understanding of how contract and effort choices affected outcomes. 

The portion of the session that was consequential consisted of 8 rounds of play, 

with each round consisting of: a) the principal’s contract creation, b) the agent’s rejection 

or effort choices, c) profit calculation and display, and d) the recapitulation of session 

history. In the first four rounds the principals were allowed four minutes for part a) to 

calculate outcomes of alternative strategies, and to choose their binding offer. The time 

was reduced to two minutes in the last four rounds.  In b), the agents’ were given two 

minutes to choose a response, and the session proceeded to c), the profit display screen, 

when the last agent was finished.  The profit display showed the actions and payoffs for 

all players in the same group, and in d) the session history displayed this information for 

the current and all preceding rounds. Sessions took approximately one and half hours and 

payments averaged $21.25 including a fixed payment of $5 for timely arrival. Table 3.5 

provides additional detail on payments and the number of subjects and observations in 

each treatment. 

Table 3.5 Experimental Session Data by Treatment 
 Number of 

Subjects  
Number of Stage 

Games 
Average 
Earnings 

Treatment 1    46 184 $27 

Treatment 2    75 200 $18 

Treatments are identified according to the number of principals, either one or two. In both 
treatments there was a single agent. Earnings include a fee of $5 for timely arrival. 
 

                                                 
65 The experiment was programmed using Z-TREE (Fischbacher 1999).   
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3.6 Experimental Results 

We present results of two types, first examining aggregate measures to discern 

overall treatment effects and then looking more closely at individual choices to discover 

the extent of heterogeneity in strategies both within and across experimental groups and 

treatments. We use both unconditional non-parametric statistical tests and conditional 

regressions in both parts of the analysis.66 The results on aggregate behaviors examine the 

contract formation decisions of principals and the acceptance/rejection behavior and 

effort choices of agents, comparing behavior across treatments and relative to theoretical 

benchmarks. Uniting the analysis of the behavior of principal(s) and agent, we calculate 

equity and efficiency measures for the treatments which shed light on the other-regarding 

behaviors of the population as a whole. We gain additional insights by extending the 

study of the aggregate measures to capture changes over the time path of the repeated 

game.   

The investigation of individual behavior focuses on identifying other-regarding 

preferences of agents as revealed in their effort choices, and in understanding the extent 

to which principals make use of this information.  Player types are identified both by the 

relationship of effort to contract components, and by examining late round defections 

from predicted inequity-averse behavior. We identify the different types of situations in 

which principals may learn to contract more efficiently, and catalog their frequency 

within a group to see how different types of learning opportunities affect outcomes.  The 

efficiency of learning is studied by developing an empirical model that compares 

                                                 
66 We apply non-parametric tests since preliminary results suggest that the data is not normally distributed. 
For the non-parametric tests, independent observations are created by aggregating decisions at the level of 
principal-agent interaction group, which are either pairs or triples depending on the treatment. Due to the 
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observed responses to theoretical best responses.  Contracting in the two-principal setting 

is further studied in light of the alternative predictions associated with iterated 

elimination of dominant strategies and the two-stage solution concepts.  

3.6.1 Aggregate results 

The fundamental prediction of the common agency model, as parameterized in 

this experimental environment, is that the power of incentives are reduced and the fixed 

component of the contract is increased when the number of principals increases from one 

to two.  Table 3.6 presents the theoretical predictions and the key aggregate empirical 

results for contract components.  Theoretical predictions are those for players who are 

myopic money-maximizers (M preferences) and are derived from the solution to the 

single and two-principal problems in section 3.3.  The average aggregate incentives for 

both tasks of 5.95 and 2.45 in treatment 1 and 2 are lower than the predicted levels of 

baseline optimum for self-interested players of 12 and 4. The fixed fees are larger than 

the predicted values and in the single principal case the difference is dramatic, with the 

observed value of 2.1 much greater than theoretical prediction of -36. The observed value 

of .51 is modestly higher than the predicted value of -2, in treatment 2.  Both low 

incentives and large fixed fees imply that a larger share of output than predicted by the 

model predicated on M preferences is retained by the agent. In addition, with M 

preferences, the low incentives imply inefficient output.  Before examining the economic 

consequences in more detail we report on the statistical significance of the results.  

Tests of the differences across treatments are made using the Mann-Whitney U 

test (Siegel 1956).  A significant difference in the power of incentives is found with the 

                                                                                                                                                 
repeated interaction in the experimental design each of these interaction groups is independent of the others 
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statistic yielding p = .001, while the comparison of the fixed components is not 

significant (p = .356).  To compare the medians of the aggregated data with theoretical 

predictions we use the Wilcoxon one-sample test. We reject the theoretical predictions 

for treatment 1, with p<.001 for both the incentive and fixed fee components of the 

contract. Treatment 2 presents a mixed result with the incentive significantly below the 

theoretical prediction (p = .060) but the fixed component not significantly different (p = 

.236).   

The preliminary analysis of aggregate contract formation suggests that in 

treatment 1, gift exchange contracts, with low-powered incentives and large fixed fees are 

likely to be prevalent. The contracts formed in treatment 2 present the same profile, and 

suggest that either the two principals are unable to cooperatively resolve the dilemma 

associated with their joint provision of incentives, or alternatively intend to provide 

motivations through gift exchange.  The aggregate analysis, however, obscures the 

diversity of contract choices within and across treatments and across the session length.  

A first step to understanding this diversity is to differentiate the aggregate contract offers 

according to the agent’s decision to accept or reject them.  

                                                                                                                                                 
for the entire session.  There are 23 (25) independent observations in treatment 1 (2). 
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Table 3.6 Aggregate Contract Formation 
 Incentive 

    
Fixed Fee 

 All  Accepted Rejected All  Accepted Rejected 
Single Principal 

Theoretical 
Prediction 

12.00 - - -36.00 - - 

Treatment 1 
(91%) 5.95 6.08 4.63 2.10 3.20 -9.44 

Two Principal 
Theoretical 
Prediction 

4.00 - - -2.00 - - 

Treatment 2 
(77%) 2.45 3.81 -1.99 0.51 4.05 -11.04 

The observed contract components averaged over all rounds of play, and by acceptance decision 
of the agent. The share of contracts accepted in each treatment is included in column 1.  
 

Contract components by acceptance decision are also presented in Table 3.6, and 

in column 1 the proportion of contracts accepted in each treatment is displayed.  The rate 

of contract acceptance is significantly greater in treatment 1 (91%) than in treatment 2 

(77%) with the Mann Whitney statistic yielding a p-value of .004.  The difference in 

fixed fees is numerically large and statistically significant across acceptance in both 

treatments, while the incentives across accepted and rejected contracts differ only in 

treatment 2.67  The contract acceptance decision is further clarified by a probit analysis 

that is presented in Table 3.7.  

                                                 
67 The Mann-Whitney test yields significance at the level of  p = .953 (p < .001) for incentives in treatment 
1 (treatment 2), and significance at the level of p = .088 (p < .001) for fixed fees. 
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Table 3.7 Agent Acceptance Behavior - Random Effects Probit Model 
Dependent 
variable:   
Accept 

3.7a: All treatment 1 and treatment 2 decisions 
 

n = 384 
Pr(accept=1)=.94 

3.7b. Model with lagged profit variable. Only  
period 2 through 8 decisions are included.  

n = 336 
Pr(accept=1)=.95 

Ind. Variables:  Marginal 
Effect  

z stat P>|z| Marginal 
Effect  

z stat P>|z| 

Apropt 0.007329 2.97 0.003 0.007037 3.10 0.002
Aprofit_lag1 - - - 0.002194 2.15 0.032
Ncntv 0.004797 1.04 0.298 0.002196 0.50 0.614
Ffee 0.002711 1.28 0.200 0.002460 1.31 0.191
Trt -0.016010 -0.6 0.546 -0.017990 -0.79 0.430
 Log Likelihood: -96.73, ( )

2
4χ   =   149.34 

Prob >  ( )
2
5χ  =    0.0002 

Log Likelihood: -74.95,  ( )
2
5χ   =   156.07 

 Prob >  ( )
2
5χ  =    0.000 

The dichotomous dependent variable in these two probit models is coded one for a decision to accept the contract offer and zero for a rejection.  
Independent variables include apropt, which is the agent’s profit given the optimal effort level.  aprofit_lag1, used in model b only, is the one-period 
lagged value of the agent’s realized profits. ncntv, and ffee are the actual contract offers. 
 
Table 3.8: Profits, Equity and Efficieny, Accepted Contracts 
 Agent Profit 

    
Principal Profit Effort 

Gift 
Equity Efficiency 

 Offered Observed Offered Observed  Offered Observed Offered Observed
Treatment 1 

(n = 168) 
16.89 14.44 9.91 14.61 .99 .66 .48 .74 .81 

Treatment 2 
(n = 153) 

17.32 11.90 3.75 11.60 1.40 .97 .52 .59 .65 

Effort Gift represents the mean difference from the optimal effort with a positive number reflecting a benefit to the principal.  
Equity is the share, either offered or observed that is retained by the agent, and efficiency the proportion of the available total.  
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Two specifications are presented with the results reported in terms of the marginal 

effect of each independent variable on the change in the probability of contract 

acceptance.  Each marginal effect is calculated at the mean value of the independent 

variable. The model in panel a) includes the contract components ncntv and ffee and a 

dummy variable for the treatment (trtmnt) as well as a variable apropt which measures 

the agent’s profit from the current offer given an optimal (money-maximizing) effort 

choice.  The specification in model b) adds to model a) the variable aprof_lag1 which 

captures the one-period lagged realized earnings of the agent. The inclusion of the lagged 

variable causes the first period decisions to be omitted in model b).   

In both models, the treatment variable is not significantly different from zero 

indicating that the non-parametric tests were conflating differences across treatments with 

an underlying cause or causes that are correlated with the treatments.  Thus, the probit 

models reveal that contrary to what might be expected from the non-parametric results 

identical contracts across treatments have the same probability of being accepted. The 

probit results demonstrate that the agent’s acceptance is strongly correlated with 

monetary income as reflected in the current contract offer. In addition, when the lagged 

variable is included there is evidence of a reciprocity effect, with higher agent earnings in 

the previous round increasing the probability of acceptance.68  After controlling for the 

value of the contract offer through apropt, the contract components themselves are not 

significant in either model, indicating that the monetary outcome and not the process 

                                                 
68 Additional lags as well as variable that accumulated profits and profit shares for all rounds turned out not 
to be significant in other specifications. Also, the period of play was not a significant factor after 
controlling for the offer value (results omitted). 
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through which that outcome was achieved, as reflected in the structure of the contract, 

was responsible for the contract acceptance decision.  

Of the sixty-three contracts rejected in treatments 1 and 2, sixteen or roughly one-

quarter satisfied the participation constraint for a myopic money-maximizing agent. If the 

agent had responded with the optimal effort level these contracts would have yielded an 

agent share of 12 percent and an efficiency of 75 percent, with the agent share measured 

as  apropt/(apropt + ppropt) and efficiency measured as (apropt + ppropt)/36.69 The 

corresponding efficiency figures for the accepted contracts in treatments 1 and 2 are, 81 

percent, and 67 percent.  The dramatically lower offered share is due primarily to the 

much lower fixed fee among the rejected contracts. As seen in Table 3.6, the fixed fees 

for accepted (rejected) contracts are 3.20 (-9.44) and 4.05 (-11.04) in treatment 1 and 2 

respectively.  Thus the accepted contracts do provide an additional “gift” to the agent 

beyond that revealed in the initial discussion of aggregate offers. By treatment, the 

offered shares are 66 percent (97 percent) for treatment 1 (treatment 2). The near total 

allocation to the agent in treatment 2 suggests that principals may do quite poorly in this 

treatment. We turn next to the agent’s effort responses to accepted contracts to explore 

the relationship between these contract offers and the final allocations.  

As discussed in section 3.3, conditional on acceptance, effort choices of money-

maximizing players are equal to the incentive provided.70  Table 3.8 presents both the 

optimal profits and the realized profits of principals and agents for treatments 1 and 2 as 

                                                 
69 Given b=6, b2 = 36 is the maximal output since b2/2 is the efficient output for each of the two tasks. The 
variable ppropt is the principal(s’) profit at the optimal effort level for a money-maximizing agent. 
70 An exception to this optimality result arises when the incentive for a task is less than 1=e and the fixed 
fee, or profits derived from the other task makes the contract acceptable to the agent.  All variables that 
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well as the levels of efficiency and equity at the optimal and observed effort levels.  In 

both treatments we see a difference between the optimal and observed profits that directs 

additional profit to the principal at the agent’s expense. Note that, in aggregate the 

contract offer is a gift exchange contract which offers the agent significant surplus. These 

offers are reciprocated in treatments 1 and 2 by effort levels that exceed the agent’s 

money-maximizing best reply.  

Non-parametric tests strongly reject the hypothesis that effort levels are consistent 

with the theoretical optimal values, with the Wilcoxon test yielding p-value of .002 (.001) 

for treatment 1 (2).  The efforts provide greater rewards to the principals than the optimal 

efforts and these rewards come at a monetary cost to the agent, shifting the split of the 

surplus to near a 50 percent share for the agent in both treatments.71 The increases in 

equity in monetary terms, while costly to the agent do result in additional efficiency since 

incentives below the optimal level are provided in both treatments. 

In aggregate, the contract offers place the agent’s in the situation of advantageous 

inequality and so, if inequity-averse, the gamma parameter is utility relevant. Calculating 

the optimal gammas implied by the aggregate behaviors is straightforward given the 

results in equation (3.21).  We find  

(3.18) 23.
20 =

−+
−

=
α

αγ
eb

e   in treatment 1.  

For treatment 2 two possible calculations depend on whether the principal’s 

payoffs are considered in aggregate, or whether payoff comparisons are made with each 

                                                                                                                                                 
report optimal values such as apropt and ppropt, incorporate an adjustment to reflect that ee =* in this 
case. 
71 This does not imply an even share in treatment 2 since two principals share the remaining 48 percent.  
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principal, as specified in equation (3.13).  In the first case, the calculation is the same as 

for treatment 1, and we find 25.0 =γ . If the utility specification requires direct 

comparison with each principal the calculation yields,  

(3.19) ( ) 40.
32

2
0 =

−+
−

=
α

αγ
eb

e  in treatment 2.   

If the inequity aversion parameter is assumed to be a stable part of individual 

preferences, the random assignment suggests that gamma should be constant across 

treatments. Thus the calculations suggest that in treatment 2, the agents are comparing 

their own payoffs to the joint payoffs of the principals and not individually to each of the 

principal’s payoffs as hypothesized in equation (3.13). This result is reflected in the final 

payoff shares which yield roughly one half of the surplus to the agent in both treatment 1 

and treatment 2.  

Further examination of agent effort choices is accomplished through a random-

effects tobit model. In this model effort is explained by the contract components, and by 

an indicator variable to examine the possibility of changes in behavior in the last round of 

play. The tobit specification is used due to the bounds on effort in the experimental 

design.  The model is specified as  

(3.20) effortit = 0β + 1β ncntvit+ 2β ffeeit+ 3β lastit+ ui + eit.
72

 

The error term consists of two components, with ui a random disturbance that is 

constant through time for the ith group that interacts repeatedly. The contract components 

ncntvit and ffeeit are as previously defined and our expectation is that the coefficient on 

                                                 
72 A related model in which the dependent variable is in the payoff space of the principal was also 
estimated, using either last or a trend variable for all periods to look at how the principal was rewarded 
during the game. A reputation-based model would imply that the rewards to the principal through extra 
effort should decrease with time as the returns to cooperation diminish. Discussion of these results will 
accompany the discussion of the tobit estimates. 
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ncntv is equal to one and the coefficients on ffee and constant are equal to zero when 

players myopically maximize their monetary returns. The variable last is one in period 

eight and zero otherwise, and is expected to be negative if individuals defect from 

cooperative behavior in the last round of play.   

The results of the tobit model are presented in Table 3.9 for both treatments. 

Likelihood ratio tests support the hypothesis of a structural difference within treatments 

that depends on whether the contract offer places the agent behind (delta) or ahead 

(gamma) of the principal with  respect to monetary payoffs.  Differences in agent 

responses across delta and gamma contracts are predicted by the model of inequity-

aversion and, depending on beliefs, by the intention-based model as well.  However, not 

all the coefficients are easily interpreted in light of these models.  

In treatment 1 ncntv is significantly greater than one for the delta contracts (p = 

0.055), which is contrary to the predictions of static models for money-maximizing and 

inequity-averse players. Since the monetary rewards to the principals’ declines during the 

course of the game this behavior is consistent with a reputation based model.73    

The gamma contracts in treatment 1 are inconsistent with the static money-

maximizing predictions since effort is positively correlated with the fixed component of 

the contract. Examining the monetary returns to the principal, which are increasing over 

the first seven rounds, implies that the reputation model also cannot explain behavior in 

this setting which is therefore most consistent with the equity and reciprocity models.  In 

addition, there is no evidence of defection in the last round of play, a result that is 

discussed further, below. 

                                                 
73 The result on declining payoffs to the principal holds regardless of whether the last round of play is 
included in the reward regression.  
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In treatment 2 the coefficient on incentives is significantly greater (less) than one 

for the delta (gamma) contracts, contrary to expectations. One explanation for this 

counterintuitive result arises from the intercept term in the two models which is negative 

(positive) for the delta (gamma) contracts. This suggests that the large fixed components 

in the gamma contracts are reducing the marginal impact of incentives on effort.  As in 

treatment 1, the agents respond positively to the fixed fee when faced with a gamma 

contract. In contrast to treatment 1 there is a significant reduction in effort in the last 

period of play for the delta contracts.    

Table 3.9: Agent Efforts - Tobit Model 
Dependent 
Var.:  Effort 

Treatment 1 Treatment 2 

Model delta 
(n = 74) 

gamma 
(n = 84) 

delta 
(n = 69) 

gamma 
(n = 83) 

ncntv 1.118 
(0.000) 

1.152 
(0.000) 

1.320 
(0.000) 

0.747 
(0.000) 

fixed fee -0.003 
(0.876) 

0.113 
(0.000) 

0.009 
(0.800) 

0.051 
(0.010) 

Last ..226677  
(0.271) 

0.794 
(0.897) 

-0.800 
(0.044) 

-1.152 
(0.271) 

Constant -0.789 
(0.035) 

-0.763 
(0.485) 

-1.377 
(0.013) 

1.817 
(0.130) 

 
79.5862

)3( =χ  14.812
)3( =χ  37.2392

)3( =χ  37.392
)3( =χ  

A tobit model to estimate effort levels uses the contract offer (ncntv and fixed fee) as explanatory variables, 
as well as dummy variable Last, that is one for the eighth round of play and zero otherwise.  

Further insight into the differences in behavior across treatments and contract 

types can be gained by considering contract formation across time.  Figure 3.3 and Figure 

3.4 present the aggregate incentives and fixed fees for treatments 1 and 2 across the eight 

rounds of play. Statistical tests confirm what casual observation suggests; contract 

choices trend in treatment 1 with the power of incentives increasing and the fixed 

component declining with repetition so that the contract structure moves towards the 
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stage game prediction for players with M preferences. In treatment 2 there is no 

discernible trend for either contract instrument. Statistical confirmation of this finding 

comes from random effects tobit models in which the dependent variable is the contract 

instrument, either ncntv or ffee and period is the independent variable which takes on 

values from 1 to 8. The tobit results for treatment 1 show that aggregate incentives on 

average rise .36 (.33) units per period from period 1 levels of 4.39 (4.70) for all 

(accepted) contracts. The fixed fee falls by 1.82 (1.59) per period from a baseline of 

10.42 (10.39). As a result there are significantly fewer gamma contracts in which the 

agent is offered the advantage in the last four rounds of treatment 1 as compared to the 

first four rounds (Mann-Whitney U p=.0043). For treatment 2 both the tobit estimates and 

the Mann-Whitney test reflect that contract types are stable across time.  

Figure 3.3 Power of Incentives by Treatment and Period 
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Figure 3.4 Fixed Fee by Treatment and Period 

 
 

Despite the trends in contract creation in treatment 1 there are no discernible 

differences with regard to realized equity, efficiency, or agent effort levels when 

comparing the first and last four rounds of play.  Thus the higher-powered contracts 

created in later rounds yield the same distribution of profits overall, but conditional on 

acceptance, constrain the flexibility of the agent’s effort response, reducing the 

possibility of defection in later rounds.  

Further insight into end of game effects results from an examination the agent’s 

monetary reward to the principal in the final round of play. Wilcoxon tests that control 

for the dependence of observations by comparing the mean reward in the first seven 

rounds with the reward in the final round, within each interacting group indicate that 

rewards to the principal are significantly lower in the final round of play (p = .021).  

Consistent with the hypothesis that contracting in the single principal setting reduces the 

possibility of defection, the lower rewards to the principal in the final round attributable 

entirely to the common agency game, with the p-values equal .187 (.049) in the single- 
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(two-) principal games. As discussed in relation to the results reported in Table 3.9 the 

defection in treatment 2 is associated with the delta contracts.  

3.6.2 Individual Contracts and Efforts  

The aggregate results suggest that the challenge in treatment 1 was for the 

principal to assess the extent of inequity aversion of the agent, and that this was done 

with some success by offering gift exchange contracts, with the gift diminishing during 

the course of play. Principals in treatment 2 faced more severe challenges as evidenced 

by the lower earnings in these treatments. The need to coordinate both incentive 

provision and the distribution of the surplus through the fixed fee led to greater rejection 

rates, and when accepted, to lower efficiency and lower surplus shares for the principals. 

In this section we turn to a more detailed study of the contracting and effort choices of 

the groups that interacted repeatedly during the experimental sessions in order to 

understand how players addressed these challenges.  

The first goal of this section is to examine in detail how the principals used the 

information revealed by agent’s efforts to make inferences about inequity aversion 

parameters.  We proceed in this task by estimating a model of the learning that takes 

place within an interacting group, by identifying best responses to previous period efforts, 

and examining the extent to which contracting behavior is consistent with the best 

response. We also investigate in more detail the challenges specific to treatment 2. By 

examining the underlying components of the aggregate contract we gain insight into the 

nature of the difficulty in generating full incentives. This analysis distinguishes nash-like 

contracts from other contract choices, where nash-like contracts are defined as those in 

which the principal creates positive incentives for his own task and disincentives for the 
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other consistent with the theoretical predictions developed in section 3.3. We investigate 

the dynamics of these contract offers in order to generate a better understanding of the 

common agency setting.  

The model we implement is based on identifying categories of contract/effort 

responses associated with three different modalities through which the principals’ can 

learn about the agent’s inequity aversion parameters. The learning modalities include 

optimal response, and non-optimal responses to either delta or gamma contracts.74  We 

define a best response to any of these efforts as a response that imposes full incentives 

and reinstates the distribution consistent with the inequity aversion parameter revealed by 

the agent’s effort choice.  Thus if learning is complete and immediate, the agent should 

accept a best-response offer, and achieve efficiency.   

For each contracting unit, the observed change in the principal’s contract offer is 

the pair, ncntvt - ncntvt-1,  and ffeet - ffeet-1, which are the dependent variables in a two-

equation model that estimates best response dynamics. The independent variable in each 

equation is opt_ncntvt – ncntvt-1, and  opt_ffeet – ffeet-1. The two equation model is  

ncntvt - ncntvt-1 = n
0β + n

1β (opt_ncntvt – ncntvt-1) + n
te  

ffeet - ffeet-1 = f
0β + f

1β (opt_ffeet – ffeet-1) + f
te  

and we assume that there is contemporaneous correlation with ( ) nf
f

t
n
t eeE σ=  and 

so estimate the parameters as a seemingly unrelated regression (SUR). A Breusch-Pagan 

test confirms the appropriateness of this specification. 

                                                 
74 A fourth learning modality, contract rejection, provides information on the lower bound of inequity 
aversion parameters, but that information is not included in the best response model, since there is no well-
defined best response to a contract rejection.  
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In Table 3.10 we present the evidence on the importance of the learning 

modalities for each interacting group by providing a count of the number of instances of 

each type. Also included in the table is the variable learn which can take the value of 0, 

1, or 2 depending on the results of the SUR.  When  n
1β  and f

1β  are both equal to zero, 

learn = 0, and it is equal to 1 or 2 when one or both of those coefficients are different 

from zero at the 10 percent level of confidence, or better.  
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Table 3.10 Learning Modalities by type and Best Response Learning Outcomes 
Treatment  1 Treatment 2 

Group ID Reject Optim Delta Gamma Learn Group ID Reject Optim Delta Gamma Learn
1 1 2 1 4 1 24 1 4 2 1 1
2 0 2 2 4 0 25 4 1 1 2 2
3 1 3 1 3 1 26 2 2 1 3 1
4 1 3 0 4 1 27 0 8 0 0 2
5 0 6 2 0 1 28 2 5 1 0 1
6 2 3 2 1 2 29 3 3 0 2 1
7 0 0 0 8 0 30 2 3 2 1 1
8 1 6 1 0 1 31 2 6 0 0 1
9 2 5 1 0 0 32 2 6 0 0 1

10 0 1 4 3 2 33 1 3 0 4 1
11 0 3 0 5 2 34 1 2 0 5 2
12 0 6 1 1 2 35 2 6 0 0 0
13 0 1 0 7 2 36 1 1 0 6 1
14 0 6 1 1 1 37 3 0 1 4 2
15 0 2 2 4 0 38 0 2 2 4 1
16 0 2 0 6 2 39 2 0 3 3 1
17 2 3 0 3 2 40 6 2 0 0 0
18 1 7 0 0 1 41 4 0 1 3 2
19 0 8 0 0 0 42 0 2 6 0 1
20 0 8 0 0 0 43 3 2 1 2 0
21 3 3 0 2 0 44 3 3 0 2 1
22 2 5 1 0 0 45 0 4 2 2 1
23 0 0 0 8 0 46 3 2 0 3 1

Total 16 85 19 64 21 47 0 0 0 8 1
48 0 3 2 3 2

 

 

Total 47 70 25 58 28
The table displays the number of times different agent behaviors are observed. Reject is contract rejection, Optim an optimal 
response to incentives, Delta a non-optimal response to disadvantageous inequality, and Gamma a non-optimal response to 
advantageous inequality.  Learn identifies the number of times the parameter estimates from the best-response learning model 
are different than zero. Learn has a minimum of 0 and a maximum of 2. 



 

 125 
 

Of the learning modalities in, the modal choice is to respond optimally to the 

contract offers.  Neglecting the rejected contracts, which we have shown are more 

prevalent in treatment 2, a chi-square test of proportions fails to reject the null hypothesis 

of no difference in the distribution of the learning modalities across treatments (p=.393).  

Testing the amount of learning across treatments yields a different result, with learning in 

treatment 2 significantly greater than in treatment 1 (p=.038).  

Table 3.11 presents the differences in learn by treatment and it can be seen that 

only three principals exhibit no learning in treatment 2 while nine do not learn in 

treatment 1. As reported in Table 3.12, a comparison of payoffs in periods 1-4 with those 

in periods 5-8 reveals that principals profits increased dramatically among those with 

learn =2 in treatment 2 (Mann Whitney, p=.047). By contrast, the three non-learning 

principals in treatment 2 all reduced their profits marginally over the course of the 

session, and in all other cases, there was no significant change.   

Table 3.11 Learning Types by Treatment 
 Learn    

 
 0 1 2 

Treatment 1 9 7 7 

Treatment 2 3 16 6 
Learners are identified as 0,1, or 2 based on the number of coefficients that 
are significant from the individual SUR that measures best responses to agent 
choices.  
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Table 3.12 Learning Effect on Profits 
 Learn    

 
 0 1 2 

Treatment 1 
(n = 23) 

0.56 13.14 -0.57 

Treatment 2 
(n = 25) 

-3.00 -1.31 28.83* 

* Identifies a significant change in profits for the principals (p<.05) from the 
first four to the last four rounds of the session. All other changes are not 
statistically significant at conventional levels.  
 

We next consider the adjustment process for the disaggregated contract choices in 

the two-principal treatment to assess how the response to the contract offer of the other 

principal affects profits. Because of the symmetric situation faced by principals in 

treatment 2, we present disaggregated information on the incentive choices of principals 

as ncntv_own and ncntv_oth with the reference in the variable label to one’s own and to 

the other principal’s task. To add some structure to the diverse contract strategies we 

partition the contracts according to whether the individual’s contract choice is nash-like, 

where nash-like is defined as a contract in which ncnt_own>0 and ncnt_oth<0.  An 

aggregate contract constructed from the choices of both players may consist of 0, 1, or 2 

nash-like contract choices. Table 3.13 shows that the aggregate incentives are declining 

in the number of nash-like components. Table 3.13 also presents figures on the contract 

components and we see that when two players execute the nash-like strategy, the 

incentives are close to zero as each player obliterates the incentives provided by the 

other.  While these strategies are inconsistent with the incentives under common agency 

for an agent with M preferences, they are consistent with a key prediction of the inequity 

aversion theory under common agency.  As discussed in relation to Table 3.4 and 

illustrated in Figure 3.2 principals who compete through their incentive offers will reduce 
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incentives as the agent’s inequity aversion increases. Their ncnt_own component moves 

towards zero and ncnt_oth becomes more negative.  

While the nash-like strategy is consistent with the theory, it is chosen for only 115 

of the 400 contract choices or 29 percent of the time. The non-nash-like strategies that 

make up the balance of the contract provide additional incentives for the agent by 

making, in aggregate, choices of both ncnt_own and ncnt_oth that are greater than or 

equal to zero. These contracts lead to fewer rejections providing larger profits than the 

nash-like choices. Although these contracts are not nash-like they also do not have the 

same structure as equilibrium contracts arising from the solution associated with the 

iterated elimination of dominated strategies. The observed contracts incorporate 

ncnt_own (ncnt_oth) that are less than (greater than) predicted by this solution concept, 

but are consistent with offering reciprocal motivations. These represent an alternative and 

somewhat successful attempt to mitigate the inefficiency that results from the two-stage 

solution.  

Table 3.13 Contract Components for Treatment 2 
 ncnt_own 

    
ncnt_oth ncntv Share 

Accepted 
Nash-like 
Number 

Nash-
like 

Not 
Nash-like 

Nash-
like 

Not 
Nash-like 

 (%) 

0 
(n = 212) 

 .53  1.12 3.30 83 

1 
 (n = 146) 

2.59 .43 -2.56 1.39 1.84 73 

2 
(n = 72) 

2.76  -2.60  0.33 57 

Total  
(n = 400) 

2.65 .50 -2.57 1.19 2.45 77 

The contract components for nash-like and non-nash-like contracts are presented in aggregate according to 
the number of nash-like contracts in a given contract pair. Aggregate incentives and the share of accepted 
contracts are declining in the number of nash-like contractors.  
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3.7 Conclusion 

The principal agent setting we have investigated provides a diverse strategy space 

that nests the typical gift exchange game as a special case. In the single principal case we 

observe inefficient gift exchange contracts at the outset with a clear trend towards more 

efficient contracting in the later periods. The usefulness of the gift exchange contracts is 

predicated on the fact that there is some underlying probability that agent’s have other-

regarding preferences, and in particular are inequity-averse. The common agency 

treatment by contrast appears trendless, but underlying the apparent stasis is a diversity of 

strategic choices and payoffs.  A substantial minority of players (29 percent) choose 

strategies that have the general structure of incentives predicted by the common agency 

theory. These players do poorly in general and those pursuing an alternative strategy that 

avoids punishing the other principal fare better.  

 

 
 



 

 125 
 

Appendix 3.1: Proof of Theoretical Results 

Proof of Result 2: Equilibrium incentives and efforts are identical for I and M 

preferences. The first order condition for the agent under inequity aversion yields  

(3.21) 
δ

δδαα
+

−+
=

1
2* be I .   

Maximizing total social surplus requires that the principal choose incentives so 

that  

(3.22) ( )
2

maxarg
2*

**
I

II ebe −=
α

α    

Substituting for Ie* , the principal’s first order condition yields  
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Algebraic manipulation rapidly reduces this expression to b=α   which was to be 

shown. The sufficient condition is satisfied since 
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Substituting I*α  in (3.21) yields be I =*  proving the second part of result 2. 

Proof of Result 4: An agent with I preferences will respond to a GE contract with 

*ee > . 

The utility of an agent with I preferences when his payoff exceeds the principal’s 

is ( )10000 ππγπ −−=u , and the optimal effort choice is given by  
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(3.23) 
0

00*

1
2

γ
αγγα

γ −
−+

=
b

e I .     

When the gift exchange contract is offered, α is less than b and so Ie*
γ  can be 

reformulated as 
0

0*

1 γ
εγ

αγ −
+= GEIe , where 0>−= GEb αε . Thus, GEIe αγ >* , since 

0
1 0

0 >
− γ
γ

 for 10 0 << γ .  A similar argument reveals that when the agent suffers 

disadvantageous inequality the effort choice is   

(3.24) 
0

0*

1 δ
εδ

αδ +
−= GEIe    

and the agent punishes the principal with a reduced level of effort if the 

participation constraint is satisfied.   
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Appendix 3.2: A Model of Reciprocal Preferences 

Utility for reciprocity based preferences, R, is defined as follows:  

( ) ( ) ( ) ( )[ ]iiijiiijiiii
R
i aaaaaaaaZaaau ′′′′′′+=′′′ ,,;,,,, 0 σϕρπ  

As with the model of inequity aversion, the utility functional contains a term 

representing the individual’s monetary reward. Added to the material payoff, is an 

expression that captures the content of the reciprocal preferences - the product of 

perceived kindness, ( )jiii aaa ;, ′′′ϕ  and reciprocity, ( )iiii aaa ′′′,,σ , weighted by 0≥iρ that 

captures the strength of reciprocal preferences.  The multiplicative term implies that 

responding to kindness (unkindness) with reward (punishment) increases utility.  The 

single and double primed terms represent first and second order beliefs about actions.  

First order beliefs, ia′  , represent the beliefs of player i about j’s actions. Second order 

beliefs, ia ′′  , represent what player i believes player j believes about player i’s actions.  

The kindness term ( )jiii aaa ;, ′′′ϕ  is the product of two components, ( )a∆  

associated with outcomes and ϑ , the intention factor, with 10 ≤≤ϑ . The intention factor 

weights the outcomes according to whether the strategic setting allows the intentions of 

the other player to be assessed. The extensive choice alternatives in our setting imply 

1=ϑ  (see Falk and Fischbacher (2006) for additional discussion).  The outcome term 

reflects the difference between the i’s maximum material payoff given player j’s actions, 

( )ji a*π  and the material payoff offer based on one’s beliefs about j’s intentions given the 

strategic setting ( )iii aa ′′′,*π  .  

( ) ( ) ( )iiijijii aaaaaa ′′′−=′′′∆ ,;, ** ππ  
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Positive kindness reflects an offer of material reward by j that exceeds player i’s 

expectations. The reciprocity term ( )iiii aaa ′′′,,σ  reflects the material payoff to player j 

due to player i’s actions less the material payoff to j available from i’s optimal money-

maximizing response to j’s offer.  

( ) ( ) ( )jjiiijiiii aaaaaaa *,,,, ππσ −′′′=′′′  

Thus ( ) 0,, 0000 >′′′ aaaσ  reflects an agent response that benefits the principal 

materially. This is a rational response for the agent only when ( ) 0;, 100 >′′′∆ aaa .  
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Appendix 3.3: Experimental Instructions 

 
Instructions 

 
Welcome.  You are participating today in an experiment in economic decision-making. 
Depending on your decisions during the experiment you can earn a substantial amount of money 
that will be paid to you in cash at the end of the session. 
 
During the experiment your income will be counted in points.  The exchange rate of points into 
dollars is  
 

1 point = $ .25 
 

 
At the end of the experiment, all the points you have earned will be converted to dollars and paid 
to you in cash. 
  
Please note that during the experiment talking is not allowed.  If you do have questions 
please raise your hand.  We will answer your questions in private. 
 
What will you be doing during this experiment? 
 
1. Introduction 
 

In this experiment you will participate in a task that involves two decision-makers.  We will 
call the decision-makers participants X and Y.  
 

You belong to the group of participants Y. 
 

Thus, during the entire experiment, you will make decisions in the role of Y. 
 

At the beginning you will be randomly matched with a participant of group X.  You will be 
paired with this participant throughout the session. Your decisions will be transmitted via the 
computer to participant X.  This participant will only get informed about your decision.  (S)he 
will never learn your name or your participant number etc.  That is, your decisions remain 
anonymous. 

 
 
2. An overview of the experiment. 

 
It may help to understand your task if you think of the following situation. Participant X will 
create a contract to compensate participant Y for producing “gizmos.” There are two distinct 
tasks that Y must undertake to produce a gizmo.  The tasks will be called Task1 and Task2.  
The effort that participant Y chooses to exert on the tasks determines the total number of 
gizmos produced. The effort devoted to Task1 is E1 and the effort devoted to Task2 is E2. 
There are also costs associated with Y’s efforts.  The contract created by X can affect how 
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many gizmos are produced and also how much of the production is kept by X and how much 
by Y.  
 
 

3. Creating a contract:  
 

Participant X has two tools to create the contract. X can offer a “multiplier” to Y for each of 
the tasks. We will call the multiplier for Task1, M1 and the multiplier for Task2, M2. The 
multipliers can be positive, negative, or zero. 
  
The way the multiplier works is that the efforts chosen by Y times the multipliers chosen by 
X are paid to Y.  Y is thus compensated for their effort through the multipliers. 
  
Multiplier amount paid to Y  M1*E1 + M2*E2 
 
Note that X chooses the M’s and Y chooses the E’s. 
 
The second contract tool is a fixed payment or fee that is paid to Y no matter what effort Y 
chooses for the tasks, it can be positive negative or zero.  The Fixed Fee is called FF 
 
Fixed Payment amount paid to Y  FF 
 
The total payment to Y from X is the sum of the two portions: 
 

Contract:  M1*E1 + M2*E2+ FF 
 

In a minute you will be able to try out some examples to see how your earnings are affected 
by your X’s contract choice and by your effort choices.  An online profit calculator will be 
provided so that you do not have to make these calculations yourself. 

 
 
Session Parameters:  

 
In this session the multipliers and fixed components must satisfy the following conditions  
 
Multipliers, M1 and M2 can range from –6 to 6, including zero (integers only). 
The Fixed Fee, FF can range from  -36 to 36, including zero (integers only).  
 
Y’s effort levels, E1 and E2 can range from 1 to 6 (integers only) 
 
 

The contracting game will be played a total of ten times.  
Each round consists of the following stages: 
 
1. X makes a contract offer in accordance with the rules above 
2. Y evaluates the contract and chooses to accept or reject it. 
3. a) If Y rejects the contract, both X and Y receive payments of zero points and the round 

is over. 
b) If Y accepts the contract Y makes an effort choice for each Task. 

4. If the contract is accepted by Y, X’s contract choice and Y’s effort levels determine the 
payoffs for X and Y in that round. 
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Profits for X and Y are calculated as follows:  
 
NOTE: An online profit calculator will do these calculations for you 

================================================================== 
Profit X = Total Output – Payment to Y  
 

Total Output = 6*E1 + 6*E2   Payment to Y = M1*E1 + M2*E2+ FF 
 
Therefore X’s payoff is: 
 

6*E1 + 6*E2 – (M1*E1 + M2*E2+ FF) 
 
which simplifies to  

(6-M1)*E1 +(6-M2)*E2 - FF 
 
================================================================== 
Profit Y = Payment from X -  Effort Costs 
 

Payment from X = M1*E1 + M2*E2+ FF  Effort Costs =  C1 + C2 
 
So Y’s payoff is : 
 

M1*E1 + M2*E2+ FF - (C1 + C2) 
 
 
C1 is the cost effort devoted to Task1 and C2 is the cost of effort devoted to Task2 
 
 
Table 1 Effort Costs: Costs are the same Task1 and Task2 
 

Effort 1 2 3 4 5 6 
C1 .5 2 4.5 8 12.5 18 
C2 .5 2 4.5 8 12.5 18 

Summarizing the above:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Payoff to X = Total Output – Payoff to Y  
       = (6-M1)*E1 +(6-M2)*E2 - FF 

 
 
Payoff to Y = Payment from X – Costs of effort 
                    = M1*E1 + M2*E2 – C1 – C2 +FF 
 
X chooses, M1, M2, and FF  

-6 ≤ M1, M2 ≤ 6 
-36≤ FF  ≤ 36 

 
Y chooses, E1, and E2 
   1 ≤ E1, E2 ≤ 6 
 
Only integer numbers are allowed. 



 

 125 
 

 
 
4. The Experimental Details 
 
The contracting scenario will be repeated on the computer eight times.  These rounds will be 
preceded by two practice rounds to familiarize you with the computerized environment and with 
the rules of the game.  You will not be paid based on the outcome of the practice rounds.  The 
points earned in each of the eight “paying rounds” will be added together, converted to dollars at 
the rate of 1 point = $.25.   
 
Participant X will have 5 minutes to create a contract and Y 3 minutes to choose efforts in the 
first rounds. This time will be reduced slightly as the experiment continues in order to allow you 
to play more rounds (and earn more points).  There will always be an announcement when there 
is one minute left for X or Y.  
 
 
 
We will now move to the computerized portion of the session which consists of three parts. 
 

1. Two practice rounds in which will introduce you to contract creation and the profit 
calculator. In the first round you will work with a single task. In the second round there 
will be two tasks exactly as in the paying rounds.  You will have 5 minutes in each of 
these practice rounds to explore different contracts and effort levels 

  
2. Eight paying rounds in which your earnings will be recorded.   

 
 
3. A short questionnaire at the end. 

  
 
 
Good luck and thank you for your participation. 
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