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The quantum simulation of complex many body systems holds promise for

understanding the origin of emergent properties of strongly correlated systems, such

as high-Tc superconductors and spin liquids. Cold atomic systems provide an almost

ideal platform for quantum simulation due to their excellent quantum coherence,

initialization and readout properties, and their ability to support several forms of

interactions. In this thesis, I present experiments on the quantum simulation of long

range Ising models in the presence of transverse magnetic fields with a chain of up

to sixteen ultracold 171Yb+ ions trapped in a linear radiofrequency Paul trap. Two

hyperfine levels in each of the 171Yb+ ions serve as the spin-1/2 systems. We detect

the spin states of the individual ions by observing state-dependent fluorescence

with single site resolution, and can directly measure any possible spin correlation

function. The spin-spin interactions are engineered by applying dipole forces from

precisely tuned lasers whose beatnotes induce stimulated Raman transitions that



couple virtually to collective phonon modes of the ion motion. The Ising couplings

are controlled, both in sign and strength with respect to the effective transverse field,

and adiabatically manipulated to study various aspects of this spin model, such as

the emergence of a quantum phase transition in the ground state and spin frustration

due to competing antiferromagnetic interactions. Spin frustration often gives rise

to a massive degeneracy in the ground state, which can lead to entanglement in

the spin system. We detect and characterize this frustration induced entanglement

in a system of three spins, demonstrating the first direct experimental connection

between frustration and entanglement. With larger numbers of spins we also vary

the range of the antiferromagnetic couplings through appropriate laser tunings and

observe that longer range interactions reduce the excitation energy and thereby

frustrate the ground state order. This system can potentially be scaled up to study

a wide range of fully connected spin networks with a few dozens of spins, where the

underlying theory becomes intractable on a classical computer.
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Chapter 1

Introduction

A quantum system can be in a superposition of several possible states at the

same time, a feature distinctly different from the classical superposition [1]. This

bizarre property results in many counter-intuitive phenomena, such as non-local

correlations or entanglement between different parts of a quantum system, leading to

the famous Einstein-Podolsky-Rosen paradox [2]. Quantum superposition presents

an outstanding challenge in computing, as we have to keep track of an exponentially

large number of coefficients to describe the time evolution of a quantum system. As

an example, a system consisting of N two level objects (referred to as the qubits, or

spins) is represented by a wavefunction |Ψ〉, which can be written as,

|Ψ〉 =
∑

s1={↑,↓}

...
∑

sN={↑,↓}

as1,s2,...,sN |s1, s2, ...sN〉. (1.1)

Here |s1, s2, ..., sN〉 is the state where the first spin is in state s1 (either ↑, or ↓) and so

on. A full specification of the wavefunction requires 2N of the amplitudes as1,s2,...,sN .

A classical system, on the other hand, requires only N coefficients to describe the

probability of an outcome. Conventional computers used for computing today are

composed of classical bits, and hence require resources exponentially large in N to

faithfully simulate the properties of an arbitrary N− qubit quantum system.

In his 1981 seminal lecture on ‘Simulating Physics with Computers’ [3], Feyn-
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man suggested using quantum logic gates to simulate the behavior of a quantum

system. He envisioned the idea of a quantum computer that will “do exactly the same

as nature.” In 1996, Lloyd showed that quantum computers can be programmed

to simulate any local quantum system [4]. Although building a full scale universal

quantum simulator or a quantum computer [5] with error correcting codes [6] is a

distant dream as of now, experimental efforts to use a controlled quantum system

for manipulating specific quantum information are underway. These systems include

trapped ions [7, 8, 9, 10], neutral atoms in optical lattices [11, 12], resonator coupled

superconducting qubit arrays [13, 14], electron spins in quantum dots and nitrogen

vacancy centers in ultra-pure diamond crystals [15, 14], and photons [16, 17, 18, 19].

A quantum simulator based on Feynman’s original idea may be called a digi-

tal quantum simulator [20], where the desired Hamiltonian, H is constructed from

piecewise application of local Hamiltonians, H =
∑l

i=1Hl, following the Trotter

expansion,

e−iHt ≈
(
e−iH1t/ne−iH2t/n... e−iHlt/n

)n
. (1.2)

The error in simulating the Hamiltonian can be kept under a given value by properly

choosing the number of steps, n. Another class of quantum simulators, known as

analog simulators, continuously follow the Hamiltonian evolution of a physically

different but mathematically equivalent system [21]. Analog quantum simulators

are restricted to simulating a few classes of Hamiltonians, but they prove to be very

useful to study some non-trivial many body physics so far.

Understanding the physics of many body emergent phenomena is one of the
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main areas of research in modern physics. Despite many minimalistic models [22,

23, 24] to understand the behavior of the strongly correlated systems [25, 26], such

as high temperature superconductors [27], heavy fermion materials [28], colossal

magneto-resistance materials [29], frustrated spin liquids [30], and quasi-low dimen-

sional materials [31], the mechanism behind some of the exotic properties remains

mostly unknown. Numerical techniques such as quantum Monte Carlo [32] and den-

sity matrix renormalization group (DMRG) [33] provide valuable insights into the

many body physics of a quantum system, but they do not work very well when the

underlying model involves frustration [34] and long range interactions [35]. A quan-

tum simulator takes a bottom-up approach, where the behavior of a quantum system

under a well understood Hamiltonian is experimentally studied, and complexities

are added piece by piece. The search is for the minimal interactions between the

fundamental building blocks required to explain the many body emergent properties

of the macroscopic system.

Cold atomic systems provide a nearly ideal platform for quantum simulation,

due to their long coherence time, near perfect initialization and detection fidelities

and ability to support many classes of interactions. In recent years, a number

of cold atom experiments, with both neutral atoms and ions, have simulated and

studied interesting many-body physics, such as transition from superfluid to Mott

insulator in Bosonic systems [36, 37, 38], quantum phase transitions between spin

phases or quantum magnetism [39, 40, 41, 42, 43, 44], Bardeen-Cooper-Schrieffer

(BCS) pairing [45] and BEC-BCS crossover physics [46], investigation of quantum

criticality [47, 48, 49], synthetic gauge fields to simulate quantum Hall physics and
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topological insulators [50], quantum simulation of relativistic dynamics [51, 52], and

long range spin models involving spin frustration [43, 53]. Cold atom systems offer

some distinct advantages over the condensed matter systems, some of which are,

• Cold atom systems show remarkable tunability, and often can access a much larger

parameter range than the condensed matter systems. As we shall discuss in this

thesis, the effective spin interactions in a simulated spin model can be changed in

sign, magnitude, and range by changing the frequency of a laser beam [54]. In solid

state systems, the sign of the magnetic interactions cannot be changed, and altering

the strength of the couplings by a modest amount may require application of large

hydrostatic pressures [55]. Another example is the control of interactions in a cold

atomic system provided by Feshbach resonances [56, 57].

• Cold atomic systems have a very low level of defects compared to the solid state

systems. For example, the extreme low entropy in a spin-polarized Mott insulator

state allows the study of quantum magnetism [40]. Defects can be controllably

added to study the physics of disordered systems such as Anderson localization

[58, 59, 60].

• They have ultra-low densities compared to the solid state systems. Typical spacing

between the neighboring trapped ions or optical lattice sites is of the order of a

micron, much larger than the typical electronic spacing of a few Angstroms in solid

state materials. This allows optical imaging of individual components, and direct

observations of spin ordering in quantum magnetism [43, 61].

• The time scale of the dynamics in a cold atom system is longer and more experi-
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mentally accessible than their solid state counterpart.

Trapped ions have been in the forefront of quantum information processing

since experimental investigation began [62], demonstrating universal quantum gates

[63, 64, 65, 66], and quantum teleportation [67, 68, 69, 70]. The long coherence

time of trapped ion systems, and the easy access to long range tunable interactions

[71, 54] make them an outstanding choice to simulate long range spin models that

demonstrate quantum phase transitions [47] and spin frustrations [72]. In this work,

we simulate a long range quantum Ising model with a chain of up to sixteen 171Yb+

ions in a radio-frequency trap. Two hyperfine states of each 171Yb+ ion constitute

an effective spin-1
2

system. The collective vibrational modes of the trapped ions,

excited off-resonantly with stimulated Raman transitions by precisely tuned laser

fields, act as an ‘information bus’, and mediate the two body spin interactions [71].

An effective transverse external field, simulated by stimulated Raman transitions

between the spin levels, introduces quantum fluctuations in the system. We study

the ground state properties and excitations in the system by preparing the spins in

an eigenstate of a trivial Hamiltonian and tuning it to the more complicated one to

be simulated, following the adiabatic quantum simulation protocol [73].

With our quantum simulator we investigate various non-trivial many body

physics, such as a quantum phase transition between magnetic phases [41], spin

frustration leading to entanglement [43], and the observation of spin ordering in a

system of sixteen spins (two qubytes), the largest number of spins used to process

quantum information in a linear trap to this date. The present work serves as a
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benchmark for quantum simulation with larger systems, where the underlying theory

becomes intractable with conventional computers.

This thesis is divided into the following chapters.

• The second chapter gives the necessary theoretical and experimental background

on quantum simulation with trapped ions. This includes a brief discussion on the

collective vibrational motion of a chain of 171Yb+ ions in a radio-frequency Paul

trap, that are used to generate the spin interactions. We derive the effective Ising

Hamiltonian starting from the basic interactions of the ions with the Raman laser

field. Control over the Ising couplings, and the quantum simulation protocol are

discussed. In the experimental section, we discuss the hardware used in the set up,

in particular the lasers that drive the stimulated Raman transitions. Section 2.7 is

devoted to discussing the experimental procedure step by step.

• The third chapter discusses and presents some results on the quantum simulation of

the ferromagnetic Ising model. We observe the onset of ferromagnetic spin ordering

in a system of up to sixteen spins. As the effective external field is tuned with respect

to the Ising interactions, the system undergoes a crossover from the paramagnetic to

the ferromagnetic phases. The sharpness of this crossover increases with the system

size, consistent with the expected quantum phase transition in the thermodynamic

limit.

• We simulate the long range antiferromagnetic quantum Ising model in the fourth

and the fifth chapters with up to sixteen spins. The long range interactions in the

trapped ion system gives rise to a fully connected spin network. The interactions
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can be suitably tailored to simulate a higher dimensional lattice geometry, in this

one dimensional chain of ions. In chapter 4, we simulate a frustrated spin network

with three spins interacting antiferromagnetically on the corners of a triangle, and

study the many body ground state. Frustration leads to a large degeneracy, with

six of the eight (= 23) basis spin states belonging to the ground state manifold. We

detect and characterize the entanglement coming out of this frustration induced

degeneracy, and contrast it to the entanglement coming out of the symmetries in

the Hamiltonian (section 3.2). The amount of frustration in the long range antifer-

romagnetic Ising model is controlled by varying the range of the antiferromagnetic

couplings. We compare the spin order for various degrees of frustration in chapter

5.

• The sixth chapter gives an outlook for future directions.
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Chapter 2

Trapped Ions as a Platform for Quantum Simulation

2.1 Overview

This chapter gives a brief overview of the theoretical and experimental tools

needed in our quantum simulation experiment with trapped 171Yb+ ions. I briefly

describe the working principle of an ion trap, without going into too much detail.

Two hyperfine states of the 171Yb+ ions are used as the pseudo spin-1
2

states, which

are manipulated by various standard atomic physics techniques, such as Doppler

cooling, optical pumping, stimulated Raman transitions, and Raman sideband cool-

ing. We give a short introduction to each of these topics. Finally we describe some

of our experimental apparatus in detail, particularly focusing on the lasers used to

drive the stimulated Raman transitions.

2.2 Ion Trapping

A charged particle cannot be trapped in space by electrostatic forces alone,

as pointed out by Samuel Earnshaw [74] in 1842. This is due to the fact that, an

electrostatic potential V (X, Y, Z) has to satisfy the constraint ∇2V (X, Y, Z) = 0

(The Laplace equation, ∇2 ≡ ∂2

∂X2 + ∂2

∂Y 2 + ∂2

∂Z2 ) everywhere in the free space, and the

properties of the Laplace equation prevents its solution to admit any local extremum.
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Ion traps work by applying either an oscillating electric field (Paul traps [75]), or

a static magnetic field (Penning traps [76]) in conjunction with static electric fields

to create an extremum in the effective time averaged potential. We use a radio

frequency Paul trap for our quantum simulation experiments.

An electrostatic potential created by applying static voltages on metallic elec-

trodes cannot create a potential extremum in space, but by properly choosing the

boundary conditions, it is possible to create a potential saddle. As an example, the

general form of a quadrupole potential is,

V (X, Y, Z) = αX2 + βY 2 + γZ2. (2.1)

The Laplace equation puts the constraint α+ β + γ = 0, which admits the solution

α = −2, β = 1, γ = 1 for some specific boundary conditions. The potential has a

saddle point at (X = 0, Y = 0, Z = 0), i.e., V (X, Y, Z) is confining along the Y and

the Z directions, but anti-confining along the X direction for a positive charge.

On top of the electrostatic field, we superpose a spatially inhomogeneous os-

cillating electric field, the time average of which will generate an effective confining

potential. Let’s consider the motion of a charged particle in an oscillating field [77]

alone. The force equation is,

mẌ = FX(t) = eE0(X) cos Ωrf t. (2.2)

Here we assume that the oscillating electric field with frequency Ωrf and amplitude
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E0(X) couples to the X component only, e and m are the charge and the mass of

the particle respectively. If E0(X) = E0 is a homogeneous field, the average force

〈FX(t)〉t = 0, since 〈cos Ωrf t〉t = 0, and the solution to Eq. (2.2) is,

X(t) = − eE0

mΩ2
rf

cos Ωrf t+X0. (2.3)

Here X0 = 〈X(t)〉t is an integration constant and represents the time averaged

position of the charged particle, and we have assumed that at t = 0 the particle

was at rest, i.e., Ẋ(t = 0) = 0. Here 〈...〉t denotes averaging over a time long

compared to the time period of the oscillating field. Hence, under a homogeneous

oscillating electric field, a charge particle does not experience any confining potential,

and oscillates with the driving field. The oscillation of the charged particle at the

frequency of the driving field is known as the micromotion.

Now, we add a small inhomogeneity in the driving field amplitude E0(X),

maintaining its value at X = X0, and expand it about X = X0,

E0(X) = E0(X0) +
∂E0(X)

∂X

∣∣∣∣
X=X0

(X −X0). (2.4)

Let ζ(t) ≡ X(t) −X0 be the displacement of the charged particle about the mean

position (we assume that the mean position of the charged particle is unchanged

with this added inhomogeneity. For a detailed discussion see ref [77]).
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From Eq. (2.2), the time averaged value of the force is,

FX(t) = eE0(X) cos Ωrf t

= e

(
E0(X0) +

∂E0(X)

∂X

∣∣∣∣
X=X0

ζ(t)

)
cos Ωrf t

= eE0(X0) cos Ωrf t−
e2

mΩ2
rf

E0(X0)
∂E0(X)

∂X

∣∣∣∣
X=X0

(cos Ωrf t)
2. (2.5)

Here we have approximated ζ(t) by the displacement of the charge particle in a

homogeneous field (Eq. (2.3)) in the last line. The time average of this force is,

F̄ (X0) ≡ 〈FX(t)〉t = − e2

2mΩ2
rf

E0(X0)
∂E0(X)

∂X

∣∣∣∣
X=X0

= − e2

4mΩ2
rf

∂

∂X0

E2
0(X0)

= −e ∂

∂X0

[
e

4mΩ2
rf

E2
0(X0)

]
. (2.6)

We identify the quantity inside the square bracket in the last line of Eq. (2.6) as a

pseudo-potential, known as the ponderomotive potential,

Ψpond(X0) ≡ e

4mΩ2
rf

E2
0(X0), (2.7)

and the time averaged force in Eq. (2.6) is known as the ponderomotive force.

Note that the force is independent of the sign of the charge, and hence the same

ponderomotive potential can trap both a positive and a negative charge. It can

be shown that the kinetic energy in the micromotion of the charged particle is

Ekinetic = eΨpond(X0). This kinetic energy vanishes for E0(X0) = 0, i.e., where the
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amplitude of the oscillating field vanishes. The region of E0(X0) = 0 is referred

to as a ‘radio-frequency null’. Depending on the geometry of the trap, the radio-

frequency null may be a point, a collection of discrete points, or a line. In a quantum

information experiment, the static potentials are adjusted so that the equilibrium

positions of the ions lie on a radio-frequency null to minimize the micromotion [78],

which may couple to the vibrational modes of the ion chain, and result in quantum

decoherence by heating up the modes.

A more rigorous analysis of the motion of a charged particle in an ion trap

involves solving the Mathieu equation, discussed in Ref. [75]. The ponderomotive

potential overcomes the deconfining potential due to static electric fields along the

X−direction in our example, and the superposition of the static and the pondero-

motive potentials result in a three dimensional confinement of the charged particle.

The effective potential takes the form,

V (X, Y, Z) =
1

2
m
(
ω2
XX

2 + ω2
Y Y

2 + ω2
ZZ

2
)
, (2.8)

where (ωX , ωY , ωZ) are called the secular frequencies along the three trap axes.

While constructing an ion trap for an experiment, the desired trapping po-

tential is simulated with commercially available softwares, such as the 3-D Charged

Particle Optics Program (CPO-3D) produced by CPO Ltd. The software solves the

Laplace equation for a set of boundary conditions, given in terms of voltages on

the electrodes. Ref. [70] gives a detailed instruction on how to use CPO-3D for

electrostatics simulations.
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Figure 2.1: Schematics of the three layer linear Paul trap: A linear chain of
171Yb+ ions are confined in a three layer radio-frequency (Paul) trap. The electrodes
are gold-coated on alumina substrates. The top and the bottom sets of electrodes
are approximately 250 µm thick, and carry static voltages (DC), and the middle ones
are approximately 125 µm, and carry a radio frequency (rf) voltage at a frequency
of Ωrf/2π = 38.6 MHz. The ions (shown in dots) form a linear crystal along the
Z−axis of the trap. The electrodes labeled GND are grounded.
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Fig 2.1 shows a schematic of the radio-frequency trap used to trap Ytterbium

ions (Yb+) in our experiment. The top and the bottom electrodes carrying static

voltages of up to a hundred volts are segmented into three zones each. A radio-

frequency signal at about 38.6 MHz is coupled to the middle electrodes through a

helical resonator (transformer) [79], with a resonance around 38.6 MHz and a Q-

factor of about 200. The input power to the helical resonator is approximately 27

dBm, or 500 mW. This generates a radio-frequency voltage of about 200-300 Volts,

leading to secular frequencies of ωX ≈ ωY ≈ 2π × 5 MHz. The three layer trap is

housed in a vacuum chamber with a pressure of < 10−11 Torr (reading EO3 on a

SenTorr vacuum gauge).

The static voltages DC1 through DC6 (along with the radio frequency) in fig

2.1 control the trapping potential. The static voltages are provided by an 8 channel

high precision HV module from the Iseg Spezialelektronik GmbH company. Linear

combinations of the static voltages are used to manipulate the position of the ions

and properties of the trapping potential, such as

• The end average voltage Vend = (V1 + V2 + V5 + V6)/4 and the central average

Vcentral = (V3 + V4)/2 control the overall strength of the trapping potential,

where Vi is the static voltage applied on the electrodes labeled DCi (i =

1, 2, ..., 6). The ratio of these two voltages also controls the principal axes

of the trap along the transverse directions. Principle axes are the Cartesian

coordinate axes X and Y such as the trapping potential does not involve

any term coupling both the coordinates, i.e., the coefficient αXY = 0 in the
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generalized form of a quadratic potential, V (X, Y ) = αXXX
2 + αXYXY +

αY Y Y
2.

• The Z-push voltage VZ = [(V1 + V5)− (V2 + V6)]/2 controls the ions position

along the Z−axis. The displacement of the ion for a given change in the

Z−push voltage depends on Vend as well. For example, a change of 3 Volts in

VZ results in a single ion displacement of about 20 µm when the end average

voltage Vend = 10 Volts.

• The end vertical difference V∆end−vert = [(V1 + V2) − (V5 + V6)]/2 and the

central difference V∆central = V3−V4 are used to minimize the radio frequency

micromotion of the ions [78].

2.2.1 Trapping 171Yb+ in our Paul trap

The vacuum chamber housing the trap contains two ovens made of stainless

steel hypodermic needles (in a Titanium holder) packed with neutral Ytterbium

metal, one with naturally abundant Yb, dominated by 174Yb (30%), and the other

with isotopically enriched 171Yb (≈ 90% isotope purity). Ytterbium ions (171Yb+ )

are loaded into our linear Paul trap from the isotopically enriched oven by photoion-

ization. A current of 2.4-2.8 Ampere is sent through the oven, and the Joule heating

produced by the current sublimates Yb atoms into a directional spray. Neutral Yb

is ionized into 171Yb+ in two steps.

• Exciting an electron from the 1S0 level to the 1P1 level of the neutral Yb.
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• Ionizing that electron by supplying 1P1-energy continuum or more. Another

radiation at 369.5 nm or 355 nm ionizes the atom into a 171Yb+ ion.

The first step is done by a 1 mW laser beam of 398.911 nm radiation from a semicon-

ductor diode laser (Toptica DL-100). This beam is focused cylindrically with beam

waists (1/e2 radius in intensity) of ∼ 100 µm in the horizontal direction and ∼ 50

µm in the vertical direction. The second step can be performed by any light with a

wavelength under 394.1 nm. We use about 1 mW of 369.5 nm light beam focused

into a cylindrical spot with waists 100 µm× 50 µm to ionize. It takes about half a

minute to trap a single ion after the oven warms up (a couple of minutes after the

current source is turned on). The 369.5 nm light is generated by frequency doubling

739 nm light (generated by a Ti:Sapphire laser or a semiconductor diode laser with

a tapered amplifier system) by an LBO crystal in a cavity (WaveTrain, made by

Spectra-Physics). The loading process can be expedited greatly with a brief pulse

(under a second) of 355 nm light (about 1 W light focused into 100 µm× 7 µm, this

beam is also used for stimulated Raman transitions) providing the ionizing energy.

• Isotope selectivity - The oven used for loading 171Yb+ contains 90% pure

171-isotope. The remaining is mostly 174Yb+ isotope, 1% other isotopes of Yb

and other impurities. The isotope shift between the 171Yb+ and 174Yb+ in the

1S0−1P1 transition frequency is about 800 MHz [80], more than the power broadened

transition width (about 200 MHz, found empirically). We send the ionization beams

approximately perpendicular to the direction of the atomic spray from the oven (Fig.

2.2), thus eliminating first order Doppler broadening. Empirically, we load 171Yb+
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Figure 2.2: Ionization beam and oven geometry: The ionization beam is sent
nearly perpendicular to the atomic beam jet sprayed from the 171Yb+ enriched
(90% isotopically pure) oven. This nearly eliminates the Doppler broadening of the
1S0−1P1 transition line. The gray rectangles denote the vacuum chamber windows.
This figure is not to scale.

with more than 98% success rate. While loading 171Yb+ ions we shine the loading

region with the Doppler cooling beam and the 935 nm repump (along with the

two loading beams), and look for a fluorescence signal on a charged coupled device

(CCD) imager. The integration time of the CCD is set to about 200 ms. A wrong

isotope of Ytterbium or another atomic species does not fluoresce from the Doppler

cooling beam, and appears as a dark spot in the ion chain. We experimentally find

that a lower radio frequency and static voltage on the trap electrodes make the

trapping easier. An additional cooling beam, called the protection beam, which is

detuned from the 2S1/2 →2 P1/2 resonance by 600 MHz is also kept on during the

loading process. When we use 369.5 nm beam for the second step in the ionization,

the ions load one by one, but with the 355 nm beam, multiple ions load at the same

time.
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•Melting of the ion crystal and re-capturing - One of the most important

problems of dealing with a long chain of ions is collisions with background gases

present in the vacuum chamber, which result in melting of the crystal. The rate

of the background collisions increase with increasing system size, and is typically

one melting event per five minutes on an average for a chain of 10 ions (this is

approximate, we did not investigate the statistics of these collision events). Once

the ion chain melts, we try to re-capture them by turning on the Doppler cooling

and the protection beam, and lowering the trap depth. The radio frequency power

going into the trap is lowered by about 11 dB (from 26 dBm to 15 dBm), and

the average static voltage (End average DC) is reduced to about 4 Volts. These

settings are empirically found. In our quantum simulation experiments, we monitor

the Doppler cooling fluorescence from the ions on a PMT to check for melting. If

the re-crystallization process is initiated soon enough after the melting occurs, all or

most of the ions come back into the crystalline structure with a decent probability

(works > 50% of the time).

2.3 Manipulation of 171Yb+ spin and motional states

2.3.1 Hyperfine states

171Yb+ has a spin-1
2

nucleus, resulting in hyperfine structure in the electronic

ground state. Figure 2.3 shows the fine structure levels with their hyperfine sublevels

in 171Yb+ . The two hyperfine states of 2S1/2|F = 1,mF = 0〉 and 2S1/2|F = 0,mF =

0〉 form an effective spin-1
2

system, identified as | ↑z〉 and | ↓z〉 respectively. Here
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Figure 2.3: 171Yb+ level diagram
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~
√
F (F + 1) is the total angular momentum of the atom, and ~mF is its projection

along the quantization axis, in our experiments defined by the externally applied

magnetic field of BY ≈ 5 G, where ~ = h/2π, h being the Planck’s constant.

This magnetic field is not to be confused with any effective magnetic field in the

spin models that we want to simulate with this system. As we shall discuss later,

we simulate the effective transverse field (B) in the quantum Ising model by laser

induced stimulated Raman transitions. The spin states are not sensitive to the

Zeeman shift in the leading order of the applied magnetic field BY , making them

useful in precision atomic clocks [81]. The hyperfine frequency splitting between

them is ωhf/2π = 12 642 812 118.5 Hz + B2
Y × 310.8 (Hz/G2) [82].

2.3.2 Doppler cooling

The 171Yb+ ions are Doppler cooled on the 2S1/2−2 P1/2 line, with a Gaussian

beam at a wavelength λ = 369.521525 nm, red detuned from the resonance by about

25 MHz. Each time an atom absorbs a photon, it acquires an ~k recoil momentum

from the radiation field, where ~k is the momentum vector of the cooling light. When

an atom moves opposite to the direction of beam propagation, i.e., towards the light

source, the frequency of the light as observed from the atom’s rest frame is up-shifted

from its laboratory frame frequency, due to the Doppler effect. Since the beam is red

detuned from the 2S1/2−2P1/2 resonance, the up-shifted frequency is closer to atomic

resonance, and the atom absorbs more photons. On the other hand, when the atom

moves away from the source, it sees a down-shifted frequency of the cooling beam,
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and absorbs less. Thus on an average, the atom experiences more momentum kick

(and more radiation pressure) while moving opposite to the beam propagation than

while moving along the beam propagation direction. Thus the atom slows down, on

average, by absorbing photons from the radiation field. Once in the excited state, the

atom emits the photon back to the field via spontaneous emission, but this photon

is emitted in a random direction with zero average momentum, and the average

momentum transfered to the atom from the field vanishes. Thus the beam slows

down the atom. For trapped ions, the confinement is achieved by electrical voltages,

and thus Doppler cooling works provided the cooling beam couples to motion along

all the principle axes.

In order to cool both the spin states (|↑z〉 and |↓z〉), we frequency modulate the

Doppler cooling beam at 7.37 GHz by using an Electro Optic Modulator (EOM).

The second sideband (≈ 1% of the carrier strength) generated by this EOM at

14.74 GHz couples the 2S1/2|F = 0,mF = 0〉 state (or the spin | ↓z〉 state) to

2P1/2|F = 1,mF = 0〉 state. Thus both the spin states scatter from the Doppler

cooling beam. The optical power in the cooling beam used is approximately 25 µW

focused to a spot size of approximately 100 µm × 10 µm at the ion , and we cool

the ions for about 3 ms.

To efficiently cool the ion, we use an additional laser at 935.2 nm (Toptica

DL-100) sent through an EOM driven at 3.07 GHz to re-pump the 2D3/2 levels that

2P1/2 states leak into with a probability of about 0.005 [70]. This laser pumps the

atom to the 3D[3/2]1/2 state, from which it returns promptly to the 2S1/2 states [83],

without mixing between the |↑z〉 and the |↓z〉 states, as the transition 3D[3/2]1/2|F =
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0,mF = 0〉 → |↓z〉 is forbidden. The 935 nm laser beam has about 20 mW power,

and is not focused tightly (with about a few hundred microns Gaussian beam waist

at the ion location) to make the alignment process easier. We frequency stabilize

this laser by feeding back to the grating in the laser cavity and the diode current,

using a slow software lock that compares the frequency of this laser measured by

a wavemeter (WS Ultimate Precision by High Finesse GmbH) and a set frequency

(320.56922 THz). This software lock is technically easier than implementing other

cavity based locks, such as a Pound-Drever-Hall lock [84], and empirically found to

be sufficient for the current application.

The atom may also leak into the long lived low lying 2F7/2 states with a life-

time of about 10 yrs, presumably in a non-radiative process involving collisions with

the background atoms in the vacuum chamber [85, 86], at a rate of approximately

one every couple of hours for a single atom. A laser at 638.6 nm is scanned be-

tween the two transitions near the wavelengths of 638.6151 nm (2F7/2|F = 4〉 →

1D[5/2]5/2|F = 3〉) and 638.6102 nm (2F7/2|F = 3〉 → 1D[5/2]5/2|F = 2〉) (Fig.

2.3), again by using the wavemeter frequency lock.

2.3.3 Detection of the spin states

The spin states are detected by a spin dependent fluorescent technique. The

spin | ↑z〉 state is excited with a 369.53 nm beam, on resonance with the 2S1/2|F =

1,mF = 0〉 ↔ 2P1/2|F = 0,mF = 0〉 transition. Once excited to the 2P1/2|F =

0,mF = 0〉 state, the ion spontaneously decays to one of the three 2S1/2|F = 1,mF =
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Figure 2.4: Detection of the spin states: A near resonant laser beam at 369.5 nm
couples the | ↑z〉 state to the 2P1/2|F = 0,mF = 0〉 state, which can fluoresce back
into the | ↑z〉 state, or to the Zeeman states 2S1/2|F = 1,mF = ±1〉, but not to the
spin |↓z〉 state. The detection beam has all the polarization components (π, σ+, σ−)
and hence the Zeeman states are excited back to the 2P1/2|F = 0,mF = 0〉 state,
and the atom can fluoresce again. This light appears off-resonant to the |↓z〉 state by
12.6 GHz, and hence hardly scatters from the |↓z〉 state. We collect the fluorescence
by a diffraction limited optics on a PMT (Fig. 2.5) or a CCD imager. Here the
solid black arrows represent stimulated absorption of the detection laser beam by
the ion, and the red fuzzy lines show the spontaneous emission channels. The gray
arrow shows the same detection light as appears to the |↓z〉 state (the dark state).
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0,±1〉 states after about 10 ns [87]. Since 2P1/2|F = 0,mF = 0〉 ↔ 2S1/2|F =

0,mF = 0〉 transition is forbidden by having a zero matrix element of the dipole

moment operator between these two states, this forms a cycling transition, and spin

state | ↑z〉 (and the Zeeman states) appears as a ‘bright’ state. Figure 2.4 shows

the spontaneous channels used in the detection. We collect the fluorescence with

diffraction limited optics (NA=0.25) on a photomultiplier tube (PMT) or a CCD

imager. The overall imaging magnification is about 130, and the set up is similar

to that explained in Ref. [88]. The number of emitted photons from a bright ion in

a given time interval is distributed according to a Poisson distribution. We collect

about 10 photons on average with the PMT, when the detection beam is on for 800

µs.

The same beam appears off-resonant to the spin state | ↓z〉, by about 12.643

GHz, and hence does not excite this state. Spin | ↓z〉 appears as a ‘dark’ state on

the PMT or the CCD imager.

To repump from all the Zeeman states of 2S1/2 manifold, the detection beam

contains all the three polarizations (π, σ+, σ−) w.r.t. the external magnetic field of

about 5 G, required to define the quantization axis and to avoid coherent population

trapping [89].

The two spin states may get mixed up if the 2P1/2|F = 1,mF = 0,±1〉 states

are populated, as they couple to both the spin states. The detection beam is 2.105

GHz detuned from the 2S1/2|F = 1,mF = 0〉 ↔ 2P1/2|F = 1,mF = 0,±1〉 states,

and the probability of off-resonantly populating the states is ≈ 10−5. This off-

resonant excitation alters the emitted photon histogram only slightly [90, 91]. We
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Figure 2.5: Fluorescence histograms of the spin states: A single 171Yb+ ion
is excited by a laser beam which is nearly on resonance with the 2S1/2|F = 1,mF =
0〉 ↔ 2P1/2|F = 0,mF = 0〉 transition. we collect the fluorescence of the ion on
a photomultiplier tube (PMT) for 800 µs. A histogram of the photon counts is
shown for the bright state (| ↑z〉) in red. The spin state | ↓z〉 appears dark (blue
histogram), as the detection laser beam is off-resonant to the 2S1/2|F = 0,mF =
0〉 ↔ 2P1/2|F = 0,mF = 0〉 transition. Here we prepared the dark state by optical
pumping, and the bright state by applying a carrier Raman π pulse.
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Figure 2.6: Optical pumping to the | ↓z〉 state: A laser beam resonant with
the 2S1/2|F = 1,mF = 0〉 → 2P1/2|F = 0,mF = 0〉 (the line used for detecting the
spin states, Fig. 2.4) is frequency modulated by a 2.105 GHz EOM. The first order
sideband couples the | ↑z〉 state to the 2P1/2|F = 1,mF = 0,±1〉 states, that can
spontaneously decay to the |↓z〉 state. The ion gets trapped in this state. Here the
solid black lines represent stimulated absorption of the detection laser beam by the
ion, and the red fuzzy lines show the spontaneous emission channels. We have only
shown the stimulated absorption and spontaneous emission channels responsible for
trapping the system in the dark state, and not shown any decay into the bright
states.

get a spin detection fidelity of ≈ 98.5% by a PMT, and about 93% by a CCD

imager. The reduced fidelity with the CCD imager is primarily due to the presence

of electronic noise on the CCD [91].

2.3.4 State initialization by optical pumping

The spin state of an ion is initialized in the |↓z〉 state by an incoherent optical

pumping technique. For this, we frequency modulate the beam on resonance with
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the 2S1/2|F = 1,mF = 0〉 ↔ 2P1/2|F = 0,mF = 0〉 transition by 2.105 GHz using

an EOM. The first order sideband generated by the EOM couples the 2S1/2|F =

1,mF = 0〉 state to the 2P1/2|F = 1,mF = 0,±1〉 states, which can decay into the

spin |↓z〉 state (Fig. 2.6). Once the atom is in the |↓z〉 state, the optical beam is off-

resonant from the 2P1/2 states by 12.643 GHz, and hence hardly scatters, and gets

trapped in that state. The probability of trapping into this dark state increases with

number of scattering events, and eventually almost all the population is transfered

to the spin | ↓z〉 state. In our set up, the optical pumping efficiency is more than

99% for a 3 µs optical pumping time.

2.3.5 Coherent manipulation of the spin states

Once the pure state | ↓z〉 is prepared using spontaneous emission induced

optical pumping, it can be coherently manipulated either with microwave magnetic

fields or with two photon laser induced stimulated Raman coupling. Microwave

radiation couples to the magnetic dipole moment matrix element between two states,

and induces coherent Rabi oscillations between them. While microwave radiation

has been used to perform quantum information experiments in 171Yb+ , it is not

ideal for quantum simulation of spin models, as the spin interactions are mediated

by the phonon modes, and the microwave field does not have sufficient momentum

to excite the vibrational modes of an ion chain.

We use stimulated Raman transition induced by optical fields for coherent

manipulation of spins. The laser field couples the spin states to an excited state
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Figure 2.7: Two photon stimulated Raman transition in a Λ−system: Two
laser beams with frequencies ωLa and ωLb off-resonantly couple the low lying energy
states |a〉 and |b〉 to the excited state |e〉, with single photon Rabi frequencies g
(defined in the text). If the system initially is in one of the states |a〉 or |b〉, and
the detuning ∆ from the excited state is much larger than the Rabi frequency g,
this system can be approximated as a two level system, with coherent Rabi flopping
between the states |a〉 and |b〉 at a rate Ω = g∗g/2∆.

(2P1/2 states). In order to understand the physics of two photon stimulated Raman

transition, let’s consider a Λ−system, shown in Fig. 2.7. The low lying energy states

|a〉 and |b〉 with energies ~ωa and ~ωb respectively are coupled to the excited state

|e〉 via the two continuous wave (CW) laser fields at frequencies ωLa and ωLb , that

are detuned from the excited states by a frequency ∆.
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We define,

ωea ≡ ωe − ωa (2.9a)

ωeb ≡ ωe − ωb (2.9b)

ωba ≡ ωb − ωa (2.9c)

From Fig. 2.7, we get the relation between the frequencies,

ωea − ωLa = ∆ (2.10a)

ωea − ωLb = ∆ + δω (2.10b)

ωeb − ωLa = ∆− ωba (2.10c)

ωeb − ωLb = ∆ + δω − ωba. (2.10d)

In the absence of the coupling fields, the atomic Hamiltonian (~ = 1) is,

H0 = ωa|a〉〈a|+ ωb|b〉〈b|+ ωe|e〉〈e|. (2.11)

Let us assume that the wavefunction at time t,

ψ(t) = Ca(t)|a〉+ Cb(t)|b〉+ Ce(t)|e〉. (2.12)

Schrödinger’s equation i∂ψ
∂t

= H0ψ gives us,

Cα(t) = Cα(0)e−iωαt (α = a, b, e) (2.13)
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where the coefficients Cα(0) are integration constants obtained from the initial con-

ditions. The interaction Hamiltonian between the laser field and the atom is [92],

HI = −µ · E(t)

= −
[
µae|a〉〈e|+ µea|e〉〈a|+ µbe|b〉〈e|

+µeb|e〉〈b|
]
E0

[
cos(ωLa t) + cos(ωLb t)

]
. (2.14)

Here E(t) is the total electric field. Both the laser fields are assumed to have the

same electric field amplitude, E0. We ignore the spatially varying term (kX) and

the off-set in the phases of the electric fields for now, and treat the problem in one

dimension. Here µ is the dipole moment of the atom, with the matrix elements,

µae = 〈a|µ|e〉 (2.15a)

µbe = 〈b|µ|e〉 (2.15b)

µea = µ∗ae = 〈e|µ|a〉 (2.15c)

µeb = µ∗be = 〈e|µ|b〉. (2.15d)

We get the relations connecting Ca(t), Cb(t) and Ce(t) in Eq. (2.12) by equating

the coefficients of |α〉 (α = a, b, e) on both sides of the Schrödinger’s equation,
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i∂ψ(t)
∂t

= (H0 +HI)ψ(t) to each other,

iĊa(t) = ωaCa(t)− gCe(t)
[

cos(ωLa t) + cos(ωLb t+ φ)
]

(2.16a)

iĊb(t) = ωbCb(t)− gCe(t)
[

cos(ωLa t) + cos(ωLb t+ φ)
]

(2.16b)

iĊe(t) = ωeCe(t)− g∗
[
Ca(t) + Cb(t)

][
cos(ωLa t) + cos(ωLb t+ φ)

]
, (2.16c)

where the single photon Rabi frequency, g = µaeE0 = µbeE0, assuming µae = µbe. We

want to see how the interaction Hamiltonian modifies Eqs. (2.13). Thus, we define

the slowly varying amplitudes C̃a(t), C̃b(t) and C̃e(t) through the equations

Cα(t) ≡ C̃α(t)e−iωαt (α = a, b, e). (2.17)

Note that for HI = 0, C̃α(t) = Cα(0) (α = a, b, e).

We use Eqs. (2.17) in Eqs. (2.16), expand the cosine terms to get the relations

between C̃a(t), C̃b(t) and C̃e(t),

i ˙̃Ca(t) =
g

2
C̃e(t)e

−iωeat
[
eiω

L
a t + e−iω

L
a t + eiω

L
b t + e−iω

L
b t
]

(2.18a)

i ˙̃Cb(t) =
g

2
C̃e(t)e

−iωebt
[
eiω

L
a t + e−iω

L
a t + eiω

L
b t + e−iω

L
b t
]

(2.18b)

i ˙̃Ce(t) =
g∗

2

[
C̃a(t)e

iωeat + C̃b(t)e
iωebt

] [
eiω

L
a t + e−iω

L
a t + eiω

L
b t + e−iω

L
b t
]
. (2.18c)

Next, we make a rotating wave approximation (RWA), where we ignore fast

oscillating terms in the exponentials, by neglecting exponents that involve a sum

of two large (optical) frequencies. Using Eqs. (2.10) in Eqs. (2.18), we get, after
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Figure 2.8: Adiabatic elimination of the excited state: Solution of Eqs. (2.19)
for a. ∆ = 5|g|, b. ∆ = 10|g|, c. ∆ = 20|g| d. ∆ = 100|g|. The red curve shows
the probability that the system will be in state |a〉 at time t, Pa(t) = |C̃a(t)|2 =
|Ca(t)|2, similarly the blue and the black curves show Pb(t) and Pe(t). The curves are
obtained by numerically solving the differential equations (Eqs. (2.19)) by Wolfram
Mathematica, with the initial conditions C̃a(0) = 1, C̃b(0) = 0, C̃e(0) = 0. The
frequency splitting ωba between the states |a〉 and |b〉 is assumed to be very small
compared to g and ∆. As the detuning ∆ is increased compared to the single photon
Rabi frequency g, the three level Λ−system behaves more like a two level system,
composed of the low lying states |a〉 and |b〉.
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RWA,

i ˙̃Ca(t) =
g

2
C̃e(t)

[
e−i∆t + e−i(∆+δω)t

]
(2.19a)

i ˙̃Cb(t) =
g

2
C̃e(t)

[
e−i(∆−ωba)t + e−i(∆−ωba+δω)t

]
(2.19b)

i ˙̃Ce(t) =
g∗

2

[
C̃a(t)

[
ei∆t + ei(∆+δω)t

]
+ C̃b(t)

[
ei(∆−ωba)t + ei(∆−ωba+δω)t

]]
(2.19c)

These coupled differential equations can be numerically solved on a computer.

Fig 2.8 shows the time evolution of the co-efficients |C̃α(t)|2 (α = a, b, e) for four

different ratios of ∆/|g| (we set ωba = δω = 0 in this calculations), with the initial

conditions, C̃a(0) = 1, C̃b(0) = 0, C̃e(0) = 0.

• Adiabatic elimination of the excited state - Since the sates |a〉 and

|b〉 are not connected directly by a field, we expect the coefficients C̃a(t) and C̃b(t)

to vary much more slowly compared to the exponentials in Eq. (2.19c) (∆ � |g|).
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Thus we integrate Eq. (2.19c), keeping C̃a(t) and C̃b(t) constant,

C̃e(t) ≈ − i
2
g∗

[
C̃a(t)

[ ∫ t

0

ei∆tdt+

∫ t

0

ei(∆+δω)tdt
]

+ C̃b(t)
[ ∫ t

0

ei(∆−ωba)tdt+

∫ t

0

ei(∆−ωba+δω)tdt
]]

= − i
2
g∗

[
C̃a(t)

[ei∆t − 1

∆
+
ei(∆+δω)t − 1

∆ + δω

]
+ C̃b(t)

[ei(∆−ωba)t − 1

∆− ωba
+
ei(∆−ωba+δω)t − 1

∆− ωba + δω

]]

≈ − g∗

2∆

[
C̃a(t)

[
ei∆t + ei(∆+δω)t − 2

]
+ C̃b(t)

[
ei(∆−ωba)t + ei(∆−ωba+δω)t − 2

]]
. (2.20)

In the last line, we have approximated all the denominators by ∆, as ∆� ωba, δω.

Using Eq. (2.20) in Eq. (2.19a), we get,

˙̃Ca(t) = i
|g|2

4∆

[
e−i∆t + e−i(∆+δω)t

] [
C̃a(t)

[
ei∆t + ei(∆+δω)t − 2

]
+ C̃b(t)

[
ei(∆−ωba)t + ei(∆−ωba+δω)t − 2

]]

= i
|g|2

4∆

[
C̃a(t)

[
2 + eiδωt + e−iδωt − 2e−i∆t − 2e−i(∆+δω)t

]
+ C̃b(t)

[
2e−iωbat + e−i(ωba−δω)t + e−i(ωba+δω)t − 2e−i∆t − 2e−i(∆+δω)t

]]

≈ i
|g|2

4∆

[
C̃a(t)

[
2 + eiδωt + e−iδωt

]
+ C̃b(t)

[
2e−iωbat + e−i(ωba−δω)t + e−i(ωba+δω)t

]]
, (2.21)
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where we have thrown out the fast oscillating terms e−i∆t and e−i(∆+δω)t, as they

average out to zero over a time period of oscillations of the other terms. Eq. (2.21)

involves only the two states |a〉 and |b〉 and looks similar to Eq. (2.16a). We can

further apply RWA to Eq. (2.21), and ignore terms that are oscillating at ωba and

δω. This is a good approximation for the hyperfine transition between the 171Yb+

| ↑z〉 and | ↓z〉 states, as ωba = ωhf ≈ δω = 2π×12.6 GHz, and |g|2/2∆ ≈ 2π× 1

MHz. Thus Eq. (2.21) becomes,

˙̃Ca(t) ≈ i
|g|2

2∆
C̃a(t) + i

1

2

|g|2

2∆
C̃b(t)e

−i(ωba−δω)t. (2.22)

Similarly the coefficient for |b〉 obeys the equation,

˙̃Cb(t) ≈ i
|g|2

2∆
C̃b(t) + i

1

2

|g|2

2∆
C̃a(t)e

i(ωba−δω)t. (2.23)

Eqs. (2.22) and (2.23) describe the dynamics of the two level system composed of

the states |a〉 and |b〉 under the effective Hamiltonian,

Heff = −|g|
2

2∆
|a〉〈a| − |g|

2

2∆
|b〉〈b| − |g|

2

4∆
e−i(∆k·r+[ωba−δω]t−φ)|a〉〈b|

−|g|
2

4∆
ei(∆k·r+[ωba−δω]t−φ)|b〉〈a|

= −|g|
2

2∆
I− Ω

2
e−i(∆k·r+[ωba−δω]t−φ)σ− − Ω

2
ei(∆k·r+[ωba−δω]t−φ)σ+. (2.24)

Now, we have inserted the spatial dependence and an offset phase φ in the phases.

Here, ∆k is the difference in momenta of the laser beams, and r is the atom’s
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position vector. σ+ = |b〉〈a| and σ− = |a〉〈b| are the atomic raising and lowering

operators.

In the last line of Eq. (2.24), we identify the two photon A.C. Stark shift of

each of the states |a〉 and |b〉 as −|g|2/2∆ (−|g|2/4∆ from each of the beams), and

the two photon Rabi oscillation strength as Ω = |g|2/2∆. For lasers with unequal

intensities, and hence unequal single photon Rabi frequencies g1 and g2, the two

photon Rabi frequency Ω =
g∗1g2

4∆
+

g1g∗2
4∆

.

• The differential A.C. Stark shift - The A.C. Stark shift Eq. (2.24) is

negative as the detuning is negative in Fig. 2.7 (we use ∆ to denote the absolute

value here.) Note that the differential A.C. Stark shift between the states |a〉 and

|b〉 cancels to the leading order in 1/∆. This is due to approximating all the denom-

inators in the second sub-equation of Eq. (2.20) as ∆. The leading non-zero order

in the differential A.C. Stark shift between the two states can be found by treating

the beams separately. The two photon A.C. Stark shift on state |α〉 (α = a, b)

measures the strength of |α〉 → |e〉 → |α〉 transition, where the intermediate state

|e〉 is only virtually excited, since ∆� |g|. The A.C. Stark shift experienced by the

state |a〉 from the beam with frequency ωLa is Ωa = −|g|2/4∆, and the A.C. Stark

shift experienced by the state |b〉 from the same beam is Ωb = −|g|2/4(∆ − ωba).
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The differential A.C. Stark shift

ΩAC = Ωb − Ωa

= − |g|2

4(∆− ωba)
+
|g|2

4∆

= −|g|
2

4∆

[
1

1− ωba/∆
− 1

]
= −|g|

2

2∆

[(
1 +

ωba
∆
− 1
)]

= −ωba
|g|2

4

1

∆2
. (2.25)

Note that

• ΩAC < 0, i.e., the states |a〉 and |b〉 get closer together while interacting with

the beams.

• ΩAC ∝ |g|2 ∝ I, where I is the intensity of the beam.

• ΩAC ∝ 1
∆2 , while the two photon Rabi frequency Ω ∝ 1

∆
. Thus the ratio

of the differential A.C. Stark shift to the Rabi frequency can be reduced by

increasing the detuning ∆.

• The two photon differential A.C. Stark shift, ΩAC is independent of the sign of

the detuning ∆, as ΩAC ∝ 1
∆2 . As an example, we can show that for ωLa > ωea

(Fig. 2.7), the differential A.C. Stark shift ΩAC = |g|2
∆+ωba

− |g|
2

∆
< 0, same as

when ωLa < ωea. Thus, the differential A.C. Stark shift from different levels do

not cancel each other.

The differential A.C. Stark shift can be nulled by going to a rotating frame
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at frequency ΩAC , which means that we adjust the beat-note frequency of the two

lasers to account for the shift in the |a〉 ↔ |b〉 resonance due to the Stark shift.

• Hyperfine carrier transition - In our experiment, the states |a〉 and |b〉

refer to the spin states | ↓z〉 and | ↑z〉 respectively, and hence ωba = ωhf is the

hyperfine splitting. (we assume that we have already accounted for the differential

A.C. Stark shift in defining ωhf ). For the resonant (or near resonant) hyperfine

transition, the motional state of the ion is unchanged. Thus ∆k·r in the phase in Eq.

(2.24) is a constant c-number, and can be absorbed in φ. Setting dw = ωhf + δcarr,

we get the effective Hamiltonian for the spin flip, or the carrier transition,

Hcarr = −Ω

2

(
σ+e−i(δcarrt+φ) + σ−ei(δcarrt+φ)

)
, [Carrier] (2.26)

For δcarr = 0, Eq. (2.26) generates the resonant carrier transition between the

spin states, at a Rabi rate of Ω. The phase φ sets the ‘axis of rotation’ of the spin

vector.

Hcarr = −Ω

2

(
σ+e−iφ + σ−eiφ

)
= −Ω

2

(
1

2
[σx + iσy]e

−iφ +
1

2
[σx − iσy]eiφ

)
= −Ω

2

(
σx

[
eiφ + e−iφ

2

]
− iσy

[
eiφ − e−iφ

2

])
= −Ω

2
(σx cosφ+ σy sinφ)

= −Ω

2
σφ, (2.27)

where σφ ≡ cosφ σx + sinφ σy. Thus the effective Hamiltonian is −Ω
2
σx for φ = 0
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and −Ω
2
σy for φ = π/2. The unitary evolution operator of this Hamiltonian acts on

the spin state |↓z〉 according to

U(t)|↓z〉 = e−iHcarrt|↓z〉

= ei
Ωt
2
σφ|↓z〉

=

(
cos

Ωt

2
I + i sin

Ωt

2
σφ

)
|↓z〉

= cos
Ωt

2
|↓z〉+ ieiφ sin

Ωt

2
|↑z〉. (2.28)

The spin state precesses between |↓z〉 and |↑z〉 at a rate Ω/2, with a phase φ. Note

that the population precesses at a rate of Ω, as the probability of detecting | ↑z〉 at

time t is P↑z(t) = sin2 Ωt/2 = (1− sin Ωt)/2.

• The Bloch Sphere - The state of a two level system can be represented

as a vector, called the Bloch vector moving on the surface of a sphere, known as

the Bloch sphere. Two angles (θ, φ) completely specify a general state |ψ(θ, φ)〉 =

cos θ
2
|↓z〉+ ieiφ sin θ

2
|↑z〉 of the two level system. The action of the unitary operator

U(t) on the Bloch vector is specified in terms of the rotation operator R(θ, φ) =

e−i
θ
2
σφ = cos θ

2
I− i sin θ

2
σφ. For a resonant carrier transition θ(t) = Ωt.

• π/2 pulse - A resonant Raman carrier transition of duration τπ/2 is known

as a π/2 pulse if

θ(τπ/2) = π/2

⇒ τπ/2 =
π

2Ω
. (2.29)
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Under a π/2 pulse, the state | ↓z〉transforms to | ↓z〉 − ieiφ| ↑z〉, and the state | ↑z〉

transforms to |↑z〉 − ieiφ|↑z〉.

• π pulse - A Raman carrier pulse of duration τπ = π/Ω is known as a π

pulse. It flips the spin states, |↓z〉 → −ieiφ|↑z〉, |↑z〉 → −ieiφ|↓z〉.

• Effective magnetic field - From Eq. (2.28), we see that a Bloch vector

precesses about the axis set by the Bloch vector angle φ under a resonant carrier

transition. Thus the resonant transition simulates an effective magnetic field, and

the phase φ sets the direction of it. In our experiment, we control the carrier

Rabi frequency Ω (by varying the intensity or |g|2) to control the magnitude of this

effective field.

In our trapped 171Yb+ system, the spin states | ↑z〉 and | ↓z〉 are coupled

through the excited 2P1/2 and 2P3/2 states. We create the beat-note at δω = ωhf by

sending a CW laser beam through an electro optic modulator (EOM) that generates

frequency modulated sidebands near ωhf . Another way is to use the frequency comb

generated by a mode-locked laser. We describe the operation of the mode-locked

laser used in our experiment in section 2.6.4. Typical order of magnitude for the

single photon Rabi frequency, g/2π in our experiment is 1 GHz, and the detuning

∆/2π from the excited 2P1/2 states range from 2.7 THz to 33 THz for two different

lasers used. Fig 2.9 shows Rabi oscillation between the two spin states.

• Ramsey interferometry - The coherence time of the spin states is es-

timated by a standard Ramsey interferometric technique. A single spin is first

prepared in the optically pumped state | ↓z〉. Then a π/2 pulse is applied with

a phase φ, either by a microwave or by the stimulated carrier Raman transition
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Figure 2.9: Resonant hyperfine (Carrier) Rabi oscillations in 171Yb+ spin
states: Two level Rabi oscillation between the spin |↑z〉 and |↓z〉 states of a single
spin induced by two photon stimulated Raman transition from 355 nm laser light.
The blue curve is a sinusoidal fit to the data (blue points), and its frequency is about
2π × 1 MHz. The spin is first prepared in the optically pumped | ↓z〉 state. Each
point is an average over about 200 experimental points.
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Figure 2.10: Ramsey interferometry in a 171Yb+ ion: The oscillation in the
probability of the spin states at the frequency difference between the oscillator driv-
ing the π/2 pulses and the atomic transition frequency denotes the coherence present
in the spin states or the qubits. The π/2 pulses are provided by microwave radiation
from a microwave horn antenna at 12.642819 GHz. The dots are data, and the solid
line is a sinusoid fit with an exponential decay in amplitude. The decoherence time
is estimated to be more than 800 ms from this data.
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at frequency ωosc, followed by a delay. Finally another π/2 pulse is applied from

the same oscillator, and at the same phase, and the spin state is detected. This

method compares the two clocks, namely the hyperfine splitting of the ion, and the

oscillator used to drive the π/2 pulses. As the duration of the delay is scanned, a

fringe is obtained in the observed probability of the bright state (|↑z〉) at frequency

|ωosc − ωhf |, where ωhf is the hyperfine frequency. Fig 2.10 shows the experimental

sequence and a typical Ramsey fringe data in the experiment.

• Coupling to the motional states - The carrier transition flips the spin

from |↓z, n〉 to the |↑z, n〉 state (n represents the number of vibrational quanta in a

given mode), and does not change the phonon excitations in the system. To excite

the vibrational mode at frequency ωX along with the spin flip (we assume that the

Raman beat-note momentum ∆k is along the X−direction), we set the detuning

δω in Eq. (2.24) to δω = ωhf + ωX + δ. We assume that the temperature of the ion

is cold enough so that the motion can be expressed in terms of the vibrational mode

phonon annihilation (â) and the creation (â†) operators, and the position coordinate

X(t) can be written as,

X̂(t) = X0

(
âe−iωX t + â†eiωX t

)
. (2.30)

X0 =
√

~
2mωX

is the characteristic length scale of the motional mode.

Thus the effective Hamiltonian of Eq. (2.24), ignoring the constant A.C. Stark
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Figure 2.11: Carrier and sideband transitions: The harmonic oscillator energy
ladder with the spin states (not to scale). A carrier transition induces coherent
oscillation between the spin states without any change in the motional state, a blue
sideband transition is higher in energy than a carrier transition, and involves the
| ↓z, n〉 ↔ | ↑z, n + 1〉 transition. The red sideband transition transition is lower
in energy than the carrier, and induces coherent oscillation between | ↓z, n〉 ↔ | ↑z
, n− 1〉.

shift becomes,

Hbsb = −Ω

2
e−i(∆k·r+[ωba−δω]t−φ)σ− − Ω

2
ei(∆k.r+[ωba−δω]t−φ)σ+

= −Ω

2
e−i(∆kX0[ae−iωXt+a†eiωXt]−[ωX+δ]t−φ)σ−

−Ω

2
ei(∆kX0[ae−iωXt+a†eiωXt]−[ωX+δ]t−φ)σ+

≈ −Ω

2

[
1− iη[ae−iωX t + a†eiωX t]

]
ei[(ωX+δ)t+φ] σ−

−Ω

2

[
1 + iη[ae−iωX t + a†eiωX t]

]
e−i[(ωX+δ)t+φ] σ+

≈ i
ηΩ

2

[
aσ− ei(δt+φ) − a†σ+ e−i(δt+φ)

]
, [blue side band] (2.31)

where we have expanded the exponential up to first order in the dimensionless
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Lamb-Dicke parameter η ≡ ∆kX0 � 1 in the third line∗, and used the RWA to

throw away terms rotating at or near ωX in the last line. Hbsb makes the transition

| ↓z, n〉 ↔ | ↑z, n + 1〉, which is higher in energy than the carrier transition. For

δ = 0, this results in a resonant stimulated Raman blue sideband transition.

Similarly, if we set the beat-note between the lasers δω = ωhf − ωX − δ, we

get a stimulated Raman red sideband transition, with the effective Hamiltonian,

Hrsb = i
ηΩ

2

[
a†σ− e−i(δt−φ) − aσ+ ei(δt−φ)

]
, [red side band] (2.32)

We see that the transition strength between the states | ↓z, n− 1〉 and | ↑z, n〉

is ηΩ
√
n, where the factor of

√
n is contributed by the creation operator (â†|n −

1〉 =
√
n|n〉). Fig 2.11 illustrates the carrier, red sideband and the blue sideband

processes.

2.3.6 Raman sideband cooling

Doppler cooling brings the average phonon occupation to n̄ = Γ
2ωm

, where Γ is

the natural linewidth of the cooling transition. The ions can be further cooled by

mapping the motional degree of freedom to the spins, and then removing the spin

entropy from the system by the optical pumping technique, described previously.

Fig 2.12 describes the Raman cooling scheme. Let us assume that a single ion is

in the Fock state | ↓z, n〉. We apply a red sideband π pulse, which annihilates a

∗More rigorously, the exponential can be expanded if 〈∆kX〉 is small. This is equivalent to the
Lamb-Dicke approximation η

√
n+ 1� 1. In our system η ≈ 0.06 and average phonon occupation

is < 3 after the Doppler cooling, and < 0.1 after side band cooling (the X−vibrational mode).
Thus the Lamb-Dicke approximation holds good.
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Figure 2.12: Raman sideband cooling: The spin system is initialized in the
optical pumped state, i.e., in the spin state | ↓z, n〉, where n denotes the motional
state of a vibrational mode with frequency ωm. A red sideband π pulse (solid red
arrow) transfers the spin to the | ↑z, n − 1〉 state, and annihilates a phonon. This
is followed by an optical pumping pulse (gray fuzzy line), which flips the spin back
to the |↓z〉 state. This process is repeated, and the system rolls down the harmonic
oscillator ladder, until it reaches n = 0.

phonon, while flipping the spin, i.e., it takes the system to the state | ↑z, n − 1〉.

We then optically pump the spin to |↓z, n− 1〉 state without changing the motional

state, and thus extract a quantum of vibration from the system. This process can

be repeated to reach the motional ground state. Since the strength of the sideband

Rabi frequency depends on the motional state, the duration of the π pulse has to

be adjusted accordingly. In our set up, we apply about 30 pulses to cool the COM

mode to near zero point motion.

2.4 Vibrational normal modes of trapped ions

The confining potential created by the static and ponderomotive electric forces

try to bring the ions closer together at the trap center. The Coulomb repulsion
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Figure 2.13: Image of ten bright 171Yb+ ions in a linear configuration: Fluo-
rescence light of ten 171Yb+ ions, induced by the Doppler cooling beam, is captured
by the imaging optics, and the signal is integrated for about 200 ms on a CCD cam-
era. The ions form a linear configuration due to the high anisotropy in the trapping
potential. The plus sign in the middle of the chain is a cursor used on the camera
interface.

between the ions tend to push them away from each other. A compromise between

the attractive and the repulsive components is reached when the ions are at a certain

distance apart from each other, and they form a Coulomb crystal. In order to avoid

micromotion, we make the trap anisotropic with ωX ≈ ωY � ωZ , so that the ions

form a linear crystal along the Z−axis, and lie on the radio-frequency null in the

trap.

Figure 2.13 shows a crystal of ten 171Yb+ ions held in a linear configuration.

The spacing between the ions in a crystal depend on the axial confinement strength

(characterized by the secular frequency, ωZ) and the number of ions, and varies

between 2 and 5 microns for the range of trap settings used in our experiments.

A small perturbation from the equilibrium positions of the ions makes them

oscillate about the equilibrium. In general the ions oscillate in complicated patterns,

but any oscillation of the system (with small amplitudes) can be Fourier decomposed

into collective vibrational modes, known as the normal modes of vibration [93]. For
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a system of N ions, there are N normal modes along each of the three dimensions.

The nature of the axial and the transverse normal modes are very different in a

Coulomb crystal.

• Axial Normal modes - The axial normal modes are lower in frequency

compared to the transverse modes, due to the anisotropy in the trapping potential

required to keep the ions in a linear configuration. The lowest mode is the center of

mass (COM) mode, at a frequency of ωZ independent of the number of ions N . All

the ions move back and forth uniformly in this mode, with an eigenvector component

of 1/
√
N for all the ions. The COM mode has the longest spatial wavelength.

The next mode is the ‘breathing’ mode, with a frequency of
√

3ωZ independent

of the number of ions, N . The frequencies of the axial normal modes increase

monotonically with decreasing wavelength.

• Transverse Normal modes - The transverse normal modes are higher in

frequency due to stronger confinement along the transverse direction, and bunched

closer together compared to the axial modes. Contrary to the axial vibrational

motion, the transverse COM modes (at frequencies ωX and ωY for all N) have the

highest frequencies among all the modes along that specific transverse direction. In

our trap, the X−modes are slightly higher in frequency than the Y−modes, and

the splitting between the X and Y−COM modes depends on the axial confinement.

For a stronger axial confinement, the X and Y−COM modes are separated more.

The next lower frequency mode is the ‘tilt’ mode, where the two halves of the chain

oscillate with opposite phases, and the amplitude of vibration increases away from
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Figure 2.14: Axial and transverse vibrational modes of trapped ions: Fre-
quencies of the Axial and the transverse modes (along the X−direction) of N = 10
trapped ions, for a trap anisotropy of βX = 10. Each solid line represents a normal
mode at frequency νm. The horizontal axis shows the ratio of the mode frequencies
to the axial COM frequency. The Axial modes (black) are almost equispaced, but
the transverse modes (red) are not. They are closely bunched together at the high
frequencies. The axial COM mode is the lowest in frequency of all the axial modes,
while the transverse COM mode is the highest in frequency of all the transverse
modes.
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the center of the chain. This mode occurs at a frequency of

ωtilt =
√
ω2
X − ω2

Z (2.33)

for all N . For an odd system size, the center ion does not take part in this mode.

As we shall discuss later, the spin interactions in our simulated Ising Hamiltonian

are mediated by the phonons [71], and the center spin does not interact with any

other spin if only the tilt mode is used to generate the interactions in a system

with odd number of ions. The frequencies of the transverse normal modes decrease

monotonically with decreasing wavelength, and hence the transverse modes show

anomalous dispersion.

As seen from Eq. (2.33), the splitting between the COM and the tilt modes

is dependent on the axial confinement. In general the bandwidth of the transverse

modes increases with increasing axial confinement. Fig 2.14 compares the axial

and the X−transverse modes for an anisotropy βX = 10. While the neighboring

axial modes maintain an almost fixed separation in frequency, the transverse modes

are bunched together, especially at the higher frequencies. Figure 2.15 shows the

eigenvectors of the transverse normal modes for a system of 10 ions.

• Transition to a zig-zag configuration - As the anisotropy in the trap-

ping potential, defined by the dimensionless parameters, βX = ωX
ωZ

and βY = ωY
ωZ

is decreased, by increasing the axial confinement strength keeping the transverse

confinement fixed, the ions come closer to each other, and the bandwidth of the

transverse vibrational modes increases.
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Figure 2.15: Transverse mode eigenvectors for N = 10 ions: The dots repre-
sent the equilibrium position of the ions, and the arrows represent the eigenvector
components for the mode (enumerated on the left). The simulated Ising coupling
between spins i and j depend on the product of the eigenvector components of the
normal mode(s) excited to generate the spin interactions, according to Eq. (2.53).
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Figure 2.16: Nineteen ions in a zig-zag configuration: The ion chain undergoes
a structural phase transition from a linear configuration to a zig-zag configuration at
a certain trap anisotropy. The central region of the chain undergoes this transition
before the outer region. The 8th ion from the left is either another isotope of Yb+

or another species, and hence it does not fluoresce from the cooling and detection
beams. The low fluoresce count from the rightmost ion is due to the finite aperture
size of a pinhole used in the imaging system. This configuration of the ions is equal
in energy to its spatially reflected (about the Z−axis of the chain) configuration.
These two configurations are referred to as the ‘zig’ and the ‘zag’ configurations.

Eventually, the frequency of the smallest wavelength mode, the zig-zag vi-

brational mode reaches zero and the ion chain undergoes a structural phase tran-

sition to a zig-zag configuration [94, 95]. This structural phase transition oc-

curs at approximately βX,Y =
ωX,Y
ωZ

= 0.73N0.86, as found numerically [96]. For

a large system (N � 1), the transition point can be found analytically [95] as

βX,Y =
ωX,Y
ωZ

= 0.77 N√
logN

. Ions near the center of the chain are closely packed

together compared to the ions near the edge, and these central ions break into the

zig-zag configuration before the others. In our trap the Y vibrational modes are

slightly lower in frequencies than the respective X vibrational modes, and hence the

zig-zag transition occurs in the Y−direction first, as the axial confinement strength

is tuned keeping the transverse frequencies the same. For slightly tighter confine-

ment along the axial direction, the X zig-zag mode reaches zero frequency as well, as

the ions form a helix in the X−Y plain. The zig-zag vibrational mode must not be
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confused with the zig-zag configuration, the former is a pattern of vibration where

the equilibrium positions of the ions are still on a one dimensional chain, while in

the latter the equilibrium position of the ions form a zig-zag configuration resulting

in an entirely new set of vibrational modes.

In the zig-zag phase, there are two degenerate configurations for the ions, the

‘zig’ and the ‘zag’ configurations forming a double well potential. This opens up the

possibility of observing many interesting physical phenomena, such as simulating

non-linear lattice models, the defect formation while traversing a phase transition

(Kibble-Zurek mechanism [97, 98]), and coherent tunneling between the two wells

in the double well potential [99].

2.5 Simulating the quantum Ising model

In this work, we simulate the quantum Ising model, with the Hamiltonian,

H =
N∑
i=1

i−1∑
j=1

Ji,jσ
i
xσ

j
x +B

N∑
i=1

σiy, (2.34)

where Ji,j is the Ising coupling between the spins i and j (i, j = 1, 2, ..., N), B

is an effective transverse magnetic field, and σα’s are the spin-1
2

Pauli matrices

(α = x, y, z). As described previously, a resonant carrier transition between the

spin states | ↑z〉 and | ↓z〉 with a phase φ = π/2 in Eq. (2.26) acts as an effective

transverse magnetic field. In this section we describe the simulation of the Ising

interactions.
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2.5.1 Ising interactions

The ising interactions are simulated by following Mølmer-Sørensen scheme [71],

where we apply Raman laser beams to excite the vibrational modes off-resonantly.

Figure 2.17 shows the schematics of a Mølmer-Sørensen transition, in the case of

two spins interacting through a single vibrational mode at frequency ωm = 2πνm.

Two laser beat-notes are applied, with their frequencies symmetrically detuned from

the carrier. We shall call these beat-notes bsb and rsb , tuned near a blue sideband

transition and a red sideband transition with frequencies νhf ± µ respectively. We

also define the Mølmer-Sørensen detuning δ ≡ µ− νm.

Let’s focus on the spin state | ↓z↓z, n〉. If it absorbs a rsb photon, it may

get off-resonantly excited to the state | ↑z↓z, n − 1〉 or | ↓z↑z, n − 1〉 with equal

probabilities. Since the frequencies of the rsb and the bsb add up to 2νhf , it may

make a transition to the |↑z↑z, n〉 by absorbing a bsb photon. If the Mølmer-Sørensen

detuning δ is kept larger than the sideband Rabi frequency ηΩ
√
n, the intermediate

single spin excited states can be adiabatically eliminated, and the amplitude of the

|↓z↓z, n〉 → |↑z↑z, n〉 transition is

Ω|↓z↓z ,n〉→|↑z↑z ,n〉, path 1 =
Ω|↓z↓z ,n〉→|↑z↓z ,n−1〉Ω|↑z↓z ,n−1〉→|↑z↑z ,n〉

−4δ

=
(ηΩ
√
n)(ηΩ

√
n)

−4δ

= −n(ηΩ)2

4δ
. (2.35)

Here the minus sign denotes that the Raman beat-note is tuned red to the red
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Figure 2.17: Mølmer-Sørensen transition in a system of two spins: Off-
resonant red and blue sidebands, symmetrically detuned about the carrier transition
simulate the two body spin interactions in our experiment [71]. Here we show the
spin and the relevant motional states (labeled by the number of phonon n). The
red (blue) solid lines show an off-resonant red (blue) sideband transition. The four
different pathways connecting | ↓z↓z, n〉 → |↑z↑z, n〉 partially interfere destructively
to cancel the dependence on the phonon quantum number n, resulting in a pure
spin model in the Lamb-Dicke limit. The Raman beat-note frequency µ controls the
nature of the Ising couplings, as discussed in the text.
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sideband transition. This amplitude interferes with another path where the spins

first absorb a photon from the bsb beam, and then from the rsb beam, and makes

a transition to the |↑z↑z, n〉 state with an amplitude

Ω|↓z↓z ,n〉→|↑z↑z ,n〉, path 2 =
Ω|↓z↓z ,n〉→|↑z↓z ,n+1〉Ω|↑z↓z ,n+1〉→|↑z↑z ,n〉

4δ

=
(ηΩ
√
n+ 1)(ηΩ

√
n+ 1)

−4δ

= (n+ 1)
(ηΩ)2

4δ
. (2.36)

Thus the total amplitude from these two paths becomes,

Ωpath 1,2 =
(ηΩ)2(n+ 1)

4δ
− (ηΩ)2n

4δ
=

(ηΩ)2

4δ
. (2.37)

Similarly there are two more paths where the second spin absorbs the rsb and the

bsb photons first, and they add an equal contribution as Ωpath 1,2 to the overall Ising

amplitude. From Eq. (2.37) we see that the amplitude of the | ↓z↓z, n〉 → |↑z↑z, n〉

is independent of the motional state n, as long as the intermediate states with n−1

and n+ 1 photons are not populated, resulting in a pure spin Hamiltonian,

HIsing,eff = J1,2σ
1
φσ

2
φ, (2.38)

where J1,2 = (ηΩ)2/2δ is the total amplitude from the interference of all the paths,

and is the Ising coupling between the two spins. Here σφ = cosφσx + sinφσy, and

hence by properly choosing φ by adjusting the beat-note phase of the Raman beams,
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we generate a σxσx interaction between the spins.

If we include the off-resonant excitation of the blue sideband from the rsb

beam and the off-resonant excitation of the red sideband from the bsb beams, the

effective Ising coupling Ji,j becomes,

Ji,j =
(ηΩ)2

2(µ− ωm)
− (ηΩ)2

2(µ+ ωm)

=
(ηΩ)2ωm
µ2 − ω2

m

. (2.39)

Contribution from off-resonant carrier transitions from the bsb and the rsb beams

cancel between path 1 and path 2.

•Alternative derivation - We may get the effective Ising Hamiltonian start-

ing from the effective Hamiltonians for the red sideband and the blue sideband, Eqs.

(2.32) and (2.31). We shall get an expression for the effective Hamiltonian for N

spins, subject to a red sideband beat-note at a frequency ωhf − µ with a phase

φ = φr and a blue sideband beat-note at ωhf + µ with a phase φ = φb. Let the

normal mode frequencies for the N ions along the transverse direction that couples

to the Raman beat-note wave vector ∆k be ωm (m = 1, 2, ..., N). Analogous to the

single ion case, we expand the position coordinate of each ion into normal mode

coordinate, âm and â†m. Thus

∆k.x̂i =
∑
m

ηi,m

(
âme

−iωmt + â†me
iωmt
)
, (2.40)
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where the Lamb-Dicke parameters are now defined as,

ηi,m = bi,m∆k

√
~

2mωm
. (2.41)

Here bi,m are the normal mode eigenvector components between ion i and mode m.

We define Mølmer-Sørensen detunings,

δm ≡ µ− ωm. (2.42)

Thus the effective Hamiltonian, using Eqs. (2.32) and (2.31), is

Heff = Hbsb +Hrsb

= i
N∑
i=1

N∑
m=1

ηi,mΩi

2

[
amσ

−
i e

i(δmt+φb) − a†mσ+
i e
−i(δmt+φb)

+a†mσ
−
i e
−i(δmt−φr) − amσ+

i e
i(δmt−φr)

]
=

N∑
i=1

N∑
m=1

ηi,mΩi

2

[
ame

iδmteiφM + a†me
−iδmte−iφM

]
σiφs , (2.43)

where the motional phase φM ≡ φb−φr
2

and the spin phase φs ≡ π
2

+ φb+φr
2

. The spin

operator σiφs = cosφs σ
i
x + sinφs σ

i
y.

We set φr = 0, φb = π, then φM = π/2 and φs = π, and the effective

Hamiltonian involves σiφs = −σix.

Heff = −i
N∑
i=1

N∑
m=1

ηi,mΩi

2

[
ame

iδmt − a†me−iδmt
]
σix. (2.44)

The time evolution operator for this Hamiltonian, using the second-order Magnus
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formula, is

U(t, 0) = T̂ e−i
∫ t
0 dt1Heff (t1)

= e−i
∫ t
0 dt1Heff−

1
2

∫ t
0 dt2

∫ t2
0 dt1[Heff (t2),Heff (t1)] + ... (2.45)∫ t

0

dt1Heff = −i
∫ t

0

dt1

N∑
i=1

N∑
m=1

ηi,mΩi

2

[
ame

iδmt1 − a†me−iδmt1
]
σix

= −i
N∑
i=1

N∑
m=1

ηi,mΩi

2

[
am(eiδmt − 1)

iδ
+
a†m(e−iδmt − 1)

iδ

]
σix

= −i
N∑
i=1

N∑
m=1

ηi,mΩi

δm
sin

[
δmt

2

] [
ame

iδmt/2 − a†me−iδmt/2
]
σix.(2.46)

And,

∫ t

0

dt2

∫ t2

0

dt1[Heff (t2), Heff (t1)]

=
N∑
i,j
j<i

N∑
m=1

ηi,mηj,mΩiΩj

4

∫ t

0

dt2

∫ t2

0

dt1

(
[am, a

†
m]eiδm(t2−t1)

+[a†m, am]e−iδm(t2−t1)
)

(2σixσ
j
x)

=
N∑
i,j
j<i

N∑
m=1

ηi,mηj,mΩiΩj

2∫ t

0

dt2

∫ t2

0

dt1
(
eiδm(t2−t1) − e−iδm(t2−t1)

)
σixσ

j
x

= i

N∑
i,j
j<i

N∑
m=1

ηi,mηj,m
δm

ΩiΩj

[
t− sin δmt

δm

]
σixσ

j
x. (2.47)

Here we have ignored the (σix)
2 terms in the second line, as they add a constant

phase in the unitary evolution operator. Hence, the unitary evolution operator (Eq.
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(2.45)) becomes,

U(t, 0) = exp


∑

i

φi(t)σ
i
x − i

∑
i,j
j<i

χij(t)σ
i
xσ

j
x


, (2.48)

where φi(t) =
∑

m

[
αi,m(t)a†m − α∗i,m(t)am

]
denotes spin-dependent displacements of

the m−th motional modes through the phase space by an amount,

αi,m(t) =
ηi,mΩi

µ− ωm
sin

(µ− ωm)t

2
e−i(µ−ωm)t/2. (2.49)

In deriving this, we have used the effective Hamiltonians for the red sideband and the

blue sidebands (Eq. (2.32) and (2.31)) that use the rotating wave approximation,

and ignore the counter-rotating terms at (µ + ωm) in Eq. (2.24). This is a good

approximation if the Raman beat-note predominantly excites the high frequency

modes, as in the experiments in this thesis, where the Raman beat-note primarily

couples to the COM mode (at νX ≈ 2π × 4.8 MHz, and µ− ωX < 2π × 150 KHz).

However, if the Raman beat-note is coupling to the low frequency modes, the counter

rotating terms may be important. Then, αi,m(t) is modified to [54]

αfulli,m (t) =
−iηi,mΩi

µ2 − ω2
m

[
µ− eiωmt(µ cosµt− iωm sinµt)

]
. (2.50)

The second term in Eq. (2.48) is a spin-spin interaction with coupling,

χi,j(t) =
N∑
m=1

ηi,mηj,m
2(µ− ωm)

ΩiΩj

[
t− sin (µ− ωm)t

µ− ωm

]
. (2.51)
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This phase has a secular term proportional to the time t, and an oscillatory term,

which is bounded and can be made small by choosing the detuning δm = µ− ωm to

be sufficiently large. Analogous to Eq. (2.50) if we add the contribution from the

counter-rotating terms, we get

χfulli,m (t) = −ΩiΩj

∑
m

ηi,mηj,m
µ2 − ω2

m

[
µ sin (µ− ωm)t

µ− ωm
− µ sin (µ+ ωm)t

µ+ ωm
+
ωm sin 2µt

2µ
− ωmt

]
.

(2.52)

The first three terms in the square bracket are bounded, and their amplitudes can

be kept under a given value by properly choosing the detuning µ. Similarly the

phonon contribution (Eq. (2.50)) can be neglected for sufficiently large |µ − ωm|.

The last term of Eq. (2.52), however, increases linearly with time. Thus at large

time, this will dominate the phase of the time evolution. We identify this term with

the time evolution due to an effective Ising Hamiltonian, HIsing = Ji,jσ
i
xσ

j
x, with the

Ising couplings given by,

Ji,j = ΩiΩjR
∑
m

bi,mbj,m
µ2 − ω2

m

, (2.53)

as the Lamb-Dicke parameter ηi,m =
√

~∆k
2Mωm

bi,m, where bi,m is the normal mode

eigenvector components between ion i and mode m and M is the mass of a single

ion. R = ~(∆k)2

2M
is the recoil frequency (about 2π × 18.5 KHz in our system).

Note that Eq. (2.53) is obtained from the coefficient of t in Eq. (2.51) by adding

a term containing µ + ωm in the denominator. This is equivalent to off-resonant

contribution of the blue sideband transition from the rsb beat-note, and the off-

61



resonant contribution of the red sideband transition from the bsb beat-note. The

off-resonant contributions from the carrier transition interfere destructively, as the

rsb and the bsb beat-notes are symmetrically detuned from the carrier.

In the experiments, the Raman beat-note frequency µ is the control parame-

ter. Although, this parameter alone does not give full control of the Ising coupling

matrix Ji,j, and not sufficient to simulate an arbitrary fully connected Ising model,

it provides us a variety of coupling patterns that are suitable for studying inter-

esting spin physics. Figure 2.18 show the Ising coupling profile for various values

of the Raman beat-note detuning in a system of N = 10 spins. The COM mode

(mode index m = 1) makes the interactions uniform, as bi,1 = 1/
√
N for all ion

i = 1, 2, ..., N.. Other modes add inhomogeneity to the uniform coupling induced

by the COM mode. When the beat-note is tuned near the COM mode (Fig. 2.18a),

the couplings have same signs and they fall off with distance between the ions. All

the couplings are positive or antiferromagnetic when µ > ωX . Long range antiferro-

magnetism introduces frustration in the system, which we study in chapters 4 and

5. On the other hand if we tune the Raman beat-note close to the COM mode with

frequency ωX , but keeping µ < ωX , all the Ising couplings are negative or ferromag-

netic. We shall study the long range ferromagnetic Ising model in the presence of a

transverse field in chapter 3. The range of the interactions can be tuned by varying

the Mølmer-Sørensen detuning µ − ωm, and also by varying the bandwidth of the

vibrational modes. We shall discuss this in chapter 5.

As pointed out earlier, the center ion in a chain with odd number of spins

do not couple to the tilt mode, hence bmiddle ion,2 = 0, and thus Jmiddle ion,j = 0 for
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Figure 2.18: Ising couplings for various Mølmer-Sørensen detuning: Top -
Transverse normal mode spectrum (black solid lines) for N = 10 ions, with axial
frequency νZ = ωZ/2π = 1 MHz, and transverse COM frequency νX = ωX/2π = 4.8
MHz. a-f. Bar chart of the Ising couplings Ji,j (divided by 2π) vs i and j for various
detunings (mentioned on top of each figure). The sideband Rabi frequencies are
taken to be ηΩ/2π = 35 KHz.
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Figure 2.19: Ising oscillations between spin states: Two spins are optically
pumped to the | ↓z↓z〉 state, and made to interact with the Raman beat-notes gen-
erating the Ising couplings, according to Eq. (2.53). The sideband Rabi frequency
is ηi,1Ωi/2π ≈ 35 KHz for the ion i (i = 1, 2) and the COM mode (m = 1), and the
beat-note µ/2π ≈ ν1 + 105 KHz. The red points are the data and the blue solid line
is a fit with an Gaussian decay in the amplitude of oscillations. The contrast of the
oscillations decays to 1/e in about 3.3 ms, presumably due to decoherence induced
by intensity fluctuations in the Raman beams. The Raman beams are generated
from the mode-locked tripled Vanadate laser at 355 nm.

all other ion j, from Eq. (2.53). Near the tilt mode long range antiferromagnetic

couplings compete with the short range ferromagnetic couplings, and lead to a first

order phase transition [100].

• Measurement of the Ising couplings - A system with N = 2 spins, ini-

tialized in the state |↓z↓z〉 (by optical pumping) will undergo Rabi flopping between

the states | ↓z↓z〉 and | ↑z↑z〉, under the unitary evolution operator of the effective
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Ising Hamiltonian,

U(t)|↓z↓z〉 = e−iHIsingt|↓z↓z〉

= e−iJt|↓z↓z〉

= cos Jt|↓z↓z〉 − i sin Jt|↑z↑z〉, (2.54)

where J ≡ J1,2 is the Ising coupling between the spins. Since the spin state | ↑z〉

appears as the bright state in our detection scheme (section 2.3.3), average number of

bright ions nbright(t) = 2 cos2 Jt would oscillate with a frequency 2J under the Ising

interactions. Thus the strength of the Ising interaction is found from the observed

oscillation in the average number of bright ions interacting with the Raman beat-

notes. Figure 2.19 shows the oscillations of the system between the spin states under

the Ising evolution operator. The measured Rabi frequency is 2π×1.9 KHz, and this

corresponds to an Ising coupling of J = 2π × 0.95 KHz.

We cannot determine the sign of the coupling from this oscillations. If we

prepare the spin states along the y−axis of the Bloch sphere by a π/2 rotation about

the x−axis (i.e., by applying R(π/2, 0) on the optically pumped state | ↓z↓z〉), and

then turn on the Ising couplings, the spins will oscillate with opposite phases for

the positive and negative Ising couplings. The absolute sign of the Ising couplings

still remain undetermined.

For N > 2 the oscillations in the observed average number of bright ions

contain all the Ising couplings. We can Fourier transform such a signal to extract

the Ising couplings. However, this method is not very efficient beyond a few spins,
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Figure 2.20: Experimental sequence in a quantum simulation: Outline of
quantum simulation protocol. The spins are initially prepared in the ground state
(or the highest excited state) of B

∑
i σ

i
y, then the Hamiltonian (Eq. (2.34)) is

turned on with starting field B0 � J followed by an adiabatic exponential ramping
to the final value B, keeping the Ising couplings fixed. Finally the x− component
of the spins are detected. Details of the initialization are shown in the dotted box
below. Trapped ions are Doppler cooled to an average COM (along theX−direction)
phonon occupation number of n̄ ∼ 2, then optically pumped to the spin state
| ↓z↓z ...〉. The ions are prepared in their zero-point vibrational energy state by
Raman sideband cooling. Finally a coherent π/2 pulse around the x−axis of the
Bloch sphere orients the spins along the magnetic field.

as the Fourier transform contains the sums and differences of all the frequencies and

it becomes hard to resolve and identify the Ising couplings.

2.5.2 Adiabatic quantum simulation

In an adiabatic quantum simulation, the simulator is initialized in the ground

state of a trivial Hamiltonian. Then, the Hamiltonian is gradually tuned to the more

complicated and interesting one. If the ramping is done at a rate slow compared
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to the excitation energy scale, the population remains in the ground state. Our

experiments are performed in the following steps (fig 2.20):

• The spins are optically pumped to the |↓z↓z ...〉 state. They are also sideband

cooled to get close to the phonon ground states.

• The spins are polarized along the y−direction of the Bloch sphere, by a co-

herent π/2 stimulated Raman pulse, about the x−axis of the Bloch sphere.

• The Hamiltonian is turned on with the effective transverse field much larger

than the maximum Ising coupling. Thus the spins are in the ground state of

the total Hamiltonian, to a very good approximation.

• The effective field B is ramped down exponentially with a time constant τ ,

keeping the Ising couplings constant, according to,

B(t) = B0 exp(−t/τ). (2.55)

Here B0 is the initial effective field.

• Finally, the spins are globally rotated by a π/2 pulse about the y−axis of the

Bloch sphere. This maps the x−components of the spins to the z−components

(our measurement basis). Thus, by performing the final spin rotation, we are

effectively measuring the spin order along the Ising direction, i.e., the x−axis

of the Bloch sphere.
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The transverse field couples the instantaneous eigenstates of the Hamiltonian.

The minimum energy gap, ∆c between the ground and the first excited state that

couples to the ground state sets the adiabaticity criteria [101, 42],

Ḃ(t)ε

∆2
c

� 1, (2.56)

where ε ≡ |〈g(t)|dH(t)
dB
|e(t)〉| characterizes coupling between the instantaneous ground

state |g(t)〉 and the relevant excited state |e(t)〉.

Exponential ramping is experimentally more convenient than a linear ramping,

as this keeps the total duration of the experiment under the time scale set by deco-

herence processes. Instead of following the ground state, the highest excited state

of the Hamiltonian may as well be followed. Following the highest excited state of

H is equivalent to following the ground state of the sign inverted Hamiltonian, −H.

This is an experimental way to flip the effective signs of all the Ising couplings from

antiferromagnetic (Ji,j > 0) to ferromagnetic (Ji,j < 0), a trick that we follow to

simulate the ferromagnetic quantum Ising model, discussed in chapter 3.

2.6 Experimental Apparatus

2.6.1 Ti:Sapphire laser

The Titanium:sapphire laser (MBR-110, developed by Coherent Inc) is pumped

by an 18 Watt green laser (Verdi V-18, Coherent Inc) at 532 nm. Figure 2.21 shows

a schematic of the MBR-110, and Fig. 2.23 shows a photograph of MBR-110 with
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important parts labeled. The rod shaped Titanium:Sapphire crystal is placed in-

side a bow-tie ring cavity made from a single Aluminum block (The acronym MBR

stands for a Monolithic Block Resonator), that stabilizes the cavity against the vi-

brations of its constituents. The flat faces of the crystal are Brewster cut to minimize

reflection. The brass unit holding the crystal is water cooled.

Mirrors M1 and M2 have a radius of curvature of 10 cm each, and coated to be

highly reflecting across a large wavelength range. M1 also focuses the 532 nm pump

beam onto the Ti:Sapphire crystal. Mirror M3 is a piezo-mounted highly reflecting

square-shaped small planar mirror (called a tweeter mirror). Mirror M4 is a planar

mirror, and also the output coupler.

In between the mirrors M2 and M3, there is an optical diode, consisting of a

Faraday rotator crystal placed in a strong permanent magnetic field, and a less than

0.5 mm thick Brewster angled retardation plate. The optical diodes ensure that the

light is circulating in one direction only, namely M1→M2→M3→M4→M1. The

Faraday rotator rotates the polarization by a few degrees in a direction independent

of the travel direction of the beam. The retardation plate rotates the polarization in

the opposite direction by almost the same amount (undoing the polarization change

by the Faraday rotator) for light traveling through it in the ‘right’ direction, and in

the same direction for any light traveling in the ‘wrong’ direction. Thus after a few

passes through the ring cavity, lights circulating in the wrong direction is blocked

by the Brewster angled retardation plate, and the cavity supports p -polarization

light circulating in one direction.

The desired single-frequency operation (Fig. 2.22) of MBR-110 is chosen in
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Figure 2.21: Schematics of the MBR-110 Ti:Sapphire laser: The MBR-110
(Coherent Inc) is pumped by an 18 Watt green continuous-wave laser at 532 nm
(Verdi-18, Coherent Inc.). MBR-110 houses a bow-tie ring cavity made of the four
mirrors M1-M4, and a cylindrical Titanium:Sapphire crystal rod with Brewster cut
flat faces is placed in between the curved mirrors M1 and M2 (both with 10 cm radius
of curvature). Mirror M1 also serves as the input coupler, and mirror M2 reflects
the infrared radiation only, blocking the majority of the pump beam, which is then
blocked behind M2. Mirror M3 is a piezo-mounted highly reflecting square-shaped
small planar mirror, and the planar mirror M4 also acts as the output coupler. The
optical diode, consisting of a Faraday rotator and a retardation plate (a wave plate)
positioned at the Brewster angle selects a particular polarization to circulate in the
cavity. The birefringent filter, the etalon, the two galvanometer mounter fused silica
Brewster plates and the piezo-mounted mirror M3 select the mode of radiation. The
cavity mode can also be locked to the piezo controlled external reference cavity, using
the error signal generated by the photodiodes shown here, as explained in the text.
The electronics is operated from a separate control box. (Image Credit: Coherent
Inc.).

70



Figure 2.22: MBR modes: The radiation mode that builds up in the laser cavity
is determined by the gain profile of the Ti:Sapphire crystal (not shown here), the
frequency response of the birefringent filter (blue dashed-dot curve), the etalon
modes (black dashed curve) and the cavity modes (red solid curve). The black solid
curve shows the lasing threshold where the gain from the Ti:Sapphire crystal equals
the loss in the cavity. The birefringent filter has a very broad frequency response
(30-40 nm), and the laser output frequency hops between the etalon modes as the
filter micrometer is rotated. The etalon has a free spectral range (FSRetalon)of
about 225 GHz. The cavity free spectral range (FSRcavity) is about 300 MHz. As
the etalon is rotated the laser output hops between the cavity modes. This is a
schematic, and not to scale.
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the following steps:

• The Ti:Sapphire crystal has a broad gain profile (few hundred nanometers),

that offers tunability over a large wavelength range [102]. The optics used in the

laser limits the width of the gain profile to under 100 nm. The polarization change

through a birefringent material is frequency dependent and thus the birefringent

filter further narrows down the bandwidth of the radiation circulating in the cavity

to about 30-40 nm. The filter rotates the polarization of light with frequencies

outside this band appreciably every time the light passes through it, and in a few

passes the polarization is blocked by the Brewster angled optics in the cavity. Thus

the birefringent filter acts as a coarse wavelength knob.

• The intracavity etalon - MBR-110 has a less than 0.5 mm thick etalon placed

in between the mirrors M3 and M4, with a finesse of about 25, and a free spectral

range of about 225 GHz. As we turn the birefringent filter, it hops between the

etalon modes. Rotating the knob clockwise selects a higher frequency etalon mode,

and rotating it counter-clockwise selects a lower frequency mode. The etalon is

mounted onto a piezo which is mounted onto a galvanometer using an aluminum

mount (Fig. 2.23). The galvanometer is mounted onto a rotation stage, with all

three translational degrees of freedom. The galvanometer (and hence the etalon)

can be rotated from the MBR control box.

The etalon should not be oriented such that the normal to its surface
is parallel to the incident light. This orientation is known as the ‘flash’
position, and the power output from the laser will fall to half its normal
value (when the etalon is not in the ‘flash’ position), as the cavity lases
in both direction.
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In the flash position of the etalon, a large fraction of the incident power is

reflected back to the exact same direction, and the isolation provided by the optical

diode is not sufficient to prevent lasing in the wrong direction.

• The laser cavity modes- the ring cavity is about L = 1 meter long, and the

corresponding free spectral range is c/L = 300 MHz. We select a particular cavity

mode by turning the angle of the etalon. As we rotate the etalon by turning the

‘etalon tune’ knob from the control box, the laser output hops between the cavity

modes.

• The etalon lock - The reflected light from the etalon is directed and focused

onto a photodiode by a 45◦ prism mirror and a fast biconvex lens. The intensity

of this reflected light can be monitored from a test point in the laser box (‘etalon

photodiode signal’ in fig 2.23) using a mini-BNC cable. As the etalon is rotated by

turning the etalon knob from the electronic control box this signal increases, from

zero, when the knob is fully counter-clockwise, to about 6-8 volts when it is fully

clockwise. This signal may also be monitored at the test point TP6 on the analog

board in the electronics control box.

If the maximum signal is at the fully clockwise position of the etalon
knob is low, make sure that the reflected beam is properly hitting the
photodiode by aligning the lens. The trim-pot next to the monitor point
in the laser box can also be adjusted to increase the voltage.

The etalon is modulated at a piezo driving frequency of ≈ 82.3 KHz, generated

from the electronics control box. This driving signal may be monitored at the test

point TP5, and a 90◦ phase shifted signal may be monitored at test point TP7.

The cylindrical piezo has two halves, which are driven with opposite phases. This
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sets up a standing wave on the etalon, and the light reflected from the etalon is

intensity modulated at this frequency as the reflectivity depends on the angle of

the incidence. The amplitude of the intensity modulation is the largest when the

beam hits a node of the displacement standing wave, which has the largest change

in the angle w.r.t. the incident direction of the beam. This modulated signal may

be monitored at the test point TP6 on an AC coupled oscilloscope, triggered by the

signal from test point TP5, or TP7. As the etalon knob is turned, the signal on the

oscilloscope should show a ‘breathing mode’ with an amplitude of about 100 mV.

An error signal is generated in the electronic control box by demodulating this

modulated etalon signal at the driving frequency. The error signal can be monitored

from the back panel of the control box. When the etalon knob on the control box

is turned clockwise, the error signal hops between the cavity modes, and generates

a sawtooth signal on an oscilloscope, with a steeper rise and a slower fall. To

lock the etalon to a cavity mode, the error signal should be centered around zero

volts, by adjusting the etalon offset from the control box. The etalon error signal is

approximatey 300 mV in our system. We center the error signal at a desired cavity

mode, by turning the etalon knob on the control box, and press the etalon lock

button.

The etalon lock will not be robust, or it may not even lock if the error
signal amplitude is below 100 mV. The amplitude may be reduced due
to a drift in the driving frequency, or a drift in the mechanical resonance
frequency of the piezo. Adjust the trim-pots PR14 (fine) and PR15
(coarse, usually not required) to bring the driving frequency back on the
piezo resonance. This is achieved by observing the sawtooth etalon error
signal on an oscilloscope while turning the etalon knob, and maximizing
the amplitude of the signal.
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In some unfortunate cases, the best error signal may be obtained when the

incident light hits a spot on the etalon that does not optically transmit well without

a significant loss in intensity. Then we may have to compromise between a good

error signal and output power. We tested a couple of etalons, and picked the best.

• The external reference cavity - MBR-110 has an external reference Fabry-

Perot cavity with finesse in the range of 25-50. When the etalon is locked to the

laser cavity, the laser frequency does not hop between different etalon modes, but

slow thermal drifts in the laser cavity length changes the frequency. The laser cavity

can be locked to the reference cavity by feeding back to the tweeter mirror. This

is done by superposing an offset signal to the reference cavity signal, such that

the fringes are centered about zero volts, and locking the tweeter mirror (M3) to a

side of a reference cavity fringe. The reference cavity fringes, as measured by the

‘photodiode A’ in Fig. 2.23 may be monitored at the test point in the laser box

(‘Reference cavity signal’), after setting the reference cavity toggle switch on the

back of the electronics control box to the ‘dither’ position. The offset static voltage,

as measured by the ‘photodiode B’ may be observed at the ‘normalization signal’

port in the laser box, and adjusted by turning the trim-pot next to it. When the

offset is properly adjusted, the reference cavity error signal peaks, observed at the

back of the electronics control box, should be about 6-8 V high, and centered around

zero volt.

For Raman transitions with a two photon detuning of a few THz used in the

experiments, the slow drifts in the frequency due to thermal drifts in the reference

cavity length is not crucial. However, in order to use the Ti:Sapphire laser for the
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near resonant operations (Doppler cooling, detection etc), the reference cavity is

locked to an absolute frequency reference, provided by a Doppler free saturation

absorption line (at about 405.644321 THz) of Iodine molecules, see Ref. [103] for

details. The saturation absorption error signal from the Iodine set up is sent to a

PID controller, the output of which is fed into the Ext Lock port at the back of the

MBR control box. Our MBR-110 generates about 2 Watts of optical power around

740 nm.
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for a

2.6.2 Generating 369.5 nm light by frequency doubling

We frequency double the infrared Ti:Sapphire output to the ultraviolet using

a Lithium Triborate (LBO) non-linear crystal in a frequency doubling cavity (Wave-

Train, Spectra-Physics). The frequency doubling efficiency is about 10% per Watt,

and we get approximately 490 mW of 370 nm light to be used for Raman transitions

from an input light of 2.2 W.

We use another WaveTrain frequency doubler to generate 369.5 nm light for

Doppler cooling, detection, protection, ionization and optical pumping. The dou-

bling efficiency of this doubler is about 6% per Watt, and we get approximately 20

mW of ultraviolet light, with an input of about 600 mW.

2.6.3 369.5 nm optics schematics

We use the frequency doubled light at 369.5 nm to generate the Doppler cool-

ing, detection, optical pumping and protection beams. Fig 2.24 shows a schematic

of the optics set up. The output of the frequency doubler is about 430 MHz red

detuned from the 2S1/2 −2 P1/2 resonance. A portion of this light is sent to a 7.37

GHz EOM (Model 4851 from New Focus, driven by a Lab Brick Signal generator

from Vaunix Corporation, 34 dBm rf power) that generates sidebands required for

Doppler cooling the | ↓z〉 state. An AOM (made by Brimrose Corp.) driven at 400

MHz up-shifts the frequency to about 30 MHz (red detuned) from the resonance.
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Figure 2.24: Schematics of the 369.5 nm beams: A Ti:Sapphire output at 740
nm is frequency doubled by an LBO crystal inside a triangular cavity is split into
the Doppler cooling, detection, optical pumping and the protection beams. 50/50
beam splitters are used to combine multiple beams. Vertical cylindrical lens V2
images the intermediate focus IF at the ion position, with a magnification of 1/5.
Spherical lenses are shown in blue, horizontal cylindrical lenses are shown in white
and the vertical cylindrical lenses are shown in gray. 399 nm beam is combined with
the protection beam on a PBS, 935 nm and 638 nm beams are combined with the
369.5 nm and 399 nm beams on mirrors with appropriate coatings.
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Another part of the beam is sent through an AOM driven at about 424 MHz, and

this is used as the detection beam. The optical pumping beam is also derived from

the same parent beam, and sent through a 2.105 GHz EOM (Model 4431 Visible

Phase Modulator from New Focus Inc.) followed by a 424 MHz AOM. The detec-

tion and the optical pumping beams are combined on a 50-50 non-polarizing beam

splitter (Model BSW20 from Thorlabs), and then coupled to an optical fiber (single

mode at 320 nm from Coastal Connections), the output of which is then combined

with the Doppler cooling beam on a 50-50 non-polarizing beam splitter (Edmund

Optics NT 48-213). The protection (the additional cooling) beam is 200 MHz fur-

ther red detuned by an AOM (from Intra-Action Corp.), and is mixed with 399 nm

light on a polarization beam splitter. The protection and the 399 nm beams are

then combined with the Doppler cooling, optical pumping and the detection beams

on a 50-50 beam splitter (Edmund Optics NT 48-213). All the beams are focused in

the vertical direction at an intermediate focus (labeled IF), which is then imaged at

the ion position by an imaging lens (V2) of focal length 80 mm. The magnification

in this imaging is 1/5. The final lens V2 is mounted tightly on a fixed cylindri-

cal lens mount which is attached to a pedestal. The beam is vertically shifted by

moving the vertical lens V1. The beam at the ion position moves by a factor of 5

less than the vertical translation in the lens V1, making the beam stable against

vibrations in the mount holding the lens V1. The cooling, detection and optical

pumping beams are approximately 8 µm wide in the vertical direction and about

100 µm along the horizontal direction (1/e2 radius in intensity) transverse to the

beam propagation. Since this beam enters the vacuum chamber at an angle of 45
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degrees w.r.t. the axis of the ion chain, the effective beam waist in the horizontal

direction is 100 µm/ cos 45◦ ≈ 140 µm.

A portion of the Ti:Sapphire (MBR-110) output (about 40 mW) is used for

the Doppler free saturation absorption spectroscopy. This light is coupled to a fiber

EOM (from EOSpace Inc., driven at 13.315 GHz), and the output (about 9 mW) is

sent to the saturation spectroscopy set up [103]. We also monitor the MBR modes

on a home-made 20 cm confocal cavity. Details of the confocal cavity may be found

in Appendix C of Ref. [70].

On a historical note, we used a semiconductor diode laser with a tapered am-

plifier system (Toptica TA 100) to generate the 739.5 nm light (and the Ti:Sapphire

laser to generate the Raman beams) for the experiments in chapter 3 (with N = 2

to N = 9 spins) and chapter 4.

2.6.4 Mode-locked 355 nm laser

We use a mode-locked laser with center wavelength at 355 nm (Vanguard,

Spectra-Physics) to drive two photon Raman transitions [104]. The lasing medium

is a Neodymium doped Vanadate (Nd:YVO4). This is an industrial laser used pri-

marily for semiconductor fabrication, and comes in a closed box with no direct access

to the laser cavity.

Some parameters of interest are:

• Average optical power ≈ 4 Watt.

• Repetition rate, νrep ≈ 80.6 MHz, delay between the pulses ≈ 12 ns.
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• Optical bandwidth ≈ 100 GHz (estimated).

This laser has sufficient optical bandwidth to drive the two photon Raman transi-

tions.

We drive the stimulated Raman transitions by shining two non-co-propagating

beams derived from this laser on the ions, as shown in fig 2.25a. Each beam generates

an optical frequency comb, with comb-teeth spaced regularly by the repetition rate,

νrep, as shown in Fig. 2.25c. We shift the optical frequency of the first comb

(shown in red) relative to the second (blue) by AOM’s used in the beam path. The

AOM frequency difference |∆νAOM | is tuned such that the beatnote between mth

comb-tooth of the red comb and (m + n)th comb-tooth of the blue comb (m and

n are positive integers) equals the atomic transition frequency, νab between states

|a〉 and |b〉 (Fig. 2.25b), for all m and a particular n. The atom then absorbs a

photon from the (m + n)th tooth of the blue comb and emits to the mth tooth of

the red comb to undergo a stimulated Raman transition between the states |a〉 and

|b〉, via the excited state |e〉. For example, to drive the hyperfine transition (at

the frequency νhf ) between the clock states of 171Yb+ 2S1/2 ground state hyperfine

manifold, νab = νhf , and since the repetition rate of our 355 nm mode-locked laser

is approximately 80.6 MHz, we use the n = 157th comb-tooth. The beatnote is

generated by all pairs of comb-teeth separated by 157νrep in frequency.

The mechanism behind exciting an atomic transition with a frequency comb

may also be understood by looking at the frequency spectrum of the light using a

radio-frequency photodiode that has a response time fast enough to resolve between
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Figure 2.25: Schematics of a two photon Raman transition using a mode-
locked laser: a. Two non-co-propagating beams generated from the same mode-
locked laser drive stimulated Raman transition in an atom. b. Level diagram of a
three level Λ−system. Individual laser beams off-resonantly couple the states |a〉
and |b〉 to the excited state |e〉. The beams are detuned from the excited state |e〉
by ∆. In our experiments with 171Yb+ states |a〉 and |b〉 are the hyperfine (and
motional) ‘clock’ states in the electronic ground state of the 2S1/2 manifold, and the
excited states used are the 2P1/2 and the 2P3/2 fine structure states. The beams are
detuned by ∆ ≈ 33 THz blue of the 2P1/2 states for our 355 nm mode-locked laser.
c. Each beam generates an optical frequency comb, shown in red and blue. The
frequencies of the beams are shifted by AOMs, and at some difference frequency
|∆νAOM | between the shifts, the beatnote between mth comb-tooth of red first comb
and (m + n)th comb-tooth of the blue comb (m and n are positive integers) equals
the atomic transition frequency, νab, for all m and a particular n. The atom absorbs
a photon from the (m+ n)th tooth of the blue comb and emits a photon to the mth

tooth of the red comb to make a transition from state |a〉 to |b〉.
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Figure 2.26: Radio frequency comb-teeth used in the two photon Raman
transitions: We use a radio-frequency photodiode to look at the radio-frequency
spectrum of the mode-locked laser (νrep ≈ 80 MHz) and the beatnote. The light is
split into two arms using a beam-splitter, with individual frequency control by the
AOMs, and recombined at the second beam-splitter. The radio-frequency photodi-
ode averages over the optical cycles. (a) measured spectrum with the beam from
AOM2 blocked. (b) measured spectrum with the beam from AOM1 blocked, and
(c) measured spectrum with both the beams. Sidebands at frequencies ±|∆νAOM |
appear due to interference of the beams. In the two photon STR, atoms take the
place of the final beam-splitter.

the pulses, but slow compared to an optical cycle. We illustrate this in Fig. 2.26∗.

Here the beam from the mode-locked laser is split into two paths, with the AOMs

shifting the frequencies of the individual paths. The two arms constitute a Mach-

Zehnder interferometer, with the ion replacing the final beam splitter. The radio-

frequency photodiode averages out the intensity over the optical cycles but shows the

radio frequency comb-teeth at frequencies m× νrep (m = 0, 1, 2, ...) in the measured

frequency spectrum of a single beam (Fig 2.26a-b). The effective time constant of the

photodiode circuit (and the speed of the amplifier used) limits the overall bandwidth

of the radio-frequency beatnote comb detected electronically. Since the two arms of

the Mach-Zehnder interferometer are shifted in frequencies by ±νAOM1 and ±νAOM2

∗The data were taken with another mode-locked laser with a repetition rate of 80 MHz.
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respectively by the acousto optic modulators (AOMs), the beatnote generated by the

final beam-splitter is amplitude modulated at |∆νAOM | = |νAOM1 − νAOM2| ∗. This

puts sidebands † on the radio frequency comb-teeth at frequenciesm×νrep±|∆νAOM |.

We can control the position of the sidebands by controlling the frequency |∆νAOM |,

and bring one of the sidebands on resonance with an atomic transition. An atomic

transition, at frequency νab is excited when the AOM frequencies are tuned such

that νab equals a particular sideband frequency νsb = n × νrep − |∆νAOM |, where n

refers to some comb-tooth in the radio-frequency comb. Hence, we want to stabilize

this particular amplitude modulation sideband at the transition frequency.

Repetition rate stabilization

The repetition rate drifts and fluctuates (Fig. 2.27) due to the thermal drift

and fluctuations. Since we do not have an easy access to the laser cavity of this

laser, we cannot stabilize the repetition rate directly. However, as described in the

previous section, our two photon Raman transition is dependent on the beat-note

between two beams generated from this laser, and hence we need to stabilize the

beat-note only.

One intuitive way to stabilize the beat-note is to measure the repetition rate at

time t, νrep(t) by a frequency counter, and directly change the driving frequency of

one (or both) of the AOMs accordingly using a software locking scheme, to keep the

sideband frequency νsb = n × νrep(t) − |∆νAOM | at a constant value. This requires

∗without loss of generality, we have chosen the AOM shifts to both be positive.
†The carrier is not depleted completely in Fig. 2.26, since the interfering beams are not perfectly

mode-matched, and have unequal optical power.
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Figure 2.27: Drift in the repetition rate of the 355 nm mode-locked laser:
The repetition rate of the mode-locked Vanguard laser at 355 nm is measured with
a digital frequency counter in regular two minutes intervals. The repetition rate
shows a long term drift of about 1 Hz/minute in this case. The fluctuations are
correlated with the ambient temperature fluctuations. Typically the repetition rate
approaches a steady state value after about a couple of hours of turning on the laser,
provided that the ambient temperature is stable. The two photon Raman transition
in 171Yb+ hyperfine states uses the 157th comb-tooth, which drifts by about 157
Hz/minute. We stabilize the fluctuations and the long term drift in the repetition
rate by feeding forward to an external acousto optic modulator, as described in the
text.

stabilizing νrep to ε/n, in order to stabilize the sideband frequency to ε. The software

lock would be slow for large n (n = 157 in our experiment) as the integration time

of the frequency counter could be comparable or larger than the time scale at which

the repetition rate fluctuates. In our experiments, to stabilize the sideband within

a fraction of 1 KHz, we need to measure νrep(t) within a few Hz, which corresponds

to an integration time of about a second. We have experimentally found that a

software-based lock of this type is insufficient for achieving high-fidelity transitions.
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Figure 2.28: Schematics of the repetition rate lock: a. The output of a fast
photodiode is mixed with a local oscillator (LO) signal, which is sent to a Phase
Locked Loop (PLL) after rejecting the high frequency beatnote by using a low pass
filter (LPF). The output of the PLL drives the AOM. b. Details of the repetition
rate lock circuit used in our experimental set up. The second harmonic light (at
532 nm) from a mode-locked tripled Vanadate laser (Vanguard, Spectra Physics,
repetition rate νrep ≈ 80.6 MHz) is incident on a radio-frequency photodiode, which
generates a radio-frequency comb with comb-teeth at frequencies m × νrep (m is
a positive integer). This signal is amplified and passed though a bandpass filter
(BPF), which transmits the n = 157th comb-tooth at n× νrep ∼ 12.655 GHz. This
is then mixed with a radio-frequency signal at νLO = 12.438 MHz generated by an
HP8672A synthesizer, and the lower frequency beatnote (at ≈ 217 MHz) is sent
to the PLL, where an HP8640B is frequency modulated to output a signal that is
phase locked with the beatnote. The bandwidth of the output signal depends on the
bandwidth νBW of the low pass filter LPF2 used in the PLL. Frequency spectrum
of the signals at monitoring points MP1 and MP2 are shown in Fig. 2.29.
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To stabilize the beatnote, we monitor the repetition rate continuously by mea-

suring the intensity of the 532 nm light generated in the laser cavity (which has

the same repetition rate, and the same fluctuations in the repetition rate) by a fast

photodiode (a GaAs PIN Detector, ET-4000, made by Electro-Optics Technology,

Inc.), and correct for the fluctuations by feeding forward to the AOMs. We filter

the n(= 157)th comb-tooth by a microwaves mechanical filter, and beat the signal

at n× νrep(t) with a frequency stabilized local oscillator at frequency νLO, as shown

in fig. 2.28(a). Here νrep(t) is the repetition rate at time t (we care about the fluc-

tuation time scale, which is slow compared to the delay between the laser pulses,

and hence a repetition rate can be defined at time t). The beatnote is sent through

a low pass filter, which allows the lower frequency component of the beat signal at

n × νrep − νLO to pass through (we assume that n × νrep > νLO). In principle, we

may use this signal directly to drive one of the AOMs, AOM1 for example. Thus at

time t,

n× νrep(t)− νLO = νAOM1(t)

⇒ n× νrep(t)− νAOM1(t) = νLO (2.57)

The right hand side of Eq. (2.57) is independent of time, which shows that

the time dependence, or the fluctuations in the repetition rate is canceled by a

time dependent AOM1 driving frequency. Hence the sideband frequency is at νsb =

n×νrep(t)−|∆νAOM | = n×νrep(t)−νAOM1(t)+νAOM2 = νLO+νAOM2, independent

of time. Note that the fluctuations do not cancel for the other sideband (at n×νrep+
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|∆νAOM |) of the nth comb-tooth, or for any other comb-tooth and their sidebands

in general.

From a practical point of view, this beat-note may not be used to drive the

AOM1 for the following reasons. First, the amplitude of this radio frequency signal

is dependent on the photodiode output, and hence on the laser power. Second, the

thermal and white noise from the amplifiers used makes the signal very noisy, and

the noise may drive unwanted transition. This problem is overcome by feeding the

beatnote signal into a phase locked loop (PLL), and using its output to drive the

AOM1.

Beyond the bandwidth of the low-pass filter used in the PLL, the noise profile is

characteristic of the oscillator used, and the amplitude of the beatnote is independent

of the laser power. Fig. 2.29a shows the spectrum of the signals that may be used

to drive AOM1, with and without the PLL. The noise floor is ∼ 30 dB lower when a

PLL is used. In fig. 2.29b we show the observed Raman spectrum of a single trapped

171Yb+ ion as a function of the AOM2 frequency, for a pulse duration of 40µs. The

white noise present in the AOM1 signal may drive unwanted Raman transitions

for a range of frequencies of AOM2, thus providing a non-zero background in the

observed spectrum, as shown in the red trace. When we drive the AOM1 with the

output of the PLL, this background goes away, as seen in the black trace.

If the signal to white noise ratio in the AOM driving signal generated from

the repetition lock circuit is α, the strength of the stimulated transition by the

noise field, Ωnoise = Ω/
√
α, as the two photon Rabi frequency is proportional to the

electric field of each beam. Here Ω is the Rabi frequency of the stimulated transition
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Figure 2.29: The role of the Phase locked loop in the repetition rate stabi-
lization scheme: a. Frequency spectra of the beatnote (that may be used to drive
the AOM1) at points MP1 and MP2 in Fig. 2.28 respectively. The PLL gets rid of
the (white) noise outside the bandwidth of the low pass filter used. b. Probability
of two photon Raman excitation of a single trapped 171Yb+ ion vs AOM2 frequency
with and without the PLL. Here the system is initialized in the state | ↓〉. If the
signal at point MP1 is used to drive the AOM1, the noise excites unwanted tran-
sitions at all AOM2 frequencies, as seen in the constant background in the Raman
spectrum. The output of the PLL does not have this noise beyond the bandwidth of
the low pass filter used, and hence the Raman frequency spectrum is cleaner. Here
we show the ‘carrier’ transition between the hyperfine 171Yb+ ‘clock’ states at 205
MHz and the vibrational sidebands around 200 MHz and 210 MHz.
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by the signal at the transition frequency. In order to keep this unwanted transition

probability to under κ in a total experimental time of T , ΩnoiseT ∼ κ, which implies

that minimum signal to noise ratio α ∼ (ΩT/κ)2. Thus for a transition frequency

of Ω =1 MHz, and an experimental duration of 1 ms, we need a signal of noise ratio

α > 1010, or 100 dB to keep κ ∼ 1%.

To characterize the stability of the beatnote frequency, we compared it to the

171Yb+ ‘clock’ hyperfine qubit by Ramsey interferometric measurements. With the

lock engaged we measured a coherence time of ≈ 800 ms. This coherence time is

limited by the presence of noise affecting the qubit frequency, such as magnetic field

noise, and not by the noise in the repetition rate. With the repetition rate lock

disengaged, the coherence drops to ∼ 3ms, showing the usefulness of this lock to

achieve high fidelity quantum operations.

2.6.5 Optical set up for the Raman transitions

Stimulated two photon Raman transitions generate the quantum Ising model

in our experiments, as discussed previously. We also use stimulated Raman tran-

sitions for single qubit manipulation through the Bloch sphere. The two photon

Raman transitions require an optical beatnote at the hyperfine transition (12.64

GHz) for simulating the effective magnetic field. We use two different ways to gen-

erate this optical beatnote,

• Frequency modulate the output of a CW laser beam (a Ti:Sapphire laser,

frequency doubled in a second harmonic generation process) using an electro
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optic modulator (custom made by New Focus Inc.) [105] at ωEOM/2π =

νEOM ≈ νhf/2 ≈ 6.32 GHz.

• Use the suitable comb-teeth pair from an optical frequency comb generated by

a mode-locked tripled Vanadate laser with center wavelength at 355 nm. Our

mode-locked laser has a repetition rate of ωrep/2π = νrep ≈ 80.6 MHz, and

hence we use the comb-teeth pair separated by a frequency of 157 × νrep ≈

12.655 GHz, which is the closest beatnote to the hyperfine splitting.

A finer control of the frequency of the Raman beatnote is achieved by using AOMs.

The electric field of a CW laser beam at a frequency of ωL is frequency mod-

ulated by the EOM at ωEOM as

E1 =
E0

2
exp [i(kx− ωLt)]

n=∞∑
n=−∞

Jn(φ)× exp [in [(δk)x− ωEOM t]] + c.c. (2.58)

where E0 and nu0 are the incoming (unmodulated) electric field amplitude and

frequency respectively. Jn(φ) is the nth order Bessel function with modulation index

φ, and δk = ωEOM/c, c is the speed of light. The modulation index φ depends

on the radio-frequency power used to drive the EOM, and increases with higher

driving power. Thus the EOM puts on equispaced sidebands around the carrier at

ωL, separated by the modulation frequency ωEOM .
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Figure 2.30: Raman transition set up: The schematics of the Raman set up
optics with the mode-locked tripled Vanadate laser. AOM1 and AOM2 generate
the frequency shifts necessary to address various stimulated Raman transitions. The
532 nm light (shown in green) is used to monitor the repetition rate, and correct
for the fluctuations in the repetition rate, as described in the text. The horizontal
cylindrical lenses are shown in white, vertical cylindrical lenses are shown in gray
and the spherical lenses are shown in blue.

93



The two photon hyperfine transition Rabi frequency, Ω depends on the product

of the electric field amplitudes of the two beams. Thus

Ω ∝
∞∑

n=−∞

Jn(φ)Jn+2(φ)ei2(δk)x, (2.59)

as the pair of sidebands separated by 2ωEOM ≈ ωhf contribute to the hyperfine

transition.

Unfortunately,
∞∑

n=−∞

Jn(φ)Jn+2(φ) = 0, (2.60)

as J−n(φ) = (−1)nJn(φ), and hence the Rabi frequency vanishes from destructive

interference of sidebands with opposite phases. This problem can be overcome by

making the phase in the right hand side of Eq. (2.59) dependent on n, as discussed

in Ref. [106]. This is achieved by splitting the frequency modulated beam into two

arms of a Mach-Zehnder interferometer and recombining them at the ion position.

The delay in the Mach-Zehnder interferometer is adjusted to maximize the Rabi

frequency. Even with the properly adjusted interferometer, more than half of the

optical power is wasted due to the destructive interference.

We simulated the ferromagnetic quantum Ising model for N = 2 to N = 9

spins (Chapter 3), and the frustrated spin network with N = 3 spins (Chapter 4)

with this set up.

A mode-locked laser provides the desired frequency comb without any phase

problem as in the EOM. Figure 2.30 shows the optics schematics of our Raman
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set up using the mode locked laser. (The set up with the Ti:Sapphire CW laser

was almost identical to this one, with the vanguard laser replaced by the frequency

doubled Ti:sapphire light sent through the EOM). The two Raman beams, referred

to as Raman 1 and Raman 2 in the diagram, intersect perpendicular to each other

at the ion position. Thus the wave-vector difference ∆k =
√

2k, where k is the

magnitude of the wave-vector of each beam. Raman 1 is generated by the negative

first order deflection of AOM1 (from Brimrose Corp), which is driven by the output

MP2 in Fig. 2.28b at approximately 217.7 MHz to to stabilize the repetition rate, as

described in section 2.6.4. We image an intermediate focus IF1 at the ion position

(relay imaging), by first collimating the beam in both the horizontal and the vertical

directions using a 200 mm spherical lens, followed by focusing down using a 91 mm

spherical lens.

AOM2 is driven by radio frequencies generated by an arbitrary waveform gen-

erator (AWG, Model no. DA-12000 made by Chase Scientific Company, 12 bit,

1 Gs/sec, 4 MB memory). The carrier transition is excited at an AOM2 driving

frequency νAOM2 ≈ 204.819 MHz, while the red and blue sidebands are excited at

≈ 199.97 and ≈ 209.66 MHz respectively. AOM2 is imaged at the ion position by

relay imaging method as follows. A horizontal cylindrical lens H2 (f=150 mm) im-

ages the AOM2 aperture at the intermediate focus IF2. This is also approximately

the vertical focus of V2. A 200 mm focal length spherical lens is about 200 mm

away from the intermediate focus, and hence it collimates the beam in both the

horizontal and the vertical directions. The beam is approximately 220 µm (1/e2

radius in intensity) in the horizontal direction and 20 µm in the vertical direction
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Figure 2.31: The Clebsh-Gordan coefficients relevant for the two photon
hyperfine Raman transition: We show the Clebsh-Gordan (CG) coefficients for
relevant states coupled by the σ+ and the σ− polarizations. A linearly polarized
light cannot drive the hyperfine transition, as various paths interfere destructively.
The transitions |↑z〉 ↔ 2P3/2|F = 2,mF = ±1〉 contributes to the Stark shift only.

at the intermediate focus. This collimated beam is then focused by a spherical 91

mm focal length lens at the ions. The Mach-Zehnder delay stage (MZ) is used to

equalize the length of the Raman 1 and Raman 2 arms, to overlap the arrival times

of the laser pulses at the ion position through these two paths.

The λ/4 and the λ/2 wave-plates are used to gain full control of the po-

larization of the Raman beams. The polarizations are shown in double headed

arrows. The magnetic field points upwards in this figure. The choice of our

beam polarizations are dictated by the Clebsh-Gordan coefficients of the relevant

transitions (Fig. 2.31). We avoid driving the Zeeman transitions between the
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| ↓z〉 → |F = 1,mF = ±1〉 states by minimizing the π polarization component

in our Raman beams. The Raman beams are linearly polarized perpendicular to

each other and perpendicular to the magnetic field BY . A linear polarization is an

equal superposition of σ+ and σ− light (in the atomic basis, w.r.t. to the externally

applied magnetic field BY ), and cannot drive the hyperfine transition alone, since

the transition paths interfere destructively due to a relative negative sign of the

Clebsh-Gordan coefficients between the paths, as seen from Fig. 2.31. In our set

up each beam is linearly polarized and hence the beams do not interfere at the ion

position, and the total intensity is constant at all times. However the two photon

Rabi frequency is proportional to the excess electric field in the σ+ polarization over

the σ− polarization, which creates a beatnote at the frequency difference of the two

beams.

The two photon Rabi frequency Ω is proportional to the product of the electric

fields of the two Raman beams. Thus, Ω ∝
√
α1α2(1− α1) in our set up, where

α1 and α2 are the deflection efficiencies of AOM1 and AOM2 respectively. The two

photon Rabi frequency is maximized for α1 = 0.5.

2.7 Quantum simulation recipe for experimentalists

This section describes the detailed steps of the quantum simulation experi-

ments done in our laboratory. Some of the most important instruments required

are:

• Lasers - Ti:Sapphire laser (with 532 nm Verdi-18 pump) and frequency dou-
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bler for generating the Doppler cooling, detection, optical pumping, and pro-

tection/additional cooling light at 369.5 nm, 355 nm mode-locked laser for

stimulated Raman transitions, 935 nm and 638 nm (semiconductor diode)

repump lasers, 399 nm (semiconductor diode) ionization laser.

• Imaging - Photomultiplier tube, and ICCD camera.

• Frequency modulators - 7.37 GHz (Doppler cooling), 2.105 GHz (optical

pumping) and 3.1 GHz (935 nm repump) EOM; AOMs for Doppler cooling, de-

tection, protection, Raman beams, Iodine saturation absorption spectroscopy.

Their supply radio-frequency oscillators, and amplifiers.

• Trap electrode voltage supplies (DC and radio frequency), and

• The FPGA (and the control program) running the experimental sequence, and

the data acquisition.

Here are the steps to be followed.

1. Lock all the laser frequencies. This involves locking the Ti:Sapphire laser (etalon

lock, reference cavity lock, iodine saturation spectroscopy lock), locks for the diode

lasers (935 nm, 399 nm, any 739 nm laser), repetition rate lock of the 355 nm

mode-locked laser.

2. Load a single 171Yb+ ion in the trap (section 2.2.1).

3. Check the alignment and power of the near resonant beams (detection, Doppler

cooling, optical pumping, protection/additional cooling), by maximizing the scatter
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from the detection and the cooling beams, and minimizing the scatter from the

optical pumping beam by the ion. Block the 935 nm repump to make sure that

the scattering is caused due to the ion, and not by scattering off the electrodes,

trap parts or the imaging system. Work on the alignment, and the polarizations of

all the beams, if necessary. In our set up, the FPGA detection counters are tied

to the Detect window in the experimental sequence. Hence we use the following

experimental sequences to check the optimal settings for the near resonant beams.

The experimental chapters are shown in different colors. We use a PMT to monitor

the fluorescence from the ion.

• To check the detection - Doppler Cool → Detect. We get approximately ten

photon counts on average from the detection beam in 800 µs.

• To check the Doppler cooling - same as above, except now block the detection

beam with a beam-block, or turn the detection AOM OFF from the radio-

frequency switch box, and turn the Doppler cooling AOM ON all the time.

The Doppler cooling time in our experiment is usually 3 ms, but we shall

detect the scatter from the ions only during the Detect chapter (800 µs) in this

diagnostic test. The PMT detects about ten photons on an average from the

cooling beam. Don’t forget to put the Doppler AOM back to the computer

control, and unblock or turn the detection beam back ON.

• To check the optical pumping - Doppler Cool → Optical pump → Detect. The

PMT counts should be close to zero (less than one count on an average in our

experiment).
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4. Drive carrier Rabi oscillations with the Raman beams, maximize the Rabi frequency

by working on the Raman beam alignments. If the frequency of the carrier transition

is unknown, a frequency scan of one of the Raman beam AOMs may be necessary.

The experimental sequence is Doppler Cool → Optical pump → Raman → De-

tect. Scan the Raman pulse duration to find the π/2 time, and then maximize the

scattering by the ion, keeping the Raman pulse duration fixed at the π/2 time. To

get a finer response in the alignment, a longer pulse duration (5π/2, or 9π/2) may

be used.

5. Check the spin/qubit coherence. A Ramsey experiment would give us an idea of

any decoherence due to magnetic field and other noises, that affect the frequency

splitting of the qubit state. If we use the 355 nm mode locked laser for the π/2

pulses in the Ramsey interferometry, the results would also indicate the efficacy of

the beat-note lock. The Ramsey experimental sequence is Doppler Cool → Optical

pump → Raman (π/2) → Delay → Raman (π/2) → Detect.

The intensity noise on the Raman beams due to beam pointing instability or power

fluctuations can be estimated from the decay in the amplitude of the carrier Rabi

oscillation signal.

6. Take a frequency scan to observe all the important features of the system, such as

the Zeeman states, and the motional sidebands (the Raman pulse duration should

be long enough and adjusted to see the features). Make sure that the Zeeman

and the motional transition are at the expected frequencies. Any peak due to the

micromotion must be removed by tweaking the static voltages on the trap electrodes.
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The Zeeman transitions may be suppressed by tweaking the polarizations of the

Raman beams, and the direction of the magnetic field by varying the currents flowing

though the magnetic coils.

7. Differential A.C. Stark shift from each of the Raman beams may be measured by

turning on that beam in the Delay chapter of the Ramsey experimental sequence.

The difference in the frequencies of the Ramsey fringes with and without the Raman

beam present in the Delay chapter is the differential A.C. Stark shift from the Raman

beam. A typical differential A.C. Stark shift in the qubit states of 171Yb+ with about

1 Watt 355 nm beam focused to a 150µm×7µm waists (cylindrical beam) is about

400 Hz. This measurement can be used to center the Raman beams horizontally

on the ion. Move the ion horizontally by changing the static voltages on the trap

electrodes, and make the A.C. Stark shift from each beam symmetric about the ion

position with normal static voltage settings.

8. Raman sideband cooling - Turn on the sideband cooling sequence (SBCool ), at

the sideband frequencies (estimated from the frequency scan). The red sideband

peak in a Raman frequency scan should be depleted in the presence of the sideband

cooling. In our experimental geometry, the Raman beams predominantly couple to

the X−transverse modes, and hence it is hard to cool the Y−modes appreciably.

9. Measure the sideband frequencies precisely. The experimental sequence is: Doppler

Cool → Optical pump → SBCool → Raman → Detect. Turn the power in one of

the Raman beams (we call it Raman 2) to a very low value, and find the position of

the sidebands carefully. The sideband frequencies in the limit of zero optical power
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do not contain the differential A.C. Stark shifts, thus measure the ‘true’ sideband

frequencies at this trap configuration. Note that the differential Stark shift from

the other beam (Raman 1) is still present. However, the contribution from Raman

1 in this experiment is primarily to add the two photon differential A.C. Stark shift,

which is typically negligible compared to the four photon differential A.C. Stark

shift, arising due to off-resonant coupling of the Raman beatnote (at the sideband

frequency) to the carrier transition. Typical numbers in our set up are 600 Hz for

the two photon Stark shift (from the two beams), versus about 30 KHz for the four

photon Stark shift (when driving a sideband at about 5 MHz).

Once we find the sideband frequencies, we set the frequency of the carrier tran-

sition (that will drive the effective external magnetic field in our quantum Ising

Hamiltonian),

νcarr =
νrsb + νbsb

2
. (2.61)

Our next task is to balance the power in the two Raman beat-notes (referred to

as the rsb and the bsb beat-notes), so that the four photon differential A.C. Stark

shift from the off-resonant carrier is canceled, when symmetrically detuned about

the carrier (to drive the Mølmer-Sørensen transition in multiple spins later). We

increase the optical power in the beat-notes by increasing the power in the radio-

frequency signal driving the AOM 2. As the differential A.C. Stark shift from the

AOM 2 will shift all the three frequencies {carrier, rsb, bsb}, first we add/subtract

the pre-calibrated differential A.C. Stark shift from all the frequencies. Next, we

detune both the rsb and the bsb beat-notes symmetrically from the carrier by a few
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sideband line widths (which can be estimated from the width of the sideband peaks

in the frequency scan, or by driving a sideband on resonance).

If the power in the rsb and the bsb beat-notes are balanced, the four photon differ-

ential A.C. Stark shift should cancel, as the beat-notes are detuned symmetrically

about the carrier. We check this by a Ramsey experiment, with the following se-

quence, Doppler Cool → Optical pump → SBCool → Raman (π/2, 0) → Off-

resonant Raman rsb with rf power P1+Off-resonant Raman bsb with rf power P2 →

Raman (π/2, π/2) → Detect. The duration of the chapter in italics is scanned.

Here Raman (π/2, φ) is a π/2 pulse with a phase φ. Thus we initialize the spin

along the y−axis (by rotating about the x−axis of the Bloch sphere, φ = 0 refers

to the x−axis.) Then we turn on the detuned rsb and bsb beat-notes. If the A.C.

Stark shift is nulled, these beat-notes do not rotate the spin state in the Bloch

sphere, and hence the final rotation about the y−axis (φ = π/2) from the Raman

transition leave the spin in the same state. So, we’ll detect a brightness of 0.5, as

the detection basis is along the z−axis of the Bloch sphere. If, however, there is

an uncompensated Stark shift due to unbalanced power in the two beams, we shall

observe a Ramsey fringe as the duration of the ‘Off-resonant Raman rsb with rf

power P1+Off-resonant Raman bsb with rf power P2’ chapter is scanned. Tweak

the power P1, and P2 to null this fringe over the maximum duration of the desired

quantum simulation experiment.

10. Drive the red sideband on resonance to measure the sideband Rabi frequency more

precisely. For this, set the Raman rsb beat-note on resonance with the motional
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red sideband transition, and detune the bsb beat-note from the blue sideband reso-

nance by 4-5 times the estimated sideband Rabi frequency. Since the red sideband

transition for the optically pumped spin state |↑z〉 is suppressed due to the Raman

sideband cooling, we apply a π pulse to flip the spin state to | ↑z〉. We observe the

| ↑z, n〉 ↔ | ↓z, n + 1〉 Rabi oscillation, with n ≈ 0, and measure the frequency of

the oscillation. This should be equal to ηΩ, where η is the Lamb-Dicke parameter,

and Ω is the carrier Rabi frequency consistent with the optical intensity applied to

drive the sideband. The experimental sequence is: Doppler Cool → Optical pump

→ SBCool → Raman (π) → Raman rsb on resonance+off-resonant Raman bsb →

Detect.

Similarly, measure the blue sideband Rabi frequency precisely by bringing the Ra-

man bsb beat-note on resonance with the motional blue sideband transition, and

detuning the rsb beat-note away from the transition. The experimental sequence is,

Doppler Cool → Optical pump → SBCool → Off-resonant Raman rsb+Raman

bsb on resonance → Detect.

Now that we have found the appropriate frequency and power settings for the

Mølmer-Sørensen transitions, we shall calibrate the effective transverse magnetic

field, B before moving on to multiple ions.

11. The strength of the B field is given by,

B =
ΩB

2
, (2.62)
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where ΩB is the carrier Rabi frequency. We change the power of the radio frequency

signal driving the Raman AOM P to vary ΩB, and hence B. We calibrate the B

field for a given radio-frequency power P , by measuring the B field strength for a

few P values, and following the trend.

12. Load another 171Yb+ ion in the trap. Now we have two ions, and we are ready

to observe Ising coupling induced oscillations between spin states.

13. Detune the Raman rsb and bsb beat-notes symmetrically about the carrier, at fre-

quencies νHF ± µ, where µ is the beat-note frequency, µ = νx + δ. Choose δ to

be larger than a few times the sideband Rabi frequencies (ηΩ) in order to avoid

populating the phonon modes. Now prepare the spins in the | ↓z↓z〉 states, and

apply the Raman beat-notes. The Ising interaction, Jσ1
xσ

2
x will make the spins os-

cillate between the |↓z↓z〉 and |↑z↑z〉 states. The frequency of the oscillations is the

Ising coupling (multiplied by two) between the spins. The experimental sequence is:

Doppler Cool → Optical pump → SBCool → Raman rsb and bsb symmetrically

detuned from the carrier → Detect.

The probability of | ↑z↑z〉 state, P (| ↑z↑z〉) should reach unity (the average number

of spins in the | ↑z〉 state should reach 2) in the course of time evolution. At this

point, we may also maximize the contrast of this oscillation by fine adjustments

of the rsb and bsb beat-note frequencies. For this, set the pulse duration to the

time when P (| ↑z↑z〉) is at its maximum, and frequency scan the rsb beat-note

around µ = ωx + δ, keeping the bsb beat-note fixed in the previous experimental

sequence. Find the frequency of the rsb beat-note that maximizes P (| ↑z↑z〉). This
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should almost be identical to the frequency that we set earlier to observe the Ising

coupling induced oscillations. If the new frequency is slightly shifted, reset the

carrier according to eq 2.61.

14. Load the desired number of ions in the trap.

15. If we are going to use a CCD imager to detect the spatial resolved spin states, at

this point we should find the Region of Interests (ROIs), and discriminator counts

of the ions [91] on the CCD.

16. [Optional] Take a Raman frequency scan, and identify the motional transitions.

Include other modes in the sideband cooling sequence. The transverse modes used

for generating the Ising couplings are tightly packed together in frequency, and hence

the modes need not be addressed separately for Raman cooling. Empirically, three

Raman beat-notes are sufficient to cool down almost all the X−modes for a system

of 10 spins in our experiment.

17. Now we are ready to run a quantum simulation experiment. Have the parameters

ready for the quantum simulation experiment, such as the Mølmer-Sørensen detun-

ing (δ), phases of the carrier π/2 pulses for single qubit rotation, the initial B-field,

time constant τ of ramping the B field down. Table 2.1 lists the phases of various

pulses used in our quantum simulation experiment.

106



Field/pulse phase comments

First π/2 pulse 180◦ for polarizing the spins along the
y−direction

B (carrier) 270◦ for simulating FM quantum Ising model

B (carrier) 90◦ for simulating AFM quantum Ising model

rsb
0◦

bsb
180◦

Final π/2 pulse 270◦ for rotating the measurement basis

Table 2.1: Phases of various pulses used in quantum simulation.

2.8 Troubleshooting with 174Yb+

174Yb+ has a zero nuclear spin and hence the hyperfine structure is absent

in the electronic ground state. Thus the Doppler cooling beam does not need any

sideband to cool the atom, unlike 171Yb+ which requires a 14.74 GHz sideband. The

lack of hyperfine Zeeman sub-levels also eliminates the coherent population trapping

in the dark states [89], and results in an increased fluorescence.

174Yb+ can be used to troubleshoot optics alignment problems. To load 174Yb+

we need only one 369.5 nm beam, the 935 nm beam and of course the loading

beams. We switch all the lasers to 174Yb+ frequencies (Table C.1), and try to

capture 174Yb+ ions by making sure that all the beams are approximately passing

through the trapping region. Once we load 174Yb+ ions (either in a crystal or in a

cloud), we verify of the alignment of individual 369.5 nm beams (detection, Doppler

cooling, optical pumping, and the protection beams), and the 935 nm beam.

The EOMs should be turned off to observe maximum fluorescence from
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the 174Yb+ ions.

If the alignment was the only problem, we should now be all set to load 171Yb+ in

our trap, after switching the current supply to the isotopically enriched oven. If we

still cannot load 171Yb+ in the trap, we should verify that the Doppler cooling and

935 nm EOMs are generating appropriate sidebands, and check that the magnetic

field coils are not shorted.
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Chapter 3

Simulation of the ferromagnetic quantum Ising model

3.1 Overview

The ferromagnetic quantum Ising model is one of the simplest models that

admit a quantum phase transition (QPT). For N interacting spin−1/2 objects, the

Hamiltonian is given by

H = −
∑
i,j
j<i

Ji,jσ
i
xσ

j
x −B

∑
i

σiy (3.1)

where σiα (α = x, y, z) are the Pauli matrices for the ith spin (i = 1, 2, ..., N),

Ji,j(> 0) is the Ising coupling between spins i and j, and B is an effective transverse

magnetic field. Here the Ising couplings are not limited to the nearest neighbors

only, and the range of the interactions can be tuned, as we have discussed in the

previous chapter. This Hamiltonian (Eq. (3.1)) shows quantum properties as the

Ising interactions and the effective transverse field couple to non-commuting spin

components.

In this chapter∗, we discuss the simulation of the ferromagnetic quantum Ising

Hamiltonian (Eq. (3.1)) in a chain of up to 16 trapped 171Yb+ ions. We tune the

effective transverse magnetic field while keeping the Ising couplings fixed, following

∗Most of the results presented in this chapter are published in Ref. [41].
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the adiabatic quantum simulation protocol [73], and directly measure the spin order

along the Ising (x) direction. For an effective transverse magnetic field much stronger

than the Ising interactions, the spins are polarized along the y−direction, resulting

in a paramagnetic state along the x−direction. As the magnitude of the transverse

field is lowered, the spins start to align themselves according to the ferromagnetic

Ising couplings, and we observe a crossover between paramagnetic and ferromagnetic

spin order. Since a QPT is expected to emerge for a sufficiently large system with

a system Hamiltonian given by Eq. (3.1), the observed finite system crossover

curves should sharpen as we scale the system up. In this chapter we compare

the results of quantum simulation with N = 2 to N = 9 spins, and observe that

the crossover curves between the phases indeed get sharper with increasing system

size, prefacing the expected quantum phase transition in the thermodynamic limit.

This experiment serves as a benchmark for simulation of arbitrary fully connected

quantum spin models, for which the theory becomes intractable for more than a few

dozen spins.

As described previously, we use stimulated Raman transitions to engineer

Hamiltonian (Eq. (3.1)). The experiments with N = 2 to N = 9 spins are per-

formed using Raman beams from a Ti:Sapphire laser, which is ≈ 2.7 THz detuned

from the 2S1/2 to 2P1/2 resonance in 171Yb+ at 369.5 nm, resulting in a small but

non-negligible probability of spontaneous emission, which introduces decoherence in

the coherent time evolution. We compare the experimental results with numerical

calculations using a quantum trajectory method, which becomes inefficient beyond

a few dozen spins. We use a far detuned pulsed laser at 355 nm to reduce the
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decoherence error due to spontaneous emission, and N = 16 ion experiments are

performed with this laser.

3.2 Symmetries of the Hamiltonian

The quantum Ising Hamiltonian (Eq. (3.1)) has a global spin rotation sym-

metry by a Bloch vector angle of π about the B field axis, or the y−axis. The single

spin unitary rotation operator Ur = exp (−iπ
2
σy) = −iσy is a symmetry operation,

under which the x−spin states∗ transform in the following way,

Ur|↑〉 = −|↓〉 (3.2a)

Ur|↓〉 = |↑〉. (3.2b)

In our experiments we simulate the quantum Ising model by shining laser

beams with nearly uniform intensities on all the ions. Thus the effective transverse

magnetic field is near uniform across the spin chain, and the Ising couplings have

a spatial reflection symmetry about the center of the spin chain. The Hamiltonian

inherits this reflection symmetry.

In the absence of any external biasing field, a finite system does not sponta-

neously break the symmetry of the Hamiltonian. Thus as we tune the dimensionless

parameter of the effective transverse field to the Ising couplings in the Hamiltonian,

the symmetries are preserved. We shall elucidate this for a system of N = 2 spins

in the next section.

∗We omit the subscript x from the eigenstates of σx throughout this thesis.
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3.3 Low energy eigenstates at T=0

We define the effective average Ising coupling as J = 〈
∑
j 6=i

Ji,j〉i, where 〈...〉i

indicates averaging over the index i. With this definition, J ≈ 2J0 (N > 2) when the

Ising couplings are limited to the nearest neighbors only (Ji,j = J0 for j = i±1, and

0 otherwise), and J = (N−1)J0 ≈ NJ0 for ‘infinite range’ interactions (Ji,j = J0 for

any i and j). For B/J → 0 the Hamiltonian is dominated by the Ising interactions,

and the spins show ferromagnetic order along the x−direction. In the other limit of

B/J →∞ the effective transverse field dominates over the Ising interactions, and the

spins are polarized along the y−directions, or paramagnetic along the x−direction

(we assume that B > 0). In between these two extremes, the system undergoes a

crossover between these two phases, which approaches a quantum phase transition

in the large system limit of N →∞.

3.3.1 States near B/J = 0

At B/J = 0, the ferromagnetic (FM) states | ↑↑ ... ↑〉 and | ↓↓ ... ↓〉 form a

doubly degenerate ground state manifold, where | ↑〉 and | ↓〉 are the eigenstates of

σx. Any quantum superposition of these two states is also a ground state. To find

the ground states for small B/J , we treat the transverse field part of Hamiltonian

(Eq. (3.1)), HB = −B
∑

i σ
i
y as a perturbation over the Ising Hamiltonian, HI =

−
∑

i<j Ji,jσ
i
xσ

j
x. HB mixes the FM spin states and lifts the degeneracy in the ground

state manifold.

As an example, let’s consider the case of N = 2 spins. Figure 3.1 shows the
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Figure 3.1: Energy spectrum of the ferromagnetic transverse Ising model
for N = 2 spins: We plot the four eigenstates of Eq. (3.1) for N = 2 as a
function of the dimensionless parameter B/J . The eigenstates are connected by
the symmetries of the Hamiltonian- a global spin rotation symmetry about the
y−axis by a Bloch vector angle of ‘π’, and the spatial reflection symmetry owing
to the symmetric nature of the Ising couplings and the effective transverse field, as
explained in section 3.2. The ground state is antisymmetric w.r.t. spin flip, but
symmetric w.r.t. reflection. When we ramp the Hamiltonian at a finite rate in our
experiment, non-adiabatic effects may lead to spin excitations to levels with the
same symmetry as the ground state. The third excited state, which is the highest
excited state in the case of N = 2 spins has the same symmetries as the ground
state.
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energy eigenstates of Eq. (3.1) for various values of B/J . At B/J = 0, the ground

state manifold contains the eigenstates of HI , namely | ↑↑〉 and | ↓↓〉 with energy

−J . The other two states |↓↑〉 and |↑↓〉 with energies J belong to the excited state

manifold. As σy| ↑〉 = −i| ↓〉 and σy| ↓〉 = i| ↑〉,

HB| ↑↑〉 = iB(| ↑↓〉+ | ↓↑〉) (3.3a)

HB| ↓↓〉 = −iB (| ↑↓〉+ | ↓↑〉) (3.3b)

HB| ↑↓〉 = −iB(| ↑↑〉 − | ↓↓〉) (3.3c)

HB| ↓↑〉 = −iB(| ↑↑〉 − | ↓↓〉) (3.3d)

Clearly, the first order perturbation matrix element between the two FM states

〈↑↑ |HB| ↓↓〉 = 0. The second order matrix elements between | ↑↑〉 and | ↓↓〉 are

E↑↑,↑↑ =
∑
γ

〈↑↑ |HB|γ〉〈γ|HB| ↑↑〉
E0 − Eγ

= −B
2

J
(3.4a)

E↑↑,↓↓ =
∑
γ

〈↑↑ |HB|γ〉〈γ|HB| ↓↓〉
E0 − Eγ

=
B2

J
(3.4b)

E↓↓,↑↑ =
∑
γ

〈↓↓ |HB|γ〉〈γ|HB| ↑↑〉
E0 − Eγ

=
B2

J
(3.4c)

E↓↓,↓↓ =
∑
γ

〈↓↓ |HB|γ〉〈γ|HB| ↓↓〉
E0 − Eγ

= −B
2

J
(3.4d)

Here states |γ〉 denote all states outside the ground state manifold, i.e., the

states | ↑↓〉 and | ↓↑〉, and we have used Eqs. (3.3). Thus the effective Hamiltonian
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in the ground state manifold up to the second order in perturbations, in the basis

formed by the FM states is,

 −J − B2

J
B2

J

B2

J
−J − B2

J

 =

(
−J − B2

J

)
I2 +

B2

J

 0 1

1 0

 . (3.5)

Thus the new eigenstates are (| ↑↑〉 − | ↓↓〉)/
√

2 and (| ↑↑〉 + | ↓↓〉)/
√

2, with

energies of −J − 2B2/J and −J respectively. Since J > 0, the antisymmetric

superposition is the new ground state, separated from the symmetric state (first

excited state) by an energy of 2B2/J = 2J(B/J)2. The ground state is antisym-

metric w.r.t. the spin flip symmetry (Eqs. (3.2)), and symmetric w.r.t. the spatial

reflection symmetry.

For a system size of up to a dozen spins, the ground state can be exactly calcu-

lated by diagonalizing the Hamiltonian (Eq. (3.1)), but the perturbation treatment

presented here gives us some insight on how the degeneracy in the ground state

splits in the presence of a small transverse field. We may generalize our discussion

to larger spin chains, and note that for a system of N spins, the degeneracy in the

ground state is generically broken at the N th order in perturbation, and hence the

energy splittings between the perturbed ground states is O((B/J)N). We illustrate

this for N = 2 and N = 3 spins in figure 3.2. The ground state is always entangled

for small but finite B/J . For very large N , the ground state and the first excited

states are nearly degenerate for B/J < 1 (B > 0). The perturbation theory breaks

down when B/J approaches unity.
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Figure 3.2: Ground state degeneracy splitting by the transverse field: A
non-zero transverse field B breaks the degeneracy in the ground state manifold of
Eq. (3.1) at B = 0. Since the FM ground states in the absence of a transverse
field are connected by a global spin flip only, the degeneracy is broken in the N th

order in perturbation for a system of N spins, as explained in the text. Here we
plot the energy of the first excited state (measured from the ground state) as a
function of B/J for N = 2 and N = 3 spins. The disks and the triangles are the
results from an exact diagonalization of Eq. (3.1), and the solid lines are quadratic
(N = 2) and cubic (N = 3) polynomials in B/J . For a system of N spins, the
energy splitting is O(B/J)N . When the Ising interactions are antiferromagnetic,
the competition between the interactions may lead to increased degeneracy in the
ground state manifold, and the transverse field may break the degeneracy more
easily, as discussed in chapter 4.
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Note that in the presence of long range ferromagnetic interactions the thermo-

dynamic limit of HI may not exist, as the energy density may become unbounded

from below, unless the Ising couplings themselves implicitly depend on the system

size N appropriately.

3.3.2 States near B/J →∞

At B/J → ∞ (J = 0), the ground state of Hamiltonian (Eq. (3.1)) is non-

degenerate, with all spins pointing along the y−direction, namely | ↑y↑y ...〉 . The

ground state transforms to (−iσy)(−iσy)|↑y↑y〉 = −|↑y↑y〉 under the spin flip oper-

ation i.e., it is antisymmetric w.r.t. the spin flip symmetry. This state is symmetric

under the reflection symmetry of the Hamiltonian. The first excited states are the

singe spin flipped states, |↓y↑y↑y ...〉, |↑y↓y↑y ...〉, ... . The second excited states are

the double spin flipped states and so on.

For B/J →∞, we may treat HI as a perturbation over HB in the Hamiltonian.

HI lifts the degeneracy between the states in the first excited state manifold, as

−Jijσixσjx directly couples (first order in perturbation) the excited state with the

i-th spin flipped and the excited state with the j-th spin flipped. So the degeneracy

in the first excited state manifold is generically broken with a finite Ising interaction

between the spins.

As an example, the first excited states with N = 2 spins are |↑y↓y〉 and |↓y↑y〉
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at B/J →∞. As σx|↑y〉 = i|↓y〉 and σx|↓y〉 = −i|↑y〉,

HI |↑y↓y〉 = −J |↓y↑y〉 (3.6a)

HI |↓y↑y〉 = −J |↑y↓y〉 (3.6b)

Thus the effective Hamiltonian up to the first order in perturbation in the

basis formed by the unperturbed states in first excited state manifold, i.e., | ↑y↓y〉

and |↓y↑y〉 is,  0 −J

−J 0

 (3.7)

Hence the new eigenstates are (| ↓y↑y〉 + | ↑y↓y〉)/
√

2 with energy −J and (| ↑y↓y

〉 − | ↓y↑y〉)/
√

2 with energy J . The energy splitting between these states is 2J ,

independent of B to the first order in perturbation. Note that the ground state

energy is −2B, and hence the energy splittings of these two perturbed states from

the ground state | ↓y↓y〉 are 2B − J and 2B + J respectively. We tabulate the

symmetries of these and the other eigenstates of Eq. (3.1) for N = 2 spins in table

3.1. Similarly, for a system of N spins, the unperturbed first excited state manifold

contains N single spin flipped states (along y) at B/J → ∞, that are mixed and

entangled by the Ising interactions HI .

3.3.3 Quantum phase transition at B = J

In between the two extreme limits of B/J → 0 and B/J → ∞, the Ising

interactions and the transverse field compete to align the spins accordingly. As B/J
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Parameters Eigenstates Spin flip Spatial Reflection

B/J → 0 1√
2

(|↑↑〉 − |↓↓〉) antisymmetric symmetric
1√
2

(|↑↑〉+ |↓↓〉) symmetric symmetric
1√
2

(|↑↓〉 − |↓↑〉) symmetric antisymmetric
1√
2

(|↑↓〉+ |↓↑〉) antisymmetric symmetric

B/J →∞ |↑y↑y〉 antisymmetric symmetric
1√
2

(|↑y↓y〉+ |↓y↑y〉) symmetric symmetric
1√
2

(|↑y↓y〉 − |↓y↑y〉) symmetric antisymmetric

|↓y↓y〉 antisymmetric symmetric

Table 3.1: Symmetries of the eigenstates: The eigenstates of Eq. (3.1) are
either symmetric or antisymmetric w.r.t. the two symmetries of the Hamiltonian-
the spin flip symmetry and the reflection symmetry, as described in section 3.2.
Here we tabulate the symmetries of the eigenstates of the Hamiltonian (Eq. (3.1))
for N = 2 spins in the two extreme limits of B/J → 0 and B/J →∞.

is reduced from its infinite value, the system crosses over from the polarized or the

paramagnetic state to the ferromagnetic state in a finite system. As the system size

increases, a second order phase transition point emerges.

The ground state of Eq. (3.1) smoothly connects the ground states in these

two limits of B/J → 0 and B/J →∞ for all intermediate values of B/J . The first

excited state in the limit of B/J →∞ remains the first excited state for all B/J 6= 0,

and becomes a ground state at B/J = 0. The second excited state undergoes an

avoided level crossing with the ground state.

As we vary the dimensionless parameter B/J , the instantaneous eigenstates of

the Hamiltonian change preserving the symmetries ( though in the infinite system

size limit, the system may break the symmetries spontaneously). If the Hamiltonian

is changed faster than the adiabatic limit, the system may be excited from one

eigenstate to another, but states with opposite symmetries do not mix. As an
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Figure 3.3: A few low energy eigenstates of Eq. (3.1) for N = 5 spins: Here
we plot the energy spectra of six low energy eigenstates of Eq. (3.1) for N = 5.
The Ising couplings fall-off with distance as Jij = J/|i − j| in this example. ∆E
refers to the energy of the eigenstates relative to the ground state. The minimum
energy between the ground and the first excited state having the same symmetry
as the ground state is the critical gap, ∆c that sets the relevant energy scale for an
adiabatic quantum simulation, as discussed in the text. The cusps on the highest
energy states shown here due to level crossings from other states not included in
this diagram.
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example, the ground state for N = 2 couples to the third (the highest) excited state

as they are both antisymmetric w.r.t. spin flip and symmetric w.r.t. reflection.

This result holds for N > 2 spins, and the minimum gap between the ground and

the third excited state is the critical gap, ∆c, which occurs at B ≈ J , that sets the

time scale of ramping the Hamiltonian in order to be adiabatic. We show a few low

energy states of the Hamiltonian (Eq. (3.1)) and the critical gap for a system of

N = 5 spins, with ferromagnetic coupling in Fig. 3.3. The critical gap depends on

the system size, and vanishes in the limit of an infinite system. This also depends

on the range of the interactions. For nearest neighbor interactions, this scales as

≈ 1/N with system size, while in the other extreme of perfectly uniform interactions

between all the spins it scales more favorably, ∆c ≈ N−1/3 [107].

3.4 Experiment: onset of a quantum phase transition

3.4.1 Engineering the ferromagnetic Ising couplings

We simulate the Ising interactions by off-resonant stimulated Raman transi-

tions on the transverse vibrational modes of the ion chain, following the Mølmer-

Sørensen scheme [71], as described previously. The Ising coupling Jij between spins

i and j is given by

Ji,j = ΩiΩjR

N∑
m=1

bi,mbj,m
µ2 − ω2

m

. (3.8)

where bi,m is the component of the normal mode eigenvector between ion i and

mode m at frequency ωm = 2πνm (with ν1 = νX denoting the COM mode), and
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Ωi = g2
i /∆ is the carrier Rabi frequency on the ith ion. Here gi is the single photon

Rabi frequency of the ith ion and ∆ is the detuning of the Raman beams from

the 2S1/2 ↔ 2P1/2 transition. R = ~∆k2/(2M) is the recoil frequency of a single

ion (of mass M) in the stimulated Raman transition process. The Mølmer-Sørensen

beatnote µ controls the sign and range of the interactions, as different normal modes

are virtually excited. We tune µ close to the COM mode, to make all the couplings

of the same sign.

The COM mode (m = 1) makes all the couplings uniform across the chain,

as the eigenvectors bi,1 = 1/
√
N for all i, and hence Jij is the same for any pair

(i, j). The system exhibits infinite range interactions, and the geometry of the spin

chain (and the dimensionality) becomes irrelevant. For a sufficiently large system,

each spin feels a ‘mean field’ created by all the other spins. We note that the Ising

coupling Jij ∝ 1/N , thus the thermodynamic limit of Eq. (3.1) exists, and the

phase transition point B = J = 〈
∑

j 6=i Ji,j〉i becomes independent of the system

size. Other modes off-resonantly excited by the Raman beatnote suppress the range

of the interactions.

We use up to N = 9 spins to observe the sharpening of the crossover from the

paramagnetic to the ferromagnetic phase. In the experiment ∆ ≈ 2π × 2.7 THz,

Ωi ≈ 2π × 370 KHz and we expect J/N ≈ 2π × 1 KHz for the beatnote detuning µ

such that µ− ω1 ≈ 4ηi,1Ωi,
∗ , as shown in Fig. 3.4a . This beatnote corresponds to

∗The Lamb-Dicke parameter for COM scales with the system size as 1/
√
N . However, as

pointed out in Ref. [53], a more stringent condition to avoid phonon excitations would be to keep
the detuning constant for all system size. This is due to the fact that, even if the Lamb-Dicke
parameter goes down with increasing system size, there are more spin configurations that lead to
phonon excitations.

122



Figure 3.4: Raman spectrum of vibrational modes and Ising coupling pro-
file for N = 9 spins: Transverse [108] vibrational modes are used in the exper-
iment to generate Ising couplings according to Eq. (3.8). a. Raman sideband
spectrum of vibrational normal modes along transverse X−direction for nine ions,
labeled by their index m. The two highest frequency modes at ν1 (CM mode) and
ν2 =

√
ν2

1 − ν2
z (“tilt” mode) occur at the same position independent of the number

of ions. The dotted and the dashed lines show beatnote detunings of µ ≈ ν1+30 KHz
and µ ≈ ν1 +63 KHz used in the experiment for N = 9 and N = 2 ions respectively.
Carrier transition, weak excitation of transverse−Y and axial−Z normal modes and
higher order modes are faded (light grey) for clarity. b. Theoretical Ising coupling
pattern (Eq. (3.8)) for N = 9 ions and uniform Raman beams. The main contribu-
tion follows from the uniform COM mode, with inhomogeneities given by excitation
through the other nearby modes (particularly the tilt mode). Here, J1,1+r ∝ 1/r0.35

(r ≥ 1), as found out empirically. For larger detunings, the range of the interaction
falls off even faster with distance, approaching the limit Ji,j ∝ 1/|i− j|3 for µ� ω1

[109].
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2π×63 KHz blue of the COM mode frequency for 2 ions and 2π×30 KHz for 9 ions.

The expected Ising coupling pattern for a uniformly illuminated ion chain is shown in

Fig. 3.4b for N = 9 ions and the couplings are dominated by uniform contribution

of the COM mode. The non-uniformity in the Ising couplings arises from other

vibrational modes and variation in Ωi across the ion chain (gaussian Raman beams

with a waist of ≈ 70 µm along the ion chain and ≈ 7 µm perpendicular to the ion

chain were used in the experiment). For N = 9 ions the chain is ≈ 14 µm long, and

the variation in Ωi is ≈ 2%.

3.4.2 Experimental protocol and order parameters of the transition

In the experiment, we follow the highest excited state of the Hamiltonian

−H [39, 54], which is formally equivalent to the ground state of Hamiltonian H

(Eq. (3.1)). This reduces direct excitation of the tilt mode phonons. The quantum

simulation experiment proceeds as follows (Fig. 2.20). We cool all the X−transverse

modes of vibration to near their ground states, and deep within the Lamb-Dicke

regime by standard Doppler and Raman sideband cooling procedures. We initialize

the spins to be aligned to the y− direction of the Bloch sphere by optically pumping

to | ↓z↓z ... ↓z〉 and then coherently rotating the spins through π/2 about the Bloch

x−axis with a carrier Raman transition. Next we switch on the Hamiltonian H with

an effective magnetic field B0 ≈ 5J so that the spins are prepared predominantly in

the ground state. Then we exponentially ramp down the effective magnetic field with

a time constant of τ = 80µs to a final value B, keeping the Ising couplings fixed.
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We finally measure the spins along the Ising (x) direction by coherently rotating

the spins through π/2 about the Bloch y−axis before fluorescence detection on a

photomultiplier tube (PMT).

We repeat the experiment ≈ 1000 × N times for a system of N spins and

generate a histogram of fluorescence counts and fit to a weighted sum of basis

functions to obtain the probability distribution P (s) of the number of spins in state

(| ↑〉), where s = 0, 1, ...N . We can generate several magnetic order parameters

of interest from the distribution P (s), showing transitions between different spin

orders.

One order parameter is the average absolute magnetization (per site) along

the Ising direction, mx = 1
N

N∑
s=0

|N − 2s|P (s). Eq. (3.1) has a global time rever-

sal symmetry of {σix → −σix, σiz → −σiz, σiy → σiy} as discussed previously and

this does not spontaneously break for a finite system, necessitating the use of av-

erage absolute value of the magnetization per site along the Ising direction as the

relevant order parameter. For a large system, this parameter shows a second or-

der phase transition, or a discontinuity in its derivative with respect to B/J . On

the other hand, the fourth-order moment of the magnetization or Binder cumulant

g =
N∑
s=0

(N − 2s)4P (s)/

(
N∑
s=0

(N − 2s)2P (s)

)2

[110, 111] becomes a step function

at the QPT and should therefore be more sensitive to the phase transition. We

illustrate this point by plotting the exact ground state order in the simple case of

uniform Ising couplings for a moderately large system (N = 100) in Fig. 3.5.

When the spins are polarized along the y−direction of the Bloch sphere, the

distribution of total spin along the x−direction is binomial and approaches a Gaus-
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Figure 3.5: Binder cumulant and magnetization for the adiabatic theory:
Theoretical values of order parameters m̄x and ḡ are plotted vs B/J for N = 2
and N = 9 spins with non-uniform Ising couplings as used in the experiment in the
case of a perfectly adiabatic time evolution. The order parameters are calculated
by directly diagonalizing Hamiltonian (3.1). Order parameters are also calculated
for a moderately large system (N = 100) with uniform Ising couplings, to show the
difference between the behaviors of m̄x and ḡ. In case of uniform Ising couplings the
effective ground state manifold reduces to N + 1 dimensions in the total spin basis.
The scaled Binder cumulant ḡ, unlike the scaled magnetization m̄x, approaches a
step function near the transition point B/J ≈ 1, making it experimentally suitable
to probe the transition point for relatively small systems.

126



sian (with zero mean) in the limit of N → ∞. For system size of N , mx takes

on theoretical value of m0
x,N = 1

N2N

N∑
n=0

NCn|N − 2n| in the perfect paramagnetic

phase (B/|J | → ∞) and unity in the other limit of B/J = 0. We rescale mx to

m̄x =
(
m0
x,N −mx

)
/
(
m0
x,N − 1

)
which should ideally be zero in perfect paramag-

netic phase and unity in perfect ferromagnetic phase for any N . This accounts for

the ‘trivial’ finite size effect due to the difference between Binomial and Gaussian

distribution. Similarly the Binder Cumulant g is scaled to ḡ = (g0
N − g) / (g0

N − 1),

where g0
N = 3− 2/N is the theoretical value of g for B/J →∞.

3.4.3 Results

In Fig 3.6a-b we present data for the scaled magnetization m̄x and the scaled

Binder cumulant ḡ as B/J is varied in the adiabatic quantum simulation for N = 2

and N = 9 spins. The data shows the increased steepness for the larger system size.

The scaled magnetization m̄x is suppressed by ≈ 25% (Fig. 3.6a) and the scaled

Binder cumulant ḡ is suppressed by ≈ 10% (Fig. 3.6b) from unity at B/J = 0,

predominantly due to decoherence from off-resonant spontaneous emission and ad-

ditional dephasing due to intensity fluctuations in Raman beams during the simu-

lation. Figure 3.7 shows the scaled magnetization, m̄x for N = 2 to N = 9 spins

depicting the sharpening of the crossover curves from paramagnetic to ferromag-

netic spin order with increasing system size. The linear time scale indicates the

exponential ramping profile of the (logarithmic) B/J scale. The three dimensional

background is unphysical, and is used just to help us visualize this sharpening.
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Figure 3.6: Emergence of the ferromagnetic spin order: a. Magnetization
data for N = 2 spins (circles) is contrasted with N = 9 spins (diamonds) with
representative detection error bars. The data deviate from unity at B/J = 0 by
≈ 20%, predominantly due to decoherence from spontaneous emission in Raman
transitions and additional dephasing from Raman beam intensity fluctuation, as
discussed in the text. The theoretical time evolution curves (solid line for N = 2
and dashed line for N = 9 spins) are calculated by averaging over 10,000 quantum
trajectories. b. Scaled Binder cumulant (ḡ) data and time evolution theory curves
are plotted for N = 2 and N = 9 spins. At B/|J | = 0 the data deviate by ≈ 10%
from unity, due to decoherence as mentioned before.
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Figure 3.7: Onset of a quantum phase transition- sharpening of the
crossover curves with increasing system size.: Scaled magnetization, m̄x vs
B/J (and simulation time) is plotted for N = 2 to N = 9 spins. As B/J is lowered,
the spins undergo a crossover from a paramagnetic to ferromagnetic phase. The
crossover curves sharpen as the system size is increased from N = 2 to N = 9,
prefacing a QPT in the limit of infinite system size. The oscillations in the data
arise due to imperfect initial state preparation and non-adiabaticity due to finite
ramping time. The (unphysical) 3D background is shown to guide eyes.
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We compare the data shown in Fig. 3.6 to the theoretical evolution taking into

account experimental imperfections and errors discussed below, including sponta-

neous emission to the spin states and states outside the Hilbert space, and additional

decoherence. The evolution is calculated by averaging 10, 000 quantum trajectories.

This takes only one minute on a single computing node for N = 2 spins and ap-

proximately 7 hours, on a single node, for N = 9 spins. Extrapolating from this

calculation suggests that averaging 10, 000 trajectories for N = 15 spins would re-

quire 24 hours on a 40 node cluster, indicating the inefficiency of classical computers

to simulate even a small quantum system.

3.4.4 Sources of error in the quantum simulation

In this section we discuss some of the primary sources of errors in our quantum

simulation. We characterize errors in the current simulation by plotting the observed

parameter P(FM)=P(0)+P(N) for N = 2 to N = 9 spins in Fig. 3.8. Theoretically

P(FM) = 2/2N when the spins are transversely polarized i.e.,P(FM) = 0.5 for N = 2

spins and exponentially goes down to 0.004 for N = 9 spins, and unity when there is

perfect ferromagnetic order. Since P(FM) involves only two of the 2N basis states,

it is more sensitive to errors compared with the order parameters m̄x and ḡ. For

instance, at B/J = 0 in Fig. 3.6a-b and Fig. 3.8a-d we find that m̄x and ḡ do not

change appreciably with the system size, but P(FM) degrades to ≈ 0.55 for N = 9

spins from ≈ 0.9 for N = 2. In Fig. 3.8 we compare the data with theory results

that include experimental sources of diabatic errors.
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Figure 3.8: Suppression in the ferromagnetic fidelity with increasing sys-
tem size: a-d. Ferromagnetic order P(FM)=P(0)+P(N) is plotted vs B/J for
N = 2 to N = 9 spins. The circles are experimental data and the lines are theo-
retical results including decoherence and imperfect initialization. As this quantity
includes only two of 2N basis states random spin-flips and other errors degrade it
much faster than the magnetization and Binder cumulant. The representative de-
tection error bars are shown on a few points for each N . The P(FM) reduces from
≈ 0.9 to ≈ 0.55 as the system size is increased from two to nine. The principle
contribution to this degradation is decoherence, predominantly due to spontaneous
emission from intermediate 2P1/2 states in the Raman transition and additional de-
phasing primarily due to intensity fluctuations in Raman beams. Shown in d is an
estimated breakdown of the suppression of P(FM) from various effects for N = 9
spins. Non-adiabaticity due to finite ramping speed, spontaneous emission and addi-
tional dephasing due to fluctuating Raman beams suppress P(FM) by ≈ 8%, ≈ 18%
and ≈ 24% respectively from unity (B/J → 0).
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Some of the primary sources of experimental error are discussed below:

Diabaticity

Since we are ramping the Hamiltonian at a finite speed, there is a non-zero

probability of population transfer to the excited states. As discussed in the previ-

ous chapter, the diabaticity is related to the critical gap (∆c) between the ground

and the relevant excited state. Diabaticity due to finite ramping speed and error

in initialization is estimated (by direct numerical integration of the Schrödinger’s

equation) to suppress P(FM) by ≈ 3% for N = 2 to ≈ 8% for N = 9. This also

gives rise to the oscillations seen in the data (Fig. 3.6a-b and Fig. 3.8a-d).

Spontaneous Emission

The experiments with N = 2 to N = 9 are done with Raman beams de-

tuned by 2.7 THz from the 2S1/2−2 P1/2 transitions, which corresponds to a ≈ 10%

spontaneous emission probability per spin in 1 ms.

Spontaneous emission during the otherwise coherent time evolutions leads to

the following errors (figure 3.9):

• Spin flip – When one of the 2P1/2|F = 1,mF = ±1〉 states are populated,

spontaneous emission from them may lead to spin flip with probability 1/3.

• Throwing the system out of the Hilbert space – Spontaneous emission may

populate the Zeeman states with a probability of 1/3, which are not included

in the Hilbert space of the effective spin-1/2 system. The Zeeman states,
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Figure 3.9: Spontaneous emission from the Raman beams: Off-resonant
excitations from the Raman beams populate the 2P1/2 states, which then sponta-
neously decay to the 2S1/2 states. Spontaneous emission introduces entropy in the
coherent quantum evolution, by flipping the spin states randomly and resetting the
phase of the evolution. Spontaneous emission may also populate the Zeeman states
|F = 1,mF = 1〉 and |F = 1,mF = −1〉 (shown in red), and thus throws the system
out of the Hilbert space. Here the violet arrows denote the σ+ and σ− polarization
components of a Raman beam, and the red fuzzy arrows are the spontaneous emis-
sion channels. For clarity, we show spontaneous emission channels from one of the
hyperfine states in the 2P1/2 manifold only. Similarly 2P1/2|F = 1,mF = −1〉 can
decay to the states |F = 1,mF = −1, 0〉 and |F = 0,mF = 0〉 of the 2S1/2 manifold.

All the Clebsch-Gordan coefficients have equal magnitudes of 1/
√

3 for these transi-
tions. The Raman beams are detuned by ∆ from the 2P1/2 states. For the frequency
doubled CW Ti:sapphire laser used in some of the experiments, ∆ = 2.7 THz (red
detuned from the 2P1/2 states); and for the mode-locked 355 nm laser, ∆ = 33 THz
(blue detuned from the 2P1/2 states).
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however, are detected as bright states i.e., as |↑〉 states.

• Dephasing – The | ↑〉 (| ↓〉) state may return to itself, with a probability of

1/3, after a spontaneous emission event. However, the entanglement between

spins may be lost, as the phase of the coherent time evolution is reset.

Spontaneous emission loosely leads to a finite ‘spin temperature’ in this system,

though the spins do not fully equilibrate with the ‘bath’ and the total probability

of spontaneous emission increases linearly during the quantum simulation. Another

physical way to think about the effects of spontaneous emission is that it introduces

entropy into the quantum evolution. Spontaneous emission errors grow with increas-

ing system size, which also suppresses P(FM) order with increasing N , as seen in

Fig. 3.8a-d. We theoretically estimate the suppression of P(FM) due to diabaticity

and spontaneous emission together by averaging over quantum trajectories to be

≈ 7% for N = 2 spins and ≈ 26% for N = 9 spins.

Intensity fluctuations on the Raman beams

Intensity fluctuations on the Raman beams during the simulation modulate

the AC Stark shift on the spins and dephase the spin states, which causes addi-

tional diabaticity and degrades the final ferromagnetic order. When we introduce a

theoretical dephasing rate of 0.3 per ms per ion (see Appendix A) in the quantum

trajectory computation the predicted suppression of P(FM) increases to ≈ 9% for

N = 2 and ≈ 50% for N = 9.
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Finite detection efficiency

Imperfect spin detection efficiency contributes ≈ 5− 10% error in P(FM).

Fluorescence histograms for P(0) and P(1) have a ≈ 1% overlap (in detection

time of 800 µs) due to off-resonant coupling of the spin states to the 2P1/2 level

[90]. This off-resonant coupling prevents us from increasing detection beam power

or photon collection time to separate the histograms. Detection error in the data

include uncertainty in fitting the observed fluorescence histograms to determine

P (s), intensity fluctuations and finite width of the detection beam.

A problem with detecting the spin states with a PMT is that the bright state

histograms for s bright ions overlap strongly with s+ 1 bright ions for large s. This

is illustrated in Fig. 3.10, where we show the photon count histograms for s = 1

to s = 9 bright ions. The increased overlap between the histograms with increasing

system size results in detection error in the measured magnetization. We define the

overlap between the histograms as,

Pm,n =

∑∞
k=0Pm(k)Pn(k)

[
∑∞

k=0Pm(k)2
∑∞

k=0Pn(k)2]
1/2
, (3.9)

where Ps(k) is the probability of observing n photons in the detection time window

from s bright ions. With this definition, the overlap increases from P1,2 = 2%

between s = 1 and s = 2 bright ions, to P8,9 = 80% between s = 8 and s = 9 bright

ions.
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Figure 3.10: Detection with a PMT – overlapping photon count histograms:
We use state dependent fluorescence to detect the spin state of the ions. If an
ion is in the | ↑z〉 state, it fluoresces when hit by a laser beam resonant with the
2S1/2|F = 1,mF = 0〉 − 2P1/2|F = 0,mF = 0〉 transition, which we collect using
f/2.1 optics (numerical aperture, NA=0.24) on a PMT for about 800 µs. Over
repeated measurements, the emitted photons from a | ↑z〉 spin form a modified
Poisson distribution, as discussed in the text. A | ↓z〉 spin, on the other hand, does
not fluoresce as the exciting laser is off-resonant (by ≈ 14.7 GHz compared to the
natural linewidth of ≈ 20 MHz) to the 2S1/2|F = 0,mF = 0〉 − 2P1/2|F = 1,mF =
1, 0,−1〉 transitions. Thus we identify | ↑z〉 as the observed ‘bright’ state, and | ↑z〉
as the ‘dark’ state. Here we show typical fluorescence histograms for s = 1 to s = 9
bright spins. n denotes the number of photons collected by the PMT in the detection
time, and Ps(n) denotes the probability of observing n photons for s bright ions.
The overlap between the photon distributions for s and s ± 1 bright ions increases
with increasing s. Thus the detection error increases as the system size grows. As
an example, the overlap between the histograms for s = 8 and s = 9 bright spins is
≈ 80%.
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Figure 3.11: Suppression in the GHZ coherence with increasing system
size: GHZ coherence or parity of the observed spin state is shown for N = 2 to
N = 5 spins. Here we apply an analysis π/2 pulse after ramping the transverse field
B to near zero, and scan the phase of the pulse. The decreasing contrast of the
parity oscillation curves denote the decaying GHZ entanglement in the simulation
as the system size grows. Phonons play an important role in reducing the GHZ
entanglement, as phonon states mix symmetric and antisymmetric FM spin com-
binations, and the GHZ entanglement is partly destroyed when we trace over the
phonon states during measurement. The amplitude of the parity oscillation is 0.8,
0.47, 0.35 and 0.27 for N = 2, 3, 4 and 5 spins respectively. Other primary souces of
decoherence include spontaneous emission from the Raman beams, and dephasing
from intensity fluctuations on the Raman beams, as discussed in the text. Here the
blue circles are the experimental data, and the solid curves are sinusoidal fit to the
data.
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Phonons

The role of phonons in the results of the quantum simulation is investigated

both experimentally and numerically. Phonons destroy the spin flip symmetry of

the pure spin Hamiltonian (Eq. (3.1)), as the term in the unitary evolution operator

that contains the phonon operators (a and a†), also includes the spin operator σx.

Thus states with symmetries different from the ground state are excited in the

adiabatic quantum simulation, and the pure spin entanglement is partly destroyed

when we trace over the phonon states during the measurement. The final FM state

achieved in the quantum simulation with the phonon effects included is of the form

(|↑↑ ...〉|α〉± |↓↓ ...〉|−α〉) [112], where |α〉 is a coherent state, with average phonon

occupation 〈n〉 = |α|2. The phonon occupation for N = 9 spins was numerically

found to be under 〈n〉 = 1.5, and lower for N < 9 spins. However, these phonons do

not alter the ground state spin ordering and hence preserve spin-spin correlation.

In Fig. 3.11 we show the loss of entanglement in the simulation with increasing

system size for N = 2 to N = 5 spins. We apply an analysis π/2 pulse with phase φ

after the quantum simulation, and observe the parity as the phase φ is scanned from

0 to 2π. The fidelity of the GHZ state, defined to be the overlap of the ideal GHZ

state with the actual experimentally observed FM state, |ΨFM〉 is given by, FGHZ =

|〈ΨFM |GHZ〉|2 = 1
2
(P↓↓...↓+P↑↑...↑)+|C↓↓...↓,↑↑...↑|. Here, P (FM) = P↓↓...↓+P↑↑...↑ and

|C↓↓...↓,↑↑...↑| denotes the GHZ coherence, i.e., the coefficient of | ↓↓ ... ↓〉〈↑↑ ... ↑ |

in the density matrix [113]. We measure the GHZ coherence by observing the

contrast of the oscillating parity signal, (P (0) + P (2) + ...) − (P (1) + P (3) + ...).
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As shown in Fig. 3.11, the observed amplitude of the parity oscillations is ≈ 0.8 for

N = 2 spins, and decreases to ≈ 0.27 for N = 5 spins. This corresponds to a GHZ

fidelity, FGHZ of ≈ 0.95 for N = 2 spins to ≈ 0.52 for N = 5 spins. For N > 5

spins, the fidelity drops below 0.5, indicating the loss of GHZ entanglement, possibly

from phonon occupation, along with other sources of decoherence like spontaneous

emission discussed in this section.

3.5 Scaling up the simulation to N = 16 with 355 nm mode locked

laser

Two of the primary sources of decoherence in our experiments with N = 2

to N = 9 spins, spontaneous emission and fluctuating differential AC Stark shift,

can be reduced by using a laser detuned farther from the 2P1/2 energy level for

the stimulated Raman transitions. The Rabi frequency of the transition Ω and the

decoherence effects (spontaneous emission and the differential Stark shift) depend

on the detuning, ∆ as,

Ω ∝ 1

∆
(3.10a)

Γspont ∝
1

∆2
(3.10b)

ΩAC ∝
1

∆2
, (3.10c)
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Figure 3.12: Quantum simulation of the ferromagnetic Ising model with
N = 16 spins: We simulate Eq. (3.1) in a system of N = 16 spins. The Hamiltonian
is simulated using a tripled Vanadate mode-locked laser at 355 nm, which virtually
eliminates spontaneous emission error in the experiment. We use a PMT to detect
the fluorescence from the ions, and repeat the experiments about 2000 times to make
a histogram of the collected photons. Each spin in the |↑〉 state emits ≈ 10 photons
on average in the detection time of 800 µs. a. At B � J , the spins are polarized
along the effective field B (paramagnetic phase) and hence half of the total number
of spins are in state | ↑〉. We observe a histogram centered at ≈ 80 photons, as
expected. b. As the transverse field is reduce, the FM correlations start to build
up, thus the fluorescence distribution broadens. c. At a very low field (B � J), the
spins order ferromagnetically, as seen in the bifurcation of the histogram.
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where Γspont and ΩAC are the rate of spontaneous emission and the AC Stark shift

respectively. Thus increasing the detuning ∆ helps reducing the decoherence effects

compared to the Rabi strength in the Raman transitions. We use a mode locked

tripled Vanadate laser with the center wavelength at 355 nm and an average optical

power of 4 W to alleviate laser-induced decoherence. With this laser, Γspont/Ω <

10−5 and ΩAC/Ω < 10−5 [114], thus practically eliminating these issues.

We ran a quantum simulation experiment with N = 16 spins with this laser.

As we tune the effective external field B compared to the ferromagnetic Ising cou-

plings, we observe the emergence of FM order. In Fig. 3.12 we show the total

fluorescence counts for this experiment, at three different values of the effective ex-

ternal field. When the spins are polarized along the y−axis of the Bloch sphere, we

observe a mean fluorescence count of about 80. This denotes that roughly half of

the spins are in the state | ↑〉 (a spin | ↑〉 would fluorescence with about 10 mean

photons in our detection time of 800µs). As B is reduced keeping the Ising couplings

constant, the fluorescence histogram broadens, and finally bifurcates at B/J → 0,

characteristic of the FM phase in absence of any biasing field, and any spontaneous

symmetry breaking.
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Chapter 4

Three frustrated Ising spins on a triangle

4.1 Overview

A network is said to be frustrated when it is impossible to satisfy all the

interactions (‘bonds’) individually. Frustrated magnetic systems [72, 115] may lead

to non-trivial many body properties, such as massive degeneracy in the ground

state, and entanglement [43] in a quantum system. Frustration is believed to be a

key ingredient to understand properties of exotic spin systems like quantum spin

liquids and spin glasses [116, 47, 117, 118]. Other complex systems and phenomena

such as social [119] and neural [120] networks, and protein folding [121] owe their

complexity to frustration.

Three Ising spins interacting antiferromagnetically with each other on the

corners of an equilateral triangle constitute one of the simplest examples of spin

frustration. As shown in Fig. 4.1a, for antiferromagnetically oriented spins 1 and 2,

spin 3 cannot satisfy both the (antiferromagnetic) interactions with the other spins

simultaneously, and hence the ground state is frustrated. Out of 23 = 8 possible

basis spin states, six belong to the ground state manifold. Since any quantum

superposition of the basis ground states is also a ground state, it is possible to

prepare a massive entangled ground state while experimentally simulating this spin

model.
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Figure 4.1: Three frustrated Ising spins on a triangle: a. Three spins inter-
acting antiferromagnetically on the corners of a triangular lattice cannot satisfy all
the interactions simultaneously, a phenomenon known as the geometric frustration.
Here spin 3 cannot simultaneously anti-align to both the spins 1 and 2. For a classi-
cal spin system, spin 3 chooses one of the spin configurations (↑ or ↓) at random. A
quantum system may be in both the configurations at the same time, owing to the
quantum superposition principle. Frustration in a magnetic system usually leads
to an exponentially large number (in the system size) of degenerate ground states,
leading to a non-zero entropy at the lowest temperature. b. For a fully connected
spin network, the geometry of the lattice is irrelevant. Here we simulate the frus-
trated spin network with three spins given by the hyperfine states of trapped 171Yb+

ions in a linear configuration. Spins 1 and 3 interact with Ising coupling J2, which
is almost equal to the nearest neighbor interactions J1, effectively generating the
triangular network geometry. Here the bright spots (enumerated as 1, 2 and 3) are
the CCD images of three trapped and laser-cooled 171Yb+ ions.
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In this chapter∗ we describe the simulation of frustrated Ising spins on a trian-

gle. We probe the ground state of the transverse field Ising model by adiabatically

ramping the transverse magnetic field. The ground state reached using this method

is an entangled state. Note that the Hamiltonian has a global spin rotation sym-

metry by a Bloch vector angle of π about the y−axis (section 3.2), which may lead

to entanglement even when the system is not frustrated. This symmetry is, how-

ever, broken easily by applying an axial magnetic field. Since the degeneracy in the

ground state in the case of antiferromagnetic interactions arises from the interac-

tions, rather than the symmetry in the Hamiltonian, the entanglement does not go

away completely when the axial field is turned on.

This chapter is organized in the following sections:

• Section 4.2 - we describe the theoretical ground state of the transverse field

antiferromagnetic Ising model with N = 3 spins.

• Section 4.3 - a brief introduction to the entanglement and entanglement wit-

ness that is used to characterize the ground state entanglement.

• Section 4.4 - we describe the choice of the experimental parameters, and de-

scribe the experimental sequence to simulate the frustrated spin model.

• Section 4.5 - we present data showing the frustrated ground state, and entan-

glement. We compare this case with results from the simulation of a ferro-

magnetic model that does not show frustration.

∗The results presented in this chapter are published in Ref. [43].
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4.2 Frustrated quantum Ising model

We simulate [43] the frustrated Ising model in presence of an effective trans-

verse magnetic field, in a system of N = 3 Ising spins. The Hamiltonian is given

by,

H = J1(σ1
xσ

2
x + σ2

xσ
3
x) + J2σ

1
xσ

3
x −B(σ1

y + σ2
y + σ3

y). (4.1)

Here the Ising couplings J1 and J2 are antiferromagnetic (> 0), σix and σiy

are the x and y spin-1/2 Pauli matrices for the ith spin (i = 1, 2, 3), and B is the

effective transverse magnetic field.

Note that the exact geometry of the spin chain is irrelevant in this example,

as the network is fully-connected. In fact, we simulate Eq. (4.1) with a linear chain

of three spins. For J1 = J2 = J this system is equivalent to the system shown in

Fig. 4.1b, and the ground state is highly frustrated.

4.2.1 States near B/J = 0

At B/J = 0, the ground state of Eq. (4.1) lies in the six dimensional Hilbert

space formed by the basis states | ↑↑↓〉, | ↑↓↑〉, | ↑↓↓〉, | ↓↓↑〉, | ↓↑↓〉, | ↓↑↑〉. The two

ferromagnetic states | ↑↑↑〉 and | ↓↓↓〉 and all their quantum superpositions belong

to the excited state manifold.

A finite transverse field induces couplings between the members of the ground

state manifold and hence splits the degeneracy. For B/J → 0 we treat the coupling

to the transverse field as a perturbation over the Ising spin couplings. Using per-

turbation theory, analogous to our treatment in section 3.3.1, we find that a unique
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Figure 4.2: Increased sensitivity to quantum fluctuations in presence of
frustration: In the absence of the effective transverse magnetic field B in Eq.
(4.1), the ground state manifold contains two fold degenerate FM states (| ↑↑↑
〉 and | ↓↓↓〉) when the Ising couplings are negative (J1 < 0, J2 < 0), and six
fold degenerate AFM states (| ↑↑↓〉, | ↑↓↑〉, | ↓↑↑〉, | ↓↓↑〉, | ↓↑↓〉, | ↑↓↓〉) when the
couplings are equal and positive (J1 = J2 = J > 0). A small transverse field
induces quantum fluctuations between the spin states and lifts the degeneracy. a.
In case of ferromagnetic couplings, the energy splitting between the ground and
the first excited state is O(B/|J |)3, as explained in the text. Here the blue circles
are exact energy calculated from the direct diagonalization of Eq. (4.1). The blue
solid line is a cubic polynomial of the form ∆E/J = 0.75(B/J)3. (Here ∆E is the
energy measured from the ground state). b. In case of antiferromagnetic couplings
(frustration), the degeneracy is split in the first order in B/J . The blue circles are
the exact results from the diagonalization, and the blue solid line is a polynomial of
the form ∆E/J = B + 0.75B2 − 0.35B3.
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ground state emerges for non-zero field, namely |↑↑↓〉+ |↑↓↑〉+ |↓↑↑〉− |↑↓↓〉− |↓↓↑

〉 − |↓↑↓〉. This is a superposition of two W states [122].

This can be contrasted with the case where all the interactions are ferromag-

netic (i.e., for J1 < 0, J2 < 0 in Eq. (4.1)). At B/J = 0 (J1 = J2 = J) the ground

state manifold is two dimensional, and spanned by the ferromagnetic (FM) states

|↑↑↑〉 and |↓↓↓〉. For a finite B/|J |, the ground state is (|↑↑↑〉+ |↓↓↓〉)/
√

2, and the

energy splitting between the ground state and the first excited state is O((B/J)3).

This is due to the fact that the FM states are only related by the global spin flip

symmetry (along x) for the ferromagnetic Ising model, and to break the degeneracy

between the states, we need to go to N = 3rd order in perturbation, as illustrated

previously in section 3.3.1. In the case of antiferromagnetic Ising model, the frustra-

tion present in the system leads to extra degeneracy in the ground state manifold,

and a small quantum fluctuation may break the symmetry of the ground state, and

lead to non-trivial phases.

4.2.2 Preparing the entangled state in adiabatic quantum simulation

As in the case of the ferromagnetic quantum Ising model, we follow the ground

state of Eq. (4.1) (nearly) adiabatically in the experiment. For large B/J , the

ground state is the spin polarized state | ↑y↑y↑y〉. As we change the dimensionless

ratio B/J , the ground state evolves, maintaining the symmetry of the Hamiltonian,

as discussed in section 3.3.3. Thus we reach the ground state | ↑↑↓〉+ | ↑↓↑〉+ | ↓↑↑

〉 − | ↑↓↓〉 − | ↓↓↑〉 − | ↓↑↓〉 when the effective transverse field is ramped down to
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zero. Clearly this state is entangled, as it cannot be written as a product state of

the three spins.

The entanglement present in the system can be characterized by measuring

the ‘entanglement witness operators’. In the next section, we describe the witness

operators in brief.

4.3 Frustration and entanglement

A genuine tripartite entanglement in a system of three qubits belongs to one

of the following two classes:

• Greenberger-Horne-Zeilinger (GHZ) entangled state, |GHZ〉 = |↑↑↑〉+ |↓↓↓〉,

also referred to as a ‘Schrödinger’s cat state’, and

• W-states- Superposition of states with k number of spins flipped from the

state |↓↓↓〉. For N = 3 spin system, there are two W-states, corresponding to

k = 1, 2; namely, |W1〉 = |↑↓↓〉+|↓↑↓〉+|↓↓↑〉 and |W2〉 = |↓↑↑〉+|↑↓↑〉+|↑↑↓〉

.

The constituent basis spin states may have arbitrary phases in both the GHZ and

W-states. Note that W1 and W2 are connected by a global spin flip symmetry in the

case of a system with three spins. Any tripartite entangled state of the three spins

can be transformed to either a GHZ or a W-state by local (single qubit) unitary

operations.

A general way to characterize entanglement is to experimentally measure the

density matrix ρ of the system, also known as quantum tomography [66]. The
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off-diagonal terms in the density matrix quantify the quantum cohererence in the

system. However, measuring the density matrix involves exponentially many mea-

surements (in system size) and hence is not always practical or efficient. Measuring

the expectation value of an entanglement witness operator provide a practical alter-

native to detect and characterize entanglement. The witness operators are defined

to detect entanglement of a particular kind, and it may be non-trivial to construct

a witness operator.

In general a witness operator Wψ with respect to some entangled state ψ is

constructed as,

Wψ = αI− |ψ〉〈ψ|, (4.2)

where the constant α is chosen such that

Trace ρWψ ≤ 0 (4.3)

if the system shows this particular (ψ type) entanglement. If Eq. (4.3) is not

satisfied, we cannot rule out entanglement in the system, but we may conclude that

the system does not exhibit entanglement of the type ψ. In case of three spins, ψ =

GHZ or W.

In this chapter we prepare the frustrated ground state of the three spin Ising

network. The ground state is a superposition of the two W-states. We compare it

to the case of ferromagnetic couplings, where there is no frustration present in the

system, and the expected ground state is a GHZ state. We use the following witness
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operators to detect the tripartite entanglement (GHZ or W-state) present in our

system [122, 43, 113],

WGHZ = 9/4− Ĵ 2
x − σ

(1)
φ σ

(2)
φ σ

(3)
φ (4.4a)

WW = 4 +
√

5− 2(Ĵ 2
y + Ĵ 2

z ), (4.4b)

where Ĵα ≡ 1
2

∑
i σ

(i)
α is proportional to the projection of the total effective angular

momentum of the three spins along the α-direction, and φ is a direction in the

yz-plane of the Bloch sphere.

The degeneracy in the ground state due to competing antiferromagnetic in-

teractions leads to entanglement, which we detect and quantify using the witness

WW . By switching all the interactions to ferromagnetic, we observe a GHZ entan-

glement, characterized by WGHZ . In presence of an axial magnetic field, the GHZ

entanglement is destroyed, as the magnetic field destroys the spin flip symmetry in

Eq. (4.1) and a non-degenerate ground state emerges (| ↑↑↑〉 or | ↓↓↓〉, depending

on the sign of the axial field). This is in sharp contrast with the frustrated ground

state, which retains some entanglement even after the symmetry is broken. This

establishes a connection between frustration and an extra degree of entanglement.

We use the bipartite spin-squeezing witness operator, WSS [43, 122] to characterize

entanglement of the symmetry broken frustrated antiferromagnetic ground state.

The witness is given by,

WSS = (Ĵ 2
x +

3

4
)2 − 4〈Ĵx〉2 − (Ĵ 2

y + Ĵ 2
z −

3

2
)2, (4.5)
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which is less susceptible to experimental errors than the W-state witness operator

[43].

4.4 Experimental methods

We work with three 171Yb+ ions forming a linear chain along the Z direction

of our Paul trap, with a center of mass (COM) trap frequency of νZ =1.49 MHz.

The three normal modes of transverse vibrational motion, along the X−direction

occur at,

• COM mode: ω1/2π = ν1 = 4.334 MHz

• Tilt mode : ω2/2π = ν2 = 4.074 MHz

• Zig-zag mode : ω3/2π = ν3 = 3.674 MHz.

Like the simulation of the ferromagnetic Ising model, discussed in the previous

chapter, the effective spin-1/2 system is represented by the 2S1/2 |F = 1,mF = 0〉

and |F = 0,mF = 0〉 hyperfine “clock” states in each ion, depicted by | ↑z〉 and

|↓z〉, respectively [123], and separated in frequency by νHF = 12.642819 GHz (This

corresponds to ≈ 5 G magnetic field to define the quantization axis). To simulate

Eq. (4.1), we shine Raman beams on the ions that drive the motional modes off-

resonantly, as explained previously, and obtain an effective spin-spin Ising type

interaction, following the Mølmer-Sørensen scheme [71]. A carrier Raman transition

with suitably defined phase simulates the effective transverse magnetic field.
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To simulate the frustrated spins on the corners of an equilateral triangle, we

tune the Mølmer-Sørensen Raman beatnote (µ) near the X−COM mode (µ > ω1).

From Eq. (3.8), we see that the Ising couplings are all positive, and hence anti-

ferromagnetic. The nearest neighbor and the next nearest neighbor Ising couplings

are almost equal, and hence the interaction graph resembles an equilateral triangle.

The far off-resonant tilt mode makes the nearest neighbor slightly stronger than the

next nearest neighbor. We use a scaled Mølmer-Sørensen detuning µ̃ in this chapter,

defined as

µ̃ ≡ µ2 − ω2
1

ω2
Z

. (4.6)

With this definition, the COM, tilt and the zigzag modes correspond to µ̃ =

0,−1 and − 2.4 respectively.

We cool all transverse x modes to near their zero point of motion and deep

within the Lamb-Dicke regime, then we initialize the electronic states of each 171Yb+

ion along the y−axis of the Bloch sphere through optical pumping and rotation

operations [123]. Next we apply the Ising coupling along with a strong transverse

field and adiabatically ramp down the field.

An ideal triangle geometry would mean J1 = J2, which is obtained by coupling

to the COM mode only. Here J1 and J2 are the nearest and the next nearest neighbor

Ising couplings respectively. The far off-resonant tilt mode breaks this symmetry

and makes J1 > J2. The energy spectrum in presence of unequal couplings is shown

in Fig. 4.3. The nearest neighbor antiferromagnetic states | ↑↓↑〉 and | ↓↑↓〉 are

lower in energy than the next nearest antiferromagnetic states, | ↑↑↓〉, | ↑↓↓〉, | ↓↓↑〉
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Figure 4.3: Energy diagram for J1 6= J2: Weak couplings to the tilt and the
zigzag vibrational modes make the Ising interactions slightly non-uniform. Here we
show the energy diagram of 23 = 8 spin configurations according to the quantum
Ising Hamiltonian (Eq. (4.1)), at B = 0. The nearest neighbor AFM states (| ↑↓↑〉
and |↓↑↓〉 are the degenerate ground states, the next nearest neighbor AFM states (
|↑↑↓〉, |↓↓↑〉, |↑↓↓〉, and |↓↑↑〉) are the first excited states, and the FM states (|↑↑↑〉
and | ↓↓↓〉) are the third and highest excited states. The energy of each state and
the difference from the ground state energy (∆E) is shown next to the levels. In our
experiment, J2 ≈ 0.85J1. To simulate the triangle geometry with equal couplings,
we ramp the Hamiltonian in our experiment faster than the energy splitting between
the ground and the first excited states, but keep the ramping slow enough to avoid
exciting the system to the FM states.
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and | ↓↑↑〉 by energy ∆1 = 2(J1 − J2). The ferromagnetic states, | ↑↑↑〉 and | ↓↓↓〉

are ∆2 = 2(J1 + J2) above the ground states. We mimic the triangular coupling

by ramping the effective transverse magnetic field in Eq. (4.1) faster compared to

∆1, but slower compared to the splitting between the ground and the ferromagnetic

states, ∆2 (Fig. 4.3).

We finally measure the spins along the x-axis of the Bloch sphere by rotat-

ing the spins from the x-basis to the z-basis and measuring the spin state (| ↓z〉

or | ↑z〉) through standard spin-dependent fluorescence techniques [123], using a

charge-coupled device (CCD) imager (detection efficiency ≈ 95% per spin includ-

ing initialization and rotation errors). We determine the probability of each spin

configuration by repeating the above procedure ≈ 1000 times. We also measure

the number of spins in state | ↑〉 by using a photomultiplier tube (PMT), which is

useful for higher efficiency measurements of certain symmetric observables such as

entanglement fidelities and witness operators.

4.5 Experimental Results

In Fig. 4.4 we show the observed spin order in the quantum simulation for

the ferromagnetic and the frustrated cases, for various magnetic field end points B.

The theoretical curves show both the exact ground-state populations as well as the

expected population evolution from the actual applied time-dependent Hamiltonian

[108], using the Trotter formula and including the contribution from phonons to

lowest order in the Lamb-Dicke expansion [124]. Fig. 4.4a corresponds to nearly
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Figure 4.4: Population of spin states with ferromagnetic and antiferro-
magnetic Ising couplings: Here we show the results from quantum simulation
of the ferromagnetic and the antiferromagnetic Ising models as a function of the
ratio of the effective transverse magnetic field B to the average Ising coupling
Jrms =

√
(2J2

1 + J2
2 )/3. The green circles are the two FM states, the blue dia-

monds are the two symmetric AFM states, and the red squares are the remaining
four asymmetric AFM states. The dashed lines correspond to the populations in the
exact ground state and the solid lines represent the expected theoretical evolution
from the actual ramp, including non-adiabaticity from the initial sudden turn on
of the Ising Hamiltonian. The probability of inelastic spontaneous scattering is not
included in the theory curves. (a) All AFM interactions (scaled Mølmer-Sørensen
detuning µ̄ = 0.27). The FM-ordered states vanish and the six AFM states are all
populated as B/Jrms → 0. Because J2 ≈ 0.8J1 for this data, a population imbal-
ance also develops between symmetric and asymmetric AFM states. (b) All FM
interactions (scaled Mølmer-Sørensen detuning µ̄ = −0.27), with evolution to the
two FM states as B/Jrms → 0.
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uniform AFM couplings and gives roughly equal probabilities for all six AFM states

(3/4 of all possible spin states). The slight inequality of the Ising couplings J1 and

J2 are reflected in the higher probability of the symmetric AFM states, | ↑↓↑〉 and

| ↓↑↓〉. Fig. 4.4b corresponds to FM couplings, and the two FM states are clearly

predominant.

In order to compare these two cases, we characterize the entanglement in the

system at each point in the adiabatic evolution by measuring particular entangle-

ment witness operators, with negative expectation values indicating the correspond-

ing form of entanglement [122]. For the FM case, we measure the GHZ witness

operator [113, 122] WGHZ (Eq. (4.4a)). For the AFM (frustrated) case, we measure

the symmetric W-state witness [122], WW (Eq. (4.4b)). In both cases, as shown

in Fig. 4.5, we find that entanglement of the corresponding form develops during

the adiabatic evolution. In this AFM/FM comparison, we operate with µ̃ ≈ 0.22

for both cases (J2 ≈ 0.8J1 > 0), but for the FM case we reverse the sign of B and

follow the highest excited state [39], which is formally equivalent to measuring the

ground state of the sign-inverted Hamiltonian. Thus all the antiferromagnetic cou-

plings are effectively turned into ferromagnetic couplings. We may also simulate the

ferromagnetic couplings by tuning the beat-note µ between the COM and the tilt

mode (−1 < µ̃ < 0). But the enhanced contribution of the tilt mode phonons due

to the proximity of the mode (compared to the case of µ > ω1, or µ̃ > 0) degrades

the GHZ entanglement fidelity.

In macroscopic systems, the global symmetry in the Ising Hamiltonian of Eq.

3.1 is spontaneously broken, and ground-state entanglement originating from this
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Figure 4.5: Entanglement generation through the quantum simulation: We
showed the entanglements through entanglement witness measurements, using a
PMT for detection. For (a) FM and (b) AFM situations as B/Jrms is ramped down,
with a negative value of the witness operator indicating entanglement. For this
data, |J2/J1| ≈ 0.85. (a) For the FM regime we measure a GHZ witness operator
with φ = y (blue circles) and find that entanglement occurs for B/Jrms < 1.25. The
GHZ fidelity F (green circles), or the overlap probability with the ideal GHZ state,
is also extracted from this measurement, where F > 0.5 indicates entanglement
[113]. (b) For the frustrated AFM case we measure a W-state witness operator
(blue circles) and find that entanglement emerges for B/Jrms < 1.1. In both plots,
the dashed lines are theoretical witness values for the exact ground states, while
the solid lines theoretically describe the expected witness values given the actual
ramps, not including errors due to spontaneous scattering, fluctuations in control
parameters, and detection errors. The error bars represent the spread over the
observed witness expectations following various absolute global rotation directions,
and indicate the uncertainty from parasitic effective magnetic fields not appearing
in Eq. (4.1) as well as possible drifts in the control parameters.
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Figure 4.6: Entanglement from the frustration: The effect of symmetry-
breaking on the FM and AFM cases of the Ising model, using a PMT for detection.
(a) Measured x−basis populations with FM Ising model (J1, J2 < 0, B/Jrms = 0.42),
labeled by the probability P (N) of N spins in state |↑〉. (b) Measured populations of
FM Ising model with B/Jrms = 0.34, where a symmetry-breaking field is added dur-
ing the ramp, increasing linearly to Bx/Jrms = 0.87, showing the emergence of the
single state |↑↑↑〉. (c) Measurement of GHZ witness operator without (blue circles)
and with (red squares) symmetry-breaking field, showing a quenching of entangle-
ment. In the latter case, the direction φ in the GHZ witness operator is coordinated
with the time-dependent phase of the GHZ state. (d) Measured x−basis popula-
tions of AFM Ising model (J1, J2 > 0, B/Jrms = 0.36). (e) Measured populations of
AFM Ising model with B/Jrms = 0.34, where a symmetry-breaking field is added
during the ramp, increasing linearly to Bx/Jrms = 1.19, showing the emergence of
the three states |↑↑↓〉, |↑↓↑〉, and |↓↑↑〉 (f) Measurement of bipartite spin-squeezing
entanglement witness operator applied to the AFM case, showing that entanglement
remains even after symmetry is broken. As in Fig. 4.5, the error bars in (c) and
(f) represent the uncertainty from parasitic effective magnetic fields and drifts not
appearing in Eq. (4.1).
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symmetry is expected to vanish for the non-frustrated FM case [47]. However, for

the frustrated AFM case, the resultant ground state after symmetry-breaking (e.g.,

| ↑↑↓〉 + | ↑↓↑〉 + | ↓↑↑〉) is still entangled. While spontaneous symmetry-breaking

does not occur in a small system of three spins, we can mimic its effect by adding

a weak effective magnetic field −Bx

∑
i σ

(i)
x during the adiabatic evolution [125].

Figure 4.6a shows the measured final populations after adiabatic evolution to the

Ising Hamiltonian (B � Jrms) in the FM case without symmetry-breaking. Figure

4.6b shows the same with a symmetry-breaking field Bx ≈ Jrms that breaks the

degeneracy of the two components of the FM ground state and leaves a dominant

| ↑↑↑〉 product state. Figure 4.6c shows a measurement of the corresponding GHZ

witness operator, displaying a clear quenching of GHZ-type entanglement when

symmetry is broken.

For the frustrated AFM case, Fig. 4.6d shows the measured final populations

of the evolution of the Ising Hamiltonian, with the six AFM states dominating. But

when symmetry is broken (Fig. 4.6e), the AFM system primarily evolves to the

three states | ↑↑↓〉, | ↑↓↑〉, and | ↓↑↑〉, consistent with the expected W-state. The

residual population in the other states is attributed to nonadiabatic evolution and

a finite value of B at the end of the ramp. We characterize entanglement of the

symmetry-broken frustrated AFM case by measuring the bipartite spin-squeezing

witness operator [122] WSS (Eq. (4.5)). We choose this witness operator because it

is less sensitive to experimental errors than the W-state witness operator WW [122].

The observation of negative values of WSS presented in Fig. 4.6f shows directly

that the frustrated ground state carries entanglement even after global symmetry is
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broken in the Ising model, and thereby establishes a link between frustration and

an extra degree of entanglement.

4.6 Summary and outlook

We have simulated a frustrated spin network with three spins, interacting

antiferromagnetically on a triangle. The antiferromagnetic couplings induce com-

petition between spin states, resulting in a massive degeneracy in the ground state.

By introducing an effective transverse magnetic field and following the adiabatic

quantum simulation protocol, we prepare an entangled state of the degenerate spin

states. This entanglement is fundamentally different, in its origin and nature, from

the case where all the couplings are ferromagnetic. Unlike the GHZ entanglement

achieved in the ferromagnetic model, the W-state entanglement in the frustrated

model is robust against a small biasing field.

In the next chapter we shall simulate an antiferromagnetic quantum Ising

model with tunable range of interactions in a system of N > 3 spins, and observe

frustration in spin ordering. It is possible to simulate an arbitrary lattice geometry

in this chain of trapped ions by appropriately tailoring the interactions between each

pair of spins. We shall conjecture on how to realize this in the Outlook chapter of

this thesis.
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Chapter 5

Frustrated magnetic ordering with tunable range antiferromagnetic

couplings

5.1 Overview

Long range antiferromagnetic interactions lead to frustration, as the individual

interactions cannot be satisfied simultaneously. This may lead to massive degeneracy

in the ground state and entanglement, as discussed in the previous chapter in the

context of three Ising spins on a triangle. Ising models with beyond nearest neighbor

interactions, the so called ANNNI models, have been studied in great detail, and a

plethora of interesting phases have been theoretically uncovered [126, 127].

Here we simulate a transverse field long range antiferromagnetism Ising model

using a chain of up to N = 16 spins. The Hamiltonian is given by

H =
∑
i,j
j<i

Ji,jσ
i
xσ

j
x −B

∑
i

σiy, (5.1)

where σiα (α = x, y, z) are the Pauli matrices for the ith spin (i = 1, 2, ..., N),

Ji,j(> 0) is the antiferromagnetic (AFM) Ising coupling between spins i and j, and

B is an effective transverse magnetic field. The Ising coupling between spins i and
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j approximately fall off with the separation between them as,

Ji,j =
J0

|i− j|α
. (5.2)

We observe ∗ the onset of antiferromagnetic spin ordering as the transverse

field is made weaker than the Ising couplings. We also tune the range of the inter-

actions for a system of N = 10 spins, by controlling the transverse vibrational mode

spectrum, and thereby control the frustration in the system. By directly measuring

the spin correlations, we observe the role of frustration in the spin ordering.

The Ising couplings are simulated by imparting off-resonant spin dependent

forces from a mode-locked laser (at a center wavelength of 355 nm, see section 2.6.4)

to the 171Yb+ ions, following the Mølmer-Sørensen scheme [71] as explained in the

previous chapters.

This chapter is organized as follows:

• Section 5.2- we discuss some features of the long range antiferromagnetic quan-

tum Ising model, in particular the ground and a few low lying energy states.

The critical energy gap between the ground and excited states in presence of

the effective transverse magnetic field depends on the range of the interactions,

which we explain in this section.

• Section 5.3- we describe the simulation of the AFM quantum Ising Hamiltonian

∗Most of the results presented here are from the following manuscript in preparation. “Frus-
trated magnetic ordering with variable range interactions in a trapped ion quantum simulator”, R.
Islam, C. Senko, W. C. Campbell, S. Korenblit, J. Smith, A. Lee, E. E. Edwards, J. C.-C. Wang,
J. Freericks and C. Monroe.
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(Eq. (5.1)), and the mechanism of tuning the range of interactions by changing

the trapping parameters. We discuss the experimental protocol and some order

parameters used to detect the spin order.

• Section 5.4- we compare the spin ordering in quantum simulation with various

ranges of interactions, and present data that show suppression of the AFM or

Neel order as the frustration increases in the system.

5.2 Some features of the long range antiferromagnetic quantum Ising

model

5.2.1 Ground and low energy eigenstates

For α 6= 0 : In the absence of the transverse field (B = 0 in Eq. (5.1)) the

two fold degenerate antiferromagnetic (AFM) states | ↑↓↑ ...〉 and | ↓↑↓ ...〉 are the

ground states for α 6= 0 in Eq. (5.1). The first excited states contain two adjacent

spins flipped from the AFM states on one end, and hence has a domain wall between

the second and the third spins from one of the edges. Here a domain wall consists of

two neighboring spins aligned in the same direction. Due to the left-right symmetry

of the couplings, and the global spin flip symmetry of the Hamiltonian, the first

excited state is four fold degenerate, namely |↓↑ ↑↓↑ ...〉, |... ↓↑↓ ↓↑〉, |↑↓ ↓↑↓ ...〉

and |... ↑↓↑ ↑↓〉. Here we have shown the spins that are flipped from the AFM

ground states in red. The energy (measured from the ground state energy) of the
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first excited states is,

∆Edouble,end = 2J0

[
1− 2

N−2∑
n=2

(−1)n
1

nα
+

1

(N − 1)α

]
. (5.3)

This energy (∆Edouble,end) is lower than the energy of the states with two

adjacent spins flipped from the ground state in the bulk of the chain, as such states

have two domain walls.

The states with one of the end spins flipped (from the AFM states) have an

energy of

∆Esingle,end = 2J0

[
N−1∑
n=1

(−1)n−1 1

nα

]
, (5.4)

which is lower than the energy of the states with a bulk spin flipped, as they have

two domain walls. Figure 5.1 shows a few excited state energies for various range

of the interactions, 0 < α < 3. Eqs. (5.3) and (5.4) hold for α = 0 as well, but the

position of the excitation becomes irrelevant in calculating the excitation energy.

For α = 0 : In case of a uniform antiferromagnetic Ising model (α = 0),

the Hamiltonian can be written in terms of the total spin operator Sγ =
∑

i σ
i
γ

(γ = x, y, z) as,

H = J0S
2
x −BSy. (5.5)

Here we have subtracted a constant term of J0N/2 from the Hamiltonian. For

B = 0, states with minimum Sx belong to the ground state. For an even system

size N , Sx = 0 states form the ground state manifold. The number of such states is

NCN/2, which is exponential in the system size N .
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Figure 5.1: Energy of creating spin excitations in the long range antifer-
romagnetic Ising model: The ground states of the long range antiferromagnetic
Ising model (Eq. (5.1) at B = 0) are the AFM states, |↑↓↑ ...〉 and its globally spin
flipped state | ↓↑↓ ...〉 for the exponent α 6= 0 (in Eq. (5.2)). Any spin flip from
this state creates domain walls, and costs some excitation energy. Here we plot the
energies of creating a few types of excitations in a system of N = 10 spins, relative
to the ground state energy (black line, black arrows denote one of the AFM states).
The first excited states have two adjacent spins on the end flipped (blue), which
contain a single domain wall (gray dotted line) between spins 2 and 3. Only one
of the four degenerate first excited states are shown in terms of the blue arrows. It
costs more energy to flip two adjacent spins in the bulk of the chain (green), as that
involves creating two domain walls. The states with an end spin flipped (red) has
more energy than the double spin flipped (on the end of the chain) states. States
with a single bulk spin flipped (orange) have two domain walls, and hence are more
energetic compared to the end spin flipped states. They are also higher in energy
than the double adjacent spins flipped in the bulk states. The energies of the do-
main walls created depend on the range of the interactions, α. For the uniform Ising
model (α = 0) the position of the excitation does not matter.
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In presence of the transverse field, Sx does not commute with the Hamiltonian

(Eq. (5.5)), but S2 = S2
x + S2

y + S2
z does. We probe the magnetic ordering by

initializing the system in the ground state of −BSy, which has a total Sy = N , and

hence belongs to the S2 = N manifold, and then tune the effective transverse field

B in Eq. (5.5). Thus the system can only access the ground states that belong to

the total spin N manifold.

In presence of the transverse field B the ground state passes through a quan-

tum phase transition from the paramagnetic phase (all spins polarized along the

transverse field) to the AFM phase (for α 6= 0). The critical gap and the critical

field depend on the range of the interactions.

5.2.2 Frustration and the range of the interactions

In Fig. 5.2a, we plot a few of the low energy excited states of Eq. (5.1)

for the case of N=10 spins, and α = 1.0. In our quantum simulation experiment,

we initialize the spins in the ground state of a ‘trivial’ Hamiltonian, which is just

the part of the Hamiltonian (Eq. (5.1)) that couples to the magnetic field only.

Then the Hamiltonian is ramped at a finite rate, and the dimensionless ratio of the

effective transverse field to the Ising couplings is reduced. The system follows the

ground state if the ramping is perfectly adiabatic. For a finite rate of ramping, some

population is excited to excited states that have the same symmetry (w.r.t. the spin

flip and spatial reflection, as discussed in section 3.2) as the ground state. The gap

between the ground state and the lowest excited state with the same symmetry is
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Figure 5.2: Dependence of the spectrum of Hamiltonian (5.1) on frustra-
tion: The energy spectrum of the long range antiferromagnetic quantum Ising
model (Eq. (5.1)) with Ising coupling Jij between spins i and j falling off with
distance as Jij = J0/|i− j|α depends on the amount of frustration in the system or
the range of the interaction, ξ. (a) Few low lying energy states of the frustrated
Hamiltonian (5.1) as a function of the dimensionless parameter B/J0 for α = 1 or
ξ = 5. The spacing between the ground state and the second excited state reaches a
bottleneck at a critical value Bc/J0. Here ∆c is the critical energy gap of the Hamil-
tonian. (b) Dependence of Bc/J0 (red dotted line) and ∆c (black solid line) on the
range of the interaction. As the interaction becomes long ranged (ξ increases, or α
decreases) the competing long range couplings make it easy to create excitations in
the system, the gap is reduced, and a relatively small effective transverse field can
break the spin ordering. Both these parameters approach zero as α→ 0 or ξ →∞.
Our current experiments are performed with parameters in the shaded region. The
apparent kinks on the curves are due to connecting a finite number of points by
straight lines in the plot.
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known as the critical gap, ∆c, and the value of the effective magnetic field (the Ising

couplings are fixed in our problem) at which the system passes through the critical

gap is known as the critical field, Bc. Both the critical field Bc and the critical gap

∆c depend on the range α, as shown in Fig. 5.2b. Both the quantities decrease

monotonically as the range of the interactions, and hence the amount of frustration,

increases.

To visualize the range of the interactions more intuitively, we define an effective

range ξ as the distance between the spins at which the Ising coupling falls off to

20% of the nearest neighbor value. The choice of 20% as the cut-off is arbitrary,

and motivated by our system size of N = 10 in some of the following experiments.

With this definition, ξ = 51/α, and varies between ξ ≈ 4 and ξ ≈ 8 sites for our

experimentally accessible range of α ≈ 0.76 to α ≈ 1.12.

As the nearest neighbor interaction always wins over the long range couplings

for this chain of spins (except at α = 0), the ground state shows the nearest neighbor

AFM ordering, regardless of the range of the interactions. Frustration in this model

brings the excited states closer to the ground state in energy. Hence to observe

the effects of frustration we ramp the effective transverse magnetic field B in the

Hamiltonian (Eq. (5.1)) faster than the critical gap (∆c) to populate the excited

states. The observed spin order depends on the amount of excitations created, and

hence on the frustration. The system should exhibit less ground state character for

the more frustrated (longer range) couplings for the same rate of ramping, and the

same nearest neighbor energy scale.
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5.3 Experimental simulation of the model

We simulate the quantum Ising model (Eq. (5.1)) by off-resonant excitations

of transverse phonon modes, following the Mølmer-Sørensen scheme as explained in

the previous chapters. The Raman beat-note detuning (µ in Eq. (3.8), Fig. 5.3a) is

chosen to be bigger than the COM frequency, and thus all the Ising couplings are

positive, or antiferromagnetic. The effective transverse magnetic field is simulated by

a resonant carrier transition, with phase shifted by π/2 from the Raman beat-notes

generating the Ising interactions. In our experiment we use global Raman beams

(approximately 1 Watt each, with the 355 nm mode-locked laser) with horizontal

and vertical waists of ≈ 150 µm and ≈ 7 µm respectively to address the ions. This

produces a carrier Rabi frequency Ω ≈ 2π × 600 KHz, which is more than 98%

homogeneous across a chain of N = 16 spins. We set the beatnote detuning µ

to ≈ ωX + 3ηΩ, where η is the single ion Lamb-Dicke parameter, and ωX is the

transverse COM frequency. We fit a power law profile (Eq. (5.2)) to the calculated

Ising couplings, and extract the exponent α. The Ising coupling, Ji,j between the

spins i and j depend on the site i (in addition to the separation between the spins

|i − j|), due to the finite size effects. This results in a site i dependent exponent,

which varies by ≈ 10% across the chain. Figure 5.3b shows the Ising couplings

J1,1+r (r = 1, 2, ..., 9) for typical experimental parameters (listed in the plot), in a

system of N = 10 spins. The Ising coupling falls off as J1,1+r ∝ 1/r1.0 (α = 1.0) in

this example. The nearest neighbor Ising couplings are stronger near the end of the

spin chain compared to the center (Fig. 5.3c), and they vary by ≈ 20% across the
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Figure 5.3: Ising coupling profile and fit to a power law: a. The Ising
interactions between the spins are mediated by virtual phonon excitations. We
show the red and the blue sidebands of the axial (light blue for the blue sidebands,
and light red for the red sidebands) and the transverse (dark blue for the blue
sidebands, and dark red for the red sidebands) vibrational normal modes of N = 10
trapped ions. To simulate the Ising interactions, we shine non-co-propagating laser
beams with two beatnotes (beatnote 1 and 2 in this figure), symmetrically detuned
from the carrier transition. The beatnotes are detuned from the transverse COM
mode by a frequency δ. b. Ising couplings in KHz (blue circles) between spin 1
and the others, J1,1+r (r = 1, 2, ..., 9) for a system of N = 10 spins, calculated from
Eq. (3.8). The single ion sideband Rabi frequency, ηΩ = 2π × 35 KHz and the
Mølmer-Sørensen detuning, δ = 3ηΩ = 2π × 105 KHz. The red curve is a power
law fit to the Ising couplings (J1,1+r ∝ 1/r1.0). c. Calculated nearest neighbor Ising
couplings between spins i and i + 1, Ji,i+1 vs site i, according to Eq. (3.8). The
interaction is the strongest at the ends of the chain, and varies by ≈ 20% across the
chain. The solid black line shows the average nearest neighbor interaction.
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chain. This is primarily due to the contribution of the ‘tilt’ mode, which is the next

lower energy vibrational mode after the COM. The ions near the center have smaller

amplitudes of motion for this mode, and hence the ‘tilt’ mode does not contribute

(Eq. (3.8)) to the nearest neighbor couplings near the center of the chain.

5.3.1 Tuning the range of Ising interactions

The range of the Ising interactions can be tuned by the following two methods:

• By changing the Raman beat-note frequency µ (or the Mølmer-Sørensen de-

tuning δ), keeping the vibrational spectrum fixed.

• By changing the bandwidth of the vibrational spectrum, keeping the Mølmer-

Sørensen detuning, δ = µ− ωCOM fixed.

We follow the second method, as this keeps the COM phonon occupation

probability approximately at the same level for various ranges. The bandwidth of the

transverse vibrational modes is controlled by tuning the trap anisotropy. A higher

trap anisotropy (defined to be the ratio of the transverse COM freq to the axial

COM frequency) moves the ions farther from each other, and reduce the bandwidth

of the modes. On the other hand, a more isotropic trapping potential brings the

ions closer together, until they cannot sustain a linear configuration and break into

a zig-zag shape. We change the anisotropy of the trapping potential, and hence

the bandwidth of the transverse vibrational modes, by changing the DC voltages

applied on the trap electrodes, keeping the radio frequency power generating the

ponderomotive potential at a constant value. Figure 5.4a shows the dependence
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Figure 5.4: Dependence of the range of Ising interactions on the Mølmer-
Sørensen detuning and the bandwidth of vibrational modes: a. We can
tune the range of the Ising interactions by varying the Raman beatnote’s detuning
δ from the COM mode. Here we show theoretical calculations of the dependence
of the Ising exponent, α (Eq. (5.2)) as a function of the detuning δ for normal-
ized bandwidth ∆ω/ωX = 0.018, (blue squares), ∆ω/ωX = 0.26 (red circles), and
∆ω/ωX = 0.99 (black rhombuses). For comparison, a typical COM sideband Rabi
frequency is ηΩ/2π = 35 KHz. The solid lines are interpolated in between the cal-
culated points. b. Dependence of α on the bandwidth of the transverse modes, ∆ω
(Fig. 5.3) for a fixed detuning (δ/2π = 105 KHz) from the COM mode. The band-
width is controlled by changing the trap anisotropy. The coupling is more uniform
when the normalized bandwidth is higher, and approaches a dipole interaction, i.e.,
α = 3, in the limit of ∆ω/ωX → 0.

172



on the Ising coupling profile exponent α on the Mølmer-Sørensen detuning for two

different sets of trapping parameters. A weaker trap along the axial direction leads to

a larger bandwidth (red circles and line), ∆ω (Fig. 5.3a) of the transverse vibrational

modes, and thus it is easier to excite the COM modes exclusively without coupling

to the other modes. This induces long range couplings, and the Ising exponent α is

smaller than when the bandwidth is smaller (blue squares and line). It is relatively

easier to access shorter range interactions (larger α) with higher bandwidth. In the

limit of very large Mølmer-Sørensen detuning compared to the bandwidth, δ � ∆ω

the Ising couplings take the form of a dipolar decay, or Ji,j = J0/|i− j|3, i.e., α = 3.

In Fig. 5.4b we set a fixed Mølmer-Sørensen detuning δ/2π = 3ηΩ/2π = 105 KHz,

and show the dependence of the Ising exponent α on the bandwidth of the transverse

modes. In the limit of ∆ω/ωX → 0 the exponent α → 3, and in the other limit of

∆ω/ωX = 1, the interaction range is the longest at the specific Mølmer-Sørensen

detuning, for the given system size, before the mechanical instability breaks the

linear configuration of the ion chain. For the current experiments, we choose four

trap settings, corresponding to four different ranges of interactions, as shown in

Table 5.1.

For the range of axial frequencies used in the current experiment (between

ωZ = 2π×0.62 MHz and 2π×0.95 MHz), the Ising profile exponent α varies between

0.76 to 1.12, which corresponds to the variation of the range of interactions between

ξ = 4 to ξ = 8 sites, the latter indicating that the range approaches the system size.
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Settings End
avg DC
(Vend)

Central
average
(Vcentral)

Axial
COM freq,
ωZ/2π
(MHz)

Transverse
COM freq,
ωX/2π
(MHz)

Normalized
mode band-
width
(∆ω/ωX)

Ising
expo-
nent,
α

I 25 1.1 0.952 4.87 0.56 0.76

II 20 0.9 0.857 4.75 0.44 0.9

III 13 0.6 0.691 4.80 0.25 1.0

IV 10 0.4 0.62 4.80 0.19 1.12

Table 5.1: Experimental parameters used to generate long range Ising
model with variable range: The bandwidth of the transverse vibrational modes
(∆ω) is varied by changing the axial confinement of the ions to tune the range of the
Ising couplings. We tabulate the average static voltages applied on the electrodes,
axial and transverse COM trap frequency, the bandwidth of the modes normalized
to the transverse COM frequency, and the Ising coupling exponent α for experiments
with N = 10 ions reported here.

5.3.2 Experimental protocol and the order parameters

We initialize all the spins along the direction of the effective transverse mag-

netic field, i.e., along the y−direction of the Bloch sphere by applying a resonant

Raman pulse of appropriate duration and phase (a π/2 pulse about the x−axis of

the Bloch sphere). Then we turn on Hamiltonian 5.1 with an initial field B0 ≈ 5J0,

where J0 is the average nearest neighbor Ising coupling, such that our prepared spin

state approximates the ground state of the initial Hamiltonian. (The overlap be-

tween the exact ground state of the initial Hamiltonian and the prepared polarized

state is about 99%). The effective magnetic field is then ramped exponentially with

a time constant of τ up to a final value B of the transverse field. We then measure

the x−component of each spin by rotating our measurement axes, and using state

dependent fluorescence signal on an intensified CCD imager. The experiments are

174



repeated ∼ 2000− 4000 times to collect statistics.

From the measured spin states, we construct the order parameters appropriate

for observing the antiferromagnetic order and excitations. Various moments con-

structed from a distribution of staggered magnetization, defined asms = 1
N
|
∑

odd σx−∑
even σx|, would differentiate between a paramagnetic and an antiferromagnetic

state, and also quantify spin flip excitations. Here
∑

odd(even) refers to summation

over all the odd (even) sites of the lattice. In particular, we use the fourth moment,

the staggered Binder cumulant,

gs =
〈(ms − 〈ms〉)4〉
〈(ms − 〈ms〉)2〉2

. (5.6)

Here 〈...〉 denotes averaging over experimental realizations. In the paramagnetic

phase the staggered magnetization, ms is distributed according to a Binomial distri-

bution, which approaches a Gaussian in a very large system. The Binder cumulant

is, g0
s = 3 − 2/N in the paramagnetic phase for a system of N spins. In the AFM

phase, the distribution of the staggered magnetization consists of two Knocker Delta

functions, at ms = N , and ms = −N . The corresponding staggered Binder cumu-

lant is unity in the AFM phase. Here we scale the Binder cumulant to take the

finite size effect into account to

ḡs ≡
g0
s − g
g0
s − 1

, (5.7)

where g is the measured staggered Binder cumulant, according to Eq. (5.6).
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We also construct two point correlation functions between the spins i and j,

Ci,j from the measured spin states, according to the following formula.

Ci,j = 〈σixσjx〉 − 〈σix〉〈σjx〉. (5.8)

The two point correlation function allows us to directly probe the spin order at each

experimental realization.

The Fourier transform of the correlation function, also known as the structure

function S(k), provides valuable information about the spin order. The structure

function is defined as

S(k) =
1

N

∑
|i−j|

Ci,j cos (k|i− j|) (5.9)

For a finite system size of N spins, we calculate the structure function at distinct

points, k = 0, π
N
, 2π
N
, ..., π. Since the two point correlation function Ci,j depends on

the site i itself for the finite size of the system, we use the averaged correlation of

all the pairs of spins separated by |i − j| sites. The structure function at k = π is

then

S(k = π) =
1

N

∑
|i−j|

(−1)|i−j|Ci,j

= 1, for AFM state,

as Ci,j = (−1)N for a perfect AFM order. Thus a signature of spin frustration in

our experiment would be the decay of the structure function at k = π.
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5.4 Results of the quantum simulation

5.4.1 Onset of antiferromagnetic correlations in quantum simulation

for N = 10 and N = 16 spins

In Fig. 5.5 we plot the two point correlation between an end spin and the rest,

C1,1+r (r = 1, 2, ..., N − 1) for various values of the dimensionless parameter B/J0,

for a range of ξ = 4 or α = 1.12 (Eq. (5.2)) in a system of N = 10 spins. For our

chosen experimental parameters, J0 ≈ 800Hz. For B/J0 = 5 we do not observe any

appreciable correlation between the spins, consistent with a paramagnetic phase.

As the ratio B/J0 is lowered, the correlation with the nearest neighbor spin starts

going negative at B/J0 ≈ 1.5. For lower values of B/J0, AFM correlations build up

and the spins separated by even number of sites start to align themselves along the

same direction, as seen by the alternating signs of the correlation coefficients with

distance. The excitations created by non-adiabatic effects reduce the correlations

from the perfect AFM state value of unity, and the best (anti)correlation achieved

is ≈ 60% for B/J0 ≤ 0.01.

Figure 5.7 shows the averaged CCD image of the N = 10 ions, all in the bright

(|↑z〉), all in the dark (|↓z〉) and in the AFM states. The spins order in the two AFM

states about 3% of the times (842 events out of 28,000 realizations). The spin flip

symmetry is preserved in the simulation, as seen by the approximately equal number

of experiments leading to either of the two AFM states (442 and 440 corresponding

to spin |↑〉 on the odd and even sites respectively). The probability of obtaining the
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Figure 5.5: Onset of the antiferromagnetic ordering with 10 spins: As we
tune the ratio of the effective transverse magnetic field to the antiferromagnetic
Ising couplings, the spins undergo a crossover from the paramagnetic phase to the
antiferromagnetic phase. a-e. Here we show the two point correlations between an
edge spin, labeled as spin 1 and the others. By imaging the spin state dependent
fluorescence of the trapped ions with single site resolution optics on an intensified
CCD imager (model PIMax3: 1024i, made by Princeton Instruments), we directly
measure the two point correlation functions. In this example, the Ising couplings
approximately fall off with distance as Ji,j = J0/|i − j|1.2. The correlations do
not reach unity, as expected from a perfect AFM ordering at zero temperature,
primarily due to the finite speed of ramping in the quantum simulation (we ramped
the external field exponentially down from B = 5J0 with a time constant of 2π ×
(0.4/J0)).
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Figure 5.6: Antiferromagnetic spin ordering with 16 spins: We scale our
quantum simulator up to N = 16 spins, and observe the onset of antiferromagnetic
spin correlations. The Ising exponent is α = 1.0 in this case. For the frustrated
Ising model, the critical gap closes sharply with the system size. Thus maintaining
the adiabaticity in simulation is harder compared to the ferromagnetic model. The
blue circles are the two point correlations for B/J0 ∼ 5, and the red squares are for
B/J0 ∼ 0.01.
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AFM states is 2/210 ≈ 0.2% in the paramagnetic phase.

In Fig. 5.6 we compare the correlations between an end spin and others, C1,1+r

(r = 1, 2, ..., 15) at B/J0 ≈ 5 (blue) and B/J0 ≈ 0.01 (red) for a system of N = 16

spins. At lower values of the ratio of the effective external field to the Ising couplings

ratio, the system shows some antiferromagnetic spin ordering. The nearest neighbor

correlation builds up to about −0.35, and the correlation length (defined as the

distance at which the correlation drops to 1/e of the nearest neighbor) is limited to

about 5 sites. The lack of a very good ground state (AFM) order is primarily due to

the vanishing critical gap ∆c in presence of frustration when the system size grows,

making our ramping of the ratio B/J0 (we ramped the effective field exponentially

with a time constant of 450 µs, keeping the Ising couplings constant) too fast to be

adiabatic.

5.4.2 Frustration of the AFM order with increasing range of interac-

tions

We observe the spin order achieved in a quantum simulation experiment, for

each of the four ranges of interactions described in table 5.1. The spins are initialized

along the effective transverse field, B (in the y−direction of the Bloch sphere), then

the Hamiltonian (Eq. (5.1)) is turned on with B ≈ 5J0, where J0 is the average

nearest neighbor Ising coupling. The effective field B is then exponentially turned

down with a time constant τ/2π = 0.4/J0, and the spin order is detected at time

t = 6τ , where B/J0 ≈ 0.01. Figure 5.8a shows the scaled staggered Binder cumulant,
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Figure 5.7: CCD image of N = 10 antiferromagnetically ordered spins: a.
CCD image of 10 ions in spin | ↑z〉 states. The image is obtained by averaging 440
experiments where each ion are prepared in the | ↑z〉 state by applying a carrier
Raman π pulse and then detected for 3 ms. b. Averaged CCD image (over 440
experiments) of the same 10 ions in | ↓z〉 state, prepared by optical pumping. c-
d. Averaged CCD image of the two AFM states. We post-select the AFM states
from 28,000 quantum simulation experiments with long range AFM couplings, at a
ratio of the effective transverse magnetic field to the nearest neighbor Ising coupling
B/J0 ≈ 0.03. The CCD raw images of all such states with the same spin ordering
(as detected by discriminating the fluorescence counts from the ions) are averaged
to obtain the AFM states. 440 experiments resulted in an AFM state with |↑〉 spins
on the odd sites and 442 experiments with the | ↑〉 spins on the even sites. The
measurement axes are rotated before the spin state detection such as a bright ion
corresponds to the state |↑〉 (in the x−basis).
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Figure 5.8: Frustration of antiferromagnetic spin ordering with increasing
range of interactions: We compare the experimental data for four different ranges
of Ising couplings, quantified by the exponent, α (Eq. (5.2)), which lies between
0.76 and 1.12 in our experiments. Frustration increases as the interaction range
grows, and the excited states come closer to the ground state leading to a reduction
in the value of the critical gap (Fig. 5.2). Thus for a given rate of ramping, the
system is more excited from the ground state (non-adiabaticity) for longer range of
interactions. a. The staggered Binder cumulant (Eq. (5.7)) at B/J0 ≈ 0.01 vs the
exponent α. The order parameter goes down with increasing range, or decreasing
α. The error bars are from a conservative estimate of the uncertainty in detecting
the spin states. b. The structure function S(k)(Eq. (5.9)) at B/J0 ≈ 0.01 for
various ranges of interactions. The ground state ordering is denoted by k = π,
which goes down with the increasing range of interactions. Characteristic error bars
are conservative estimates of the uncertainty in detecting spin states. The solid lines
are presented just to guide our eyes.
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Figure 5.9: Plausible decoherence in our quantum simulation: We probe the
spin order in the quantum simulation experiment as a function of the ramping speed
of the Hamiltonian (Eq. (5.1)), with the Ising exponent α = 1.12. The spins are
polarized along the effective external magnetic field. The Hamiltonian is turned on
with B ≈ 5J0, so that the initial spin state is an approximate ground state. Next the
field is ramped down exponentially with a time constant τ for a time t = 6τ , keeping
the Ising couplings fixed, and the x−components of the spins are detected. The final
value of the B/J0 ≈ 0.01. The experiment should be more adiabatic for a slower
ramping, and hence a longer experimental duration, consistent with our observation
up to t = 6τ ≈ 2.5 ms. The spin order goes down for slower ramping, which indicates
the presence of some form of decoherence in the system. The intensity fluctuations
in the Raman beams is one of the primary sources of decoherence in the system.

ḡs (Eq. (5.7)) vs the range of the interactions, quantified by the Ising exponent

α. The staggered Binder cumulant monotonically decreases with increasing range

(decreasing α) or frustration. Figure 5.8b shows the structure function, S(k) (Eq.

(5.9)) vs the spatial frequency, k for various range of interactions. The ground state

AFM order is shown by the spatial frequency, k = π, which steadily goes down with

the increasing range or frustration.
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5.5 Discussions and conclusion

In this experiment, we have qualitatively observed the effect of frustration in

the observed spin order. Our current experiment is not limited by decoherence due

to spontaneous emission from the Raman beams, as the 355 nm Raman beams are

far detuned from the 2S1/2 − 2P1/2 and 2S1/2 − 2P3/2 lines, and the spontaneous

emission per Rabi cycle is suppressed to ∼ 10−5. The time scale for the spontaneous

emission is then ∼ 100 ms, which is more than an order of magnitude slower than

the experimental time scales (< 5 ms).

In order to probe any decoherence effects, we repeat the simulation experiment

with various ramping speed of the effective magnetic field. In Fig. 5.9 we plot the

antiferromagnetic order parameter ḡs vs the total duration for the experiment for

α = 1.12. Here each data point represents the spin order achieved after ramping

the B field down exponentially from B ≈ 5J0 for a total duration of t = 6τ , where

τ is the time constant with which the effective field is ramped down. The spin

ordering into the antiferromagnetic state grows with slower ramping, as expected,

for up to t ≈ 2.5 ms. Then we observe a decay in the spin order, which might

indicate the presence of decoherence effects in the system. A principal source of

decoherence might be the intensity fluctuations in the Raman beams, due to beam

pointing instabilities, and fluctuations in the optical power.
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Chapter 6

Outlook

In this thesis, I presented some proof-of-principle experiments that benchmark

a quantum simulator. We can further explore the long range nature of the interac-

tions in the trapped ion system to study new many body physics. From a quantum

computation point of view, the simulator must be scaled to a large number of qubits,

that can outperform a classical computer. While there is no road-block in principle

[128], several technological challenges need to be overcome in order to build a quan-

tum computer or a universal quantum simulator. Here we discuss a few directions

towards that goal.

6.1 Scaling up the system - large numbers of equally spaced ions in

a Paul trap

To scale the ion trap system up to a size where the quantum simulator outper-

forms a classical computer, a stable large chain of ions is needed. While our current

trap can handle a couple of dozens of spins without any technical upgrade, new trap

architectures should help us scale the system further.

A shortcoming of using harmonic confining potential in a linear ion trap is

that the ions near the center of the chain are closely packed together, compared to

the outermost ones. This is less preferable to a chain of uniformly spaced ion crystal
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for the following reasons.

• At a given ratio of the axial to the radial confinement, a linear ion chain under-

goes a structural phase transition to a zig-zag configuration. This is unwanted

in quantum information processing, as the ions in the zigzag configuration

experience micromotion from the driving radio-frequency field. In a harmonic

trap, this instability depends only on a few ions at the center that are very

close to each other.

• Relatively larger spacings near the edge of the ion crystal limit the number of

ions that can be trapped in a given length of the confining zone.

• As we shall discuss in this section, simulation of an arbitrary fully connected

spin network requires individual addressing of the ions by well focused Raman

beams. A uniform chain of ions would be ideal for this, as we can image a

regularly spaced grid for this purpose. Also, switching a single beam between

the ions by an AOM will be easier with a uniformly spaced ions.

• A uniformly spaced ion crystal makes the imaging easier, such as it would

allow the use of a uniformly spaced PMT array, or a regularly spaced region

of interest (ROI) on a CCD.

The problem of non-uniform ion spacing can be solved by adding anharmonic terms

in the confining potential, such that the ions near the center are pushed out, and the

outermost ions are pushed towards the center. A potential which is flatter than the

harmonic potential near the center of the chain, and steeper at the edge is useful for
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this purpose. Hence, to make a uniform chain of ions, at least a quartic potential

is required to the lowest order [129]. An electrode with five or more segments is

needed to generate a quartic potential in a linear trap.

6.2 Creating an arbitrary lattice geometry

It is possible to tailor the long range interactions in the trapped ion system

properly to simulate a spin model on an arbitrary lattice geometry. The ultimate

goal would be control every pairwise interaction in a fully connected spin network.

In a system of N spins, there are NC2 = N(N−1)/2 ≈ N2/2 two body interactions,

and thus we need at least N2/2 control knobs to generate an arbitrary spin network.

This is feasible by addressing the ions with individual Raman beams, each of which

will contain several beat-notes to drive multiple normal modes selectively. Thus,

extending Eq. 2.53 to the general case [130], the Ising coupling between spins i and

j becomes,

Ji,j =
N∑
n=1

Ωi,nΩj,nR
N∑
m=1

bi,mbj,m
µ2
n − ω2

m

. (6.1)

Here R is the recoil frequency, Ωi,n is the single spin carrier Rabi frequency consistent

with the optical power on the ith ion, and nth beat-note at frequency µn. Thus

we have N amplitude knobs Ωi,n (i = 1, 2, ..., N for a fixed beat-note index n)

corresponding to each beat-note µn ( n = 1, 2, ..., N) - a total of N2 controls. Thus

in principle, it should be possible to solve for the N ×N Rabi frequency matrix Ωi,n

for any arbitrary Ji,j.
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6.3 Other interesting spin physics

In the experiments presented in this thesis, we have tuned the Raman beat-

note close to the COM mode, for which all the interactions have equal sign. Tuning

the Raman beat-note in between the normal modes will give more versatility in

the Ising couplings, allowing us to observe new spin phases. As an example, if the

beat-note is tuned in between the second (tilt) and the third mode in the order of

decreasing frequency, short range ferromagnetic couplings compete with the long

range antiferromagnetic couplings. The resulting spin order is predicted to undergo

a first order, or ‘sharp’ phase transition between a ferromagnetic and a ‘kink’ phase

[100]. In the ferromagnetic phase all spins point in the same direction, and in the

kink phase, a domain wall appears near the center of the spin chain. This prediction

opens up an interesting avenue to explore, as this is an example of a truly sharp

transition in a very small spin system.

While the quantum Ising model with arbitrary long range interactions admits

many aspects of non-trivial many body physics, an access to several other spin

models, such as the xy and the Heisenberg models, will enhance the versatility of

the ion trap quantum simulator. The anisotropic Heisenberg model, xxz model

can also be mapped to a Bose-Hubbard Hamiltonian in the context of ultracold

atoms in optical lattices [131]. The xy model can be engineered by adding another

pair of Raman beams coupling to the vibrational modes along the other transverse

direction (y), and off-setting the phase of the Mølmer-Sørensen couplings induced

by the additional laser beams by π/2 from the original beams. However, error terms
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due to the cross-talk between the normal modes generating the σxσx and the σyσy

interactions must be kept under control by properly shaping the mode excitations.

In principle, we can add yet another beam to simulate the σzσz couplings, in order

to simulate the anisotropic Heisenberg interactions. However, due to our choice of

the 171Yb+ ‘clock’ hyperfine states as the spin states, the Ising couplings along the z

direction may be smaller than the other two directions. This issue can be overcome

by choosing one of the Zeeman states as the | ↑z〉 state. The new spin-1/2 states

are now more sensitive to any magnetic field fluctuations, and hence the magnetic

field must be stabilized and the stray fields have to be shielded to maintain a long

coherence time between the spin states.
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Appendix A

Quantum trajectory calculations

Quantum trajectories (chapter 3) are generated∗ by numerically integrating

the Schrödinger equation, with Hamiltonian 3.1, while simultaneously executing

quantum jumps to account for spontaneous emission and decoherence. The proba-

bility of spontaneous emission used is consistent with the experimental parameters.

The rate of dephasing (primarily due to the fluctuations in the intensities of the

Raman beams) is treated as a fitting parameter. Spontaneous emission from ion i

either localizes the spin of the ion, projecting it into 2S1/2|F = 0,mF = 0〉 (spin

state | ↓z〉) or 2S1/2|F = 1,mF = 0〉 (spin state | ↑z〉), or it projects the ion into

2S1/2|F = 1,mF = 1〉, in which case ion i is factored out of the Schrödinger evo-

lution, though it is counted as spin up at the time of measurement. Decoherence

(dephasing) is modeled by the quantum jump operator σx; thus a jump for ion i,

|ψ〉 → σix|ψ〉, introduces a π phase shift between the spin states | ↑〉 and | ↓〉 (in

x−basis). Jump rates are taken to be fixed and equal for all ions. Note that a

decoherence jump rate of Γdecoh leads to decay of the spin coherence at rate 2Γdecoh.

To determine the entangled state of the spin ensemble after a spontaneous emission,

∗The calculations are performed by Changsuk Noh and Prof. Howard Carmichael, Auckland
University, NZ.
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e.g. from ion i, we assume that the ground state configuration prior to emission,

| ↑z〉i
∏
j 6=i

(αi,j| ↑z〉j + βi,j| ↓z〉j) + | ↓z〉i
∏
j 6=i

(γi,j| ↑z〉j + δi,j| ↓z〉j) ,

is mapped, by the far detuned Raman beams, into a very small excited-state con-

tribution to the overall system entangled state,

λ|2P1/2〉i
∏
j 6=i

[(αi,j + γi,j)| ↑z〉j + (βi,j + δi,j)| ↓z〉j)],

with λ � 1 proportional to the amplitude of the Raman beams and inversely pro-

portional to their detuning. The (unnormalized) state after the emission is

|?〉i
∏
j 6=i

[(αi,j + γi,j)| ↑z〉j + (βi,j + δi,j)| ↓z〉j)],

where |?〉i is | ↑z〉i, | ↓z〉i, or the factored state 2S1/2|F = 1,mF = 1〉.
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Appendix B

Detection of spin states

This appendix describes the methods used to detect the spin ordering in the

quantum simulation of the ferromagnetic Ising model with N = 2 to N = 9 spins,

described in chapter 3.

The spin states are detected by spin-dependent fluorescence signals collected

through f/2.1 optics by a photomultiplier tube. Spin state | ↑z〉 is resonantly excited

by the 369.5 nm detection beam and fluoresces from 2P1/2 states, emitting Poisson

distributed photons with mean ∼ 12 in 0.8 ms. This state appears as ‘bright’ to

PMT. The detection light is far off-resonant to spin state | ↓z〉 and this state appears

‘dark’ to the PMT. However, due to weak off-resonant excitation bright state leaks

onto dark state, altering the photon distribution [90]. Unwanted scattered light from

optics and trap electrodes also alter the photon distribution. We construct the basis

function for s bright ions by convolution techniques, and include a 5% fluctuation in

the intensity of detection beam, which is representative of our typical experimental

conditions. We then fit the experimental data to these basis functions, and obtain

probabilities P (s) at each time step ti in the experiment. Mean photon counts for

dark (mD) and bright (mB) states are used as fitting parameters so as to minimize

the error residues.

The best fitting at time step ti is obtained for the parameters {mD,i,mB,i}.
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These parameters fluctuate at different time steps of the quantum simulation, pri-

marily due to fluctuations in the intensity of detection beam and background scat-

ter, and also due to uncertainties in a multivariate fitting. The fitting errors are

propagated to the spin state probabilities P (s) using Monte Carlo method of error

analysis, as follows. We extract P (s) and compute the order parameters at time

step ti with mean dark and bright state counts chosen randomly from a Gaussian

distribution with mean {m̄D, m̄B} and standard deviations {δmD, δmB} respec-

tively. Here m̄D and m̄B are averages of mD,i and mB,i respectively over different

time steps ti. Similarly δmD and δmB are standard deviations of mD,i and mB,i

respectively. By repeating this process ∼ 400 times we generate a histogram of each

order parameter and fit the histograms to a Gaussian distribution. The standard

deviation of the distribution is chosen to represent the random error due to fitting

in that order parameter. The uncertainty in amount of fluctuation of the detection

beam power during the experiment is conservatively included in the error analysis

by repeating the fitting process for a range of fluctuations. The finite width of the

detection beam is taken care of by modeling the Gaussian beam having a three step

intensity profile with appropriate intensity ratios.
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Appendix C

Relevant Frequencies for 171Yb+ and 174Yb+

The following table lists the frequency lock points of various lasers used in our

experiments. The 739.5 nm laser (Ti:Sapphire) is locked to a hyperfine transition of

Iodine molecules. This light is sent to the Iodine saturation absorption spectroscopy

set up through an EOM driven at 13.315 GHz, and the (positive) first order side-

band of this light excites the Iodine line. The 739.5 nm laser frequency lock points

are about 400 MHz red detuned from the cooling transition resonance, and thus

appropriate for using 400 MHz AOMs.

Without changing the lock point of the 739.5 nm laser, we can address the

174Yb+ resonance by shifting the Iodine EOM drive frequency to 12.103 GHz (while

locking the laser to 405.644318 THz).

Laser Frequency for
171Yb+ (THz)

Frequency for
174Yb+ (THz)

Comments

739.5 nm 405.644318 405.645530 Iodine EOM at
13.315 GHz

935 nm 320.56922 320.57190

399 nm 751.52764 751.52680

638 nm 469.445, 469.442 469.439 scanned around
these two lines

Table C.1: Frequency lock points for various lasers

194



Bibliography

[1] P. A. M. Dirac, The Principles of Quantum Mechanics, vol. 27 of International
series of monographs on physics (Oxford, England). second ed., 1935.

[2] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description
of physical reality be considered complete?,” Phys. Rev., vol. 47, p. 777, 1935.

[3] R. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys.,
vol. 21, pp. 467–488, 1982.

[4] S. Lloyd, “Universal quantum simulators,” Science, vol. 273, p. 1073, 1996.

[5] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L.
O’Brien, “Quantum computers,” Nature, vol. 464, p. 45, 2010.

[6] D. P. DiVincenzo and P. W. Shor, “Fault-tolerant error correction with effi-
cient quantum codes,” Phys. Rev. Lett., vol. 77, pp. 3260–3263, Oct 1996.

[7] J. I. Cirac and P. Zoller, “Quantum computation with cold trapped ions,”
Phys. Rev. Lett., vol. 74, pp. 4091–4094, 1995.

[8] D. Porras and J. I. Cirac, “Effective quantum spin systems with trapped ions,”
Phys. Rev. Lett., vol. 92, p. 207901, May 2004.

[9] X.-L. Deng, D. Porras, and J. I. Cirac, “Effective spin quantum phases in
systems of trapped ions,” Phys. Rev. A, vol. 72, p. 063407, Dec 2005.

[10] R. Blatt and C. F. Roos, “Quantum simulations with trapped ions,” Nature
Physics, vol. 8, p. 277, 2012.

[11] I. Bloch, J. Dalibard, and S. Nascimbène, “Quantum simulations with ultra-
cold quantum gases,” Nature Physics, vol. 8, pp. 267–276, Apr 2012.
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