Context Caching using Neighbor Graphs for Fast Handoffs in a Wireless
Network *

Arunesh Mishra, Min-ho Shin, and William A. Arbaugh

Computer Science Technical Report CS-TR-4477, and
UMIACS Technical Report UMIACS-TR-2003-46
Department of Computer Science
University of Maryland
College Park, Maryland 20742
waa@cs.umd.edu

Abstract. User mobility in wireless data networks is increasing
because of technological advances, and the desire for voice and
multimedia applications. These applications, however, require
handoffs between base stations to be fast to maintain the qual-
ity of the connections. Previous work on context transfer for fast
handoffs has focused on reactive, i.e. the context transfer occurs
after the mobile station has associated with the next base station
or access router, methods. In this paper, we describe the use of
a novel and efficient data structure, neighbor graphs, which cap-
tures dynamically the mobility topology of a wireless network as
a means for pre-positioning the station’s context at the potential
next base stations— ensuring that the station’s context remains
one hop ahead. From experimental and simulation results, we
find that the use of neighbor graphs reduces the layer 2 hand-
off latency due to reassociation by an order of magnitude from
15.37ms to 1.69ms, and that the effectiveness of the approach
improves dramatically as user mobility increases.

1 Introduction

Wireless networks, specificially those based on the IEEE
802.11 standard (Wi-F1i), are experiencing rapid growth due
to their low cost and unregulated bandwidth. As a result
of this tremendous growth, pockets of connectivity have
been created not unlike those created during the first few
years of the cellular systems. The logical next step for Wi-
Fi based networks is support for fast roaming within the
same administrative domain and then eventually between
overlapping pockets of connectivity or different administra-
tive domains. Thus, we expect users to become more mo-
bile once technological advances such as multi-mode (Wi-Fi
and GSM/CDMA cellular) handsets become more available
much as users became more mobile in the traditional cel-
lular networks once handsets became smaller and more af-
fordable.

Previous studies of wireless network mobility have shown
that users tend to roam in what we call discrete mobility
* This work supported in part by grants from the U.S. National

Institute of Technology, Samsung Electronics, and the U.S.
Laboratory for Telecommunications.

where the user utilizes the network while stationary (or con-
nected to the same base station) and before moving the user
ceases operation only to continue using the network after
moving to a new location [1-4]. That is the users do not
usually move while using the network because the major-
ity of current network applications and equipment do not
easily lend themselves to what we call continuous mobility
where the user moves while utilizing the network.

Voice based applications are the usual application in con-
tinuous mobility as seen in the current cellular networks,
and we expect voice and multimedia applications will serve
as the catalyst for continuous mobility in Wi-Fi networks
much as they did for the cellular networks once multi-mode
handsets and end-user applications become more widely
available.

Supporting voice and multimedia with continuous mobil-
ity implies that the total latency (layer 2 and layer 3) of
handoffs between base stations must be fast. Specifically,
the overall latency should not exceed 50 ms to prevent ex-
cessive jitter [5]. Unfortunately, the vast majority of Wi-
Fi based networks do not currently meet this goal with
the layer 2 latencies contributing approximately 90% of the
overall latency which exceeds 100 ms [6, 7]. Handoffs involve
transfer of station contexrt, which is the stations’s session
and QoS related state information, via inter-access point
communication. This transfer only furthers the handoff de-
lay by an average 15.37 ms.

One method of reducing the overall latency of handoffs
is to transfer or cache context ahead of a mobile station
in a pro-active fashion. Unfortunately, the previous work
on context transfer has focused solely on reactive context
transfers, i.e. the context transfer is initiated only after
the mobile station associates with the next base station or
access router resulting in an overall increase in the latency
of the handoff rather than reducing it [7,8]. The problem
with pro-active approaches, however, is how to determine
the set of potential next base stations without examining
the network topology and manually creating the set.

In this paper, we introduce a novel and efficient data
structure, the neighbor graph, which dynamically captures
the mobility topology of a wireless network through real-
time examination of the handoffs occurring in the network
in either a distributed fashion, e.g. at a base station or
access point, or in a centralized fashion, e.g. at the authen-
tication server.

A neighbor graph is an undirected graph with each edge
representing a mobility path between the vertices, or access
points. Therefore, given any edge, e, the neighbors of e rep-
resent the set of potential next access points. While there
are numerous uses for this information, we focus in this
paper on using it for pro-active context transfers ensuring
that a mobile station’s context is always one hop ahead.

To demonstrate the utility of neighbor graphs, we have
implemented neighbor graphs on top of the IEEE’s Inter-
access point protocol and our approach has been included
into the latest IEEE draft (IAPP) [9], and we find that
using neighbor graphs to pro-actively cache a station’s con-
text reduces the latency of reassociation from an average of
23.58 ms (with a single outlier) and 15.37 ms (without the
outlier) to 1.69 ms. Further, we find through simulations
that as users become more mobile the effectiveness of our
solution increases, i.e. the context cache hit ratio increases
to over 90% in most cases with reasonable cache sizes.

2 Related Work

The related work is broken into two distinct categories: con-
text transfers, and algorithms that dynamically generate
the topology of wireless networks.

The previous work on context transfers has mostly fo-
cused on the IP layer using reactive transfer mechanisms [7],
and general purpose transfer mechanisms without detailing
transfer triggers [10]. The only previous work on link layer
context caching was also originally reactive until neighbor
graphs were recently added [9].

The IP layer context transfer mechanisms focus solely on
the transfer of context from access router to access router,
and while Koodli [7] mentions access points briefly— indicat-
ing that access routers and access points can be co-located.
The context transfer mechanisms are designed solely for
access routers and are reactive rather than pro-active as in
neighbor graphs [7]. In the case of the SEAMOBY context
transfer protocol, the protocol provides a generic frame-
work for either reactive or pro-active context transfers [10].
The framework, however, does not define methods for im-
plementing either reactive or pro-active context transfers.
As a result, our approach can easily be integrated into the
SEAMOBY protocol providing a pro-active context trans-
fer mechanism as it was with IAPP [6].

TAPP was originally only reactive in nature— creating an
additional delay in a handoff. As a result of our early results,
the neighbor graph notion was included in the latest IAPP
draft recommended practice [9].

The previous work on topology algorithms has focused on
pre-authentication, automated bridge learning, and sharing
of public key certificates [11-13].

Pack proposes pre-authentication be performed to the k
most likely next access points. The k stations are selected
using a weighted matrix representing the likelihood (based
on the analysis of past network behavior) that a station,
associated to AP;, will move to AP;. The mobile station
may select only the most likely next access points to pre-
authenticate, or it may select all of the potential next access
points [11,12]. Pack uses the notion of a frequent handoff
region (FHR) to represent the adjacent access points, or
neighbors, which is obtained by examining the weighted
matrix. The weights within the matrix are based on an
O(n?) analysis of RADIUS log information using the in-
verse of the ratio the number of handoffs from AP; to AP;
to the time spent by the mobile station at AP; prior to the
handoff. While the FHR notion represents neighboring ac-
cess points, it requires O(n?) computation and space, where
n is the number of access points in the network, and must
be created at the authentication server (AS). Furthermore,
the FHR notion does not quickly adapt to changes in the
network topology changes. This is in contrast to neighbor
graphs which require O(degree(ap)) computation and stor-
age space per AP ! and which quickly adapt to changes in
the network topology. Additionally, neighbor graphs can be
utilized either in a distributed fashion at each access point,
or client, and in a centralized fashion at the AS.

Capkun et. al. leverage station mobility to create an
ad-hoc public key infrastructure by neighboring stations
exchanging public key certificates to create a certificate
graph [13]. The idea is that a neighboring station is most
likely able to verify the identity of another station, and af-
ter successfully doing so add the certificate to their graph.
The resultant graph represents the mobility pattern with
respect to other stations. While this mobility graph has a
different focus and use than neighbor graphs, mobile sta-
tions rather than access points or base stations, and caching
certificates rather than context. It none-the-less uses the
notion of neighbors, and we include a discussion of it for
completeness.

In 1980’s, to overcome the geographic limitation of a
LAN, LANSs began to be interconnected with other LANs
using bridges. In this approach, a bridge, connected to two
or more links, listens promiscuously to all packets and for-
wards them to a link on which the destination station is

! The cache consumes an O(1) storage and computation.

known to reside. A bridge also learns of the locations of
stations so that it forwards traffic to the correct link. In
[14], Perlman proposed a self-configuring and distributed
algorithm to allow bridges to learn the loop-free subset of
the topology that connects all LANs, by communicating
with other bridges. This subset is required to be loop-free (
a spanning tree) to avoid unnecessary congestion caused by
infinitely circulating packets. This Spanning Tree Algorithm
or Spanning Tree Protocol in [15] is self-configuring because
the only priori information necessary in a bridge is its own
unique ID (MAC address). The algorithm requires very
small bounded amount of memory per bridge, and bounded
amount of communications bandwidth on each LAN, both
are independent of the total number of LANs. Further-
more, there is no requirement for modifications to stations
and the algorithm interoperates with simpler bridges, is
another advantage of the algorithm. Neighbor graphs are
also self-configuring operate in the same manner— examin-
ing network traffic, specifically layer 2 management frames,
to create the wireless network topology dynamically. The
two algorithms, and their purpose is different.

3 Background

3.1 IEEE 802.11 Handoffs

The TEEE 802.11 [16] MAC specification allows for two
modes of operation: ad hoc and infrastructure mode. In
ad hoc mode, two or more wireless stations (STAs) recog-
nize each other (through beacons) and establish a peer-to-
peer relationship. In infrastructure mode, an access point
(AP) provides network connectivity to its associated STAs
which forms a Basic Service Set(BSS). Multiple APs as a
part of the same wireless network form an Extended Ser-
vice Set(ESS). Because of mobility, load conditions, or de-
grading signal strength, a STA might move to another AP
within the same wireless network. This process is referred
to as a handoff. The mechanism or sequence of messages
between a STA and the APs resulting in a transfer of phys-
ical layer connectivity and state information from one AP
to another with respect to the STA is referred to as a hand-
off. While the process involves various MAC and network
layer functions, we only focus on the layer 2 aspects in this
paper.

We use the following terms in the paper: STA, station,
client or user refers to a computing device capable of per-
forming the role of an 802.11 mobile station. We use old-A P
to refer to the AP to which a STA was associated prior to a
handoff, and new-AP to refer to the AP to which the STA
is associated after the handoff. The term current-AP refers
to the AP to which a STA is currently associated to. The
term distribution system (DS) refers to the interconnection

architecture for communication between the APs and other
network devices (authentication server, routers, etc) which
together form the ESS.

Figure 1 shows the sequence of steps that are designed to
occur during a handoff. The first step (not indicated in the
figure) is the termination of a STA’s association to current
AP. Either entities can initiate a disassociation for various
reasons ([16], page 53). Due to mobility or degradation of
physical connectivity (signal strength), it might not be pos-
sible for the STA or the AP to send an 802.11 disassociate
message. In such cases, a timeout on inactivity or communi-
cation between APs or the receipt of an IAPP Move-Notify
(discussed later) terminates the association.

During the second step, the STA scans for APs by either
sending probe request messages (active scan) or by listen-
ing for beacon messages (passive scan) broadcast by APs
on channels of interest. Messages A through D in the fig-
ure show the active scan. For each channel, a probe request
(messages A and C) is sent by the STA and probe responses
(messages B and D) are received from the APs in the vicin-
ity of the STA. After scanning all intended channels, the
STA selects the new-AP based on the data rates and signal
strength. Probe Delay is the time spent by the STA in scan-
ning and selecting the next AP. After the probe, the STA
and new-AP exchange 802.11 authentication frames, and
the latency incurred is the authentication delay (messages
E and F). After authentication, the STA sends an 802.11
reassociation request to the AP (message G) and receives
a reassociation response from the AP (message H) which
completes the handoff process. The latency incurred during
this exchange is the reassociation delay and this process is
called the reassociation process. 2 During reassociation, the
APs involved exchange station context information. This is
achieved through the use of the Inter Access Point Protocol
(IAPP). The next subsection discusses the broader role of
TAPP in managing the distribution system (DS).

3.2 Inter Access Point Protocol

The IEEE 802.11f-recommended best practice specifies two
types of interaction for completing context transfer [8]. The
first form of interaction occurs between APs during a hand-
off and is achieved by the TAPP protocol, and the second
form of interaction is between an AP and the RADIUS
server.

TAPP plays a significant role during a handoff. The two
main objectives achieved by inter-access point communica-
tion are : (a) Single Association Invariant: Maintaining a
single association of a station with the wireless network,

2 For a detailed analysis of the probe and authentication pro-
cess, see [6].

STA

PROBE
DELAY C

D

E

AUTHENTICATION
HANDOFF DELAY

nen
DELAY F A

REASSOCIATION
DELAY

A (br Oadcasr)
Probe Request
B Probe Rﬁ)O\'\S@
(broadcasy)
Probe Request
probe R

W

fication

GW

APs in Range

—a]

-

New AP

nse

Old AP

W
W
 MoveReRETT

" nse
H epssociation &
802.11 IAPP
MESSAGES MESSAGES

Fig. 1. The handoff procedure by the IEEE 802.11 and IEEE 802.1f.

and (b) the secure transfer of state and context informa-
tion between APs involved in a reassociation reducing or
eliminating the latency of due to context transfer.

Association and reassociation events change a station’s
point of access to the network. When a station first asso-
ciates to an AP, the AP broadcasts an Add-Notify message
notifying all APs of the station’s association. Upon receiv-
ing an Add-Notify, the APs clear all stale associations and
state for the station. This enforces a unique association for
the station with respect to the network. When a station re-
associates to a new-AP, it informs the old-AP of the reasso-
ciation using IAPP messages. Figure 1 shows the sequence
of messages involved in the reassociation.

At the beginning of a reassociation, the new-AP can op-
tionally send a Security Block message to the old-AP, each
of which acknowledges with an Ack-Security-Block message.
This message contains security information to establish a
secure communication channel between the APs. The new-
AP sends a Move-Notify message to the old-AP requesting
station context information and notifying the old-AP of
the reassociation. The old-AP responds by sending a Move-
Response message.

For confidentiality of the context information, IAPP
draft recommends the use of a RADIUS server (to obtain
shared keys) to secure the communication between APs.
The RADIUS server can also provide the address mapping
between the MAC addresses and the IP addresses of the
APs, which is necessary for IAPP communication at the
network layer.

Although the TAPP communications serve to fulfil the
mandatory DS functions, they invariably increase the over-
all handoff latency because of their reactive nature.

4 Neighbor Graphs

In this section, we describe the notion and motivation for
neighbor graphs, and the abstractions they provide. As seen
in figure 1, the reassociation phase primarily involves the
transfer of station context from the old-AP to the new-AP.
In order to improve the reassociation latency, the context
transfer process (using IAPP) must be separated from the
reassociation process. This can be achieved by providing the
new-AP with the client-context prior to the handoff, or pro-
actively. Since we are unable to predict the mobile station’s
movement, we need a method for determining the candidate

set of potential new-APs to perform the transfer prior to
the handoff. The neighbor graph datastructure provides the
basis for identifying this candidate set.

4.1 Definitions

Given a wireless network, we construct a datastructure
called a neighbor graph which captures the reassociation
relationship between access points.

Reassociation Relationship: Two APs, say, ap; and ap;
are said to have a reassociation relationship if it is possible
for an STA to perform an 802.11 reassociation through some
path of motion between the physical locations of ap; and
apj, see the dotted lines in figure 2.

The reassociation relationship depends on the placement
of APs, signal strength and other topological factors and in
most cases corresponds to the physical distance (vicinity)
between the APs.

AP Neighbor Graph: Define a undirected graph G =
(V,E) where V. = {api,apa,...,ap,} is the set of all
APs (constituting the wireless network under considera-
tion), and there is an edge e = (ap;,ap;) between ap;
and ap; if they have a reassociation relationship. Define
Neighbor(ap;) = {api, : api, € V,(api,ap;,) € E}, ie. it
is the set of all neighbors of ap; in G.

While, the neighbor graph can be implemented either
in a centralized or a distributed manner. In this work, we
are implementing it in a distributed fashion, with each AP
storing its set of neighbors. Each AP learns of a neighbor
when it receives an 802.11 reassociation request, or an IAPP
Move-Notify message. The construction and maintenance
of this datastructure (in a distributed fashion) is discussed
further in section 4.4.

Association Pattern: Define the association pattern I'(c)
for client ¢ as {(ap1,t1), (aps,ta),. .., (apn,tn)}, where ap;
is the AP to which the client reassociates (new-AP) at time
t; and {(apit1,ti+1) , (ap;,t;)} is such that the handoff
occurs from ap; to ap;4+1 at time ¢;11; the client maintains
continuous logical network connectivity from time ¢; to t,.

4.2 Proactive Caching and Locality of Mobility

Caching strategies are based on some locality principle, eg:
locality of reference, execution etc. In this environment, we
have locality in the client’s association pattern. In this sec-
tion we discuss the proactive caching strategy, based on
locality of mobility.

We define the Locality of Mobility principle to state that
for a client ¢, with association pattern I'(c) as defined
above, for any two successive APs according to I'(c), say,
ap; and ap; 41 should satisfy the reassociation relationship.

This concept of locality is the abstraction captured by the
neighbor graph as a datastructure.

The following functions/notations are used to describe
the algorithm:

1. Context(c): Denotes the context information related to
client c.

2. Cache(apy): Denotes the cache datastructure main-
tained at apy.

3. Propagate_Context(ap;,c,ap;): denotes the propaga-
tion of client ¢’s context information from ap; to ap;.
This can be achieved by sending a Contezt-Notify mes-
sage from ap; to ap; (as discussed later in section 4.6).

4. Obtain_Context(apfrom, ¢, apto): apt, oObtains Con-
text(c) from apfrom using IAPP Move-Notify messsage
as discussed in section 3.2.

5. Insert_Cache(ap;, Context(c)): Insert the context of
client, ¢, in to the cache datastructure at ap;. Perform
an LRU replacement if necessary.

The Proactive Caching Algorithm: The access points use
the following algorithm for proactive caching;:

1. When a client ¢ associates to ap;:
(i) For every ap; €
Propagate_Context(ap;, ¢, ap;)

2. When a client c reassociates to ap; from apy, :

Neighbor(ap;)

(i) If Context(c) not in Cache(ap,):
Obtain_Context(apy, c, ap;)
(i) For every ap; € Neighbor(ap;)
Propagate_Context(ap;, ¢, ap;)

3. On receipt of Context(c) at ap;j:

Insert_Cache(ap;, Context(c)).

At each AP, the cache replacement algorithm we are us-
ing a least recently used approach.

The cache can be implemented as a hash table over a
sorted linked list (according to the insertion time). This
would give a cache lookup of O(1) and a cache replacement
of O(1) as well. The method Propagate_Context requires
sending the context to each neighbor and hence would in-
cur an execution cost of O(degree(ap;)*propagation_time),
where propagation_time is the round-trip time for commu-
nication between the two APs under consideration.

4.3 An Example

Figure 2 shows the physical topology of a wireless network,
and the corresponding neighbor graph. There are five APs
A...E, with their placement as shown. The dashed lines
show the potential paths of motion for a client in the vicin-
ity of A, and associated to it.

I Access Point
ffffffffffff = Movement of the Station

Physical Topology of the Wireless Network

ﬂ o <““4“ﬂ m

Corresponding Neighbor Graph

Fig. 2. Figure shows an example placement of APs and the corresponding neighbor graph.

When a client associates to A, its context information is
propagated to neighbors B and E. Thus if the client is asso-
ciated to AP A, regardless of the path of motion (as shown
in the figure), the new-AP has to be either B or E when
the client moves continously. In other words, there is no
edge nor a reassociation relationship, for example, between
A and D, because through all possible paths of motion al-
lowed by the physical topology, a client cannot directly re-
associate from A to D without (at least temporarily) going
through B or E. By proactively sending the context to B
and E, the client is guaranteed a fast handoff (assuming
context remains in cache). Thus the neighbor graph (on
the right in figure 2) captures this locality information in
the form of a datastructure. Thus, the graph on the right of
figure 2) is sufficient to abstract out this relationship from
the given network topology.

4.4 Generation of the Neighbor Graph

The neighbor graph can be automatically generated (i.e.
learned) by the individual access points over time. There
are two ways that APs can learn the edges in the graph.
Firstly, when an AP receives an 802.11 reassociation re-
quest frame from a STA, the message contains the MAC
(BSSID) of the old-AP and hence establishes the reassoci-
ation relationship between the two APs. Secondly, receipt
of a Move-Notify message from another AP via TAPP also
establishes the relationship. These two methods of adding
edges are complementary, and the graph will remain undi-
rected.

Each AP maintains the edges locally in an LRU fashion.
This is necessary in order to eliminate the outliers, i.e. in-
correctly added edges. One situation where this would hap-
pen is a client that goes into the power save mode, and can

potentially wake up to reassociate to any other AP on the
wireless network. Thus a timestamp based LRU approach
would guarantee the freshness of the neighbor graph, and
eliminate the outlier edges over time. The effect of the out-
liers on the performance of the algorithm would be nominal,
as it would just result in an additional caching of a client’s
context for a short amount of time (LRU freshness).

The autonomous generation also eliminates the need for
any survey or other manual based construction methods.
As a result, this also makes the datastructure adaptive to
dynamism in the reassociation relationship (i.e. changes in
AP placements, physical topology changes, etc).

The graph is generated by executing the following pseu-
docode at each AP. appos: is the AP on which the algorithm
is assumed to be executing:

1. Receipt of a reassociation request: When a client ¢ reas-
sociates to appost from ap;, add edge ap; as a neighbor
of appost (i-e. aprost adds ap; to its list of neighbors).

2. Receipt of a Move-Notify: When apy,,s¢ receives a Move-
Notify from ap;, add ap; to the list of neighbors.

Thus the graph is constructed independently by each AP.
The first client to traverse an edge incurs, a high handoff
latency. But the edge is added to the graph, and the cost is
amortized over subsequent handoffs. Thus after O(|E|) high
latency handoffs, the algorithm converges to its expected
performance. The algorithm has a O(1) running time per
reassociation.

4.5 Expected Performance: Characterizing the
Cache Misses

As discussed earlier, the caching algorithm is based on the
locality of mobility principle. Since reassociation relation-
ships are captured in the neighbor graphs and client-context

is forwarded to all neighbor APs, technically we would ex-
pect a 100% cache hit ratio for the reassociations. This
assumes that the neighbor graph has been learned and the
cache size is unlimited.

The above assumption takes us to the two kinds of cache
misses possible during a reassociation:

1. Reassociation between non-neighbor APs: When a reas-
sociation occurs between two APs that are not neigh-
bors, the station-context does not get forwarded and
results in a cache miss. The edge subsequently is added
to the graph through the learning process. Thus when
a wireless network is first brought up (or rebooted),
the initial reassociations in the network would be cache
misses.

2. Context evicted by LRU replacement: This happens
when the client-context is evicted at the new-AP be-
cause of other clients reassociating to neighboring APs.

As discussed in the previous section, the first type of
cache miss would occur only once per edge and has a nom-
inal effect towards the performance in the long run. The
second type of cache miss depends on mobility of other
users, and hence dictates the performance of the algorithm.
Presented below is a simple analysis of the expected per-
formance perceived by a client (i.e. hit ratio observed by a
client), with regard to its mobility.

Let I'(c) = {(ap1,t1), (apa, ta), ..., (apn,ts)}, be the as-
sociation pattern observed for a client ¢. Consider a reasso-
ciation {(ap;,t;), (apit1,ti+1)}. Client ¢ reassociated to ap;
at time t;. Also at t;, the client’s context was inserted into
the cache at ap;1. The time spent by ¢ at ap;, would be
T(c,ap;) = ti+1 — t;- The longer the client stays at ap;, the
greater the chance of its context being removed by other
clients reassociating to the neighbors of ap;y;. Thus the
probability P(c,ap;;+1) that the client’s context is evicted
from the cache at ap;; would be directly proportional to
the time spent by the client at ap;. Thus :

P(e,apit1) o< T(c, ap;)

A faster client (i.e. higher mobility) would spend less time
at each AP and hence would have a higher probability of a
cache hit. Thus the performance of the algorithm perceived
by a client would be expected to improve with its mobility.

4.6 TAPP and Proactive Caching

In this section, we discuss the modifications to IAPP to
incorporate proactive caching using neighbor graphs. The
modifications consist of two new messages; Cache-Notify,
and Cache-Response for the purposes of implementing the
Propagate_Context() method discussed in section 4.2. These

changes were included in the IAPP draft recommended
practice version 5 [9].

Figure 3 shows the modified reassociation process (com-
pared to figure 1). For the sake of clarity, the probe and
authentication messages are not shown.

1. Cache-Notify: This message is sent from an AP to its
neighbor and carries the context information pertaining
to the client. It is sent following a reassociation or an
association request.

2. Cache-Response: This is sent in order to acknowledge
the receipt of Cache-Notify. A timeout on this message
results in removal of the edge, as the neighbor AP might
not be alive.

As can be seen from figure 3, a cache-hit avoids the Move-
Notify and Security-Block communication latency during
reassociation resulting in a faster handoff.

The knowledge of neighboring APs at each APs is es-
sential for the effective operation of proactive caching. To
avoid the management overhead of manually maintained
neighbor graphs, the current draft of IAPP now includes
the algorithms from section 4.2.

5 Experiments and Simulations

We present both simulation and implementation results to
demonstrate the performance of proactive caching. Section
5.1 discusses the implementation results and simulation re-
sults are presented in section 5.2

5.1 Experiments

In this section, we discuss the implementation of the
caching algorithm over a custom wireless testbed. We de-
scribe the testbed configuration, the process of the experi-
ments, and the results. In brief, we measured 114 reassoci-
ations in the testbed resulting in an average reassociation
latency of 15.37 ms for a cache-miss without an outlier and
23.58 ms with the outlier (which is the traditional TAPP
communication latency) and 1.7 ms for a cache-hit— achiev-
ing an order of magnitude improvement in the reassociation
latency.

The Wireless Testbed The wireless testbed spans a sec-
tion of two floors (2nd and 3rd) of an office building. There
were five APs on the third floor and four on the second.
The geometry of the floors (L-shape and the dimensions)
and topology of nine access points are shown in figure 4.
The gray circles in the figure represent APs, labeled by an
identifier. Three channels, namely 1, 6 and 11 were used by

[sA] | New AP | (o ap |
Reassociaj
on
%
SeCU’ifY~Block
M
Reassociation M,
Delay %
o Moverfes®
Reassﬂc‘a“o“ /
S€
‘W NeighborAPs
%
w

(a) Reassociation with IAPP and cache miss

[sA] [NewaP | [NeighboraPs
Reassocigyj
on
%
Reassociation {

Dela /
’ eassociation %_
‘Response \..

SECurity—Block
Acknow\ed e

M

%

Move—1esP

(b) Reassociation with IAPP and cache hit

Fig. 3. Message sequences during a handoff with context caching.

\

4 -~
;CH=11 ,/cH=1

Fig. 4. Ezperiment Environment and Neighbor Graph.

the APs. There were 4 APs on channel 1 and 11 each and
one AP on channel 6. These channels were assigned in a
fashion to avoid interference with other wireless networks
operating in the building resulting in less than optimal RF
design.

The APs used for the experiments were based on a
Soekris [17] board NET4521 which has a 133 MHz AMD
processor, 64MB SDRAM, two PC-Card/Cardbus slots for
wireless adapters and one CompactFlash socket. A 200mW
Prism 2.5 based wireless card was used as the AP interface
with a 1ft yagi antenna. OpenBSD 3.1 with access point
functionality was used as the operating system.

The TAPP protocol, neighbor graphs, and the caching
algorithm were implemented in the driver (for the wireless
interface) along with the AP functionality.

Experiment Process To preclude possible interference,
we shutdown the other wireless networks in the building
during the experiment. Figure 5 shows the setup of the
experiment. The mobile unit consisted of a client laptop,
and a sniffer. A laptop with Pentium III 750 MHz CPU
and 256 MB RAM and a Prism 2.5 based ZoomAir wireless
card was used as the client. The reassociation latencies were

TESTBED BACKBONE NETWORK

Access

Mobile Unit

Fig. 5. The experiment setup: the sniffer and the mobile client
move together through the testbed in a random path of motion.

measured by capturing management frames on channels 1,
6 and 11. This was done by the sniffer which had a wireless
card dedicated to capturing traffic on each channel (1, 6,
and 11). Since the APs were configured only on the above
three channels, it was guaranteed that the sniffer would cap-
ture all management frames destined to or transmitted by
an AP in the testbed (with respect to the STA) (primarily
reassociation request and response frames). Three wireless
interfaces in two laptops constituted the sniffer.

Two experiments were conducted. The first experiment
was conducted with fresh APs, i.e. there were no neighbor
relationships prior to the start of the experiment. The goal
of this experiment was to study the effect of the learning
process on the reassociation latencies with time. The second
experiment (following the first) was to confirm guaranteed
cache hits once the neighbor graph had been learnt by the
APs. We discuss the detailed setup of each experiment be-
low.

Experiment A: The first experiment consisted of a ran-
dom walk with the mobile unit, through the physical span
of the testbed. There were no neighbor relationships exist-
ing among APs prior to the start of the experiment. The
experiment started with the client associating to AP-2 (re-
fer figure 4), and a random path of motion covered all APs
on third floor. The unit then moved to the second floor,
covered all APs, and returned to the initial point of asso-
ciation (AP-2). This was one round of the experiment and
nine rounds were conducted for statistical confidence in the
measurements. This resulted in one association, and 114
reassociations during the entire experiment.

Ezperiment B: The second experiment, followed the first,
consisted of two short rounds using a different client. The
purpose of this experiment was to verify the existence of
neighbor graphs (i.e learned from the first experiment) at
each AP by observing a cache hit on all reassociations.

Experiment Results Figure 4 depicts the (3D) neigh-
bor graph created during the experiment. The graph was
constructed by observing the reassociation request frames
captured by the sniffer. The directed edges indicate the
direction of the reassociation (from the old-AP to the new-
AP). The solid edges are intra-floor edges and the rest are
inter-floor edges. The graph shows 23 distinct pairs of APs,
between which the STA could reassociate.

Ezxperiment A: Figure 6 shows the reassociation laten-
cies at each AP 3. The Y-axis is the latency in log base
2. The circular points represent reassociation with a cache-
miss and cross points are the cache-hits. Most of cache-miss
latencies reside around 16 ms except an outlier of 81 ms at
AP-8. The cache-hit latencies are clustered around an av-
erage of 1.69 ms. There are a few cache-hits with latencies
more than 4 ms. We reason that these outliers (involved
with AP-4 and 5) are due to poor coverage design with
respect to the building topology. AP-4 and AP-5 had rel-
atively small transmission range when compared to other
APs and they were physically close to each other (causing
interference). There was another extreme outlier of 2.36 sec-
onds latency with a cache-hit. We are convinced that this is
caused by a sniffing error due to contention at the moment.
This value is excluded in the analysis of the experiment.

Figure 7 shows the reassociation latencies observed with
time. During the experiment, there was a cache-miss for the
first reassociation to each AP (except AP-2). Since during
the initial rounds of the experiment, the APs had not dis-
covered their neighbors, the initial reassociations were cache
misses. The graph visualizes how context caching decreases
reassociation latencies as experiment time progresses. Ex-
cept the very first reassociations and a few outliers, most
reassociation latencies lie below 2 ms. In total, there were 8
cache-misses with average of 15.37 ms % and 105 cache-hits
with average latency of 1.69 ms.

Ezperiment B: The second experiment, was done with a
different client. The APs had learnt the neighbor graph,
and hence during the experiment there were cache misses.
Each association/reassociation forwarded the context to the
neighbors, and hence the client’s context was always found
in cache during a reassociation °. This experiment had 18
reassociation, all cache hits, resulting in an average latency
of 1.5 ms.

3 The reassociation latency is attributed to the new-AP

4 The outlier of 81 ms has been excluded from the average
calculation. We eliminated it since it would unfairly distort
our result by making it higher, i.e. better, than what is clearly
the average of 16 ms.

5 Since we had only one client in the experiment, there were no
cache evictions.

128
cache miss O
cache hit + 1)

64 - 1
—~ 32 ,
£
g +
3 16 © b
= O e} (6} o) O o
2 ¥
©
=
c 8 1
o +
g
g 4r + 1
@

: 2 b 1 + + " 4
+
JoForor st ¢
+
+
05 . . !
3

[
N

4 5 6
Access Point Number

~
©
©

Fig. 6. Reassociation latencies at each access point.

Thus the experiment results show that proactive caching
with neighbor graphs reduces the reassociation latency by
an order of magnitude.

5.2 Simulations

Access points are embedded systems with limited resources
(computing power and memory). A typical access point has
around 4MB of RAM and 1 MB of flash. Client context
information could potentially consist of security credentials,
QoS information etc. Thus an AP can store only a limited
number of contexts in its cache (LRU cache replacement).
In this section we present results on how the algorithm
performs under varying mobility and the number of clients
and APs in the network.

Simulation Objectives:

1. To observe the effect of cache size, number of clients
and mobility of clients on the cache hit ratio.

2. To observe the performance of caching with various
neighbor graphs.

Each simulation starts with a set of APs, a neighbor
graph structure connecting them, a set of clients and their
initial distribution on the APs. Each client is assigned a
mobility index (defined later), which dictates the mobility
of the client throughout the simulation. We discuss below
the assumptions and the model used.

Simulation Model and Assumptions

128 T
o cache-hit
64 | -
— 32 i
£
< +
>
§ 160 %) o i
g +
-
= 8 b
i) +
S
(5}
s} +
T) i
ok A VIS £ Te I S i A
o R R T B g
tr ¥ RS +]
+
05 ‘ ‘ ‘ ‘)
0 1000 2000 3000 4000 5000

Experiment Time (sec)

Fig. 7. Reassociation Latencies with Time.

1. AP Neighbor Graph does not change during the sim-
ulation: As noted earlier, changes in the AP neighbor
graph would cost (in the worst case), one high latency
handoff per edge, and has a nominal effect on the overall
cache performance.

2. Correctness and completeness of the Neighbor Graphs:
We are assuming that the neighbor graphs are correct
and complete, i.e. the simulations do not consider any
reassociations which are not covered as edges in the
graph ®. This makes it sufficient to simulate reassoci-
ations according to the neighbor graph without main-
taining any correspondence with the physical placement
of APs (that would produce the neighbor graph).

3. Initial User-AP distribution: We have assumed a uni-
form distribution of clients across APs to at the start
of the simulation. Figure 8 shows the distribution of
the maximum number of users associated to each AP
during a simulation with 100 APs, and 500 clients.

4. Roaming Model: The client roams according to the fol-
lowing model:

(a) Let client ¢ have an association pattern I'(c) =
{(apla tl)a (ap2; t2)7 R (apnytn)}' The client ¢ is
said to roam from ap; to ap, if (i) the time as-
sociated at each ap;, (1 < i < m) : t;41 — i is of
the order of a typical reassociation latency (around
100 ms, [6]) and (ii) the time the client spends on
ap1 and ap, is of the order of a typical client ses-
sion [4]. Thus the client stays for a session-duration

6 As discussed earlier, such reassociations would have resulted

in the edge being added to the graph

with an AP, roams to another AP (according to an
association pattern), and stays for another session.

(b) At any given point of time during the simulation,
the client is either roaming (according to definition
above) or staying associated to its current AP.

(¢) The association pattern of a roam is decided ran-
domly: If the client ¢ is associated to ap;, it can
move to any one of its neighbors (ap;, , api,, - . . api,)
with equal probability.

User Mobility: Define mobility index of a client as the
probability that the client is roaming at any given point
of time during the simulation. At the end of the simu-
lation it converges to the (Total time spent in roam-
ing/Total simulation time). Mobility indices are as-
signed to clients on a scale of 1...100. The distribution
of mobility indices on clients is uniform.

Fig. 8. Distribution of Maximum number of clients associated
to an AP during a simulation with 100 APs and 500 users.

Simulation Environment

1.

2.

The simulation uses random and connected neighbor
graphs with 10, 20, 50 and 100 vertices.

Duration of the Simulation: The simulation runs for
one million reassociation events uniformly distributed
over the users according to their mobility indices. This
makes the duration of the simulation large enough for
statistical confidence in the results.

Simulation Results

1.

Mobility Improves Proactive Caching Performance:
Figure 9 shows the cache hit ratio achieved by clients
according to their mobility index. The figure compares
the hit ratio performance over neighbor graphs of size
10, 20, 50 vertices keeping the cache size constant. In all

Mobility Improves the Proactive Caching Performance

‘ Cache Size :‘20, Users = Sb, Vertices = lf) —
0.95 I Cache Size = 20, Users = 100, Vertices = 20 -~]
Cache Size = 20, Users = 250, Vertices = 50 ----x---

0.75

0.7 |

Cache Hit Ratio

g 3(**
0.65 - ot]

06 7*&%‘6%’6&&*32%&%2?‘)26 R K |
%
0.55 b
0.5 I I I I
0 20 40 60 80 100

Client Mobility (Index)

Fig. 9. Plot of clients mobility and the cache hit ratio achieved.

three curves, the hit ratio increases with client mobil-
ity. The relative improvement diminishes with increas-
ing number of vertices in the NG graph, and the prime
reason for this being the constant cache size. Later plots
elucidate this observation.

2. Effect of Cache Size and Client Mobility on Hit Ratio:
Figure 10 shows the effect of cache size on the hit ra-
tio keeping the number of clients, and the NG graph
the same. The graph had 100 vertices, and 200 users.
Clearly an increase in the cache size has a direct impact
on the cache hit ratio, to the extent that for a cache size
of 50, all client with mobility indices 70 or higher did
not have any cache misses (slow handoffs) at all.

3. Effect of Cache Size and Number of Users on Hit Ratio:
Number of clients in the network has a direct impact
on the performance. Figure 11 shows the effect of the
two parameters on hit ratio. Figure 12 shows the effect
of the cache size as a percentage of the number of users
on the hit ratio. The data points were taken for cache
sizes varying from 20 to 50 and the number of users
varying from 200 to 500 in increments of 100. Thus a
15 percent cache size is sufficient for a hit ratio of 88
percent while a cache size of 25 percent gives a hit ratio
of around 93 percent.

6 Performance Improvements

In this section, we discuss a modification to the caching al-
gorithm, and the initial results that we obtained that show
an improvement in the average hit ratio.

The improvement is the following. When an STA moves
from an old-AP to a new-AP, in addition to the new-AP

Effect of Cache Size and Client Mobility on Hit Ratio

Cache Size =50 —— |

s K- oK
Cache Size =40 - | Jreex
i Cache Size =30 % | 7 *
0.95 r{___Cache Size =20 - i o 1
HK
%fx o~ o
g 00 A el I
g a
lEacy
£ o085 o 1
o Eakul
=== liI'ln'l"Ila
By H @ o b
075 [7a b BamEpEes |

Users = 200, Vertices = 100

07
0 10 20 30 40 50 60 70 80 90 100

Client Mobility (Index)

Fig. 10. Effect of Cache Size and Client Mobility on Hit Ratio.

forwarding context to its neighbors, the old-AP removes
context from its neighbors (other than the new-AP). As an
example, consider the NG graph shown in figure 15. Let the
STA roam from D to E. According to the algorithm detailed
in section 4.2, after the STA moves to E, it propagates the
context to its neighbors F,G and H. With the modification,
D sends a remowve-context message to its neighbors A,B and
C (other than E), which remove the cache entry for the STA
if present. This brings us to the following invariant as being
satisfied (we state without proof):

Neighborhood-users Invariant: If Context(c) is in
Cache(ap;), for a client ¢ and an AP ap;, this implies ¢
is associated to an AP apy such that apy € Neighbor(ap;).

In other words, if an entry (client-context) is present in
the cache of particular AP, this would imply that the corre-
sponding client is associated to one of the neighbors (of this
AP). Figure 14 shows the improvement in the hit ratio with
the cache invalidation. Shown is the hit ratio observed by
clients according to their mobility index with and without
cache invalidation. The results show an average improve-
ment of 17.4% for 500 clients on a 100 vertex graph and
a cache size of 50. Figure 13 shows the effect of cache size
(as a percentage of the number of users) on the average hit
ratio (over all clients) with and without cache invalidation.
As can be seen from the above plots, cache invalidation al-
ways has an effect of improving the cache hit ratio. The
logical reason behind this observation is that fact that the
cache-invalidation method removes the unnecessary entries
in the cache of an AP.

Effect of Cache Size and Number of Users on Hit Ratio

o
£ =
o *
2 07 E
o
0.6 | ’ g
200 users ——
) 300 users ---x---
05k Vertices = 100 400 users ----x--—- i
‘ ‘ ‘ ‘ 500 users e
20 25 30 35 40 45 50

Cache Size

Fig. 11. Effect of Cache Size and Number of Users on Hit Ratio.

7 Conclusions and Future Work

In this paper, we have introduced a novel, efficient and a
dynamic data structure, neighbor graphs, which captures
the topology of a wireless network by autonomously moni-
toring the handoffs. This datastructure abstracts the phys-
ical topology of the network into a neighbor relationship
which can be used as a vehicle for numerous applications.
Neighbor graphs provide more structure to the distribution
system (DS) interconnecting the APs forming the wireless
network. This structure, which provides the DS information
about the physical topology of the APs, can be leveraged
for optimizations on existing algorithms (load balancing,
network management, and key pre-distribution) or could
lay the foundation for interesting and novel applications.

As an application of the neighbor graphs, we imple-
mented and studied the performance of the proactive
caching algorithm for faster wireless handoffs. The caching
algorithm uses neighbor graphs to send station-context to
its neighbors prior to the handoff and hence separates the
context transfer process from reassociation. We have imple-
mented the approach over IAPP [9] running on a dedicated
wireless testbed and presented results from experiements
conducted on the testbed.

In our experiments, 114 reassociations occurred with an
average reassociation latency of 23.58 ms (including the
one outlier) and 15.37 ms (without the outlier) for a cache-
miss (traditional handoff), and 1.69 ms for a cache-hit. The
results show an order of magnitude improvement due to
proactive caching. In our simulations, we study the perfor-
mance of the algorithm under varying network characteris-
tics : user mobility, number of users associated to the net-
work, and number of APs forming the network. We conlude

Variation of Cache Size (as a percentage of Number of Users) with Hit Ratio

0.95 : :
09
0.85 |-
o
g 08
@
£ o075}
[}
s o7t
o
g 065
©
g o6f
<
0.55 -
05 Vertices = 100 1
0.45 ‘ ‘ ‘ ‘
0 5 10 15 20 25

Cache Size : As a percentage of the Number of Users

Fig. 12. Variation of Cache Size (as a percentage of Number of
Users) with Hit Ratio.

Fig. 13. An example NG graph to show effect of the modification.

that the performance of the algorithm (hit-ratio) improves
as the user mobility increases eventually reaching a 100%
hit-ratio under certain network configurations. We find that
the cache size plays an important role in the performance of
the algorithm. A cache size of 15% (of the number of users
associated to the network) gives a minimum cache hit-ratio
of 88%.

In the future, we plan to pursue a formalization of the
proactive caching algorithm with cache invalidation. As ob-
served from the initial simulation results, (figure 14) there
is an average improvement of 17.4% for 500 clients on a 100
vertex graph and a cache size of 50.

Extending the neighbor graphs, we are working on a com-
prehensive key distribution scheme for secure inter-network
and intra-network roaming. We plan to investigate appli-
cation of neighbor graphs to perform load balancing, and

Proactive Caching with Cache Invalidation

0os | - MW
o

0.9

Cache Hit Ratio

0.75
Cache Size = 50, Users = 500, Vertices = 100
0.7 1
Proactive Caching —— |
065 E’roactivg Caghinq with‘ Caﬁche‘lnvaljgraitmn S%e

0 10 20 30 40 50 60 70 80 90 100
Client Mobility (Index)

Fig. 14. Effect of cache invalidation on the performance of the
proactive caching method.

network management of APs. As a special appliation, neigh-
bor graphs could potentially lead to a scalable method of
organizing and managing a large scale cooperative wire-
less network which interconnects APs from different net-
work domains and with different characteristics (network
bandwidth, cost etc). Neighbor graphs can also be used to
eliminate the expensive scanning operation for faster MAC
layer handoffs by making an intelligent guess about the list
of APs on a particular channel.

References

1. D. Tang and M. Baker, “Analysis of a metropolitan-area
wireless network,” in Mobile Computing and Networking,
pp. 13-23, 1999.

2. K. Lai, M. Roussopoulos, D. Tang, X. Zhao, and M. Baker,
“Experiences with a mobile testbed,” in Proceedings of The
Second International Conference on Worldwide Computing
and its Applications (WWCA’98), Mar 1998.

3. A. Balachandran, G. Voelker, P. Bahl, and P. Rangan,
“Characterizing user behavior and network performance in
a public wireless lan,” 2002.

4. M. Balazinska and P. Castro, “Characterizing Mobility and
Network Usage in a Corporate Wireless Local-Area Net-
work,” in International Conference on Mobile Systems, Ap-
plications, and Services(To Appear), May 2003.

5. International Telecommunication Union, “General Charac-
teristics of International Telephone Connections and Inter-
national Telephone Circuits.” ITU-TG.114, 1988.

. Anonymous for Reviewing Purposes, “No title given,”

7. R. Koodli and C. Perkins, “Fast Handover and Context Re-

location in Mobile Networks,” ACM SIGCOMM Computer
Commumnication Review, vol. 31, October 2001.

(=]

Average Cache Hit Ratio

1
JUREESS X

09 . b
0.8 | R
0.7 b
0.6 A

X

Number of Users = [200 .. 500]
05 X Number of Vertices = 100 R

With Cache Invalidation —— |

04 ‘ ‘ ‘ Normal Prqactive Cachipg el

0 5 10 15 20 25 30
Cache Size: As a percentage of the Number of Users

Fig. 15. Effect of cache invalidation on the hit ratio as a func-
tion of the cache size (percentage of number of users).

10.

11.

12.

13.

14.

15.

16.

17.

IEEE, “Draft 4 Recommended Practice for Multi-Vendor
Access Point Interoperability via an Inter-Access Point Pro-
tocol Across Distribution Systems Supporting IEEE 802.11
Operation,” IEEE Draft 802.1f/D4, July 2002.

IEEE, “Draft 5 Recommended Practice for Multi-Vendor
Access Point Interoperability via an Inter-Access Point Pro-
tocol Across Distribution Systems Supporting IEEE 802.11
Operation,” IEEE Draft 802.1f/D5, January 2003.

M. Nakhjiri, C. Perkins, and R. Koodli, “Context Trans-
fer Protocol,” Internet Draft : draft-ietf-seamoby-ctp-01.txt,
March 2003.

S. Pack and Y. Choi, “Fast Inter-AP Handoff using
Predictive-Authentication Scheme in a Public Wireless
LAN,” IEEE Networks 2002 (To Appear), August 2002.

S. Pack and Y. Choi, “Pre-Authenticated Fast Handoff in a
Public Wireless LAN based on IEEE 802.1x Model,” IFIP
TC6 Personal Wireless Communications 2002 (To Appear),
October 2002.

S. Capkun, L. Buttyan, and J.-P. Hubaux, “Self-Organized
Public-Key Management for Mobile Ad Hoc Networks,” To
appear n IEEE Transactions on Mobile Computings 2003.
R. Perlman, “An algorithm for distributed computation of
a spanningtree in an extended lan,” pp. 44-53, 1985.

R. Perlman, Interconnections, Second FEdition: Bridges,
Routers, Switches and Internetworking Protocols. Pearson
Education, September 1999.

IEEE, “Part 11: Wireless LAN Medium Access Control
(MAC) and Physical Layer (PHY) Specifications,” IEEE
Standard 802.11, 1999.

“Soekris Engineering.” URL: http://www.soekris.com.

