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Abstract

A wide range of dynamical systems from fields as diverse as mechanics, electrical
networks and molecular chemistry can be modeled by invariant systems on matrix
Lie groups. This paper introduces control systems on matrix Lie groups and studies
open-loop tracking and feedback stabilization for these systems in the presence of
nonholonomic constraints. Using the concept of approximate inversion, results for
drift-free, left-invariant systems on specific matrix Lie groups are presented.

1 Introduction

Invariant systems on matrix Lie groups arise from a wide range of fields encompassing
problems as diverse as motion planning and control for autonomous vehicles, power con-
version with switching circuits and coherent control of molecular dynamics. For instance
the kinematics of the orientation of an under-actuated satellite or underwater vehicle
can be expressed as a system evolving on the special orthogonal group SO(3) [13], while
the kinematics of a tractor with n trailers can be described locally as a system on a
certain subgroup of the unipotent matrices (see [16] and our result in Section 3.1). Some
electrical networks used for power conversion can be modeled as evolving on the higher-
dimensional groups SO(k) and SE(k), where the dimension k depends on the complexity
of the network [25]. Moreover, so called multilevel systems used to model molecular bonds
in the context of coherent control of quantum dynamics can naturally be represented as
invariant systems evolving on the complex unitary group U(n) [8].

Apart from the fact that invariant systems on matrix Lie groups arise naturally from
numerous applications, our study of these systems is also motivated by more theoretical
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aspects. In the analysis of nonholonomic systems the Lie algebra of the vector fields
involved has turned out to be the crucial characteristic of these systems. Systems on
matrix Lie groups make this Lie algebra structure naturally explicit and categorizable.
Moreover, they form an important subclass of nonholonomic systems since the invariance
of the involved vector fields on the group manifold implies that the corresponding Lie
algebras are finite dimensional. There are numerous mathematical tools and results
available for Lie groups and algebras, which can provide valuable geometric insight and
sometimes elegant shortcuts. For example the existence of a smooth, static feedback
globally, asymptotically stabilizing the origin of a system on SO(n) can be precluded
immediately since it is shown in [24] that the domain of attraction of an asymptotically
stable equilibrium point is diffeomorphic to ", while it is well known that SO(n) is not.
This global geometric fact might not be apparent in a local coordinate representation
of the system. Of course we have to venture into local coordinates when we do our
computations but we have a range of local representations at our disposal and can work
with the one most suitable for a certain problem at hand.

In contrast with linear systems where the controllability Gramian can be used directly
to construct stabilizing or tracking controls, to date no methods exist to extract such
controls for general nonlinear systems from the controllability Lie algebra. Focusing on
the class of drift-free affine systém some progress has been made in this direction starting
in the late 80’s in the context of nonholonomic motion planning [5, 16]. The underlying
principle here was to make use of oscillatory controls which systematically “excite” higher
order brackets of the system to steer the system in the desired direction. Leonard and
Krishnaprasad considered the problem in a Lie group setting and, applying averaging
theory, obtained in [14] results on approximate point-to-point constructive controls for
left-invariant systems on arbitrary finite-dimensional Lie groups. Sussmann and Liu gave
a very general result for path constructive controllability of drift-free, nilpotent systems
on R" [20]. In parallel to these developments in motion planning, Coron [6] showed the
existence of time-varying stabilizing controls for a general class of drift-free nonlinear
systems while Pomet presented in [18] a method to explicitly construct these control
laws for a more restrictive class of systems.

Brockett, achieved in [2, 3, 4] an appealing synthesis of the problems of open-loop
tracking and feedback stabilization via the concept of approzimate inversion of a system
as captured in a simple, three dimensional nilpotent system. After constructing controls
for asymptotic tracking in the high frequency limit, the concatenation of the approximate
inverse with the original system yields approximately the identity operator in the path
space of the system. While this is already the solution for the motion planning problem,
the problem of finding a stabilizing controller is reduced to the stabilization of a perturbed
identity operator which can be tackled via methods of robust control. Here we investigate
Brockett’s notion of approximate inversion in the setting of systems on Lie groups.

After demonstrating our tools in Section 2, we present in Section 3 approximate
tracking controls for a class of nilpotent systems and outline a method to obtain ap-
proximate tracking controls for non-nilpotent system using the example of a system on
SE(2). Section 4 relates approximate inversion to feedback stabilization and presents a
control law exponentially stabilizing systems on three-dimensional real matrix Lie groups.



Finally, we will summarize our results in Section 5 and discuss possible extensions and
generalizations.

2 Preliminaries

2.1 Lie Groups and Lie Algebras

For general definitions and properties pertaining to Lie groups, Lie algebras and the
exponential map we refer the reader to the standard literature on this topic such as [22, 7].
In this context we will only present the mathematical tools which relate specifically to
the problem of approximate inversion of systems on matrix Lie groups.

2.2 Control Systems on Matrix Lie Groups

In this section we will define the class of systems we are concerned with, focusing for now
on controllable, drift-free, left—invariant systems on matrix Lie groups. Generalization
to systems with drift and on generic Lie groups will be discussed at a later stage of this
work.

Given a real matrix Lie group G of dimension n and the Lie algebra G associated
with G having a basis {Ay,. .., A,} of constant matrices in G, let X denote a curve in G.
Let U(t), t > 0 denote a curve in an m-dimensional subspace of G which can be written
without loss of generality as U(t) = Y2, ui(t)A;, m < n, where the scalar functions
u;(t),t > 0,4 = 1,...,m are interpreted as controls. A drift-free, left-invariant system
on a matrix Lie group G can then be written as

X(@) = X@®U®), Vt>0 (1)
X(0) = e,

where m
U(t) = Z’u,(t)A,, m S n.
=1
and e is the identity in G.
Definitions and characterizations associated with systems on matrix Lie groups, in

particular controllability and the notion of a depth-k system, can be found for instance
in [13].

2.3 Exponential Representations

The main tools in our study will be the so called single exponential representation and
the product of exponential representation for the solution of (1). Both are in general of
local nature, but have distinctive properties which make them more or less appropriate
for specific problems. After introducing both representations and the local equivalents
of (1) in these representations, we end this section with a short comparison by pointing
out their virtues and weaknesses.



2.3.1 Single Exponential Representation

It is well known (see e.g. [22]) that the exponential map exp : ¢ — G is a local diffeo-
morphism for finite-dimensional Lie groups G on a neighborhood U C G of the origin.

Moreover, a result by Lazard and Tits [12] shows that U can be chosen reasonably
large for the three-dimensional matrix Lie groups presented above. In particular, for
SE(2),50(3), and SL(2) we can choose U to be an open ball of radius 7, where we
assume a standard Euclidean norm on G. For H(3) and its higher-dimensional nilpotent
generalizations to be presented below the exponential map is actually a global diffeomor-
phism.

This suggests that we locally represent the solution of (1) as

X(t) = exp(Z(t)) = W, X(t) €exp(U) C G, t>0

with

n

=1
and call the z;, ¢ = 1,2,...,n the canonical coordinates of the first kind for G. In a similar
vein we write Z = log(X). This representation of the solution to (1) was characterized
by Magnus in [15]. Adhering to our convention we will present a left-invariant version of
Magnus’ result without proof.

Theorem 1 (Magnus) Consider the left-invariant, drifi-free system (1) on a matric
Lie group G and the single exponential representation Z(t), t > 0 of its solution. Then,
if certain unspecified conditions of convergence are satisfied, Z(t) can be written in the
form

20 = 1- e;I;i(Z—(tf)ldz(t)) v ®
= (I+ adz(t) + z (§2§|ad2zp(t)) U(t)

= UW) + 51200, U] + 512,120, U@ - 55122, 120, (20, U] +
where the By are Bernoulli numbers.

Note that given a k-step nilpotent system (all Lie brackets of depth higher than &
are zero) the in general infinite sum terminates and we need only consider the first k£ + 1
terms on the right hand side. Moreover, in the general situation the rapidly decreasing
coeflicients on the right hand side of (2) could be of importance for approximate inversion
of truncated versions of the original system, which would then solve the original problem
up to a perturbation of small magnitude.

Example 1 Using the Lie algebra structure of SE(2) as defined in the Appendix and the
anti-symmetry of the Lie bracket, we obtain for the Magnus equation of the left-invariant
system on SE(2) with input U(t) = u;(t)A; + ua(t) As
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10)

U(t) + 512, U] + 512, 12, U@ £ ..
= (1) +ualt)As + 7 (1) A1+ 22(8)As + 25(0)As, 1 (E) s +ua(t) 4]
35 () A+ 2a(0)As + 25(0) s, [1(D)Ar + 22(0)4s + 25(2) s, 1a() A + wa(t) Aol ..
= w()A; + us(t) A + %(zl(t)uz(t)[Al, Ag] + 29 (B)ur (8)[An, A1)
o (2O ualt) — 2a(t)us(6))) [A4r, As) £ .
= w(®)Ar+ () + 5 (abuslt) - 20n0)As
—11—2(z1(t)z2(t)u1(t) — A tua) A £ ..

Due to the linear independence of the basis vectors A;, ¢ = 1,2,3 this can also be
written in the standard state space form

21 = u

) 1

29 = Ug+ ﬁ(zlzgul — Z%’U,z) +...
1

23 = 5(2’1’11,2 - 2211,1) +....

Another single exponential representation relevant for approximate inversion but not
used in this paper is the Fomenko-Chakon recursive expansion [9]. It can be understood as
a continuous version of the Baker—-Campbell-Hausdorff formula and describes the solution
to (2) as an in general infinite series of quadratures involving only U(t).

2.3.2 Product of Exponentials Representation

Another canonical construction of coordinates for a finite-dimensional Lie group G in-
volves expanding X € G in a neighborhood of the identity as a product of elements of

one parameter subgroups corresponding to basis vectors Ay, ..., A, of the Lie algebra G
X = ﬁ emiA.' — ewlAleszz . ewnAn_ (3)

=1
The z;, 1 =1,...,n are called the canonical coordinates of the second kind. The product
of exponentials representation of (1) is characterized in [23] by the following theorem
where we use an extended control vector u = (uy,...,u,)? withu; =0,i=m+1,...,n.

Theorem 2 (Wei—-Norman) Consider the system (1) and its solution X(t), t > 0.
Then, in a neighborhood of t = 0 the solution may be expressed in the form

X(t) = Z1(NA1gz2(t)A2 | oZn(t)An (4)
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The coordinate functions x;(t) evolve according to

&1(t) u1(¢)
: = M(z1,...,7,) : , (5)
Tn(t) Un(2)

where M is analytic in the coordinates x; and depends only on the structure of the Lie
algebra G.

Moreover, if G is solvable, then there exists a basis and an ordering of this basis for
which the representation (4) is global and the x; can be computed by quadratures.

2.3.3 Comparison of Exponential Representations

Since both exponential representations hold on neighborhoods of the identity e of G,
there exists a neighborhood U of e on which both representations hold. Thus we are
free to choose whichever representation is more appropriate for the problem at hand and
are able to locally transform our results from one to the other. Moreover, since a metric
on the canonical coordinates induces a metric on a neighborhood of the identity of the
group G our results could be expressed locally directly for the system (1).

The strength of the single exponential representation is that the right hand side of the
Magnus equation is structured as a sum of Lie brackets of increasing order and therefore
nicely reflects the Lie algebra structure of the system at hand. While no conditions for
the domain of convergence of (2) are specified in [15], a conservative estimate is given by
Fomenko and Chakon in [9].

The advantage of the product of exponentials representation with the Wei-Norman
equation (5) lies in the fact, that it often leads to more compact representations and that
we are guaranteed a global quadrature solution for solvable Lie algebras G.

3 Approximate Inversion

Our approach to open-loop tracking for nonholonomic systems on Lie groups is inspired
by [2, 3] and is based on the well-known fact that periodic controls with appropriate
phase and frequency relation create a motion in the direction of a certain higher order Lie
bracket of the system. If we want to move the system in several higher order Lie bracket
directions simultaneously we have to additively superimpose several of these oscillatory
control components, namely some carrier wave modulated by a function specifying the
desired velocity in the corresponding Lie bracket direction. These kinds of control laws are
evocatively described in 3] as “multiplexing” the desired motion, since they accommodate
the motions pertaining to different subspaces of the Lie algebra in distinct frequency
bands. In this way we can solve the problem of having more states to track (receivers)
than controls (channels). It turns out that if we let the carrier frequencies go to infinity
these motions are increasingly independent of each other and even though the underlying
system is nonlinear an approzimate high-frequency superposition principle [20] emerges.



We are free to use arbitrarily shaped periodic signals as carrier waves, e.g. harmonic
functions, square waves, etc., as long as they have a certain phase relation suitable to
“create area” in the phase space of [u; and [w,. In this sense the approximate track-
ing problem does not have a unique solution unless we impose additional (optimality)
conditions to make the problem well posed.

Modeling these open-loop control laws as time-varying nonlinear systems with the
desired trajectories as inputs we obtain the so called approximate inverse of the original
system. This terminology is motivated by the fact, that concatenating the approximate
inverse and the original system results in an approximate identity operator on the space
of trajectories. We will see in Section 4 that this idea has interesting consequences for
feedback stabilization of nonholonomic systems.

3.1 Approximate Inversion on a Subgroup of Unipotent Matri-
ces

In this section we will introduce a subgroup of unipotent matrices which is of particular
interest due to its simple Lie algebra structure. A two-input system of the form (1) on
this matrix group will turn out to be equivalent to a so called chained-form system. The
practical relevance of the two-input chained-form system (10) stems from the fact that
the kinematic model of a car or a tractor and trailer can locally be transformed into (10),
as is shown in [16].

Consider a k—dimensional subgroup G of the unipotent matrices consisting of elements
X of the form

( 1 Ty I3 Ty Iy Tk \
0 1 =z 3z} ia? —(k_lz)!x’f"z
X = I B 3 ) z=(z1,...,zx)T €RF,  (6)
1 %x%
. 1
\ 0 0 1 /

which we call SUP(k) for future reference. Note, that for k =3 SUP(k) is isomorphic
to the real Heisenberg group H(3).
Fix the following basis for the Lie algebra of SUP(k) :

o 0 ---0 01 0 ---0
A= : .0 | A= C (7)
1
0 0 0 0



/(00 1 0 - 0) [0 -+ 0 1)
0 0 0
A3 - ) Ak -
0o - ) o . o
This choice of a basis results in the following non-zero brackets

adA1A2 = —Ag
ady Ay = A (8)
ad'jngz = (=1)*24,.

Thus SUP(k) is nilpotent of order k£ — 2.
We would like to solve the approximate tracking problem for the two-input drift-free
system

X = X(u1A1 + ’LL2A2) (9)

where X € SUP(k) and A;, A, are defined as above. It follows from (8) that (9) is
controllable, more specifically, that (9) is a depth-(k — 2) system (see e.g. [13]).

Plugging (4) into (9), differentiating on both sides and using the Lie algebra structure
of SUP(k) yields the product of exponentials representation of (9):

.'1.71 = Uz

Ty = U

d,‘3 = U1T9 (10)
Ty = U173

Ty = UITk-1

This representation and the following result hold globally by Theorem 2 since SUP (k)
is solvable. Note that we could have derived (10) also by directly writing (9) in its natural
coordinates 1, ...,z taken from (6).

Due to its lower triangular structure we can integrate (10) by quadratures and the
solution for the n'* state can be written as

Zn(t) = /Ot u1 (1) /OT1 ur(ma) ... /OTn_s U1 (Th—2) /OTH_2 U (Tp—1)dTn—y - - - d71, (11)

assuming z(0) = 0. The succession of integrations and multiplications with w; in (11)
suggests to use oscillating control components in u; with integrally distributed frequencies
which are “down-modulated” by multiplications with the fundamental harmonic in u;,
so that this oscillatory component in x;_; “resonates” at state x; with the cosine in .
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Theorem 3 Given a (n+2)-dimensional chained-form system (10), let Z(t) = (Z1(t), Z2(2),
ooy Enp2(t))T, t € [0,T) denote the desired trajectory. Assume that T is twice differ-
entiable on [0,T) and that £(0) = z(0) = Z(0) = 0. Define a sequence {u“)}>, of
controls

W = 7 (t) + 2w cos(wt)

o " e ! d™

W) = )+ Y am(t)w T T (cos(mut)), (12)
o] mm di™

where
am(t) = Tmy2(t) — Z1(8)Zm41 (1)
Let 2)(t), 0 <t < T be the solution of (10) with u“) as input. Then

lim ) (t) = #(t), Vte€[0,T] (13)

W—00
where the convergence is uniform with respect to t.

Proof: We start by proving a lemma which enables us to discard terms in the solution
of (10) which vanish in the high-frequency limit.

Lemma 1 Let f be of bounded variation on [a,b] and let ¢ € [0,27]. Then as w — o©

/a " £(t) cos(wt + $)dt = o(1/w). (14)

Proof: (Lemma 1 ) By the Jordan Decomposition Theorem we can write a function f
of bounded variation as the difference of two non-decreasing functions and therefore it
suffices to show the lemma for non-decreasing functions.

Now, assuming f to be non-negative and non-decreasing and ¢ continuous, it follows
from a Bonnet form of the Second Mean Value Theorem that there exists a § € [a, ]
such that

[ rwgae = 10 [ gtyas

Hence, there exists a & € [a, b] such that

|/ Pt cos(wt + $)dt| = |f(b) / ’ cos(wt + ¢)dt]

B1i0)
w
and (14) follows from the boundedness of f on [a, b]. O
Note that we can readily apply Lemma 1 in our context since the smoothness as-
sumption on Z implies that the Z;, 1 =1,2,...,n + 2 are of bounded variation.



We proceed to show convergence x( )(t) — Fi(t), 1 <i<n+2for w— oo, which
implies the convergence z“)(t) — z(t) with respect to the standard norm on R"+2.
Writing out the solution for the first state

2 = 2.(0) + / “)(r
= /0 #1(7) + 2w cos(wr)dr
= Zi(t)+2 W sin(wt),
it follows that

lim o(t) = 21(t), Ve [0,T], (15)

where the convergence is uniform with respect to ¢.
Using integration by parts we have for the second state

d0) = m0)+ [ w(r)dr
= / Zo(T) + Z Ot (T) w41 m! d—n:n-(cos(mwf))dT
= Ip(t) + Z Ot () W™ m a7 (cos(mwt))

mm™ dgm—l

- Z / O (8) W™ 7H1 fb—' ;:n_ll (cos(mwt)),

where the first sum is of order w™ "1 and the second sum is of order w~(+=+1) by Lemma
1. Thus

lim 237(t) = 2(1), Wt e[o,T), (16)

where the convergence is uniform with respect to ¢.

In writing down the solution for the third state it will become clear how the successive
multiplications with u; and subsequent integrations required to solve (10) affect the limit
behavior of the involved terms. Plugging in for a;(7), using the identities

cos(wt) cos(nwt) = %(cos((n — Lwt) + cos((n + l)wt)), (17)

dm-1 1)' dm1
2cos(wt)z o s ———1 (cos(mwr)) Z m—1 grm—1
T (m 1) dr

and integrating by parts we obtain:
25 (1)
b @) () (@)
= 23(0)+ [ uf?(") 2 (r)dr

(cos((m—1)w7)+cos((m+1)WT)))

10



_ /O (8107 + 207 cos(wr)) (za(r) + mz:jl o (7) W™ mi; d‘fn__ll (cos(mwr))
+o(w M=) dr
- [ t{ 1) Z2(r) + &1 (r)a (r) w T cos(wr)
+2w T Z5(r) cos(wr) + an(7) + o (7) cos(2wr)
(xl(T + 207 cos(wr)) ( f_:z (7)™ ;ZL d;: (cos(mwr))
e
= [ {#s(r) + Er(r)on(r) w5 cos(wr) + 2umTE(r) cos(r) + an () cos(2u)

_ m—1
+ Y ap(r)w (m-1!_d

(cos((m — 1)wt) + cos((m + 1)wT))

m=2 ( - l)m—l drm-1
+2 W cos(wr) o(w™ (=)
_mn m! dm_l
+Z 7')( E O (T) w1 o o - (cos(mwT)) + o(w™ (1+n+1)))}d7-
= Zy(t) + 2w T Fo(t) sin(wt)
n _mn (m et 1)' dm—2
+ ) am(t) wTnH (= 1)1 a2 (cos((m — 1)wt) + cos((m + 1)wt))
m=2 -

_/ Z Oty (T) w31 (72 )1)' - dd:" 22 (cos((m — 1)wTt) + cos((m + l)wT))}
+o(w™ )
= Z3(t) + o(w™TH)

Again as a consequence of Lemma 1 all terms in the expression for z3(t) except for
Z3(t) are of negative order with respect to w and therefore

lim of(0) = z(t),  VEe[0,T], (18)
where convergence is again uniform with respect to ¢.
To establish an induction argument assume for the states x;,j = 4,...,n recall that

fori=1,...,n—2

Tipa(t) = /Otul(ﬁ) /Oﬁ uy (7). .. /On_1 u1 () /On g (Tig1)dTigr - - - d1, (19)

i.e. w1, is obtained by applying an iteration to u, consisting of integration and multi-
plication with u;. According to (17) the terms of uy are iteratively frequency shifted by
+w for each multiplication with the 2w+ cos(wt)-terms of u;. We write

cmean (mo— )l dmoi

S:)2(t) = Tiy2 + Z {am(t)w mH (m _ ,L-)m_i dpm—i+1 (COS((m - Z)wt))}
m=i+1
F2w T 41 () sin(wt) + pigas + o(w™?), (20)

11



where the summation in (20) is comprised of the terms whose frequencies have been
shifted by —w for all previous multiplications with 2w+ cos(wt). The terms whose fre-
quencies have been shifted at least once by +w due to multiplication with 2ws+1 cos(wt)
are subsumed under p;;». The terms in p;;» are of lower order in w as compared to
terms in the summation with the same frequency. It can be verified that therefore the
contributions of p;;, to the states z;,7 = ¢+43,...,n vanishes in the high-frequency limit.
We assume further that p;42 = 0(w7'_+_11) such that lim, a:fg (t) = Zipa(t), YVt € [0,T).
Note that z3(t) is of the form (20).
The following state can be written as

z(t)
= /0 w1 (7)Tiqa(T)dT
= /Ot (il(T) + 2w cos(w'r)) (a‘ci+2(7’) + 2w Zip1 (T) sin(wT)

- son  (m—i)! 7t
+ Z O (T) W™ (m i)™=t drm- —i+l

(cos((m — D)wT)) +pira + o(w‘l)) dr
m=t+1

- /0 {E1(MBi42(r) + 517 (@i2(7) — Biga (7))

+2 w#liiﬂ (1) cos(wT) + 2 w%ﬁa‘uiﬂ(f)sin(wr) + a;41(7) + @i1(T) cos(2wr)

2: —moizn (M —i—1) dmiH!
n 1
i m=i+2 () (m —i— 1)m—i-1 grm—itl

+2w™H cos(wT)(pipa + O(W—l))}dT

(cos((m — i — 1)wT) + cos((m — @ + 1)wT))

= Tiss (t) +2 w%jiﬂ (1) sin(wT)

—meizn (M —i-1)! 4™
mt nt1
* _ZHZ)O‘ ()w (m—1i—1)m1 dtm—

+ [ B @) - Fa()
= —mmiztn (M —i—1)! 4™
_m§-2am(7)w n+l (m—z_]_)m e

+2wt cos(wT))(pig2 + o(w™ )}dT

(cos((m — i — 1)wt) + cos((m — i + 1)wt)

(cos((m — 2 — L)wT) + cos((m — ¢ + 1)wT)

n —m—i=tn (M —1—1)! dm—t
= _1‘ t t n+l B . >
Beal)+ 3 e Ty g

(cos((m — ¢ — 1)wt))
+92 w%a‘:i“(ﬂ sin(wr) + pirs +o(w™)

Note that also here the contributions of p;;3 and the o(w™!) to z;,7 = i + 4, n vanish in
the high-frequency limit. Again, we have

12



‘}}_{onfi%(t) = lim (»’?i+3(t)+o(w‘n+r1))
= Ziys(t), Vte[0,T]

where the convergence is uniform in ¢. Our claim follows by induction on .

Remarks:

e Since the above convergence is uniform in ¢, also the tracking error, for instance
defined as E = [T ||&(r) — 2“)(7)|| dr, goes to zero with w — oo.

e The residual terms are of order —n%l in w. Hence the convergence properties w.r.t.
the frequency parameter w worsen with increasing dimension n + 2 of the chained

form system.

e We have assumed z(0) = 7(0) = z(0) = 0 so that we can discard the initial
conditions and evaluations of the lower limit of any definite integral in the proof.
Nevertheless, Theorem 3 holds whenever 2(0) = Z(0) and z(0) = 0. If we relax
z(0) = 0, we have to take care that x(0) cancels the evaluations of the lower limits
of integrals in order to avoid off-sets of the modulated cosine functions that are
added to the state.

e The approximate tracking controls u; and us given in the theorem above are simpler
than if they had been derived directly via the more general method of [20]. Here,
we need only one frequency mw for each Lie bracket rather than a whole set of
frequencies. This is possible because of the exceptionally simple Lie algebra struc-
ture encountered here, specifically since only brackets involving the A; direction
are N0ON-Zero.

3.2 Approximate Tracking on SE(2)

Below we will present approximate tracking controls for the system (1) on G = SE(2)
which is remarkable since SE(2) is not nilpotent as are H(3) or the matrix groups
mentioned in Section 3.1. Since the controls involve feedback they do not directly define
an approximate inverse for the given system (see remark below). We will state the
theorem for the Wei-Norman representation of (1), where it follows from the solvability
of SE(2) and Theorem 2 that this result is globally valid.

Theorem 4 Consider the drift-free controllable system (1) on G = SE(2) with associ-
ated Wei-Norman representation

L i‘l(t) = ul(t)

.’i‘z(t) U2(t) + ul(t)xg(t) (21)
.’L‘3(t) = —ul(t)xz(t)

13



and a twice differentiable desired trajectory z(t) = (Z1(t), Z2(t), Z3(2))T, t € [0,T], such
that £(0) = £(0) = z(0) = 0. Define the parameterized family of controls

W) = Z(t) + 2w? cos(wt) (22)
W) = () — wia(t)sin(wt) — ul()zs ()

with o(t) = —Z3(t) — 1 (£)Z2(t)) and let z)(t),t > 0 be the solution of (21) with controls
w$(t), u$(¢) as input. Then
lim 2@ (¢) = z(t), Vte[0,T],

W—00

uniformly in t.
Proof: Rewrite the controls u(t) = (u1(t)uz(t))T as u(t) = H(z(t))v(t) with

1 0

HE0) = (o 1)
(mn): (h@+m%MW)>

vy (t) Fa(t) — wia(t) sin(wt)
and express equation (21) accordingly as

B(t) = F(2(t))u(t) = F(z())H(z(®)o(t) = F(z(t))v(t) (23)

System (21) with controls (22) thus assumes the form

1(t) = ()
Ba(t) = () (24)
i‘3(t) = —U (t):132 (t)

i.e. it is of chained form. It follows that system (21) with controls (22) can be reduced to
the situation of Theorem 3 using the input transformation H(x) which is along with its
inverse globally defined. The difference in sign for &3 is accounted for by the difference
in sign in the definition of o as compared with o; of Theorem 3.
O

The above result is an application of the concept of nilpotentization since the input
transformation H(z) is introduced to make the distribution spanned by the control vector
fields of (21) nilpotent. In [19] we how show this approach can be applied to other non-
nilpotent matrix Lie groups and how the state feedback can be replaced by a state
estimate, resulting in open-loop control laws defining an approximate inverse for the
systems considered.

The effect of the choice of w on the quality of the approximation is demonstrated in
Figure 3.2.
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Figure 1: Approximate tracking for Wei-Norman representation of system on SE(2) with
two carrier frequencies

4 Feedback Stabilization

Ever since the existence of smooth time—invariant feedback laws for the asymptotic sta-
bilization of drift-free nonholonomic systems was ruled out [1], a good deal of attention
has been devoted to proving existence [6] and constructing [18] time-varying, periodic
feedback laws for these systems. In these works the problem was tackled via Lyapunov’s
direct method and the approach of Jurdjevic and Quinn [11] was used to explicitly con-
struct time-varying controls and the corresponding Lyapunov function. Following Brock-
ett [2, 3] we take a different route in emphasizing the importance of open-loop steering
for nonholonomic stabilization: if it is possible to steer a system along a general class
of trajectories the only task left for the feedback is specifying appropriate trajectories
leading the state to the origin. As described in Section 3 composing the approximate
inverse with the original system yields an approximate identity operator, which can be
stabilized by standard methods of robust control, e.g feeding back the negative integrals
of the state to the approximate inverse. As a consequence of this different approach our
control law achieves exponential rather than just uniform stability of the origin.

The control law we present here is essentially the same as in [2, 3} and is based on
the approximate inverse of the Magnus representation
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21 = w

52 U2

23 = U1R9 — U2y

of a system on H(3). We will give a modified proof and show furthermore that the same
control law also asymptotically stabilizes the left—invariant systems on SE(2), SO(3),
and SL(2) (see the Appendix for more information on these three-dimensional matrix
Lie groups).

We use the Magnus equation representation of (1) in this context, since it allows us
to interpret the SE(2), SO(3), and SL(2) systems as a system on H(3) with additional
higher order perturbation terms (see Example 1). The feedback law derived for H(3)
turns out to be robust enough to locally stabilize the perturbed systems as well.

Note also, that since the Magnus equation is globally valid for the system on H(3)
we obtain global exponential stability for H(3).

Theorem 5 Consider the left-invariant drift-free systems on the three-dimensional real
matriz Lie groups H(3), SE(2), SO(3), and SL(2) and their corresponding Magnus
equations

. 1 1

Z:U+§[Z,U]+E[Z,[Z,U]]:F..., (25)

where Z = 21 A1 + 29A5 + 23A3.
Then the control U = u1 A; + ugs Ay with

uy = —2z1 + 1/2w|z3|sign(z3) sin(wt)
Uy = —29+4+ 2{4)]23' cos(wt) (26)
makes the zero solution of the systems (25) exponentially stable for w sufficiently high.

Proof: We will show that after partitioning the state space and applying a coordinate

transform the linearizations of the resulting systems are exponentially stable. Thus, we

can conclude that also the zero solutions of the original systems are exponentially stable.
First, note that with z3 = 0 we have for the closed loop

[Z, U] = (Zl’u,g — Zg’ul)[Al, Az] + Zg’ul[A3, Al] + 23U2[A3, AQ]

= (21y/2w]|z3] cos(wt) — 291/ 2w|23|sign(zs) sin(wt))[A1, As]
+23u1 (A3, A1) + 2z3uz[A3, Ag]
=0

such that
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Z=U, VZe&S8y={Z|z=0} (27)

Since U has only components in the direction of A; and A, it follows that Z has
no component in the direction of Az for Z € Sy and hence Sy is an invariant set of the
closed loop system (25). Moreover, trajectories starting outside of Sy do not enter Sy in
finite time and hence we have a partition of the state space into three invariant sets S,
Sy = {Z|z3 > 0}, and S; = {Z|z3 < 0}. Thus, we can carry out the stability analysis
on each of the sets separately and study if trajectories starting in a neighborhood of the
origin in the augmented sets Sy, S; U {0}, and S; U {0} converge to it exponentially.

For Z(0) € S the closed loop system system (25) written in the coordinates of the
Lie algebras G simplifies to

21 = —21
52 = —29
z3 = 0

and is clearly exponentially stable on Sy.
Now, for Z(0) in S; or S, write (25) as

21 = —2z +4/2w|z3|sign(z3) sin(wt) + p1(z,t)
Zy = —z+ 1 2w|z3| cos(wt) + pa(2,t) (28)
23 = 211/2w|z3| cos(wt) — 224/ 2w|23| sign(zs) sin(wt) + p3(t, 2)

where p; and p, represent the contributions of the second and higher order terms on
the right hand side of (25), while p3 represents the contribution of the third and higher

order terms in (25). Define a coordinate map z; = 21, 2z = 23, and x5 = sign(z3)4/2|zs},
which is a diffeomorphism away from S, and apply it to (28) resulting in

73 = —x + Vwzssin(wt) + pi(x, t)
iy = —x3 + Vwsign(zs)zs cos(wt) + pa(z, t) (29)

i3 = —;—(mn/acos(wt) — T9v/wsign(zs) sin(wt)) + p3(z, t).

Linearizing (29) at the origin and assuming Z(0) € S; yields

-1 0 Vw sin(wt)
T = ( 0 -1 V/w cos(wt) ) x (30)
IVwcos(wt) —3+/wsin(wt) 0
= Al (t)x,
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a time-varying system system with periodic coefficients of period T = 27 /w.
By a standard Floquet argument the origin of (30) will be exponentially stable if the
Floquet multipliers, i.e. the eigenvalues of the transition matrix ®4,(7,0) all lie in the

unit circle. Writing out the Peano-Baker-Series for ®4,(7,0) and using T = 27/w we
obtain

T T
‘I)AI(T, 0) = I3+[) A1(0'1)d0'1 +/0 A1(0'1)< ) A1(0'2)d0'2 0'1 +.
T 0 0 2+ o -~
= L+| 0 —-T o |+ 0 %4—%2 + o(T?)
T3/2 T
0 0 0 0 - I
1-8 0 0
= 0 -3 0 | +o(T).
0 0 1-1

Since the off-diagonal elements of ® 4, (T, 0) are at least of order 3/2 in T, also the radii
ri, © = 1,2,3 of the corresponding GerSgorin circles are of that order. Thus choosing
T sufficiently small or w sufficiently large the r; are small compared to the diagonal
elements and the eigenvalues of ®4, (7, 0) are therefore guaranteed to be within the unit
circle. This proves that the linearization (30) is exponentially stable and consequently
also trajectories starting in a neighborhood of the origin intersected with S5; converge to
the origin exponentially.

The argument for Z(0) in an intersection of a neighborhood of the origin and S, is
analogous and the details are left to the reader. It should suffice to mention that we
obtain

-1 0 Vwsin(wt)
z = 0 -1 —+y/w cos(wt)
3Vweos(wt) 1/wsin(wt) 0
= AQ(t).’L',

for the linearization in this case, which differs from A,(¢) only in a change of sign for
two matrix elements. This leads, as in the S; case, to

1-3 0 0
®4,(T,0) = 0 —3Z 0 | +o(T¥

T
0 o 1-Z

since the change of sign in A,(¢) affects only the higher order terms of ®4,(T),0).
Thus, given a sufficiently large w there exists a neighborhood U of the origin such that
trajectories starting in each intersection of U with S;, ¢ = 1,2, 3 converge to the origin
exponentially. This proves our result.
a
The exponential decay of the states achieved by the feedback law above is shown in
Fig. 2 for a system on SO(3).
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Figure 2: Feedback stabilization of Magnus equation of system on SO(3) with w =
(left) and w = 10 (right) and initial conditions 2;(0) = 1, 25(0) = —1, 23(0) = 0.5

5 Discussion

We have presented approximate inversion controls for left-invariant drift-free systems on
a nilpotent subgroup of the unipotent matrices, which are equivalent to chained form
systems. Further we have derived approximate tracking controls involving feedback for
a non-nilpotent system on SE(2), outlining a more general method for approximated
inversion of non-nilpotent systems. Finally a feedback control law based on the idea of
approximate inversion has been shown to exponentially stabilize the origin for systems on
H(3), SE(2), SO(3), and SL(2). These solutions for specific matrix Lie groups should
serve as examples to point out the significance of the approximate inversion approach to
open-loop tracking and feedback stabilization of nonholonomic systems.

We plan to generalize these results, heading toward a method to construct an approx-
imate inverse for a system on a matrix Lie group based solely on the structure of the Lie
algebra and the nature and number of the inputs. Numerical solutions might have to be
taken into account where closed form results are not available.

A rigorous characterization of the approximate inverse together with the original
system as a time—varying perturbation of an identity operator needs to be developed
for a more unified approach to feedback stabilization of nonholonomic systems. Robust
stability methods could then be applied drawing only on the characterization of the ap-
proximate identity operator rather than the properties of the original system. Eventually
we would like to extend our results to nonholonomic systems with drift.
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Appendix

A Three-dimensional Matrix Lie Groups

For reference we present here a canonical list of non-Abelian three-dimensional matrix Lie
groups and Lie algebras, which are characterized by a choice of bases A, Ay, A3 of their
Lie algebras satisfying [A1, As] = @As, o € R. This list “nearly” represents a complete
classification of non-Abelian three-dimensional Lie algebras neglecting only the solvable
Lie algebras not isomorphic to se(2) (for a complete classification see for example [21]).
Our focus on three-dimensional real Lie groups is motivated by their simple structure
and their immediate relevance for applications in mechanics and nonholonomic motion
planning which holds especially for SE(2) and SO(3).

Let H(3) denote the Heisenberg group of real 3 x 3 upper triangular matrices and fix
a basis for the corresponding Lie algebra h(3)

010 0 0O 001
Al = 0 0O 5 A2 = 0 01 y A3 = 00 0
000 0 00 0 0O
yielding the following bracket structure:

[A1, As] = A3, [A1, As] =0, [Ap, A3] = 0.

Let SE(2) denote the Special Euclidean group representing rigid motions in the plane
and fix a basis for the corresponding Lie algebra se(2)

0 -1 0 0 01 00O
Ai=11 0 0|,A={000],A=|001
0 0 O 0 0O 0 00

yielding the following bracket structure:
[A1, As] = A3, [A1, A3] = — Ay, [Ag, A3] = 0.

Let SO(3) denote the Special Orthogonal group representing rotations in three-
dimensional Euclidean space and fix a basis for the corresponding Lie algebra so(3)

00 O 0 01 0 -1 0
Al=l00 -1],4=| 0 00],A4={1 0 0
01 0 -1 00 0 0 O
yielding the following bracket structure:

[AlaA2] = As, [AI’A3] = —Ay, [AQ’A3] = A1

Let SL(2) denote the Special Linear group of 2 x 2 matrices with determinant one
and fix a basis for the corresponding Lie algebra si(2)
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01 00 1{1 0
Al"(o 0)”42‘(1 0)"43‘5(0 —1)
yielding the following bracket structure:

[A1, Aj] = 2 A3, [A1, A3] = — Ay, [A;, A3] = As.

The following table summarizes some properties of the listed matrix Lie groups.

[ H® | SE@ [ 503 [ 51 |
nilpotent solvable simple simple
not compact | not compact | compact | not compact
connected connected | connected | connected
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