
ABSTRACT

Title of dissertation: LEARNING ALONG THE EDGE
OF DEEP NEURAL NETWORKS

Maya Kabkab
Doctor of Philosophy, 2018

Dissertation directed by: Professor Rama Chellappa
Department of Electrical and Computer
Engineering

While Deep Neural Networks (DNNs) have recently achieved impressive results

on many classification tasks, it is still unclear why they perform so well and how

to properly design them. It has been observed that while training and testing

deep networks, some ideal conditions need to be met in order to achieve impressive

performance. In particular, an abundance of training samples is required. These

training samples should be lossless, perfectly labeled, and spanning various classes

in a balanced way. A lot of empirical results suggest that deviating from such ideal

conditions can severely affect the performance of DNNs.

In this dissertation, we analyze each of these individual conditions to understand

their effects on the performance of deep networks. Furthermore, we devise mitigation

strategies when the ideal conditions may not be met.

We, first, investigate the relationship between the performance of a convolu-

tional neural network (CNN), its depth, and the size of its training set. Designing

a CNN is a challenging task and the most common approach to picking the right

architecture is to experiment with many parameters until a desirable performance

is achieved. We derive performance bounds on CNNs with respect to the network

parameters and the size of the available training dataset. We prove a sufficient

condition —polynomial in the depth of the CNN— on the training database size

to guarantee such performance. We empirically test our theory on the problem of

gender classification and explore the effect of varying the CNN depth, as well as the

training distribution and set size. Under i.i.d. sampling of the training set, we show

that the incremental benefit of a new training sample decreases exponentially with

the training set size.

Next, we study the structure of the CNN layers, by examining the convolutional,

activation, and pooling layers, and showing a parallelism between this structure

and another well-studied problem: Convolutional Sparse Coding (CSC). The sparse

representation framework is a popular approach due to its desirable theoretical

guarantees and the successful use of sparse representations as feature vectors in

machine learning problems. Recently, a connection between CNNs and CSC was

established using a simplified CNN model. Motivated by the use of spatial pooling

in practical CNN implementations, we investigate the effect of using spatial pooling

in the CSC model. We show that the spatial pooling operations do not hinder the

performance and can introduce additional benefits.

Then, we investigate three of the ideal conditions previously mentioned: the

availability of vast amounts of noiseless and balanced training data. We overcome

the difficulties resulting from deviating from this ideal scenario by modifying the

training sampling strategy. Conventional DNN training algorithms sample training

examples in a random fashion. This inherently assumes that, at any point in time, all

training samples are equally important to the training process. However, empirical

evidence suggests that the training process can benefit from different sampling

strategies. Motivated by this objective, we consider the task of adaptively finding

optimal training subsets which will be iteratively presented to the DNN. We use

convex optimization methods, based on an objective criterion and a quantitative

measure of the current performance of the classifier, to efficiently identify informative

samples to train on. We propose an algorithm to decompose the optimization

problem into smaller per-class problems, which can be solved in parallel. We test

our approach on benchmark classification tasks and demonstrate its effectiveness in

boosting performance while using even fewer training samples. We also show that

our approach can make the classifier more robust in the presence of label noise and

class imbalance.

Finally, we consider the case where testing (and potentially training) samples are

lossy, leading to the well-known compressed sensing framework. We use Generative

Adversarial Networks (GANs) to impose structure in compressed sensing problems,

replacing the usual sparsity constraint. We propose to train the GANs in a task-aware

fashion, specifically for reconstruction tasks. We show that it is possible to train

our model without using any (or much) non-compressed data. We also show that

the latent space of the GAN carries discriminative information and can further be

regularized to generate input features for general inference tasks. We demonstrate

the effectiveness of our method on a variety of reconstruction and classification

problems.

LEARNING ALONG THE EDGE OF DEEP NEURAL NETWORKS

by

Maya Kabkab

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2018

Advisory Committee:
Professor Rama Chellappa, Chair/Advisor
Professor David Jacobs, Dean’s Representative
Professor Behtash Babadi
Professor Larry Davis
Professor Min Wu

c© Copyright by
Maya Kabkab

2018

To my sister Lara, the strongest person I know.

ii

Acknowledgments

It was not too long ago that I did not believe I would reach this stage of

writing, let alone submitting, my Ph.D. dissertation. Yet, here I am, drafting its

acknowledgement section. While my name may appear as the sole author on the

cover, several remarkable individuals have inspired, supported, and contributed to

this work. I would like to start by acknowledging their contributions and thanking

them for their support and help in the face of adversity. They have kept me going

whenever I wanted to give up.

I, first and foremost, would like to thank my advisor, Prof. Rama Chellappa,

for his constant belief in my abilities and for the chance to be part of his group. I

was lucky to be given the freedom to work on problems I enjoy, guided by his insight

and encyclopedic knowledge. Known by many for his extremely successful career in

computer vision research, he is admired for that and so much more by his students

and colleagues. His unique sense of humor, approachable character, and humanity

are what characterize him beyond his undeniable wisdom and success. I thank him

for his patience, support, and advice, as well as his commitment to the well-being

and professional development of his students. I will forever remember his words “I

want students to leave my group in the same mental state they came in with... or a

better one!”. It is my honor to be the 96th Ph.D. graduate under his supervision.

I am also fortunate to have had the support and encouragement of many people

who have routinely gone beyond their duties to help me during my most difficult

times. I owe Prof. Steve Marcus a great debt of gratitude for having been my

iii

champion within the department. He never hesitated to offer a listening ear, write

letters of recommendation, provide sound advice and feedback, and sometimes even

intervene on my behalf. I can say with no hesitation that a large part of my degree

completion is thanks to his help and encouragement. I am also grateful to Prof. Min

Wu and Dr. Melanie Prange for always being available and willing to listen and help.

Last but not least, I would like to thank Dr. Berk Gürakan for always being there for

me. His support on both the emotional and technical levels has been unprecedented

in my life. I would like to express my gratitude for his persistent effort in trying

to understand my research, helping me brainstorm, proofreading my papers, and

wiping my worries and anxieties. Without his encouragement, a lot of the work in

this dissertation would not have materialized.

I would like to thank Prof. Larry Davis, Prof. Behtash Babadi, Prof. Min

Wu, and Prof. David Jacobs for being on my dissertation committee, and for their

valuable feedback.

I have greatly benefited from collaborations with Pouya Samangouei, Dr.

Azadeh Alavi, and Emily Hand. Some of the work in this dissertation is a joint

work with them. I am also grateful for the friendships that resulted from these

collaborations.

I am thankful for the administrative help I have received through my Ph.D.

journey, particularly for the assistance provided by Ms. Janice Perone, Dr. Melanie

Prange, Mr. Bill Churma, Ms. Arlene Schenk, Ms. Maria Hoo, and the entire

UMIACS staff.

I would like to thank all members of Prof. Chellappa’s group for the friendly

iv

environment, enjoyable group lunches, insightful discussions, and shared conference

trips, with a special mention to my office-mate Boyu! Thanks to my DC area group

of friends, especially Berk, Cem, Evripidis, Gianluca, Haytham, Kleoniki, Prem,

Rebecca, and Sam. Meals, movies, drinks, chats, and walks with you were always a

source of energy and enjoyment, and you have enriched my life in so many ways.

Finally, I express my most heartfelt gratitude to my parents Ghassan and

Mona, my two sisters Eliane and Lara, my big loving family spread-out all around

the globe, and my long-distance friends. Thank you for always standing by me and

for your infinite and unconditional love.

This research is based upon work supported by the Office of the Director of

National Intelligence (ODNI), Intelligence Advanced Research Projects Activity

(IARPA), via IARPA R&D Contract No. 2014-14071600012. The views and con-

clusions contained herein are those of the authors and should not be interpreted

as necessarily representing the official policies or endorsements, either expressed

or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Govern-

ment is authorized to reproduce and distribute reprints for Governmental purposes

notwithstanding any copyright annotation thereon.

v

Table of Contents

Dedication ii

Acknowledgements iii

List of Tables ix

List of Figures x

List of Abbreviations xii

1 Introduction 1
1.1 Motivation . 1
1.2 Outline . 2
1.3 Contributions . 6

2 On the size of convolutional neural networks and generalization performance 8
2.1 Overview . 8
2.2 Model architecture . 10
2.3 Relationship between depth and generalization performance 12

2.3.1 Problem formulation . 12
2.3.2 Same training and testing distribution 13
2.3.3 Different training and testing distributions 15

2.4 Experimental results . 17
2.4.1 Method . 17
2.4.2 Architectures . 18
2.4.3 Results . 19

2.4.3.1 Same training and testing distribution 19
2.4.3.2 Different training and testing distributions 20

2.5 Concluding remarks . 22

vi

3 The case for spatial pooling in deep convolutional sparse coding 36
3.1 Overview . 36
3.2 Problem formulation . 40
3.3 Results . 44

3.3.1 Uniqueness and stability of DSCP 44
3.3.2 Stability of the CNN forward pass with pooling 46
3.3.3 Sparsity bounds . 47

3.4 Concluding remarks . 49

4 Quality over quantity: Active selection strategies for improved performance
of CNNs 50
4.1 Overview . 50
4.2 Problem statement . 53

4.2.1 Classifier uncertainty and error 54
4.2.2 Class balance . 55
4.2.3 Subset diversity . 58
4.2.4 Subset representativeness . 59
4.2.5 Joint formulation . 59
4.2.6 Proposed solution . 61
4.2.7 Overall algorithm . 62

4.3 Experiments . 63
4.3.1 MNIST digit recognition . 64

4.3.1.1 Effect of λd vs. λr 65
4.3.1.2 Performance on clean data 65
4.3.1.3 Performance on data with noisy labels 67
4.3.1.4 Data imbalance . 69

4.3.2 SUN397 scene recognition . 69
4.3.3 ImageNet large-scale object recognition 72
4.3.4 VGG Face dataset . 72

4.4 Computational complexity . 76
4.4.1 Solve Algorithm 4.1 . 76
4.4.2 Solve L instances of independent SDPs 77
4.4.3 Solve L instances of equation (4.12) and find M largest entries 79
4.4.4 Test classifier on training data 79
4.4.5 One-time computation . 80

4.5 Concluding remarks . 80

5 Task-aware compressed sensing with generative adversarial networks 81
5.1 Overview . 81
5.2 Related work . 84
5.3 Model description . 85

5.3.1 Background information . 85
5.3.2 Motivation . 86
5.3.3 Task-aware GAN training . 90
5.3.4 GAN training on compressed inputs 90

vii

5.3.5 Contrastive loss regularization for supervised learning tasks . . 92
5.4 Experiments . 94

5.4.1 Reconstruction . 95
5.4.2 GAN training on compressed inputs 96
5.4.3 Super-resolution . 100
5.4.4 Classification . 101

5.5 Concluding remarks . 102

6 Conclusion 104
6.1 Discussion . 104
6.2 Directions for future research . 106

A Proofs from Chapter 2 108
A.1 Proof of Lemma 2.1 . 108
A.2 Proof of Theorem 2.1 . 108
A.3 Proof of Theorem 2.2 . 109
A.4 Proof of Theorem 2.3 . 109

B Proofs from Chapter 3 111
B.1 Proof of Theorem 3.1 . 111
B.2 Proof of Lemma 3.1 . 112
B.3 Proof of Lemma 3.2 . 112
B.4 Proof of Theorem 3.2 . 113
B.5 Proof of Theorem 3.3 . 114

C Proofs from Chapter 4 116
C.1 Proof of Theorem 4.1 . 116
C.2 Proof of Lemma 4.1 . 119
C.3 Proof of Theorem 4.2 . 120

D Proofs from Chapter 5 124
D.1 Proof of Theorem 5.1 . 124

Bibliography 127

viii

List of Tables

4.1 Summary of testing accuracies. 74
4.2 VGG Face testing accuracies. 75

5.1 MNIST: Reconstruction results for m = 200 when varying the number
of non-compressed training data. 98

5.2 CelebA: Reconstruction results for m = 500 when varying the number
of non-compressed training data. 98

5.3 CSGAN reconstruction results when only compressed training data is
available (NC = 0) for various measurements numbers m. 99

5.4 Classification accuracy on MNIST using Smash Filters (SF), the LeNet
CNN classifier, and a 50-NN classifier. 102

5.5 Classification accuracy on F-MNIST using the LeNet CNN and 50-NN
classifiers. 102

5.6 Per-pixel mean-squared reconstruction error results when using the
contrastive loss regularizer (with z dimension k = 20). 103

ix

List of Figures

2.1 Model architecture. 10
2.2 Generalization performance of CNNs trained and tested on LFW (top)

and GROUPS (bottom). 24
2.3 Generalization performance of CNNs of depths 3 (top) and 4 (bottom)

trained and tested on the same datasets. 25
2.4 Generalization performance of CNNs of depths 3 (top) and 4 (bottom)

tested on Facetracer and trained on different datasets. 26
2.5 Generalization performance of CNNs tested on LFW and trained on

different datasets. 27
2.6 Generalization performance of CNNs trained and tested on the same

datasets. 28
2.7 Generalization performance of CNNs of depths 3, 4, and 5 trained

and tested on the same datasets. 29
2.8 Generalization performance of CNNs of depths 3, 4, and 5 tested on

Facetracer and trained on different datasets. 30
2.9 Generalization performance of CNNs of depths 3, 4, and 5 tested on

GROUPS and trained on different datasets. 31
2.10 Generalization performance of CNNs of depths 3, 4, and 5 tested on

LFW and trained on different datasets. 32
2.11 Generalization performance of CNNs tested on LFW and trained on

different datasets. 33
2.12 Generalization performance of CNNs tested on Facetracer and trained

on different datasets. 34
2.13 Generalization performance of CNNs tested on GROUPS and trained

on different datasets. 35

3.1 Deep convolutional sparse coding. Here, Di has a local dictionary
with mi atoms, of length hi = ni−1mi−1 each. 38

3.2 One layer of a CNN forward pass. An input image is convolved with
a number of filters, followed by a ReLU activation. 39

3.3 Spatial pooling in CSC. 43
3.4 Spatial pooling in CNNs. 43

x

4.1 Integer water-filling with caps. 57
4.2 Proposed algorithm. 64
4.3 Top: Selected samples when λr = 20λd. Bottom: Selected samples

when λr = λd. 65
4.4 Results on MNIST dataset with clean labels. 66
4.5 Results on MNIST dataset with 20% (top) and 30% (bottom) label

noise. 68
4.6 Results on MNIST dataset with class imbalance. 70
4.7 Examples of images from various classes of SUN397 picked by our

algorithm at the beginning of training (left) and 75% through the
training process (right). 71

4.8 Examples of images from various classes of ImageNet picked by our
algorithm at the beginning of training (left) and 75% through the
training process (right). 73

4.9 Examples of selected samples at the beginning of training (left) and
75% through the training process (right). 75

5.1 One iteration of the task-aware GAN training algorithm. 89
5.2 One iteration of the GAN training algorithm using compressed training

data. 93
5.3 MNIST, F-MNIST, and CelebA reconstruction results for various

measurements numbers m. 97
5.4 MNIST reconstruction results with m = 200. Top to bottom rows:

original images, reconstructions with NC = 0, reconstructions with
NC = 100, reconstructions with NC = 1,000, and reconstructions with
NC = 8,000. 99

5.5 MNIST reconstruction results when only compressed training data is
available. Top row: original image; middle row: reconstructed image
from m = 200 measurements; bottom row: reconstructed image from
m = 400 measurements. 99

5.6 F-MNIST reconstruction results when only compressed training data
is available. Top row: original image; middle row: reconstructed image
from m = 200 measurements; bottom row: reconstructed image from
m = 400 measurements. 99

5.7 CelebA super-resolution results. Top row: original image; middle row:
blurred image; bottom row: reconstructed image. 100

xi

List of Abbreviations

Algorithms
FISTA Fast Iterative Shrinkage-Thresholding Algorithm
SB Split Bregman method
SF Smashed Filters
TwIST Two-step Iterative Shrinkage-Thresholding algorithm

Datasets
CelebA CelebFaces Attributes
F-MNIST Fashion-MNIST
GROUPS Images of Groups
LFW Labeled Faces in the Wild

Mathematical concepts
DCT Discrete Cosine Transform
GD Gradient Descent
i.i.d. Independent and Identically Distributed
KL divergence Kullback-Leibler divergence
LP Linear Program
p.d.f. Probability Distribution Function
REC Restricted Eigenvalue Condition
RIP Restricted Isometry Property
SDP Semi-Definite Program
TV Total Variation
VC dimension Vapnik-Chervonenkis dimension

Models, methods,
and networks
CNN Convolutional Neural Network
CSC Convolutional Sparse Coding
CSGAN Compressed Sensing Generative Adversarial Networks
DCGAN Deep Convolutional Generative Adversarial Networks
DNN Deep Neural Network
DSC Deep Sparse Coding
DSCP Deep Sparse Coding with Pooling
GAN Generative Adversarial Networks
LBP Local Binary Patterns
NN Nearest Neighbor
ReLU Rectified Linear Unit
VAE Variational Auto-Encoder

xii

Other
CPU Central Processing Unit
GPU Graphics Processing Unit
NC (Number of) Non-Compressed training samples
UAV Unmanned Aerial Vehicle
w.r.t. With Respect To

xiii

Chapter 1: Introduction

1.1 Motivation

In recent years, deep neural network approaches have been widely adopted

for machine learning tasks, including classification [1, 2]. However, many important

questions remain as open problems, such as why they perform so well, how to properly

design them, how they work, and their limitations. In this dissertation, we attempt

to obtain a better understanding of deep networks using techniques from statistical

learning and sparse coding, and push the limits of these networks by straying away

from ideal train-time and inference-time conditions. While we mostly limit ourselves

to classification problems, most of the techniques we develop can be extended for

other supervised learning tasks such as verification.

In an ideal scenario, a deep network is trained using an abundance of training

samples. These training samples are complete (i.e., not lossy), perfectly labeled, and

all classes are balanced and equally represented. At inference time, no adversary can

manipulate the input to the network.

1

1.2 Outline

We begin this dissertation by seeking a deeper understanding of this ideal

scenario. We focus on Convolutional Neural Networks (CNNs), which are forms

of deep networks most often used for computer vision classification problems [2].

Our objective is to answer the following questions: In the case of CNNs, what is

an abundance of training samples? How do we a pick a suitable network depth?

When designing a CNN, the most common approach is to experiment with the

depth (and many other parameters), until a suitable model is found. It is known

that if the CNN is too shallow, then it may not correctly represent the underlying

relationship between the input and its corresponding class (i.e., under-fit). If it is

too deep, however, it may follow irrelevant properties of the dataset on which it is

trained (i.e., over-fit). In Chapter 2 of this dissertation, we derive bounds on the

performance of CNNs as a function of the network parameters and the number of

available training data points. This can be insightful when trying to design a CNN

architecture. While deriving this bound, we assume that the training data is sampled

in an i.i.d. fashion, which is usually the case in most practical applications. We

show that the number of examples sufficient for a desired generalization performance

grows polynomially with the complexity of the network model. This bound can

also be used to find the incremental benefit that one new random example adds to

the generalization performance. We show that, under i.i.d. sampling, this benefit

decreases exponentially with the training set size.

Keeping our focus on investigating the ideal training and inference conditions

2

for deep networks, we offer a different insight into CNNs in Chapter 3, this time

examining the design of their layers. Our work in this chapter is based on the

surprising connection between CNNs and Convolutional Sparse Coding (CSC), which

was made in [3]. Specifically, it was shown that the forward pass of the CNN,

which computes the representation of an input vector, is well approximated by

a series of CSC steps, which we will define later in the dissertation. However,

the CNN model considered in [3] does not include the spatial pooling operation,

widely used in the best-performing CNN architectures [1, 2]. In this chapter, we

investigate the theoretical benefits of adding spatial pooling layers after the CSC

steps. Our work bridges the gap between the deep CSC model proposed in [3] and

CNN architectures used in practice. In addition to the known benefits (such as

translation invariance [4,5]), we show that inserting pooling layers does not cause

loss in performance while decreasing the dimensionality of the involved vectors and

introducing additional benefits such as noise suppression and preventing codes from

becoming too sparse. This offers some justification to the most commonly used and

successful CNN architectures which often consist of stacking convolutional filters,

rectified linear unit (ReLU) activations, and spatial (usually max) pooling [6, 7].

As previously mentioned, under the i.i.d. sampling of training examples, we

witness an exponential decrease in the incremental benefit of a data point. To

counteract this effect it is clear that the i.i.d. sampling requirement needs to be

changed. In Chapter 4, we present techniques for a judicious selection of new

training examples by exploiting the cumulative knowledge gained by the network

from previous examples. Specifically, rather than passively accepting examples

3

generated by some unknown external distribution, we seek to actively and iteratively

find optimal subsets of training examples to present to the network. Our results

indicate that careful selection and ordering of training samples can lead to improved

performance, compared to sampling training data at random. We also show that our

approach makes the classifier more robust in the presence of label noise and class

imbalance. This chapter addresses the limitations of deep networks when one or

more of the following three ideal conditions is not met: abundance of training data,

clean training labels, and class balance. It also develops solutions to overcome these

problems.

In Chapter 5, we relax the completeness assumption on the network input,

and assume that, at inference time (and potentially training time as well), samples

are lossy or compressed. This leads us to the field of compressed sensing which has

impressive applications, such as rapid magnetic resonance imaging [8], single-pixel

camera [9] and UAV systems, among others. The core problem of compressed sensing

is that of efficiently reconstructing a signal from an under-determined linear system

of noisy measurements. In this chapter, we extend the work in [10], in which a

generative model was used and the unknown signal was assumed to be the output

of this model. We propose to train the generative model specifically for the task of

recovering compressed measurements. This makes it task-aware, and improves the

compressed sensing performance. Our approach also addresses the case where no

or very little non-compressed data is available for training, by complementing the

training set with compressed training data.

The last ideal condition for training and deploying a deep network classifier

4

deals with the absence of an adversary which can manipulate inputs at inference time.

In fact, deep neural networks have been shown to be susceptible to adversarial attacks

[11,12]. These attacks come in the form of adversarial examples : carefully crafted

perturbations added to a legitimate input sample. In the context of classification,

these perturbations cause the legitimate sample to be misclassified at inference

time [11–14]. Such perturbations are often small in magnitude and do not affect

human recognition but can drastically change the output of the classifier. An

approach very similar to the one adopted in Chapter 5 can be used to diminish the

effect of the adversarial perturbation. We can leverage the representative power of

Generative Adversarial Networks (GANs) [15] by projecting input images onto the

range of the GAN’s generator prior to feeding them to the classifier. We expect that

legitimate samples will be close to some point in the range of the generator, whereas

adversarial samples will be further away from it. Furthermore, “projecting” the

adversarial examples onto the range of the generator can have the desirable effect

of reducing the adversarial perturbation. The projected output, computed using

Gradient Descent (GD), is fed into the classifier instead of the original (potentially

adversarially modified) image. This work will not be discussed in this dissertation

but we refer the interested reader to [16] for an in-depth discussion of this defense

method.

5

1.3 Contributions

• In Chapter 2, we derive performance bounds on CNNs with respect to the

network parameters and the size of the available training dataset.

– We prove a sufficient condition, polynomial in the depth of the CNN, on

the training database size to guarantee a certain performance.

– We extend the bound to the case where the training and testing dis-

tributions are slightly different, and show how it changes as the two

distributions diverge.

• In Chapter 3, we investigate the theoretical benefits of spatial pooling layers.

– We show that spatial pooling layers, while being lossy operations, do not

hinder performance.

– We also demonstrate that the addition of pooling can introduce additional

benefits such as reducing the dimensionality of involved vectors, slight

translation invariance, and noise suppression.

– Finally, we show that the pooling layers allow CNNs (and CSC models)

to be very deep by preventing codes from becoming too sparse.

• In Chapter 4, we present strategies to make optimal use of the available training

data. We introduce an adaptive selection algorithm to choose batches of training

samples which meet four criteria: class balance, diversity, representativeness,

and classifier uncertainty.

6

– We propose a novel class balancing algorithm which uses feedback from

the classifier to allot a subset of training samples to each class.

– We use convex optimization techniques to identify a per-class near-optimal

batch which meets the remaining three criteria.

– We empirically show that this selection method leads to improved perfor-

mance of CNNs.

– Our results also suggest that using our selection algorithm can add ro-

bustness in the case of class imbalance and label noise in the training

data.

• In Chapter 5, we introduce techniques to reconstruct lossy images using GANs.

– We train a GAN in a task-aware fashion allowing it to be specifically

optimized for the reconstruction task. We show that this consistently

improves the reconstruction error compared to state-of-the-art methods.

– We introduce a novel algorithm to train the GAN using a combination of

a small number of (or no) non-lossy data and a larger set of lossy training

data.

– We show that the latent space of the GAN can be regularized and used

for various supervised inference tasks.

7

Chapter 2: On the size of convolutional neural networks and general-

ization performance

2.1 Overview

Convolutional Neural Networks (CNNs) are now widely used for classification

problems due to their state-of-the-art performance (see, e.g., [1, 2]). However,

one important challenge, which remains an open problem, is how to size them

appropriately. In this chapter, we try to address this problem by investigating the

relationship between the depth of a CNN and its generalization performance using

approaches from statistical learning theory.

Recently, CNNs have drawn much needed attention, and a lot of empirical

work has attempted to understand why they perform so well [17,18] as well as how

to properly design them [19, 20]. However, from a theoretical perspective, CNNs

are still not completely understood. While theoretical results on deep architectures

exist [21–24], they are almost always restricted to feedforward neural networks.

In this chapter, we investigate the effect of CNN depth on its generalization

performance. Specifically, we ask the question of how to pick a suitable CNN depth

given a training database size. We assume that the examples are drawn according

8

to an arbitrary, fixed, probability distribution, and that the learning algorithm will

produce a CNN which will correctly predict on a substantial fraction of the training

set. We are concerned with how the same CNN will perform on unseen (testing)

samples, drawn from the same, or a slightly different, distribution. Our work is

based on the VC dimension, which was first introduced in [25, 26] and provides

a mathematical foundation for answering such questions. We follow an approach

similar to [21], which is specific to feedforward networks, but extend it for the case

of CNNs. We restrict our study to the problem of binary classification in which the

set of possible labels contains only two elements, e.g., 0 and 1.

We show that, if the training and testing sampling distributions are the same, a

sufficient condition to guarantee valid generalization is for the CNN training set size

to be some constant times d4 where d is the depth of the convolutional layers. We

also show how to generalize the condition when the training and testing distributions

are different. We empirically demonstrate that these conditions are sufficient but

often not necessary, and examine the behavior of the testing error as we vary the

CNN depth, as well as the training distribution and set size.

The chapter is organized as follows: Section 2.2 introduces the CNN model

architecture under consideration, Section 2.3 develops the mathematical framework

as well as the theoretical results, and finally, Section 4.3 provides experimental results

on the binary problem of gender classification.

9

... ...

...

..
.
.

Figure 2.1: Model architecture.

2.2 Model architecture

In this work, we consider a model architecture similar to the one presented

in [7]. As shown in Figure 2.1, a CNN of depths (d, d′) consists of d convolutional

layers and d′ fully connected layers. The l-th layer of a CNN is composed of the

following:

(i) a filter bank sublayer, which takes as input xl, a 3D array with nl1 2D feature

maps of size nl2 × nl3 each, and outputs a 3D array with ml
1 2D feature maps of

size ml
2×ml

3 each. The size of the output maps is determined by the size f l1×f l2

of the convolution filters and is given by ml
2 = nl2− f l1 + 1 and ml

3 = nl3− f l2 + 1.

Filter klij connects the i-th input feature map xli to the j-th output feature

10

map ylj:

ylj = alj · tanh

(∑
i

klij ∗ xli

)
. (2.1)

The filters and the coefficients {alj} are trainable parameters.

(ii) a rectification sublayer, which only retains positive inputs:

ȳlijk = max
{

0, ylijk
}
. (2.2)

(iii) a pooling and subsampling sublayer, which keeps the maximum (or the average)

from each pl × pl window and outputs ¯̄yl.

(iv) a local contrast normalization sublayer, which performs the following operations:

vlijk = ¯̄ylijk −
∑
i,p,q

wpq · ¯̄yli,j+p,k+q, (2.3)

where w is a Gaussian window of size gl × gl, then

¯̄̄ylijk(= xl+1
ijk) =

vlijk

max
{
µl, σljk

} (2.4)

where σljk =
∑

ipq wpq ·
(
vli,j+p,k+q

)2
and µl = mean

(
σljk
)
.

The d′ fully connected layers have a fixed structure and trainable weights Wf . In

the rest of the chapter, we will assume that d′ is fixed and study the effect of varying

d on the classifier’s generalization performance. As mentioned earlier, we restrict

11

our study to binary classification, i.e., CNNs which implement a function that maps

samples from the input domain I, to a boolean value in {0, 1} .

2.3 Relationship between depth and generalization performance

2.3.1 Problem formulation

In this chapter, we are interested in characterizing how the depth of a CNN

affects its generalization performance. Formally, we let Cd be the set of convo-

lutional neural networks with d convolutional layers, for some fixed values of

{nl1, nl2, nl3,ml
1, f

l
1, f

l
2, p

l, gl}dl=1, as defined in section 2.2 above. This set includes

all such CNNs realized by varying the parameters {alj, klij}i,j,l ∪ {Wf}. As with any

supervised learning algorithm, a CNN learning algorithm starts with a training set

S = {x1, x2, . . . , x|S|} ⊆ I, assumed to be drawn at random according to a fixed but

arbitrary distribution DS on the input domain I. The aim of the algorithm is to

find a suitable CNN c ∈ Cd which agrees with the ground truth, or target, hypothesis

h∗ : I → {0, 1} as much as possible. It is assumed that the true labels of the training

samples, i.e., h∗(x1), h∗(x2), . . . , h∗(x|S|), are known. As such, the resulting CNN c

will have an empirical training error given below:

êS(c) ,
1

|S|

|S|∑
i=1

1 (hc(xi) 6= h∗(xi)) , (2.5)

where 1(.) is the indicator function and hc(.) is the boolean function implemented by

the CNN c. Clearly, êS(c) is a random variable since the set S is chosen at random.

12

However, if the learning algorithm is designed properly, êS(c) will tend to be small.

This does not, however, provide any guarantee as to how the CNN classifier will

perform on test samples. We assume that testing samples are drawn at random

according to a distribution DT . We are thus interested in the average performance

of c on these new samples:

eT (c) , PrDT [hc(x) 6= h∗(x)] , (2.6)

where x is a random sample picked according to DT .

2.3.2 Same training and testing distribution

We first look at the case when the training and testing sampling distributions

are the same, i.e., DS ∼ DT . As previously stated, a CNN c (or its corresponding

boolean function hc(.)), which is accurate on the training set (i.e., has small êS(c)),

might not necessarily be accurate on new examples which are not in the training

set, even if the new examples are drawn from the same distribution. In this case, we

are interested in performance guarantees on eT (c) = eS(c), whenever êS(c) is small.

To this end, we first state Lemma 2.1 which computes the VC dimension of CNNs

of convolutional depth d. The VC dimension of a set of binary functions, is the

maximum number m of vectors which can be separated into two classes in all 2m

ways using functions from the set [27].

Lemma 2.1 Let Hd ,
{
hc : I → {0, 1} | c ∈ Cd

}
be the set of boolean functions

13

implementable by all CNNs in Cd, and q(d) ,
∑d

l=1 m
l
1 · (nl2− f l1 + 1) · (nl3− f l2 + 1) ·

(nl1n
l
2n

l
3 +ml

1(gl)2 + (pl)2). Then, the VC dimension of the class of CNNs defined in

section 2.3.1 above satisfies

VCdim
(
Hd
)
≤ α (d · q(d))2 , (2.7)

for some constant α.

Proof: The proof of this Lemma, and all other proofs in this dissertation, can be

found in the Appendix. �

We now state the following theorem on the CNN generalization performance guaran-

tees:

Theorem 2.1 For any 0 < δ < 1, ε > 0, 0 < γ ≤ 1, if S is chosen at random

according to the distribution DS, such that

|S| ≥ 8

γ2ε
max

{
ln

8

δ
, 2α (d · q(d))2 ln

16

γ2ε

}
, (2.8)

then, with probability at least 1− δ, for every c ∈ Cd, one of the following will hold:

(i) êS(c) > (1− γ)ε,

(ii) eT (c) = eS(c) ≤ ε, êS(c) ≤ (1− γ)ε.

Theorem 2.1 implies that if condition (2.8) is met, and if the trained CNN c is such

that êS(c) is as small as desired, then we know that, with high probability, c will

exhibit good generalization performance. Let M = max
l=1,...,d

{ml
1 · (nl2 − f l1 + 1) · (nl3 −

14

f l2 + 1) · (nl1nl2nl3 +ml
1(gl)2 + (pl)2)}, then q(d) ≤M · d. From (2.8), we see that, for

proper generalization, the training sample size should be larger than M ′ · d4 where

M ′ = M2α · 16
γ2ε
· ln 16

γ2ε
. Conversely, when designing a CNN, given a fixed training

set size |S|, we know that the CNN is very likely to exhibit good generalization

performance if the depth of the convolutional layers is less than 4

√
|S|
M ′

. We also state

a converse to Theorem 2.1:

Theorem 2.2 For any learning algorithm which uses a training sample set S of size

|S| ≤
VCdim

(
Hd
)
− 1

2eε
(2.9)

(where e denotes the base of the natural logarithm), there exists a CNN c ∈ Cd and a

distribution D such that the expected error of c (w.r.t. D) is at least ε.

2.3.3 Different training and testing distributions

In section 2.3.2 above, we addressed the question of when a CNN is expected

to generalize from |S| training examples chosen according to an arbitrary probability

distributionDS, assuming that test examples are drawn from the same distribution. In

this section, we relax this assumption and allow the training and testing distributions

to be different, DS and DT , respectively. To this end, we define the variation

divergence between the two distributions [28]:

τ , 2 sup
B∈B
|PrDS [B]− PrDT [B]| , (2.10)

15

where B is the set of measurable subsets under DS and DT . While we allow the

two distributions to be different, our hope is that they are not too different so that

learning from DS is still somehow relevant for testing on DT . We now reformulate

Theorem 2.1 for the case when τ 6= 0:

Theorem 2.3 Let 0 < δ′ < 1, ε′ > τ , 0 < γ′ ≤ 1. If the training and testing

sets are chosen independently at random according to the distributions DS and DT ,

respectively, such that

|S| ≥ 8

γ̄2 (ε′ − τ)
max

{
ln

16

δ′
, 2α (d · q(d))2 ln

16

γ̄2 (ε′ − τ)

}
, (2.11)

where

γ̄ = γ′ ·
(

1 +
τ

ε′ − τ

)
− τ

ε′ − τ
, (2.12)

then, with probability at least 1− δ′, for every c ∈ Cd, one of the following will hold:

(i) êS(c) > (1− γ′)ε′,

(ii) eT (c) ≤ ε′, êS(c) ≤ (1− γ′)ε′.

Note that Theorem 2.3 requires that ε′ > τ . As mentioned earlier, we are interested

in the case when τ is small so that the learning is still useful. If τ � ε′, then γ̄ ≈ γ′

and (2.8) and (2.11) are very close. When τ increases, so does the lower bound on

|S|. This is to be expected, as we are looking at learning from and testing on two

very different distributions.

16

2.4 Experimental results

While section 2.3 gives some insight as to how to design CNNs which exhibit

desirable generalization performance, it has been shown that neural networks tend to

perform well with training sets which are smaller than required by the VC dimension

bounds [23]. We therefore attempt to gain a better and more practical understanding

of the problem by designing experiments for gender classification of face images. To

this end, we use three different datasets: Images of Groups (GROUPS) [29], Labeled

Faces in the Wild (LFW) [30], and Facetracer [31]. We resize face images to 64× 64

and normalize them using histogram equalization to correct changes in brightness.

We then use mean-subtraced normalized face images to train CNNs of convolutional

depths 3, 4, and 5. Once the CNN is trained, we classify new face images by resizing

and normalizing them, then applying the learned model to them. We use the Caffe

framework [32] to train and test the CNNs.

2.4.1 Method

For each depth d = 3, 4, 5, we select uniform random subsets of varying sizes

from each training dataset. Since, as noted in Section 2.3.2, a sufficient training

sample size which guarantees good generalization is proportional to d4, we choose

the random training subsets to have sizes |S| = β · d4 for different values of β. Then,

for each depth, dataset, and training subset size, we train a CNN (starting from

a random weight initialization) until we reach a training error êS(c) < 0.05. We

then test the resulting CNN on a testing set T in order to estimate eT (c). For the

17

case when the testing and training distributions are the same, we perform 5-fold

cross-validation using the protocol specified in [33] for LFW and GROUPS, and

five random splits for Facetracer. We also perform cross-dataset testing, training on

subsets of one dataset and testing on the other two.

2.4.2 Architectures

As mentioned in section 2.2, each convolutional layer of the CNN is composed

of a filter bank sublayer, a rectification sublayer, a pooling and subsampling sublayer,

and a local contrast normalization sublayer. The rectification sublayers have no

parameters. All pooling sublayers are max-pooling and use 3 × 3 windows. All

local contrast normalization sublayers use 5× 5 windows, except for the first one,

which uses 7× 7 windows. The first layer’s filter bank sublayer consists of a 15× 15

convolution mask applied every 3 pixels, resulting in 96 feature maps. The second

filter bank sublayer has 5× 5 convolution filters with 256 output maps. The third

sublayer uses 3× 3 kernels with 384 feature map outputs. When needed, the fourth

and fifth filter bank sublayers also use 3× 3 kernels, with 512 and 384 output maps,

respectively. The convolutional layers are followed by three fully connected layers.

The first two have 4096 outputs and are each followed by rectification and a 50%

dropout. The last fully connected layer has two outputs. We do not attempt to

optimize the architecture of the CNNs and keep it fixed throughout the experiments,

only varying the convolutional depth d.

18

2.4.3 Results

Since the designed CNNs have different training errors, comparing their testing

accuracies would not be very informative. Instead, we consider the difference between

the testing and training errors. When dataset D1 is used for training and dataset

D2 for testing, we denote this difference by ∆D1,D2.

2.4.3.1 Same training and testing distribution

In the case of the same training and testing distribution, we take the average

across the five cross-validation tests. In general, and as expected, we notice that

∆D1,D1 decreases with the training set size. For instance, Figure 2.2 plots, for depths

d = 3, 4, 5, ∆LFW,LFW and ∆GROUPS,GROUPS vs. the training set size |S| (in logscale).

We note that, when plotted against |S|, ∆LFW,LFW behaves similarly for depths 3 and

4, and the CNNs actually achieve good generalization performance for relatively small

training set sizes. For example, to have ∆LFW,LFW ≤ 0.05, |S| should only be greater

than about 1500. This is much smaller than the bound given in Theorem 2.1 which

is actually very large (in fact, even for d = 1, q(1) is larger than the total number of

images in GROUPS and Facetracer). It also seems to be the same for both d = 3 and

d = 4, which is contrary to what was expected. For d = 5, slight over-fitting seems to

take place, and larger training set sizes are needed to achieve similar generalization

performance as in shallower networks. As seen in the bottom plot, we observe a

similar behavior with GROUPS but the over-fitting is apparent starting from d = 4.

As previously mentioned, while shown to be tight in Theorem 2.2, bounds based on

19

the VC dimension tend to be very large as they provide generalization performance

guarantees regardless of the underlying probability distribution on the training and

testing examples, and of the training algorithm used [34]. In fact, Figure 2.3 shows

that while the CNN performance does generally improve with larger training sets,

other aspects, especially the sample distribution, have a considerable effect. For

example, the results seem to suggest that CNNs perform better on LFW gender

classification than on GROUPS gender classification. The training algorithm is

also important as it can restrict the set of realizable CNNs to a subset of Cd. Our

training algorithm uses dropout in the fully connected layers. Dropout is a very

well known technique to reduce overfitting in deep neural networks [35]. However,

CNNs with dropout and without dropout have the same VC dimension and therefore

share the same bounds in Theorem 2.1. Since dropout has become almost standard

in state-of-the-art CNN implementations, we chose to only carry out experiments

using it. However, we naturally expect the over-fitting behavior to be much more

prominent for deep CNNs which do not use dropout.

2.4.3.2 Different training and testing distributions

Theorem 2.3 suggests that more training samples are needed for cross-dataset

testing in order to achieve the same generalization performance compared to when

the training and testing samples have the same distribution. This is shown to be

clearly the case in Figure 2.8. In the top figure, we see that, for depth 3, to achieve

∆D1,D2 < 0.2, for D2 = Facetracer, we need |S| to be greater than 105, 1000, and

20

1300, for D1 = Facetracer, LFW, and GROUPS, respectively. Figure 2.8 also shows

that training using the LFW dataset seems to be more “relevant” for testing on

Facetracer. This suggests that the variation divergence τ between the underlying

distributions of Facetracer images and LFW images could be smaller than that

between the distributions of Facetracer and GROUPS images. However, τ cannot be

accurately estimated from finite samples of distributions [28]. We therefore seek a

different approach to quantify the distance between the distributions. We consider

the method proposed in [36] to estimate the KL divergence between distributions

based on k-th nearest neighbor distances. The KL divergence is a non-symmetric

measure of the difference between two probability distributions. According to [36],

given {X1, . . . Xm} and {Y1, . . . , Yp} n-dimensional samples drawn according to two

distributions D1 and D2, respectively, the KL divergence estimate is given by:

D̂(D1||D2) =
n

m

m∑
i=1

ln
νk(i)

ρk(i)
+ ln

p

m− 1
, (2.13)

where νk(i) is the distance between Xi and its k-th nearest neighbor in {Yj}, and

ρk(i) is the distance between Xi and its k-th nearest neighbor in {Xj}j 6=i. The choice

of k trades off bias and variance. While it is true that the number of images available

is relatively small compared to their dimension (64× 64× 3) and therefore, the KL

divergence estimates are not very accurate, we notice that both D̂(DFacetracer||DLFW)

and D̂(DLFW||DFacetracer) are consistently smaller (by a factor of around 3) than

D̂(DFacetracer||DGROUPS) and D̂(DGROUPS||DFacetracer) for different values of k ranging

from 1 to 10. This difference could explain why, when tested on Facetracer, CNNs

21

trained using LFW perform better than those trained using GROUPS.

In the bottom plot of Figure 2.8, we notice an over-fitting trend for the cross-

dataset case at depth 4. This is in contrast with the findings when the training and

testing samples have the same distribution. We investigate this on a different dataset

(LFW) and across depths 3, 4 and 5. The results are shown in Figure 2.11. In the

top figure, we see that the generalization performance tends to become worse as the

depth increases, especially for models trained on GROUPS. In the bottom figure,

the x-axis is changed to β (where |S| = β · d4) and we notice that for large β (> 10),

models trained on GROUPS behave similarly across depths. This means that, if to

achieve a certain generalization performance, a training set size β · 34 is needed for

CNNs of depth 3, then approximately β · 44 and β · 54 training samples are needed to

achieve the same level of performance for CNNs of depths 4 and 5, respectively. It

seems that, in this case, the number of samples needed for good generalization scales

with d4 as predicted by the theoretical bound (albeit with a smaller multiplicative

constant). We found similar trends when testing on the GROUPS and Facetracer

datasets as shown in the following figures.

2.5 Concluding remarks

In this chapter, we extended various statistical learning theorems to characterize

the relationship between the depth of a CNN, the size of the training set, and the

generalization performance. We proved that whenever the training and testing

sampling distributions are the same, if the training set size is some constant times

22

d4, then the CNN will, with high probability, exhibit good generalization. We also

showed that this bound increases when the training and testing distributions are

different, and characterized it as a function of the variation divergence between the

distributions. We then implemented deep CNNs for the problem of gender recognition

on three well-known datasets. We empirically demonstrated that over-fitting tends

to occur for very deep networks, which will require larger training sets to achieve

generalization performance similar to shallower versions. This is especially the case

when the training and testing distributions are different.

23

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: LFW, Depth: 3
Train: LFW, Test: LFW, Depth: 4
Train: LFW, Test: LFW, Depth: 5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: GROUPS, Test: GROUPS, Depth: 3
Train: GROUPS, Test: GROUPS, Depth: 4
Train: GROUPS, Test: GROUPS, Depth: 5

Figure 2.2: Generalization performance of CNNs trained and tested on LFW (top)
and GROUPS (bottom).

24

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: LFW, Depth: 3
Train: GROUPS, Test: GROUPS, Depth: 3

Train: Facetracer, Test: Facetracer, Depth: 3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: LFW, Depth: 4
Train: GROUPS, Test: GROUPS, Depth: 4

Train: Facetracer, Test: Facetracer, Depth: 4

Figure 2.3: Generalization performance of CNNs of depths 3 (top) and 4 (bottom)
trained and tested on the same datasets.

25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: Facetracer, Depth: 3
Train: GROUPS, Test: Facetracer, Depth: 3
Train: Facetracer, Test: Facetracer, Depth: 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: Facetracer, Depth: 4
Train: GROUPS, Test: Facetracer, Depth: 4
Train: Facetracer, Test: Facetracer, Depth: 4

Figure 2.4: Generalization performance of CNNs of depths 3 (top) and 4 (bottom)
tested on Facetracer and trained on different datasets.

26

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: Facetracer, Test: LFW, Depth: 3
Train: Facetracer, Test: LFW, Depth: 4
Train: Facetracer, Test: LFW, Depth: 5
Train: GROUPS, Test: LFW, Depth: 3
Train: GROUPS, Test: LFW, Depth: 4
Train: GROUPS, Test: LFW, Depth: 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

β

Train: Facetracer, Test: LFW, Depth: 3
Train: Facetracer, Test: LFW, Depth: 4
Train: Facetracer, Test: LFW, Depth: 5
Train: GROUPS, Test: LFW, Depth: 3
Train: GROUPS, Test: LFW, Depth: 4
Train: GROUPS, Test: LFW, Depth: 5

Figure 2.5: Generalization performance of CNNs tested on LFW and trained on
different datasets.

27

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: LFW, Depth: 3
Train: LFW, Test: LFW, Depth: 4
Train: LFW, Test: LFW, Depth: 5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: GROUPS, Test: GROUPS, Depth: 3
Train: GROUPS, Test: GROUPS, Depth: 4
Train: GROUPS, Test: GROUPS, Depth: 5

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: Facetracer, Test: Facetracer, Depth: 3
Train: Facetracer, Test: Facetracer, Depth: 4
Train: Facetracer, Test: Facetracer, Depth: 5

Figure 2.6: Generalization performance of CNNs trained and tested on the same
datasets.

28

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: LFW, Depth: 3
Train: GROUPS, Test: GROUPS, Depth: 3

Train: Facetracer, Test: Facetracer, Depth: 3

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: LFW, Depth: 4
Train: GROUPS, Test: GROUPS, Depth: 4

Train: Facetracer, Test: Facetracer, Depth: 4

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: LFW, Depth: 5
Train: GROUPS, Test: GROUPS, Depth: 5

Train: Facetracer, Test: Facetracer, Depth: 5

Figure 2.7: Generalization performance of CNNs of depths 3, 4, and 5 trained and
tested on the same datasets.

29

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: Facetracer, Depth: 3
Train: GROUPS, Test: Facetracer, Depth: 3
Train: Facetracer, Test: Facetracer, Depth: 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: Facetracer, Depth: 4
Train: GROUPS, Test: Facetracer, Depth: 4
Train: Facetracer, Test: Facetracer, Depth: 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: Facetracer, Depth: 5
Train: GROUPS, Test: Facetracer, Depth: 5
Train: Facetracer, Test: Facetracer, Depth: 5

Figure 2.8: Generalization performance of CNNs of depths 3, 4, and 5 tested on
Facetracer and trained on different datasets.

30

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: Facetracer, Test: GROUPS, Depth: 3
Train: LFW, Test: GROUPS, Depth: 3

Train: GROUPS, Test: GROUPS, Depth: 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: Facetracer, Test: GROUPS, Depth: 4
Train: LFW, Test: GROUPS, Depth: 4

Train: GROUPS, Test: GROUPS, Depth: 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: Facetracer, Test: GROUPS, Depth: 5
Train: LFW, Test: GROUPS, Depth: 5

Train: GROUPS, Test: GROUPS, Depth: 5

Figure 2.9: Generalization performance of CNNs of depths 3, 4, and 5 tested on
GROUPS and trained on different datasets.

31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: Facetracer, Test: LFW, Depth: 3
Train: GROUPS, Test: LFW, Depth: 3

Train: LFW, Test: LFW, Depth: 3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: Facetracer, Test: LFW, Depth: 4
Train: GROUPS, Test: LFW, Depth: 4

Train: LFW, Test: LFW, Depth: 4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: Facetracer, Test: LFW, Depth: 5
Train: GROUPS, Test: LFW, Depth: 5

Train: LFW, Test: LFW, Depth: 5

Figure 2.10: Generalization performance of CNNs of depths 3, 4, and 5 tested on
LFW and trained on different datasets.

32

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: Facetracer, Test: LFW, Depth: 3
Train: Facetracer, Test: LFW, Depth: 4
Train: Facetracer, Test: LFW, Depth: 5
Train: GROUPS, Test: LFW, Depth: 3
Train: GROUPS, Test: LFW, Depth: 4
Train: GROUPS, Test: LFW, Depth: 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

β

Train: Facetracer, Test: LFW, Depth: 3
Train: Facetracer, Test: LFW, Depth: 4
Train: Facetracer, Test: LFW, Depth: 5
Train: GROUPS, Test: LFW, Depth: 3
Train: GROUPS, Test: LFW, Depth: 4
Train: GROUPS, Test: LFW, Depth: 5

Figure 2.11: Generalization performance of CNNs tested on LFW and trained on
different datasets.

33

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: Facetracer, Depth: 3
Train: LFW, Test: Facetracer, Depth: 4
Train: LFW, Test: Facetracer, Depth: 5

Train: GROUPS, Test: Facetracer, Depth: 3
Train: GROUPS, Test: Facetracer, Depth: 4
Train: GROUPS, Test: Facetracer, Depth: 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

β

Train: LFW, Test: Facetracer, Depth: 3
Train: LFW, Test: Facetracer, Depth: 4
Train: LFW, Test: Facetracer, Depth: 5

Train: GROUPS, Test: Facetracer, Depth: 3
Train: GROUPS, Test: Facetracer, Depth: 4
Train: GROUPS, Test: Facetracer, Depth: 5

Figure 2.12: Generalization performance of CNNs tested on Facetracer and trained
on different datasets.

34

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 100 1000 10000

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

Training set size

Train: LFW, Test: GROUPS, Depth: 3
Train: LFW, Test: GROUPS, Depth: 4
Train: LFW, Test: GROUPS, Depth: 5

Train: Facetracer, Test: GROUPS, Depth: 3
Train: Facetracer, Test: GROUPS, Depth: 4
Train: Facetracer, Test: GROUPS, Depth: 5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 1 10 100

T
ra

in
in

g
ac

cu
ra

cy
 -

 T
es

tin
g

ac
cu

ra
cy

β

Train: LFW, Test: GROUPS, Depth: 3
Train: LFW, Test: GROUPS, Depth: 4
Train: LFW, Test: GROUPS, Depth: 5

Train: Facetracer, Test: GROUPS, Depth: 3
Train: Facetracer, Test: GROUPS, Depth: 4
Train: Facetracer, Test: GROUPS, Depth: 5

Figure 2.13: Generalization performance of CNNs tested on GROUPS and trained
on different datasets.

35

Chapter 3: The case for spatial pooling in deep convolutional sparse

coding

3.1 Overview

In this chapter, we continue to investigate the ideal training and inference

conditions for Convolutional Neural Networks (CNNs), this time examining the

design of their layers based on a connection with the Convolutional Sparse Coding

(CSC) model.

The sparse coding framework has been a very popular choice for a signal model,

where one seeks sparse representations for high dimensional signals, on the basis of a

global dictionary. Given a vector X ∈ RN , and a dictionary D ∈ RN×M , the sparse

representation problem can be formulated as finding a sparse vector Γ ∈ RM such

that X = DΓ. In other words, the vector X can be written as a linear combination

of a few columns (or atoms) of D. The sparse coding problem attempts to recover

the sparsest such representation of X, for a fixed dictionary D [37–39]:

min
Γ
‖Γ‖0 s. t. DΓ = X, (3.1)

where ‖Γ‖0, the `0 pseudo-norm, counts the number of non-zero elements in Γ.

36

These sparse representations are often used as features for various machine learning

tasks [40].

The traditional sparse coding framework has been extensively studied in the

literature [39,41]. Theoretical guarantees to the uniqueness of the solution to (3.1)

are given in terms of properties of the dictionary D [37], such as its mutual coherence

defined as:

µ(D) = max
i 6=j

|dTi dj|
‖di‖2 · ‖dj‖2

, (3.2)

where di is the i-th column of D. However, even if the solution to (3.1) is unique,

finding it remains NP-hard. Approximate solutions are therefore often sought [42–44].

In addition, the model is usually extended to also allow for noise and modeling errors,

leading to the following formulation:

min
Γ
‖Γ‖0 s. t. ‖DΓ−X‖ ≤ ε. (3.3)

In many applications, especially with large-dimensional vectors, using one

unstructured dictionary is unfeasible. Attempts to resolve this problem include

dividing the input into patches of smaller size, and finding the sparse code for each

patch [45]. However, such methods fail to represent the underlying relationship

between different patches of the same vector. The CSC model is a recent and

promising solution to this problem [46–48].

The CSC model imposes a structure on the global dictionary D, requiring it

37

Figure 3.1: Deep convolutional sparse coding. Here, Di has a local dictionary with
mi atoms, of length hi = ni−1mi−1 each.

to consist of shifted versions of the same local dictionary of size h ×m, as shown

in Figure 3.1(left). We refer to such a dictionary D as a convolutional dictionary.

According to the CSC model, a vector X ∈ RN can be written as X = DΓ, where

D ∈ RN×Nm is a convolutional dictionary, and Γ ∈ RNm is the resulting sparse code.

Here, m is the number of atoms in the local dictionary, and h is the length of these

atoms. Refer to Figure 3.1(left) for a visual example.

Recently, it was shown in [49,50] that the CSC model has desirable theoretical

guarantees, both in the noiseless and noisy regimes. This was done by introducing a

new sparsity measure, the stripe-sparsity, which captures local sparsity properties of

a vector. This measure is appropriate under the CSC model which operates locally.

Another seemingly unrelated line of research, which has recently gained popu-

larity, is deep learning and, in particular, CNNs, due to their remarkable performance

on complex machine learning tasks [1, 2], often surpassing human performance. We

refer the reader to [5] for detailed information on CNNs. Like sparse coding, CNNs

aim to find suitable representations for high dimensional inputs, to be used in ma-

chine learning problems. However, unlike sparse coding, not much is known about

38

Figure 3.2: One layer of a CNN forward pass. An input image is convolved with a
number of filters, followed by a ReLU activation.

their theoretical properties. While some theoretical results on deep architectures

exist [24, 51, 52], further work is necessary to obtain a complete and fundamental

understanding of why they perform so well. Towards this goal, a connection between

CNNs and CSC was recently made in [3]. Specifically, it was shown that the forward

pass of the CNN, which computes the representation of an input vector, is well ap-

proximated by a series of CSC steps. The forward pass of the CNN model considered

in [3] is illustrated in Figure 3.2.

In this chapter, we extend the CNN model used in [3] to include the spatial

pooling operation, originally inspired by models of the visual cortex [53], and widely

used in the best-performing CNN architectures [1, 2]. Then, we investigate the

theoretical benefits of doing so, and find that, in addition to the known benefits

(such as translation invariance [4,5]), the addition of pooling layers does not affect

the CNN performance while decreasing the dimensionality of the involved vectors.

The pooling layers also introduce additional benefits such as noise suppression and

preventing codes from becoming too sparse.

39

3.2 Problem formulation

For the sake of completeness, we repeat definitions given in [49,50], and refer

the reader to these two papers for an in-depth discussion. Due to the structure of the

convolutional dictionary, the sparse code Γ consists of N independent parts, each

of length m. We denote each such part as κi, the local sparse vector, as shown in

Figure 3.1(left).

Definition 3.1 A stripe γi is defined as a group of 2h−1 adjacent sparse vectors κj

of length m, centered at location κi [49]. h is the size of atoms in the local dictionary.

Definition 3.2 The stripe-sparsity pseudo-norm of a global sparse vector Γ is given

by [49]:

‖Γ‖s0,∞ = max
i
‖γi‖0. (3.4)

The stripe-sparsity or (`0,∞) counts the number of non-zero elements in the densest

stripe γi of Γ, and is thus a local measure of sparsity.

We consider a CNN with L consecutive convolutional layers. [3] shows that,

under certain conditions, the output of each layer of the CNN with input X is an

approximation to the sparse codes {Γi}Li=1 given by:

Find {Γi}Li=1 s. t. (3.5)

X = D1Γ1, ‖Γ1‖s0,∞ ≤ λ1

40

Γ1 = D2Γ2, ‖Γ2‖s0,∞ ≤ λ2

...

ΓL−1 = DLΓL, ‖ΓL‖s0,∞ ≤ λL,

where {λi}Li=1 are scalar parameters. The atoms of the local dictionary of Di are the

filters of the i-th CNN layer.

The problem in (3.5) is a layered CSC problem, which essentially computes

a sparse representation Γ1 of the input X based on a convolutional dictionary

D1, and then in turn computes the sparse representation of Γ1 based on another

convolutional dictionary D2, and so on. This process is illustrated in Figure 3.1, with

the dimensions of vectors and dictionaries as denoted in the figure. Hereafter, we

refer to the problem in (3.5) as deep (convolutional) sparse coding with parameters

λ, denoted by DSC(λ).

We now define the pooling operation. We will consider two types of pooling,

namely average- and max-pooling. Let X = DΓ, for a vector X ∈ RN and convolu-

tional dictionary D with m atoms in its local dictionary. As previously mentioned,

Γ ∈ RNm can be written as Γ = [κT1 ,κ
T
2 , . . . ,κ

T
N]T .

Definition 3.3 The max-pooling operation, Mb,s(·), and the average-pooling op-

eration, Ab,s(·), with pooling block size b ∈ Z+ and stride s ∈ Z+, are defined

as:

(Mb,s(Γ))k , max
Qs+1≤i≤Qs+b

(κi)R , (3.6)

41

(Ab,s(Γ))k ,
1

b

∑
Qs+1≤i≤Qs+b

(κi)R , (3.7)

where i, k ∈ Z+,

Q =

⌊
k − 1

m

⌋
, R = (k − 1) (mod m) + 1, (3.8)

(κi)R is the R-th element of κi, and 1 ≤ k ≤ m
(
N−b
s

+ 1
)
.1

This process combines nearby features using a commutative operation. It is described

in Figure 3.3, for m = 3, N = 8, b = 4, and s = 2. Pooling, as used in CNNs, is

illustrated in Figure 3.4. These two operations are equivalent.

We propose to add a pooling operation after every CSC step in (3.5). Specifically,

we will analyze properties of the following problem:

Find {Γi,Pi}Li=1 s. t. (3.9)

X = D1Γ1, P1 = Pool
b1,s1

(Γ1), ‖Γ1‖s0,∞ ≤ λ1

P1 = D2Γ2, P2 = Pool
b2,s2

(Γ2), ‖Γ2‖s0,∞ ≤ λ2

...

PL−1 = DLΓL, PL = Pool
bL,sL

(ΓL), ‖ΓL‖s0,∞ ≤ λL,

where Poolb,s(·) is either Mb,s(·) or Ab,s(·) as defined in (3.6) and (3.7), respectively.

Compared with the problem in (3.5), every step of our proposed method will find

1We assume N−b
s is an integer. If not, we either ignore the extra elements or “pad” Γ by

appropriate values.

42

Figure 3.3: Spatial pooling in CSC.

Figure 3.4: Spatial pooling in CNNs.

sparse representations of the pooled version of the previous sparse representation.

Note that the size of the dictionaries is also smaller than in (3.5), to match the size

of the pooled vectors. We refer to the problem in (3.9) as deep (convolutional) sparse

coding with pooling with parameters λ, b, and s, denoted by DSCP(λ,b, s). We do

not enforce pooling after every layer, as the choice bi = 1, si = 1 ensures there is no

pooling at the i-th step.

43

3.3 Results

3.3.1 Uniqueness and stability of DSCP

We start by investigating the uniqueness and stability properties of DSCP(λ,b, s).

Given a vector X and convolutional dictionaries {Di}Li=1, it is desirable that there

be a unique solution {Γ∗i ,P∗i }Li=1 to (3.9). This is especially important since the

sparse codes are often used as features for classification or regression tasks. If the

solution to (3.9) is not unique, the same signal could be represented by more than

one different features, therefore resulting in a different classification or regression

output depending on which solution is adopted.

Theorem 3.1 Assume that, for some vector X, the DSCP(λ,b, s) model in (3.9)

admits a solution {Γ∗i ,P∗i }Li=1. If, for all 1 ≤ i ≤ L,

‖Γ∗i ‖s0,∞ ≤ λi <
1

2

(
1 +

1

µ(Di)

)
, (3.10)

then, the solution {Γ∗i ,P∗i }Li=1 is unique.

Besides uniqueness, another desirable property is the stability of the solution

when the input is contaminated with bounded noise. Let Y = X + E, where X

satisfies the DSCP(λ,b, s) problem, and E is additive noise. Consider the following

problem:

44

Find {Γi,Pi}Li=1 s. t. (3.11)

‖Y −D1Γ1‖2 ≤ ε1, P1 = Pool
b1,s1

(Γ1), ‖Γ1‖s0,∞ ≤ λ1

‖P1 −D2Γ2‖2 ≤ ε2, P2 = Pool
b2,s2

(Γ2), ‖Γ2‖s0,∞ ≤ λ2

...

‖PL−1 −DLΓL‖2 ≤ εL, PL = Pool
bL,sL

(ΓL), ‖ΓL‖s0,∞ ≤ λL.

We denote this problem by DSCPε(λ,b, s) and show that its solution is not too

different from that of DSCP(λ,b, s).

Theorem 3.2 Suppose a vector X satisfies the DSCP(λ,b, s) model in (3.9), but

is contaminated with noise E, where ‖E‖2 ≤ ε, resulting in Y = X + E. Suppose

{Γ∗i ,P∗i }Li=1 solves the problem in (3.9) and {Γ̂i, P̂i}Li=1 solves the problem in (3.11).

If

‖Γ∗i ‖s0,∞ ≤ λi <
1

2

(
1 +

1

µ(Di)

)
, ∀ 1 ≤ i ≤ L, (3.12)

ε1 = ε, ε2i =
4ε2i−1

1− (2‖Γ∗i ‖s0,∞ − 1)µ(Di)
∀ i ≥ 2, (3.13)

then, for all 1 ≤ i ≤ L,

‖P∗i − P̂i‖2
2 ≤ ‖Γ∗i − Γ̂i‖2

2 ≤ ε2i+1. (3.14)

If max-pooling is used, it is further required that si ≥ bi, ∀ 1 ≤ i ≤ L.

In the proof of Theorem 3.2, we will make use of the following lemmas.

45

Lemma 3.1 Let X and X̂ be two vectors in RN , and P =Mb,s(X), P̂ =Mb,s(X̂)

their max-pooled versions, with block size b and stride s ≥ b. Then, ‖P − P̂‖2 ≤

‖X− X̂‖2.

Lemma 3.2 Let X and X̂ be two vectors in RN , and P = Ab,s(X), P̂ = Ab,s(X̂)

their average-pooled versions, with pooling block size b and stride s. Then, ‖P−P̂‖2 ≤

‖X− X̂‖2.

Theorem 3.2 shows that the DSCP model is stable under bounded noise. This is,

again, important for classification tasks where it is desirable that the representation

does not change much when the input is affected by minor noise. Adding the pooling

layers does not affect the stability of the codes. In fact, in most cases, the pooling

layers will help suppress noise propagating to the next layer. This is because the

inequalities in Lemmas 3.1 and 3.2 are strict except for specific edge cases.2

3.3.2 Stability of the CNN forward pass with pooling

As previously mentioned, a connection between the CNN forward pass (without

pooling) and the DSC problem was made in [3]. We now consider a CNN with

(optional) pooling after every convolutional layer. The i-th layer of the CNN

with input P̂i−1 computes the following output: Γ̂i = Sβi(DT
i P̂i−1), followed by

P̂i = Poolbi,si(Γ̂i), where Sβi(·) is a thresholding operation with parameter βi,

applied element-wise and defined in (3.15). The multiplication of the input by DT
i is

equivalent to how the input is convolved with various filters in CNNs (the filters are

2For instance, in the case of max-pooling, ‖P− P̂‖2 = ‖X− X̂‖2 if X and X̂ only differ in the
maximum element of each pooling block.

46

the atoms of the local dictionary). Sβi(·) is chosen to resemble a two-sided ReLU

activation function [54]. With abuse of notation, for a real-valued z, we define

Sβi(z) =



z + βi, z < −βi

0, −βi ≤ z ≤ βi

z − βi, βi < z.

(3.15)

By extending [3, Theorem 10], we are able to show that, under some conditions on

‖Γ∗i ‖s0,∞ and βi, the solution to (3.9), Γ∗i , and Γ̂i have the same support and the

difference between them is bounded. We omit the proof and technical details for the

sake of brevity. It is seen that the addition of the spatial pooling operations does

not change the stability properties of the CNN.

3.3.3 Sparsity bounds

In the DSC model, the objective is to find sparse representations of already

sparse vectors. It is natural to wonder whether performing this task L times

successively is feasible, i.e., whether the sparse codes will keep admitting sparse

representations [55]. In the following theorem, we show that, under some condition

on the dictionaries, the sparse codes will get sparser and sparser with every layer.

We first define the normalized sparsity of a vector (and a matrix), which will allow

us to compare the sparsity of vectors with different lengths.

Definition 3.4 For a vector X, let the normalized sparsity be the ratio of the `0

47

pseudo-norm of X to its length, i.e.,

F(X) ,
‖X‖0

dim(X)
. (3.16)

Definition 3.5 For a matrix M, let the normalized sparsity be the ratio of the

maximum number of non-zero elements in a column of M to the number of rows in

M. This is equivalent to the largest normalized sparsity of any of its columns, i.e.,

F(M) , max
X∈Col(M)

F(X). (3.17)

Theorem 3.3 Suppose X satisfies the DSC(λ) model in (3.9) and the conditions

of [3, Theorem 10] are met. If, for all 1 ≤ i ≤ L, the convolutional dictionaries

satisfy F(DT
i) ≤ 1

Nmi−1
, then F(Γi) ≤ F(Γi−1).

Theorem 3.3 implies that the normalized sparsity of the sparse codes decreases with

the number of layers. While the normalized sparsity assumption on the dictionaries

might seem too strict, we note that the rows of the dictionaries are very sparse

due to the convolutional structure and the fact that the local dictionary is shifted

by mi rows at a time, as seen in Figure 3.1. In addition, the inequalities involved

in the proof being typically loose, the theorem can still be satisfied under much

looser constraints. The implication is that not too many layers can be used in the

DSC model, before the codes become too sparse (or all zero) for any practical use.

Adding spatial pooling operations “unsparsifies” the sparse codes, thus only retaining

important information and allowing a very deep representation.

48

3.4 Concluding remarks

In this chapter, we investigated the effect of adding spatial pooling operations

to deep CSC problems. We showed that this addition does not interfere with the

uniqueness and stability properties of the original problem. Furthermore, we showed

that, while allowing more compact representations, pooling may in fact introduce

benefits to the overall system in terms of noise suppression and, most importantly,

preventing the codes from becoming too sparse and vanishing.

49

Chapter 4: Quality over quantity: Active selection strategies for im-

proved performance of CNNs

4.1 Overview

In this chapter, we develop a novel sampling technique to counteract the

exponential decrease in the incremental benefit of a new additional training sample.

We also relax some of the ideal training scenarios previously mentioned, and show

that our technique helps mitigate the effect of lack of enough training data, class

imbalance in the training set, and noisy training labels.

Currently, the best performing deep networks have many hidden layers and an

extremely large number of trainable parameters, therefore requiring vast amounts of

training data [1, 56, 57]. This raises the question of whether all this data is really

necessary and, perhaps most importantly, whether all training samples are equally

valuable in the learning process. In fact, [58] suggests that guiding a classifier

by presenting training samples in an order of increasing difficulty can speed up

learning and result in convergence to a better local minimum. Furthermore, modern

large-scale training sets often include redundant or noisy samples which could cause

learning bias. In this chapter, we address the problem of adaptively selecting training

50

samples to reduce the effect of learning bias and improve generalization performance.

Related work. This problem, sometimes referred to as exemplar or active selection,

has been studied in the literature. Starting with a given set of labeled examples, active

selection aims to identify a subset to use for training, while leveraging information

obtained from the classifier trained on previous selections. One simple approach [59]

repeatedly presents the same example if the network error exceeds a threshold.

In [60], this problem is addressed in the context of feedforward neural networks. The

authors propose a sequential method to select one training sample at a time such

that, when added to the previous set of examples, it results in the largest decrease in

a squared error estimate criterion. A similar objective is considered in [61] based on

pattern informativeness – a measure of a sample’s influence on the classifier output.

However, most active selection techniques in the literature introduce one training

sample at a time (as opposed to a batch) and use estimation techniques which are

not applicable to high-dimensional inputs. This makes them not suitable for modern

deep learning tasks, and especially computer vision applications.

A closely related approach is active learning which starts with an unlabeled set

of examples and sequentially identifies critical samples to label and train on [62–67].

It is shown that a classifier trained on a carefully chosen subset can sometimes

outperform one that is trained on all the available data. In contrast with active

learning, active selection assumes a fully supervised setting where all training samples

are labeled and available a priori.

51

Contributions. In this chapter, we present strategies to make optimal use of

available training data by adaptively selecting batches of training samples which will

be iteratively presented to the classifier. We are interested in incrementally training

a deep neural network, using batches of training data carefully selected to meet four

criteria: class balance, diversity, representativeness, and classifier uncertainty. The

class balance criterion utilizes the a priori knowledge of labels to ensure that all

classes are appropriately present in the new training batch. We propose a novel class

balancing algorithm which uses immediate feedback from the classifier to allot a

subset of training samples to each class based on the average classifier performance

on that class. Diversity and representativeness are distance-based measures aiming to

reduce redundancy while maximizing the quality of selected samples. Such measures

have been used in active learning [68,69], subset selection [70,71], and clustering [72].

Finally, the classifier uncertainty criterion favors samples that the classifier has not

yet properly learnt, thus driving it to explore unvisited parts of the input space.

We combine the last three criteria and use optimization techniques from [73,74] to

identify a near-optimal batch to train on at every iteration. We apply our methods

on various classification problems. Our results indicate that careful selection and

ordering of training samples can lead to improved performance, compared to sampling

training data at random.

The rest of the chapter is organized as follows. The problem formulation is

stated in Sections 4.2.1 - 4.2.5 and the proposed solution and algorithm in Sections

4.2.6 and 4.2.7. Experimental results, comparing our method to random sampling,

are presented in Section 4.3. In Section 4.4, we discuss the computational complexity

52

of our method as well as potential improvements.

4.2 Problem statement

We assume we are given a fixed classifier architecture, and a set of labeled

training data points: X =
⋃L
k=1Xk, where Xk = {X1,k, X2,k, . . . , XNk,k} are the

training samples belonging to class k, Nk = |Xk| is the number of training samples

from class k, and L is the number of classes. At each time t, we select a subset

Bt ⊂ X , such that the classifier (which has previously been trained on Bt−1) exhibits

good generalization performance when trained on Bt.

To this end, we formulate a criterion for selecting new training examples which

serves the following objectives:

(O1) The samples in Bt must be such that the classifier is uncertain about classifying

them (or certain but wrong in its classification).

(O2) Bt should have a balanced selection from all classes.

(O3) Bt should be sufficiently diverse.

(O4) Bt should be representative of X .

We will mathematically formulate each of these objectives in the following sections.

53

4.2.1 Classifier uncertainty and error

We assume that, at time t, the classifier produces L outputs for each training

sample Xi,k from class k, denoted by

pt(Xi,k) = [pt1(Xi,k), pt2(Xi,k), . . . , ptL(Xi,k)], (4.1)

where ptl(X) is interpreted as the classifier’s estimate of the probability that X ∈ X

belongs to class l, and satisfies ptl(X) ≥ 0 ∀l, and
∑L

l=1 p
t
l(X) = 1. In order to

quantify classifier uncertainty and error we define:

ct(Xi,k) = −
L∑
l=1

log ptl(Xi,k) ·
[
βt · 1 [l = k] (1− βt) · ptl(Xi,k)

]
, (4.2)

where βt ∈ [0, 1] is a chosen parameter. We can interpret ct(Xi,k) in two ways.

First, ct(Xi,k) can be seen as a weighted sum of an error term: −
∑L

l=1 1 [l = k] ·

log ptl(Xi,k) = − log ptk(Xi,k) and an entropy term: −
∑L

l=1 p
t
l(Xi,k) log ptl(Xi,k). These

two terms correspond to the correctness of the classifier’s decision and the uncertainty

in this decision, therefore satisfying objective (O1) above. Second, ct(Xi,k) can be

interpreted as a bootstrapping technique to overcome possible label noise [75], in

which case βt1 [l = k] + (1 − βt)ptl(Xi,k) is a weighted “correct label” and ct(Xi,k)

represents the cross-entropy between pt(Xi,k) and this weighted label. ct(·) being low

on a given sample means that the classifier has enough information about this sample.

In order to present the classifier with informative samples, we would therefore like

54

to pick samples where ct(·) is large.

4.2.2 Class balance

At each time t, we would like to select a total of M t samples, distributed among

all classes in a balanced way. However, it might be counter-intuitive to simply impose

that all classes be equally represented in the subset Bt, as the current classifier

may be performing very well on some of them. Therefore, we assign a budget M t
k

to each class depending on the average performance on this class. This can be

measured by ctk = 1
Nk

∑Nk
i=1 c

t(Xi,k), where ct(Xi,k) is defined in (4.2). The larger ctk

is, more samples are assigned to class k. An objective function of
∑L

k=1 c
t
k ·M t

k would

result in the trivial solution of assigning all the budget M t to the class with the

largest uncertainty score, and would contradict the class balancing requirement. We

therefore use a logarithmic objective function and formulate the problem as follows:

max
Mt
k∈Z+

L∑
k=1

log

(
1 + α · ctk

M t
k

M t

)

s. t.
L∑
k=1

M t
k ≤M t; M t

k ≤ |Xk|, (4.3)

where α > 1 sets the sensitivity of the method (the smaller α, the larger the effect of

differences in ctk) . This problem arises in information theory, in allocating power

to a set of communication channels [76, Section 9.4]. We use a similar formulation

since M t
k represents the budget allocated to the kth class (channel), and 1/ctk is akin

to channel quality. There exists a very efficient solution to this convex optimization

55

problem, known as the water-filling algorithm [77, Section 5.5], where we interpret

water levels as the number of samples allocated to each class. Our formulation differs

from the standard formulation due to the addition of the last constraint (which

ensures that we do not allocate more samples than available in the pool Xk). Another

difference is that the feasible set in (4.3) is the set of non-negative integers.

Theorem 4.1 The modified water-filling problem in (4.3) can be solved using Algo-

rithm 4.1.

Algorithm 4.1 Integer water-filling algorithm with caps

1: Sort the base levels Mt

αctk
in ascending order and take the ceiling of the base levels

dMt

αctk
e.

2: Place “caps” at dMt

αctk
e+ |Xk|.

3: repeat
4: Fill with one water unit at a time proceeding from left to right without

exceeding any cap.
5: until M t water units are used or all empty spaces are filled.

“Caps” enforce the M t
k ≤ |Xk| constraints. Each water unit corresponds to one

training sample being assigned to a class. An illustration of the algorithm is found in

Figure 4.1 for a budget M t = 10. The numbers on the water units show the order in

which they have been assigned. Because of the balanced selection of budgets {M t
k},

this formulation addresses the class balance objective (O2).

Remark 4.1 Objectives (O3) and (O4) are only meaningful when considered as

intraclass rather than globally. Two images from different classes trivially meet the

diversity criterion but cannot be representative of each other. Since we are considering

supervised learning settings, we can leverage the label information and focus on finding

56

Figure 4.1: Integer water-filling with caps.

57

a diverse representative subset of each class separately. The budget selection algorithm

in Theorem 4.1 allows us to do so by distributing our original budget M t amongst

the various classes. We can therefore solve L independent problems: one for each

class. We drop the class subscript k and assume that we would like to select a subset

Bt from a pool of samples X , where all the samples belong to the same class. For

notational convenience, we also drop the time superscript t, with the understanding

that this procedure will be repeated at every time step.

4.2.3 Subset diversity

As per (O3), we would like to select a diverse subset, i.e., one that does not

have too much redundancy. To this end, we assume we have a distance metric

d(·, ·) such that d(Xi, Xj) represents the distance between samples Xi and Xj. This

can, for example, be the Euclidean distance between Xi and Xj, or the Euclidean

distance between their feature vectors, in some pre-defined feature space. In order to

maximize diversity, we seek to maximize the average distance between all selected

samples, i.e., find B such that:

1

M2

∑
X∈B

∑
X′∈B

d(X,X ′) (4.4)

is maximized,1 where M is the budget allocated by the water-filling algorithm. Let

N = |X |, the training set size of the class under consideration. We introduce a

1Other objective functions can be formulated such as maximizing the minimum distance between
selected samples. While guaranteeing less redundancy, such objective functions are more difficult
to solve.

58

binary variable s ∈ {0, 1}N , such that si = 1 if Xi ∈ B, and si = 0 otherwise. We

also group all the distances in a matrix D ∈ RN×N such that Dij = d(Xi, Xj). As

such, the objective in (4.4) can be re-written as

max
s∈{0,1}N

1

M2
sᵀDs. (4.5)

This problem formulation ensures that the chosen samples are sufficiently distant

from each other.

4.2.4 Subset representativeness

Per (O4), we would also like to select a representative subset B, i.e., the

non-selected samples must be well represented by the set B. To this end, we seek

to minimize the average distance between selected and non-selected samples. As

before, this can be re-written as

min
s∈{0,1}N

1

M(N −M)
(1− s)ᵀDs, (4.6)

where 1 is the vector of all ones in RN .

4.2.5 Joint formulation

As previously mentioned, once the sub-problem of allocating budgets to each

class has been solved, we seek to solve L independent problems of finding a diverse,

representative subset over which the classifier performs poorly. We therefore combine

59

the subset diversity, representativeness, and uncertainty criteria. We define the

vector c , [c(X1), . . . , c(XN)]ᵀ where c(·) is as defined in Section 4.2.1. To make

the quantities comparable, we normalize D and c such that all their elements lie in

[0, 1]. We denote the normalized quantities by D̃ and c̃ respectively. Our objective

function is:

max
s∈{0,1}N

λd ·
1

M2
sᵀD̃s︸ ︷︷ ︸

diversity

− λr ·
1

M(N −M)
(1− s)ᵀD̃s︸ ︷︷ ︸

representativeness

+ λu ·
1

M
c̃ᵀs︸ ︷︷ ︸

uncertainty

, (4.7)

where λd, λr, λu ≥ 0 are parameters which dictate the relative importance of each

criterion. We need to add the constraint that |B| = M , where M is the budget

allocated by the water-filling algorithm. The joint optimization problem for each

class is therefore:

min
s∈{0,1}N

− λd ·
1

M
sᵀD̃s + λr ·

1

N −M
(1− s)ᵀD̃s− λu · c̃ᵀs

s. t. 1ᵀs = M. (4.8)

It is important to note that the division of our problem into L independent

sub-problems provides many advantages. First, formulating the problem on the

entire training dataset would require a very large distance matrix D which would, in

most cases, need excessive storage and be computationally prohibitive. Second, the

L sub-problems are completely independent and can run in parallel, thus reducing

computation time.

60

4.2.6 Proposed solution

The problem in (4.8) is not convex for two reasons: (i) the set {0, 1}N is

finite and therefore not convex, and (ii) the objective function is generally not

convex. We change the constraint 1ᵀs = M to its equivalent (1ᵀs−M)2 = 0 (as this

guarantees zero duality gap [73]) and make the change of variable x = 2s− 1, where

x ∈ {−1, 1}N . Let

A , −
(
λd

4M
+

λr
4(N −M)

)
D̃, (4.9)

b , − λd
2M

D̃ᵀ1− λu
2

c̃. (4.10)

Lemma 4.1 An equivalent problem to (4.8) is given by:

min
x∈{−1,1}N

xᵀAx + bᵀx

s. t. (1ᵀx− 2M +N)2 = 0. (4.11)

This problem is known as constrained binary quadratic programming and is NP-

hard [73]. We seek an efficient relaxation to this problem.

Theorem 4.2 The solution x∗ to (4.11) can be well-approximated by

x̂∗ = −1

2
(A + µ∗11ᵀ + γ∗I)† (b− 2µ∗(2M −N)1), (4.12)

61

where (·)† denotes the pseudo-inverse, I denotes the identity matrix in RN×N , and

µ∗, γ∗ are the solution to the following semi-definite program (SDP):

max
µ,γ,τ∈R

(2M −N)2µ− γN − τ

s. t.


τ 1

2
(b− 2µ(2M −N)1)ᵀ

1
2
(b− 2µ(2M −N)1) A + µ11ᵀ + γI

 � 0 (4.13)

We select the samples corresponding to the largest M entries in x̂∗.

4.2.7 Overall algorithm

Algorithm 4.2 Proposed algorithm.

1: Set t← 0
2: Initialize classifier
3: Test initial classifier on training data to obtain uncertainty levels {c0

k}Lk=1

4: repeat
5: Using {ctk}, apply Algorithm 4.1 to obtain class budgets {M t

k}
6: for all k ∈ {1, . . . , L} do
7: (in parallel) Solve (4.12) with M = M t

k, N = N t
k, to obtain class batch

selection Btk
8: end for
9: Set Bt ← ∪Lk=1Btk

10: Resume classifier training on Bt
11: Test resulting classifier on training data to obtain new uncertainty levels
{ct+1

k }
12: Set t← t+ 1
13: until Stopping criterion met

In this section, we explain the overall batch subset selection pipeline. We start

from a classifier with a fixed architecture. First, we test this classifier on the entire

pool of training examples and compute the initial average uncertainty levels {c0
k}Lk=1.

62

Then, at every time step t, we use {ctk}Lk=1 to obtain a class-specific budget using

Algorithm 4.1 and solve (4.12) and (4.13) independently for each class, resulting in

a new selected batch. We resume training on the union of all selected batches. At

each time step, all candidate samples have a chance to be selected, i.e., previously

selected examples are not removed from the set of candidates. We iterate until a

stopping criterion is met. The overall algorithm is described in Algorithm 4.2 and

illustrated in Figure 4.2.

4.3 Experiments

In this section, we test the proposed method on several real-world classification

tasks. We compare our approach to the random selection of training samples, i.e.,

ordinary training algorithms. Our formulation does not assume a specific classifier

structure. However, we will illustrate our results on deep neural networks as they are

the current state-of-the-art. We use the Caffe framework [32] for the implementation

of Convolutional Neural Networks (CNN) as well as the SDPA framework [78] to

solve the SDP problem in (4.13). We calculate distances between samples based on

the Local Binary Patterns (LBP) features [79].

For each of these experiments, unless otherwise specified, we start from a

randomly initialized CNN with a fixed architecture, and apply Algorithm 4.2.

We do not employ any type of data pre-processing or augmentation techniques

which are widely used to achieve state-of-the-art performance, since these methods

are not the focus of this work. Instead, we choose to focus on the effect of our training

63

Figure 4.2: Proposed algorithm.

set selection method on the generalization performance, compared to picking the

training samples in a random fashion. As our training is incremental, we add dropout

layers [35] whenever necessary to combat the problem of catastrophic forgetting in

deep neural networks. Catastrophic forgetting refers to the inability of a learning

method to preserve previously learnt information when exclusively trained on new

data [80,81].

4.3.1 MNIST digit recognition

We start our experiments with examples from the well-known MNIST digit

recognition dataset. We use the LeNet architecture [82] and run our experiments

using a randomly selected subset of the MNIST dataset consisting of 1000 images

from each class. We use a total budget of 50 training images per one loop of our

algorithm (see Figure 4.2), i.e., for all t,
∑L

k=1M
t
k = 50.

64

Figure 4.3: Top: Selected samples when λr = 20λd. Bottom: Selected samples when
λr = λd.

4.3.1.1 Effect of λd vs. λr

We first illustrate the effect of the weights λd, λr, defined in (4.7), on the

selection process. We set λu = 0. Figure 4.3 shows the selected samples when

λr = 20λd (top) and λr = λd (bottom). When λr is large, more representative

samples are chosen, as seen in Figure 4.3, top. When λd = λr, more diverse samples

are chosen. This validates our initial objective formulation in (4.7).

4.3.1.2 Performance on clean data

We compare our method of adaptively selecting training batches to the baseline

of random selection. In [58], it is suggested that introducing “easier” samples first

and gradually increasing the difficulty results in improved performance. Our method

enables us to implement such an approach by modifying the relative values of λd, λr,

65

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 100 200 300 400 500 600 700

T
es

ti
n
g
 a

cc
u
ra

cy

Number of selected training samples

(A) Results on MNIST dataset

Our approach
Random

Figure 4.4: Results on MNIST dataset with clean labels.

and λu over time. We achieve this by keeping λd fixed, and starting with λr = 10λd

and λu = 0. Picking a large λr puts more weight on the representativeness term

in (4.7) and thus ensures that outliers are not picked. We gradually decrease λr

and increase λu in order to allow for more difficult examples to be sampled. We

present our findings in Figure 4.4. Our approach outperforms random selection by

a margin of 4%. Furthermore, the number of samples required by our proposed

method to reach a target performance level is much smaller than random sampling.

For instance, for a target testing accuracy of 94%, around 700 samples are needed

for random as opposed to less than 350 samples for our approach.

We now assess the quality of the local minimum obtained with our method.

From Figure 4.4, our method achieved around 98% accuracy using 650 selected

samples. Using these same 650 images, we train a CNN from scratch using random

sampling. This results in a testing accuracy of 96.3%, inferior to the one obtained by

66

our method (but superior to the 94% accuracy obtained using a random sampling

of 650 images out of the original pool of 10,000 training images). These two CNNs

have seen the exact same data, the only difference being the order in which it was

introduced. This validates the claim that adaptive selection of training data guides

the neural network towards a better local optimum. Our algorithm has selected

easier training samples in the first few iterations, and more difficult samples later on,

as dictated by the change in weights λd, λr, λu.

4.3.1.3 Performance on data with noisy labels

We now study the performance of our algorithm in the presence of label noise.

In 20% and 30% of the training samples, we randomly change the correct label to

one of the 9 incorrect labels. The results are shown in Figures 4.5(B) and 4.5(C). In

the presence of label noise, our approach was able to out-perform random selection

by more than 5%. To achieve this, we decrease the diversity weight λd and adopt a

more “cautious” approach by increasing λu at a slower pace. This results in a slower

but safer update of the network. In fact, the total number of noisy training images

chosen by our algorithm for the case of 20% label noise is 93 images by the 12th loop

(or 6.5% of the picked images), whereas random sampling obviously picks around

20% noisy samples.

67

 0.7

 0.75

 0.8

 0.85

 0.9

 0 100 200 300 400 500 600 700 800 900

T
es

ti
n
g
 a

cc
u
ra

cy

Number of selected training samples

(B) Results on MNIST dataset with 20% label noise

Our approach
Random

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0 200 400 600 800 1000

T
es

ti
n

g
 a

cc
u
ra

cy

Number of selected training samples

(C) Results on MNIST dataset with 30% label noise

Our approach
Random

Figure 4.5: Results on MNIST dataset with 20% (top) and 30% (bottom) label noise.

68

4.3.1.4 Data imbalance

Finally, we test our method on a scenario where there is a significant data

imbalance between different classes. This can happen when acquiring labeled data for

some classes is considerably more difficult than for others. We artificially introduce

data imbalance by picking 4 classes at random and reducing their training set size

to between 10 and 20 images per class. Our approach achieves 90.14% testing

accuracy after only 9 loops of the algorithm (i.e., 450 picked samples), while random

sampling achieves 86.91% using the entire training set. We are thus able to boost

the performance by over 3% while only using a fraction of the available samples. In

our algorithm, picked samples are not removed from the pool of available training

images, thus allowing the network to revisit certain training samples if required. This

is especially crucial in the case of data imbalance since random selection has very

low probability of selecting images from the down-sampled classes. In contrast, in

our method the number of selected samples from each class depends on how well the

classifier has learnt that class. Figure 4.6 shows the number of classification mistakes

made by a CNN trained with our algorithm and with random selection. Classes 1, 3,

6, and 7 were significantly down-sampled. Our approach allows the CNN to perform

well on these classes compared to random sampling.

4.3.2 SUN397 scene recognition

Our second set of experiments is on the SUN397 scene recognition dataset [83].

The dataset consists of 108,754 images from 397 scene categories. We use a randomly

69

 0

 100

 200

 300

 400

 500

0 1 2 3 4 5 6 7 8 9

N
u
m

b
er

 o
f

cl
as

si
fi

ca
ti

o
n
 m

is
ta

k
es

Class

(D) Results on MNIST dataset with data imbalance

Our approach
Random

Figure 4.6: Results on MNIST dataset with class imbalance.

initialized CNN with the “AlexNet” architecture [2] as provided by Caffe [32]. We

choose a budget of 2000 images per loop and perform five-fold cross-validation using

5 random splits. No data pre-processing was performed except for resizing all images

to 227× 227.

As before, we keep λd fixed, and start with λr > λd and λu = 0. With time,

we decrease λr and increase λu, thus putting more emphasis on sample diversity and

classifier feedback. In Figure 4.7, we show examples of images from 9 different classes

selected by our algorithm. We notice that examples selected at the beginning of the

training process (images to the left) are representative of their respective classes. The

images to the right, selected later in the process, are more “difficult” and less typical

examples of the classes. For example, for class “Operating room”, our algorithm

picked an image which includes a crowd of people. This is not typically associated

with an operating room and makes it significantly more difficult to classify than the

70

Lighthouse Landing deck Library interior

Laundromat Operating room Office building

Islet Iceberg Dining room

Figure 4.7: Examples of images from various classes of SUN397 picked by our
algorithm at the beginning of training (left) and 75% through the training process
(right).

picture to its left.

The classification results are reported in Table 4.1. Using our active selection

algorithm, we are able to boost the performance on SUN397 by over 10%. Better

state-of-the-art results are reported on the SUN397 dataset using AlexNet [84–86].

However, in all of these papers, the networks are trained on much larger datasets

such as the 2.5 million scene images from Places [84]. It seems that our method is

particularly useful in cases where not a lot of data is available. We also run the same

experiments on a subset of SUN397, which we call SUN50, obtained by restricting

the dataset to 50 randomly selected classes out of the original 397 scene categories.

We see a similar performance boost of over 7%.

71

4.3.3 ImageNet large-scale object recognition

We test our method on the ImageNet large-scale object recognition dataset

(specifically, the ILSVRC2012 classification challenge) [87, 88]. While multiple CNN

architectures have been suggested in the literature [1,2,20], we consider “AlexNet” [2]

as provided by Caffe. The training data consists of around 1.2 million images. State-

of-the-art results on this network are obtained by averaging results from multiple

crops. As previously mentioned, we do not employ any data augmentation and/or

pre-processing techniques and only feed the networks the center crop (227× 227).

We report testing accuracies on the validation set in Table 4.1.

The results in Table 4.1 clearly show the benefit of the judicial selection of

training data. Images introduced later in the learning process affect the weights

of the CNN to a lesser extent than those introduced early on, due to the decrease

in the learning rate. Therefore, it is intuitive that representative images should be

the ones “driving” the network at the early stages of learning. As before, we show

examples of such images in Figure 4.8. For each class, images in the left columns

are introduced when the learning rate is large, and therefore affect the trained CNN

more than images to the right.

4.3.4 VGG Face dataset

In this experiment, we address a face recognition task. We start with a pre-

trained CNN in order to illustrate the use of our algorithm for transfer learning, as

a fine-tuning sampling strategy. Using the methods and network described in [89],

72

Cock (n01514668) Ostrich (n01518878) Ibizan hound (n02091244)

Samoyed (n02111889) French horn (n03394916) Bagel (n07693725)

Butternut squash (n07717556) Strawberry (n07745940) Mud turtle (n01667114)

Figure 4.8: Examples of images from various classes of ImageNet picked by our
algorithm at the beginning of training (left) and 75% through the training process
(right).

a CNN was pre-trained on the CASIA-WebFace dataset [90]. Instead of random

initialization, we start with the pre-trained weights for the first 15 layers (up to

the fifth pooling layer), and add two randomly initialized fully connected layers

joined by a dropout layer. We train and test on the VGG Face dataset [91]. Since

CASIA-WebFace and VGG Face have significant subject overlap, we choose 20 of

the non-overlapping subjects. The VGG Face dataset consists of a large number of

images, out of which a portion has been selected as part of the final curated set. We

observe that the non-curated images are considerably more affected by label and

bounding box noise. In order to get meaningful test results, we restrict our testing

set to the curated images, while training on the entire dataset. We perform five-fold

cross-validation using 5 random splits. We choose a budget of 100 training samples

per loop of our algorithm.

73

Figure 4.9 shows some examples of images selected by our algorithm. The top

images are chosen in the first loop, when the representativeness score λr is large and

the uncertainty score λu zero. We notice that all chosen samples are frontal, of good

quality, and typical of the subjects. The bottom images are chosen much later in

the process, after λr has considerably decreased and λu increased. This time, our

method chooses more difficult examples which include extreme poses, obstruction,

blur, an additional person, and an unusually young version of the subject.

Dataset
Architecture

Our approach
Random

and initialization sampling

MNIST LeNet [82]
> 97.9%2 > 93.8%2

Clean labels Random weights

MNIST LeNet
> 90.0%3 > 84.5%3

20% label noise Random weights

MNIST LeNet
> 85.5%4 > 79.0%4

30% label noise Random weights

MNIST LeNet
> 90.14%5 86.91%

Class imbalance Random weights

SUN397
AlexNet [2]

Random weights
53.4%± 0.4 42.3%± 0.2

SUN50
AlexNet

Random weights
68.7%± 0.2 61.1%± 0.3

ILSVRC2012
AlexNet

Random weights
62.9% 57.1%6

VGG Face
As described in [89]

Pre-trained
98.1%± 0.2 94.9%± 0.1

Table 4.1: Summary of testing accuracies.

We present the performance results of this CNN trained using our algorithm

2These experiments were stopped after the selection of 650 samples.
3These experiments were stopped after the selection of 950 samples.
4These experiments were stopped after the selection of 1050 samples.
5This experiment was stopped after the selection of 450 samples.
6This result is taken directly from Caffe model documentations.

74

Figure 4.9: Examples of selected samples at the beginning of training (left) and 75%
through the training process (right).

and random sampling in Tables 4.1 and 4.2. Using only one loop (i.e., 100 picked

images), the testing accuracy increases to 89.69% compared to 80.05% for random

sampling. The performance of random sampling saturates at around 94.9%, while

our approach achieves 97.15% with only 1600 selected images (which cuts the error

in half). Our method eventually achieves 98.09% accuracy vs. 94.92% for random

sampling.

of selected samples Our approach Random

0 12.73% 12.45%

100 89.69% 80.05%

500 93.23% 90.79%

1300 97.00% 94.89%

1600 97.15% 94.89%

Table 4.2: VGG Face testing accuracies.

75

4.4 Computational complexity

In this section, we analyze the computational complexity of one loop of Algo-

rithm 4.2. At every loop, the following operations are executed:

• Solve Algorithm 4.1 – line 5 in Algorithm 4.2.

• Solve L instances of independent SDPs given by equation (4.13) – line 7 in

Algorithm 4.2.

• Solve L instances of equation (4.12), and for each instance find the M largest

entries – line 7 in Algorithm 4.2.

• Test classifier on training data – line 11 in Algorithm 4.2.

We will analyze the computational complexity of each step independently in the

following subsections. All our experiments were performed on an Intel(R) Xeon(R)

CPU E5-2623 v3 @ 3.00GHz, with 16 CPU cores and 32GB of memory, equipped

with 2 GeForce GTX TITAN X GPUs with 12GB of memory each.

4.4.1 Solve Algorithm 4.1

The first step in Algorithm 4.1 is sorting the base levels which takes O(L logL)

operations. The other steps have a linear complexity in L. The overall complexity is

therefore linearithmic in the number of classes L: O(L logL).

76

4.4.2 Solve L instances of independent SDPs

Most robust and widely-used algorithms to solve SDPs are known as interior-

point methods and may require O(mn3 +m2n2) operations in the worst case [92],

where m is the number of optimization variables and n is the size of the matrices.

In our case, m = 3 is the number of optimization variables in Problem (4.13) and

n = N + 1, where N is the number of training samples per class. In our experiments,

the largest N was around 1000. In practice, it is observed that the number of

operations required to solve an SDP grows much slower than the theoretical worst-

case bound and that it is not much harder to solve an SDP than it is to solve

Linear Programs (LPs) [93]. Furthermore, our experience solving multiple SDPs

for large-scale problems confirms these findings. In fact, the SDPA framework [78]

we use in our implementation reports feasible running times for solving problems

of much larger scale in [94, Table 5]. For example, benchmark problem qpG51,

with m = 1000, n = 2000 is solved in 52.2 seconds for an accuracy (dual and

primal relative gap and feasibility error) of 10−7. We refer the reader to [94] for

implementation details. All the SDP instances we encounter are considerably smaller

than qpG51. This is especially true since our SDP formulation only involves 3

optimization variables (please refer to Remark C.2 in Appendix C for details on

our choice of SDP relaxation). Furthermore, an accuracy of 10−7 is not needed in

practice. We observe that decreasing this accuracy beyond 10−3 does not change the

selected samples.

While our algorithm requires solving L SDPs, this process can be parallelized

77

to the extent of available cores, therefore substantially reducing the running time. In

our experiments, we only utilize 16 CPU cores. A CPU cluster would significantly

speedup the process, since the SDPs are completely independent and no data transfer

is necessary while solving them. For reference, solving all 397 SDPs for the SUN397

dataset on our experiment setup takes less than 2 seconds.

Additionally, the SDP computation time does not depend on the budget

M . Having a large batch size budget means SDPs are solved less frequently as

each batch needs longer training time. The disadvantage of a large budget is less

frequent feedback from the classifier. On the other hand, selecting a small budget

introduces the SDP computational overhead more frequently, but has the benefit of

providing more immediate feedback from the classifier. This trade-off is important in

balancing system requirements and computational complexity. In our experiments,

we investigated a variety of budget sizes ranging from an average of 5 per class

(MNIST) to over 50 per class (ImageNet). One viable strategy might be to vary

budget sizes as training progresses, which was not explored in this chapter and will

be the focus of future work.

It is worth noting that other methods for solving SDPs exist and are more

suitable for large-scale problems [92]. While we do not employ them in our imple-

mentation, this can be pursued if computation times become prohibitive.

78

4.4.3 Solve L instances of equation (4.12) and find M largest entries

Equation (4.12) involves computing a Moore-Penrose pseudo-inverse which may

also require O(N3) operations in the worst case, where N is the number of training

samples per class. In our experiments, it was also observed that this computation

was not prohibitive and the running time was dominated by solving the SDPs. As

before, the L pseudo-inverse computations can be done completely in parallel. In

the case that faster pseudo-inverse calculations are necessary, [95] shows that they

can be solved efficiently using GPUs. Finding the M largest entries of the solution

to (4.12) can be done efficiently in linear time.

4.4.4 Test classifier on training data

This step consists of running a forward pass of the CNN on the entire training

dataset. This is done in batch mode using GPUs. For the SUN397 dataset, the

running time is about 57 seconds, while for ImageNet it is about 12 minutes. This is

an expensive operation and can be further optimized. First, as this step is performed

at every loop, if SDPs are solved less frequently, the testing step will also be executed

more sporadically. The same discussion regarding the feedback-complexity trade-off

applies. Secondly, testing on the entire dataset may not be necessary assuming

uncertainty levels only vary significantly for training samples in the vicinity of the

previous training batch. We can, therefore, restrict the testing to a neighborhood

around the previously selected batch and only update the uncertainty levels in

those neighborhoods (neighborhoods can be found efficiently using the pre-computed

79

distance matrices).

4.4.5 One-time computation

In addition to the steps outlined above, which are performed at every loop of

the algorithm, distance matrices for each of the L classes are computed only once at

the beginning of the training process. This computation takes O(N2) operations per

class, where N is the number of training samples per class, and, as before, can be

run in parallel. This computation is also amenable to a GPU implementation.

4.5 Concluding remarks

In this chapter, we proposed a novel approach which adaptively selects training

data to be presented to a classifier. The approach is based on balancing four objectives:

class balance, data representativeness, data diversity, and classifier uncertainty. We

developed an efficient iterative and adaptive algorithm based on convex optimization.

We demonstrated its effectiveness on several real-life classification datasets as well as

its robustness to label noise and class imbalance. We showed that our algorithm is

suitable for a wide range of applications, including face, scene, and object recognition.

We were able to out-perform random selection in all of our experiments. This

emphasizes the important role of the order in which data is presented to CNNs in

its generalization ability.

80

Chapter 5: Task-aware compressed sensing with generative adversar-

ial networks

5.1 Overview

In this chapter, we relax the last ideal condition considered in this dissertation.

When real signals or images cannot be accessed, and instead lossy versions (such as

downsampled or sensed inputs) are available, we develop a technique to recover the

original signal as well as carry out usual supervised learning tasks.

The broad scope and generality of the field of compressed sensing has led

to many impressive applications, such as rapid magnetic resonance imaging [8],

single-pixel camera [9] and UAV systems. The core problem of compressed sensing is

that of efficiently reconstructing a signal x ∈ Rn from an under-determined linear

system of noisy measurements given by

y = Ax + ζ (5.1)

where A ∈ Rm×n is the measurement sensing matrix, m < n, and ζ ∈ Rm is the

measurement noise [96]. Since this is an under-determined system of equations, a

unique solution does not exist, even in the absence of noise, unless some assumptions

81

are made on the structure of the unknown vector x. Depending on applications, the

structural assumptions may vary, the most common one being that x is sparse [96–98].

Under this specific assumption, the problem of recovering x has been widely studied,

and different conditions on the matrix A have been established to guarantee reliable

recovery [99]. These conditions include the Restricted Isometry Property (RIP) or

the Restricted Eigenvalue Condition (REC) [42,100].

Even though the sparsity assumption on x is the most common choice, it is

not the only possible one. Indeed, other approaches, such as combining sparsity

with additional model-based constraints [101] or graph structures [102], have been

developed. Recently, in [10], a generative model was used and the unknown signal

x was assumed to be the output of this model. Generative models have been

successfully used to model data distributions, and include the variational auto-

encoder (VAE) [103], generative adversarial networks (GANs) [15], and variations

thereof [104–106]. In the GAN framework, two models are trained simultaneously

in an adversarial setting: a generative model that emulates the data distribution,

and a discriminative model that predicts whether a certain input came from real

data or was artificially created. The generative model learns a mapping G from a

low-dimensional vector z ∈ Rk to the high dimensional space Rn.

The authors in [10] use a pre-trained generative model G, and recover an

estimate of x from the compressed measurements y, assuming it is in the range of G.

To this end, the following optimization problem is solved:

82

min
x̂,z

||Ax̂− y||22

s. t. x̂ = G(z) (5.2)

In the setting of [10], the pre-trained G is unaware of the compressed sensing

framework. Furthermore, it is assumed that an abundance of real (non-compressed)

images is available to train G, which, depending on the application, may not be a

realistic assumption [107]. After all, the aim of compressed sensing is to recover

signals through the use of compressed measurements. In this chapter, we propose

to train G specifically for the task of recovering compressed measurements. This

makes our GAN task-aware, and improves the compressed sensing performance. Our

approach will also address the case where no or very little non-compressed data is

available for training, by complementing the training set with compressed training

data. Finally, we empirically demonstrate that the low-dimensional latent vector z

can be used, not only to perform reconstruction via G, but also for inference tasks

such as classification.

Contributions.

1. We train the GAN in a task-aware fashion allowing it to be specifically optimized

for the reconstruction task. We show that this consistently improves the

reconstruction error obtained in [10] for various values of the number of

measurements m.

2. We consider training using a combination of a small number of (or no) non-

83

compressed data and a larger set of compressed training data. This is achieved

by introducing a second discriminator specifically for compressed data.

3. We show that we can regularize the latent space of z to make it discriminative,

given a desired inference task.

5.2 Related work

In this work, we combine compressed sensing and generative models to perform

reconstruction and classification tasks. To this end, we explain the related work in

two parts. The first part addresses the use of generative models for reconstruction

and classification tasks, and the second part reviews inference tasks in compressed

sensing.

Using a generative model for reconstruction tasks is a fairly well-researched area.

One line of work attempts to map an image to the range of the generator [108–110].

Unlike our setting, complete and non-compressed knowledge of the images is assumed.

In [110], gradient descent (GD) is used to project the image samples onto the latent

space of a pre-trained generative model. In [108,109], an inverse mapping between the

input space of x and the latent space of z is jointly learned along with the generator

in an adversarial setting. Generative models can also be used for classification

tasks [106, 111–113]. This can be achieved by modifying the discriminator of the

GAN to also output class probabilities [112, 113] or augmenting the loss function

with discriminative features at training time [106,111]. Such discriminative features

include ground-truth class labels [111] and representations learned by a pre-trained

84

classifier [106].

Another related line of work considers compressed sensing frameworks for

various machine learning and computer vision tasks [114–118]. In [117] theoretical

results are provided showing that inference can be done directly in the compressed

domain. Of particular relevance to our work are [114,118,119] which develop various

techniques for the classification of compressed images. These methods operate

directly on the compressed measurements, whereas we perform classification on the

latent variable z.

Finally, one last research area that is relevant to our application is super-

resolution, the task of increasing the resolution of an image. This can be seen as a

special case of compressed sensing where the sensing matrix A averages neighboring

pixels. In [120], a sparse representation of image patches is sought and used to obtain

a high-resolution output. Our framework adopts the generative model instead of the

sparsity constraint. More recent work uses deep convolutional networks [121,122].

5.3 Model description

5.3.1 Background information

Before describing our approach, we provide some necessary background infor-

mation on compressed sensing and GANs.

In compressed sensing, the measurements are given as y = Ax + ζ. A ∈ Rm×n

is the measurement matrix and is usually chosen to be a Gaussian random matrix

because it satisfies desirable properties with high probability [96]. Unless otherwise

85

specified, we will assume that A is a zero-mean random Gaussian matrix with

independent and identically distributed entries. A is kept constant in a given

experiment.

GANs consist of two neural networks, G and D. G : Rk → Rn maps a low-

dimensional latent space to the high dimensional sample space of x. D is a binary

neural network classifier. In the training phase, G and D are typically learned in

an adversarial fashion using actual input data samples x and random vectors z. An

isotropic Gaussian prior is usually assumed on z. While G learns to generate outputs

G(z) that have a distribution similar to that of x, D learns to discriminate between

“real” samples x and “fake” samples G(z). D and G are trained in an alternating

fashion to minimize the following min-max loss [15]:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))] (5.3)

GAN training algorithm At every iteration, (5.3) is maximized over D for a fixed

G, using GD, and then minimized over G, fixing D.

5.3.2 Motivation

In [10], a generative model is pre-trained on a set of uncompressed training

images, using the algorithm described in [104]. In the testing phase, the generative

model is used to reconstruct a compressed, previously unseen, test image using GD

on the problem in (5.2). It is shown that, when A is a random Gaussian matrix, if ẑ

86

minimizes ||AG(z)− y||2 to within additive ε of the optimum, then for all x, and

with high probability

||G(ẑ)− x||2 ≤ 6 min
z
||G(z)− x||2 + 3||ζ||2 + 2ε (5.4)

In other words, the observed reconstruction error is bounded by the minimum possible

error of any vector in the range of the generator with some additional terms due to

noise and GD precision. We note that this upper bound depends on how well G can

represent the unknown signal x. Now, we show that, under certain conditions, the

expected value of this error term converges to 0 as G is trained on x.

Theorem 5.1 Let Gt be the generator of a GAN after t steps of the GAN training

algorithm described above. Additionally, as in [15], we assume:

(i) G and D have enough capacity to represent the data.

(ii) At each update, D reaches its optimum given G.

(iii) At each update, G is updated to improve the min-max loss in (5.3).

Furthermore, we assume that the training samples x come from a continuous distri-

bution with compact support. Then,

lim
t→∞

Ex

[
min

z
||Gt(z)− x||2

]
= 0 (5.5)

87

This theorem shows that the right-hand side of (5.4) is actually small, which justifies

the setup adopted in [10]. However, the conditions for Theorem 5.1 may be too

strict in practice. For example, [15] assume that at every step of adversarial training,

the discriminator D is allowed to reach its optimal value given G, which might be

numerically infeasible. Therefore, the convergence of ||G(ẑ)− x||2 might not be

computationally attainable. To this end, we consider a task-aware GAN training,

which allows G to be optimized specifically for the task of reconstructing compressed

measurements.

Algorithm 5.1 Task-aware GAN training algorithm.

1: for number of training iterations do
2: Sample a batch of s training examples {x(1), . . . ,x(s)}.
3: For all i, compute y(i) = Ax(i) + ζ(i).
4: Initialize s random latent variables {z(1), . . . , z(s)} using a zero-mean Gaussian

prior.
5: Initialize D and G.
6: for L steps do
7: For all i, update z(i) by GD on the loss:

||y(i) −AG(z(i))||22 + λprior||z(i)||22 (5.6)

8: end for
9: Update the discriminator by GD on the loss:

−1

s

s∑
i=1

[logD(x(i)) + log(1−D(G(z(i))))] (5.7)

10: Update the generator by GD on the loss:

1

s

s∑
i=1

log(1−D(G(z(i)))) (5.8)

11: end for
return {ẑ(1), ẑ(2), . . .}, Ĝ, D̂

88

Figure 5.1: One iteration of the task-aware GAN training algorithm.

89

5.3.3 Task-aware GAN training

To make the GAN training task-aware, we propose to jointly optimize z and

train the GAN using these z’s. This is outlined in Algorithm 5.1, which alternates

between three optimizations on z, G, and D, respectively. In particular, we add

the GD steps in lines 5-7 of the algorithm to the original GAN training framework.

This enables the discriminator and generator to be optimized on values of z which

resemble the ones seen at test time. As previously mentioned, the original GAN

training algorithm uses randomly generated z values to train G and D. However, in

our setting, the trained GAN will not be given random z values at test time, but

rather specific z’s selected to minimize a loss function. It is therefore beneficial to

train the GAN on z’s obtained through the same process. We note that the extra

term λprior||z(i)||22 in (5.6) comes from the negative log-likelihood of the Gaussian

prior on z [10]. One iteration of this algorithm is also illustrated in Figure 5.1.

5.3.4 GAN training on compressed inputs

As mentioned earlier, a large set of non-compressed training data may not

be available in practice. We, therefore, assume that a small (or empty) set of non-

compressed training data and a larger set of compressed training measurements are

available. We modify the training algorithm to reflect this change. In particular, we

train two discriminators and a single generator using a combination of compressed

and non-compressed training data. The first discriminator is used to distinguish

between actual training data x and generated data G(z). The second discriminator

90

Algorithm 5.2 GAN training algorithm using compressed training data.

1: for number of training iterations do
2: Sample a batch of s1 non-compressed training examples {x(1), . . . ,x(s1)}.
3: For all i, compute y(i) = Ax(i) + ζ(i).
4: Sample a batch of s2 compressed training examples {ỹ(1), . . . , ỹ(s2)}.
5: Initialize s1 random variables {z(1), . . . , z(s1)} and s2 random variables
{z̃(1), . . . , z̃(s2)} using a zero-mean Gaussian prior.

6: for L steps do
7: For all i, update z(i) by GD on the loss:

||y(i) −AG(z(i))||22 + λprior||z(i)||22 (5.9)

8: For all i, update z̃(i) by GD on the loss:

||ỹ(i) −AG(z̃(i))||22 + λprior||z̃(i)||22 (5.10)

9: end for
10: Update the discriminators by GD on the losses:

−1

s1

s1∑
i=1

logD1(x(i)) + log(1−D1(G(z(i)))) (5.11)

−1

s2

s2∑
i=1

logD2(ỹ(i)) + log(1−D2(AG(z̃(i)))) (5.12)

11: Update the generator by GD on the loss:

1

s1

s1∑
i=1

log(1−D1(G(z(i))))

+
1

s2

s2∑
i=1

log(1−D2(AG(z̃(i)))) (5.13)

12: end for
return {ẑ(1), ẑ(2), . . .}, Ĝ, D̂1, D̂2

91

is used to distinguish between actual compressed training data y and generated

data AG(z). The details of the training procedure can be found in Algorithm 5.2.

One iteration of this algorithm is also illustrated in Figure 5.2. The addition of a

second discriminator in Algorithm 5.2 does not affect the representative power of the

generator. In fact, similar arguments as in [15, Proposition 2] can be made to show

that, with the two discriminators, the distribution of the generator output being the

same as that of the training data remains optimal.

5.3.5 Contrastive loss regularization for supervised learning tasks

The low-dimensional vector ẑ, returned by Algorithm 5.1 or 5.2, can be used as

an input to Ĝ to recover the original image x. Since Ĝ learns to represent the overall

data distribution of x, ẑ must hold characteristic information specific to x. This

motivates us to use ẑ as an input feature for inference tasks such as classification.

Since ẑ is of much lower dimension than x (and, usually, y), using it as an input

feature to a classifier reduces the curse of dimensionality. To drive ẑ to be more

discriminative for the classification task, we add a contrastive loss [123] term to (5.6).

We assume that labeled training data is available, and the ground-truth label of x(i)

is denoted by `i. The contrastive loss of a batch of z’s is given by:

Lcontr ,
λcontr

s(s− 1)

s∑
i,j=1

[
1(`i = `j)||z(i) − z(j)||22

+1(`i 6= `j) max{0,M − ||z(i) − z(j)||22}
]

(5.14)

92

Figure 5.2: One iteration of the GAN training algorithm using compressed training
data.

93

where λcontr is a weight which dictates the relative importance of this loss, and M is

a positive margin.

5.4 Experiments

In our experiments, we use three different image datasets: the MNIST handwrit-

ten digits dataset [82], the Fashion-MNIST (F-MNIST) clothing articles dataset [124],

and the CelebFaces Attributes dataset (CelebA) [125].

The MNIST and F-MNIST datasets each consists of 60, 000 training images

and 10, 000 testing images, each of size 28× 28. We split the training images into a

training set of 50, 000 images and hold-out a validation set containing 10, 000 images.

The testing set is kept the same. The images contain a single channel, therefore the

input dimension n is 28× 28 = 784.

The CelebA dataset is a large-scale face dataset consisting of more than 200, 000

face images, split into training, validation, and testing sets. The RGB images were

cropped to a size of 64×64, resulting in an input dimension of n = 64×64×3 = 12, 288.

For all datasets, our generative and discriminative models follow the Deep

Convolutional GAN (DCGAN) architecture in [104]. We use the Adam optimizer [126]

for training the GAN. All hyper-parameters were either set to match the ones in [10]

or chosen by testing on the holdout validation set. Our implementation is based

on TensorFlow [127] and builds on open-source software [10, 128]. Details of the

hyper-parameters used in our experiments can be found in the code repository.

94

5.4.1 Reconstruction

We first perform a compressed sensing reconstruction task. We train our model

using Algorithm 5.1, assuming access to the original non-compressed training set.

We refer to our trained model as Compressed Sensing GAN (CSGAN), since the

GAN was trained in a task-aware fashion for compressed sensing. As a baseline, we

compare our reconstruction results to those obtained by the method in [10], which

trains a DCGAN using the usual GAN training framework. At test time, both

methods optimize (5.6) to obtain ẑ, with the same learning rate and number of GD

iterations. For both cases, we perform the same number of random restarts on the

initialization of z. The reconstruction is then given by G(ẑ).

Additionally, we compare the results to Lasso, performed directly on the pixel

values for MNIST and F-MNIST, and in the Discrete Cosine Transform (DCT) and

Wavelet Transform domains for CelebA as was done in [10]. We also compare our

results to two iterative shrinkage-thresholding algorithms: the Two-step Iterative

Shrinkage-Thresholding algorithm (TwIST) [129] and the Fast Iterative Shrinkage-

Thresholding algorithm (FISTA) [130] and, in the case of MNIST and F-MNIST,

to reconstructions based on the Split Bregman (SB) method with a total variation

(TV) regularizer [131], and the SB method with a Besov norm regularizer [132]. The

SB method was not performed on the CelebA dataset as the smoothness assumption

is not applicable in the case of RGB images when different channels are not treated

independently. We report per-pixel mean-squared reconstruction error results in

Figure 5.3, as we vary the number of measurements m. It is shown that, and

95

especially for very low values of m, the task-aware training of CSGAN is able to

more reliably reconstruct unseen samples x.

Remark 5.1 We note that the DCGAN results for MNIST in Figure 5.3 differ from

those reported in [10], due to the use of a GAN instead of a VAE. As GANs and

VAEs vary in their training methods, for clarity of presentation, we have opted to

only use GANs. However, our method can be readily extended to VAE models.

5.4.2 GAN training on compressed inputs

As previously mentioned, for some applications, it might be prohibitive to

acquire a large training set consisting of non-compressed images. However, com-

pressed training data can be readily available. To empirically validate the dual

discriminator training method on compressed measurements and non-compressed

inputs, we study the effect of varying the size of the non-compressed training set.

Naturally, DCGAN can only be trained on the non-compressed training images, and

suffers from over-fitting. The results are reported in Tables 5.1 and 5.2, and Figure

5.4, where NC = Number of non-compressed training samples. We can see that the

addition of a compressed data discriminator has successfully allowed the training

of a CSGAN using compressed measurements. Additionally, we note an interesting

trend: when NC = 0, CSGAN performs better than when NC = 100 and 1, 000 (but

not when NC = 8, 000). In fact, when the discriminator for non-compressed data D1

overfits the small amount of training data, this negatively affects the performance of

the generator (which is shared by both discriminators D1 and D2). In such cases, it

96

10 25 50 10
0

20
0

30
0

40
0

Number of measurements

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
co

ns
tru

ct
io

n
er

ro
r (

pe
r p

ix
el

)

MNIST

CSGAN
DCGAN
FISTA
TwIST
Lasso
SB (TV)
SB (Besov)

10 25 50 10
0

20
0

30
0

40
0

Number of measurements

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Re
co

ns
tru

ct
io

n
er

ro
r (

pe
r p

ix
el

)

Fashion-MNIST

CSGAN
DCGAN
FISTA
TwIST
Lasso
SB (TV)
SB (Besov)

20 50 10
0

20
0

50
0

Number of measurements

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Re
co

ns
tru

ct
io

n
er

ro
r (

pe
r p

ix
el

)

CelebA

CSGAN
DCGAN
FISTA
TwIST
Lasso (DCT)
Lasso (Wavelet)

Figure 5.3: MNIST, F-MNIST, and CelebA reconstruction results for various mea-
surements numbers m.

97

NC DCGAN CSGAN

0 - 0.0299

100 0.1138 0.1053

1, 000 0.0859 0.0322

8, 000 0.0894 0.0124

Table 5.1: MNIST: Reconstruction results for m = 200 when varying the number of
non-compressed training data.

NC
A random Gaussian Super-resolution

DCGAN CSGAN DCGAN CSGAN

1, 000 0.1278 0.0514 0.1006 0.0510

4, 000 0.0837 0.0394 0.0582 0.0436

32, 000 0.0800 0.0308 0.0241 0.0247

Table 5.2: CelebA: Reconstruction results for m = 500 when varying the number of
non-compressed training data.

is beneficial to only use the compressed data discriminator D2. The smallest number

of non-compressed data needed to train D1 can be determined using the validation

set. Generally, we can see that the compressed data discriminator is extremely useful

especially when the amount of available non-compressed training data is very low.

In the extreme case, where only compressed measurements are available for

training, we show qualitative results of MNIST and F-MNIST reconstruction in

Figures 5.4 and 5.6. We would like to emphasize that this CSGAN has never seen

any real training image and has been solely trained on compressed measurements, yet

can reconstruct reasonably good samples. Additionally, quantitative reconstruction

results for various values of the number of measurements m can be found in Table

5.3.

98

Figure 5.4: MNIST reconstruction results with m = 200. Top to bottom rows:
original images, reconstructions with NC = 0, reconstructions with NC = 100, re-
constructions with NC = 1,000, and reconstructions with NC = 8,000.

Figure 5.5: MNIST reconstruction results when only compressed training data is
available. Top row: original image; middle row: reconstructed image from m = 200
measurements; bottom row: reconstructed image from m = 400 measurements.

Figure 5.6: F-MNIST reconstruction results when only compressed training data is
available. Top row: original image; middle row: reconstructed image from m = 200
measurements; bottom row: reconstructed image from m = 400 measurements.

m MNIST F-MNIST

20 0.2164 0.2829

50 0.0535 0.0988

100 0.0304 0.0534

200 0.0299 0.0579

Table 5.3: CSGAN reconstruction results when only compressed training data is
available (NC = 0) for various measurements numbers m.

99

Figure 5.7: CelebA super-resolution results. Top row: original image; middle row:
blurred image; bottom row: reconstructed image.

5.4.3 Super-resolution

Super-resolution is the task of increasing the resolution of an image. For this

special case, where A is a matrix that averages neighboring pixels, no theoretical

guarantees (such as (5.4)) are known. However, experiments using such averaging

matrices A’s still provide good results. Super-resolution is actually a relevant

application where an abundance of non-compressed (i.e., high resolution) images

may not be available. Results when varying the number of non-compressed training

data are reported in Table 5.2 for compressed measurements four times smaller than

the original images (3, 072 measurements). Additionally, qualitative results can be

seen in Figure 5.7 on the CelebA dataset. We can see that CSGAN produces realistic

reconstructions that resemble the original image.

100

5.4.4 Classification

In this section, we use the discriminatively-regularized CSGAN with the addi-

tional contrastive loss defined in (5.14), with λcontr = 100 and M = 0.1. We train a

CNN classifier based on the LeNet [82] architecture, with a fully-connected layer to

map the input latent variables ẑ to a 784-dimensional vector as expected by LeNet.

We train the network over 30 epochs and pick the best model based on the holdout

validation set. Our results are reported in Tables 5.4 and 5.5. In the case of MNIST,

we compare our classification performance to that of SF [114]. We can see that

inference can indeed be made even using an extremely small number of measurements.

When training this CNN using the ẑ’s obtained from DCGAN, we obtain much

lower classification accuracies. This clearly demonstrates the effectiveness of the

regularization of CSGAN using the contrastive loss.

In order to further investigate the structure of the GAN latent space, we report

classification accuracies using a basic 50-nearest-neighbor (50-NN) classifier based

on the Euclidean distance in Tables 5.5 and 5.4. This simple 50-NN classifier clearly

does not give state-of-the-art classification performance. It, however, serves to show

that the latent space has indeed been regularized so that samples belonging to the

same class are represented by z’s which are close to each other in the Euclidean

distance sense. This is made even clearer when compared to the performance of the

same 50-NN classifier on the DCGAN latent space.

Finally, we report per-pixel mean-squared reconstruction error results on the

MNIST and F-MNIST datasets when using the contrastive loss regularizer in Table

101

m SF

LeNet 50-NN

CSGAN
DCGAN

CSGAN
DCGAN

+ cont. ẑ + cont. ẑ

8 0.3697 0.4560 0.3814 0.3561 0.3679

39 0.4679 0.7572 0.4304 0.5987 0.3951

78 0.5645 0.8740 0.4296 0.6991 0.3957

196 0.7258 0.9257 0.4818 0.7656 0.4555

Table 5.4: Classification accuracy on MNIST using Smash Filters (SF), the LeNet
CNN classifier, and a 50-NN classifier.

m

LeNet 50-NN

CSGAN
DCGAN

CSGAN
DCGAN

+ cont. ẑ + cont. ẑ

10 0.4881 0.4372 0.3937 0.3019

50 0.7410 0.6780 0.6073 0.4183

100 0.7705 0.7363 0.6377 0.4495

200 0.7830 0.7584 0.6456 0.4522

Table 5.5: Classification accuracy on F-MNIST using the LeNet CNN and 50-NN
classifiers.

5.6. These results serve to show that the addition of the discriminative regularizer

does not hurt reconstruction performance.

5.5 Concluding remarks

In this chapter, we present an effective method for training task-aware generative

models, specifically for compressive sensing tasks. We show that this task awareness

improves the performance, especially when a very low number of measurements is

available. Additionally, we demonstrate that it is also possible to train CSGANs

102

m

MNIST F-MNIST

CSGAN
CSGAN

CSGAN
CSGAN

+ cont. ẑ + cont. ẑ

10 0.1042 0.0999 0.0627 0.0732

50 0.0353 0.0334 0.0253 0.0254

100 0.0285 0.0186 0.0220 0.0203

200 0.0199 0.0139 0.0179 0.0179

400 0.0169 0.0112 0.0175 0.0168

Table 5.6: Per-pixel mean-squared reconstruction error results when using the
contrastive loss regularizer (with z dimension k = 20).

with only compressed measurements as training data, or, if available, only a small

number of non-compressed measurements.

103

Chapter 6: Conclusion

6.1 Discussion

In this dissertation, we analyzed the structure, performance, and limitations

of deep networks. We analyzed the ideal conditions for deep networks to perform

well and investigated methods to mitigate the effect of deviating from these ideal

conditions.

As previously mentioned, the ideal scenario consists of training a DNN using

a very large training set. Such a training set should consist of samples which are

balanced across classes, not lossy, and void of label noise.

In Chapter 2, we investigated the relationship between the performance of a

CNN, its depth, and the training set size. We showed that, under i.i.d. sampling

of the training set, and if the training and testing sampling distributions are the

same, good generalization performance is guaranteed with high probability whenever

the training set size is some constant times d4, where d is the convolutional depth

of the CNN. We also showed how this result changes when the training and testing

distributions are slightly different. Namely, we characterized this difference in

terms of the variation divergence between the two distributions and showed that

the training set size needed for a guaranteed generalization performance increases

104

with the variation divergence. The results in this chapter showed that, under i.i.d.

sampling, we witness an exponential decrease in the incremental benefit that one

new random training example adds to the CNN performance. We also empirically

tested our results on the problem of gender classification on three different datasets.

In Chapter 3, we investigated other properties of CNNs by examining the struc-

ture of their layers. While the convolutional layers of CNNs were previously shown

to be approximated by a series of CSC steps, we considered the addition of spatial

pooling operations following the CSC steps to mirror modern CNN architectures. We

showed that such an addition does not affect the uniqueness and stability properties

of the deep CSC model. We also showed that these spatial pooling layers offer a

variety of benefits including the decrease in the dimensionality of the involved vectors

and dictionaries, noise suppression, and preventing codes from becoming too sparse.

Our analysis served to explain why some of the most successful CNN architectures

to date use convolutional filters, ReLU activations, and max-pooling.

In Chapter 4, we proposed a new technique to adaptively select training

samples to be presented to a DNN. Such a sampling technique serves to overcome

the exponential decrease in the incremental benefit of a data point discovered in

Chapter 2. Our selection method exploits the knowledge and current state of the

network to iteratively and actively find a new optimal subset of training examples to

resume training on. This approach was based on balancing four objectives: class

balance, data representativeness, data diversity, and classifier uncertainty. These four

objectives were shown to improve the performance of a deep network by driving it

to a better local minimum, as well as address the non-ideal cases of class imbalance,

105

noisy training labels, and lack of enough training samples. Our experiments were

performed on a variety of computer vision classification problems spanning four

benchmark datasets.

In Chapter 5, we examined another non-ideal scenario, in which samples

given to the network at inference (and potentially training) time are lossy. We

presented an effective method for training task-aware generative models specifically

for the task of reconstructing such lossy samples. We empirically showed that this

consistently improves the reconstruction performance compared to state-of-the-art

compressed sensing recovery techniques. We also showed that it is possible to train

the generative models using compressed samples (when training samples are also

lossy) or a combination of compressed and complete examples. We finally showed

that the latent space of the generator can be regularized and used as a feature

for various supervised learning tasks. We carried out our experiments on three

well-known image datasets.

6.2 Directions for future research

In Chapter 2, we studied the relationship between the depth of a CNN, its

training set size, and its generalization performance for binary classification problems.

It would be interesting to further develop this theory and experiments to study the

effects of other CNN parameters, extend to multi-class classification problems, as

well as investigate the impact of other important factors such as the underlying

distribution and the training algorithm.

106

In Chapter 3, the role of spatial pooling layers in CNN and CSC models was

investigated. In light of the parallelism between these two models, the structure and

role of other common CNN layers and functionalities can be analyzed.

In Chapter 4, we introduced an adaptive training data selection algorithm.

Our current implementation has not been optimized to make use of all available

computational resources (including GPUs). There are known faster methods to solve

SDPs and pseudo-inverses, e.g. [133–136], utilizing GPUs. Furthermore, as an exact

solution to the SDP optimization problem is not required, approximate solution

methods [137] can be used to reduce the complexity. In our current implementation,

parameters such as the budget, and weights λ1, λ2, and λ3, are chosen by cross-

validation and a search over the parameter space. A more detailed analysis of the

effect of these parameters can provide better insight into how to tune them. While

our subset selection method was designed for classification tasks, it can also be

extended for other supervised learning tasks such as verification.

In Chapter 5, we used GANs to impose structure in compressed sensing

problems, replacing the usual sparsity constraint. Our current implementation only

uses the Gaussian prior on the latent variable z as a regularizer in the reconstruction

loss. It would be interesting to also add a discriminator loss which would drive the

GAN to produce more realistic reconstructions. Additionally, training the task-aware

GAN and classifier jointly in an end-to-end manner could yield better classification

performance.

107

Appendix A: Proofs from Chapter 2

A.1 Proof of Lemma 2.1

A parametrized class of functions with parameters η ∈ IRt that is computable

in no more than p operations has a VC dimension which is O (t2p2) (see [34, Theorems

5, 8] for a list of allowable operations). We have: t =
∑d

l=1(ml
1 + nl1m

l
1f

l
1f

l
2) + |Wf |,

where |Wf | is the number of trainable weights in the fully connected layers. By

counting the number of operations required to compute (2.1)-(2.4), we see that

the computational complexity of the l-th convolutional layer of a CNN is at most

O(ml
1 · (nl2 − f l1 + 1) · (nl3 − f l2 + 1) · (nl1nl2nl3 + ml

1(g
l)2 + (pl)2). Using this result,

together with the fact that we have assumed d′ to be fixed, we prove the lemma.

A more exact expression for the VC dimension bound which does not introduce a

constant α can be derived from [138, Theorem 7]. It is omitted here for clarity of

presentation. �

A.2 Proof of Theorem 2.1

The proof can be derived using Lemma 2.1 and [139, Theorem A3.1]. Note

that this result is not restricted to the exact architecture given in section 2.2 and any

108

activation function can be used as long as it can be computed using the operations

listed in [34, Theorems 5, 8].�

A.3 Proof of Theorem 2.2

The proof is derived from [140, Theorem 3.1], [141, Theorem 1]. �

A.4 Proof of Theorem 2.3

We define the following event:

A = { For every c ∈ Cd, one of (i) or (ii) holds }. (A.1)

We will show that the probability that A does not occur is less than δ′:

Pr
[
Ā
]

= Pr [∃c : eT (c) > ε′, eS(c) ≤ ε′, êS(c) ≤ (1− γ′)ε′]

+ Pr [∃c : eT (c) > ε′, eS(c) > ε′, êS(c) ≤ (1− γ′)ε′] (A.2)

≤ Pr [∃c : eT (c) > ε′, eS(c) ≤ ε′, êS(c) ≤ (1− γ′)ε′]

+ Pr [∃c : eS(c) > ε′, êS(c) ≤ (1− γ′)ε′] (A.3)

≤ Pr [∃c : ε′ − τ < eS(c) ≤ ε′, êS(c) ≤ (1− γ′)ε′]

+ Pr [∃c : eS(c) > ε′, êS(c) ≤ (1− γ′)ε′] (A.4)

≤ Pr [∃c : eS(c) > ε′ − τ, êS(c) ≤ (1− γ′)ε′]

+ Pr [∃c : eS(c) > ε′, êS(c) ≤ (1− γ′)ε′] (A.5)

109

≤ δ′

2
+
δ′

2
= δ′. (A.6)

where (A.4) follows from the fact that, from [28, Theorem 1], eT (c) ≤ eS(c) + τ , and

(A.6) is an application of Theorem 2.1 with δ = δ′/2, ε = ε′ − τ , and γ = γ̄. �

110

Appendix B: Proofs from Chapter 3

B.1 Proof of Theorem 3.1

Assume we have two distinct sets of solutions {Γ∗i ,P∗i }Li=1 and {Γ̂i, P̂i}Li=1.

Note that if, for some i, Γ∗i = Γ̂i, then, P∗i = P̂i. Therefore, there must exist

j such that Γ∗j 6= Γ̂j. Consider the smallest such j. From (3.9), we must have

DjΓ
∗
j = DjΓ̂j = Γ∗j−1 = Γ̂j−1 (with Γ∗0 = Γ̂0 = X). Define

σ∞(Dj) = arg min
∆
‖∆‖s0,∞ s. t.∆ 6= 0,Dj∆ = 0. (B.1)

Dj(Γ
∗
j − Γ̂j) = 0 implies ‖Γ∗j − Γ̂j‖s0,∞ ≥ σ∞. However,

‖Γ∗j − Γ̂j‖s0,∞ ≤ ‖Γ∗j‖s0,∞ + ‖Γ̂j‖s0,∞ (B.2)

<

(
1 +

1

µ(Dj)

)
(B.3)

≤ σ∞, (B.4)

which is a contradiction. In what precedes, (B.2) follows from the triangle inequality

satisfied by the `0,∞ pseudo-norm [49, Theorem 15]. (B.3) is by the assumption in

(3.10), and (B.4) follows from [49, Theorem 7]. �

111

B.2 Proof of Lemma 3.1

Let Bk be the set of indices over which the max operates for the k-th element

of P (and P̂), as defined in Definition 3.3, i.e., (P)k = maxj∈Bk(X)j and (P̂)k =

maxj∈Bk(X̂)j.

‖P− P̂‖2
2 =

∑
k

(
max
j∈Bk

(X)j −max
j∈Bk

(X̂)j

)2

(B.5)

=
∑
k∈K1

(
max
j∈Bk

(X)j −max
j∈Bk

(X̂)j

)2

+
∑
k∈K2

(
max
j∈Bk

(X̂)j −max
j∈Bk

(X)j

)2

(B.6)

≤
∑
k∈K1

(
(X)j?(k) − (X̂)j?(k)

)2

+
∑
k∈K2

(
(X̂)

¯
j(k) − (X)

¯
j(k)

)2

(B.7)

≤
N∑
j=1

(
(X)j − (X̂)j

)2

= ‖X− X̂‖2
2 (B.8)

where in (B.6), K1 , {k | maxj∈Bk(X)j ≥ maxj∈Bk(X̂)j}, andK2 , {k | maxj∈Bk(X̂)j >

maxj∈Bk(X)j}. In addition, in (B.7), j?(k) , arg maxj∈Bk(X)k and
¯
j(k) , arg maxj∈Bk(X̂)j .

The inequality in (B.8) follows from the fact that the sets {Bk} are mutually exclusive

since s ≥ b. �

B.3 Proof of Lemma 3.2

‖P− P̂‖2
2 =

∑
k

(∑
j∈Bk(X)j −

∑
j∈Bk(X̂)j

b

)2

(B.9)

112

≤ 1

b

∑
k

∑
j∈Bk

((X)j − (X̂)j)
2 (B.10)

≤ 1

b

N∑
i=1

((X)i − (X̂)i)
2 ·
⌈
b

s

⌉
(B.11)

=

(
1

s
+
δ

b

) N∑
i=1

((X)i − (X̂)i)
2 (B.12)

≤
N∑
i=1

((X)i − (X̂)i)
2 = ‖X− X̂‖2

2 (B.13)

where (B.10) follows from the convexity of the function f(x) = x2. (B.11) follows by

observing that each index j is included in at most db/se of the sets {Bk}. In (B.12),

db/se = δ + b/s, with δ < 1 and δ = 0 if b/s is an integer. (B.13) follows by noting

that, if s = 1, then δ = 0 and 1/s + δ/b = 1 (similarly if b = 1, since db/se = 1).

Now assume b, s ≥ 2. Then, 1/s ≤ 1/2 and δ/b < 1/b ≤ 1/2. Then, we always have

1/s+ δ/b ≤ 1. �

B.4 Proof of Theorem 3.2

We start with i = 1. By the assumptions in (3.12) and (3.13), and the feasibility

of Γ∗1, Γ̂1, we have

‖Γ∗1‖s0,∞ <
1

2

(
1 +

1

µ(D1)

)
, ‖E‖2 = ‖Y −D1Γ

∗
1‖2 ≤ ε1,

‖Γ̂1‖s0,∞ <
1

2

(
1 +

1

µ(D1)

)
, ‖Y −D1Γ̂1‖2 ≤ ε1. (B.14)

113

Then, by [3, Theorem 5]

‖Γ∗1 − Γ̂1‖2
2 ≤

4ε21
1− (2‖Γ∗1‖s0,∞ − 1)µ(D1)

= ε22. (B.15)

Let ∆ , P̂1 − P∗1. Then, ‖∆‖2
2 = ‖P∗1 − P̂1‖2

2 ≤ ‖Γ∗1 − Γ̂1‖2
2 ≤ ε22 by Lemmas 3.1

and 3.2. Then, we again have

‖Γ∗2‖s0,∞ <
1

2

(
1 +

1

µ(D2)

)
, ‖∆‖2 = ‖P̂1 −D2Γ

∗
2‖2 ≤ ε2,

‖Γ̂2‖s0,∞ <
1

2

(
1 +

1

µ(D2)

)
, ‖P̂1 −D2Γ̂2‖2 ≤ ε2. (B.16)

Using the same theorem and lemmas, we conclude that ‖P∗2−P̂2‖2 ≤ ‖Γ∗2− Γ̂2‖ ≤ ε3.

We repeat this until i = L. �

B.5 Proof of Theorem 3.3

As shown in [3, Theorem 10], and for all i, Γi has the same support as Γ̂i,

given by Γ̂i = Sβi(DT
i Γ̂i−1) (with the convention Γ̂0 = X). Then,

F(Γi) = F(Γ̂i) = F(Sβi(DT
i Γ̂i−1)) (B.17)

=
‖Sβi(DT

i Γ̂i−1)‖0

Nmi

(B.18)

≤ ‖D
T
i Γ̂i−1‖0

Nmi

(B.19)

≤ ‖D
T
i ‖0‖Γ̂i−1‖0

Nmi

(B.20)

= Nmi−1F(DT
i)F(Γ̂i−1) (B.21)

114

≤ F(Γ̂i−1) = F(Γi−1) (B.22)

where (B.19) follows from the fact that thresholding does not increase the `0 pseudo-

norm. In (B.20), we define the `0 pseudo-norm of a matrix as the maximum number

of non-zero elements in a column. Then, the multiplication DT
i Γ̂i−1 is a linear

combination of ‖Γ̂i−1‖0 columns of DT
i , each having no more than ‖DT

i ‖0 non-zero

elements, which leads to (B.20). (B.22) follows form the assumption of the theorem.

�

115

Appendix C: Proofs from Chapter 4

C.1 Proof of Theorem 4.1

First, we ignore the M t
k ≤ |Xk| constraints, in (4.3), and let hk = αctk/M

t.

Then the problem in (4.3) becomes

max
Mt
k∈Z+

L∑
k=1

log
(
1 + hkM

t
k

)
s. t.

L∑
k=1

M t
k ≤M t, (C.1)

We start by showing a necessary optimality condition.

Lemma C.1 An optimal profile {M t
1
?
,M t

2
?
, . . . ,M t

L
?}, must satisfy

∣∣∣∣(1

hi
+M t

i
?

)
−
(

1

hj
+M t

j
?

)∣∣∣∣ ≤ 1,

for all i, j such that M t
i > 0,M t

j > 0. (C.2)

116

Proof: We prove the lemma by contradiction. Assume there exist i, j such that

∣∣∣∣(1

hi
+M t

i
?

)
−
(

1

hj
+M t

j
?

)∣∣∣∣ = ∆ > 1. (C.3)

Without loss of generality, assume that 1
hi

+M t
i
?
> 1

hj
+M t

j
?
. Now consider a new

profile where M t
i = M t

i
? − 1, M t

j = M t
j
?

+ 1, and M t
k = M t

k
?

for k 6= i, j. This new

policy is clearly feasible. We consider the difference between the objective values

achieved by {M t
k} and {M t

k
?}:

L∑
k=1

log
(

1 + hkM t
k

)
−

L∑
k=1

log
(
1 + hkM

t
k
?)

= log
(

1 + hiM t
i

)
+ log

(
1 + hjM t

j

)
− log

(
1 + hiM

t
i
?)− log

(
1 + hjM

t
j
?)

(C.4)

= log

(
1 + hi(M

t
i
? − 1)

) (
1 + hj(M

t
j
?

+ 1)
)

(1 + hiM t
i
?)
(
1 + hjM t

j
?) (C.5)

= log

(
1 +

hj(1 + hiM
t
i
?
)− hi(1 + hjM

t
j
?
)− hihj

(1 + hiM t
i
?)
(
1 + hjM t

j
?)

)
(C.6)

= log

(
1 +

hihj(M
t
i
? −M t

j
? − 1) + hj − hi

(1 + hiM t
i
?)
(
1 + hjM t

j
?)

)
(C.7)

= log

(
1 +

hihj(∆− 1)

(1 + hiM t
i
?)
(
1 + hjM t

j
?)
)

(C.8)

> 0, (C.9)

where (C.8) follows from the assumption in (C.3) and (C.9) from ∆ > 1. This shows

that the profile {M t
k} achieves a higher objective value than the profile {M t

k
?} which

contradicts its optimality. �

Now, we show that Algorithm 4.1 solves the problem in (C.1). We proceed by

117

induction on the budget M t:

• Base case, M t = 1: It is trivial to show that in the optimal profile, one water

unit will be assigned to the class with the lowest base level Mt

αctk
, with ties broken

arbitrarily.

• Induction step: Given an optimal profile {M t
k(m)} that solves (C.1) for M t = m,

we find the optimal profile {M t
k(m+ 1)} for M t = m+ 1. It can be seen that

one water unit should be added to {M t
k(m)} because any other deviation from

this profile will violate Lemma C.1. Furthermore, using similar arguments as

in Lemma C.1, we show that this water unit should be placed at the class with

the smallest Mt

αctk
+M t

k(m), with ties broken by the ordering of Mt

αctk
.

This corresponds exactly to the operation of Algorithm 4.1 in the case of no caps.

When caps are added, i.e., with the constraints M t
k ≤ |Xk|, it is easy to show the

following:

• If the optimal profile for Problem (C.1) is feasible for Problem (4.3), then it is

also optimal for Problem (4.3).

• If the optimal profile for Problem (C.1) contains a class i such that M t
i > |Xi|

(infeasible for Problem (4.3)), then the solution of Problem (4.3) must have

M t
i = |Xi|. Furthermore, since no more water units can be allocated to

this class, we can solve Problem (4.3) with class i removed and total budget

decreased by |Xi|. This is equivalent to skipping class i when its water level

reaches its cap.

118

As this describes the operation of Algorithm 4.1 with caps, this proves the theorem.

�

Remark C.1 The use of the ceiling operation dMt

αctk
e in Algorithm 4.1 is not necessary

for the optimality of the solution. However, it makes the procedure easier to visualize

and results in the same optimal profile.

C.2 Proof of Lemma 4.1

We start with the objective function in (4.8).

− λd
M

sᵀD̃s +
λr

N −M
(1− s)ᵀD̃s− λuc̃ᵀs (C.10)

=− λd
4M

(x + 1)ᵀD̃(x + 1) +
λr

4(N −M)
(1− x)ᵀD̃(x + 1)− λu

2
c̃ᵀ(x + 1) (C.11)

=− λd
4M

xᵀD̃x− λd
2M

1ᵀD̃x− λd
4M

1ᵀD̃1− λr
4(N −M)

xᵀD̃x +
λr

4(N −M)
1ᵀD̃1

− λu
2

c̃ᵀx− λu
2

c̃ᵀ1 (C.12)

=xᵀ
(
− λd

4M
− λr

4(N −M)

)
D̃︸ ︷︷ ︸

,A

x +

(
− λd

2M
1ᵀD̃− λu

2
c̃ᵀ
)

︸ ︷︷ ︸
,bᵀ

x

− λd
4M

1ᵀD̃1 +
λr

4(N −M)
1ᵀD̃1− λu

2
c̃ᵀ1︸ ︷︷ ︸

constant w.r.t. x

(C.13)

where (C.11) follows from the change of variable x = 2s− 1. Furthermore, we can

drop the constant term in (C.13) since we are only interested in the minimizer x,

and not the objective value.

119

Similarly, the constraint in (4.8) can be written as:

{
1ᵀs = M

}
≡
{

(1ᵀs−M)2 = 0
}

(C.14)

≡
{

(1ᵀ
x + 1

2
−M)2 = 0

}
(C.15)

≡
{

(1ᵀx + 1ᵀ1− 2M)2 = 0
}

(C.16)

≡
{

(1ᵀx +N − 2M)2 = 0
}

(C.17)

This concludes the proof. �

C.3 Proof of Theorem 4.2

We denote the optimal objective value of (4.11) by p?. We start by writing the

Lagrangian dual. This problem has zero duality gap [73, Theorem 9], therefore:

p? = max
µ∈R

min
x∈{−1,1}N

{
xᵀAx + bᵀx + µ(1ᵀx− 2M +N)ᵀ(1ᵀx− 2M +N)

}
(C.18)

= max
µ∈R

min
x∈{−1,1}N

{
xᵀAx + bᵀx + µxᵀ11ᵀx− 2µ(2M −N)1ᵀx

+ µ(2M −N)2
}

(C.19)

= max
µ∈R

[
(2M −N)2µ+ min

x∈{−1,1}N

{
xᵀ (A + µ11ᵀ) x

+ (b− 2µ(2M −N)1)ᵀx
}]
. (C.20)

Next, we relax the constraint x ∈ {−1, 1}N to the non-binary constraint xᵀx = N .

Commonly used relaxations for x ∈ {−1, 1}N include xᵀx = N and xi ∈ [−1, 1],

resulting in the same duality gap [73, Theorem 2]. We use the former as it results

120

another well-known problem with a zero-duality gap: the trust-region problem. Thus,

we have:

p? ≥ max
µ∈R

[
(2M −N)2µ+ min

xᵀx=N

{
xᵀ (A + µ11ᵀ) x

+ (b− 2µ(2M −N)1)ᵀx
}]

(C.21)

The inner minimization over x is known as the trust-region problem and has no

duality gap [77, p.229], therefore:

(C.21) = max
µ∈R

[
(2M −N)2µ

+ max
γ∈R

{
min

x

{
xᵀ (A + µ11ᵀ) x + (b− 2µ(2M −N)1)ᵀx

+ γ(xᵀx−N)
}}]

(C.22)

= max
µ∈R

[
(2M −N)2µ

+ max
γ∈R

{
− γN + min

x

{
xᵀ (A + µ11ᵀ + γI) x

+ (b− 2µ(2M −N)1)ᵀx
}}]

(C.23)

= max
µ∈R,γ∈R

[
(2M −N)2µ− γN

+ min
x

{
xᵀ (A + µ11ᵀ + γI) x

+ (b− 2µ(2M −N)1)ᵀx
}]

(C.24)

121

We change the inner minimization over x to an equivalent form and rewrite (C.24)

as:

max
µ∈R,γ∈R

(2M −N)2µ− γN + max
τ
−τ (C.25)

s. t. for all x :

xᵀ (A + µ11ᵀ + γI) x + (b− 2µ(2M −N)1)ᵀx ≥ −τ (C.26)

The constraint in (C.26) is equivalent to (from [142] and [143, Section 3.4]):


τ 1

2
(b− 2µ(2M −N)1)ᵀ

1
2
(b− 2µ(2M −N)1) A + µ11ᵀ + γI

 � 0. (C.27)

This concludes the proof. �

Remark C.2 We note that in the proof of Theorem 4.2, only one relaxation, (C.21),

was made. Other relaxations are possible such as introducing x2
i = 1 ∀i constraints

and taking the Lagrangian dual as done in [74]. However, this results in (N − 1)

additional optimization variables and makes the resulting SDP more complex. We do

not adopt such an approach as we would like the subset selection problem to run as

efficiently as possible.

Remark C.3 The inner minimization over x in (C.24) is unconstrained and can

122

be solved exactly, with a minimum value of

−1

4
(b− 2µ(2M −N)1)ᵀ · (A + µ11ᵀ + γI)† · (b− 2µ(2M −N)1), (C.28)

if (A + µ11ᵀ + γI) � 0. However, plugging the expression in (C.28) into (C.24) and

maximizing over µ, γ does not result in a convex formulation and cannot be solved

efficiently.

123

Appendix D: Proofs from Chapter 5

D.1 Proof of Theorem 5.1

Let gt(x) be the probability distribution function (p.d.f.) of Gt(z) and f(x) be

the p.d.f. of x. Then, from [15, Proposition 2], gt(x) converges to f(x) pointwise in

x. By assumption, f(x) has bounded support X , i.e., µ(X) is finite, where µ(·) is

the Lebesgue measure. We note that the assumption of X having bounded support

is reasonable, especially for computer vision tasks where pixel values are usually

bounded (for instance, in [0, 255]).

Then, by Egorov’s theorem, for all ε > 0, there exists a set B ⊆ X such that

µ(B) < ε and gt(x) converges to f(x) uniformly on X \B. This implies that, for all

x ∈ X \ B and for all ν, there exists t0 such that |gt(x)− f(x)| < ν, for all t ≥ t0.

This means that, for x ∈ X \B, gt(x) = 0 implies f(x) < ν. Additionally, gt(x) > 0

implies that there exists z such that Gt(z) = x, i.e., minz ||x−Gt(z)||2 = 0.

Let Xν = {x ∈ X | f(x) ≤ ν}. Note that {x ∈ X \B | gt(x) = 0} ⊆ Xν for all

t ≥ t0. Then, for all ε, ν > 0 and t ≥ t0,

124

Ex

[
min

z
||x−Gt(z)||2

]
(D.1)

≤
∫
B

min
z
||x−Gt(z)||2 f(x) dx +

∫
Xν

min
z
||x−Gt(z)||2 f(x) dx

+

∫
X\(B∪Xν)

min
z
||x−Gt(z)||2 f(x) dx (D.2)

≤
∫
B

min
z
||x−Gt(z)||2 dx + ν

∫
Xν

min
z
||x−Gt(z)||2 dx (D.3)

≤ µ(B) sup
x∈B

min
z
||x−Gt(z)||2 + νµ(Xν) sup

x∈Xν
min

z
||x−Gt(z)||2 (D.4)

≤ (µ(B) + νµ(Xν)) sup
x∈X

min
z
||x−Gt(z)||2 (D.5)

= (µ(B) + νµ(Xν)) max
x∈X

min
z
||x−Gt(z)||2 (D.6)

≤ C(ε+ νµ(X)) (D.7)

where C > 0 is a positive constant.

Equation (D.3) follows from the fact that minz ||x−Gt(z)||2 = 0 for x ∈

X \ (B ∪ Xν), f(x) ≤ 1 for x ∈ X , and f(x) ≤ ν for x ∈ Xν . Equation (D.6) is

obtained using the extreme value theorem since X is compact. To prove (D.7) we

proceed as follows:

max
x∈X

min
z
||x−Gt(z)||2 ≤ min

z
max
x∈X
||x−Gt(z)||2 (D.8)

≤ max
x∈X
||x−Gt(z̄)||2 (D.9)

= C (D.10)

Equation (D.8) follows from the max-min inequality. In (D.9), z̄ is such that

Gt(z̄) ∈ X . Such a z̄ always exists for t ≥ t0. Equation (D.10) follows from the fact

125

that X is compact.

Therefore, we obtain (D.7) by noting that supt≥t0 maxx∈X minz ||x−Gt(z)||2 ≤

C. Since µ(X) is a finite positive constant and (D.7) is satisfied for any ε, ν > 0, this

proves the theorem. �

126

Bibliography

[1] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2015.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with
deep convolutional neural networks. In Conference on Neural Information
Processing Systems (NIPS), 2012.

[3] V. Papyan, Y. Romano, and M. Elad. Convolutional neural networks analyzed
via convolutional sparse coding. arXiv:1607.08194, 2016.

[4] Y. L. Boureau, J. Ponce, and Y. LeCun. A theoretical analysis of feature
pooling in visual recognition. In International Conference on Machine Learning
(ICML), 2010.

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

[6] Y. T. Zhou and R. Chellappa. Computation of optical flow using a neural
network. In IEEE International Conference on Neural Networks, 1988.

[7] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. What is the best multi-
stage architecture for object recognition? In IEEE International Conference
on Computer Vision (ICCV), 2009.

[8] M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application of
compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine,
58(6):1182–1195, 2007.

[9] M. F. Duarte, M. A. Davenport, D. Takbar, J. N. Laska, T. Sun, K. F. Kelly,
and R. G. Baraniuk. Single-pixel imaging via compressive sampling. IEEE
Signal Processing Magazine, 25(2):83–91, 2008.

[10] A. Bora, A. Jalal, E. Price, and A. G. Dimakis. Compressed sensing using
generative models. In International Conference on Machine Learning (ICML),
2017.

127

[11] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and
R. Fergus. Intriguing properties of neural networks. International Conference
on Learning Representations (ICLR), Workshop Track, 2014.

[12] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adver-
sarial examples. International Conference on Learning Representations (ICLR),
2015.

[13] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and A. Swami.
The limitations of deep learning in adversarial settings. In IEEE Symposium
on Security and Privacy, 2016.

[14] Y. Liu, X. Chen, C. Liu, and D. Song. Delving into transferable adversar-
ial examples and black-box attacks. International Conference on Learning
Representations (ICLR), 2017.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Conference on
Neural Information Processing Systems (NIPS), 2014.

[16] P. Samangouei, M. Kabkab, and R. Chellappa. Defense-GAN: Protecting
classifiers against adversarial attacks using generative models. In International
Conference on Learning Representations (ICLR), 2018.

[17] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In International
Conference on Learning Representations (ICLR), Workshop Track, 2014.

[18] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision (ECCV). 2014.

[19] D. Eigen, J. Rolfe, R. Fergus, and Y. LeCun. Understanding deep architec-
tures using a recursive convolutional network. In International Conference on
Learning Representations (ICLR), Workshop Track, 2014.

[20] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[21] E. B. Baum and D. Haussler. What size net gives valid generalization? Neural
computation, 1(1):151–160, 1989.

[22] G. F. Montufar, R. Pascanu, K. Cho, and Y. Bengio. On the number of
linear regions of deep neural networks. In Conference on Neural Information
Processing Systems (NIPS), 2014.

[23] P. L. Bartlett. The sample complexity of pattern classification with neural
networks: the size of the weights is more important than the size of the network.
IEEE Transactions on Information Theory, 44(2):525–536, 1998.

128

[24] M. Bianchini and F. Scarselli. On the complexity of neural network classifiers:
A comparison between shallow and deep architectures. IEEE Transactions on
Neural Networks and Learning Systems, 25(8):1553–1565, 2014.

[25] T. M. Cover. Geometrical and statistical properties of systems of linear
inequalities with applications in pattern recognition. IEEE Transactions on
Electronic Computers, EC-14(3):326–334, June 1965.

[26] V. N. Vapnik and A. Y. Chervonenkis. On the uniform convergence of rela-
tive frequencies of events to their probabilities. Theory of Probability & Its
Applications, 16(2):264–280, 1971.

[27] V. N. Vapnik. The Nature of Statistical Learning Theory. Springer Science &
Business Media, 2000.

[28] S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W.
Vaughan. A theory of learning from different domains. Machine Learning,
79(1-2):151–175, 2010.

[29] A. C. Gallagher and T. Chen. Understanding images of groups of people. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

[30] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, 1(2), 2007.

[31] N. Kumar, P. Belhumeur, and S. Nayar. Facetracer: A search engine for large
collections of images with faces. In European Conference on Computer Vision
(ECCV). Springer, 2008.

[32] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell. Caffe: Convolutional architecture for fast feature
embedding. In ACM International Conference on Multimedia, 2014.

[33] P. Dago-Casas, D. González-Jiménez, L. L. Yu, and J. L. Alba-Castro. Single-
and cross-database benchmarks for gender classification under unconstrained
settings. In IEEE International Conference on Computer Vision (ICCV),
Workshop Track, 2011.

[34] P. L. Bartlett and W. Maass. Vapnik-Chervonenkis dimension of neural nets.
The handbook of brain theory and neural networks, pages 1188–1192, 2003.

[35] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. The
Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[36] Q. Wang, S. R. Kulkarni, and S. Verdú. Divergence estimation for multidi-
mensional densities via-nearest-neighbor distances. IEEE Transactions on
Information Theory, 55(5):2392–2405, 2009.

129

[37] D. L. Donoho and M. Elad. Optimally sparse representation in general
(nonorthogonal) dictionaries via `1 minimization. Proceedings of the National
Academy of Sciences, 100(5):2197–2202, 2003.

[38] J. A. Tropp. Greed is good: Algorithmic results for sparse approximation.
IEEE Transactions on Information Theory, 50(10):2231–2242, 2004.

[39] M. Elad. Sparse and Redundant Representations: From Theory to Applications
in Signal and Image Processing. Springer, 2010.

[40] J. Wright, A. Y. Yang, and A. Ganesh. Robust face recognition via sparse rep-
resentation. IEEE Transactions on Pattern Analysis and Machine Intelligence,
31(2):210–227, 2009.

[41] D. L. Donoho. Stable recovery of sparse overcomplete representations in the
presence of noise. IEEE Transactions on Information Theory, 52(1):6–18, 2006.

[42] Y. Chandra Pati, R. Rezaiifar, and P. S. Krishnaprasad. Orthogonal match-
ing pursuit: Recursive function approximation with applications to wavelet
decomposition. In Asilomar Conference on Signals, Systems and Computers,
1993.

[43] S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by
basis pursuit. SIAM Review, 43(1):129–159, 2001.

[44] M. Elad, M. A. T. Figueiredo, and Y. Ma. On the role of sparse and redundant
representations in image processing. Proceedings of the IEEE, 98(6):972–982,
2010.

[45] W. Dong, X. Li, L. Zhang, and G. Shi. Sparsity-based image denoising via
dictionary learning and structural clustering. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2011.

[46] R. Grosse, R. Raina, H. Kwong, and A. Y. Ng. Shift-invariant sparse coding
for audio classification. In Uncertainty in Artificial Intelligence, 2007.

[47] H. Bristow, A. Eriksson, and S. Lucey. Fast convolutional sparse coding. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

[48] F. Heide, W. Heidrich, and G. Wetzstein. Fast and flexible convolutional sparse
coding. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[49] V. Papyan, J. Sulam, and M. Elad. Working locally thinking globally-part
I: Theoretical guarantees for convolutional sparse coding. arXiv:1607.02005,
2016.

[50] V. Papyan, J. Sulam, and M. Elad. Working locally thinking globally-part II:
Stability and algorithms for convolutional sparse coding. arXiv:1607.02009,
2016.

130

[51] R. Giryes, G. Sapiro, and A. M. Bronstein. Deep neural networks with random
gaussian weights: A universal classification strategy? IEEE Transactions on
Signal Processing, 64(13):3444–3457, 2015.

[52] S. Mallat. Understanding deep convolutional networks. Philosophical Transac-
tions of the Royal Society A, 374(2065), 2016.

[53] D. H. Hubel and T. N. Wiesel. Receptive fields, binocular interaction and
functional architecture in the cat’s visual cortex. The Journal of Physiology,
160(1):106–154, 1962.

[54] K. Kavukcuoglu, P. Sermanet, Y. L. Boureau, K. Gregor, M. Mathieu, and
Y. LeCun. Learning convolutional feature hierarchies for visual recognition. In
Conference on Neural Information Processing Systems (NIPS), 2010.

[55] Y. Gwon, M. Cha, and H. T. Kung. Deep sparse-coded network (DSN). In
International Conference on Pattern Recognition (ICPR), 2016.

[56] J. Dean, G. Corrado, and R. Monga. Large scale distributed deep networks.
In Conference on Neural Information Processing Systems (NIPS), 2012.

[57] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image
recognition. arXiv preprint arXiv:1512.03385, 2015.

[58] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum learning.
In International Conference on Machine Learning (ICML), 2009.

[59] P. W. Munro. Repeat until bored: A pattern selection strategy. In Conference
on Neural Information Processing Systems (NIPS), 1992.

[60] M. Plutowski and H. White. Selecting concise training sets from clean data.
IEEE Transactions on Neural Networks, 4(2):305–318, 1993.

[61] A. P. Engelbrecht. Sensitivity analysis for selective learning by feedforward
neural networks. Fundamenta Informaticae, 46(3):219–252, 2001.

[62] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical
models. Journal of Artificial Intelligence Research, 4:129–145, 1996.

[63] G. Schohn and D. Cohn. Less is more: Active learning with support vector
machines. In International Conference on Machine Learning (ICML), 2000.

[64] N. Roy and A. McCallum. Toward optimal active learning through Monte
Carlo estimation of error reduction. In International Conference on Machine
Learning (ICML), 2001.

[65] K. Yu, J. Bi, and V. Tresp. Active learning via transductive experimental
design. In International Conference on Machine Learning (ICML), 2006.

131

[66] Y. Guo and D. Schuurmans. Discriminative batch mode active learning. In
Conference on Neural Information Processing Systems (NIPS), 2008.

[67] L. Zhang, C. Chen, J. Bu, D. Cai, X. He, and T. S. Huang. Active learning
based on locally linear reconstruction. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 33(10):2026–2038, 2011.

[68] S. Chakraborty, V. Balasubramanian, Q. Sun, S. Panchanathan, and J. Ye.
Active batch selection via convex relaxations with guaranteed solution bounds.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(10):1945–
1958, 2015.

[69] E. Elhamifar, G. Sapiro, A. Yang, and S. S. Sasrty. A convex optimization
framework for active learning. In IEEE International Conference on Computer
Vision (ICCV), 2013.

[70] J. A. Tropp. Just relax: Convex programming methods for subset selection
and sparse approximation. ICES Report, 404, 2004.

[71] E. Elhamifar, G. Sapiro, and R. Vidal. See all by looking at a few: Sparse
modeling for finding representative objects. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2012.

[72] L. Ott, L. Pang, F. T. Ramos, and S. Chawla. On integrated clustering and
outlier detection. In Conference on Neural Information Processing Systems
(NIPS), 2014.

[73] S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semidefinite relaxation
for (0, 1)-quadratic programming. Journal of Global Optimization, 7(1):51–73,
1995.

[74] X. Zheng, X. Sun, D. Li, and Y. Xia. Duality gap estimation of linear
equality constrained binary quadratic programming. Mathematics of Operations
Research, 35(4):864–880, 2010.

[75] S. Reed, H. Lee, D. Anguelov, C. Szegedy, D. Erhan, and A. Rabinovich.
Training deep neural networks on noisy labels with bootstrapping. arXiv
preprint arXiv:1412.6596, 2014.

[76] T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley
& Sons, 2012.

[77] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[78] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation
of SDPA 6.0 (semidefinite programming algorithm 6.0). Optimization Methods
and Software, 18(4):491–505, 2003.

132

[79] T. Ojala, M. Pietikainen, and D. Harwood. Performance evaluation of texture
measures with classification based on Kullback discrimination of distributions.
In International Conference on Pattern Recognition (ICPR), 1994.

[80] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio. An empirical
investigation of catastrophic forgetting in gradient-based neural networks.
arXiv preprint arXiv:1312.6211, 2013.

[81] T. Xiao, J. Zhang, K. Yang, Y. Peng, and Z. Zhang. Error-driven incremental
learning in deep convolutional neural network for large-scale image classification.
In ACM International Conference on Multimedia, 2014.

[82] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[83] J. Xiao, J. Hays, K. A. Ehinger, and A. Oliva. SUN database: Large-scale
scene recognition from abbey to zoo. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2010.

[84] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning deep
features for scene recognition using Places database. In Conference on Neural
Information Processing Systems (NIPS), 2014.

[85] M. Lapin, M. Hein, and B. Schiele. Loss functions for top-k error: Analysis and
insights. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[86] L. Wang, S. Guo, W. Huang, and Y. Qiao. Places205-VGGNet models for
scene recognition. arXiv preprint arXiv:1508.01667, 2015.

[87] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei. ImageNet: A
large-scale hierarchical image database. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2009.

[88] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet
large scale visual recognition challenge. International Journal of Computer
Vision, 115(3):211–252, 2015.

[89] J. C. Chen, V. M. Patel, and R. Chellappa. Unconstrained face verification
using deep CNN features. In IEEE Winter Conference on Applications of
Computer Vision (WACV), 2016.

[90] D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from scratch.
arXiv preprint arXiv:1411.7923, 2014.

[91] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In British
Machine Vision Conference (BMVC), 2015.

133

[92] S. Tu and J. Wang. Practical first order methods for large scale semidefinite
programming. Technical report, University of California, Berkeley, 2014.

[93] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, 1996.

[94] M. Yamashita, K. Fujisawa, K. Nakata, M. Nakata, M. Fukuda, K. Kobayashi,
and K. Goto. A high-performance software package for semidefinite programs:
SDPA 7. Technical report, Tokyo Institute of Technology, 2010.

[95] S. Lahabar and P. J. Narayanan. Singular value decomposition on GPU using
CUDA. In IEEE International Symposium on Parallel & Distributed Processing,
2009.

[96] D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

[97] E. J. Candes, J. K. Romberg, and T. Tao. Stable signal recovery from
incomplete and inaccurate measurements. Communications on Pure and
Applied Mathematics, 59(8):1207–1223, 2006.

[98] E. J. Candes and M. B. Wakin. An introduction to compressive sampling.
IEEE Signal Processing Magazine, 25(2):21–30, 2008.

[99] P. J. Bickel, Y. Ritov, and A. B. Tsybakov. Simultaneous analysis of Lasso
and Dantzig selector. The Annals of Statistics, pages 1705–1732, 2009.

[100] E. J. Candes, J. Romberg, and T. Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information. IEEE
Transactions on Information Theory, 52(2):489–509, 2006.

[101] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde. Model-based
compressive sensing. IEEE Transactions on Information Theory, 56(4):1982–
2001, 2010.

[102] C. Hegde, P. Indyk, and L. Schmidt. A nearly-linear time framework for
graph-structured sparsity. In International Conference on Machine Learning
(ICML), 2015.

[103] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International
Conference on Learning Representations (ICLR), 2014.

[104] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks. In International
Conference on Learning Representations (ICLR), 2016.

[105] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel.
InfoGAN: interpretable representation learning by information maximizing
generative adversarial nets. In Conference on Neural Information Processing
Systems (NIPS), 2016.

134

[106] A. Lamb, V. Dumoulin, and A. Courville. Discriminative regularization for
generative models. arXiv preprint arXiv:1602.03220, 2016.

[107] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly. Compressed sensing
MRI. IEEE Signal Processing Magazine, 25(2):72–82, 2008.

[108] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropi-
etro, and A. Courville. Adversarially learned inference. arXiv preprint
arXiv:1606.00704, 2016.

[109] J. Donahue, P. Krähenbühl, and T. Darrell. Adversarial feature learning. arXiv
preprint arXiv:1605.09782, 2016.

[110] Z. C. Lipton and S. Tripathi. Precise recovery of latent vectors from generative
adversarial networks. arXiv preprint arXiv:1702.04782, 2017.

[111] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv
preprint arXiv:1411.1784, 2014.

[112] J. T. Springenberg. Unsupervised and semi-supervised learning with categorical
generative adversarial networks. In International Conference on Learning
Representations (ICLR), 2015.

[113] A. Odena. Semi-supervised learning with generative adversarial networks.
arXiv preprint arXiv:1606.01583, 2016.

[114] M. A. Davenport, M. F. Duarte, M. B. Wakin, J. N. Laska, D. Takhar, K. F.
Kelly, and R. G. Baraniuk. The smashed filter for compressive classification
and target recognition. In Electronic Imaging, 2007.

[115] V. Cevher, A. Sankaranarayanan, M. Duarte, D. Reddy, R. Baraniuk, and
R. Chellappa. Compressive sensing for background subtraction. In European
Conference on Computer Vision (ECCV), 2008.

[116] O. Maillard and R. Munos. Compressed least-squares regression. In Conference
on Neural Information Processing Systems (NIPS), 2009.

[117] R. Calderbank, S. Jafarpour, and R. Schapire. Compressed learning: Universal
sparse dimensionality reduction and learning in the measurement domain. 2009.

[118] S. Lohit, K. Kulkarni, P. Turaga, J. Wang, and A. C. Sankaranarayanan.
Reconstruction-free inference on compressive measurements. In IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), Workshop Track,
2015.

[119] S. Lohit, K. Kulkarni, and P. Turaga. Direct inference on compressive measure-
ments using convolutional neural networks. In IEEE International Conference
on Image Processing (ICIP), 2016.

135

[120] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-resolution via sparse
representation. IEEE Transactions on Image Processing, 19(11):2861–2873,
2010.

[121] C. Dong, C. C. Loy, K. He, and X. Tang. Image super-resolution using deep
convolutional networks. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 38(2):295–307, 2016.

[122] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-resolution using
very deep convolutional networks. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2016.

[123] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discrimina-
tively, with application to face verification. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2005.

[124] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: A novel image dataset for
benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747,
2017.

[125] Ziwei L., Ping L., Xiaogang W., and Xiaoou T. Deep learning face attributes
in the wild. In IEEE International Conference on Computer Vision (ICCV),
2015.

[126] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[127] M. Abadi et al. TensorFlow: Large-scale machine learning on heterogeneous
systems, 2015. Software available from tensorflow.org.

[128] T. Kim. A TensorFlow implementation of: Deep convolutional
generative adversarial networks, 2017. Software available at
https://github.com/carpedm20/DCGAN-tensorflow.

[129] J. M. Bioucas-Dias and M. A. T. Figueiredo. A new TwIST: Two-step iterative
shrinkage/thresholding algorithms for image restoration. IEEE Transactions
on Image Processing, 16(12):2992–3004, 2007.

[130] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202,
2009.

[131] T. Goldstein and S. Osher. The split Bregman method for `1-regularized
problems. SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

[132] W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms
for `1-minimization with applications to compressed sensing. SIAM Journal
on Imaging Sciences, 1(1):143–168, 2008.

136

[133] V. N. Katsikis, D. Pappas, and A. Petralias. An improved method for the
computation of the Moore-Penrose inverse matrix. Applied Mathematics and
Computation, 2011.

[134] P. Courrieu. Fast computation of Moore-Penrose inverse matrices. arXiv
preprint arXiv:0804.4809, 2008.

[135] S Lahabar and PJ Narayanan. Singular value decomposition on GPU using
CUDA. In IEEE International Symposium on Parallel & Distributed Processing,
2009.

[136] V Volkov and J Demmel. LU, QR and Cholesky factorizations using vector
capabilities of GPUs. Technical report, 2008.

[137] C. Musco and C. Musco. Randomized block Krylov methods for stronger and
faster approximate singular value decomposition. In Conference on Neural
Information Processing Systems (NIPS), 2015.

[138] M. Karpinski and A. Macintyre. Polynomial bounds for VC dimension of
sigmoidal and general Pfaffian neural networks. Journal of Computer and
System Sciences, 54(1):169–176, 1997.

[139] A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth. Learnability
and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929–965,
1989.

[140] D. Haussler, N. Littlestone, and M. K. Warmuth. Predicting {0, 1}-functions
on randomly drawn points. Information and Computation, 115(2):248–292,
1994.

[141] A. Ehrenfeucht, D. Haussler, M. Kearns, and L. Valiant. A general lower bound
on the number of examples needed for learning. Information and Computation,
82(3):247–261, 1989.

[142] N. Z. Shor. Quadratic optimization problems. Soviet Journal of Computer and
and Systems Sciences, 25(6):1–11, 1987.

[143] A. Ben-Tal. Conic and robust optimization. 2002.

137

	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Outline
	Contributions

	On the size of convolutional neural networks and generalization performance
	Overview
	Model architecture
	Relationship between depth and generalization performance
	Problem formulation
	Same training and testing distribution
	Different training and testing distributions

	Experimental results
	Method
	Architectures
	Results

	Concluding remarks

	The case for spatial pooling in deep convolutional sparse coding
	Overview
	Problem formulation
	Results
	Uniqueness and stability of DSCP
	Stability of the CNN forward pass with pooling
	Sparsity bounds

	Concluding remarks

	Quality over quantity: Active selection strategies for improved performance of CNNs
	Overview
	Problem statement
	Classifier uncertainty and error
	Class balance
	Subset diversity
	Subset representativeness
	Joint formulation
	Proposed solution
	Overall algorithm

	Experiments
	MNIST digit recognition
	SUN397 scene recognition
	ImageNet large-scale object recognition
	VGG Face dataset

	Computational complexity
	Solve Algorithm 4.1
	Solve L instances of independent SDPs
	Solve L instances of equation (4.12) and find M largest entries
	Test classifier on training data
	One-time computation

	Concluding remarks

	Task-aware compressed sensing with generative adversarial networks
	Overview
	Related work
	Model description
	Background information
	Motivation
	Task-aware GAN training
	GAN training on compressed inputs
	Contrastive loss regularization for supervised learning tasks

	Experiments
	Reconstruction
	GAN training on compressed inputs
	Super-resolution
	Classification

	Concluding remarks

	Conclusion
	Discussion
	Directions for future research

	Proofs from Chapter 2
	Proof of Lemma 2.1
	Proof of Theorem 2.1
	Proof of Theorem 2.2
	Proof of Theorem 2.3
	Proofs from Chapter 3
	Proof of Theorem 3.1
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Theorem 3.2
	Proof of Theorem 3.3
	Proofs from Chapter 4
	Proof of Theorem 4.1
	Proof of Lemma 4.1
	Proof of Theorem 4.2
	Proofs from Chapter 5
	Proof of Theorem 5.1
	Bibliography

