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In wireless ad-hoc networks, signal interference and collisions from simultaneous transmissions

of neighboring nodes significantly degrade throughput. Hence, it is necessary to devise scheduling

policies for coordinating wireless transmissions.

In this thesis, we focus on maximum stable throughput scheduling in mobile, finite node, wire-

less ad-hoc networks, whose topology changes according to astationary and ergodic process. In

particular, we study the i.i.d topology case, and we extend our results to the more general case of

Markov and Hidden Markov topology processes. Initially, weintroduce a centralized stationary

scheduling rule and then prove that it maximizes the stable throughput the network can sustain.

Finally, we show through simulations that mobility of the nodes may considerably improve the

network throughput and plot the corresponding results through a Monte Carlo method.
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Chapter 1

Introduction

1.1 Wireless ad-hoc networks: benefits and limitations

Traditional wireless communication networks, namely cellular and satellite networks, require an in-

frastructure over which communication takes place. Accordingly, considerable effort and resources

are required for such networks to be set up, before they can actually be used. In cases where setting

up an infrastructure is a difficult or even impossible task, such as in emergency/rescue operations,

military applications or disaster relief, other alternatives need to be devised.

Wireless ad-hoc networks are infrastructureless autonomous systems that have emerged to serve

this need by allowing a quick network development with low equipment cost (Figure 1.1). The net-

work is formed as soon as a collection of wireless devices, equipped with wireless communication

and networking capabilities, express a wish to exchange information. They are peer-to-peer net-

works, i.e all the network nodes have the same capabilities and no base stations or central access

points need to be involved for data exchange.

In wireless ad-hoc networks, each node is supplied with an antenna, that allows it to transmit

and receive information from the other nodes. There exist more than twenty types of antennas [7].

Omni-directional antennas, also known as isotropic, have been widely used. They can radiate and
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Figure 1.1: An ad-hoc wireless network

receive equally well in all directions, within a certain radius, called the range of transmission. The

radius is determined by the transmission power. It should bestressed that, when a node transmits to

another node, its transmission can be heard byall nodes that lie within transmission range. In the

case of unicast, one-to-one, communication only one node will be interested in this transmission,

while the rest of them will receive it as interference. The higher the transmission power, the larger

the number of nodes that can be reached in a single transmission, but also the the higher the amount

of interference that will be experienced by other nodes. Thelatter explains the need to control the

transmission power and proceed in a multi-hop fashion to forward the information to its receiver.

To overcome this shortcoming of isotropic antennas and tackle further challenging problems, direc-

tional and smart antennas are often used, that aim to direct transmission within a narrow cone. This

technique eliminates the energy waste and the interferenceimposed on other nodes in the vicinity

of the transmitter node ([18], [6]).

Wireless ad-hoc networks can be divided into two main categories: static and mobile. While

in static wireless networks the topology is fixed and node locations cannot be updated during the

course of time, in mobile networks, some or all of the nodes have movement capabilities. Mobile
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ad-hoc networks can be further characterized according to their mobility pattern, i.e. those where

nodes move independently and those where they follow a groupmobility pattern. Independent node

mobility is frequently modeled by one of two widely used mobility patterns, namely the Random

Way Point mobility pattern and the Random Walk mobility pattern. In this thesis, we focus on

mobile ad-hoc networks, where each node is moving independently of the others, in a i.i.d or

Random Walk fashion.

While ad-hoc wireless networks have the advantage of flexibility and easy deployment, their

“ad-hoc” nature is the source of many limitations and challenges as well.

First of all, wireless ad-hoc networks commonly span a largegeographic area. This, in con-

junction with the limited transmission range through the wireless interfaces, prevents a transmitting

node from reaching its intended destination in one hop. In fact, a sender and a receiver are seldom

located within transmission range in this type of wireless environments. When a node chooses

to transmit to an intended receiver which is not within transmission range, a multiple hop path

needs to be found, so that the information gets routed through a number of intermediate “relay”

nodes, until the destination is reached. Hence, routing protocols have a significant importance in

wireless ad-hoc networks. However, routing decisions are hard to obtain, especially in mobile and

highly dynamic networks. Node mobility might cause a path toa destination to “break”, rendering

obsolete the network routing information. In this case, frequent updates of the routing tables are re-

quired, which is a resource consuming procedure. In addition, unlike wireline networks, where the

routing criterion is based on the shortest path, in ad-hoc networks, shortest path is not always the

best selection; factors such as node mobility, power limitations of the individual nodes or interfer-

ence from the transmissions of the nodes come into play and routing becomes a more challenging

task.

As a second limitation, the shared wireless medium poses constraints on simultaneous trans-

missions. Indeed, simultaneously transmitted signals by neighboring nodes are likely to collide.
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This would hinder correct reconstruction of the signals.

Thirdly, the nodes have limited battery power. Once the battery power at a node gets depleted,

the node can no longer participate in either transmitting orreceiving packets. As more and more

nodes run out of battery, the network becomes partially or even completely disconnected, at which

point communication becomes impossible.

Lastly, in dedicated link networks, the Open Systems Interconnection (OSI)1 layer separation

simplifies the implementation of different network operations by letting them occur independently

of each other at different layers. For example, link scheduling can be done in the Medium Access

Control (MAC) layer and is independent of finding routes, which is performed in the network layer.

In wireless networks, the wireless medium is shared among users and hence some functions are

better performed jointly by the different layers than independently. This has been widely studied

([5], [17] ).

1.2 Link scheduling in wireless ad-hoc networks

As mentioned earlier, one of the main differences between wireless and wireline networks is the

nature of the communication medium. While in wireline networks nodes are connected by dedi-

cated channels, in wireless networks the same medium is shared by multiple users. Suppose that

in a wireless network, two nodes attempt to transmit to a common network node, which is within

communication range from both of them. If they transmit simultaneously, the receiver will hear

the sum of the two signals and hence will not be able to correctly decode the information being

transmitted. Hence, it is crucial to come up with protocols that appropriately coordinate access to

1A model of network architecture and a suite of protocols to implement it, developed by the International Organiza-

tion for Standardization (ISO) in 1978 as a framework for international standards in heterogeneous computer network

architecture.
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the wireless medium to avoid collisions. One approach is to devise scheduling rules that, at every

time instant, allow only a set of non-interfering nodes to transmit. These rules will attempt to opti-

mize different performance criteria ([2], [3], [12]). Two basic approaches have been widely used:

centralized and decentralized scheduling.

• Centralized scheduling. A centralized controller is responsible to decide which sets of

network nodes are to transmit simultaneously. A simplisticscheme is to preselect a collection

of sets of non-interfering links that can be activated simultaneously and then rotate among

them in some predetermined fashion, i.e. Round-Robin. Clearly, one can devise a scheduler

at least as good as the simplistic one, by giving it access to the network information, such as

the distribution of traffic in the network and how the queue sizes at the network nodes evolve,

the network topology and link availability, the remaining battery power at the nodes, etc.

• Decentralized scheduling.Each network node that wishes to transmit a packet is responsible

for making transmission decisions that prevent the occurrence of collisions. A few examples

of decentralized scheduling protocols are Carrier Sense Multiple Access (CSMA) [13], its

improvement that considers collision detection (CSMA-CD)[13] and their successor, that is

widely used nowadays, IEEE802.11 [4].

In this thesis, we discuss centralized scheduling in wireless ad-hoc networks with randomly varying

topologies. The centralized policy that we propose is a stationary policy that purports to stabilize

the network for all stabilizable arrival rates.

1.3 Previous Work

Much recent research has focused on studying the “capacity”and “throughput” of wireless ad-hoc

networks. In [9] the limiting capacity of stationary wireless ad-hoc networks where the number of
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nodes tends to infinity, has been studied extensively. The authors first consider arbitrary networks,

where node locations, destinations and traffic demands are all selected optimally, and then look at

random networks, where nodes and their intended destinations are randomly chosen, i.e. indepen-

dently and uniformly distributed. They consider a perfect scheduling algorithm that has complete

knowledge of all nodes and traffic demands in the network, anduses this information to avoid col-

lisions. They use such ideal scheduling scheme, where a single node attempts to communicate in a

single overhearing area, to compute the optimal upper boundon the limiting capacity. In addition,

they define the notion of “transport capacity” and obtain a handle on its lower bound. Their results

are rather pessimistic, since they conclude that each node’s throughput goes to zero as the number

of nodes increases to infinity. This should be expected, since each node’s throughput is limited by

the amount of traffic needed to forward packets for other nodes, even in the case of optimal node

placement on a disk, and optimal scheduling. What the authors of [9] also suggest is that since

the network performance degrades significantly with its size, it might be beneficial to design small

networks or networks where nodes may only “talk” to their neighbors. They justify the latter by

showing that in a large network where nodes are restricted tocommunicate with their neighbors

only, the data rate can be constant, independently of the network size.

The rather pessimistic result of [9] was further studied in [8], which investigates the case of a

network with an infinite number of nodes moving according to random walk mobility. It is shown

there that, provided the network can sustain long delays in the packet delivery to their destinations,

capacity no longer converges to zero but rather to a positiveconstant. The authors of [8] also argue

that since nodes move in a random fashion, the source or a small number of nodes through which

the source relays its traffic, will eventually come close to the destination. So each packet will

actually be delivered either directly or in a very small number of hops.

While in [8] and [9] the authors obtain asymptotic results onnetwork capacity, a lot of research

has been performed for networks with finite number of nodes ([10], [14], [16]). Papers [14] and
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[16] focus on finite networks. In [14], the authors exhibit a centralized, optimal stable throughput

scheduling policy for a finite node multi-hop constrained queuing system, with scheduling con-

straints, and they characterize its stability region. The constraints prevent all links from being

scheduled simultaneously. In [16], the author considers a finite node network with time varying

topology and no relaying and describes a centralized scheduling policy that makes use of the topol-

ogy state information to stabilize all rate vectors, for which a stabilizing stationary policy exists.

Our work builds on the results of [14] and [16] to obtain a centralized maximum throughput

scheduling policy under various random network configurations. We focus on stationary policies.

Our work also differs significantly from [16], in that we allow relaying of the packets.

1.4 Contribution of this thesis

In this thesis, we study centralized stationary schedulingof wireless ad-hoc networks with fi-

nite number of nodes, under time-varying-topology processes. We identify an optimal, maximum

throughput scheduling policy and characterize its stability region. In particular, we show that the

obtained stability region is contained in a certain convex polytope while containing its interior. Fi-

nally, we verify the theoretical results by means of simulations, which we run using a C-code we

developed.

The balance of this thesis is organized as follows. In Chapter 2, we introduce our model under

two stationary and ergodic topology processes. Initially,we consider an i.i.d varying topology

process, then a more general hidden Markov Chain. We also specify scheduling policyπ0. In

Chapter 3, we show thatπ0 achieves an optimal stable throughput. An introduction to the simulation

tool we developed, along with our simulation results, follow in Chapter 4. The thesis concludes with

three appendices on fundamentals of Markov Chains, Markov Chain Stability and basic definitions

from set theory.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we first introduce the network model to be used in our study and state the underlying

assumptions that will be made throughout. Our model is inspired from that described in [14]. In

particular we consider a time-varying-topology network, under two types of topology processes:

an i.i.d topology process and the more general case of a stationary and ergodic Markov and Hidden

Markov process. The varying topology processes will be usedto capture the mobility of the nodes

of the network and how this may affect the various configurations the network may evolve into.

Next, we define the notion of network stability and provide intuition for how mobility may increase

the maximum stable throughput a network can sustain. Finally, we introduce the stationary policy

π0, which purports to achieve a maximum throughput performance. Optimality ofπ0, will be

established later in Chapter 3.
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2.2 Wireless network model

2.2.1 Notation and terminology

We consider a slotted time, time-varying-topology wireless ad-hoc network, operating under a

TDMA based medium access scheme. The network is comprised ofa finite number ofN nodes,

each equipped with one transceiver (transmitter/receiverpair) and an omni-directional antenna.

Nodes share a common medium, hence it is essential to properly coordinate their transmissions to

avoid signal interference and collisions. Towards this end, a set ofprimary constraints is imposed

on the set of simultaneously transmitting nodes. These constraints dictate that:

1. A node cannot transmit and receive simultaneously.

2. At any time instant, a node cannot transmit simultaneously to multiple nodes.

3. At any time instant, a node cannot receive simultaneouslyfrom multiple nodes.

Nodes exchange datagram packets of constant packet lengths, that can be transmitted in one

time slot, in a unicast fashion. We considerJ distinct customer classes, each intended for a set of

exit nodesVj, j = 1, . . . , J . The set of exit nodes is such that whenever a packet of some class

reaches an exit node for this class, the packet leaves the network. The different setsVj are allowed

to overlap.

Each node is modeled as a set ofJ infinite buffer queues, each holding separately the packets

corresponding to different customer classes. We denote byXij(t) the non-negative integer queue

size for classj at nodei at the end of time slott. In addition,X(t) is a queue length matrix defined

asX(t) = {Xij(t), i = 1, 2, . . .N, j = 1, 2, . . . J} and for eachj ∈ {1, 2, . . . J} X
j(t) is aN × 1

vector of all queue sizes of classj at timet, that is,Xj(t) = {Xij(t), i = 1, 2, . . . N}. We denote

byX the space of all queue size vectors.
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A link ℓ is said to exist between nodesi1 andi2, if nodesi1 andi2 are within transmission range.

We model each link as a server. In particular, a linkℓ that originates from nodes(ℓ) and terminates

at noded(ℓ) is a server that serves a customer from queues(ℓ) and upon service completion, sends

the served customer (packet) to the destination queued(ℓ). All the servers are synchronized to start

serving a customer at the beginning of a time slot. The primary constraints on medium access make

the servers interdependent, in the sense that not all of the servers can be active at any time slot.

Node mobility causes some already established links to break, as participating nodes move

far away from each other, and results in establishing new connections between nodes that move

closer to each other. Hence, the mobility pattern of the nodes affects the set of possiblenetwork

topologies, as well as their respective probability distribution. Finiteness of the number of nodes

implies finiteness of the setT of topologies the network may evolve into, i.e.T = {T1, . . . , TNT
}.

We denote the topology at time slott by T (t) ∈ T . We assume that the topology process is a

stationary and ergodic stochastic process and pay special attention to the i.i.d case. Each topology

Tk is characterized by its set of linksL(k). Let L be the set of all links that appear in at least one

topology, i.e.L = ∪NT

k=1L(k). A uniform numbering of the links is used across all topologies, i.e.

links are numbered from1 to |L|. In other words, if linkℓ ∈ {1, . . . , |L|} connects nodesi1 and

i2 under topologyk, then in every topology where nodei1 is connected toi2, the link connecting

them is numberedℓ.

Customers of each class may enter the network at any node, except for the exit nodes of the

corresponding class, and at each time instant. For each customer classj, the vector of arrivals

Aj(t) = (Aij(t) : i = 1, 2, . . . , N, i /∈ Vj) is a non-negative component-wise vector. Itsith

element,Aij(t), represents the number of customers of classj arriving at queuei, during time

slot t. For all queuesi : i = 1, . . . , N and all customer classesj : j = 1, . . . , J , we define

aij = E[Aij(t)], that is assumed to be time-invariant, and we termmulti-class arrival vector the

non-negative component-wise matrixa = (aij : i = 1, . . . , N, j = 1, . . . , J).
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To capture the dependence among link activations, due to themedium access constraints, fol-

lowing [14] and [16], we define a validactivation setfor topologyTk to be a set of servers (a subset

of L(k)), that comply with the primary constraints and are allowed to be activated simultaneously.

We also define the validactivation vector associated to an activation set as an|L| element vector

with its ℓth component,1 ≤ ℓ ≤ |L|, set to1 if the ℓth server, belongs to the activation set and set

to 0, otherwise. If linkℓ is not present inTk ∈ T or medium access constraints prevent it from

being activated, then theℓth element of all the valid activation vectors for topologyTk must be set

to 0. Theconstraint setSk for topologyTk ∈ T is the set of all valid activation vectors associated

with network topologyTk. Since the setSk is determined by the primary constraints, it should be

clear that for eachk, if c ∈ Sk, all the vectors obtained by setting some of the active linksof c to

inactive, belong inSk as well.

Next, we define the binary variableEℓj(t), that takes values in{0, 1} and indicates whether

serverℓ is active during slott, serving a customer of classj. The random variableE(t) = {Eℓj(t) :

ℓ = 1, . . . , |L|, j = 1, . . . , J} is called a validmulti-class activation vector for topologyT (t), if

the corresponding vectorsEj(t) = {Eℓj(t), ℓ = 1, . . . , |L|} are such that:

1. Eℓj(t) = 0, if Xs(ℓ)j(t − 1) = 0

2. Eℓj(t) = 0, ∀ℓ /∈ T (t)

3.
∑J

j=1 E
j(t) ∈ Sk, wherek is such thatT (t) = Tk

We denote byE the collection of all valid multi-class activation vectorsthat correspond to all

possible network configurations.

Finally, we consider a centralized scheduler that at the beginning of each time slot has a com-

plete knowledge of the current network topology and knows the queue sizes at each network node

as well. At the beginning of each time slot, a scheduling decision is taken in a centralized fashion
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and packet transmissions are scheduled to take place. The rule which determines what this deci-

sion will be is called apolicy . Thus, a (deterministic, stationary) scheduling policyπ, is a map

X × T → E such that, for any topologyT ∈ T , π(x, T ) is a valid multi-class activation vector for

topologyT , as this vector is defined previously. The class of all stationary policies is denoted by

Π.

During the course of this thesis, we mark all the quantities that depend on topologyTk by the

subscriptk.

2.2.2 Queue size dynamics

The queue size process,X(t), represents how the queues develop during the course of timefor each

customer classj at each network nodei . Hence, the queue size at nodei for classj at the end of

the next time slot equals the queue size at nodei for this class at the end of the current time slot,

plus the external arrivals for this class at this node duringthe next time slot, modified by internal

arrivals or departures for classj that involve nodei, as decided by the scheduling rule operating

on the system at the end of the current time slot. By the latterwe mean customers of classj that

arrive internally at nodei or leave the node upon service completion, during the next time slot. We

describe the queue length dynamics process for classj in vector form through the Equation 2.1:

X
j(t + 1) = X

j(t) + R
j
M(t + 1)Ej(t + 1) + A

j(t + 1) (2.1)

In Equation 2.1,Rj is aN × |L| matrix that we name the “combined routing matrix for classj”. It

12



has one column for each linkℓ ∈ L and its element at theith row andℓth column is:

rj
iℓ =































1 if d(ℓ) = i, with i /∈ Vj

−1 if s(ℓ) = i

0 otherwise

(2.2)

Matrix M(t) is a diagonal matrix, of dimensions|L| × |L|. Its ℓth diagonal element(M(t))ℓ

represents the binary random variable that corresponds to the successful service completion of a

customer served by serverℓ during time slott. If a customer completes service and moves from

queues(ℓ) to queued(ℓ) (or exits the system if the node where queued(ℓ) resides belongs to the

class of the exit nodes for the particular customer class), then(M(t))ℓ = 1, otherwise(M(t))ℓ = 0.

The latter case may occur if theℓth link is not present in the current topology at time slott or when

although it is present, a customer did not receive full service and hence, remains in the source queue

s(ℓ) and its service is being deferred.

When link ℓ is present inT (t), the random variable(M(t))ℓ may capture the link “quality”.

More specifically, when it takes the value0, it may model channel errors through that link or

non-interference dependent channel fading. Since we assume that elements of matrixM(t) are

independent of each other, they cannot track interference related fading, since it would require

correlations in the neighboring links quality.

In addition, as mentioned earlier,E(t) is a valid multi-class activation vector. Theℓth element

of E
j(t), is never set to1 when the queue for classj at the source node of the link is empty. This

guarantees that the elements ofX(t) are non-negative at all times.

2.2.3 Assumptions

We make a number of important assumptions about our model throughout this study.

Assumption 1 The topology process is a stationary and ergodic process.

13



In particularpk = P [T (t) = Tk], ∀k ∈ 1, . . . , NT does not depend ont. Accordingly, the dis-

tribution with which the various topologies occur may not change with time. One implication of

Assumption 1 is that the the number of nodes,N is fixed, once the network is established. There-

fore, new nodes cannot dynamically join the network and all network nodes have infinite battery

power supply.

Assumption 2 The unionL of the links of different topologies that the network can take is such

that if a customer of classj0 reaches a queuei0, then this customer can be forwarded to some exit

node of classj0 by passing through a sequence ofn links (servers){ℓ(i)}n
i=1,⊆ L for somen > 0.

What assumption 2 implies,is that the network is allowed to evolve into “bad”(disconnected) topolo-

gies, as long as the union of these topologies provides a way for each customer in the network to

reach its destination class node.

Assumption 3 Given the current topologyT (t), the binary service completion processes for dif-

ferent time slotst and different linksMℓ(t), ℓ = 1, . . . , |L| are all independent. Furthermore,

E[M(t)|T (t) = Tk] is independent oft, ∀k ∈ {1, . . . , NT}. We will call this expected valueMk.

Assumption 4 The arrival processAij(t) is independent of the current topologyT (t) and of the

service rates of the different network linksM(t). Also, for a given nodei and a given class of

customersj, the arrival processAij(t) is an i.i.d process. For a given node, arrivals for different

classes of customersj are independent but not necessarily identically distributed. The same holds

for arrivals at different nodes for the same class of customer j. Finally, the arrival process should

satisfyE[A2
ij(t)] < ∞.
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2.3 Stability considerations

In this section, initially we give a definition of stability for irreducible and reducible Markov

Chains. We then discuss whether the regions of stable arrival rates achieved by stationary poli-

cies can always be compared to determine which policy performs better in terms of maximizing

the stable network throughput. In addition, we reason that we may increase the stability region of

the network, by considering a time-varying-topology. The state of our system is the stochastic pro-

cess{X(t), T (t+1)}∞t=0, comprised by the current queue size process{X(t)}∞t=0 and the topology

process of the next time slot{T (t + 1)}∞t=0. We examine two types of topology processes, namely

an i.i.d process and a more general stationary and ergodic topology process. We show how we can

relate the state space of our system to a Markov Chain, aimingto prove network stability.

2.3.1 Network stability and regions of stable arrival rates

Consider the system state be described by the Markov Chain{S(t)}∞t=0. For the reader’s ease of

reference, a brief overview on Markov Chains is given in Appendix A. If this Markov chain is an

irreducible Markov Chain, then stability is equivalent to ergodicity of {S(t)}∞t=0 and the existence

of a unique stationary distribution. Therefore, Foster’s theorem, as discussed in Appendix B, can

be applied to show a sufficient condition for stability. In general, however, it may not be possible

to guarantee irreducibility and a more generalized definition of stability ([14], [15]) is required, as

restated also in Appendix B.

Let the state space be partitioned into the classesY, Z1, Z2, Z3, . . . , whereZi, i = 1, 2, 3, . . .

are sets of communicating states that are recurrent andY is the set of all transient states. Further,

let the system be in a stateS(0) = s ∈ Y , at timet = 0. Then, theHitting Time is defined as:

τs =











∞, if S(t) ∈ Y, ∀t > 0

min{t > 0 : S(t) /∈ Y }, otherwise
(2.3)
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Definition 1 (System stability)The system isstable if for the state process{S(t)}∞t=0 we have:

P [τy < ∞] = 1, ∀y ∈ Y (2.4)

and all statesz ∈ ∪∞
i=1Zi are positive recurrent.

In other words, to establish stability of the Markov Chain, one needs to show presence of two

properties, namely to ensure that the Markov Chain leaves the transient states in finite time and that

it enters one of the recurrent classes, each of which is positive recurrent. In particular, it follows

that the system is unstable if∪∞
i=1Zi = ∅.

The stability regionCπ of a scheduling policyπ is the collection of all arrival rate vectorsa

that can be supported byπ in such a way that the system is stable. The stability region of the

network is the union of stability regions of all scheduling policies. In this thesis, we will focus on

stationary policies only. We denote byC the set of arrival rate vectors that can be stabilized by

somestationarypolicy. We use the notation as used in [14].

C =
⋃

π∈Π

Cπ,

whereΠ is the class of all stationary policiesπ.

Simply stated, a scheduling policy is better than another ifits stability region is larger. However,

it is not always possible to compare the stability regions oftwo policies. Comparison is only

possible if one can say that one policy dominates the other. For example, we could say that policy

π0 dominatesπ1, and hence it is better, if and only ifCπ1
⊂ Cπ0

(Figure 2.1). Ifπ0 dominatesπ1,

the system will be stable underπ0 whenever it is stable underπ1. On the contrary, we cannot say

whetherπ1 or π2 is better (Figure 2.2). Every point in the regionR1 can be achieved only by policy

π1, in R3 only byπ2, while points in the regionR2 can be achieved by selecting either one of them.

If there is a policy which dominates all other policies, thenit is an optimal policy or else a

maximum throughput policy. Then, every point in the capacity region may be achieved by applying
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Figure 2.1: 3 Policiesπ0 andπ1 can be compared. We can say thatπ0 is better thanπ1 sinceπ0

dominatesπ1.

a1

π1

π2R

R
2

3

R1

a 2

Figure 2.2: Policiesπ1 andπ2 cannot be compared. There exist a set of arrival rates vectors that are

stable underπ1 but not underπ2 (regionR1) and a set of arrival rate vectors that are stable under

π2 and not underπ1 (regionR3). Rates inside regionR2 are stable under both policies.
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a single policy, namely the optimal one. In this thesis, we will introduce a policy of “nearly”

maximum throughput. In the next chapter, it will be clearer why we use the term “nearly”.

2.3.2 Motivating structure of stability regions under randomly varying topolo-

gies

For fixed multi-hop radio networks, under constraints, a scheduling policy introduced in [14] is

shown to have a stability region very close to the stability region,C, corresponding to the set of all

stationary policies. Specifically, since almost all pointsin the stability region, except perhaps some

boundary points, can be stabilized by this single scheduling policy, it is dubbed to be an optimal

throughput policy.

We now consider the relationship between the stability region of a varying topology network,

with the stability regions of the individual topologies. Toexamine this, consider the mobile network

case with two topologiesT0 andT1. There is a simple way to obtain some pointsinsidethe overall

stability region. These points are obtained by consideringthe mobile network as being a time

sharing of two fixed networks. Consider a scheduling policy that splits the queues at every node

into two. One queue corresponds to arrivals and transmissions when the network is in stateT0 and

the other corresponds to the case when the network is in stateT1. All arrivals which take place when

the network is inT0 go to its corresponding queue and the same holds forT1. The scheduling policy

when applied underT0 schedules according to the optimal policy forT0 applied to appropriate

queues and similarly forT1. Then clearly, the stability region achieved by this particular policy is

obtained by afixedconvex combination of stability regions ofT0 andT1, weighed by the stationary

probabilities of the two network topologies respectively.We claim that the stability region of the

mobile network can bestrictly larger than the one obtained by the above linear combination. This

claim is discussed further below.
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Figure 2.3:3 node network with two network configurations. Arrivalsa10 at node1 are destined

for node3 anda31 at node3 exit the system at node1.

2.3.3 Mobility increases the stability region of the network

Consider the network of3 nodes, depicted in Figure 2.3, where nodes1 and3 are so far apart from

each other, that no matter what the location of node2 is, node2 can at most communicate with one

of the two nodes1 or 3. Arrivals at node1 are to be delivered at node3 and arrivals at node3 exit

the network at node1. Consider two configurations of the network, (i)1 communicates with2 and

node3 cannot transmit or receive (ii)2 communicates with3 and node1 cannot transmit or receive.

Suppose that the network has a fixed topologyT0. Then since node1 is completely disconnected

from its exit node3 no non-zero arrival rate vector can be supported. Similarly, the same holds

when the network has a fixed topologyT1. Therefore, any convex combination of the two stability

regions will give that the only stable arrival rate vector isthe one with zero elements.

However, consider a partially connected network, that switches between the two configurations

according to a stationary process. Clearly it is possible toobtain a non-zero stable arrival rate at

least in one component by allowing node2 to be used as a “relay” between nodes1 and3. Hence the

stability region of the mobile network is strictly better than that obtained by the linear combination.

We will come back to this claim in chapter 3, where the stability regions of both policies will be
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looked into more detail.

2.4 Topologies that vary in an i.i.d fashion

In this section, we will show that in the case of an i.i.d topology process the process{X(t), T (t +

1)}∞t=0 that defines the state of our system is a Markov Chain. We will also elaborate why Foster’s

theorem cannot be applied on this Markov Chain as is and proceed to establish an extension for the

present situation, that involves a Lyapunov function on{X(t)}∞t=0 only.

Lemma 1 The pair{X(t), T (t + 1)}∞t=0 with state space(X × T ), where{T (t)}∞t=0 is an i.i.d

process, is a Markov Chain.

Proof: To establish that{X(t), T (t+1)}∞t=0 is a Markov Chain, we need to prove that the definition

of Markovity holds (see Appendix A):

P [(X(t), T (t + 1))|X(t − 1), T (t),X(t− 2)T (t − 1), . . . ] = P [(X(t), T (t + 1))|(X(t− 1), T (t))]

So, we proceed as follows:

P [X(t), T (t + 1)|X(t − 1), T (t),X(t− 2)T (t − 1), . . . ]

= P [X(t)|T (t + 1),X(t − 1), T (t),X(t− 2)T (t − 1), . . . ]

P [T (t + 1)|X(t− 1), T (t),X(t− 2)T (t − 1), . . . ]

= P [X(t)|T (t + 1),X(t − 1), T (t)]P [T (t + 1)|(X(t − 1), T (t))]

= P [(X(t), T (t + 1))|(X(t − 1), T (t))] (2.5)

Equation 2.5 follows from the dynamics of the queue length processX(t) (Equation 2.1) and the

i.i.d nature of the topology process. Specifically, to compute X(t), it suffices to know the queue
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lengths at time instantt− 1, X(t− 1) and the topology at time instantt, T (t) and does not depend

on other topologies and queue lengths at previous time slots. In addition, the fact thatT (t) is an

i.i.d process allows us to write:

P [T (t + 1)|X(t − 1), T (t),X(t− 2)T (t− 1), . . . ] = P [T (t + 1)] = P [T (t + 1)|X(t− 1), T (t)]

♦

However, although{X(t), T (t + 1)}∞t=0 is a Markov Chain, we cannot guarantee that it is

irreducible. The following theorem, stated in [14], gives sufficient conditions for stability of the

system according to Definition 1. It comes as a generalization of Foster’s Theorem [1].

Theorem 1 Consider a Markov Chain{S(t)} with state spaceS, a real valued, bounded from

below, functionV : S → R, anǫ > 0 and a finite subsetS0 of S such that:

E[V (S(t + 1)) − V (S(t))|S(t) = s] < −ǫ, if s /∈ S0

and

E[V (S(t + 1))|S(t) = s] < ∞, ∀ s ∈ S0

Then{S(t)}∞t=0 is stable, in the sense of Definition 1.

We can also note that the above test provides only sufficient conditions. If its conditions fail to

hold, we can only derive that the candidate Lyapunov function was not chosen appropriately and

not that the system is unstable.

Consider the following candidate Lyapunov functionV : X × T → R, such thatV (x, T ) =

∑J
j=1

∑N
i=1{xij}2. Although it is a valid candidate, defined on the state space of our system

and bounded from below by0, we cannot establish stability by applying it on the Markov Chain

{X(t), T (t + 1)}. This problem arises from the fact that Theorem 1 requires that we must be able
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to find afinite subset of the state space outside which the drift of the Lyapunov function is strictly

negative and inside which it can be positive. Now, as some of the topologies may be completely

disconnected, it appears that the candidate Lyapunov function that we have used, i.e the sum of

the squares of the queue sizes, does not have a strictly negative drift for all but a finite number of

states(X(t), T (t + 1)). This is so because, ifT1 is a very bad topology, for example completely

disconnected, then the queue sizes under this topology can only increase ( nothing gets delivered

to the destination and external arrivals make the queue sizes to increase). Hence the expected value

of the candidate Lyapunov function has a positive drift for the state(X(t), T1) and for all values

thatX(t) can take, which are infinitely many. Hence, since the subset of states where the drift is

positive is not finite, we cannot apply Theorem 1 to the MarkovChain{X(t), T (t + 1)} the way it

is stated above.

Hence, we shall derive a different Markov Chain, related to the state space of our system, on

which Theorem 1 is applicable. Towards this end we prove Lemma 2.

Lemma 2 Consider the Markov Chain{X(t), T (t + 1)}∞t=0 with state space(X × T ), such that

{T (t)}∞t=0 is a finite valued i.i.d process and{X(t)}∞t=0, follows the dynamics of Equation 2.1, then

the process{X(t)}∞t=0 is also a Markov Chain.

Proof:Indeed,

P [X(t + 1)|X(t),X(t− 1),X(t − 2), . . . ,X(0)]

=

NT
∑

k=1

P [X(t + 1), T (t + 1) = Tk|X(t),X(t− 1),X(t − 2), . . . ,X(0)]

=

NT
∑

k=1

P [X(t + 1)|T (t + 1) = Tk,X(t),X(t− 1), . . . ,X(0)]P [T (t + 1) = Tk|X(t), . . . ,X(0)]

=

NT
∑

k=1

P [X(t + 1)|T (t + 1) = Tk,X(t)]pk (2.6)

= P [X(t + 1)|X(t)]
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Equation (2.6) follows from Equation 2.1 and the i.i.d nature of the topology process. Also, a useful

observation is that the candidate Lyapunov functionV , as defined above, does not depend on the

topology process. We therefore define a different candidateLyapunov function,V ′ : X → R, such

thatV ′(x) =
∑J

j=1

∑N
i=1{xij}2.

Next, we connect stability of the Markov process{X(t)} to the stability of{X(t), T (t + 1)}.

Theorem 2 Consider the Markov Chain{X(t), T (t + 1)} with state spaceX × T , where the

topology processT (t) is i.i.d. Let a real valued, bounded from below, functionV ′ : X → R, an

ǫ > 0 and a finite subsetX0 of X be such that:

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x] < −ǫ, if x /∈ X0

and

E[V ′(X(t + 1))|X(t) = x] < ∞, ∀ x ∈ X0

Then, the process{X(t), T (t + 1)}∞t=0 is stable in the sense of Definition 1.

Proof: From Lemma 2, we know that the process{X(t)}∞t=0 is a Markov Chain. In view of

Theorem 1 this Markov Chain is stable. In other words its transient states are exited in finite time

with probability 1 and all of its recurrent classes are positive recurrent. We first show that the

recurrent classes of the Markov Chain formed by the pair(X(t), T (t+1)), are positive recurrent as

follows. Since the next topology is chosen in a i.i.d fashion, T (t+1) is independent ofX(t). Also,

since all the recurrent classes of{X(t)}∞t=0 are positive recurrent and since it exits its transient

states in finite time with probability1, the process{X(t)}∞t=0 must have a stationary distribution in

each recurrent class. Hence, givenX(t) ∈ Zi, i = 1, 2, . . . , X(t) has a stationary distribution, say,

µZi
(x). ThereforeP (X(t) = x, T (t + 1) = Tk) = µZi

(x)pk. Since, it has a stationary distribution

the Markov Chain formed by the pair(X(t), T (t + 1)) is positive recurrent. To conclude the proof
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we show that the Markov Chain{X(t), T (t + 1)}∞t=0 exits its transient states in finite time with

probability1. First, since{X(t)}∞t=0 exits its transient classes in finite time with probability1, the

Markov Chain formed by the pair(X(t), T (t + 1)) also leaves all the states whose first component

X(t) belongs to the transient states of the Markov ChainX(t) in finite time as well. Also we have

seen that all the states of(X(t), T (t + 1)), such that their first component belongs toZi have a

stationary distribution and hence belong to positive recurrent classes. Therefore,(X(t), T (t + 1))

will also leave all its transient states in finite time with probability1. This concludes the proof.

2.4.1 Stationary and ergodic Markov or Hidden Markov topology processes

In the previous sections, we discussed how a modified versionof Foster’s theorem can be applied to

a network whose topology process changes in an i.i.d fashion, where the probability of topologyTk

was given bypk, k ∈ {1, . . . , NT}. However, in the general case where the topology process is a

Markov or Hidden Markov stationary and ergodic process, we cannot follow the same analysis as in

the i.i.d case, and apply Theorem 2, since we cannot guarantee that the process{X(t), T (t+1)}∞t=0

is a Markov Chain.

In this section, we involve an interleaving technique to regard a stationary and ergodic topology

process as a collection of time interleaved, nearly i.i.d topology processes and show that the stability

region achieved by a stationary and ergodic Markov or HiddenMarkov process, is very close to the

one achieved by an i.i.d topology process with the same stationary and marginal distributions.

Consider a topology process that is Markov, stationary and ergodic. Letpk denote the stationary

distribution of statek for this process, i.e.

P [T (t) = Tk] = pk

Let {Θ(t)} be a finite state irreducible and aperiodic Markov Chain starting in its stationary
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distributionπ(θ), then for an integert0,

P (Θ(t) = θ, Θ(t + t0) = θ′) → π(θ)π(θ′) ast0 → ∞

That is, ast0 increases, the random variables,Θ(t) andΘ(t + t0) tend to become independent.

Hence if a topology process{T (t)}∞t=0 is Markov or hidden Markov derived from a finite state

Markov Chain{Θ(t)}∞t=0, it will also exhibit the same behavior. That is:

P (T (t + t0) = Tk, T (t) = Tk′) → pkpk′ ast0 → ∞

Let the topology process{T (t)}∞t=0 be Markov and{X(t)}∞t=0 be the queue size process. Then

consider:

P [T (t + t0) = Tk|X(t)] =
∑

k′

P [T (t + t0) = Tk, T (t + 1) = Tk′ |X(t)]

=
∑

k′

P [T (t + t0) = Tk|T (t + 1) = Tk′ ,X(t)]P [T (t + 1) = Tk′ |X(t)]

=
∑

k′

P [T (t + t0) = Tk|T (t + 1) = Tk′ ]P [T (t + 1) = Tk′ |X(t)]

The above follows since ast0 increases,T (t + t0) andX(t) become approximately independent.

In addition,P [T (t + t0) = Tk|T (t + 1) = Tk′ ] tends topk irrespective ofTk′. Hence, for larget0,

the above is approximately,

P [T (t + t0) = Tk|X(t)] = pk

∑

k′

P [T (t + 1) = Tk′|X(t)] = pk

The same equations can be written when the topology process is not Markov but hidden Markov

( e.g. when each of the nodes does a random walk). If topology process{T (t)}∞t=0 is derived from

a Markov process{Θ(t)}∞t=0. Then, we write

P [T (t + t0) = Tk|X(t)] =
∑

θ

P [T (t + t0) = Tk, Θ(t + 1) = θ|X(t)]
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By carrying out the exact same analysis as above, we concludethatP [T (t+t0) = Tk|X(t)] = pk

for larget0.

Now consider the following scheduling scheme. Let time slots be partitioned intot0 classes of

the formΓm = (m, m+ t0, m+2t0, m+3t0, . . . , ) for m = 0, 1, . . . , t0−1. Accordingly, view the

original network as a time interleaved (TDM) collection oft0 identical networks,N0, . . . ,Nt0−1,

where networkNm is active only for time slott ∈ Γm. Hence, we have managed split the network

into t0 interleaved networks, all operating without interfering with each other. The topology process

seen by any particular network, (of indexm) is the process{T (m), T (m + t0), . . . , T (m + tt0)}

which has the same marginal and stationary distribution as the original process{T (t)}, and which

approximates an i.i.d process for larget0. Consider an arrival ratea that is stable under an i.i.d

topology process. Then, for somet0, the individual time interleaved networks will see approxi-

mately the same topology process, and hence will be stable for this rate. Since all thet0 networks

are stable, the initial network operating under the stationary and ergodic Markov or Hidden Markov

process is stable as well. Thus we proved that the stability region achieved by the i.i.d topology

is a subset of the corresponding stability region when topology is Markov or Hidden Markov. In

addition, we need to show that both these regions are squeezed between two sets that are essentially

the same. This will follow later by Lemma 6, in chapter 3, thatapplies for any topology process.

Therefore, for all the practical reasons, the stability region of the stationary and ergodic Markov or

Hidden Markov process, and the that of the i.i.d topology with the same stationary distribution are

identical.

2.5 Maximum throughput stationary scheduling policyπ0

In this thesis, we restrict our attention to a stationary policy that maximizes the stable throughput a

network can support. Before formally presenting the proposed scheduling policy we define a few
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useful quantities. Initially, we define(Dk(x))ℓj for each linkℓ ∈ L(k) that computes weighted

differences among all queue sizes that are connected through a link(server) under topologyTk and

for all customer classes:

(Dk(x))ℓj =











(xs(ℓ)j − xd(ℓ)j)(mk)ℓ, if d(ℓ) /∈ Vj

xs(ℓ)j(mk)ℓ, if d(ℓ) ∈ Vj ,
(2.7)

where(mk)ℓ is theℓth (diagonal) entry ofMk, defined in Assumption 3.

In addition, let the weight of serverℓ, (Dk(x))ℓ be the maximum weighted difference in queue

sizes, that is achieved for some customer classj. Hence:

(Dk(x))ℓ = max
j=1,... ,J

(Dk(x))ℓj . (2.8)

We also define the weight vector of each linkℓ that is present at the current topologyT (t) = Tk as

Dk(x) = {(Dk(x))ℓ : ℓ = 1, . . . , |L|}

Note that Equation 2.7 can be also represented in matrix formas follows:

(Dj
k(x))T = −(xj)T

R
j
Mk, ∀k ∈ {1, . . . , NT , } (2.9)

where(Dj
k(x))T is an1 × |L| vector.

We are now ready to define our policyπ0. We do so in the next two stages.

• Stage1 Let ĉk(x) be the solution to the following maximization:

ĉk(x) = arg max
c∈Sk

{Dk(x)T
c} (2.10)

The activation vector̂ck(x) will be the maximum weighted activation vector. Ties are re-

solved by selecting any one of the maximum weighted activation vectors.
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• Stage2 Let (ĵk(x))ℓ be a class forj ∈ {1, . . . , J} for which (Dk(x))ℓ = (Dk(x))ℓj. Then,

we define the policyπ0 as follows:

(πj
0(x, T ))ℓ =























1, j = (ĵk(x))ℓ, (ĉk(x))ℓ = 1 and xs(ℓ)j ≥ 1 for k

such thatT = Tk

0, else

(2.11)

Equation 2.11 is the activation rule for policyπ0. The multi-class activation vectorEj(t) is

defined through policyπ0 asEj(t) = πj
0(X(t − 1), T (t)).

The significant properties of this policy are that it is a simple, stationary policy that, as it will

be shown in the next chapter, performs nearly optimally in terms of maximizing the set of stable

arrival rates that the network can support. The only information that is needed in order to come to

a scheduling decision is the queue sizes at each network nodeand the characteristics of the links

available at each time slot. In addition, the scheduling is guaranteed to be collision free since it is

centralized.

In the next chapter, we will characterize how the stability region of this policy looks like. We

will also show that the stability regionsCπ0
of the proposed scheduling policyπ0 and the stability

regionC of the network both lie between two convex sets, namely a convex polytope and its

interior.
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Chapter 3

Optimality of scheduling policy π0

The main contribution of this Chapter is to characterize thestability region of the introduced policy

and show that it is arbitrarily close to the stability regionachieved by the set of all stationary

policies. Initially, a few notions of flow conservation are discussed. Then, the stability region of

the introduced policy is described and the policy’s optimality is reasoned and proved.

3.1 Flow Conservation

In order for a network to be stable, each network nodei must be able to forward all its incoming

traffic in such a way that traffic reaches one of its exit nodes and therefore no traffic accumulates

at i. One way to view the notion of stability is through the concept of flow conservation. By

observing the queue dynamics equation 2.1, we see that no node except for the source and the exit

node of any customer class,j, can create new packets or destroy packets. To motivate our guess for

the stability region, consider a link,ℓ in the network. Let(f j
k)ℓ denote the flow of classj packets

that have been successfully transmitted across linkℓ ∈ L. Then
∑NT

k=1(f
j
k)ℓpk is the average flow of

customer classj through theℓth link. As a node cannot destroy or create packets in a stable system

where there is no packet accumulation, the sum of departing flows at a node for any class, must be
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equal to the sum of arriving flows for this class. By flow conservation, for nodei /∈ Vj,

a
j
i =

∑

ℓ∈L:s(ℓ)=i

NT
∑

k=1

(f j
k)ℓpk −

∑

ℓ∈L:d(ℓ)=i

NT
∑

k=1

(f j
k)ℓpk =

(

−
NT
∑

k=1

(

R
j
f
j
kpk

)

)

i

.

Now let us consider the constraints that the flow vectorsf
j
k should satisfy. Sincef j

k are flows

of traffic in the network they must be positive component wise, in other wordsf j
k ∈ R

|L|
+ , ∀j =

1, . . . , J, ∀k = 1, . . . , NT . In addition, as at each time slot the set of links activated must belong

to a valid activation vector for the current topology. Therefore the vector of average transmission

attempts across all links in topologyk must be of the form
∑

c∈Sk
λ(c)c whereλ(c) is the fraction

of time slots the activation vectorc is used while the network is in topologyk and
∑

c∈Sk
λ(c) = 1.

The flow vectorf j
k is the flow of successfully transmitted packets for classj. The sum

∑J
j=1 f

j
k is

the flow vector over all links, irrespective of the customer class. This total flow vector is obtained by

multiplying the vector of transmission attempts by the probability of successful transmission across

each link. Hence we can argue that,
∑J

j=1 f
j
k ≈ Mk

∑

c∈Sk
λ(c)c. With this intuitive justification,

we define the following sets. We define a region of arrival ratesA
⋆ as:

A
⋆ = {a = (a1, . . . , aJ) ∈ R

NJ
+ : ∃f j

k ∈ R
|L|
+ , ∀j = 1, . . . , J, ∀k = 1, . . . , NT andδ > 1

such thatδ
J
∑

j=1

f
j
k ∈ co(MkSk)∀k, anda

j = −
NT
∑

k=1

R
j
f
j
kpk, ∀j} (3.1)

Let us also define another set of arrival rates, namely the region Ã that is:

Ã = {a = (a1, . . . , aJ) ∈ R
NJ
+ : ∃f j

k ∈ R
|L|
+ , ∀j = 1, . . . , J, ∀k = 1, . . . , NT

such that
J
∑

j=1

f
j
k ∈ co(MkSk)∀k, anda

j = −
NT
∑

k=1

R
j
f
j
kpk, ∀j} (3.2)

In the following section we shall argue that the setsA
⋆ andÃ represent the stability region of the
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network, under a randomly varying topology. We also define the set of arrival ratesA0 as:

A0 =

{a, such thata =

NT
∑

k=1

akpk, and

and for eachk = 1, . . . , NT , ak = (a1
k, . . . , aJ

k ) ∈ R
NJ
+ : ∃f j

k ∈ R
|L|
+ , ∀j = 1, . . . , J,

, ∃δ > 1 such thatδ
J
∑

j=1

f
j
k ∈ co(MkSk) anda

j
k = −R

j
f
j
k , ∀j}

The setA0 is obtained by a weighted average of the stability regions ofindividual topologiesTk.

To obtain the stability region of each individual topology,the scheduling policy described in [14]

is applied to each one of them, as if the network was a stationary one, taking this topology at all

times.

3.2 Stating and Proving Optimality of π0

In this section we are going exploit some set properties between the setsA⋆, Ã, the setC of all

stable arrival rates under all stationary policies, the setCπ0
of stable arrival rates under the proposed

policy π0, and the setA0 of arrival rates obtained by a convex combination of stable arrival rate

regions in each network configuration.

Theorem 3 The following properties hold:

1. The setA⋆ is a convex set that is not closed.

2. The set of arrival rates̃A is a convex polytope.

3. The two setsA⋆ andÃ are related through̃A = A⋆.
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4. The regions of arrival ratesA⋆, Ã, A0, C and Cπ0
are related through the following set

inequality:

A0

(1)

⊆ A
⋆

(2)

⊆ Cπ0

(3)

⊆ C

(4)

⊆ Ã
(5)
= Cπ0

(3.3)

Theorem 3 forms one of the core results of this thesis. It states that the capacity region achieved

by any stationary policy lies between the setsA
⋆ and Ã. The setÃ is argued to be a convex

polytope. Hence, it will be a convex and bounded region. In addition, A
⋆ ⊆ Ã, whereA

⋆ is

a convex, but not closed, set and the two sets are related through Ã = A⋆. Since a set and its

closure don’t necessarily have the same volume, one could claim thatA⋆ is much smaller from̃A

and that we can find a policy that does at least as well as our optimal throughput scheduling policy.

However, since these two sets are convex, and the setÃ is a convex polytope, they can differ only

at the points that belong at the phases ofÃ, and hence we can conclude that they are essentially

the same sets. In addition, the fact that bothC andCπ0
lie betweenA⋆ andÃ, optimality of π0

follows.

We also prove the following Lemma, that will be useful throughout our analysis.

Lemma 3 Let the vectorc, be such thatc ∈ co(Sk). Then, any vectora, that is component wise

0 ≤ a ≤ c, must also belong toco(Sk).

Proof: If the vectorc hasn non-zero elements, thena can have at mostn non-zero elements.

Without loss of generality, we sort the elements ofc so that the firstn elements are the non-zero

ones. Letx0 = c andx
n = a, where1 ≤ n ≤ |L|.

Claim thatxk ∈ co(Sk), ∀k = 1, . . . , n − 1, wherexk is defined by:

x
k = (a1, a2, . . . , ak, ck+1, . . . , c|L|) ∈ co(Sk)

.
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Let us also defineλi = ai

ci

for i = 1, . . . , n. Note thatλi ≤ 1 becauseai ≤ ci, ∀i = 1, . . . , |L|.

We will show the above statement by using induction.

• (Basic Step) We know thatx0 = c = (c1, c2, . . . , c|L|) ∈ co(Sk) (it is given).

• Assume that the claim holds fork = m and hencexm = (a1, a2, . . . , am, cm+1, . . . , c|L|) ∈

co(Sk).

• We will show that the claim holds fork = m + 1, in other words that vector

x
m+1 = (a1, a2, . . . , am, am+1, cm+2 . . . , c|L|) ∈ co(Sk)

By the induction hypothesisxm ∈ co(Sk). Therefore, it can be written as a convex combina-

tion of vectorssi ∈ Sk. By the properties of constraint set, all vectorss
′

i obtained by setting

the(m + 1)th component ofsi to 0, also belong in theSk. Therefore, it is straightforward to

see that the vectorx
′′

defined asx
′′

= (a1, a2, . . . , am, 0, cm+2 . . . , c|L|) ∈ co(Sk). Hence,

x
m+1 = (a1, a2, . . . , am, am+1, cm+2 . . . , c|L|) = λm+1x

m + (1 − λm+1)x
′′ ∈ co(Sk).

• Whenm = n, thenx
m = a and hencea ∈ co(Sk).

This completes the proof of Lemma 3. ♦

3.2.1 RegionA⋆ is convex

First, we are going to show that theA⋆ is convex and then give a counter example for not being a

closed set.

We need to show that for any arrival rate vectorsa
j
1 anda

j
2, such thataj

1, a
j
2 ∈ A

⋆, all the points

that lie on the segmentλa
j
1 + (1 − λ)aj

2 belong inA⋆ as well.
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Sincea
j
1, a

j
2 ∈ A

⋆, we know that there exist flow vectorsf1j
k ≥ 0 andf2j

k ≥ 0 such that for

someδ1, δ2 > 1 they satisfy

δ1

J
∑

j=1

f1j
k ∈ co(MkSk)

and

δ2

J
∑

j=1

f2j
k ∈ co(MkSk)

Thenaj
1 andaj

2 can be expressed through the equationsa
j
1 =

∑NT

k=1 R
j
f1j

kpk andaj
2 =

∑NT

k=1 R
j
f2j

kpk.

Let us now take the convex combination ofa
j
1, a

j
2 for someλ, 0 ≤ λ ≤ 1:

a
j

= λa
j
1 + (1 − λ)aj

2

= −λ

NT
∑

k=1

R
j
f1j

kpk − (1 − λ)

NT
∑

k=1

R
j
f2j

kpk

= −
NT
∑

k=1

R
j(λf1j

k + (1 − λ)f2j
k)pk

Let f j
k

∆
= λf1j

k + (1 − λ)f2j
k. We must show that conditions

• f
j
k ≥ 0 and

• ∃δ > 1 : δ
∑J

j=1 f
j
k ∈ co(MkSk)
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a0

2

Destination

1

Figure 3.1: A2 node network with a single network configuration (degenerate case of a multiple

configurations network). Arrivals at node1 need to exit the network at node2. The set of achievable

arrival rates is not a closed set.

are met. Sincef1j
k, f2

j
k ≥ 0, it trivially follows that f j

k ≥ 0 Also,

δ

J
∑

j=1

f
j
k

= δ

J
∑

j=1

(

λf1j
k + (1 − λ)f2j

k

)

= λδ
J
∑

j=1

f1j
k + (1 − λ)δ

J
∑

j=1

f2j
k

Let us selectδ = min(δ1, δ2), then by Lemma 3 we can see that,δ
∑J

j=1 f1j
k ∈ co(MkSk),

δ
∑J

j=1 f2j
k ∈ co(MkSk) andδ

∑J

j=1 f
j
k ∈ co(MkSk). Therefore,A⋆ is a convex set.

Now, we are going to present a simple example whereA
⋆ is not a closed set. Consider the

network depicted in Figure 3.1. It is a2 node network with one customer class and a single network

configuration. Arrivals at node1 exit the system at exit node2. The service rate through the single

link is µ = 1. The possible activation vectors areS = {{0}, {1}} and the convex hull ofS will be

the closed line segmentco(S) = [0, 1]. Let the total flow through the link bef . Then, there should

exist aδ > 1 such thatδf ∈ co(MS) or δf ∈ [0, 1]. Hence,f ∈ [0, 1), which is not a closed set.

Hence the arrival ratea = Rf that is obtained through a linear mapping off will not be a closed

set either. This concludes the proof of Theorem 3: Part 1. ♦
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3.2.2 RegionÃ is a convex polytope

In this subsection, we are going to show that the setÃ forms a convex polytope and that it is related

with A
⋆ throughÃ = A⋆.

We are now going to prove that̃A is a convex polytope. The idea behind this proof is to show

that the correspondingf j
k form a convex polytope and̃A that is related through a linear map with

them is a polytope as well.

A convex polytope is a set of convex combinations of finitely many points/vectors. The con-

straint setSk is a set of finitely many constraint vectors,c. In addition, the set:

MkSk
∆
= {Mks : s ∈ Sk}

is finite as well. Hence the set ofco(MkSk) is a convex polytope.

However, the set off j
k that satisfy

∑J

j=1 f
j
k ∈ co(MkSk) can be rewritten in matrix form as

J
∑

j=1

f
j
k = [ f 1

k f 2
k . . . fJ

k
]



















1

1

...

1



















where the vector[ 1 1 . . . 1 ] is a linear map. Hence, by making use of Theorem 6 (See

Appendix C ) we obtain that the set off
j
k , j = 1, . . . , J is a convex polyhedron.

To complete our proof we need to show that the set off
j
k that satisfy

∑J

j=1 f
j
k ∈ co(MkSk) is a

bounded set, and hence a convex polytope.

We know thatf j
k ≥ 0 and their sum is bounded, since

∑J
j=1 f

j
k ∈ co(MkSk). Hence, each

one of them must be bounded as well, which proves the Claim. Moreover, sinceRj, pk and the

sum over allk’s are linear operations, we conclude that the set ofÃ =
∑NT

k=1 R
j
f
j
kpk is a convex

polytope. This completes the proof of Theorem 3: Part 2. ♦
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3.2.3 Ã is the closure ofA⋆

We will proceed to show thatA⋆ = Ã. Towards this end, we two properties need to be proved:

1. Ã ⊆ A⋆

2. A⋆ ⊆ Ã

1. We need to show that for every pointa ∈ Ã ⇒ a ∈ A⋆. Let a ∈ Ã. Consider the sequence

an, defined byan = θna, whereθn ∈ (0, 1) andlimn→∞ θn = 1. Clearly:

lim
n→∞

an = lim
n→∞

θna = a ∈ Ã

We show thatan ∈ A
⋆ and hence prove the statement.

Sincea ∈ Ã, there must exist some flowsf j
k that satisfy the following:

I f
j
k ≥ 0

II
∑J

j=1 f
j
k ∈ co(MkSk)

and for each commodityj, a can be written asaj = −
∑NT

k=1 R
j
f
j
kpk. Let us define the

sequence(f j
k)n

∆
= θnf

j
k . To conclude the proof we show that(f j

k)n satisfy the conditions in

the definition ofA⋆ (Equation 3.1) witha = an. We observe that(f j
k)n, n = 1, 2, . . . satisfy

the following properties:

I (f j
k)n ≥ 0

II

J
∑

j=1

(f j
k)n =

J
∑

j=1

θnf
j
k ⇒
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1

θn

J
∑

j=1

(f j
k)n =

J
∑

j=1

f
j
k ∈ co(MkSk)

Hence there exists aδn = 1
θn

> 1, such that:

δn

J
∑

j=1

(f j
k)n ∈ co(MkSk)

Therefore,an ∈ A
⋆ and for each customer classj can be written as:

a
j
n = −

NT
∑

k=1

R
j(f j

k)npk = −
NT
∑

k=1

R
jθnf

j
kpk = θna

j
n

Hence,a ∈ A⋆.

2. In order to show thata ∈ A⋆ ⇒ a ∈ Ã, we will follow two steps. First we will show that

thatA⋆ ⊆ Ã and then thatA⋆ ⊆ Ã. Let an arrival rate vectora ∈ A
⋆. There must exist

f
j
k ≥ 0 and aδ > 1 such thatδ

∑J

j=1 f
j
k ∈ co(MkSk) and for each customer classj a

j =

∑J
j=1 R

j
f
j
kpk. Since,δ

∑J
j=1 f

j
k ∈ co(MkSk) andδ > 1, by Lemma 3.

∑J
j=1 f

j
k ∈ co(MkSk)

follows. Hence:

a ∈ A
⋆ ⇒ a ∈ Ã.

In addition,Ã has been proven to be a convex polytope, and therefore be a closed set. By

the definition of the closure of the set, it is the smallest closed set that contains the set, which

impliesA
⋆ ⊆ A⋆. Hence,A⋆ ⊆ Ã.

The above2 steps completes the proof of Theorem 3: Part 3. ♦

We proceed to establish the set relationships among the setsA
⋆, Ã, A0, C andCπ0

of Theorem

3 (Equation 3.3). Inequality(3) follows trivially, sinceπ0 is one policy from the set of all stationary

policiesπ ∈ Π and therefore its throughputCπ0
cannot be better than the throughput achieved by

all members inΠ, namely the regionC. In addition, equality(5) trivially follows once we prove

thatA⋆
(2)

⊆ Cπ0

(4)

⊆ Ã, by taking the closure of this expression. In the sequel, therest of the set

inequalities will be shown.
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3.2.4 The region of stable arrival rates underπ0 containsA
⋆

In this section, we show inequality (2) in Theorem 3 (Part 3.3). We argue that theA⋆ ⊆ Cπ0
and

hence, underπ0 every arrival rate vectora ∈ A
⋆ is stable. To this respect, we are going to use a

Lyapunov analysis approach. We will try to show that the conditions of Theorem 2 also hold for

our model when the proposed scheduling policy is applied.

Towards thid end, we are going to use the candidate Lyapunov functionV ′ as defined in chapter

2. In addition, we will attempt to find sufficient conditions on the arrival rates so as to ensure

that the expected value of the Lyapunov function has a negative drift whenever the queue sizes

are large. If we are able to find necessary and sufficient conditions, we will have characterized an

optimal throughput stable scheduling policy.

We will apply this candidate Lyapunov function to the MarkovChain of the queue sizes{X(t)}∞t=0.

In the sequence, we will show that whenever the queue sizes are large, the expected drift of the can-

didate Lyapunov function is negative.

Lemma 4 For a stationary policyπ, anarbitraryarrival rate vectora and a network following the

queue length dynamics given by Equation 2.1, the following holds:

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x]

≤
NT
∑

k=1

(

J
∑

j=1

−2(Dj
k(x))

T
πj(x, Tk)

)

pk

+

J
∑

j=1

2xjT
a

j +

NT
∑

k=1

bk, (3.4)

wherebk are constants that do not depend on the queue sizes.
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Proof:

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x] (3.5)

= E
[

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x, T (t + 1) = Tk]|X(t) = x
]

=

NT
∑

k=1



E[
J
∑

j=1

N
∑

i=1

(X2
ij(t + 1) − X2

ij(t))|X(t) = x, T (t + 1) = Tk]P [T (t + 1) = Tk|X(t) = x]





=

NT
∑

k=1



E[

J
∑

j=1

N
∑

i=1

(X2
ij(t + 1) − X2

ij(t))|X(t) = x, T (t + 1) = Tk]



 pk

=

NT
∑

k=1



E[
J
∑

j=1

(Xj(t + 1)T X
j(t + 1) − X

j(t)T X
j(t))|X(t) = x, T (t + 1) = Tk]



 pk

=

NT
∑

k=1



E[

J
∑

j=1

(Xj(t + 1) − X
j(t))T (Xj(t + 1) + X

j(t))|X(t) = x, T (t + 1) = Tk]



 pk (3.6)

By substituting equation 2.1 into 3.6 we get:

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x]

=

NT
∑

k=1





J
∑

j=1

E
[

(Rj
M(t + 1)Ej(t + 1) + A

j(t + 1))T

(

2Xj(t) + R
j
M(t + 1)Ej(t + 1) + A

j(t + 1)
)

|X(t) = x, T (t + 1) = Tk

])

pk

=

NT
∑

k=1





J
∑

j=1

E[(Rj
M(t + 1)Ej(t + 1) + A

j(t + 1))T

(

R
j
M(t + 1)Ej(t + 1) + A

j(t + 1)
)

|X(t) = x, T (t + 1) = Tk]

+

J
∑

j=1

E[2(Rj
M(t + 1)Ej(t + 1) + A

j(t + 1))T X
j(t)|X(t) = x, T (t + 1) = Tk]



 pk (3.7)

For each of theNT terms of Equation 3.7 correspond two inner summations. The first inner

summation of 3.7 can be bounded by a constant, saybk since it only contains entries fromRj and

A(·), which are fixed given the topology and don’t vary with the queue sizes, andE(·), which

depends on the queue sizes but is bounded for all topologies by 1 component wise.

Now let us look at the second inner summation of equation 3.7,which corresponds to topology,
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Tk ∈ T :




J
∑

j=1

E
[

2(Rj
M(t + 1)Ej(t + 1) + A

j(t + 1))T X
j(t)|X(t) = x, T (t + 1) = Tk

]



 pk

=





J
∑

j=1

E
[

2(Rj
M(t + 1)Ej(t + 1))T X

j(t)|X(t) = x, T (t + 1) = Tk

]



 pk

+





J
∑

j=1

E
[

2(Aj(t + 1))T X
j(t)|X(t), T (t + 1) = Tk

]



 pk

=





J
∑

j=1

2(xj)TR
j
Mkπ

j(x, Tk)



 pk

+





J
∑

j=1

2(xj)Ta
j



 pk,

where we have used thatπj(x, Tk) = E[Ej(t + 1)|X(t) = x, T (t + 1) = Tk] and in view of

Assumption 3 and the fact thatM(t) is independent of the queue sizes,Mk = E[M(t + 1)|X(t) =

x, T (t + 1) = Tk]. The elements of matrixMk, are the probabilities(mk)ℓ that represent the

probability that a transmission goes through linkℓ. So, equation 3.7 becomes:

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x]

≤
NT
∑

k=1

(

J
∑

j=1

2(xj)T
R

j
Mkπ

j(x, Tk)

)

pk

+

J
∑

j=1

2(xj)T
a

j

(

NT
∑

k=1

pk

)

+

NT
∑

k=1

bk (3.8)

Equation 3.8 can be rewritten by substituting Equation 2.9 into the equivalent entries for(xj)T
R

j
Mk,
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as:

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x]

=

NT
∑

k=1

(

J
∑

j=1

−2(Dj
k(x))

T
πj(x, Tk)

)

pk

+
J
∑

j=1

2xjT
a

j +

NT
∑

k=1

bk (3.9)

♦

Now we impose the condition that the arrival rates belong toA
⋆ and examine the system under

the policyπ0. Then we can derive the following result.

Lemma 5 Consider some stationary policyπ, then for all arrival rate vectorsa ∈ A
⋆ and a

network following the queue length dynamics given by Equation 2.1, the following holds:

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x]

≤ 2

NT
∑

k=1





J
∑

j=1

(

−(Dk
j(x))T πj(x, Tk)

)

+ (Dk(x))T

|Sk|
∑

i=1

(λk)i(ck)i



 pk

+

NT
∑

k=1

bk (3.10)

Proof: By the flow conservation constraints described earlier and sincea ∈ A
⋆, we have that

∃δ > 1 : δ
J
∑

j=1

f
j
k ∈ co(MkSk)

and by Equation 3.1

a
j = −

NT
∑

k=1

(

R
j
f
j
kpk

)

, ∀j = 1, . . . , J

In the sequel, we prove that this arrival rate vectora is stable.

From Equation 3.1, we know that we may find(γk)i ≥ 0, ∀i = 1, . . . , |Sk|, that satisfy
∑|Sk|

i=1(γk)i = 1 and are such that

δ
J
∑

j=1

f
j
k = Mk

|Sk|
∑

i=1

(γk)i(ck)i ,where(ck)i ∈ Sk,
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In the Equation above,(ck)i ∈ Sk are valid activation vectors under topologyTk.

Sinceδ
∑J

j=1 f
j
k ∈ co(MkSk), it follows from Lemma 3 that any vector smaller than that com-

ponent wise will also be in this Convex Hull. Hence, so will
∑J

j=1 f
j
k .

As δ > 1, we can obtain coefficients(λk)i = (γk)i

δ
≥ 0, ∀i ∈ {1, . . . , |Sk|} such that:

J
∑

j=1

f
j
k = Mk

|Sk|
∑

i=1

(λk)i(ck)i where(ck)i ∈ Sk and
|Sk|
∑

i=1

(λk)i < 1,

Moreover, from Equation 3.1, we can write

J
∑

j=1

2(xj)T
a

j = −
NT
∑

k=1

(

J
∑

j=1

2(xj)T
R

j
f
j
k

)

pk (3.11)

and by substituting Equation 2.9 into 3.11 we get that:

J
∑

j=1

2(xj)T
a

j = 2

NT
∑

k=1

(

J
∑

j=1

Dk
j(x)

T
M

†
kf

j
k

)

pk (3.12)

In the equation above,M†
k is thepseudoinverseof the diagonal matrixMk. SinceMk is a diagonal

matrix, its pseudo-inverse is a diagonal matrix as well, with diagonal entries:

(m†
k)ℓ =











(m−1
k )ℓ if (mk)ℓ 6= 0

0 if (mk)ℓ = 0

Therefore we can argue as follows:

J
∑

j=1

2(xj)T
a

j

≤ 2

NT
∑

k=1

(

max
j=1,... ,J

(

Dk
j(x)

T
)

M
†
k

J
∑

j=1

f
j
k

)

pk

< 2

NT
∑

k=1



(Dk(x))T
M

†
kMk

|Sk|
∑

i=1

(λk)i(ck)i



 pk

= 2

NT
∑

k=1



(Dk(x))T

|Sk|
∑

i=1

(λk)i(ck)i



 pk (3.13)
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The equality in Equation 3.13 is justified as follows. The entry
∑|Sk|

i=1(λk)i(ck)i is the sum over

all possible valid activation vectors. They must have0s, for each link that is not available under

topologyTk. In addition,M†
kMk is a diagonal matrix. Its diagonal elements are1 if (mk)ℓ 6= 0 and

0 if (mk)ℓ = 0, in which case theℓth entry ofc will be 0 as well. Hence:

M
†
kMk

|Sk|
∑

i=1

(λk)i(ck)i =

|Sk|
∑

i=1

(λk)i(ck)i

and Equation 3.13 follows. From equations 3.13 and 3.4, we can write:

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x]

≤ 2

NT
∑

k=1





J
∑

j=1

(

−(Dk
j(x))T πj

0(x, Tk)
)

+ (Dk(x))T

|Sk|
∑

i=1

(λk)i(ck)i



 pk

+

NT
∑

k=1

bk (3.14)

♦

Next we proceed to show the remaining part of inequality(2) in Theorem 3. Examining the

definition ofπ0 in Equation 2.7, we can see that, for allj = 1, 2, . . . , J,

Dk
j(x)

T
πj

0(x, Tk) = Dk(x)T πj
0(x, Tk).

This equivalence results from the fact that any element ofπj
0(x, Tk) is non-zero only when the

corresponding element ofDk
j(x) equalsDk(x), in other words achieves the maximum of Equation

2.8). Hence we have,

J
∑

j=1

Dk(x)T πj
0(x, Tk) =

J
∑

j=1

D
j
k(x)T πj

0(x, Tk) = max
c∈Sk

{Dk(x)T
c}. (3.15)
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and Equation 3.10 becomes:

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x]

≤
NT
∑

k=1







−2 max
c∈Sk

(

Dk(x)T
c
)

+ 2(Dk(x))T

|Sk|
∑

i=1

(λk)i(ck)i



 pk + bk





≤
NT
∑

k=1







−2 max
c∈Sk

(

Dk(x)T
c
)

+ 2 max
c∈Sk

(

(Dk(x))T
c
)

|Sk|
∑

i=1

(λk)i



 pk

+ bk]

=

NT
∑

k=1







−2



1 −

|Sk|
∑

i=1

(λk)i



max
c∈Sk

(

(Dk(x))T
c
)



 pk + bk



 (3.16)

We need to show that whenever the queue sizes increase above some threshold, the right hand

side of Equation 3.16 becomes strictly negative. This wouldguarantee that the drift of the expected

value of the Lyapunov function becomes strictly negative and bounded away from0 for large queue

sizes. Hence, we proceed to prove that wheneverV ′(x) ≥ v, then it must hold that for at least one

topologyk the

max
c∈Sk

(

D
′
k(x)T

c
)

> h(v),

whereh(v) is a positive, increasing and unbounded function ofv.

Let the queue sizes be large enough so thatV ′(x) ≥ v. Then,

v ≤ V ′(x)

=

J
∑

j=1

N
∑

i=1

{xij}
2

≤
J
∑

j=1

N max
i=1,... ,N

{xij}
2

≤ NJ max
i=1,... ,N

max
j=1,... ,J

{xij}
2

(3.17)
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Therefore,

max
i=1,... ,N

max
j=1,... ,J

{xij} ≥

√

v

JN
. (3.18)

Let us suppose now that the queue that achieves this maximum value is thei⋆ and this happens for

customers of classj⋆. In other words:

(i⋆, j⋆) = arg max
i=1,... ,N,j=1,... ,J

{xij}

The queue size that corresponds to nodei⋆ and classj⋆ is xi⋆,j⋆. By making use of the assumption

on the topology process (Assumption 2), we know that if we take the union of all possible topolo-

gies there will existn links ℓi ∈
⋃NT

k=1 L(k), for somen > 0, such that for some nodesi⋆, i1, . . . , in

s(ℓ1) = i⋆, s(ℓm+1) = im andd(ℓm+1) = im+1, m,∈ {1, . . . , n − 1} andin ∈ Vj⋆, wheren ≤ N .

Hence,xi⋆,j⋆ can be rewritten to the equivalent:

xi⋆j⋆ = (xi⋆j⋆ − xi1j⋆) + (xi1j⋆ − xi2j⋆) + . . . + (xin−1j⋆ − xinj⋆) + xinj⋆

Therefore we have,

∆= max
m=1,... ,n−1

{xi⋆j⋆ − xi1j⋆ , ximj⋆ − xim+1j⋆, xinj⋆}

≥
xi⋆j⋆

n

≥
xi⋆j⋆

N

≥
1

N

√

v

JN
(3.19)

Let the above maximum be achieved for some linkℓ(k′) ∈ L(k′) for topologyTk′. Now let

us look at topologyTk′ and look at linkℓ(k′). Let i1 = s(ℓ(k′)) andi2 = d(ℓ(k′)). Let also∆ =

xi1j⋆ − xi2j⋆, for the customer classj⋆ described above. Then we get:

∆ = xi1j⋆ − xi2j⋆

≤ max
j=1,... ,J

{xi1j − xi2j}
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Therefore for topologyTk′ , we must have:

max
c∈S

k′

(

Dk′(x)T
c
)

≥ max
c∈S

k′

(

(Dj⋆

k′ (x))T
c

)

(3.20)

≥ ∆mk′ℓ
k′

(3.21)

≥
mk′ℓ

k′

N

√

v

JN
(3.22)

Inequality 3.20 follows from the fact thatDk′ℓ(x) ≥ Dk′ℓj⋆(x). Inequality 3.21 follows from the

fact that any active single link (in this caseℓk′,) is a valid activation set in itself. The inequality

3.22 come from equation 3.19.

Hence we obtain that:

V ′(x) ≥ v ⇒ −max
c∈S

k′

(

Dk′(x)T
c
)

≤ −
mk′ℓ

k′

N

√

v

JN

And therefore we have:

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x]

≤
NT
∑

k=1



−2



1 −

|Sk|
∑

i=1

(λk)i



max
c∈Sk

(

(Dk(x))T
c
)



 pk +

NT
∑

k=1

bk

≤ −2



1 −

|S
k′
|

∑

i=1

(λk′)i



max
c∈S

k′

(

(Dk′(x))T
c
)

pk′ +

NT
∑

k=1

bk

≤ −2



1 −

|S
k′
|

∑

i=1

(λk′)i





mk′ℓ
k′

N

√

v

JN
pk′ +

NT
∑

k=1

bk

≤ −2 min
k=1,... ,NT







1 −

|Sk|
∑

i=1

(λk)i







m(k′)ℓ
k′

N

√

v

JN
pk′ +

NT
∑

k=1

bk

≤ −2 min
k=1,... ,NT







1 −

|Sk|
∑

i=1

(λk)i







1

N

√

v

JN
( min
k=1,... ,NT

pk)( min
k=1,... ,NT ,ℓk∈L(k)

{mkℓk
})

+

NT
∑

k=1

bk (3.23)
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Each of the above minimizations are achieved at strictly positive values. Hence, we observe that

if we selectv sufficiently large, we can make the right hand side of Equation 3.23 strictly negative

and bounded away from zero. The variablev must be selected in such a way so that the first term

(negative) must overcome the summation of the 2 positive terms. Then, we have proved that

For the mobile network with i.i.d topology processes, scheduled by policyπ0, and for arrival

rates satisfying Equation 3.1, there exist av > 0 andǫ > 0 such that, ifV ′(x) ≥ v then

E[V ′(X(t + 1)) − V ′(X(t))|X(t) = x] ≤ −ǫ (3.24)

Also, for any finite arrival rate vectora, it is straightforward to see that,

E[V ′(X(t + 1))|X(t) = x] < ∞, ∀x ∈ X .

Hence the time varying network, in which topologies change in a i.i.d fashion is stable for these

arrival rates. ♦

An interesting fact that emerges from the above analysis is that the above holds under relaxed

conditions on the network connectivity. It is not necessarythat all the individual topologies have

to be connected for stability. Assumption 2 concerning connectivity of the union of the topologies

is sufficient. With a non-zero probability the network can become completely disconnected and

remain stable, provided the arrival rate vectors satisfy the constraints of equation 3.1.

3.2.5 The region of stable arrival rates under any policy is contained in Ã

In this section we are going to prove that inequality (4) holds, i.e that any arrival rate that is stable

under some stationary policy must belong in the setÃ. Towards this end we state and prove the

following lemma.

Lemma 6 If the system is stable under some stationary policyπ, i.e.a ∈ C, thena ∈ Ã.
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Proof: Consider an arrival rate vectora ∈ C, i.e the system be stable under some stationary policy

π̃. If the Markov Chain{X(t), T (t + 1)}∞t=0 that represents the state of our system, can either

be in a positive recurrent state of some recurrent class or ina transient state. Suppose that the

system starts in some positive recurrent class, then it willremain there forever. Suppose, on the

other hand, that the system starts in one of the transient states. Then, by Definition 1, the system

will have to leave the set of transient states in finite time with probability1 and land itself into

one of the positive recurrent classes fromZ = ∪∞
i=1Zi. Hence, without loss of generality we may

assume that the Markov Chain{X(t), T (t+1)}∞t=0 will be restricted to one of the recurrent classes

Zi, i = 1, 2, . . . , that is positive recurrent and hence ergodic.

By Assumption 3, the service completion matrix of the servers,M(t), given the current topol-

ogyT (t) is independent ofX(0), . . . ,X(t− 1) because they only depend on the current topology.

Hence we can show the following simple claim.

Claim 1 The triplet{X(t), T (t + 1),M(t + 1)}∞t=0 is a Markov Chain.

Proof:

P [X(t),M(t + 1), T (t + 1)|X(t − 1),M(t), T (t),X(t − 2),M(t − 1), T (t − 1) . . . ] =

= P [M(t + 1)|X(t), T (t + 1),X(t − 1),M(t), T (t),X(t − 2),M(t − 1), T (t − 1) . . . ]

= P [M(t + 1)|T (t + 1)]P [X(t), T (t + 1)|X(t − 1),M(t), T (t)]

= P [M(t + 1)|X(t), T (t + 1),X(t − 1),M(t), T (t)]P [X(t), T (t + 1)|X(t − 1),M(t), T (t)]

= P [X(t),M(t + 1), T (t + 1)|X(t − 1),M(t), T (t)]

Therefore,{X(t), T (t+1),M(t+1)}∞t=0 is a Markov Chain, which is ergodic if{X(t), T (t+1)}∞t=0

is ergodic. Now consider the quantityFj(t) = M(t)π̃j(X(t − 1), T (t)). Let us also define

f
j
k

∆
= E[Fj(t)|T (t) = Tk]
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We are going to show thatf j
k satisfy the conditions in the definition of̃A and thus prove that

a ∈ Ã. Consider some nodei and some customer classj. Since the system is stable, packets do

not accumulate at any node. Therefore, the limiting averagenumber of external arrivals at nodei

of classj, in addition with the internal arrivals of classj due to scheduling, are equal to the average

number of internal departures of customers of classj. Let i be such thati /∈ Vj. Then:

aj
i =

a.s
= lim

τ→∞
{
1

τ

τ
∑

t=1

A
j
i (t)}By stationarity of arrival process

= lim
τ→∞

1

τ

τ
∑

t=1





∑

ℓ:s(ℓ)=i

F j
ℓ (t) −

∑

ℓ:d(ℓ)=i

F j
ℓ (t)





= lim
τ→∞

1

τ

τ
∑

t=1



−
∑

ℓ:s(ℓ)=i

Rj
iℓF

j
ℓ (t) −

∑

ℓ:d(ℓ)=i

Rj
iℓF

j
ℓ (t)





= lim
τ→∞

−
1

τ

τ
∑

t=1

[

∑

ℓ∈L

Rj
iℓF

j
ℓ (t)

]

In vector notation we will have,

a
ja.s.
= lim

τ→∞
−

1

τ

τ
∑

t=1

[

R
j
F

j(t)
]

(3.25)

= −R
j lim

τ→∞

1

τ

τ
∑

t=1

[

F
j(t)
]

The quantity
∑τ

t=1 F
j(t) indicates how many customers of classj have crossed each server during

time [1, t]. Since{X(t−1),M(t), T (t)}∞t=0 is an ergodic Markov Chain, any function of an ergodic

Markov Chain is ergodic well, we know thatF
j(t) will be ergodic. Hence:

1

τ

τ
∑

t=1

F
j(t)

a.s
→ E[Fj(t)]
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We have that:

E[Fj(t)] = E[E[Fj(t)|T (t)]]

=

NT
∑

k=1

E[Fj(t)|T (t) = Tk]pk

=

NT
∑

k=1

f
j
kpk

and Equation 3.25 becomes:

a
j
i

a.s
→ −R

jE[Fj(t)] by ergodicity

= −
NT
∑

k=1

R
j
f
j
kpk

Now we need to check whether all the conditions onf
j
k in the definition ofÃ are satisfied.

• f
j
k = E[M(t)π̃j(X(t − 1), T (t))|T (t) = Tk] ≥ 0, as an expectation of a non-negative

quantity.

• Consider
J
∑

j=1

f
j
k =

J
∑

j=1

E[M(t)π̃j(X(t − 1), T (t))|T (t) = Tk]

=
J
∑

j=1

MkE[π̃j(X(t − 1), Tk)|T (t) = Tk] (3.26)

= MkE

[

J
∑

j=1

π̃j(X(t − 1), Tk)|T (t) = Tk

]

Equation 3.26 follows from Assumption 3. In addition, sinceπ̃ is a valid scheduling policy,

J
∑

j=1

π̃j(X(t − 1), Tk) ∈ Sk

and therefore

MkE

[

J
∑

j=1

π̃j(X(t − 1), Tk)|T (t) = Tk

]

∈ co(MkSk).

Hence:
∑J

j=1 f
j
k ∈ co(MkSk).
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Therefore, we showed that there exist flowsf
j
k ≥ 0, that satisfy

∑J
j=1 f

j
k ∈ co(MkSk), and such

thataj = −
∑NT

k=1 R
j
f
j
kpk, ∀j. This implies thata ∈ Ã, which completes the proof. ♦

So, we proved that the arrival rate vectora must belong ina ∈ Ã. We can conclude therefore,

that the regioñA contains indeed the network stability region obtained by the set of all stationary

scheduling policies.

3.2.6 Time sharing based policy

In this section we are going to show that a policy that performs time sharing between network

configurations is suboptimal with respect to maximizing thenetwork’s stable throughput and that

the proposed scheduling policy performs at least as well. Inother words, we will show that equality

(1) of Equation 3.3 holds.

Clearly, A0 are the arrival rates obtained by time sharing of individualnetworks. Now we

proceed to show that the capacity region is larger than the linear combination of stability regions of

individual topologies.

Claim 2 ClaimA0 ⊆ A
⋆

It is easy to see that ifa ∈ A0, thena =
∑NT

k=1 akpk, ak ∈ CapacityRegion(Tk). Therefore

a
j
k = −R

j
f
j
k , (3.27)

which follows from [14], and hence:

a
j = −

NT
∑

k=1

R
j
f
j
kpk (3.28)

and conditions of belonging toA⋆ are satisfied. Therefore:

a ∈ A0 ⇒ a ∈ A
⋆
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and hence:

A0 ⊆ A
⋆

We will show later, through the example of section 3.3, that the region of arrival ratesA0 can be a

strict subset of the regionA⋆

3.3 Example of Mobile network with two configurations

Consider a3 node network with two configurationsT0 andT1 as shown in Figure 3.2. The network

exists in one of the two configurations at any time and switches between the two according to a

two state homogeneous Markov Chain with equiprobable stationary distribution (p0 = p1 = 0.5).

Let us consider perfect links that allow perfect communication, in other words links for which the

service rate of the corresponding server is1. In network configurationT0 the network is such that

a perfect communication is possible only from nodes1 to 2 and no communication is possible

between nodes2 and3. In network configurationT1, perfect communication is only possible from

node2 to 3. Assume that there is a single class of customers that will exit the system as soon

as they reach node3. Let a1, a2 denote the arrival rates at nodes1 and2 for node3 . As there

is only one destination class, we shall drop the superscriptj indicating the destination class from

the discussion in this section. As there is only one possibleactive link in both configurations, the

activations setsS0 andS1 contain singleton elements, that is,S0 = {[1, 0]} andS1 = {[0, 1]}

Then the matrixR is a3×2 matrix indicating the routing matrix under the union of topologies.

Each row of the matrix corresponds to a node. Each column corresponds to a link,ℓ ∈ L. Then

we haveR =













−1 0

1 −1

0 0













. Consider the stability region of configurationT0. Clearly the only

flow vectorf0 such that−Rf0 ≥ 0 and(f0)2 = 0 is the vector[0, 0]. Hence the stability region for
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Figure 3.2: A3 node network with two network configurations,T0 andT1. Arrivals occur at nodes

1 and2 and will exit the network at node3.

configurationT0 contains only the point[a1, a2]
T = [0, 0]T . This is also obvious by looking at the

network configuration, as no positive arrival rates to destination3 are stable.

Similarly, consider the stability region of configurationT1. Any valid flow vector for config-

urationT1, f1 which gives−Rf1 ≥ 0 must be of the form[0, α]T where0 ≤ α < 1. Hence the

capacity region for networkT1 contains points of the form−R[0, α]T = [0, α]T . Therefore, the

stability region or configurationT1 contains only a line[a1, a2]
T ∈ {[0, α]T : 0 ≤ α < 1}.

So, we deduce that the regionA0 obtained by time sharing of the two networks is given by

[a1, a2]
T ∈ {0.5[0, 0]T + 0.5[0, α]T : 0 ≤ α < 1}, which is a vertical line of length0.5 through the

origin.

Now consider the achievable regionA
⋆ for this network.

It is given as:

A
⋆ = {[a1, a2]

T : [a1, a2]
T = −













−1 0

1 −1

0 0













(0.5f0 + 0.5f1) ≥ 0} (3.29)

where each element off(i), i = 0, 1 lies in [0, 1). Also, by constraints on the activation set,f0

must be of the form[α, 0]T andf1 must be of the form[0, β]T . It is straightforward to see that the
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Figure 3.3: Stability regions of each configuration, setsA0 andA
⋆ for the3 node network.

elements ofA⋆ are of the form[0.5α,−0.5α + 0.5β, 0] where0 ≤ α, β < 1. The necessary and

sufficient additional condition for these entries to be nonnegative isβ ≥ α, we can ensure that each

of the elements is nonnegative. Figure 3.3 showsA
⋆. Clearly this region is a strict superset of the

regionA0 and positive arrival rates on node1 can be delivered to node3 by using node2 as a relay.

As an evidence of what we argued earlier, note that, for anyα > 0, the term−Rf0 has a

negative element, which indicates a nonzero “departure rate” at node2, for destination node, in

configurationT0.

3.4 Conclusions

In this chapter we found an optimal stable scheduling policyfor a network which changes its

topology according to an i.i.d topology process and obtained the achievable rate region. By the

discussion of stationary and ergordic topology processes,discussed in chapter 2, if follows that this

region is achievable in this more general case as well. Then we showed that any rate outside the
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specified region is unstable, which implies that indeed thisis the stability region of the network.

Moreover, we elaborated that the capacity region of the mobile network is strictly better than the

one resulting from a linear combination of stationary networks.
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Chapter 4

Simulations Results

In this chapter, we introduce our simulation tool and present simulation results for networks whose

topology varies in a random fashion. Our ultimate aim is to verify that mobility increases the

maximum stable throughput that the network can sustain. In other words, even when nodes move

and the network evolves exclusively within disconnected topologies, we exhibit that the proposed

scheduling policy achieves a throughput that is strictly positive, provided that Assumption 2 is

satisfied.

4.1 Simulation Tool

The simulating tool has been developed in C language. It simulates the scheduling policy of section

2.5, operating on a mobile environment. It is able to model mobility that results in2 types of

topology processes: Topologies that change in a i.i.d manner and a hidden Markov stationary and

ergodic topology process, i.e. when nodes move based on a random walk mobility pattern. We

focus our attention in i.i.d varying topologies. In addition, although our tool can model servers

(links) that fail to serve the customer under service, we restrict our attention to perfect servers. This

assumption makes it more intuitive to understand and explain the simulation results. Finally, the

arrival process is Bernoulli.
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4.2 Simulation Algorithm

We are using a “Monte Carlo”1 based simulation procedure in order to characterize an arrival rate

vector as stable or unstable. The basic idea of our algorithmis to start from large valued arrival rate

vectors, that we expect to be unstable, and decrease one coordinate by a step, at each simulation

run. So, as long as the arrival rate vector is unstable, one ofits coordinates is decreased again,

and the procedure is repeated until a stable arrival rate vector is found. Each simulation run is

bounded by a maximum time slot, at which point the corresponding arrival rate vector is accounted

for stability. In our simulations, stability is estimated through a threshold criterion. In other words,

if one or more of the network queues exceeds a threshold value, then the corresponding arrival rate

vector is characterized as “unstable”.

We ran our simulations, for a simulation run of size3000 time slots, a step of value0.05 and

a threshold for stability check set to50 packets/queue. Moreover, in the figures that follow, the

obtained arrival rates are characterized and separated by plotting the stable arrival rates in red “∗”

and the unstable ones, by blue dots.

4.3 Network Scenarios

In the sequel, we will show through a set of examples what is the maximum stable throughput

a network can sustain, when the scheduling is performed according to the proposed scheduling

policy. We are using small networks that will help us explainand understand the obtained results

1Monte Carlo is a stochastic technique, which solves a mathematical problem, usually too complicated to be solved

analytically. It is called stochastic since it generates suitable random numbers and uses probability statistics to come

up with an answer. The random selection process is repeated many times and each time a new scenario and a solution

to the problem are created. The collection of all scenarios,give a range of possible solutions that can be characterized

by the properties they satisfy and that have different probabilities of occurrence.
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Figure 4.1: A3 node network that switches among 3 topologies. Traffic of rate a10 at node1 and

of ratea21 at node2 are both to be delivered to exit node3.

by using intuitive arguments.

4.3.1 A3 node network that switches among 3 topologies

In this section, we examine what the stability region of the network depicted in Figure 4.1 looks

like. In this network, we consider two customer classes. Customer class0, of ratea10, enters the

network at node1 and exits the network at node3. Similarly, customer class1, of ratea21, enters

the network at node2 and exits at node3. Both nodes1 and2 compete to send their traffic to node3,

but due to the medium access primary constraints, not both ofthem can transmit simultaneously to

their intended exit nodes. The network switches among3 topologies,T0, T1 andT2, with stationary

probabilitiesp0 = 0.5, p1 = 0.25 andp2 = 0.25.

Let us first examine the network throughput of a fixed network taking one of topologiesTi, i =
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Figure 4.2: Maximum stable throughput of a stationary network, that has topologyT0. Arrivals of

ratesa10 anda21 occur at nodes1 and2 respectively and are intended for exit node3.

0, 1, 2. The maximum stable throughput, obtained by our proposed scheduling policy, for a sta-

tionary network of topologyT0, T1 andT2 is depicted in Figures 4.2, 4.3 and 4.4 respectively. In

Figure 4.2 the set of stable arrival rates are the ones that lie in the positive quadrant and are upper

bounded by the linea10 + a21 = 1. Else, the arrival rate region is obtained by the intersection of

half spacesa10 ≥ 0, a21 ≥ 0, a10 ≤ 1, a21 ≤ 1 anda10 + a21 = 1. The boundary point(1, 0) is

obtained by setting the ratea21 = 0 at node2, which would allow node1 to send packets at node

3 with a rate of1. Similarly, the point(0, 1) is obtained by settinga10 = 0 and allowing node2 to

transmit at a maximum rate of1. When the network topology isT1, node2 is not connected to its

exit node at any time instant, hence the maximum stable arrival rate that it can deliver is0 (Figure

4.3). The same observation holds for node1 under topologyT2 (Figure 4.4). When the network

switches among topologies, the corresponding maximum stable throughput region is depicted in

Figure 4.5. Now, both nodes1 and2 can reach their exit node for a maximum of0.75 fraction of
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Figure 4.3: Maximum stable throughput of a stationary network, that has topologyT1. Arrivals of

ratesa10 anda21 occur at nodes1 and2 respectively and are intended for exit node3.

time. Therefore, the stability region is obtained as an intersection of the half spacesa10 ≤ 0.75,

a21 ≤ 0.75, a10 + a21 ≤ 1, a10 ≥ 0 anda21 ≥ 0.

4.3.2 3 nodes in tandem

In this network scenario, we revisit the example discussed in section 3.3 (Figure 4.6). Traffic for

customer class0, of ratea10, enters the network at node1 and traffic for customer class1, of

ratea21 enters the network at node2, both having3 as their exit node. The network switches

between topologyT0 andT1, that have stationary probabilitiesp and1− p respectively. We look at

the throughput region of this network, for different valuesof the stationary distributionp, namely

p = 0.5, p > 0.5 andp < 0.5. We observe that when the network takes topologyT0 the maximum

stable throughput it can sustain is0, since the exit node can never be reached (Figure 4.7). When

the network operates under topologyT1, traffic that enters the network at node1 can never reach
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Figure 4.4: Maximum stable throughput of a stationary network, that remains in topologyT2 at all

times. Arrivals of ratesa10 anda21 occur at nodes1 and2 respectively and are intended for exit

node3.
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Figure 4.5: Maximum stable throughput region for the i.i.d topology varying network of Figure

4.1.
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Figure 4.6: A3 node network in tandem. Traffic is at both nodes1 and2 is intended for exit node

3.
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Figure 4.7: Network operates in topologyT0. The exit node3 is isolated at all times and hence the

maximum stable throughput is0 for both types of traffic.

exit node3, hence the maximum stable throughput for this rate isa10 = 0. However, this allows

node2 to transmit at the maximum rate of1. (Figure 4.8)

• p = 0.5

The maximum throughput region when the network alternates topologies, staying at each one

of them equal amount of time is depicted in Figure 4.9. The stability region will be bounded

by the intersection of half spacesa10 ≥ 0, a21 ≥ 0, a10 ≤ 1, a21 ≤ 1 anda10 + a21 ≤ 0.5.

The plot of Figure 4.9 is fairly intuitive. Since the link to exit node3 is available only0.5

fraction of time,0.5 will be the upper bound on stable arrival rates for each type of traffic. A

rate ofa21 = 0.5 can be achieved whena10 = 0. In addition, since node1 is 2 hops away

from the exit node of its traffic, the maximum throughput it can deliver can be0.5, which is

achievable when there are no arrivals at node2.
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Figure 4.8: Network is in topologyT1. Only packets of of traffic that enters the network at node1

can reach exit node3.

• p > 0.5

When topologyT0 occurs more often than topologyT1, e.g. whenp = 0.75, the stability

region of the network is as pictured in Figure 4.10. Since thelink to the exit node3 is only

available for0.25 fraction of time, the maximum stable arrival rate for eithertraffic type will

be upper bounded by0.25.

• p < 0.5

TopologyT0 occurs less often than topologyT1, e.g. with stationary probability0.25. The

stability region for this case is depicted in Figure 4.11. Since topologyT1 occurs with prob-

ability 0.75, the link to exit node3 is available for0.75 fraction of time. Hence, node2 can

deliver a maximum stable rate ofa21 = 0.75, when node1 is silent. On the contrary, a stable

ratea10 cannot increase more than0.25, since only for this fraction of time node1 is allowed
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Figure 4.9: Stability region of the3 nodes in tandem network, when topologiesT0 andT1 occur

equally likely.

to relay its traffic and hence no more than25% of packets can reach node3 from node1.

A similar topology of3 nodes in tandem, with different traffic characteristics is studied next

(Figure 4.12). It is easy to see, that if the network takes exclusively either topologyT0 or T1,

the network throughput would be0 (Figures 4.13 and 4.14). On the other hand, by allowing the

network to switch between the2 topologies a throughput strictly greater than0 is achieved. We

will again examine the throughput region of this network fordifferent values that the stationary

distribution the topology process can take, namelyp = 0.5, p > 0.5 andp < 0.5.

• p = 0.5

The maximum stable throughput region of a network that switches between topologiesT0

andT1, while staying at each one of them equal amount of time, is depicted in Figure 4.15.

The stability region of Figure 4.15 is bounded by the intersection of half spacesa10 ≥ 0,
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Figure 4.10: Stability region of the3 nodes in tandem network, when topologyT0 occurs with

probability0.75 andT1 with probability0.25.

a31 ≥ 0, a10 ≤ 1, a31 ≤ 1 anda10 + a31 ≤ 0.5. Although, the mobile network has the

same stability region as the one of Figure 4.9, when topologiesT0 andT1 occur equally

likely, we observe that mobility has benefited the stabilityof this network even more, since

the individual topologiesT0 andT1 have throughput strictly zero.

• p > 0.5 Now, we look at the case where topologyT0 occurs more often than topologyT1, e.g.

with probability0.75. The stability region of this network is presented in Figure4.16. For

this mobile network, the maximum stable arrival ratea10 is 0.25, since although node1 may

relay its packets to node2 for 0.75 fraction of time, the link to the exit node is only available

for 0.25 fraction of time. Furthermore, the maximum arrival ratea31 is also0.25 since node

3 can only relay its traffic to node2 for 0.25 fraction of time. From the above, we obtain that

the stability region must be obtained by the intersection ofthe half spacesa10 ≥ 0, a31 ≥ 0,
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Figure 4.11: Stability region of the3 nodes in tandem network, when topologyT0 occurs with

probability0.25 andT1 with probability0.75.

1 2 3

a
10

a
31

1 32

a
10

a
31

V0

V0V1

V1 T 0 p

1−p
1T

Figure 4.12: A3 node network in tandem. Traffic, of customer class0 at node1 is intended for

node3 and traffic, of customer class1 at node3 is to be delivered at node1.
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Figure 4.13: The maximum stable throughput of a stationary network that operates under topology

T0 at all time slots is zero. This is because the exit nodes are isolated from all the traffic sources.

a10 ≤ 0.25, a31 ≤ 0.25 anda10 + a31 ≤ 0.25, as is also verified by Figure 4.16.

• p < 0.5 In case that topologyT0 occurs with less frequently than topologyT1, the stability

region will be exactly the same as the previous case of Figure4.16. This is because of

symmetry and is shown in Figure 4.17.

4.3.3 4 node network

In this section we will look at a network of4 nodes that switches between2 topologies, as can be

seen in Figure 4.18. There exist2 customer classes, one of ratea10 arriving at node1 and exit node

3 and one at node4, with ratea41 and exit node2. We observe that in both topologies, the nodes

where traffic enters the network are disconnected from the exit nodes. Therefore, the total network

throughput, as depicted in Figures 4.19 and 4.20 is0.

69



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Stability region for a 3 node in tandem network

arrival rates of customer class 0 (pkts/slot)

ar
riv

al
 r

at
es

 o
f c

us
to

m
er

 c
la

ss
 1

 (
pk

ts
/s

lo
t)

Figure 4.14: The maximum stable throughput of a stationary network that operates under topology

T1 at all time slots is zero. This is because the exit nodes are isolated from all the traffic sources.

We will show that although the individual networks are “bad”disconnected networks, the

switched network, that alternates between topologiesT0 andT1, achieves a throughput region that

has positive area. In the sequel, we obtain the throughput regions of the switched network, that

alternates between topologiesT0 andT1, for different values of the stationary probability distribu-

tion under which these topologies occur. Specifically, we will look into three cases, namely when

p = 0.5. p > 0.5 andp < 0.5

• p = 0.5

The throughput region of the network of Figure 4.18, when each topologyT0 andT1 occur

equally probably, is depicted in Figure 4.21.

• p > 0.5

When topologyT0 occurs more often thanT1, then the stability region of the network, as
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Figure 4.15: Stability region of the3 nodes in tandem network, when topologiesT0 andT1 occur

equally likely.

obtained by our simulations, is depicted in Figure 4.22 (which corresponds top = 0.75).

• p < 0.5 When topologyT0 occurs less often thanT1, then the stability region of the network

is shown in Figure 4.23(which corresponds top = 0.25).

4.3.4 4 nodes on a ring

In this section, we are going to analyze the throughput region of a network comprised, by4 nodes

that reside on a ring of radiusr. There exist2 customer classes. Customer class0, of ratea10,

arriving at node1, with exit node3 and customer class1, of ratea41, arriving at node4, with exit

node2. The positions of all the nodes, at each time instant, can be determined as long as one node’s

position is completely known. To illustrate this, let a nodebe located at angleθ(t) ∈ [0, π/2], ∀t ≥

0. The rest of the nodes will be placed at positionsπ − θ(t), π + θ(t) and2π − θ(t). Hence, each
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Figure 4.16: Stability region of the3 nodes in tandem network, when topologyT0 occurs more

frequently thanT1 (with stationary probability0.75).

quadrant is allocated to exactly one node. Let these nodes benumbered from1 to 4, as shown in

Figure 4.24. Consider also that the power at the nodes is such, that a pair of nodes communicates

if their distance is at mostR. We assume that the radius of the ring is large enough to prevent a

node from communicating with all others at all time slots. Asthe value ofθ(t) varies, the different

topologies that the network evolves into, vary as well.

We are going to look at the case wherer > R√
2
. If θ(t) is small enough, then the network

nodes that may communicate with each other will be the pair ofnodes1 and2, as well as nodes3

and4. This would put a constraint on the distance between these nodes to be less than the range

of communication, namely2rsin(θ(t)) ≤ R or elseθ(t) ≤ sin−1( R
2r

). To this respect, we define

the quantityθ0 = sin−1( R
2r

). Hence, as soon asθ(t) increases and becomes largerθ0, the distance

between communicating nodes1 and2 and3 and4 becomes larger thanR, and hence they may

not communicate any more. More specifically, the network will be completely disconnected for
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Figure 4.17: Stability region of the3 nodes in tandem network, when topologyT0 occurs less

frequently thanT1 (with stationary probability0.25).

values ofθ(t), such thatθ0 < θ(t) < π/2 − θ0. Further increase inθ(t), i.e. π/2 − θ0 < θ < π/2

results in a different set of communicating nodes, namely1 communicates with4 and2 with 3. By

considering a uniform distribution onθ(t), we observe that topologiesT0 andT1 occur each with

equal probabilityp = 4θ0

2π
andT2 occurs with probability1 − 2p. So we have the following set of

possible network topologies:

• 0 ≤ θ(t) ≤ θ0: TopologyT0 is present (Figure 4.25).

• θ0 < θ(t) < π2 − θ0: TopologyT2 is present (Figure 4.26).

• θ0 ≤ θ(t) ≤ π/2: TopologyT1 is present.(Figure 4.27).

Let us now consider thatp = 1/4. Then, the maximum throughput scheduling policy for this

network achieves the stability region of Figure 4.28.
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Figure 4.18: A4 node network that takes two topologies,T0 andT1 with probabilitiesp and1 − p

respectively. Traffic of ratea10 arrives at node1 with exit node3 and traffic of with ratea41 arrives

at node4 with exit node2.
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Figure 4.19: Under topologyT0, the nodes at which arrivals occur are disconnected from theexit

nodes at all times. Hence, the maximum throughput that can bedelivered is0.
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Figure 4.20: Under topologyT1, the nodes at which arrivals occur are disconnected from theexit

nodes at all times. Hence, the maximum throughput that can bedelivered is0.
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Figure 4.21: Stability region of a4 node network, when the two topologies,T0 andT1 occur equally

likely (p = 0.5).
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Figure 4.22: Stability region of a4 node network, when topologyT0 occurs more often, namely

with probability0.75, andT1 with probability0.25.
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Figure 4.23: Stability region of a4 node network, when topologyT0 occurs less often, namely with

probability0.25, andT1 with probability0.75.
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Figure 4.24: A network of4 nodes, residing on a ring of radiusr.
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Figure 4.25: TopologyT0 is present. The nodes that are able to communicate with each other are

nodes1 and2 and nodes3 and4.

T
2

2 3V V
1 0

1 4 a
41

a
10

1−2p

Figure 4.26: TopologyT2 is present. All network nodes are disconnected from each other.
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Figure 4.27: TopologyT1 is present. Nodes2 and3 communicate and nodes1 and4 communicate.

78



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Stability region for a network of 4 nodes on a ring

arrival rates of customer class 0

ar
riv

al
 r

at
es

 c
us

to
m

er
 c

la
ss

 1

Figure 4.28: Stability region of the network consisting of4 nodes on a ring, when the occurrence

probability of topologiesT0 andT1 is p = 1/4.

4.4 Conclusions

In this chapter we introduced our simulation tool and presented simulation results on what is the

maximum stable throughput achieved by the scheduling policy we introduced, when operating

on a set of networks. The networks we simulated are not complicated. However, they are selected

carefully to depict in a clear way, how mobility may increasethe stable traffic a network can handle.
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Chapter 5

Appendix A: Markov Chains

In this Chapter, we are going to give a brief overview on Markov Chains ([11], [1]). First of all,

we need to introduce the notion of a stochastic process. Astochastic process{X(t), t ∈ T } is a

family of random variables, indexed by a variablet ∈ T , i.e X(t) is a random variable. WhenT

is a countable set, then the stochastic process is said to bediscrete-time processand whenT is an

interval of the real line, the stochastic process is said to becontinuous-time process.

In this Thesis, we will restrict ourselves in discrete-timediscrete state space stochastic processes

{Xn, n = 0, 1, . . .}. Without loss of generality the state space takes values in the non-negative

integers{0, 1, . . .}. For example,Xn = y, means that the stochastic process is in statey at instant

n.

5.1 Markov Chains

A Markov Chain is a stochastic process{Xn, n = 0, 1, . . .} for which given the present, the

evolution of the process becomes conditionally independent of the past. In other words:

P [Xn+1 = z|Xn = y, Xn−1 = xn−1, . . . , X0 = x0] = P [Xn+1 = z|Xn = y] = Pyz(n) (5.1)

for all x0, x1, . . . , xn−1, y, z and for alln ≥ 0, where
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Pyz(n) ≥ 0, ∀y, z ∈ X , ∀n ≥ 0 and
∑∞

z=1 Pyz(n) = 1, for y = 0, 1, . . . , ∀n ≥ 0.

It is due to these properties thatXn is called the state of the process at timen. The set of all

possible values forXn is thestate space, X , of the Markov Chain.

If, furthermore, the Markov Chain is time homogeneous, in other words the transition proba-

bility does not vary with the time index, we get:

P [Xn+1 = z|Xn = y] = P [X1 = z|X0 = y] = Pyz (5.2)

Then:

P [Xn+1 = z|Xn = y, Xn−1 = xn−1, . . . , X0 = x0] = Pyz (5.3)

Thetransition probability matrix ,P, is a matrix with elements the transition probabilitiesPyz.

Hence in theyth row andzth column, the element will represent the probability that thenext state

will be z when the current state isy.

We will focus our attention on time homogeneous stochastic processes.

5.2 Classification of States

Let y, z ∈ X be two states of the Markov Chain{Xn, n = 0, 1, . . .} with transition probability

matrixP. Statez is said to beaccessiblefrom statey if for somen ≥ 0, (Pn)yz > 0. We say that

statesy, z communicateif they are accessible to each other, in other words there exists a positive

probability to go from statey to statez and fromz to y. Two communicating states are said to

belong to the sameclass. A Markov Chain is said to beirreducible if it has a single class of

communicating states. Any state of a Markov Chain can be further classified into being transient

or recurrent. LetPy denote the probability that starting at statey the process will ever re-entery.

Statey is said to berecurrent if Py = 1 andtransient if Py < 1. Recurrency of statey implies

that it will be visited infinitely often. This results from the fact that starting fromy, y will be visited
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again with probability1 and by the definition of the Markov Chain the process will be restarting

each time statey is visited, meaning thaty will be revisited in the future as well. On the other hand,

if a state is transient, there is a positive probability thatit will never be visited in the future. Let

1−Py be this probability. Then the probability that starting at statey, the Markov Chain will spend

at y exactlyn ≥ 1 time periods (or revisity, exactlyn − 1 time periods) will be geometrically

distributed according toP n−1
y (1 − Py), with mean1/(1 − Py) (finite). Hence, we can also say that

statey is recurrent if and only if starting at statey the expected number of time periods that the

Markov Chain will spend at statey will be infinite. This, implies ([11]) that statey is recurrent if
∑∞

n=1 P n
yy = ∞ andtransient if

∑∞
n=1 P n

yy < ∞. A recurrent state ispositive recurrent if given

that the process starts at statey, the expected time to return toy is finite. If a recurrent state is not

positive recurrent, it isnull recurrent .

5.3 Stopping Time

Let the stochastic process{Xn, n = 0, 1, . . . }, we will say that the random variableτs will be

a stopping time with respect to the sequence{Xn, n = 0, 1, . . .} if the occurrence of the event

{τs = n} can be determined completely by looking only at the realization of the process up to time

n, i.e. {τs = n} is a function of{Xn, n = 0, 1, . . .}.

5.3.1 Hitting Time

Let us divide the state space of our Markov Process in a partition of sets,Xi such that∪∞
i=1Xi = X .

Consider also, without loss of generality, that at timen = 0, the system is in stateX ∈ X1, then

theHitting Time is given as a function of the stopping time defined below:

τx =











∞, if Xn ∈ X1, ∀n > 0

min{n > 0 : Xn /∈ X1}, otherwise
(5.4)
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Chapter 6

Appendix B: Markov Chain Stability

In this Chapter, we will discuss stability issues in (time homogeneous) Markov Chains as presented

in [1].

6.1 Stability of irreducible Markov Chains

In the case of an aperiodic, irreducible Markov Chain if all states are positive recurrent then the

Markov Chain is ergodic. Also, consider a Markov Chain that is irreducible and aperiodic. If

this Markov Chain is ergodic as well, this implies positive recurrence. Hence, for the irreducible

Markov Chain case, stability is equivalent to ergodicity. Theorem 4 gives sufficient conditions for

positive recurrence, and hence stability, for irreducibleMarkov Chains.

Theorem 4 (Foster’s Theorem)Consider an irreducible Markov ChainXn, n = 0, 1, . . . with

state spaceX , a real valued, bounded from below, functionV : X → R, an ǫ > 0 and a finite

subsetX0 ofX such that:

E[V (Xn+1) − V (Xn)|Xn = x] < −ǫ, if x /∈ X0
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and

E[V (Xn)|Xn = x] < ∞, ∀ x ∈ X0

Then, the corresponding time-homogeneous Markov Chain is positive recurrent.

Note that if the Markov Chain is finite and irreducible, then there will exist a single class of states,

namely all states will be positive recurrent. In this case, the Markov Chain will be stable.

6.2 Stability of reducible Markov Chains

Consider the reducible Markov Chain{Xn, n = 0, 1, . . .} and partition its state space into the

classesY, Z1, Z2, Z3, . . . , whereZi, i = 1, 2, 3, . . . are sets of communicating states that are recur-

rent andY is the set of all transient states. While in the case of irreducible Markov Chains stability

is equivalent to positive recurrence, in the case of reducible Markov Chains we can define a system

stability as follows([14]).

Let the Markov Chain at timen = 0 be in a stateX(0) = x ∈ Y , whereY is the set of transient

states. Then the system will be stable if Definition 2 ([14]) holds:

Definition 2 (System stability)The system isstable if for the state processXn we have:

P [τy < ∞] = 1, ∀y ∈ Y (6.1)

and all statesz ∈ ∪∞
i=1Zi are positive recurrent,

whereτy is a Hitting Time as presented in Appendix A(Equation 5.4). An extension to Theorem 4,

that gives sufficient conditions, about stability of a reducible Markov Chain is defined also in [14]

and [15]:
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Theorem 5 Consider a Markov Chain{Xn, n = 0, 1, . . .} with state spaceX , a real valued,

bounded from below, functionV : X → R, anǫ > 0 and a finite subsetX0 ofX such that:

E[V (Xn+1) − V (Xn)|Xn = x] < −ǫ, if x /∈ X0

and

E[V (Xn+1)|Xn = x] < ∞, ∀ x ∈ X0

Then, the Hitting Timeτx, defined in Appendix A satisfies:

P [τx < ∞] = 1, ∀x ∈ Y, (6.2)

and all the recurrent classes of this Markov Chain are positive recurrent, i.e.{Xn} is stable.
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Chapter 7

Appendix C: Definitions on sets

A set,S, is said to beconvex if λs1 + (1 − λ)s2 ∈ S, for all s1, s2 ∈ S, 0 ≤ λ ≤ 1. A setS is

said to beopen, if for any given points ∈ S and for someǫ > 0 arbitrarily small, the ball, centered

at s, with radiusǫ, is contained inS. The set is said to beclosedif for any converging sequence

defined inS, the limit of the sequence will be inS as well. Equivalently, a set is closed if and only

if it’s complement is an open set. A points belongs to theclosureof a setS if for some converging

sequencesn in S the limit is limn→∞ sn = s. Equivalently, the closure of a setS is defined as the

intersection of all closed sets containingS and is necessarily a closed set. Let the setS ⊆ R
n.

The convex combination of elementssi ∈ S is the elements =
∑

i λisi , whereλi ≥ 0, ∀i and
∑

i λi = 1. The convex hull ofS, denoted asco(S), is the set of all points that can be expressed as

a convex combination of elements inS. Note that the convex hull of a setS is convex. The convex

hull of S is the smallest convex set that containsS. A setS ⊆ R
n is called aconvex polyhedronif

there exists anm× n matrixT and a vectorr ∈ R
m, such thatS = {x : Tx ≤ r}. In other words,

a convex polyhedron is the intersection of finitely manyhalf spaces. A setP ⊆ R
n is called a

convex polytopeif ∃S ⊆ R
n, whereS is finite, such thatP = co(S). A convex polyhedron that is

also bounded, is a convex polytope.

Theorem 6 Let P be a convex polytope andL be a linear map. Then thelinear pre-image of P ,
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whereLP (P ) is defined as:

LP (P ) = {x : Lx ∈ P},

is a convex polyhedron.

Theorem 7 Let a convex polytopeP andL be a linear map. Then thelinear imageof P

{Lx : x ∈ P}

is a convex polytope.
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