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ABSTRACT

A Sequential Quadratic Programming algorithm designed to efficiently solve nonlinear
optimization problems with many inequality constraints, e.g. problems arising from
finely discretized Semi-Infinite Programming, is described and analyzed. The key
features of the algorithm are (i) that only a few of the constraints are used in the QP
sub-problems at each iteration, and (#i) that every iterate satisfies all constraints.

1 INTRODUCTION

Consider the Semi-Infinite Programming (SIP) problem

minimize f(z)

subject to ®(zx) <0, (81)

where f : R™ -+ IR is continuously differentiable, and @ : IR” — IR is defined
by
A
®(z) = sup ¢(z,§),
¢elo,1]
with ¢ : R™ x [0,1] = IR continuously differentiable in the first argument.
For an excellent survey of the theory behind the problem (SI), in addition to

some algorithms and applications, see [9] as well as the other papers in the
present volume. Many globally convergent algorithms designed to solve (ST)
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rely on approximating ®(z) by using progressively finer discretizations of [0, 1]
(see, e.g. [5, 7, 8, 16, 18, 19, 20, 23]). Specifically, such algorithms generate a
sequence of problems of the form

minimize f(z)
subject to ¢(z,&) <0, VEEE, (DSI)
where Z C [0,1] is a (presumably large) finite set. For example, given ¢ € IN,
one could use the uniform discretization

1 -1
aé{o,-,...,q—-,l}.
q q

Clearly these algorithms are crucially dependent upon being able to efficiently
solve problem (DSI).

Of course, (DSI) involves only a finite number of smooth constraints, thus
could be solved in principle via classical constrained optimization techniques.
Note however that when |Z| is large compared to the number of variables n, it
is likely that only a small subset of the constraints are active at a solution. A
scheme which exploits this fact by cleverly using an appropriate small subset of
the constraints at each step should, in most cases, enjoy substantial savings in
computational effort without sacrificing global and local convergence properties.

Early efforts at employing such a scheme appear in [19, 16] in the context
of first order methods of feasible directions. In [19], at iteration k, a search
direction is computed based on the method of Zoutendijk (28] using only the
gradients of those constraints satisfying ¢(zx,€) > —e, where € > 0 is small.
Clearly, close to a solution, such “e-active” coustraints are sufficient to ensure
convergence. However, if the discretization is very fine, such an approach may
still produce sub-problems with an unduly large number of constraints. It was
shown in [16] that, by means of a scheme inspired by the bundle-type methods
of nondifferentiable optimization (see, e.g. [11, 13]), the number of constraints
used in the sub-problems can be further reduced without jeopardizing global
convergence. Specifically, in [16], the constraints to be used in the computation
of the search direction dg..; at iteration k+1 are chosen as follows. Let 5y C 2
be the set of constraints used to compute the search direction di, and let x4y
be the next iterate. Then =4, includes:

m  All £ € E such that ¢(zgy1,£) = 0 (i.e. the “active” constraints),

m  All £ € E; which affected the computation of the search direction di, and
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A ¢ € S if it exists, which caused a step reduction in the line search at
iteration k.

While the former is obviously needed to ensure that di is a feasible direction, it
is argued in [16] that the latter two are necessary to avoid zig-zagging or other
jamming phenomena.

The number of constraints required to compute the search direction is thus
typically small compared to |Z|, hence each iteration of such a method is com-
putationally less costly. Unfortunately, for a fixed level of discretization, the
algorithms in [19, 16] converge at best at a linear rate.

Sequential Quadratic Programming (SQP)-type algorithms exhibit fast local
convergence and are well-suited for problems in which the number of variables
is not too large but the evaluation of objective/constraint functions and their
gradients is costly. In such algorithms, quadratic programs (QPs) are used
as models to construct the search direction. For an excellent recent survey of
SQP algorithms, see [2]. A number of attempts at applying the SQP scheme
to problems with a large number of constraints, e.g. our discretized problem
from SIP, have been documented in the literature. In [1], Biggs treats all active
inequality constraints as equality constraints in the QP sub-problem, while
ignoring all constraints which are not active. Polak and Tits [20], and Mine et
al. [14], apply to the SQP framework an e-active scheme similar to that used
in [19). Similar to the e-active idea, Powell proposes a “tolerant” algorithm for
linearly constrained problems in [22]. Finally, in [26], Schittkowski proposes
another modification of the SQP scheme for problems with many constraints,
but does not prove convergence. In practice, the algorithm in [26] may or may
not converge, dependent upon the heuristics applied to choose the constraints
for the QP sub-problem.

In this paper, the scheme introduced in [16] in the context of first-order feasible
direction methods is extended to the SQP framework, specifically, the Feasible
SQP (FSQP) framework introduced in [17] (the qualifier “feasible” signifies
that all iterates z; satisfy the constraints, i.e. ¢(zx,£) <0, for all £ € E). Our
presentation and analysis significantly borrow from [27], where an important
special case of (DSI) is considered, the unconstrained minimax problem.

Let the feasible set be denoted

X2 {zeR" | 4(z,6) <0, VEES }.
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For £ € X, 2 C E, and H € R™" with H = HT > 0, let d°(z, H,Z) be the
corresponding SQP direction, i.e. the unique solution of the QP

minimize  £(d°, Hd®) + (Vf(z),d°) QP (z, H,2)
subject to  $(z, &) + (Vo d(z,£),d%) <0, VEECE. b

At iteration k, given an estimate z; € X of the solution, a constraint index
set = C Z, and a symmetric positive definite estimate Hj of the Hessian of
the Lagrangian, first compute d = d°(z, Hk,Zk). Note that df may not
be a feasible search direction, as required in the FSQP context, but that at
worst it is tangent to the feasible set. Since all iterates are to remain in the
feasible set, following [17], an essentially arbitrary feasible descent direction d},
is computed and the search direction is taken to be the convex combination
di = (1 — pr)d? + prd}. The coefficient pr = p(df) € [0, 1] goes to zero fast
enough, as z; approaches a solution, to ensure the fast convergence rate of
the standard SQP scheme is preserved. An Armijo-type line search is then
performed along the direction dy, yielding a step-size tx € (0,1]. The next
iterate is taken to be zyy; = zy + tpdi. Finally, Hy is updated yielding Hgy1,
and a new constraint index set Sy is constructed following the ideas of [16].

As is pointed out in [27], the construction of [16] cannot be used meaningfully
in the SQP framework without modifying the update rule for the new metric
Hp41. The reason is as follows. As noted above, following [16], if tx < 1, Zx1
is to include, among others, the index £ € Z of a constraint which was infeasible
for the last trial point in the line search.! The rationale for including £ in Zgyq
is that if £ had been in Zj, then it is likely that the computed search direction
would have allowed a longer step. Such reasoning is clearly justified in the
context of first-order search directions as is used in [16], but it is not clear that
é_ is the right constraint to include under the new metric Hgy;1. To overcome
this difficulty, it is proposed in [27] that Hi not be updated whenever t; < §,
4 a prescribed small positive number, and € & Zx. We will show in Section 3
that, as is the case for the minimax algorithm of [27], for k large enough, £ will
always be in Zj, thus normal updating will take place eventually, preserving
the local convergence rate properties of the SQP scheme.

There is an important additional complication, with the update of =, which
was not present in the minimax case considered in [27]. As just pointed out,
any £ € Z; which affected the search direction is to be included in Z¢4;. In
[27] (unconstrained minimax problem) this is accomplished by including those
objectives whose multipliers are non-zero in the QP used to compute the search

! Assuming that it was a constraint, and not the objective function, which caused a failure
in the line search.
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direction (analogous to QP%(zx, Hy, =) above), i.e. the “binding” objectives.
In our case, in addition to the binding constraints from QP%(z, Hy,Zx), we
must also include those constraints which affect the computation of the feasible
descent direction d}. If this is not done, convergence is not ensured and a “zig-
zagging” phenomenon as discussed in [16] could result.

As a final matter on the update rule for =, following [27}, we allow for addi-
tional constraint indices to be added to the set Z;. While not necessary for
global convergence, cleverly choosing additional constraints can significantly
improve performance, especially in early iterations. In the context of discretized
SIP, exploiting the possible regularity properties of the SIP constraints with
respect to the independent parameter can give useful heuristics for choosing
additional constraints.

In order to guarantee fast (superlinear) local convergence, it is necessary that,
for k large enough, the line search always accept the step-size tx = 1. It is
well-known in the SQP context that the line search could truncate the step size
arbitrarily close to a solution (the so-called Maratos effect), thus preventing
superlinear convergence. Various schemes have been devised to overcome such
a situation. We will argue that a second-order correction, as used in [17], will
overcome the Maratos effect without sacrificing global convergence.

The balance of the paper is organized as follows. In Section 2 we introduce the
algorithm and present some preliminary material. Next, in Section 3, we give
a complete convergence analysis of the algorithm proposed in Section 2. The
local convergence analysis assumes the just mentioned second-order correction
is used. To improve the continuity of the development, a few of the proofs are
deferred to an appendix. In Section 4, the algorithm is extended to handle
the constrained minimax case. Some implementation details, in addition to
numerical results, are provided in Section 5. Finally, in Section 6, we offer
some concluding remarks.

2 ALGORITHM

We begin by making a few assumptions that will be in force throughout. The
first is a standard regularity assumption, while the second ensures that the set
of active constraint gradients is always linearly independent.
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Assumption 1: The functions f : R" -+ R and ¢(-,&) : R" 5> R, £ € E are
continuously differentiable.

Define the set of active constraints for a point z € X as

Sact(z) 2 {£ € 2| ¢(z,6) =0}

Assumption 2: For all z € X with Z,.4(z) # 0, the set {V.¢(z,8) | £ €
Zact(z)} is linearly independent.

A point z* € R™ is called a Karush-Kuhn-Tucker (KKT) point for the problem
(DSI) if there exist KKT multipliers A}, £ € Z, satisfying

Vi) + Y A Vao(z",€) =0,
£€E
P(z*,6) <0, VEEE, (1.1)

Aip(z*,€) =0and A 20, VEEE.

Under our assumptions, any local minimizer z* for (DSI) is a KKT point.
Thus, (1.1) provides a set of first-order necessary conditions of optimality.

Throughout our analysis, we will often make use of the KKT conditions for
QP°(z,H,=). Specifically, given z € X, H = HT >0,and ZCE,d%is a
KKT point for QP%z, H, =) if there exist multipliers A, £ € Z, satisfying

Hd® +Vf(2) + ) WVad(z,6) =0,
1=
3(z,€) + (V2 9(z,),d°% <0, VEEE, 12)

2 (6(z,€) + (Vo9(z,€),d°)) =0and A} >0, VEEE.

In fact, since the objective for QP°(z, H, =) is strictly convex, such a d° is the
unique KKT point, as well as the unique global minimizer (stated formally in
Lemma 1 below).

As noted above, d°® need not be a feasible direction. The search direction d
will be taken as a convex combination of d® and a first-order feasible descent
direction d'. For z € X and = C =, we compute d* = d'(z,Z), and v = v(z, =),
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as the solution of the QP

minimize  1{|d*}|2 + v

subject to  (Vf(z),d") <, QP'(z,%)
8(2,6) + (Vah(z,6),d") v, VEEE.
The notation || - || will be used throughout to denote the standard Euclidean

norm. The pair (d',7) is a KKT point for QP (z, Z) if there exist multipliers
p! and AL, £ € Z, satisfying

( d! Vflz Ve ,

[4]ow [0 o g 4o
£€S

(Vf(z),d") <7,

&(z,€) + (Vad(z,8),dY) <, VEEE,

gt ((VF(z),d") —v) =0 and p! >0,
L AL (6(z,6) + (Va(z,8),d") —7) =0and AL 20, VE€E.

e

(1.3)

In Section 1 we stated that the feasible descent direction d' was essentially
arbitrary. In the subsequent analysis we assume that d! is chosen specifically
as the solution of QP(z, Z), though it can be shown that the results still hold
if some minor variation is used. To be precise, following [17], we require that
d* = dl(z,Z) satisfy:

s d(z,&) =0if z is a KKT point,
w  (Vf(z),d'(z,E)) <0if z is not a KKT point,
n (Voo(z,8),d (z,2)) <0, for all ¢ € Ey¢y if z is not a KKT point, and

»  for £ fixed, d'(z,Z) is bounded over bounded subsets of X.

It will be shown in Lemma 2 that the solution of QP!(z, ) satisfies these
requirements. In our context, d* must fulfill one additional property, which is
essentially captured by Lemma 7 in the appendix.

Thus, at iteration k, the search direction dj is taken as a convex combination of
d? and di, i.e. dp = (1 — pi)d? + prdl, px € [0,1]. In order to guarantee a fast
local rate of convergence while providing a suitably feasible search direction, we
require the coefficient of the convex combination pr = p(d3) to satisfy certain
properties. Namely, p(-) : R™ — [0, 1] must satisfy



8 CHAPTER 1

m  p(d?) is bounded away from zero outside every neighborhood of zero, and

= p(d®) =O(|ld°)?).
For example, we could take p(d®) = min{1, ||d°||*}, where v > 2.

It remains to explicitly specify the key feature of the proposed algorithm: the
update rule for 2. As discussed above, following [16], Z¢41 will include (in
addition to possible heuristics) three crucial components. The first one is the
set Zact(zr+1) of indices of active constraints at the new iterate. The second
component of E4y is the set =2 C = of indices of constraints that affected
di. In particular, Z% will include all indices of constraints in QP°(zx, Hi, Zx)
and QP! (zx,Z;) which have positive multipliers, i.e. the binding constraints
for these QPs. Specifically, let /\275, and /\i’e, for £ € Z, be the QP multipliers
from QP°(zy, Hi, =) and QP!(zy, =), respectively. Defining

=b,0 A = =bl & =
= Z{EEC-I:]’\(R):,&)O}: :k1={§€:k|’\llc,£>0}’

we let A

=b 8 :-b,O :b,l

=t 2 =0uEht
Finally, the third component of Zg4; is the index £ of one constraint, if any
exists, that forced a reduction of the step in the previous line search. While the
exact type of line search we employ is not critical to our analysis, we assume
from this point onward that it is an Armijo-type search. That is, given constants
a € (0,1/2) and 8 € (0,1), the step-size ¢; is taken as the first number ¢ in the
set {1,0,8%,...} such that

fzx +tdi) < f(zi) + at(Vf(zk), di), (1.4)

and
oz +td,€) <0, VEE€E. (1.5)

Thus, t < 1 implies that either (1.4) or (1.5) is violated at zx + %d. In the
event that (1.5) is violated, there exists £ € = such that

¢ (:I:k + %dk,€> >0, (1.6)

and in such a case we will include £ in Sgy;.
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Algorithm FSQP-MC

Parameters. a € (0,3), 8 € (0,1), and 0 < § K 1.
Data. 1€ X,0< Hy = Hg € R™",
Step 0 - Initialization. Set k + 0 and choose Zg D S0t (70)-

Step 1 - Computation of search direction.

(i). Compute d? = d®(z, Hy,Z). If d = 0, stop.

(#). Compute d} = d*(zx,Zg).

(4i). Compute pr = p(d?) and set di + (1 — pi)dP + prdi.
Step 2 - Line search. Compute i, the first number ¢ in the sequence
{1,8,8?, ...} satisfying (1.4) and (1.5).
Step 3 - Updates.

(‘i). Set Ty + Tk + tidi.
(i). If tx < 1 and (1.5) was violated at =, + %dk, then let £ be such
that (1.6) holds.
(iii). Pick
Ek+1 2 St (Tr41) UEL.
If tx < 1 and (1.0) holds for some £ € Z, then set

Skl +— Sk U {f—}

(iv). I t, < 8 and € & =i, set Hygyy — Hj. Otherwise, obtain a
new symmetric positive definite estimate Hy4, to the Hessian of the
Lagrangian.

(v). Set k + k + 1 and go back to Step 1.

3 CONVERGENCE ANALYSIS

While there are some critical differences, the analysis in this section closely
parallels that of [27]. We begin by establishing that, under a few additional
assumptions, algorithm FSQP-MC generates a sequence which converges to
a KKT point for (DSTI). Then, upon strengthening our assumptions slightly,
we show that the rate of convergence is two-step superlinear.
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3.1 Global Convergence
The following will be assumed to hold throughout our analysis.
Assumption 3: The level set { z € R" | f(z) < f(zo0) } N X is compact.

Assumption 4: There exist scalars 0 < o, < o3 such that for all k,

aulldl? < (d, Hrd) < o2||d]®, VdeR™.

Given the scalars 0 < 0y < 03 from Assumption 4, define

HE{H=H"|ald|? < (d,Hd) < ofld)’, VdeR").
First, we derive some properties of d®(z, H,Z) and d!(z, Z).

Lemmal Forallz € X, H € H, and 5 C Z such that Suct(z) C E, the
search direction d° = d°(z, H, E) is well-defined, is continuous in = and H for
Z fized, and is the unique KKT point for QP%(z, H,Z). Furthermore, d® = 0
if, and only if, © is a KKT point for the problem (DSI). If x is not a KKT
point for this problem, then d° satisfies

(Vf(z),d% <0, (1.7)

(Vad(2,€),d% <0, VE € Eact(2). (1.8)

Proof: H > 0 implies that QP%(z, H,Z) is strictly convex. Further d® = 0
is always feasible for the QP constraints. It follows that the solution d° is
well-defined and the unique KKT point for the QP. As the set H is uniformly
positive definite, continuity in z and H for fixed = is a direct consequence of
Theorem 4.4 in [4]. Now suppose d° is 0 and let { A? | £ € = } be the QP
multipliers. In view of the KKT conditions (1.2) for QP%(z, H,Z), since d® = 0
and z € X, we see that r satisfies the KKT conditions (1.1) for (DSI) with

0 =
/\§= AE’ 5627
0, Ed=.

The converse is proved similarly, appealing to the uniqueness of the KKT point
for QP°(z, H,=) and the fact that S,c¢(z) C =. Finally, since Eac4(z) C E,
(1.7) and (1.8) follow from Proposition 3.1 in [17]. a
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l]>

Lemma 2 For all z € X, and £ C E such that Syci(z) C E, the direction
d* = d(z,ZE) is well—deﬁned and the pair (d*,7), where v = 7(9:,_.), is the
unique KKT point of QP(z,Z). Furthermore, for given =, d* (z,Z) is bounded
over bounded subsets of X. In addition, d' = 0 if, and only if, z is a KKT
point for the problem (DSI). If z is not a KKT point for this problem, then d!
satisfies

(Vf(z),d") <0, (1.9)

(V,¢(:z:,§),d1) < 03 Vé € Ea.ct(z)y (110)
and v satisfies v < 0.

Proof: We begin by noting that (d!,7) solves QP(z,Z) if, and only if, d*
solves

minimize %Hdlll2 + max {(Vf(z),dl), max{#(z,§) + (Vi ¢(z, f),dl)}} .
geg

(1.11)
and

v = max {(91(a), ), max{9(a,) + (V20(z.9). )} .

Since the objective function in (1.11) is strictly convex and radially unbounded,
it follows that QP (z,Z) has (d},7) = (d*(z,Z),7(z,Z)) as its unique global
minimizer. Since QP! (z,Z) is convex, (d',v) is also its unique KKT point.
Boundedness of d*(z, _.) over bounded subsets of X follows from the first equa-
tion of the optimality conditions (1.3), noting that the QP multipliers must
all lie in [0,1]. Now suppose d' = 0. Since z € X, it is clear that v = 0.

Substitute d' = 0 and v = 0 into (1.3) and let u* € R and A! € R/ be the
corresponding multipliers. Note that, in view of Assumption 2, u! > 0. Since
r € X, it follows that x satisfies (1.1) with multipliers

N ] M E€E
¢ 0, ¢€¢E

Therefore, ¢ is a KKT point for (DSI). The converse is proved similarly,
appea.hng to uniqueness of the KKT point for Qp! (:z:,._), and the fact that
Zact(z) C Z. To prove (1.9) and (1.10) note that if z is not a KKT point for
(DSI), then as just shown d! # 0, hence v < 0 (since d'! = 0 and v = 0 form
a feasible pair, the optimal value of QP! (zx,Zx) must be non-positive). The
result then follows directly from the form of the QP constraints and the fact
that Zc¢(2) C E. o

Next, we establish that the line search is well-defined.
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Lemma 3 For each k, the line search in Step 2 yields a step t; = 37 for some
finite j = j(k).

Proof: If z; is a KKT point, then Step 2 is not reached, hence assume zy is
not KKT. In view of Lemma 1 and the properties of p(-), d% # 0 and p(d?) > 0.
Lemmas 1 and 2 imply, since Z,.¢(zx) C Zk, that

(VF(zk),de) <0,

(v$¢($k,§))dk) < 07 V‘E € Eact(zk)-

Further, feasibility of z; requires ¢(zx,&) < 0 for all £ € Z\ Syt (zx). The
result then follows by considering first order expansions of f(z + txdx) and
d(zr+trdr, ), € € Z, about =, and by appealing to our regularity assumptions.
a

The previous three lemmas imply that the algorithm is well-defined. In addi-
tion, Lemma 1 shows that if Algorithm FSQP-MC generates a finite sequence
terminating at the point zy, then zn is a KKT point for the problem (DSI).
We now concentrate on the case in which the algorithm never satisfies the ter-
mination condition in Step 1(i) and generates an infinite sequence {zx}. Given
an infinite index set X, we use the notation

zkﬁz‘

to mean
Ty > 2" as k= o0, keK.

Lemma 4 Let K be an infinite index set such that Z¢ = Z* for all k € K,
z 255 2z, Hy 255 H*, &0 X5 40, dL 5 db*, and v =53 4*. Then (i)
d%* is the unique solution of QP°(z*, H*,=*), and (ii) (d“*,~*) is the unique
solution of QP (z*,E*).

Proof: Part (i) follows from continuity of d°(z, H, Z) for fixed = (Lemma 1).
To prove part (i), recall that in view of Lemma 2, (d},v) is the unique KKT
point for QP (z,Z*), i.e. is the unique solution of (1.3) with corresponding
multipliers p; > 0 and A} ¢ > 0, § € E*. Note that the multipliers satisfy

»ui + Z ’\llc,E = 17
£ez

for all k, hence are bounded. Let XK' C K be an infinite index set such that
ph S5 pl* and AL, "5 AL", £ € =*. Taking limits in the optimality condi-
tions (1.3) shows that (d**,~v*) is a KKT point for @P*(z*,=*) with multipliers
ub* and /\é", € € =*. Uniqueness of such points proves the result. O
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The following lernma establishes a few basic properties of some of the sequences
generated by the algorithm. :

Lemma 5 (i) The sequences {z:}, {d2}, and {di} are bounded; (ii) {f(zx)}
converges; (#1) tpdr — 0.

Proof: In view of Assumption 3 and the fact that the line search guarantees
{f(zx)} is a monotonically decreasing sequence, it follows that {z;} is bounded,
and since f(-) is continuous, that {f(zx)} converges. Boundedness of {d°}
follows from boundedness of {z;}, Assumption 4, continuity of d°(z, H, 2)
for fixed =, and the fact that there are only ﬁmtely many subsets = of =.
Boundedness of {d}} follows from Lemma 2 and boundedness of {z;}. Since
pr € [0,1], {dx} is bounded as well. Finally, suppose {trdx} / 0. Then there
exists an infinite index set X C IN such that t;dy is bounded away from zero on
K. Since all sequences of interest are bounded and Z is finite, we may suppose
without loss of generality that z; =5 z*, Hy 5 H*, 4§ =5 d%*, d} =5 gl
i 5y pr 25 p*, and E, = E* for all k € K. Lemma4tells us that d°*
is the unique solution of QP°(z*, H*,=*) and (d"*,v") is the unique solution
pair for QP!(z*,Z*). Furthermore, since t;d; is bounded away from zero on
K, there exists ¢ > 0 such that ¢, > ¢t for all k € K, and since {¢x} is bounded
(tx € [0,1)]), it follows that either d%* # 0 or dl’* # 0. Applying Lemmas 1
and 2 in both directions shows that z* is not a KKT point for (DSI) and both
d%* # 0 and d** # 0. In addition, v* < 0 and v, < 0, for all k € K (from
Lemma 2) and py, is bounded away from zero on K (from the assumptions on
p(-) as given in Section 2 and the fact that d? is bounded away from zero on
K). As a consequence, there exists p > 0 such that pp = p(dP) > p for all
k € K and there exists ¥ < 0 such that v, < 7 for all ¥ € K. Now, since
(Vf(zk) d; ) < Yk, for all k

t(VI(zr) dh) = t(l—pe)(V (i), dQ) + trpr(V f(zx), d})
< tepene S i)Y < G,

for all k¥ € K, where we have used (1.7). Thus, by the line search criterion of
Step 2,

f(zr41) < flze) + 107
for all k € K. Since f(z)) is monotone non-increasing, it follows that {f(zz)}
diverges, which contradicts (21). o

In order to establish convergence to a KKT point, it will be convenient to
consider the value functions for the search direction QPs, QP%(z, H,Z) and
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QPl(a:l é). In particular, given the solutions d® = d%@a, H, é) and (d',7) =
(d*(z,Z),7(z,Z)), define

(e, 7,8) 2 - (30 B+ (V1(2),8% )

v(

8

2y A 1 o
B2 (G +4).

Further, let v(z, H,Z) 2 v0(z, H,E) + v'(z,Z), and, at iteration k, define
'Ug = vo(:z:k,Hk,Ek), v,ﬁ = vl(zk,Ek), and v = v(zk, He,Zk). Note that, since
0 is always feasible for both QPs, v) > 0 and v} > 0, for all .

Lemma 6 Let K be an infinite indez set. Then (i) dY <=5 0 if and only if
v§ 50, (4) (di, 1) 25 (0,0) if and only if vk =550, and (i) if & 25 0,
then all accumulation points of {zi}rex are KKT points for (DSI).

Proof: First, if d) 255 0 then it is clear from the definition of v that

v) =5 0. Next, from (1.2) and the last statement in Lemma 1, it follows
that (Vf(ze),d}) < —(d}, Hxd}). Thus, using again the definition of vQ, we
get

0
Vg

= (3(d}, Hed}) + (Vf(zx),d3))
> —3(dy, Hedd) + (), Hid?) >

R > o,

where we have used Assumption 4. Thus, if v =5 0, then d? 55 0. If

d, ) 5 (0,0), then from the definition of v! we see that v: 5 0. Now
& & %

suppose vi *£5 0. To show di €% 0, note that from the optimality conditions

(1.3),

[EH

—p(VF(za),dh) = D M (Ved(zk, §), d})

§EE)

= "/J]];'Yk - Z A/];’E('Yk - ¢(xka§))

€S,

= —7k+2/\11=,5¢(93k,§) < -
EES,

Thus, again using the definition of v},

1 1
L e
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L]

and it immediately follows that d}, 255 0 and v *£5 0. To prove (i), suppose
K is such that dz 25 0. Let z* be an accumulation point of {zt}rex and

let X' C K be an infinite index set such that z e and, for some é,

== CZforall ke K'. Let /\2 € R be the multiplier vector from
QP%(zy, Hg, =) and define

222 (€€l §lak,€) + (Vab(zk,6),d) =0 }.

Suppose, without loss of generality, 22 = =0, for all k € K. As dp ke
0, it is clear that 20 C Z,.(z*) and, in view of Assumption 2, the set
{ V.p(zx,€) | € € 20 } is linearly independent, for k large enough. Thus,
from (1.2), a unique expression for the QP multipliers (for k large enough) is
given by

~

= = (R Be0) " R (] + 91(22),

where B(z;) 2 [ Ved(zr,6) | E€E0 ] € R’ In view of Assumption 4,

boundedness of {z}, the regularity assumptions, and the fact that d? hexy 0,
we see that

X5 20 = — (AE)TREY) T AETVFE).

Taking limits in the optimality conditions (1.2) for QP°(zx, Hk, Z) shows that
z* is a KKT point for (DSI) with multipliers

0,%
,\g={ A L€S,

[1)>

0 ¢¢E2.
a

We are now in a position to show that there exists an accumulation point of
{z+} which is a KKT point for (DSI). This result is, in fact, weaker than
that obtained in [27] for the unconstrained minimax case, where under similar
assumptions, but with a more involved argument, it is shown that all accumu-
lation points are KKT. The price to be paid is the introduction of Assumption
5 below for proving Theorem 1.

The proof of the following result is inspired by that of Theorem T in [16].

Proposition 1 lim ing vg = 0.
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Corollary 1 There ezists an accumulation point =* of {zi} which is a KKT
point for (DSI).

Proof: Since v§ > 0 and v > 0 for all k, Proposition 1 implies lim 'u,:f 19 =0,

i.e. there exists an infinite index set K such that v =<5 0. In view of Lemma 6,
all accumulation points of {zx}rex are KKT points. Finally, boundedness of
{z} implies at least one such point exists. m|

Define the Lagrangian function for (DSI) as

L(z,\) 2 f(2) + Y Aed(z, ).

£€E

In order to show that the entire sequence converges to a KKT point z*, we
strengthen our assumptions as follows.

Assumption 1’: The functions f : IR® - R and ¢(-,&) : R" =+ R, £ € E are
twice continuously differentiable.

Assumption 5: Some accumulation point z* of {zx} which is a KKT point
for (DST) also satisfies the second order sufficiency conditions with strict com-
plementary slackness, i.e. there exists A* € R/E! satisfying (1.1) as well as

s V2 L(z*, \*) is positive definite on the subspace
{h 1 (Vao(z",£), k) =0, V€ € Eact(z")}

m  and A7 > 0 for all § € Epct(z”).

It is well-known that such an assumption implies that z* is an isolated KKT
point for (DST) as well as an isolated local minimizer. The following theorem
is the main result of this section.

Theorem 1 The sequence {z} generated by algorithm FSQP-MC converges
to a strict local minimizer z* of (DSI).

Proof: First we show that there exists a neighborhood of z* in which no other
accumulation points of {z;} can exist, KKT points or not. As z* is a strict
local minimizer, there exists ¢ > 0 such that f(z) > f(z*) for all z # z*,

eSSt B(z*,e) N X, where B(z*,¢) is the open ball of radius € centered at
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*

z*. Proceeding by contradiction, suppose ' € B(z*,€), =’ # x*, is another
accumulation point of {z;}. Feasibility of the iterates implies that z' € S.
Thus f(z') > f(z*), which is in contradiction with Lemma 5(41). Next, in view
of Lemma 5(34i), (zx4+1 — zx) — 0. Suppose X is an infinite index set such
that z; —5 z*. Then there exists k; such that ||z — z*|| < €/4, for all k € K,
k > ky. Further, there exists k; such that ||zxy1 — k]| < €/4, for all k > k,.
Therefore, if there were another accumulation point outside of B(z*,¢€), then
the sequence would have to pass through the compact set B(z*,¢) \ B(z*,¢/4)
infinitely many times. This contradicts the established fact that there are no
accumulation points of {zy}, other than z*, in B(z*,¢). a

3.2 Local Convergence

We have thus shown that, with a likely dramatically reduced amount of work
per iteration, global convergence can be preserved. This would be of little
interest, though, if the speed of convergence were to suffer significantly. In this
section we establish that, under a few additional assumptions, the sequence
{z«} generated by a slightly modified version of algorithm FSQP-MC (to
avoid the Maratos effect) exhibits 2-step superlinear convergence. To do this,
the bulk of our effort is focussed on showing that for k large the set of constraints
Ei which affect the search direction is precisely the set of active constraints at
the solution, i.e. 50t (z*). In addition, we show that, eventually, no constraints
outside of Z,c¢(z*) affect the line search, and that Hj is updated normally at
every iteration. Thus, for k large enough, the algorithm behaves as if it were
solving the problem

minimize f(z)

subject to ¢(z,£) <0, V€& ZE ("), (P)

using all constraints at every iteration. Establishing this allows us to apply
known results concerning local convergence rates.

The following is proved in the appendix.

Proposition 2 For k large enough,

':b :b,l —_

. ,0 —_
(¥ By =Ep = Za(z”), and

(1) ¢(zx +tdy,§) <0 forallt €[0,1], £ € E\ Zact(z™).
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In order to achieve superlinear convergence, it is crucial that a unit step, i.e.
tr = 1, always be accepted for all & sufficiently large. Several techniques have
been introduced to avoid the so-called Maratos effect. We chose to include a
second order correction such as that used in [17]. Specifically, at iteration k,
let d(z,d, H, é) be the unique solution of the QP @T—"(m,d, H, C.:’), defined for
T € (2,3) as follows

minimize  }(d+d, H(d +d)) + (Vf(z),d + d)
subject to  ¢(z + d, &) + (Vad(z,£),d+d) < [|dl|”, VE€E,
QP(z,d,H,%)
if it exists and has norm less that min{||d||, C}, where C is a large number.
Otherwise, set d(z,d, H, é) = 0. The following step is added to algorithm
FSQP-MC:

Step 1(iv). Compute (Zk = CZ(:L‘k,dk,Hk,Ek).

In addition, the line search criterion (1.4) and (1.5) are replaced with

Flzg + td + tz(ik) < flzx) + at{V f(zk), di), (112)
and
d(zxk + td +t2dy) <0, VEE€E. (1.13)
Finally, the condition (1.6) is replaced with
123 )5 =
¢ (l‘k + Edk + (E) dk,f) > 0. (1.14)

With some effort, it can be shown that these modifications do not affect any
of the results obtained to this point. Further, for k sufficiently large, the set
of binding constraints in QP(z,dr, Hi,Zk) is again Sac4(z*). Hence, it is
established that for k large enough, the modified algorithm FSQP-MC behaves
identically to that given in [17], applied to (P*).

Assumption 1 is now further strengthened and a new assumption concerning
the Hessian approximations Hj is given. These assumptions allow us to use
the local convergence rate result from [17].

Assumption 1”: The functions f : IR® -+ IR, and ¢(-,£) : R®* =+ R, { € &,
are three times continuously differentiable.

Assumption 6: As a result of the update rule chosen for Step 3(iv), Hi
approaches the Hessian of the Lagrangian in the sense that
i NPelHk = V3, La*, M) Pedill _
im =
k=00 Ildk ]l

0,
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where A* is the KKT multiplier vector associated with z* and
A —~
P. 21— Re(RTRy)'RY
with Rg = [Vad(2x,§) | € € Zact ()]
Theorem 2 For all k sufficiently large, the unit step t, = 1 is accepted in Step
2. Further, the sequence {z;} converges to * 2-step superlinearly, i.e.

— *
L |I$k+2 T ” =0
koo ||z — z*||

4 EXTENSION TO CONSTRAINED
MINIMAX

The algorithm we have discussed may be extended following the scheme of [27]
to handle problems with many objective functions, i.e. large-scale constrained
minimax. Specifically, consider the problem

minimize max f(z,w)
wEeN
subject to  ¢(z,£) <0, VEe€E,

where ) and Z are finite (again, presumably large) sets, and f : IR* x § - R
and ¢ : R"” x Z — IR are both three times continuously differentiable with
respect to their first argument. Given {2 C (2, define

Fa(z) & max flz,w).

Given a direction d € R™, define a first-order approximation of Fy(z + d) —
Fa(z) by

Fo(z,d) = meaX{f($+d yw) +(Va f(z,0),d)} — Fo(z),

and, finally, given a direction d € R™, let

F'(:cdd) max{f(:v+dw)+(sz(zw) d)} — Fa(z + d).
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Let {2 be the set of objective functions used to compute the search direction
at iteration k. The modified QPs follow. To compute d%(z, H,Q, =), we solve

minimize $(d° Hd®) + F}(z,d°)

subject to $(z,6) + (V20(2,€),d%) <0, vgeg, I @HHI)

and to compute d*(z,Q, Z), we solve

minimize 1||d!||% + v
subject to Fé(l‘, d') <7, QP(z,Q,%)
$(z,€) + (Voh(x,6),d") <y, VEEE.

- Finally, to cempute J{z,/d, H, Q,é),vwe solve

minimize 1(d +d, H(d +d)) + Fé(:z:, d, fi) )
subject to  ¢(z +d,§) + (Vs ¢(z,8),d+d) < ||d||", VEE€E,
QP(z,d, H,Q,&
where again, if the QP has no solution or if the solution has norm greater than
min{}|d||, C}, we set d(z,d, H,},Z) = 0.

In order to describe the update rules for 2, following [27], we define a few index
sets for the objectives (in direct analogy with the index sets for the constraints
as introduced in Section 2). The set of indices of “maximizing” objectives is
defined in the obvious manner as

Qmax(z) 2 {w € Q| f(z,w) = Fa(z)}.

At iteration k, let p.%w, w € Q, be the multipliers from QP°(zy, Hy, U, Zk)
associated with the objective functions. Likewise, let p} ,, w € Q, be the
multipliers from QP (z, Q,Zx) associated with the objective functions. The
set of indices of objective functions which affected the computation of the search
direction di is given by?

Q22 {we | pR., > 0or ug, >0}
The line search criterion (1.12) is replaced with

Fo(zg +tdy + t2(ik) < FQ(:I:k) + atFS')(.’Dk,dk). (1.15)

2QP(z,(), =) is not needed in the unconstrained case. Accordingly, in [27], 2} is defined
based on a single set of multipliers.
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If tx < 1 and the truncation is due to an objective function, then define @ €

such that

t te )2 - ¢
f <xk +Ea + (—’i) dk,w> > Fa(zi) + a—= Fhy(zk, dg). (1.16)

g 8 8

We are now in a position to state the extended algorithm.

Algorithm FSQP-MOC

Parameters. a € (0,1), 8€(0,1),and 0 <6 K 1.
Data. 7o € R™, 0 < Hy = Hf € R™*"™.

Step
Step

Step

0 - Initialization. Set k « 0. Choose Qo 2 Qmax(Zo), Zo 2 Zact(To)-
1 - Computation of search direction.

(i). Compute df = d°(zx, Hy, U, Ex). If df = 0, stop.

(ii). Compute di = d*(zx, U, Zg)-

(ii). Compute pr = p(d?) and set di + (1 — pi)d} + pid}.

(iv). Compute (Zk = J(mk,dk,Hk,Qk,Ek).

2 - Line search. Compute t;, the first number ¢ in the sequence

{1,8,82,...} satisfying (1.15) and (1.13).

Step

3 - Updates.
(i) Set Te41 ¢ T + tkdk + tid"k-

2 _
(i1). If t; < 1 and (1.15) was violated at Tx4+1 = zx + %dk + (%) dg,
then let @ be such that (1.16) holds. If (1.13) was violated at Zg+1,
then let £ be such that (1.14) holds.
(ii). Pick
Q1 2 Vmax(ze41) UQE, and
Eks1 2 Eace(@re1) USR.
If ¢, < 1 and (1.16) holds for some @ € £, then set Qg1 & Q1 U
{@}. If tx < 1 and (1.14) holds for some £ € E, then set Zgy1
Ekv1 U {E}
(iv) ¥t <Sand @ & Qi or £ € Zf set Hgry + Hp. Otherwise,
obtain a new symmetric positive definite estimate Hy4q to the Hessian
of the Lagrangian.
(v). Set k + k + 1 and go back to Step 1.
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5 IMPLEMENTATION AND NUMERICAL
RESULTS

Algorithm FSQP-MOC has been implemented as part of the code crsqQp3
(12]. The numerical test results reported in this section were obtained with a
modified copy of CFSQP Version 2.4 (the relevant changes will be included in
subsequent releases, beginning with Version 2.5). All test problems we consider
here are instances of (DSI). Thus in this section we only discuss implemen-
tation details relevant to solving such problems, i.e. implementation details of
algorithm FSQP-MC modified to include the second order correction d.*

The implementation allows for multiple discretized SIP constraints and contains
special provisions for those which are affine in z. Specifically, problem (DSI)
is generalized to

minimize f(z)

subject to  $;(z,€) £ (¢;(€),2) —d;(§) <0, VE€ED, j=1,...,my,

¢](z7§)sos V§€E(J)7]=ml+111ma
where ¢; : Egj) — R*, j =1,...,my, d; : Egj) — R, j =1,...,my,
and 2 is finite, j = 1,...,m. The assumptions and algorithm statement

are generalized in the obvious manner. As far as the analysis of Section 3 is
concerned, such a formulation could readily be adapted to the format of (DSI)
by grouping all constraints together, i.e. letting = = U;’;lE(j), and ignoring the
fact that some may be affine in z.

In the case that the initial point zo provided is not feasible for the affine con-
straints, CFSQP first computes v € IR™ as the solution of the strictly convex
QP

minimize (v,v)

subject to (¢;(€), 30 +v) — d;(€) <0, VEE€ZD, j=1,...,m,
for ¥ such that zy + 9 is feasible for linear constraints. If the new initial

point is not feasible for all nonlinear constraints, then CFSQP iterates, using
the algorithm FSQP-MOC, on the constrained minimax problem

minimize jzmig-af,(...,m Eréxsa()jc) {¢j(z,€)} |
subject to (c;(£),z) — d;(€) <0, veezP, j=1,...,m,

3 Available from the authors. See http://www.isr.umd.edu/Labs/CACSE/FSQP/fsqp.btml

4That is, we will not discuss the implementation details specific to the minimax algorithm,
even though in the case that the initial guess is infeasible for nonlinear constraints, the
minimax algorithm is used to generate a feasible point.
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until = max max {¢;(z,€)} < 0 is achieved. The final iterate will be
j=me+l,....m gez()

feasible for all constraints, allowing the algorithm to be applied to the original
problem.

Recall that it is only required that E contain certain subsets of Z. The algo-
rithm allows for additional elements of Z to be included in order to speed up
initial convergence. Of course, there is a trade-off between speeding up initial
convergence and increasing (i) the number of gradient evaluations and (i) the
size of the QPs. In the implementation, heuristics are applied to add poten-
tially useful elements to Zj (see, e.g. [26] for a discussion of such heuristics).
In the case of discretized SIP, one may wish to exploit the knowledge that adja-
cent discretization points are likely to be closely related. Following [27, 16, 6],
for some € > 0, the CFSQP implementation includes in = the set Z5™(zy) of
e-active “left local maximizers” at zx. At a point z € X, for j = 1,...,m,
define the e-active discretization points as

EN(z) 2 {6 €20 | 44(z,6) 2 ~¢}.

Such a discretization point £§j) €2 = {éj),. I(i)‘”l} is a left local maxi-
mizer if it satisfies one of the following three conditions: (i)i € {2,...,[E¥|-1}
and ’

9i(2,67) > 3(z, &) (117)
and .

8i(2,67) 2 ¢3(z,£5h); (1.18)

(i1) i = 1 and (1.18); (44) ¢ = |EP| and (1.17). The set E™(z) is the set of
all left local maximizers in Z(z) = ]"1.1:(’ )(z). The first part of the update
(i.e. before updates due to line search violations) in Step 3(ii%) of the algorithm
becomes

S+l = Zact(Tk) UE -'k. U ...“’"(zk).

Finally, we have found that in practice, including the end-points (whether or
not they are close to being active) during the first iteration often leads to a
better initial search direction. Thus we set

i1

Zo = Zact(z0) UEL™ (z0) U (U ({eP}u {fg(é)(m})) -

A few other specifics of the CFSQP implementation are as follows. First, as
was discussed in Section 2, it is not required to use QP*(z,Z) to compute our
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feasible descent direction d'. In fact, at iteration k, CFSQP uses the following
QP, which is a function of the SQP direction dY,

minimize Z{|d} — d'|> + v
subject to  (Vf(zx),d") <7,
¢(zka§) + (vz¢(zk’€)7d1> S 8l V£ € Ek’

where 7 was set to 0.1 for our numerical tests. Using such an objective function
encourages dj, to be “close” to df, a condition we have found to be beneficial
in practice. It can be verified that the arguments given in Section 3 go through
with little modification if we disable the inclusion of d2 in the QP objective
function when the step size £;_, from the previous iteration is less than a given
small threshold.? The expression used for pi is given by

A _lagr
fagl+ve’

where v; = max{0.5, ||di||"}, with « = 2.1 and 7 = 2.5 for our numerical
experiments. The matrices Hy are updated using the BFGS formula with
Powell’s modification {21]. The multiplier estimates used for the updates are
those obtained from QP°(zy, Hg,Z¢), with all multipliers corresponding to
discretization points outside of =; set to zero. The QP sub-problems were
solved using the routine QLD due to Powell and Schittkowski [25]. Finally,
the following parameter values were used for all numerical testing: o = 0.1,
B =0.5,e=1, and § was set to the square root of the machine precision.

In order to judge the efficiency of algorithm FSQP-MOC, we ran the same
numerical tests with two other algorithms differing only in the manner in which
=k is updated. The results are given in Tables 1 and 2. All test algorithms were
implemented by making the appropriate modifications to CFSQP Version 2.4.
In the tables, the implementation of FSQP-MOC just discussed is denoted
NEW. A simple e-active strategy was employed in the algorithm we call e-ACT,
i.e. we set Zp = Z.(zx) for all k, where ¢ = 0.1. The standard FSQP scheme
of [17] was applied in algorithm FULL by simply setting Z = Z, for all &. All
three algorithms were set to stop when [|d2|| < 1 x 10~4.

We report the numerical results for 13 discretized SIP test problems with dis-
cretization levels of 101 and 501. A uniform discretization was used in all
cases. Problems cw_3, cw.5, and cw_6 are borrowed from [3]. Problems oet_1
through oet_7 are from [15]. Finally, hz_1 is from [10] and sch_3 is from [26].
In all cases except for oet_7, the initial guess zo is the same as that given

5In the numerical experiments reported here, t; remained bounded away from 0.
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in the reference from which the problem was taken. For cet.7, e-ACT and
FULL had difficulty generating a feasible point, thus we used the feasible ini-
tial guess zo = (0,0,0,-7,—3, -1, 3). The first two columns of the tables are
self-explanatory. A description of the remaining columns is as follows. The
third column, n, indicates the number of variables, while m; and m, in the
next two columns indicate the number of linear SIP constraints and nonlin-
ear SIP constraints (m, = m — my), respectively. Next, NF is the number of
objective function evaluations, NG is the number of “scalar” constraint func-
tion evaluations (i.e. evaluation of some ¢;(z,§) for a given = and &), and IT
indicates the number of iterations required before the stopping criterion was
satisfied. Finally, 3 |Z4| is the sum over all iterations of the size of Zj (it is
equal to the number of gradient evaluations in the case of NEW and FULL),
|Z*| is the size of Zj at the final iterate, and TIME is the time of execution in
seconds on a Sun Sparc 4 workstation. For all test problems and for all three
algorithms, the value of the objective function at the final iterate agreed (to
within four significant figures) with the optimal value as given in the original
references.

A few conclusions may be drawn from the results. In general, NEW requires
the most iterations to “converge” to a solution, whereas FULL requires the
least. Typically, though, the difference is not large. Of course, such behavior
is expected since NEW uses a simpler QP model at each iteration. It is clear
from comparing the results for } {Z,| that NEW provides significant savings in
the number of gradient evaluations and the size of the QP sub-problems. The
savings for e-ACT are not as dramatic. In almost all cases, comparing TIME
of execution confirms that, indeed, NEW requires far less computational effort
than either of the other two approaches. Further, note that |=*| remains, in
general, unchanged for NEW when the discretization level is increased and is
typically equal to, or less than, n. This is not the case for ¢-ACT and FULL,
as would be expected. Such behavior suggests that computational effort does
not increase with respect to discretization level for NEW at the same rate as
it does for e-ACT and FULL. This conclusion is supported by the increase in
execution TIME when discretization level increases.
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PROB | ALGC |n m¢; m, | NF NG IT D |Sx] B TIME
cw3 | NEW |3 0 1 10 1625 14 22 2 043
e-ACT 14 2358 18 25 3 043
FULL 20 1866 16 1616 101  0.86
cw5 | NEW |3 1 0 13 13 38 3 020
e-ACT 5 5 347 101  0.19
FULL 4 4 404 101 0.3
cw6 | NEW [ 2 0 1 14 1858 15 15 1 033
e-ACT 15 1534 12 32 8 026
FULL 14 1752 15 1515 101 0.71
cet.1| NEW [3 2 0 12 12 57 4 032
e-ACT 7 7 202 46 029
FULL 6 6 1212 202 0.62
oet2 | NEW |3 0 2 6 1283 6 26 3 027
e-ACT 9 3132 9 412 111 049
FULL 4 817 4 808 202 123
oet3 | NEW [ 4 2 0 12 12 62 4 034
e-ACT 8 8 759 202 0.40
FULL 6 6 1212 202 0.60
oet4 | NEW [ 4 0 2 19 5711 21 91 4 088
e-ACT 14 5895 16 920 202 1.19
FULL 12 3147 14 2828 202 2.19
oet5 | NEW [ 5 0 2 23 8067 24 106 4 119
e-ACT 31 10930 27 3839 202  4.27
FULL 31 10777 29 5858 202  6.22
oet 6 | NEW | 5 0 2 23 7099 21 111 6 118
eACT 17 6236 18 2359 202 315
FULL 15 4479 15 3030 202 3.46
oet7 | NEW |7 0 2 48 11744 29 188 7 236
e-ACT 647 61831 113 21552 202 50.44
FULL 372 39721 77 15554 202 37.82
kz.l | NEW [ 2 0 2 4 1206 6 8 1 023
e-ACT 4 1206 6 68 31 024
FULL 8§ 1887 10 2020 202 1.03
sch.3 | NEW | 3 1 0 14 14 41 3 0.19
e-ACT 5 5 347 101 020
FULL 4 4 404 101 031

Table 1 Numerical results for problems with {20} = 101.
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PROB | ALGD [n m; mn | NF NG IT > [E [E] TIME
cw3d | NEW [3 0 1 10 7972 14 22 2 1.08
¢-ACT 15 13509 19 86 12 137
FULL 20 9216 16 8016 501 3.75
cw5 | NEW [3 1 0 [ 47 47 142 2 1.28
e-ACT 6 6 2213 501 0.71
FULL 5 5 2505 501 1.17
cw6 | NEW {2 0 1 14 9012 15 15 1 088
e-ACT 15 7509 12 144 40 0.79
FULL 14 8585 15 7515 501  2.98
oet.1 | NEW [3 2 0 18 18 89 4 134
e-ACT 8 8 1582 224 1.02
FULL 6 6 6012 1002 2.58
oet2 | NEW [3 0 2 6 6270 6 26 3 076
¢-ACT 9 15415 9 2010 557 1.83
FULL 4 4017 4 4008 1002  2.67
oet3 | NEW |4 2 0 15 15 86 4 121
e-ACT 8 8 3734 1002 1.55
FULL 6 6 12024 1002 2.62
oet:d | NEW [4 0 2 19 26511 21 95 4 27
e-ACT 14 29145 16 4508 1002  5.07
FULL 12 15531 14 14028 1002 9.80
oet5 | NEW [5 0 2 24 39314 23 102 4 3901
e-ACT 22 43177 24 15987 1002 16.9
FULL 31 52255 29 29058 1002 284
oet6 | NEW [5 0 2 23 35073 21 118 7 3.70
e-ACT 19 33602 19 12688 1002 16.3
FULL 15 22114 15 15030 1002 15.7
oet7 | NEW [ 7 0 2 |109 149623 73 483 9 178
¢ACT 647 305237 113 106860 1002 250
FULL 376 196081 77 77154 1002 172
hz1 | NEW |2 0 2 4 5968 6 8 1 0.69
e-ACT 4 5968 6 320 159 088
FULL 10 11386 12 12024 1002 5.60
sch 3| NEW [3 1 0 | 48 48 144 2 1.28
e-ACT 7 7 2714 501  0.79
FULL 6 6 3006 501 1.54

Table 2 Numerical results for problems with |[£()| = 501.
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6 CONCLUSIONS

We have presented and analyzed a feasible SQP algorithm for tackling smooth
nonlinear programming problems with a large number of constraints, e.g. those
arising from discretization of SIP problems. At each iteration, only a small
subset of the constraints are used in the QP sub-problems. Thus, fewer gra-
dient evaluations are required and the computational effort to solve the QP
sub-problems is decreased. We showed that the scheme for choosing which
constraints are to be included in the QP sub-problems preserves global and
fast local convergence. Numerical results obtained from the CFSQP implemen-
tation show that, indeed, the algorithm performs favorably.
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APPENDIX A
PROOFS

The following lemmas will be used in the proof of Proposition 1.

Lemma 7 Givenz € R" and H > 0, suppose Z' C =" C Z. (i) Ifd%(z, H,=")
is not feasible for QP°(z, H,Z"), then v°(z, H,Z") < v(z, H,Z'), and (ii) if
d*(z,Z') is not feasible for QP (z,="), then v*(z,Z") < v!(z,Z').

Proof: First d%(zx, H,Z") # d°(z, H,Z'), since by assumption d%(z, H,Z') is
not feasible for QP°(z, H,Z"). On the other hand, since &' C £, d%(z, H,Z"

is feasible for QP%(z, H,Z'). Uniqueness of the solution of QP%(z, H,Z') then
implies the claim. Part (%) is proved similarly. O

Lemma 8 Suppose K is an infinite index set such that

P REK kEX
Tk :gc) :L'*, Hk hic) H', dg ‘Eff do’*, d],; —)dl'*, Yk —)’y*,

where z* is not a KKT point for (DSI), and suppose =g = Zforallk € K.
Then there ezists t > 0 such that for all t € [0,2], ¢(zx + tdk, &) < 0, for all
£ € Z, and for all k € K sufficiently large.

Proof: By definition of di and 7k, for all k € K, ¢(zk, &) + (Vad(zx,£),d}) <
vk, for all £ € E. Since zx is not a KKT point, di #0and v < 0,forallk e K
(Lemma 2). Further, in view of Lemma 4 (d'**,v*) solves QP!(z*, £), and since
z* is not a KKT point, d** # 0 and v* < 0 (Lemma 2). Thus, there exists
5 < 0 (e.g. ¥ =+v*/2) such that for all k € K, ¢(zx, ) + (Va0(zk,£),d}) < 7,
for all £ € Z. It follows that there exists § > 0 and k such that for all k € K,
k >k,
(Vad(zk,6),d}) < =6, VE€ENEy(z”)

$(zx,€) < =8, VE€E\ (ENEqet(z™)).

Next, in view of Lemma 1, d) # 0 and (V é(zx, £),d2) <0, forall £ € Z,04(z4),
for all k € K. On the other hand, applying Lemma 4 allows us to conclude do*
solves QP(z*, H*,Z). Hence, from Lemma 6, since z* is not a KKT point for
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(DST), d%* # 0. Since p(-) is assumed to be bounded away from zero outside
every neighborhood of zero, there exists p > 0 such that pr = p(dd) > p, for
all k € K. It follows that

(Vzo(zk, &), dr)

il

(1 - pk)(vx¢($k; 5)1 dl(c)) + Pk(vz¢(l'k; 6)7 dlt)
< —261 Vf € éﬂaact(x*)y

for all k € K, k > k. Now let @2 {z¢| k€ K}U {z*}, D £ {di| k € K} U {d"}
and define

M(t,6) 2 max max max IVz¢(z + tnd, &) — V6(z, )|l - ldll,

which is well-defined and continuous intforal £ € é, since @ and D are
compact. Now for all k € K, £ € = we have

¢(zk + tdk; &) - ¢(zk7 §)
1
= /0 (Vzd(zk + tndy, £), dr)dn

il

1
t {/ (Ved(zi + tndk, €) — Vao(zk, §), di)dn + (Vz¢($k,§),dk)}
0

< t{ 21[10131] IV2(zx + tndk, &) — Voo(zk, O - ldell + (Vx¢(xkyf)7dk)} -
n€lo,

Further note that M(0,£) = 0, for all £ € £. For £ € N Eaeq(z”), define £,

such that M(t,€) < pd for all t € [0,¢;]. Forall § € £\ (ENEyet(z*)), our
regularity assumptions and boundedness of {zx} and {di} imply there exist
M]_,g > 0 and szg > 0 such that

I(Vz¢($k,€),dk)l S Ml,E: Vk: and tlag‘}fl |M(t?€)| S M2,E'

For such ¢, define t; = §/(My,¢+M>, ¢). Thent{M(t, §)+(V,¢($k,§),dk)} <4,
forallt € [0,], £ € = 2\ (ENEqct(z*)). Finally, set t = max, st From (A.1)

it is easily venﬁed that £ is as claimed. (m}

Proof of Proposition 1. We argue by contradiction. Suppose that

v* £ liminf v > 0. (A.2)
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As all sequences of interest are bounded, there exists an infinite index set K
such that

Vg, ﬁv*, T =5 z*, H, =5 H*, Pk ﬁp*,
d 25 4%, 4y, 2540 4l SS5dbv, di, S5 4Lt
v§ =55 40, Vot iR 0‘, vi eyl CH —e—ﬁvi",
T =37 e S

Further, since the number of possible subsets of Z is finite, we may assume that

on K, the sets Z;"° and =2 are constant and equal to Z*° and £ , Tespectively.
Thus, for all &, d° solves QPO(zy, Hy,Z%°) and dl solves QPl(a:k, E51). Note
that in view of the definition of :ZO and :2 1, the sequences constructed by
the algorithm are identical to those that would have been constructed with
o & Ehoy bl substituted for Z, for all k. Without loss of generality we thus
assume that =, = Z’, for all k. Finally, define d* = (1 — p*)d%* + p*d'.

In view of Lemma 4, d%* and d'* are the unique solutions of QP°(z*, H*,Z")
and QP'(z*,Z'). Now, of course, z* is not a KKT point for (DSI), oth-
erwise, in view of Lemmas 1 and 2, d%* = d'* = 0, which would imply
v* = %" +v1* = 0, contradicting (A.2). Hence, d®* # 0 and d'* # 0,
and both are directions of descent for f(-) at z*. This further implies d* # 0
and (Vf(z*),d*) < 0. Therefore, applying Lemma 5(iii), we conclude that
tr =5 0. Without loss of generality, assume that ¢, < min{4,t}, for all k € K,
where ¢ is as given by Lemma 8 and § > 0 is as in the algorithm. The fact
that ¢ < 6 < 1 implies that for all k¥ € K the line search criterion of Step 2
is not satisfied at Zry 1 = T + %dk. Since a < 1 (indeed, @ < 1/2) using a
standard argument it follows that (1.4) is violated at Zx41 only finitely many
times. Thus, without loss of generality, assume (1.6) holds for all k € X, i.e.

HZre1,€) >0, VkeK.

Further, we have assumed (since there are only a finite number of constraints)
that the violation is caused by the same constraint, w1th index ¢, for all k € K.
In view of Lemma 8, we may conclude that & ¢ Z’. Thus, according to Step
3(iv), Hyy1 = Hy, for all k € K.

Since, for all k € K, Hyyy = Hy and Zx = &' = :bo U :21, the directions
d +1 and dk+1 solve QPO({Ek+1,Hk,_.k+1) and QP (zk+1,uk+1) forallk e K:
where for some &’

Sk =5 2 E'U{E).
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Without loss of generality, since the number of constraints is finite, we may
assume that the set of indices in Zg4; and not in ' U {£} is constant for all
k € K. Further, in view of Lemma 5(i41), zx+1 —3 z*. It follows that, in view of
Lemma 4, the limits dz’* and dfr" are the unique solutions of QP%(z*, H*,Z")
and QP'(z*,Z"). Since, ¢(Fr41,&) > 0 and d(zs+1,€) < 0, for all k € K,
and since Lemma 5(ii1) also implies Zg+1 28 z*, we see that ¢(z*, &) = 0.
By considering a first-order expansion of ¢(Fk+1,£&) — ¢(Tk+1,£), and taking
limits, we see that (V,¢(z*,£),d*) > 0. Note that since d®* # 0 and d # 0,
for all k£ € K, d? is bounded away from zero. By our assymptions on p(-),
pi is thus bounded away from zero and p* > 0. This implies that either
(Voo(z*,8),d"™) > 0, or (V,¢(z*,£),d%*) > 0. If the first inequality holds,
then (d%*,~*) is infeasible for QP(z*,Z") (recall that ¢(z*,£) = 0 and, from
Lemmas 4 and 2, v* < 0) and, in view of Lemma 7, v2* < v*. Similarly,
if the second inequality holds, then d%* is infeasible for QP°(z*, H*,Z"), and
vg_" < v%*. In view of (A.2), in both cases we have a contradiction. a

The following sequence of Lemmas will be used in the proof of Proposition 2.

Lemma 9 There exists an infinite inder set K such that, for all k € K, ()
= =b,0 = =b,1
Eact(z") C EL”, and (i1) Eaet(z*) C Ep.

Proof: In view of Proposition 1, since for all k v > 0 and vi > 0, there exists
an infinite index set K such that both v{ =<5 0 and v} *€% 0. By Lemma 6,
d3 “5 0 and d} =5 0. To prove (), let A] , £ € Ex, be the multipliers from
QP°(zx, Hy,Zx) and let A] . = O, for all § ¢ Zg. Assume, without loss of

generality, that EZ’O =20 for all k € X and Hy 255 H*. Since H is compact,
and in view of Assumptions 2 and 5, we may apply Theorem 2.1 of {24] to

show that AD . “55 A", £ € 5, the KKT multipliers for QP°(z*, H*,Z°). Note

that the KKT conditions (1.2) for QP%(z*, H*,£%) are equivalent to the KKT
conditions (1.1) for (DSI) at =* with multipliers A", £ € E. Uniqueness of the

multipliers at z* (Assumption 2) and strict complementarity imply /\2’* >0if

£ € Sact(z*). Therefore, Spet(z*) C E8°, which means Spet(z*) € E2°, for all
k € K. Part (%) is proved similarly.

Lemma 10 Given e > 0, there exists § > 0 such that for every z € X satisfying
llz —z*|| < &, every H € H, and every = C = with Zact(z*) C 5,

(i) all £ € Eyci(a*) are binding for QP°(z, H,Z) and ||d°(z, H,E)|| < ¢, and
(i) all £ € Sact(z*) are binding for QP (z,Z) and ||d!(z,E)|| < e.
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[ll>

Proof: Given H € H and = C Z such that Z,.4(z*) C Z, Lemmas 1 and 2
imply that d°(z*, H,Z) = d'(z*,Z) = 0. Since H is compact, Assumptions 2
and 5 allow us to apply Theorem 2.1 of [24] to conclude that, given ¢ > 0, there
exists 05 > 0 such that for all z satisfying Ila: z*|| < 6z and all H € #, the QP
multlphers from QP°(z, H,Z) and QP! (z,E) are positive for all £ € Zyc4(z*),
ld®(z, H,E)|| < ¢, and ||d!(z,Z)|| < e. As = is a finite set, § may be chosen
independently of é. ad

[l]

Lemma 11 For k sufficiently large Zac4(z*) C EZ’O and Egci(a*) C =D 1.

Proof: For an arbitrary € > 0, let § > 0 be as given by Lemma 10. In
view of Theorem 1, there exists k such that ||z — z*|] < é for all k > k By

Lemma 9, there exists an infinite index set X such that Z,c4(z*) C = k , and
Sact(z*) C B!, for all k € K. Choose k' > k, &' € K. It follows that
Zact(z*) € Egr41. The result follows by induction and Lemma 10. a

Lemma 12 d) — 0 and dj — 0.

Proof: Follows immediately from Lemma 11, Step 3(3#) of algorithm FSQP-
MC, Assumption 4, and Lemma 10. a

Proof of Proposition 2. For (i), in view of Lemma 11, it suffices to show
that, for k sufficiently large,AEZ'o C Zact(z*) and 52’1 C Zact(z*). Suppose
fe= E\ Eact(z*), ie. ¢(z*,€) < 0. Since zx — z*, by continuity we have
é(zx, £) < 0 for all k sufficiently large. In view of Lemma 12, for k sufficiently
large we have

B(x,€) + (Vod(z, ), df) < 0.

Therefore, A° = 0 (hence E €= =b 0) for all k sufficiently large. The argument

is identical for "Zl. Part (#1) follows from Theorem 1, Lemma 12, and our

regularity assumptions. O












