
FAST ALGORITHMS TO COMPUTE MATRIX-VECTOR
PRODUCTS FOR PASCAL MATRICES∗

ZHIHUI TANG† , RAMANI DURAISWAMI‡ , AND NAIL GUMEROV§

Abstract. The Pascal matrix arises in a number of applications. We present a few ways to
decompose the Pascal matrices of size n×n into products of matrices with structure. Based on these
decompositions, we propose fast algorithms to compute the product of a Pascal matrix and a vector
with complexity O(n logn). We also present a strategy to stabilize the proposed algorithms. Finally,
we also present some interesting properties of the Pascal matrices that help us to compute fast the
product of the inverse of a Pascal matrix and a vector, and fast algorithms for generalized Pascal
Matrices.

Key words. Matrix-vector product, Pascal matrices, matrix decomposition, structured matri-
ces, Toeplitz matrices, Hankel matrices, Vandermonde matrices

Introduction. If we arrange the binomial coefficients

Cn
r =

r!

n!(r − n)!
, r = 0, 1, 2, · · · , n = 0, 1, · · · , r (0.1)

in staggered rows,

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

, (0.2)

we obtain the famous Pascal triangle. However, Pascal was not the first to discover
this triangle, it had been described about 500 years earlier by Chinese mathematician
Yang Hui. Therefore in China, it is known as “Yang Hui’s triangle" . It also has
been discovered in India, Persia and Europe. For a fascinating introduction, see
[Edwards02].

The Pascal matrix arises in many applications such as in binomial expansion,
probability, combinatorics, linear algebra [Edelman03], electrical engineering [Biolkova99]
and order statistics [Aggarwala2001]. As described in previous work [Brawer92,
Call93, Zhang97, Zhang98, Edelman03], three different types of n× n matrices can be
obtained by arranging the Pascal triangle into a matrix and truncating appropriately.

∗This work was supported by NSF Awards 0086075 and 0219681.
†Department of Mathematics and Institute for Advanced Computer Studies, University of Mary-

land, College Park, MD 20742 (ztang@umiacs.umd.edu)
‡Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742

(ramani@umiacs.umd.edu)
§Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742

(gumerov@umiacs.umd.edu)

1



These include the lower triangular matrix

PLn =



1 0 0 0 · · · 0
1 1 0 0 · · · 0
1 2 1 0 · · · 0
1 3 3 1 · · · 0
...

...
...

...
. . .

...
C0n−1 C1n−1 C2n−1 C3n−1 · · · Cn−1

n−1


, (0.3)

the upper triangular matrix

PUn =



1 1 1 1 · · · 1
0 1 2 3 · · · Cn−1
0 0 1 3 · · · C2n−1
0 0 0 1 · · · C3n−1
...
...
...
...

. . .
...

0 0 0 0 · · · Cn−1
n−1


, (0.4)

or the symmetric matrix

PSn =



1 1 1 1 · · · C0n−1
1 2 3 4 · · · C1n
1 3 6 10 · · · C2n+1
1 4 10 20 · · · C3n+2
...

...
...

...
. . .

...
C0n−1 C1n C2n+1 C3n+2 · · · Cn−1

2n−2


. (0.5)

Since all these matrices have strong structure, they have many interesting and
useful properties [Brawer92, Call93, Zhang97, Zhang98, Edelman03]. We encountered
it while working to develop fast translation operators in two dimensions and rota-
tion operators in three dimensions for the fast multipole method [Tang03]. The fast
translation operators are of crucial importance for the fast multipole method.

The main results of this paper are fast algorithms, with computational complexity
O(n logn), for computing the matrix-vector product

y = Px, (0.6)

where P is one of these Pascal matrices or a matrix related to them of size n × n, x
and y are vectors of length n.

The paper is organized as follows. In Section 1 we describe some classical results
about fast matrix-vector products for matrices with Toeplitz, Hankel and Vander-
monde structure. In Section 2 we present our results on decompositions of the Pascal
matrices into products of structured matrices, which allow fast computation of the
matrix-vector product. If implemented naively, these algorithms are not numerically
stable. We provide a modification to stabilize the algorithms in Section 3. Numerical
examples are given in Section 4 to demonstrate the effectiveness of the stabilizing
technique and accuracy of the algorithm. In Section 5 we extend the algorithms to
the so-called generalized Pascal matrices. Some concluding remarks are provided in
Section 6.

2



1. Some classical results. The multiplication of a matrix and a vector arises
in many problems in engineering and applied mathematics, and is the fundamental
operation in much of scientific computation. For a dense matrix A of size n × n, its
product Ax with an arbitrary input vector x requires O(n2) work by standard matrix-
vector multiplication. In many applications, n is very large, and moreover, for the
same matrix, the multiplication has to be done over and over again with different input
vectors, for example, in iterative methods for solving linear systems. In such cases, one
seeks to identify special properties of the matrices in order to reduce the computational
work. One special class of matrices are the structured matrices, which are dense but
depend on only O(n) parameters. They often appear in communications, control,
optimization, and signal processing, etc. The multiplication of any of these matrices
with any arbitrary input vector can often be done in O(n logk n) time, where usually
0 · k · 2, depending on the structure. Since the structured matrices depend on only
O(n) parameters, they require reduced storage of only O(n) memory. Examples of
structured matrices are Fourier matrices, circulant matrices, Toeplitz matrices, Hankel
matrices, Vandermonde matrices, etc. To make the paper self-contained we provide
the following resume of fast matrix-vector product algorithms for these matrices.

1.1. Fourier matrices. The most important class of matrices in all fast algo-
rithms are the Fourier matrices.

Definition 1.1. A Fourier matrix of order n is defined as the following

Fn =


1 1 1 · · · 1
1 ωn ω2n · · · ωn−1n

1 ω2n ω4n · · · ω
2(n−1)
n

· · · · · · · · · · · · · · ·

1 ωn−1n ω
2(n−1)
n · · · ω

(n−1)(n−1)
n

 , (1.1)

where

ωn = e
− 2πi

n , (1.2)

is an nth root of unity.
It is well known that the product of this matrix with any vector is the so-called

discrete Fourier transform, which can be done efficiently using the fast Fourier trans-
form (FFT) algorithm [Cooley65]. Notice that the Fourier matrix is a unitary matrix,
that is, FnF ∗n = I, therefore, the conjugate transpose F ∗n is also a unitary matrix.
The corresponding efficient matrix-vector product is the inverse fast Fourier trans-
form (IFFT) [Van92, Golub96].

Theorem 1.2. The FFT and IFFT can be done in O(n logn) time and O(n logn)
memory references.

A proof can be found in [Cooley65] or [Van92]. This theorem is the basis for a
number of other efficient algorithms, for example, the product of a circulant matrix
and a vector.

1.2. Circulant matrices. Definition 1.3. A matrix of the form

Cn = C(x1, ..., xn) =


x1 xn xn−1 · · · x2
x2 x1 xn · · · x3
x3 x2 x1 · · · x4
· · · · · · · · · · · · · · ·
xn xn−1 xn−2 · · · x1

 (1.3)

3



is called a circulant matrix.
It is easy to see that a circulant matrix is completely determined by the entries in

the first column. All other columns are obtained by a shift of the previous column.
It has the following important property.

Theorem 1.4. Circulant matrices Cn(x) can be diagonalized by the Fourier
matrix,

Cn(x) = F
∗
n · diag(Fnx) · Fn, (1.4)

where x = (x1, ..., xn)0.
A proof can be found in [Bai2000]. Given this theorem, we have the following

fast algorithm for a matrix-vector product for a circulant matrix.
Given a circulant matrix Cn, and a vector y, the product

Cny (1.5)

can be computed efficiently using the following four steps:
1. compute f =FFT(y),
2. compute g =FFT(x),
3. compute the element wise vector-vector product h = f. ∗ g,
4. compute z =IFFT(h) to obtain Cny
Since the FFT and the IFFT can be done in O(n logn) time and memory refer-

ences, Cny can be obtained in O(n logn) time and memory references [Bai2000, Lu98].

1.3. Toeplitz matrices. Given an algorithm for a fast matrix-vector product
for circulant matrices, it is easy to see the algorithm for a Toeplitz matrix, since a
Toeplitz matrix can be embedded into a circulant matrix.

Definition 1.5. A matrix of the form

Tn = T (x−n+1, · · · , x0, ..., xn−1) =


x0 x1 x2 · · · xn−1
x−1 x0 x1 · · · xn−2
x−2 x−1 x0 · · · xn−3
· · · · · · · · · · · · · · ·
x−n+1 x−n+2 x−n+3 · · · x0

 (1.6)

is called a Toeplitz matrix.
A Toeplitz matrix is completely determined by its first column and first row, and

thus depends on 2n−1 parameters. The entries of Tn are constant down the diagonals
parallel to the main diagonal. It arises naturally in problems involving trigonometric
moments. Sometimes we denote a Toeplitz matrix using its first column vector and
row vector

c =
£
c0 c1 c2 ... cp−1

¤0
, r =

£
c0 r1 r2 ... rp−1

¤
(1.7)

by

Toep(c, r0) = Toep


c0
c1
c2
...

cp−1

,

c0
r1
r2
...

rp−1

 (1.8)

4



Theorem 1.6. [Bai2000, Kailath99] The product of any Toeplitz matrix and any
vector can be done in O(n logn) time and memory references.

Proof. Given a Toeplitz matrix Tn and a vector y, to compute the product Tny, a
Toeplitz matrix can first be embedded into a 2n × 2n circulant matrix C2n as follows

C2n =

·
Tn Sn
Sn Tn

¸
, (1.9)

where

Sn =


0 x−n+1 x−n+2 · · · x−1
xn−1 0 x−n+1 · · · x−2
xn−2 xn−1 0 · · · x−3
· · · · · · · · · · · · · · ·
x1 x2 x3 · · · 0

 . (1.10)

Then Tny can be multiplied as

C2n ·

·
y
0n×n

¸
=

·
Tn Sn
Sn Tn

¸
·

·
y
0n×n

¸
=

·
Tny
Sny

¸
, (1.11)

which can be implemented to be done in O(n logn) time and memory references.

1.4. Hankel matrices. Definition 1.7. A matrix of the form

Hn = H(x−n+1, · · ·, x0, · · · , xn−1) =


x−n+1 x−n+2 x−n+3 · · · x0
x−n+2 x−n+3 x−n+4 · · · x1
x−n+3 x−n+4 x−n+5 · · · x2
· · · · · · · · · · · · · · ·
x0 x1 x2 · · · xn−1


(1.12)

is called a Hankel matrix.
A Hankel is completely determined by its first column and last row and thus

depends on 2n − 1 parameters. The entries of Tn are constant along the diagonals
that are perpendicular to the main diagonal. It arises naturally in problems involving
power moments. It has the following property [Golub96].

Theorem 1.8. The product of a Hankel matrix and any vector can be done in
O(n logn) time and memory references.

Proof. Notice that if

Ip =


0 0 · · · 0 1
0 0 · · · 1 0
· · · · · · · · · · · · · · ·
0 1 · · · 0 0
1 0 · · · 0 0

 , (1.13)

is the backward identity permutation matrix, then IpHn is a Toeplitz matrix for any
Hankel matrix Hn, and IpTn is a Hankel matrix for any Toeplitz matrix Tn. The
product Hny for any vector y can be computed as follows [Kailath99]: first compute
the product (IpHn)̇y of a Toeplitz matrix IpHn and vector y as in (1.11), then apply
the permutation to the vector (IpHn)̇y to have P (PHn)̇y, which is what we want
since Ip = Itp = I

−1
p .

5



1.5. Vandermonde matrices. Definition 1.9. Suppose {xi, i = 0, 1, ..n} ∈
Cn+1, a matrix of the form

V = V (x0, x1, ..., xn) =


1 1 · · · 1
x0 x1 · · · xn
· · · · · · · · · · · ·
xn0 xn1 · · · xnn

 (1.14)

is called a Vandermonde matrix.

A Vandermonde matrix is completely determined by its second row, and so de-
pends on n+ 1 parameters. All rows are powers of the second row from the power 0
to power n. It is a fact that

detA =
nY

i,j=0,i>j

(xi − xj) (1.15)

so a Vandermonde matrix is nonsingular if and only if all the (n + 1) parameters
x0, x1, ..., xn are distinct. In this paper we assume this is the case whenever we need
the inverse of this matrix.

A Fourier matrix is a special case of Vandermonde matrix. The transpose of
a Vandermonde matrix arises naturally in polynomial evaluations or polynomial in-
terpolations. There exist efficient algorithms for fast matrix-vector product for a
Vandermonde matrix, its transpose, its inverse, and the transpose of its inverse. All
of them are of complexity O(n log2 n)̇, although there are associated stability prob-
lems [Driscoll97, Moore93]. The basic idea is to factor the matrices into products of
sparse matrices, Toeplitz matrices and the like, so that the FFT can be applied to
speed up the computations. We state these facts as a theorem below. The details can
be found in [Driscoll97, GohbergL94, GohbergC94, Lu98, Moore93, Pan92].

Theorem 1.10. The product of any Vandermonde matrix, its transpose, its
inverse, or the transpose of its inverses with any vector is of complexity O(n log2 n).

In later sections, we give representations of the Pascal matrices in factored forms in
terms of Vandermonde matrices. There exist a number of algorithms for the product
of a Vandermonde matrix and a vector and techniques to overcome the instability
problems associated with the algorithm [Driscoll97, Moore93]. However, in this paper
we do not recommend use of those factored representations involving Vandermonde
matrices when alternate representations are available due to the inferior complexity
and the reported instability of the Vandermonde algorithms.

2. Fast algorithms. In this section we present decompositions of the Pascal
matrices which allow fast computation of the matrix-vector product.

2.1. Decomposition of the lower triangular Pascal matrix. We will use
the following identity in our implementation of the fast algorithms.

Theorem 2.1. The Pascal matrix PL can be decomposed as,

PL = diag(v1) · T · diag(v2), (2.1)

6



where the vectors v1 and v2 are

v1 =



1
1
2!
3!
...

(p− 1)!


, v2 =



1
1
1!
1
2!
1
3!
...
1

(p−1)!


, (2.2)

and the matrix

T =



1 0 0 · · · 0
1 1 0 · · · 0
1
2!

1
1! 1 · · · 0

1
3!

1
2!

1
1! · · · 0

...
...

...
. . .

...
1

(p−1)!
1

(p−2)!
1

(p−3)! · · · 1


(2.3)

is a Toeplitz matrix.
Proof. Notice that the (n,m) entry PLnm of the Pascal matrix is

PLnm =

½
Cm−1
n−1 if n ≥ m
0 if n < m

, (2.4)

where Cm−1
n−1 = (n−1)!

(n−m)!(m−1)! . That is, every entry in n-th row of the Pascal matrix
has a common factor (n − 1)!, and every entry in m-th column of the Pascal matrix
has a common factor 1

(m−1)! . We can take out the common factor (n− 1)! of the n-th
row and common factor 1

(m−1)! of the m-th column, and multiply from left side by
a diagonal matrix which is the identity, except that the n-th entry in the diagonal
is (n − 1)!, and multiply from right side by a diagonal matrix which is the identity,
except that the m-th entry in the diagonal is 1

(m−1)! . This can be done for every row
and column.

PL =



0!
0!0! 0 0 · · · 0
1!
1!0!

1!
0!1! 0 · · · 0

2!
2!0!

2!
1!1!

2!
0!2! · · · 0

3!
3!0!

3!
2!1!

3!
1!2! · · · 0

...
...

...
. . .

...
(p−1)!
(p−1)!0!

(p−1)!
(p−2)!1!

(p−1)!
(p−3)!2! · · · 1


(2.5)

Therefore we have factored the Pascal matrix into products of matrices with a Toeplitz
matrix T in the middle and p diagonal matrices on the left of T , and p diagonal
matrices on the right of T . Multiplying the diagonal matrices on the left and the
right respectively, we end up with the diagonal matrices diag(v1) and diag(v2).

With the notation for Toeplitz matrix introduced earlier, T can be written as

T = Toep



1
1
1
2
1
6
...
1

(p−1)!

,

1
0
0
0
...
0


(2.6)

7



From Theorem 2.1, It is clear that the multiplication of a Pascal matrix PL and a
vector x can be done in three steps: first calculate the element-wise multiplication of
u = v1. ∗ x, which requires p multiplications. Then calculate the product w = Tu of
Toeplitz matrix T and vector u as (1.11), which requires O(p log p) work by Theorem
1.6. And finally calculate another element-wise multiplication of v1. ∗w to obtain the
product PLx. Therefore we have the following.

Theorem 2.2. The multiplication of the p × p lower triangular Pascal matrix
and a p vector can be done in O(p log p) operations.

While we usually use the above decomposition to build fast algorithms for the
product of the Pascal matrix and a vector, we have found some other ways to factor
the matrix which we state here. There may be useful in other contexts, such as in
analytical work.

2.1.1. Alternate decomposition 1. Lemma 2.3. The Pascal matrix PL can
be decomposed as the following,

PL = V 2 ∗ V 1−1, (2.7)

where

V1 =



1 1 1 1 · · · 1
x1 x2 x3 x4 · · · xp
x21 x22 x23 x24 · · · x2p
x31 x32 x33 x34 · · · x3p
...

...
...

...
. . .

...
xp−11 xp−12 xp−13 xp−14 · · · xp−1p


(2.8)

V2 =



1 1 1 · · · 1
(x1 + 1) (x2 + 1) (x3 + 1) · · · (xp + 1)
(x1 + 1)

2 (x2 + 1)
2 (x3 + 1)

2 · · · (xp + 1)
2

(x1 + 1)
3 (x2 + 1)

3 (x3 + 1)
3 · · · (xp + 1)

3

...
...

...
. . .

...
(x1 + 1)

p−1 (x2 + 1)
p−1 (x3 + 1)

p−1 · · · (xp + 1)
p−1


(2.9)

are Vandermonde matrices, and {xi, i = 1, 2, · · · , p} are distinct numbers.
Proof. Because PL is a matrix of binomial coefficients, it is easy to see that

PLV1 = V2. (2.10)

Notice that {xi, i = 1, 2, · · · , p} are distinct numbers and can be arbitrary. Hence V1
is nonsingular and its inverse exists. Thus we have

PL = V2 ∗ V
−1
1 . (2.11)

If we let V1 be a matrix with one single column, the formula (2.10) provides us
a tool to obtain the matrix-vector product V2 of PL and V1, which can be used as a
true value to test against results from other method. In addition, from Theorem 1.10,
we know that a Vandermonde matrix and its inverse can be multiplied by vectors
in O(p log2 p) time, this decomposition also allows fast matrix-vector product for the
Pascal matrix. However, it is slower than the previous decomposition. Furthermore,
many existing algorithms for Vandermonde matrices are not stable (see [Moore93]
and [Driscoll97]). Therefore it is not generally the preferred algorithm.

8



2.1.2. Alternate decomposition 2. Lemma 2.4. A Pascal matrix can be
decomposed as the product of p− 1 matrices

PL = A1 ∗A2 ∗ · · · ∗Ap−1 (2.12)

where

Ai =



1 0 0 0 · · · 0 0
0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
...

...
. . .

. . . · · ·
...

...
0 0 0 1 1 0 0
...

...
...

...
. . .

. . .
...

0 · · · 0 0 · · · 1 1


(2.13)

with p number of 1’s as its diagonal entries, and i number of 1’s as its sub-diagonal
entries starting from the position (p, p− 1).

Proof. We will prove this by mathematical induction. It is trivial for p = 2. Now
assume that for p = n,

PL(n) = A
(n)
1 ∗A(n)2 ∗ · · · ∗A(n)n−1, (2.14)

where PL(n) is the Pascal matrix of size n × n, and A(n)i is Ai as defined in (2.13) of
size n × n. For p = n+ 1, we need to prove that

PL(n+1) = A
(n+1)
1 ∗A(n+1)2 ∗ · · · ∗A(n+1)n . (2.15)

It is easy to see that

A
(n+1)
i =

·
1 0

0 A
(n)
i

¸
for i = 1, 2, · · · , n− 1. (2.16)

That is, we need to prove

PL(n+1) =

·
1 0

0 A
(n)
1

¸
∗

·
1 0

0 A
(n)
2

¸
∗ · · · ∗

·
1 0

0 A
(n)
n−1

¸
∗A(n+1)n . (2.17)

By assumption, we have·
1 0

0 A
(n)
1

¸
∗

·
1 0

0 A
(n)
2

¸
∗ · · · ∗

·
1 0

0 A
(n)
n−1

¸
=

·
1 0
0 PL(n)

¸
. (2.18)

Therefore, we need only to prove that

PL(n+1) =

·
1 0
0 PL(n)

¸
∗A(n+1)n . (2.19)

It is easy to see that the entries in the first column of both sides are one’s, the entries
in the first row of both sides are the same. For all other entries, we need to prove that

PL
(n+1)
ij = PL

(n)
(i−1)(j−1) + PL

(n)
(i−1)j (2.20)

9



This is trivial for all entries in the upper triangular part of the matrices since all entries
are zeroes. This is also true for the entries of the diagonal since PL(n)(i−1)j = 0, and

PL
(n+1)
ij and PL(n)(i−1)(j−1) are all one’s. What is left to prove is the lower triangular

part of the matrices. We know

PL
(n+1)
ij = Cj−1

i−1 , (2.21)

and

PL
(n)
(i−1)(j−1) + PL

(n)
(i−1)j = C

j−2
i−2 + C

j−1
i−2 = C

j−1
i−1 . (2.22)

Therefore for p = n+ 1, we have

PL(n+1) = A
(n+1)
1 ∗A(n+1)2 ∗ · · · ∗A(n+1)n . (2.23)

This completes the proof.
This decomposition would require O(p2) operations for matrix-vector product.

However, all these are additions and there are no multiplications. This may be suitable
for some computer architectures.

2.2. The upper triangular Pascal matrix. We have shown some fast multi-
plication algorithm for a lower triangular Pascal matrix and a vector. It is easy to see
that the upper triangular Pascal matrix PU is the transpose of the lower triangular
Pascal matrix PL. Therefore, it can be decomposed in a similar way to the lower
triangular Pascal matrix. Indeed, applying the transpose to different decompositions
(2.1), (2.7), and (2.12) of the lower triangular Pascal matrix, we would obtain de-
compositions which allow fast matrix-vector products. Therefore we also have the
following theorem similar to Theorem 2.2.

Theorem 2.5. The multiplication of the upper triangular Pascal matrix and a
vector can be done in O(p log p) operations.

2.3. The symmetric Pascal matrix. The following lemma gives the Cholesky
decomposition of the matrix PS [Edelman03].

Lemma 2.6.

PS = PL ∗ PU (2.24)

A number of proofs can be found in [Edelman03]. This identity implies all de-
compositions that admit fast matrix-vector product for the Pascal matrices PL and
PU can be utilized to do fast matrix-vector product for the Pascal matrix PS, since
we can first multiply PU by the vector to obtain the product, which is a vector, and
then multiply by PL.

We also have the following factorization.
Lemma 2.7. The matrix PS can be decomposed as the following,

PS = diag(v) ·H · diag(v), (2.25)

where

v=



1
1
1!
1
2!
1
3!
...
1

(p−1)!


, and H =



0! 1! 2! · · · (p− 1)!
1! 2! 3! · · · p!
2! 3! 4! · · · (p+ 1)!
3! 4! 5! · · · (p+ 2)!
...

...
...

. . .
...

(p− 1)! p! (p+ 1)! · · · (2p− 2)!


(2.26)

10



is a Hankel matrix.
Proof. This lemma can be proved in a way similar to the proof of (2.1). Notice

that the (n,m) entry PSnm of the matrix PS is

PSnm = C
n
n+m. (2.27)

where Cn
n+m =

(n+m)!
n!m! . That is, every entry in n-th row of the matrix has a common

factor 1
n! , and every entry in m-th column of the Pascal matrix has a common factor

1
m! . We can take out the common factor

1
n! of the n-th row and common factor

1
m!

of the m-th column, and multiply from left side by a diagonal matrix which is the
identity, except that the n-th entry in the diagonal is 1

n! , and multiply from right side
by a diagonal matrix which is the identity, except that the m-th entry in the diagonal
is 1

m! . This can be done for every row and column.

PS =



0!
0!0!

1!
1!0!

2!
2!0! · · · (p−1)!

(p−1)!0!
1!
0!1!

2!
1!1!

3!
2!1! · · · p!

(p−1)!1!
2!
0!2!

3!
1!2!

4!
2!2! · · · (p+1)!

(p−1)!2!
3!
0!3!

4!
1!3!

5!
2!3! · · · (p+2)!

(p−1)!3!
...

...
...

. . .
...

(p−1)!
0!(p−1)!

p!
1!(p−1)!

(p+1)!
2!(p−1)! · · · (2p−2)!

(p−1)!(p−1)!


. (2.28)

Therefore we have factored the Pascal matrix into products of matrices with a Hankel
matrix H in the middle and p diagonal matrices on the left, and p diagonal matrices
on the right. Multiplying the diagonal matrices on the left and the right respectively,
we end up with the diagonal matrices diag(v) and diag(v).

It is clear from the lemmas above that the multiplication of the matrix PS and
any vector x can be either done by successively apply PU and PL to x, or first
calculate the element-wise vector product of v. ∗ x, then apply Hankel matrix H to
the product, finally with the obtained vector, do another element-wise vector product
with v to arrive the result of PS · x. In either process, the involved matrices are
either Toeplitz matrices or Hankel matrices. By Theorems 1.6, and 1.8, we have the
following.

Theorem 2.8. The multiplication of matrix PS and any vector can be done in
O(p log p) operations.

Although we can use both decompositions to do the matrix-vector product, the
first one is less efficient in comparison with the second one. The reason is that the
cost of the product of a Toeplitz matrix and a vector is the same as that of a Hankel
matrix and a vector, and the first one requires two multiplications of a Toeplitz matrix
and a vector. We recommend use of the second decomposition.

3. Stability and Implementation Issues. We have discussed how to multiply
the Pascal matrices with a vector efficiently through matrix decomposition. Notice
that the entries of the Toeplitz or Hankel matrices in the decompositions have very
different magnitudes of numbers, and there can exist instability problems if the de-
composition is implemented naively. We discuss the implementation of these fast
algorithms and provide modifications required to achieve numerical stability in this
section.

Fast algorithms for computing the product of a Pascal matrix and a vector are
based on the decomposition (2.1) and (2.25). We analyze the stability problem of

11



the fast algorithm for the lower triangular Pascal matrix as an example and present
techniques to stabilize it.

Given a Pascal matrix PL of size p × p, we can factor it into

PL = diag(v1) · T (cp, r0p) · diag(v2), (3.1)

where

v1 =
£
1 1! 2! 3! · · · (p− 1)!

¤0
, (3.2)

v2 =
h
1 1! 1

2!
1
3! · · · 1

(p−1)!
i0
, (3.3)

cp =
h
1 1! 1

2!
1
3! · · · 1

(p−1)!
i0
, (3.4)

rp =
£
1 0 0 · · · 0

¤
. (3.5)

For a vector

a =
£
a0 a1 a2 ... ap−1

¤0
, (3.6)

the product

PLa = diag(v1) · T (cp, r0p) · diag(v2) · a (3.7)

requires three matrix-vector products, of which two involve diagonal matrices, one
involves a Toeplitz matrix. Therefore the product Px can be done in O(p log p) time
instead of O(p2) time required by straightforward matrix-vector product. A naive
implementation of the above method shows that the precision gets worse as p gets
larger. The reason for this is that the entries in the Toeplitz matrix and the vector
v2 are of very different magnitudes, varying approximately from 1 to 1

(p−1)! . When
we compute the matrix-vector product, we need to compute the FFT of two vectors

u =
h
1 1! 1

2!
1
3! · · · 1

(p−1)! 0 0 · · · 0
i0
, (3.8)

x =
h
a0 1!a1

1
2!a2

1
3!a3 · · · 1

(p−1)!ap−1 0 0 · · · 0
i0
. (3.9)

For a large p, when we compute the FFT of u and x, the final result would be the same
if we simply treated the entries such as 1

(p−1)! as zeros, and this causes the numerical
instability. Therefore we need to find a way to increase the effect of entries of smaller
magnitude by bringing all nonzero terms in u and x to the same magnitude. This
can be done by multiplying or dividing the entries by some constant factors and still
preserving the same structure, viz. a Toeplitz matrix. Indeed, the Pascal matrix can
be expressed by introducing a new parameter α as follows,

P (α) = diag(v1(α)) · Toep
£
cp(α), r

0
p

¤
· diag(v2(α)), (3.10)

where

v1(α) =
h
1 1

α
2
α2

6
α3 ... (p−1)!

αp−1

i0
, (3.11)

v2(α) =
h
1 α

1
α2

2
α3

6 ... αp−1
(p−1)!

i0
, (3.12)

cp(α) =
h
1 α

1
α2

2
α3

6 ... αp−1
(p−1)!

i0
, (3.13)

rp(α) =
£
1 0 0 · · · 0

¤
. (3.14)

12



With this factorization, it is possible to implement a fast, numerically stable algorithm
by selecting a proper value of α.

We need to select a proper α so that the magnitude of maximum and minimum
of the nonzero entries in the vector v2(α) and cp(α) are approximately the same. The
Fast Fourier transform is applied to the two vectors

x(α) =
h
a0

αa1
1

α2a2
2

α3a3
6 ...

αp−1ap−1
(p−1)! 0 0 ... 0

i0
(3.15)

and

u(α) =
h
1 α 1

2α
2 1

6α
3 ... 1

(p−1)!α
p−1 0 0 ... 0

i0
. (3.16)

Assuming all entries of a =
£
a0 a1 a2 ... ap−1

¤0
are of the same magnitude,

the entries in x(α) and the entries in u(α) are of the same magnitude.
We want to choose one value α so that all nonzero entries of x(α) and u(α) are

as close to each other as possible. Let us consider a typical entry

f(m) =
αm

m!
, m = 0, 1, 2, ..., p− 1. (3.17)

We want the maximum and minimum of this function to be as close as possible. We
will iteratively find an α which satisfies this criterion. To start the iteration we need
an approximate guess for α. The following analysis provides this guess.

If α ≥ p− 1, then

fmin = 1, and fmax =
αp−1

(p− 1)!
. (3.18)

In this case, we should choose α = p− 1. If 1 · α < p− 1, then when 0 · m · α,

fmin = 1, and fmax =
α[α]

([α])!
; (3.19)

when α < m · p− 1,

fmin =
αp−1

(p− 1)!
, and fmax =

α[α]

([α])!
. (3.20)

Comparing these two cases, it is easy to see that the proper value of α should be
1 · α < p− 1 and we need to select α such that

min
α
(max(

αα

α!
,
αα(p− 1)!

αp−1α!
)). (3.21)

Using Stirling’s formula,

αα

α!
≈

ααeα

(2π)0.5αα+0.5
=

eα

(2πα)0.5
; (3.22)

and

αα(p− 1)!

αp−1α!
≈
αα(2π)0.5(p− 1)p−1+0.5eα

αp−1(2π)0.5αα+0.5ep−1
=

r
p− 1

α

µ
p− 1

αe

¶p−1
eα. (3.23)

13



So when p−1
αe ≈ 1, we would achieve our objective, that is, when

α ≈
p− 1

e
, (3.24)

the magnitude of the nonzero entries of x(α) and u(α) are about the closest.
This can provide us an initial value for the proper value of α. We obtaqin the

best α by searching in this vicinity. For each fixed p, we can pre-compute and test a
few values of α to build a look-up table containing the best values of α(p) that achieve
numerical stability.

We would also like to note that the modification does not have much effect on the
complexity of the algorithm: once p is known, we can select an α from the look-up table
and compute cp(α) and the FFT of u(α) and store it before we start the computation
of the matrix-vector product. The vectors x(α) and v1(α) can be computed from
cp(α). Note that if the multiplication is to be done with several vectors, the FFT of
u(α) only needs to be computed once. This reduces the number of FFTs to two each
time, which naturally speeds up the multiplication even further.

This technique will eventually stop working since the entries will be of very differ-
ent magnitudes with very large number p even by utilizing this technique. We suggest
a technique to address the stability problem in case of high precision requirements
and for large p. In this case the corresponding Toeplitz matrix could be subdivided
into blocks of smaller Toeplitz matrices, each of which consists elements of similar
magnitude, therefore the above method could be used on each block to stabilize the
computation with the same complexity. Furthermore, if we view each Toeplitz block
as one entry in the whole matrix, the whole matrix is a Toeplitz matrix again as the
following, 

...
...

...
...

...
...

...
...

· · · A0 A−1 A−2 A−3 A−4 A−5 · · ·
· · · A1 A0 A−1 A−2 A−3 A−4 · · ·
· · · A2 A1 A0 A−1 A−2 A−3 · · ·
· · · A3 A2 A1 A0 A−1 A−2 · · ·
· · · A4 A3 A2 A1 A0 A−1 · · ·
· · · A5 A4 A3 A2 A1 A0 · · ·
...

...
...

...
...

...
...

...


(3.25)

where {Ai, i = ...,−2,−1, 0, 1, 2...} are Toeplitz matrices. Therefore the fast algorithm
could be applied to each of the individual matrix as well as to the whole matrix.

Since for the transpose matrix PU of the lower triangular Pascal matrix and the
symmetric Pascal matrix PS, the corresponding decompositions are very similar, the
process to introduce the parameter α is the same. For the matrix, PU , we have

PU(α) = diag(v3) · Toep [cp, rp0] · diag(v4), (3.26)

where

v3(α) =
h
1 −α

1
α2

2 −α3

6 ... αp−1
(p−1)!

i0
, (3.27)

v4(α) =
h
1 − 1

α
2
α2 − 6

α3 ... (p−1)!
αp−1

i0
, (3.28)

cp(α) =
£
1 0 0 · · · 0

¤0
, (3.29)

rp(α) =
h
1 α

1
α2

2
α3

6 ... αp−1
(p−1)!

i
; (3.30)

14



p Naive algorithm Stabilized algorithm Stabilizing α α from Eq. (3.24)
6 2.5352e− 016 1.8608e− 016 1.15 1.84
9 4.5658e− 015 5.0705e− 016 2 2.94
12 1.2296e− 012 1.3944e− 015 2.2 4.05
15 1.4068e− 010 2.3761e− 015 3.9 5.15
18 4.3558e− 008 1.2296e− 014 3.95 6.25
21 7.2048e− 005 4.9564e− 014 4.7 7.36
24 0.2388 1.4088e− 013 5.1 8.46
27 262.46 2.5018e− 013 5.8 9.56
30 7.0563e+ 005 3.8519e− 013 6.4 10.67
33 8.4567e+ 008 2.0082e− 012 6.15 11.77
36 8.6394e+ 012 6.9394e− 012 7.1 12.88

Table 4.1
Accuracy comparison of the naive algorithm and the stabilized algorithm. The initial guess is

seen to overestimate the correct value.

and for the matrix, PS, we have

PS(α) = diag(v5) · Ip · Toep[cp, r0p] · diag(v6), (3.31)

where

v5(α) =
h
1 α

1
α2

2
α3

6 ... αp−1
(p−1)!

i0
, (3.32)

v6(α) =
h
−α
1

α2

1 −α3

2 ... αp

(p−1)!
i0
, (3.33)

cp(α) =
h

(p−1)!
αp

(p−2)!
αp−1

(p−3)!
αp−2 · · · 1

α2
1
α

i0
, (3.34)

rp(α) =
h

(p−1)!
αp

p!
αp+1

(p+1)!
αp+2 · · · (2p−3)!

α2p−2
(2p−2)!
α2p−1

i
. (3.35)

We can also implement similarly the above Toeplitz block technique on these two
Pascal matrices.

4. Numerical results. In this section we demonstrate with examples and nu-
merical experiments the effectiveness of the stabilizing technique and the accuracy of
the algorithm.

In formula (3.10), we introduced a parameter α to stabilize the algorithm to
compute the product of a lower triangular Pascal matrix and a vector. In our first
experiment, we set p = 20, that is, the lower triangular Pascal matrix is of size 20× 20,
and the multiplying vector is a vector randomly generated with uniform distribution.
The direct matrix-vector product is used as the true value (As mentioned before,
(2.10) provides a given test where an exact result is available). Then compute the
product with our new proposed algorithm for each α that runs from one to ten with
increase of 0.05 each step. The result is plotted in Fig. 4.1. It shows that as α
changes, the accuracy of the algorithm changes. It also shows that choosing a proper
value of α is necessary to obtain accurate result.

In our second experiment, we compare the matrix-vector product with the naive
algorithm (without parameter α) and the stabilized algorithm (with proper value of
parameter α). We let the size of the Pascal matrix changes, and all vectors of different
sizes are uniformly randomly generated. We record the maximum relative errors of

15



1 2 3 4 5 6 7 8 9 10
10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

alpha

M
ax

 R
el

at
iv

e 
E

rro
r

Fig. 4.1. Stabilization of the computations using the scaling parameter α. The guess value for
α according to equation (3.24) is 7.

p Stabilized algorithm
25 2.2881e− 013
50 1.7356e− 013
75 6.1541e− 014
100 2.3015e− 013
125 2.6873e− 013
150 1.3628e− 013
200 2.6536e− 013

Table 4.2
Accuracy achieved by the block stabilized algorithm. The block size is taken to be 25 × 25.

the naive algorithm and the stabilized algorithm, and the values of α used in the
stabilized algorithm in Table 4.1. It shows that when p is smaller than 9, there is
no need to introduce the stabilizing parameter α; when p gets bigger, it is necessary
to use the stabilizing parameter α to obtain accurate results. It also shows that as
p getting bigger, the stabilized algorithm also gradually lose precision. This leads us
to apply the block technique to maintain accuracy as p grows even bigger. In the
next experiment, we increase the value of p and at the same time try to maintain the
maximum relative error at 10−13, so we choose the block size to be 25 × 25. We list
the experimental result in Table 4.2. It is clear that the block technique is able to
provide the desired accuracy.

16



5. Generalization of Pascal matrices. As described in [Zhang97, Call93], the
lower triangular Pascal matrix PL can be generalized as follows,

Pij [z] =

½
zi−jCj−1

i−1 if i ≥ j
0 if i < j

. (5.1)

It is easy to see that it can be decomposed as the following,

P [z] = diag



1
z
z2

z3

...
zp−1


· PL · diag



1
z−1

z−2

z−3
...

z1−p


. (5.2)

The product of a generalized Pascal matrix and a vector can be computed efficiently
similar to that of a lower triangular Pascal matrix and a vector.

From [Call93], we know that

P [x]P [y] = P [x+ y]. (5.3)

It is obvious that

P [0] = I. (5.4)

Therefore, we have (for proof, see [Call93])

P [−x] = P [x]−1 . (5.5)

When x = 1, we have

P [−1] = P [1]−1 , (5.6)

Combine with

P [1] = PL, (5.7)

that is,

PL−1 = P [−1] . (5.8)

Consider that we have

PU = PL0 and PS = PL ∗ PU , (5.9)

then

PL−1 = diag


1
−1
1
...

(−1)p−1

 ∗ PL ∗ diag


1
−1
1
...

(−1)p−1

 (5.10)

17



PU−1 = P [−1]0 = diag


1
−1
1
...

(−1)p−1

 ∗ PU ∗ diag


1
−1
1
...

(−1)p−1

 , (5.11)

and

PS−1 = P [−1]0 ∗P [−1] = diag


1
−1
1
...

(−1)p−1

∗PU ∗PL∗diag


1
−1
1
...

(−1)p−1

 . (5.12)

We have developed fast algorithms to compute the matrix-vector product for three
different types of Pascal matrices. With the fast algorithm to compute the product of
a generalized Pascal matrix and a vector, we can also compute efficiently the matrix-
vector product for matrices including all inverses of these three Pascal matrices.

6. Conclusion. We have presented matrix decompositions of the Pascal matri-
ces. Based on these decompositions, we have developed fast algorithms for computing
the matrix-vector product of a Pascal matrix and a vector and provide techniques
to stabilize the algorithms. We have also presented some interesting properties of
the generalized Pascal matrices. Our algorithms have been shown to be stable and
O(p log p).The algorithms have already been applied to create fast translation algo-
rithms for the fast multipole method [Tang03].

REFERENCES

[Aggarwala2001] Rita Aggarwala and Michael P. Lamoureux, Inverting the Pascal Matrix
Plus One, American Math. Monthly, 109, April 2001, pp371-377.

[Bai2000] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe and H. van der Vorst, editors,
Templates for the solution of Algebraic Eigenvalue Problems: A Practical
Guide, SIAM, Philadelphia, 2000.

[Biolkova99] V. Biolkova and D. Biolek, Generalized Pascal Matrix of First-Order S-Z
Transforms, in ICECS’99 Pafos, Cyprus 1999, pp. 929-931.

[Brawer92] Robert Brawer and Magnus Pirovino, The Linear algebra of the Pascal
matrix, Linear Algebra and Its Applications, 174, 1992, pp. 13-23.

[Call93] Gregory S. Call and Daniel J. Velleman, Pascal’s matrices, American
Math. Monthly, 100, April, 1993, pp. 372-376.

[Cooley65] J. W. Cooley and J. W. Tukey An algorithm for the machine calculation of
complex Fourier series, Math Comp. 19, 1965, pp. 297-301.

[Driscoll94] James R. Driscoll and Dennis M. Healy,Jr., Computing Fourier transforms
and convolutions on the 2-sphere, Advances in Applied Mathematics, 15,
1994, pp.202-250.

[Driscoll97] J. R. Driscoll, D. M. Healy, JR., and D. N. Rockmore, Fast discrete poly-
nomial transforms with applications to data analysis for distance transitive
graphs, SIAM J. COMPUT. 26(4), 1997, pp1066-1099.

[Edelman03] Alan Edelman and Gilbert Strang, Pascal matrices, MIT.
[Edwards02] A. W. F. Edwards, Pascal’s Arithmetical Triangle: The story of a mathemat-

ical idea, Johns Hopkins University Press, 2002.
[GohbergL94] I. Gohberg and V. Olshevsky, Complexity of multiplication with vectors for

structured matrices, Linear Algebra Appl., 202(1994), pp. 163-192.
[GohbergC94] I. Gohberg and V. Olshevsky, Fast algorithms with preprocessing for matrix-

vector multiplication problems, J. Complexity, 10(4)(1994), pp. 411-427.

18



[Golub96] G. Golub and C. Van Loan, Matrix Computations, The Johns Hopkins Uni-
versity Press, Baltimore, third edition, 1996.

[Kailath99] T. Kailath and A.H. Sayed, editors, Fast Reliable Algorithms for Matrices
with Structure,SIAM, Philadelphia, 1999.

[Lu98] Hao Lu, A generalized Hilbert matrix problem and confluent Chebyshev-
Vandermonde system, SIAM, J. MATRIX ANAL. APPL. 19(1), Jan. 1998,
pp. 253-276.

[Moore93] Sean S. B. Moore, Dennis M. Healy, Jr., and Daniel N. Rockmore, Sym-
metry stabilization for fast discrete monomial transforms and polynomial
evaluation, Linear Algebra Appl., 192, 1993, pp. 249-299.

[Pan92] Victor Pan, Complexity of computations with matrices and polynomials, SIAM
Review, 34(2), June 1992, pp.225-262.

[Stein71] E. Stein and G. Weiss, Fourier analysis on Euclidean Spaces, Princeton Uni-
versity Press, Princeton, NJ, 1971.

[Tang03] Zhihui Tang, Fast transforms based on structured matrices with applications to
the fast multipole method, University of Maryland at College Park, Ph.D.
Thesis, 2003.

[Van92] Charles Van Loan, Computational Frameworks for the Fast Fourier Trans-
form, SIAM, Philadelphia, 1992.

[Zhang97] Zhizheng Zhang, The Linear algebra of the generalized Pascal matrix, Linear
Algebra and Its Applications, 250, 1997, pp. 51-60.

[Zhang98] Zhizheng Zhang and Maixue Liu, An extension of the generalized Pascal ma-
trix and its algebraic properties, Linear Algebra and Its Applications, 271,
1998, pp. 169-177.

19


