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Efficient Algorithms for Finding Maximum Cliques of an Overlap Graph

by

Sumio Masuda, Kazuo Nakajima,

Toshinobu Kashiwabara and Toshio Fujisawa

Abstract

Let F = {I, I,, ..., I, } be a finite family of closed intervals on the real line. Two
distinct intervals I; and I, in F are said to overlap each other if they intersect but neither
one of them contains the other. A graph G = (V, E) is called an overlap graph for F if
there is a one-to-one correspondence between V and F such that two vertices in V are
adjacent to each other if and only if the corresponding intervals in F overlap each other.
In this paper, we present two efficient algorithms for finding maximum cliques of an overlap
graph when the graph is given in the form of a family of intervals. The first algorithm
finds a maximum clique in O (n -logn +Min {m, n ‘w}) time, where n and m are the numbers
of vertices and edges, respectively, and w is the size of a maximum clique of the graph. The
second algorithm generates all maximum cliques of the graph in O(n ‘logn+m +7) time,

where « is the total sum of their sizes.



1. INTRODUCTION

Let F = {I,, I, ..., I, } be a finite family of closed intervals on the real line R. Two
distinct intervals I; and I, in F are said to overlap each other if they intersect each other
but neither one of them contains the other. A graph G = (V, E) is called an overlap graph
for F if there is a one-to-one correspondence between V and F such that two vertices in V
are adjacent to each other if and only if the corresponding intervals in F overlap each
other. We denote by G(F)=(Vr, Er) the overlap graph for F. It is known that any
overlap graph 1s a circle graph, which is an intersection graph defined for a family of chords
of a circle, and vice versa [7].

Let G = (V, E) be a graph. A subset S of V is called a cliqgue of G if any two dis-
tinct vertices in S are adjacent to each other. The number of vertices in § is called the
size of S. A mazimum clique of G is a clique whose size is the largest among all cliques of
G. The problem of finding a maximum clique of G is, in general, NP-hard [1,5]. However,
it is solvable in polynomial time when G is restricted to such a graph as a chordal
graph [6], comparability graph [8], or circular-arc graph [9]. Furthermore, in the case of an
overlap graph, namely, a circle graph, several polynomial time algorithms [3,7,9,12] have
been developed for finding a maximum clique of G under the assumption that the graph is
given in the form of its corresponding family of intervals F.

The first such algorithm was due to Gavril [7] and requires O (n®) time, where n is
the number of intervals in F, or equivalently that of vertices in its corresponding overlap
graph G(F). Later, Buckingham [3] presented an O(n logn +m logw) time algorithm,
where m is the number of edges and w the size of a maximum clique of G(F). In both
algorithms, n subproblems, each consisting of finding a maximum clique of a permutation
graph [7,8], are generated and solved independently. The essential difference between them

is that Gavril’s algorithm needs O (n?) time for each subproblem while Buckingham’s solves



it more efliciently by applying an algorithm for finding a longest increasing subsequence of
a sequence [4). The concept of longest increasing subsequences is also used in the O (n?
time algorithm developed by Rotem and Urrutia [12]. Their decomposition into subprob-
lems is different from Gavril’s or Buckingham’s, but the number of the resultant subprob-
lems is still O(n). Since their algorithm maintains a data structure of O (n) space for every
subproblem, its overall space complexity is O (n?).

On the other hand, several authors [7,3,9] considered a more general case in which
each interval in F is assigned an integer as its weight and developed algorithms for finding
a mazimum weight cligue of G(F). The best algorithm is due to Hsu [9] and requires
O (n +m ‘log logn ) time if the endpoints of the intervals in F' are already sorted with respect
to their coordinates and the graph G (F) itself as well as F' is given. Since G (F) can easily
be constructed from F in O{n -logn+m) time (see, e.g., Sec. 4.2 of Buckingham [3]), Hsu’s
algorithm can find a maximum weight clique in O (n -logn +m -log logn ) time.

The first goal of this paper is to present a new algorithm for finding a maximum
clique of an overlap graph for the unweighted case. Like the above algorithms [7,3,12,9], we

assume that the graph is given in the form of a family of n intervals . We first create a

sequence of subproblems, each consisting of finding a maximum clique of a permutation
graph, which are slightly different from those generated by the above algorithms. We then
investigate relationships between two consecutive subproblems so that we can solve each
subproblem using the results of the preceding one. The time and space complexities of our
algorithm are O (n -logn +Min {m, n-w}) and O (n), respectively.

In the same paper [12] as mentioned above, Rotem and Urrutia extended their algo-
rithm for finding a maximum clique of G (F) to an O (n?+~) time algorithm for generating
all maximum cliques of G(F), where v is the total sum of the sizes of the cliques. Their

algorithm constructs auxiliary acyclic digraphs and, by scanning them with a backtracking



method, generates all the maximum cliques. A similar approach is used in Leung’s algo-
rithms [11] for generating all maximal independent sets of an interval graph and a circular-
arc graph. The second goal of this paper is to extend our first algorithm to an
O (n ‘logn +m ++) time algorithm for generating all maximum cliques of G (F). Like Rotem
and Urrutia’s algorithm {12], our second algorithm constructs and searches auxiliary acyclic
digraphs. However, our digraphs differ from theirs because of the different problem decom-
position methods and data structures used. Moreover, a different construction method of
the digraphs is developed in order to maintain the superiority in the time and space com-

plexities of our first algorithm over theirs.

2. CANONICAL FAMILY OF INTERVALS
Let F = {I,, I,, ..., I, } be a finite family of closed intervals on the real line R. For
each interval I;€F, let I; and r; denote the coordinates of its left and right endpoints,
respectively, that is, I;= [l;, r;]. Note that I;=r; if and only if the interval I; is a point.
For simplicity, we call the endpoint with coordinate ¢ point .
Two distinct intervals I; and I, in F are said to intersect each other if there exists
a real number ¢ such that [; <¢ <r;, and [ <c¢<r, and I; is said to confan L if
l; <i <r, <r;. Furthermore, if I; and I, intersect but neither one of them contains the
other, in other words, if I; <l <r; <r, or |y <l; <r, <r;, then they are said to overlap each
other. The overlap graph for F, denoted by G (F), is defined as follows:
G (F)=(VF, Er), where
Vr = {v;, vy, ..., v, }, and
Er = {(vj, w) | I; and I overlap each other }.
As an example, a family of intervals and its corresponding overlap graph are shown in

Fig. 1.



F is said to be canonical if the coordinates of the endpoints of its intervals are all
distinct integers between 1 and 2n. If F is not canonical, we can construct a canonical

family of intervals F' such that G (F' ) = G(F) in the following manner.

Procedure 1.

1. Construct a list of indices L; = [iy, 1o, ..., i, ] such that (i) L, <l and (i) if ;= by o

then T, 2T for k=12,..,n-1.

2. Construct a list of indices L, = [j,, jy, ..., ju] such that (i) r;, <rj,,, and (ii) if
T = Ti then j, appears after 7, ., in the list L;, for k=12,... n-1.
3. Merge L, and L, to construct a list of indices L= [k, hy, ..., hy, ] such that for

k=120, f=hy, and = Pi +qp s where p=|{j |1<;<n,r; <l'}} | and
go=[{i |1<i<n, i <r; }|.
4. for k1 until n do
4-1) Let ¢ and j be the integers such that ¢ <j and hy=h;= "k in L.
42) I —i, v — 5, I <[,

’

5. Fle{,1,,.,I}0O

For example, if Procedure 1 is applied to the family of intervals shown in Fig. 2(a),
we obtain L;=[1,2,5,6,3,4] in Step1 and L,=[6,3, 1,5, 4, 2] in Step 2. In Step 3, they
are merged and L= [1, 2,5,86, 3, 6,4, 3, 1, 5, 4, 2] is created. Therefore, the family of inter-
vals shown in Fig. 2(b) is obtained.

Theorem 1. For any family of intervals F, Procedure 1 correctly constructs a
canonical family of intervals F' such that G(F)= G (F').

Proof. Suppose that two intervals I; and I, with /; </, overlap each other in F.

Since I; <l <r; <r, by definition, j appears before k¥ in both L; and L,, which implies



that l,-' <!, and r,-' <r, . Furthermore, it is clear from the descriptions of Steps 3 and 4
that §' <r; . Therefore, I/ <l <r, <r,and thus I and I, overlap each other in F' .

On the other hand, suppose that I; and I, do not overlap in F. Since Procedure 1
always yields 1,-' <r; and I <r, ,if I; and I, do not intersect each other, then I <r/
<l <rn orl <r <l <r; . It is easy to see that, if I; (resp., I, ) properly contains I
(resp., I;), then I; <l <r <r; (resp., I <lj <r; <r). Finally, if I; and I, are identi-
cal, that is, [;= [, <r, = r;, then j appears before k¥ in L, if and only if ; appears after k
in L,, which implies that either l,-' <l <r <r,-' or <1,~' <r,-' <ry . Thus, I,-' and ;' do
not overlap in F' in any case.

Clearly no two endpoints have the same coordinate in F'. Therefore, we can con-
clude that Procedure 1 works correctly. O

In order to carry out Steps 1 and 2 of Procedure 1, we use list merge sort (see
pp. 165-168 in Knuth [10]). This sorting algorithm has time complexity O (N -logN), where
N is the number of items to be sorted, and is stable (see also pp. 380-381 in Knuth [10]),
that is, preserves the relative order of the items with equal keys.

In Step 1 of Procedure 1, we first sort the indices of the intervals in descending
order of the coordinates of their right endpoints. Then, the list merge sorting algorithm is
applied with the coordinates of the left endpoints as keys. In this manner, we can obtain
L =i, 19 ..., 1] in O(n-logn) time. Similarly, we can find L, in O(n-logn) time by
applying the list merge sorting algorithm to the list [¢,, 4,4, ..., ;] with the coordinates of
the right endpoints as keys. The list L can be constructed in O(n) time in Step 3 by using
typical list merging techniques (see, e.g., pp. 159-160 in Knuth [10]). Finally, Steps 4 and 5
can easily be carried out in O (n) time. Thus, we have the following lemma.

Lemma 1. The time and space complexities of Procedure 1 are O(n-logn) and

O (n), respectively. O



3. PROPERTIES OF LONGEST INCREASING SUBSEQUENCES

The concept of longest increasing subsequences [4] of a sequence of numbers plays
an important role in the development of our algorithms. This section is devoted to some
definitions and lemmas on longest increasing subsequences.

Let m = [n(1), n(2), ..., n(s)] be a sequence of distinct numbers. For i=12,..s, we
say that n{i) is an element of = and denote its position in 7 by pos(n(:)), that is,
pos (m(i)) = . The length of m, denoted by |=|, is the number, s, of elements of =. A
sequence Y = [n(1,), n(12), ..., m(% )] of elements of = is called a subsequence of = if
16, <6< - - - <4, <s. If, in addition, Y satisfies m(f,)<n(sf3)< - - - <=3, ), then it is called
an increasing subsequence (abbreviated to an IS) of 7. A longest increasing subsequence
(abbreviated to an LIS) of x is an IS of the maximum length among all IS’s of .

For each element z of =, let lseq (m, z) be defined to be Maz {| Y | | Y is an IS of =
which contains z as its first element}. We define the L -decomposition of n as an ordered
collection of sets LD(r) = <X,, Xy, ..., X; >, where t is the length of an LIS of = and
X; ={z |z is an element of n and lseq(m, z)=+¢} for +=1,2,.,t. For example, for
sequence 7= (2,6,4,3,5,1], lseg(m, 1)=1, lseq(m 2) =3, lscg(m 3) =2, lseq(m 4) =2,
lseq (m, 5) = 1, and lseq(m, 6) = 1. Therefore, LD (r) = < ({1, 5, 6}, {3, 4}, {2}>. For conveni-
ence, the number, ¢, of sets in LD () is denoted by | LD(x)|. We show below five lemmas
and a corollary on 7 and LD (n) = <X, X,, ..., X; >.

Lemma 2. If [z, y] is an IS of =, then lseq (7, z)>lseq(m, y).

Proof. 1t is clear from the definitions. O

Lemma 3. For an integer k such that 1<k <t, let z and y be any elements of X .
If z <y, then pos(z)>pos(y).

Proof. Since z,y€X,, [z, y] is not an IS of = from Lemma 2. Therefore, if z <y,

then pos (z)>pos(y). O



Lemma 4. For an integer k¥ such that 1<k <t, let z, be any element of X, and
Y = [z, 25, ..., %] be an IS of 7. Then, z;€X; ;,, for i=23,.. k.

Proof. Let i be an integer such that 2<i<k. From Lemma 2, lseq (m, z,)
>lseq(m, z5)> - - - >lseq(m, z;), and hence lseq(m, z;) < k—-i+1. On the other hand, since
(%) Zis1, o, 3] is an IS of =, lseq(m, z;) > k-i+1. Thus, lseq(n, z;) = k-i+1, that is,
7 €Xi i O

Corollary 1. For k= 12,...,t, X, #4é.

Proof. 1t is clear from Lemma 4. (O

Lemma 5. For an integer k¥ such that 2<k <t, let z, be an element of X;. Let
y=Min{z | z€X,_, and z >z,}. Then, [z,, y]is an IS of =.

Proof. Let X = [z, z,,...,2,] be an IS of . From Lemma 4, z,€X,_,, and hence
y <z, Therefore, pos(z;) < pos(y) by Lemma 3, and thus pos (z,)<pos(y). Since z,<y,
[z, y]isan ISof ». O

Lemma 6. Let k¥ be an integer such that 1<k <t. For two elements z, and y, of
Xe, let [z,, 25, ..., 2] and [y), yo, ..., ] be any IS’s of ». Let z = Min {2,y } for
t=12,.,k. Then, [z}, z5, ..., zy] is an IS of =

Proof. For i=12,...k, =z, 9€X;_;4 from Lemma 4. Thus, we can derive from
Lemma 3 that pos(z;) = Maz {pos (z;), pos (y;)} < Maz {pos (z; 1), pos (¥;+1)} = pos (2;4,) for
t=12,.,k-1. Furthermore, since z; <z;,, and y <y;41, z = Min{z;, y;} < Min {z;,,

¥i+1} = %4, Therefore, [z, 29, ..., zx] isan IS of =. O

4. RELATIONSHIPS BETWEEN MAXIMUM CLIQUES AND LONGEST

INCREASING SUBSEQUENCES
Let F = {I,, I, ..., I, } be a canonical family of intervals. Without loss of general-

ity, we can assume that r;<r,< -::<r,. (The renumbering of the indices can be



performed in O(n) time by using bucket sort [1], if necessary.) This assumption implies
that, if two intervals I; and I, with j <k overlap each other, then L <l <r; <ry.

For +=12,...2n, we define a set of intervals CUT; to be {I;€F |l; <i+0.5<r;}.
Let 7; be defined as the sequence of the indices of intervals in CUT; sorted in ascending
order of the coordinates of their left endpoints. For example, for the canonical family of
intervals shown in Fig. 3, CUT¢ = {I,, I5, I, I} and ry = [2, 4, 5, 3]. For any subset S of
F, we denote by w(S) the size of a maximum clique of the corresponding overlap graph
G(S).

Theorem 2. Let OPT be an integer such that w(CUTopr)= Maz {w(CUT;)
| {=1,2,..,2n }. A maximum clique of G (CUTqpr) is also a maximum clique of G (F).

Proof. Since any clique of G(CUTppr) is a clique of G(F), w(CUTopr )<w(F). Let
C be a maximum clique of G(F) and let j= Min {k | v,€C}. For any integer k5; such
that v, €C, I; <l <r; <r, by the assumption on the indices, and hence I, EO'UT,J,_l. Thus,
C is a clique of G(O'UT,J_,) and w(F)=|C |=w(OUT,J_1) < w(CUTopr). Therefore,
W CUTopr) = w(F), and a maximum clique of G(CUTypr) is also a maximum clique of
G(F).O

Based on this theorem, we can find a maximum clique of G (F) by performing the
following steps (I) and (II).
(I) Find an integer OPT such that w(CUTopr) = Maz {w(CUT;) | i = 1,2,...2n } (= w(F)).
(II) Find a maximum clique of the graph G (CUTypr).

For i=1,2,..2n, G(CUT;) is a permutation graph [7,8]. It is known that the prob-
lem of finding a maximum clique of a permutation graph can be transformed to that of

finding an LIS of a sequence [8]. In fact, we have the following theorem.

Theorem 3. For ¢=1,2,...,2n, there is a one-to-one correspondence between the



maximum cliques of G (CUT;) and the LIS’s of 7;.

Proof. Let i be an integer such that 1<¢{<2n and C = {v;,, Vi, - Y} With

3
1<j2< -+ <j; be a subset of vertices in G(CUT;). By assumption, C forms a clique if
and only if [; <l; < -+ <l <i+0.5<r; <r; < ' <r; (see Fig. 4). Therefore, the set of
the cliques of G (CUT;) and the set of the IS’s of 7; are in one-to-one correspondence. This
completes the proof. O

One can find an LIS of a sequence of N numbers in O (N-logN) time [4]. However,
if an LIS of every 7, is determined independently, as is done for the subproblems in
Buckingham’s algorithm [3], then a total of O(n%logn) time would be needed. Since the
length of an LIS of 7; is equal to | LD(r;) |, it is sufficient to find LD (n), LD (), ..., LD (r3,)
to carry out Step (I). Let ¢ be an integer such that 1<i<2n-1. Let
LD (1) = <Xy, Xg, ..., ;> and LD (r; 1) = <X, , X5 , .., X, >. In what follows, we will
establish some relationships between LD (r;) and LD (7; ).

Remark 1. If point ¢+1 is the left endpoint of some interval I;, then 7, is
obtained by appending j at the end of ; (see Fig. 5(a)). O

Remark 2. If point ¢+1 is the right endpoint of some interval I;, then j is the
smallest element of 7;, and 7;,, is obtained by deleting j from r; (see Fig. 5(b)). O

Theorem 4. Suppose that point ¢+1 is the right endpoint of some interval I;. If
lseg(r;, 7j)=1t and |X; |=1, then u=t-1 and X, =X, for k=1.2,..,t-1. On the other
hand, if lseq(r;, j)5t or | X, |54 1, then u=1¢, Xl,’eq(,”j)= Xieeq (r,.5) = {7}, and X = X,
for k= 1,2,...,lseq(r;, 5) -1, lseg (7, 7 )+1, lseq(7;, §)+2,...,t.

Proof. It is clear from Remark 2 that lseq(r;,;, z) = Iseq(r;, z) for any element z
of 7;,,. Therefore, the theorem holds. O

In the remainder of this section, we will consider the case in which point ¢+1 is the

10



left endpoint of some interval I;. We will assume that ¢ = | LD(r;) | > 1 since, if LD(7;) is
empty, we can easily determine LD (r;4,) as <{j}>.

Lemma 7. For any element z of 7, lseq(r;, 2) < lseq (r; 41, 2) < lseq(r;, 2 )+1.

Proof. Since r; is a subsequence of 7.y, any IS of 7, is an IS of 7,,;. Thus,
lseq(r;, z) < lseq (1,41, ). Let Y be any IS of 7;,, which contains z as its first element. If
it does not contain j, then Y is an IS of ;. If it does, then the sequence obtained by delet-
ing j from Y is an IS of 7;. Therefore, lseq (1,4, z) < lseq(r;, 2 )+1. O

For k=0,1,2,...,t, we define a set CARRY, as follows:

CARRY, = {5},
CARRY, = {z |lseq(r;, z) =k and lseq(7;4y, z) = k+1}, for k=12,...t.
The following theorem is an immediate consequence of Lemma 7.

Theorem 5. If CARRY,= ¢, then u=t, and otherwise, =t +1. For k=12,..¢,
X, = (X U CARRY}_)) - CARRY, = (X - CARRY;) U CARRY,_,. And if uw=t+1, then
X, = CARRY,. O

Theorem 5 implies that, if CARRY,, CARRY,, ..., CARRY, are obtained, one can
determine LD (r;,,) from LD(r;). The following theorems play an important role in finding
CARRY, s efficiently.

Theorem 6. If CARRY,= ¢ for some integer k¥ such that 1<k <t¢-1, then
CARRY,,, = CARRY, ,, = - - - = CARRY, = ¢.

Proof. Assume that CARRY,= ¢ and CARRY,,; # ¢. Let z, be an element of
CARRY,,,. Note that z,€X,., N X;,, by definition. Let [z;, z, ..., 74 1o] be an IS of 7.
Since z,€X,,,, 7,€X;,, from Lemma4. Furthermore, since z,6X;,;, #x,o = j from
Remark 1, and hence [z, 25, ..., 24 4] is an IS of ;. This implies by Lemma 4 that z,€X;.
Therefore, z,€X; N Xy41 = CARRY,, which contradicts the assumption that CARRY, = 4.

By repeatedly using this argument, the proof will be completed. O

11



Theorem 7. For k=12,..,t, CARRY, = {z€X, |z <Maz(CARRY, )} if
CARRY_; ## ¢.

Proof. Let k be an integer such that 1<k <t.

(“C”part) Let z, be an element of CARRY,. By definition, z,€X, N X, .. Let
[y, 23, .., Tsya) be an IS of 7. From Lemma4 and Theorem 35, T.€X,
= (X; - CARRY,) U CARRY,_,. Assume that =z; > Maz(CARRY, ;). Since z;<zy,
:rz#OARRY,_l, and hence z,€X; - CARRY, C X, . This contradicts the fact that z,€X, by
Lemma 2. Therefore, z,€{z €X} | z <Maz (CARRY,_,;)}.

(“D”7part) Let y, = Maz(CARRY, ;) and let z; be an element of {z€X, |z <y,}.
There are two cases to be considered separately.

Case 1: k=L1.

Since CARRY = {5}, z:< y,=j. Thus, [z, j] is an IS of r,, from Remark I,
and hence lseq(r;;, z;) > 2. On the other hand, since z,€X,, lseq(r;yy, 2,) < 2 by
Lemma 7. Therefore, z,€X, , which implies that z,€X, N X, = CARRY,.

Case 2: k >2.

Since y,€CARRY,_,, v,€EX, . NX, . Let [y, ys ..., %] be an IS of 7, Since
y,€X;,, we have y, = j and [y, ¥2, ..., %) is an IS of ;. Furthermore, since z,€X;,
there exists an IS, [z}, 2, ..., 7| of ;. From Lemma 4, y,, 7, .1€Xk for ¢=1,2,...,k-1.

Let z,= Min {z,4,, y,} for ¢=12,.,k-1. Then, (21, 29, -y zxq) 15 an IS of 7, due to

9
Lemma 6. Since y,_ <y = J, zs.1<J. Therefore, [z, 2o, ..., &1, 5] is an IS of 7,4,

If pos(z5)<pos(y,) in 7;, then clearly pos(z,)<pos(z,). On the other hand, suppose
that pos(y,)<pos(zy) in 7;. Since y,, z,€X;.,, 22<y, from Lemma 3, and hence z, = z,.
Thus, in either case, pos (z,)<pos(z;) in 7,4, Furthermore, z,<z, since z,<y,; and z,<z,.

. . 13
Therefore, (21, 21, 2, «+ry %-1, §] is an IS of 7. Since z,€X;, we have z,€X, ., from

Lemma 7, and thus z,€X; N Xy, = CARRY,. O

12



5. ALGORITHM FOR FINDING A MAXIMUM CLIQUE

Our algorithm for finding a maximum clique of G (F) is composed of three steps.

Algorithm 1.

L. Find an integer OPT such that w(CUTppr)= w{F) by comparing | LD () |,
VLD (%) |, .., | LD (r5) ] .

IL. Find LD (rppr).

1. Find a maximum clique of G(CUTypr) by extracting an LIS of ropr from

LD (ropr). O

In the first step of Algorithm 1, we successively finds LD (r;) for i = 1,2,...2n. How-
ever, keeping all such L -decompositions would require a large amount of space. Instead, we
maintain, for each ¢+=1,2,.,2n, only the current L-decomposition LD (r;) and two integers

LOCAL_OPT and MAX_SIZE such that MAX_SIZE = | LD (ryocu_opr) | = Maz { | LD (7, ) |

In what follows, we describe how the algorithm generates LD(r;)’s. Let ¢ be an
integer such that 1<¢<2n and I; be the interval in F which has point ¢ as one of its end-
points. If {=1 or LD (r;_;) is empty, then LD (7;) is determined as <{;5}>. In the former
case, we also initialize both LOCAL_OPT and MAX_SIZE to be 1.

Suppose that ¢ >1 and | LD (r;,_;)| > 1. Also suppose that LD(r;_;) has been deter-
mined as an ordered collection of sets <X, Xy, ..., Xpas7 >. If i=1{;, then LD (r;) is deter-

mined as <X, X, ..., X;49r > which is obtained by the following procedure.

Procedure 2.
1. CARRY + {j}. k « 1.

2. while CARRY,_, % ¢ do

13



2-1) if ¥ = LAST +1 then LAST «— LAST +1 and X ,sp — ¢.
2-2) CARRY, « {z€X; |+ <Maz (CARRY,_,)}.
2'3) Xk b (Xk - OARRY;;) U OARRYk_l.

2-4) k—k+1.0

The correctness of Procedure 2 follows from Theorems 5, 6 and 7. If | LD (r;)|(= LAST)
>MAX_SIZE after the execution of the procedure, we update LOCAL_OPT to be i and
MAX_SIZE to be LAST.

If ¥=r;, then LD(r;) is obtained by the following procedure. Its correctness is due

to Theorem 4. In this case, we do not have to update LOCAL_OPT and MAX_SIZE .

Procedure 3.
1. if lseq (i 4, 5) = LAST and | Xp5r | =1
then LAST — LAST -1

else X,,,q (r, i) & Xluq (ropd)~ {f } O

The value of LOCAL_OPT after having determined LD (r,,) is the desired integer
OPT. In StepIl of Algorithm 1, using the above procedures, we repeatedly determine
LD (r;}’s again until LD (rppr ) = <X, X, ..., Xpasr > 1s found. Then, in Step III, an LIS of

Topr 1s obtained by applying the following procedure to LD (ropr ).

Procedure 4.

1. TrAaST t any element of XLAST'
2. for k— LAST -1 until 1 step -1 do 2, — Min {2€X, | 2 > 2,1}
3. Output [zp457, ZasT-1, -y 24)- O

Lemma 8. Procedure 4 correctly finds an LIS of rppr in O(n) time.
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Proof. The repeated application of Lemma 5 proves the correctness of the pro-
cedure. Since |X,|+|Xa2|+ '+ |Xpasr |=|CUTopr | < n, the time complexity is
O(n). 0O

In the remainder of this section, we evaluate the complexities of Step I of Algo-
rithm 1. For ¢=1,2,...,2n, the current L-decomposition LD (r;) = <X, Xy, ..., X |1p(s,)| >
is represented by the following data structures.

1) LIST,: A list which stores the elements of X; in ascending order of their values. Each
element z in LIST, has a pointer NEXT (z ) to the next element in LIST}.
2) FIRST,: A pointer to the first element in LIST, .

3) MEMBER : An array such that MEMBER (z) = lseq (r;, z) for each element z of 7.

For example, Fig. 6 illustrates the contents of LIST,’s and FIRST,’s for L-decomposition
<{3, 5}, {4}, {1, 2}>.

It is obvious that, for any L -decomposition LD (r;) = <X, X, .., X |1p(r,)| > which
is generated in StepI, | X;|+|Xy|+ -+ |X b,y | £ n. Therefore, the space com-
plexity of Step I is O (n).

Let i be an integer such that 1<i{<2n. If point i is the right endpoint of some

interval I;, then j is the smallest element of Xiseq (r, _15) in LD (7;_,). Thus, using the above

data structures and Procedure 3, we can find LD(r;) in O (1) time. It also takes O(1) time
to determine LD (r;) if i=1 or LD(r_,) is empty. Therefore, the total time needed for
these cases is O (n).

If point ¢ is the left endpoint of some interval I; such that 2<j;<n and
| LD (r;_,) | >1, Procedure 2 is executed to determine LD (). Let k be an integer such that
1<k < |LD(r_)| and CARRY,_ #¢. Let m, and m, be the smallest and the largest ele-

ment of CARRY,_,, respectively. (These elements can easily be determined when we find
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CARRY,_,.) Since the elements of X, are already sorted, CARRY, can be determined in
O( | CARRY; | +1) time in Step 2-2). Let mj be the largest element of CARRY,. In
Step 2-3), we can update FIRST, and LIST, by making two assignments, “FIRST, + m,”
and “NEXT (mjy) « NEXT (m,)” (see Fig. 7). Thus, the execution of Step 2-3) including the
update of MEMBER can be done in O(1+ | CARRY,_|) time. Therefore, Procedure 2

determines LD (r;) in O (1+ Y | CARRY, | ) time.

1<e¢ < | LD (r,_p) ]
Each integer 5, 2<j<n, is first added to CARRY; and becomes an element of X,
when LD(T‘)) is determined. Thereafter, for k=1,2,...,lacc(r,}_x, J)-1, it is added to

CARRY, exactly once and moves from X; to X;,;. When LD(r,J) is determined, 5 is

removed from X, (s, _. 5) and never be added later to any CARRY,. Therefore, from the
J

above argument, the total time required for the execution of Procedure2 is

O(n+ L] ,lseq (r,.J_l, 7). As shown in the proof of Theorem 3, graph G’(OUT,J_l)
has a clique of size lseqg ('r,)_l, ) which contains v; . This implies that
lseq (T":"’ j) < Min {1 + (the degree of v; in G(F)), w(F)} for j =1,2,..,n. Thus,
E,Lllscq(nj_l, j) € Min{n + 2| Ep |, nw(F)}. Consequently, we have the following
theorem.

Theorem 8. The time and space complexities of Step 1 of Algorithm 1 are
O(n+Min{|Er |, nw(F)}) and O(n), respectively. O

It is obvious that Step II of Algorithm 1 requires neither more time nor more space

than Step I. Therefore, we have the following theorem from Lemma 8 and Theorem 8.
Theorem 9. Given a canonical family of n intervals F, Algorithm 1 finds a max-
imum clique of G(F)in O (n+Min { | Ep |, nw(F)}) time and with O(n ) space. J
By combining this theorem and Lemma 1, the following theorem is obtained.

Theorem 10. For any family of n intervals F, a maximum clique of G (F) can be
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found in O (n -logn +Min { | Ep |, n w(F)}) time and with O (n) space. O

6. ALGORITHM FOR GENERATING ALL MAXIMUM CLIQUES

Let F ={I,, I, .., 1,} be a canonical family of intervals with r,<r,< -« <r,.
For j=1.2,.,n, we define OVL(I;) as a set of intervals {Il,€F |, and I; overlap each
other and k>j}. Let o; be defined as the sequence of the indices of intervals in
OVL(I;) U {I;} sorted in ascending order of the coordinates of their left endpoints. For
example, for the family of intervals shown in Fig. 3, OVL (I,) = (I, I, Is}, 0y = [1, 4, 5, 3]
and OVL(Ig) = ¢, o3 = [3]. Note that CUT, ., = {1}, Iy, I, 1, I}, Tr-1=(2,1,4,5, 3
and OUT,, s = {Is, Iy, I}, 7,1 = [4, 5, 3].

Lemma 9. Let j be an integer such that 1<j<n. For any element j, of o;,
lseq (7, -1, 51) = lseq (o, 71).

Proof. It s clear that o,; is a subsequence of Tr, 1 Thus, any IS of o; is an IS of

Tr,-1 and hence lseq (r,j_l, 71) = lseq(o;, 7,). On the other hand, let [5,, jo, ..., ji] be an IS
of r, 4. It is easy to see that I; <l; <l <rj<r; <r; for g=23,.F. Therefore,
(71, 72 -, 2k} 15 an IS of o, and thus lseq (T,J_l, 71) L lseq(o;, 71).- O

Corollary 2. For j=12,...,n, lseq(o;, j) = lseq (T,J_l, 7). 0

Let j be an integer such that 1<;<n and lseq(o;, )= w(F). Let
LD(o;) = <Xy, X, ooy Xugr)>- We  introduce an  auxiliary acyclic  digraph
H(s5)=(V(4), E(;)) as follows:

V(i) = Vur7)U Vyry-a(7)U -+ U Vi(s), where

Vir)i) = {w;}, and
Vi(j) = {w, | p €X, and there exists an integer ¢ such that w, €V, ,(5), ¢ <p

and [, <[, }, for k= w(F)-1,w(F)}-2,.,1,
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and E(j) = Eyr)- (/) U Eyry-o5)U -+ UE(5), where
E (7)) = {(w, ~w,) | w, €V, 1(s), w, €Vi(5), g <p and [, <1, },
for k= w(F)-1,(F)-2,.,1

For a directed path P= ['”:'1’“’:'2»'--"”:}1 in H(j), we define its length to be the number of
the edges on P, that is, k —~1. From the definition of H(j), we know that any longest
directed path in H(j) connects w; and a vertex in V,(;) and contains W(F') vertices. Let
PATH_SET(4) be the set of all such paths in H(j). It is easy to show that there is a one-

to-one correspondence between PATH_SET (5) and the set of LIS’s of o; .
Let ¢ = {v;, Vi o U5} With §,<jp< - -+ < be asubset of vertices in G (F). As
mentioned earlier, ¢ forms a clique if and only if I; <l; < - -~ <, <rj <rj, < <ry,
This implies that C is a maximum clique of G(F) if and only if lesq (05 §1) = w(F) and

[71) 72, - k] 1s an LIS of oj Therefore, we have the following theorem, which provides

the basis of our algorithm for generating all maximum cliques of G (F).
Theorem 11. There is a one-to-one correspondence between the set of maximum

cliques of G (F) and U PATH SET(j). 0

locq (0, 3= w(F)

Consider, for example, the canonical family of intervals shown in Fig. 8(a), where
lseg (01, 1) = lseq (03, 3) = w(F) = 3. Since LD (o) = < {5, 6, 10}, {2, 9}, {1}>, H(1) becomes
as shown in Fig. 8(b) and has four longest directed paths, [w;, wy, we], [w;, ws, we),
[wy, wy, wyo], and [w,, wy, wy]. Fig. 8(c) depicts the graph H(3), which has five longest
directed paths [ws, ws, wy], [ws, ws, we|, [wa, we, wy], [ws, we, wg], and [ws, wy, wyg). As
mentioned in Theorem 11, all of these paths correspond to the maximum cliques of G (F).

We are now ready to show the framework of our algorithm for finding all maximum

cliques of G (F). Its correctness follows directly from Theorem 11 and Corollary 2.
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Algorithm 2.

L for j«— 1 until n do determine Iseq (T', .1, J).  Determine w(F).
II. for each integer j such that lseq (T";"’ J)=w(F) do
a) Determine LD (o;).
b) Construct digraph H(j).
¢) Find PATH_SET(j) and generate its corresponding maximum cliques

of G(F). O

As mentioned in Introduction, Rotem and Urrutia’s algorithm {12] also constructs
and searches auxiliary acyclic digraphs. However, their digraphs are slightly different from
H(j)s. Furthermore, our graph construction method, which will be shown later, is rather
different from theirs. In their algorithm, for each of the O(n) subproblems, a data struc-
ture of size O(n) is maintained. And, during the construction of the data structures, every
element is assigned pointers which are later used to determine the edges of their digraphs.
On the other hand, our algorithm always maintains only one L-decomposition and repeat-
edly updates it. As in Algorithm 1, it is represented by LIST:’s, FIRST,’s and MEMBER
only. It might be possible to use pointers similar to those mentioned above, but if so, we
would have to update them dynamically, and hence our algorithm would be unnecessarily
complicated. Furthermore, it would be necessary to update such pointers attached to the
elements which do not belong to any IS of length w(F').

In what follows, we briefly describe an efficient implementation of Algorithm 2. We
first determine OVL (I;) for j=12,...,n as a list in which the intervals are sorted in ascend-
ing order of their subscripts. This preprocessing can be performed in O(n+ | Er |) time,
since the construction of G(F) = (Vr, Er) needs only O(n+ | Er |) time (see, e.g., Sec-

tion 4.2 of Buckingham {3]). We then carry out Step I of Algorithm 2 by executing Step I
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of Algorithm 1. For j=1.2,..,n, using the array MEMBER , lseq(r,}_l, 7) can trivially be
obtained just after LD(r,]_,) is determined. Furthermore, w(F) can easily be found since it

is equal to the value of MAX_SIZE after the determination of LD(7,). Thus, Step 1 of
Algorithm 2 can be completed in O (n+Min {| Er |, n-w(F)}) time due to Theorem 8.
In order to carry out Step II, we execute Step I of Algorithm 1 again. Each time

LD (r,]_l) is determined for such an integer j that Iscq(r,},_l, 7) = w(F), we suspend the

computation of LD (r;)’s and find PATH_SET () by a method described below. Then, the
execution of Step I of Algorithm 1 is resumed.

Suppose that LD (r,}_l) has been determined for an integer ; such that
lseg (1',}_1, J) = w(F) during the second execution of Step I of Algorithm 1. We know from
Lemma 9 that lseq(o;, z) = lscq(r,]_l, z) for each element z of o;. Furthermore, the value
of lseq (’r,—b z) can easily be obtained by using the array MEMBER . Since OVL (I;) has
already been  determined at the preprocessing stage, we can construct
LD (o;) = <X, Xy, ..., Xyr)> in O(|o; |) time in such a way that X, is represented by a
sorted list for k= 1,2,...,w(F).

We now explain how digraphs H(j)'s are created in Step II b). It is trivial to deter-
mine V,r)(5). Suppose that, for an integer k¥ such that 1<k <w(F)-1, we have already
obtained V;,(j) as a sorted list in which the vertices are stored in ascending order of their
subscripts. The following procedure constructs V,(;) from V,,,(s). In the procedure, a list
SMALLER is maintained and repeatedly updated so that, for each integer p €X;, it stores
such integers ¢ that ¢ <p and w, €V} ,(;) in their descending order. By Lemma 3, for any
two elements z and z' in SMALLER, z >z if and only if I, <l,» . Thus, using this sorted
list, we can test, in O (1) time, whether w, €V, (s) or not. Furthermore, we can create the

set of edges {(w, »w, )EE, ()}, if any, in time proportional to its cardinality plus one.
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Procedure 5.
L. Vi(7)— ¢, E(5) ¢
2. Xy 1 — {¢ | w,€Vi4i(s)}. SMALLER < an empty list.
3. while X, ## ¢ do
3-1) Let p be the minimum element in X; ,, U X; .
3-2) if pEXy 1y
then insert p at the beginning of SMALLER and X, ,;«— Xi,, - {p }.
else execute the following statements a) and b).
a) X; « Xi -{p}
b) if {¢ €SMALLER |l,<l,} % ¢ then V,(j)« Vi(5)U {w,} and

E(5) <~ E(5) U {(w, »w,) | g€SMALLER and |, <l,}. O

This procedure finds the elements of V,(s) in ascending order of their subscripts.
Thus, we can repeatedly apply this procedure and eventually obtain the digraph
H(5)=(V(s), E(y)). For the reasons mentioned before, Procedure 5 can be performed in
O(| X |+ | Ee(5)|+ | X4 |) time for k= w(F)-1, «(F)-2,.,1. By summing up these
execution times, we can see that H(j) can be constructed in O( |o; |+ | E(J)|) time.

In Step Il ¢) of Algorithm 2, we can find PATH_SET(j) by searching H(j) starting
from w; with a backtracking method. This requires O(| V(5)|+|E(s)|+7;) time, where
~; is defined as the total sum of the lengths of the longest directed paths in H(s). Clearly
| V(;)| € lo; |. It is easy to see that, for any directed edge (w, —w,) in E(j), there exists
a longest directed path from w; which passes along this edge. Thus, | E(5)| <v;. There-
fore, for any integer j such that 1<j<n and lseg(o;, j) = «(F), the time required by
Steps Il a), b) and ¢) is O(| o, | +v;). Furthermore, from Theorem 8, we can find all such

integers 5 in O (n+Min{|Er |, n w(F)}) time.
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Let ~ denote the total sum of the sizes of all maximum cliques of G(F) = (Vy, Er).

From Theorem 11, Y 4; = O(7). Moreover, it is clear by definition that

loeq (L,SJJ §=“w(F )
T}-i|o; | =n+|Er|. Therefore, the total time needed for Step 2 is O (n+ | Er |+ ).

Theorem 12. Given a canonical family of n intervals F, Algorithm 2 is imple-
mentable to run in O (n + | Er | +) time and with O (n + | Er | ) space.

Proof. As explained above, the preprocessing, Steps I and II can be carried out in
O(n+|Er|), On+Min{|Er|,n «(F)}) and O(n+ | Ep | +) time, respectively. There-
fore, the time complexity of Algorithm 2 is O(n + | Er | +7). As for the space complexity of
Algorithm 2, we know that the preprocessing uses O(n+ | Er |) space since G (F') is con-
structed. Step I needs only O(n) space due to Theorem 8. For any integer j such that
lseq(o;, 7)=w(F), the space complexity of StepIl is proportional to
lo; |+|E()| < n+|Ep| if each longest directed path in H(;) is not maintained but
released just after it is found. Therefore, Step Il can be carried out with O(n+ | Er |)
space. [J

Remark 3. As stated in the above proof, each time a longest directed path in H(j)
is found, we generate its corresponding maximum clique of G (/') and discard the path.
Otherwise, it would need O(n+ | Er | +7) space to maintain all the cliques. [J

From Theorem 12 and Lemma 1, we have the following theorem.

Theorem 13. For any family of n intervals F, all maximum cliques of G (F') can

be generated in O (n-logn + | Er | +7) time and with O (n + | Er |) space. O

7. CONCLUSION
In this paper, we first developed an algorithm for finding a maximum clique of an

overlap graph G (F) = (Vr, Er) when the graph is given in the form of its corresponding
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family of intervals F. The algorithm runs in O (n-logn +Min {| Ep |, n-w(F)}) time and
with O(n) space, where n=| F | and w(F) is the size of a maximum clique of G (F). We
then presented an algorithm for generating all maximum cliques of G (F). This algorithm
requires O (n-logn + | Ep | +7) time and O(n+ | Er | ) space, where « is the total sum of
their sizes. We feel it difficult to develop faster algorithms, say O (n -logn) and (n ‘logn +7)
time algorithms, for finding a single and all maximum cliques, respectively, of an overlap
graph.

Recently, Apostolico and Hambrusch [2] presented algorithms for finding a max-
imum clique of an overlap graph for both unweighted and weighted cases. Their algorithm
for the unweighted case is similar to our first algorithm. However, their implementation is
different from ours and requires O (n ‘w(F )-log(2n /w(F))) time, which is slightly worse than
our result. On the other hand, their algorithm for the weighted case can be executed in
O (n?) time. It is comparable to the best known algorithm developed by Hsu [9], especially

for the case when the graph G (F) is dense.
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Fig. 2. (a) A non-canonical family of intervals.
(b) A canonical family of intervals.
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Fig. 7. Pointer manipulations for the execution of Step 2-3) of Procedure 2.
(a) Before the execution. (b) After the execution.
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