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Hierarchical storage management has the potential to optimize the cost and
performance of data storage and access by automatically managing the
placement of data on different storage media. Unfortunately, this potential is
not realized for data stored by database management systems (DBMSs),
because current DBMSs require all database tables to be stored on disk. This
paper describes a prototype that integrates a database management system
with a storage management system, allowing simple, cost effective access to

large volumes of data stored in a tape archive.
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1.  Operational Needs Assessment

1.1. Background

The prototype described in this paper is oriented toward science data systems.
These systems have certain characteristics that strongly influenced the design

of the prototype, including the following:

* They contain large volumes of complex data, such as multispectral satellite
imagery, making the cost of data storage a primary concern. Although the
prototype can be scaled down to small systems, it is probably not cost

effective to do so for databases much less than 10 GB in size.l

* Data are used primarily for analysis, and thus updates are infrequent
compared to searches. Designing for search rather than update greatly

simplifies the prototype.

* The primary goal of the end users is research, and thus the information
sought from the system is constantly changing. Systems with more
predictable (e.g., monthly batch) usage patterns probably cannot justify the

use of a DBMS for accessing data.

* The end users are primarily scientists, often with little or no background in
computer science. The prototype sacrifices a certain amount of efficiency to

avoid requiring users to write custom programs to low-level data interfaces.

IThe minimum cost-effective size is approximately the disk capacity that could be purchased

for a given storage management system cost.



An example of this type of system is the NASA Earth Science Data and

Information System [1].

It is also important to keep sight of the overall problem. Data management is
certainly an important part of the total system, but it is only one part
nonetheless. Science data systems also contain many other components to
provide functions such as data collection and analysis. For example, Figure 1

depicts the system context in which the integrated storage/data management

prototype was developed.
User Interface & Visual
Programming
Environment
Data Statistical Visualization
Management nalysis System System
System

Figure1. System context. The data management system should provide high-level
interfaces to facilitate construction of the overall system.

Application developers for these systems are likely to be using powerful tools
for automatically generating graphical user interfaces and perhaps visual
programming environments for construction of the application. They are
likely to be unimpressed if the highest level function our data management
system can provide is the capability to read a string of bytes. In this context,
raising the system-provided data management services to the highest practical
level should reduce the amount of custom application software required, thus
reducing the development time and cost required to provide a powerful total

system.



1.2. Problem

Science data systems often contain tens or hundreds of terabytes of data,
making the cost of storage a primary concern. However, efforts to reduce
storage costs generally make it more difficult for users and applications
(hereafter called clients) to access the data. For example, typical systems place
data in different storage subsystems based mostly on the size of the data and

the cost of storage for each subsystem:

* Small, structured data are placed in database tables;
* Large datasets are placed in disk files;

* Very large or infrequently accessed datasets are placed in tape archives.

This separation of data is depicted in Figure 2.

( Client )

DBMSI/0 FileI/O

DBMS |- File Tape
System ArChive

Figure 2. Traditional data system architecture. Separate interfaces to the DBMS, file
system, and tape archive increase the complexity for applications and end users.

In current science data systems, for example, data are placed in the file system
and tape archive, with the DBMS only containing metadata and application-
defined pointers to the data (e.g., a dataset name). Thus, these systems require
client intervention between the steps of locating the data (using the DBMS),

retrieving the data (from the tape archive), and accessing the data (using the file



system). This loose coupling between the data subsystems introduces the

following problems:

* Clients become more complex (or more confused) and less productive

because the semantics for accessing data depend on the location of the data.

¢ Software complexity and cost are increased because custom applications
must actively participate in data management (e.g., to maintain referential

integrity between the DBMS and file system).

* Innovative research is impeded, because manual procedures slow the
analysis/synthesis cycle and because scientists are less likely to use data
that is difficult to retrieve [2]. Further, excluding data from the DBM5
increases dependencies on pre-defined metadata, which may not identify

unexpected features of interest.

What is needed is a means of automatically managing the placement of data on
different storage media and within different data subsystems to eliminate the
problems described above while optimizing the cost and performance of data

storage and retrieval.

1.3. Objective

Our primary objective is to make large volumes of data easily accessible by end
users. By removing the syntactic and operational barriers between the DBMS,
file system, and tape archive, we can simplify and speed access to data within
very large information systems, where much of the data of interest may reside
on tape (see Figure 3). For science data systems, this means we can remove the
distinction between the DBMS and archive or, alternatively, allow the DBMS to

contain large volumes of information such as browse data.



( Client )

I DBMSI/0

[ Integrated Storage/Data Management |
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DBMS File Tape
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J

Figure 3. Goal data system architecture. A single interface to the data system with
transparent storage management reduces the complexity for applications and users.

L

One way of achieving this objective is to enable the DBMS to access data in the
file system and tape archive. While this capability has been sought by a
number of people, DBMS implementations that provide this capability do not
currently exist [3-5]. The concept of using hierarchical storage management to

provide this capabiltiy is discussed below.



2.  Concept Exploration
2.1. Hierarchical Storage Management

Hierarchical storage management is the process of managing the placement of
data within a storage media hierarchy. Different storage media—such as
memory, magnetic disk, and tape—have different cost, capacity, and
performance characteristics. In general, media with the lowest access time has

the highest cost, as show in Figure 4.
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Figure 4. Cost versus access time for various media. The higher cost of fast storage
media results in the use of slower media for bulk data storage.

The relatively high cost of fast storage media creates an incentive to keep only
the most frequently accessed data there. Because the frequency of usage of
different data tends to vary over time, the placement of data needs to be
managed on an ongoing basis. Hierarchical storage management systems
perform this task automatically. As data are accessed, they are "cached" to a

higher level in the storage hierarchy. If there is not enough room at the higher



level, some of the data there are "migrated” to a lower level. This movement of

data within the hierarchy is depicted in Figure 5.

AN

Caching _ Migration
(improved performance) Disk (reduced cost)

Tape

Figure 5. Storage media hierarchy. The cost/[performance trade-off results in large
storage capacities only on slower, cheaper media. The resulting structure can be viewed
as a storage media hierarchy.

Note that the system will attempt to cache data which is most likely to be used
in the near future, and migrate data which is least likely to be referenced in the
near future. Hierarchical storage management systems typically employ a
least-recently-used algorithm to accomplish this, under the assumption that
data that have not been referenced in some time are not likely to be reference
again soon. While this is clearly not the case in certain cyclical data references,

the algorithm generally performs well in many environments.

A key assumption—a correct assumption for most hierarchical storage
management systems—is that the location of the data within the hierarchy is
not visible to users of the data. That is, clients of the system see the same
interface to the system and access the data in the same way independent of the

actual location of the data.

From this discussion, it is clear that hierarchical storage management has the

potential to eliminate the problems discussed earlier by transparently



managing the placement of data on different storage media. In fact, several
commercial products are available which provide hierarchical storage
management for data stored in a file system. Unfortunately, this potential is
not realized for data stored in databases, because current DBMSs can only
operate on data that are on disk. Use of tape requires an explicit export utility,
which does not meet our need for a single, simple interface. In concept,
however, hierarchical storage management could be added to the DBMS. This
would provide the benefits of cost/ performance optimization to data stored

within the DBMS, yet maintain a single, high-level interface to the data.



3.  Requirements

The concept presented above suggests that a solution may exist to meet the
operational need. Before proceeding with design, however, a more precise
statement of the system requirements is needed. The requirements for the
prototype system are different in many ways from those of an operational
system. In particular, the requirements for a prototype system are less precise
to allow exploration in the design, implementation, and technologies
employed.?2 An operational system will include more constraints to ensure
fulfillment of the operational need (e.g., [6]). Nonetheless, the categories of
requirements presented below are applicable to an operational system, and the
specific requirements presented are representative of the full set of

requirements needed for an operational system.
3.1. Functional Requirements

Data and Metadata Storage. The system shall provide the ability to store and
retrieve satellite images (data) and descriptive information for each image

(metadata).

Single Interface. The system shall provide access to both data and metadata
through a single interface. This is intended to simplify the system from the

viewpoint of users and applications.

2]t is interesting to note that the conflict between a top-down system development

methodology and system optimization is encountered already.



Set Retrieval. The system shall provide the ability to retrieve all images for a
user-specified criterion. This allows users to obtain data that is relevant to a

particular scientific study.

Criteria. The criteria available for set retrieval (see above) shall include location
and time. The system shall allow a database administrator to define additional

criteria.

Hierarchical Storage Management. The system shall manage the placement of
data on different storage media to optimize cost and performance. This is
intended to provide the best possible average access time at the lowest possible
cost. Movement of data between storage media shall be automatic and not
require human intervention. The system should manage the placement of data

with a least-recently-used (LRU) algorithm.

Location Transparency. The system shall provide location transparency.
Location transparency means that the mechanism and parameters used to
access data are independent of its location, although the performance of data
access may vary with its location. In particular, system managed movement of
data as a result of hierarchical storage management shall not affect the
mechanism or parameters used to access the data. This is intended to

maximize the simplicity and portability of application programs.
3.2. Performance and Capacity Requirements

Access Latency. The system shall provide access to any single image in the
tape archive within 5 minutes. Access latency is defined as the time between
entry of a query by a user and the receipt of the data at the user interface, and

may be measured on a quiescent system. This is intended to allow a user to
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obtain data in a near-interactive manner, and to enable interactive testing of the

prototype.

Capacity. The system shall provide a minimum usable storage capacity of 50
gigabytes (GB). This capacity is adequate to handle a working set of satellite
images and exceeds common workstation disk storage capacities to

demonstrate the use of storage management.

Scalability. The system architecture shall allow the capacity to be increased to

1000 terabytes while meeting access latency requirement above.
3.3. Physical Requirements

Space. The system should occupy less volume than a system with the same

storage capacity provided by disk storage.

Media Library Location. The system shall place the storage media library
component in Bedford, Massachusetts. This is intended to allow use of the

storage media library by the Bedford Research Computing Facility.

Development Access. The system shall allow programming, operations, and

data access from McLean, Virginia.
3.4. Cost Requirements

Disk Equivalent. The system shall have a total cost that is less than $2 per
megabyte of usable storage provided. This is intended to provide a total cost
less than the cost of an equivalent system that uses magnetic disk for all

storage.
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Media Cost. The system shall provide storage on media with a present cost less

than $0.01 per megabyte. This is intended to meet the long-term cost goals of

the user.

Existing Equipment. The system should use existing equipment for the

prototype to minimize cost.
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4, Process Considerations

Many aspects of systems engineering are not reflected in the system
development documentation. This is because many (if not most) aspects of
systems engineering are processes, not products. Some of the processes that

are not immediately evident in the development products are described below.
4.1. Project Management and Scheduling

Although systems engineering should not be confused with project
management, there is a strong coupling between the two through the systems
engineering management plan. First, the systems engineering process results
in inputs to the schedule, including a work breakdown structure, technical
reviews, and measurements of progress against various figures-of-merit.
Second, scheduling results in inputs to the systems engineering process,
primarily in the form of schedule considerations for system life-cycle cost
calculations and trade-offs. For example, the buy-versus-build trade-off for the
DBMS storage manager component was biased toward "build" because of the
lengthy procurement time for a suitable commercial product relative to the

overall system development schedule.
4.2. Engineering Specialty Integration

Typically, engineering specialty integration might include involvement of
electrical engineers for circuit design, mechanical engineers for packaging
design, manufacturing process engineers for manufacturability considerations,
software engineers, safety engineers, reliability engineers, and so on. The
results of this process are inputs to the derived requirements and trade-off

analyses. However, the scope of the prototype is rather limited compared to

13



modern complex systems, and thus involved only software engineers and

procurement specialists.
4.3. Acquisition Management

In the case of the prototype, acquisition management primarily involves
extraction of derived requirements and trade-off results into purchase orders

for specific pieces of equipment (such as the storage media library).
4.4. Requirements Allocation

Only the final results of the allocation of requirements to functional
components is evident in the development documentation. In the prototype,
the requirements allocation process was informal because of the emphasis on
proving technical feasibility, rather than on developing an operational system.
In an operational system, a formal mechanism for allocation of requirements
might be employed. In that case, the resulting product (typically a

requirements allocation matrix) would provide more insight into the process.
4.5. Requirements Traceability

For the prototype, traceability of design specifications to requirements was
ensured by a review process. In an operational system, this process might be

visible as a product, such as a traceability matrix.

14



5.  Architecture Trade-Offs and Analysis

There are two architectures which were considered for the prototype: a "top-to-
top" (TT) architecture, and a "bottom-to-top” (BT) architecture. These two
architectures are depicted in Figure 6. Although only the integration of the
DBMS to file system is shown, the same architectures are applicable for

integrating the file system and tape archive.

C Glue ) ( Gle )

\ \ \

I 11
L DBMS | File || ]IDBMIS L] File
== System H System

Figure 6. Alternative architectures. A top-to-top architecture (left) requires less
modification to commercial software than a bottom-to-top architecture (right), but
incurs some performance penalties.

The TT architecture involves intercepting client requests to the DBMS and
using the normal interfaces to the DBMS and file system to perform storage
management functions and to satisfy the request. Because the "glue" code uses
only published interfaces to the DBMS and file system, the TT architecture does
not require modifying any DBMS or file system software. Also, because the
DBMS and file system interfaces are fairly well standardized, there is the

possibility of using a commercial product to implement the glue code itself.

The BT architecture, by contrast, does not intercept client requests. Instead, it

intercepts lower-level storage requests by the DBMS and uses internal DBMS

15



interfaces to perform storage management functions. Because these internal
interfaces are not exposed to applications, the BT architecture requires
modifying the storage subsystem software of the DBMS. This is the approach
most likely to be taken by the vendor of a commercial product, because it
represents and incremental enhancement to their existing software. Further,
because storage management functions are implemented at the physical storage
layer, rather than through the standardized high-level (i.e,, slow) interface of
the DBMS, movement of data can be accomplished with much lower overhead.
This means that an implementation based on the BT architecture would

probably have better performance than one based on the TT architecture.

Criteria were established to compare the two architectures. Subjective weights
were then assigned to each criteria and values assigned for the alternative
architectures. The ranking is described in the following sections and
summarized in Figure 7. This trade-off analysis indicates that the TT
architecture is the preferred architecture. The wide spread in the total scores of
the two alternatives suggests that this subjective ranking is sufficient, and that

neither a detailed objective ranking nor a sensitivity analysis is required.
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Bottom-to-Top Top-to-Top

Criterion Weight Score Weighted Score Weighted

Score Score
Schedule 10 5 50 7 70
Cost 5 5 25 10 50
Performance 1 10 10 5 5
Portability 10 1 10 7 70
Transparency 10 10 100 10 100
Total 195 295

Figure 7. Alternative architecture ranking. The Top-to-Top architecture is preferred,
primarily because it does not require modifying the DBMS software.

The following sections describe the criteria in the trade-off matrix.

5.1. Schedule

Because of external constraints (i.e., graduation), schedule was considered very
important and weighted accordingly. The BT architecture would require
procurement delays to obtain the DBMS source code—delays which might not
allow completion within the external constraints. The TT architecture would
potentially involve some delay to obtain or develop an integrating component,
but these delays would probably be comparatively small. The scores assigned

to each reflect the relative risk of each architecture to the schedule.

17



5.2. Cost

Cost was considered less important than schedule and weighted accordingly.
Because the source code license required by the BT architecture is very costly, it

was given a lower score than the TT architecture.
5.3. Performance

Because the prototype is intended to demonstrate a novel function, not high
performance, performance was given a low weight. The performance of the BT
architecture was estimated to be twice as good as that of the TT architecture,
because it can take advantage of direct manipulation of files on disk rather than

requiring data to be inserted from the file system into the DBMS.

5.4. Portability

The transfer of results of the prototype to other technologies is considered very
important and weighted accordingly. The BT architecture, because it requires
modification of a specific DBMS product, scores poorly. In contrast, the TT
architecture can use the standard DBMS and file system interfaces, and thus is

given a high score.
5.5. Transparency

Location transparency is a fundamental requirement, and is weighted
accordingly. Both architectures provide complete location transparency, and

thus are given a high score.

18



5.6. Design Trade-Offs

Additional trade-offs, similar to the one above, were performed for various
design decisions. For example, a trade-off was performed which selected a
relational DBMS over an object-oriented DBMS. The details are omitted here

for conciseness. The following section describes the resultant design.
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6.  Prototype Design

In addition to the DBMS, file system, and tape archive, the prototype consists of

two important components:

* A DBMS storage manager, and

¢ A file storage manager.

The structure of the prototype is depicted in Figure 8 and described in the

following sections.

SQL
( DBMS Storage Manager )
SQL ‘ FileI/O
( File Storage Manager)

FileI/O ‘ Tape I/O

1

1

S File Tape
System Archive

Figure 8. Prototype structure. The file storage manager and DBMS storage manager
provide location transparency for data.

[
)
&
=1

6.1. DBMS Storage Manager

The DBMS storage manager provides a standard Structured Query Language
(SQL) interface for all client data accesses, including data in the file system,

with automatic staging of data from the file system to the DBMS. It is based on

20



the Teradata Transparency Interface Project (TIP)? software adapted for Unix.
Typically, large fields (such as images) are stored in the file system, while the
relatively small keys are stored in the database. This can be viewed as
dividing a single virtual table vertically to create a long but skinny key table, as

depicted in Figure 9.

(~  DBMS Storage Manager

. Virtual Tabk\ S
| (e System 3
Key Table w

Figure 9. DBMS storage manager structure. Virtual tables are mapped to key tables
(in the DBMS) and data files (in the file system).

The number of columns stored in the key table can range from one to all, with
the specific choice made by a database administrator based on cost and
performance goals. This decision is, of course, transparent to clients. A
complete copy of the data is stored in one or more files in the file system.

Maintaining a complete copy simplifies the process of staging to the DBMS and

allows virtual table reconstruction for failure recovery and export/import.

3Previously called the Optical Call Level Interface.
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Allowing multiple physical files per virtual table enables the virtual table to be
physically divided horizontally to simplify inserts on write-once media and to

give finer granularity for file migration to the archive (as we will see below).

When a query is received from the client, the DBMS storage manager parses the
query and looks up the target table name in a system control table to determine
if the target table is a real table or a virtual table. If it is a real table, the query
is issued to the DBMS without further intervention. If it is a virtual table, the
DBMS storage manager forms a sub-query that contains only the fields present
in the key table and issues the sub-query to the key table. The resultis a row
subset of the virtual table that contains not the actual data from the virtual
table, but pointers to records of the physical table(s) in the file system. This
subset of records is staged from the file system to a temporary table in the
DBMS. The original query is then reissued against the temporary table, and
the results returned to the client. The granularity for staging from the file

system to the DBMS is one record.
6.2. File Storage Manager

The file storage manager provides a standard Unix file system interface for all
data accesses, including data on tape, with automatic caching from the tape
archive to the file system. It is based on the UniTree Central File Manager
software adapted to operate with the SunOS operating system and Exabyte

EXB-120 tape library. A description of UniTree can be found in [7].

Physical tables, stored in files in the UniTree file system, are migrated to tape

when not used and cached to disk on demand, as depicted in Figure 10.
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File Storage Manager

File System Tape Archive

Physical tables

N—

Figure 10. File storage management system. Files containing physical tables are
migrated to tape and cached to disk on demand.

Physical tables

The granularity for caching is one file. Recall, however, that a virtual table can
be divided into several physical tables, each stored in a separate file. Thus,
clusters of rows can be migrated and cached separately. Rows representing
older observations, for example, might not be accessed by a query, and thus

remain on tape.
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7.  Implementation Trade-Offs

Trade-off analyses were performed to select implementations for each

component of the prototype. These included selection of the following:

UniTree Central File Manager over Epoch Renaissance and Epoch Dynasty

for the file storage manager.

¢ Teradata Transparency Interface Project software over a commercial DBMS

integration product for the DBMS storage manager.
* Magnetic tape over optical disk for the storage media.

¢ Exabyte EXB-120 tape library over the Summus JBL-125 for the storage

media library.
* Sun SPARC 2 over MIPS-based workstations for the server platform.

Unlike the design trade-offs, the alternatives in the implementation trade-offs
were often quite close, so objective criteria were required. Most of the trade-
offs are omitted for conciseness. However, the tape library selection is
described below as an example of an objective trade-off. In particular, note that
each criterion is given an objective value, rather than a subjective score. The
actual score is computed based on relatively objective thresholds determined
by the requirements. Note, however, that the existence of subjective values for
the weights means that the analysis is not truly objective and is thus subject to
bias. For this reason, a sensitivity analysis is required to determine if a small

shift in the weights could change the outcome of the trade-off.
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Figure 11 shows the objective ranking matrix for the candidate tape libraries.

The rows of the matrix are the criteria described above. The columns have the

following meanings:

Criteria

Units

Weight

Unacceptable

Perfect

Value

Score

Wtd. Score

The objective evaluation criteria.

The measurement units of the specified criteria. For Boolean

criteria, this field is left blank.

The subjective weight of importance, as derived from the
requirements of the system. Note that only the relative values
of the weights are important: criteria that are twice as important
as other criteria should have a weight that is twice as great. This
must be true for groups of criteria as well as each criterion taken

individually.

The value beyond which all values are approximately equal in

that they do not meet the established criteria.

The value beyond which all values are approximately equal in

that they completely satisfy the established criteria.
The actual value of the specified criteria for a given alternative.

The objective score for the alternative based on the internal
scoring function. In the matrix shown, a sigmoid curve of the

form 1/(1+e%x) is used.

The weighted score formed by the simple product of the

criterion weight and the score.
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System A System B
Objective Criteria  Units Weight Unacc- Perfect | Value Score Wtd. |Value Score Wtd.

eptable Score Score
Cost $K 09 100 101 50 064 057 25 097 087
Capacity GB 0.9 50 1000 580 068 0.61] 125 0.02 002
Media cost $/MB 0.5 2.5 0} 0.002 099 050f0.002 099 050
Media/driveratio = GB/dr 02 500 5 145 090 0.18] 625 098 020
Weight (lower) lbs 0 100 147 1.00 65 0.82
Weight (upper) " 1000 200 147 1.00 65 1.00
Weight (aggregate) " 0.2 1.00 0.20 0.82 0.6
Port 0.2 0 1 1 099 020 0 001 000
SCSI Interface 0.2 0 1 1 099 020 0 001 000
Standard drives 0.4 0 1 1 099 040 0 001 0.00
Company revenues $M 0.4 1 1000 1500 1.00 040 75 001 001
Month in production mo. 0.2 0 12 1 002 0.00 9 092 018
Total 2.5 1.861 1.581
Total (percent) 100% 74% 63%

Figure 11. Objective ranking matrix for alternative tape libraries. The similarity
between implementations requires an objective trade-off to select the preferred

alternative. Note that system "A" is the preferred alternative in spite of its higher cost
and relatively high weighting of cost as a criterion.

The following sections describe the criteria used in the trade-off.
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7.1. Cost

The cost of the tape library hardware. Because the two alternatives provide the
same basic functionality, cost is the most important factor and weighted

accordingly.
7.2.  Capacity

The capacity of the library, derived from the number of tapes times the capacity
per tape. The prototype needs to show a reasonable capacity to provide a
convincing demonstration, but the truly large capacity demanded by an

operational system is not needed.

7.3. Media Cost

The cost per megabyte for the tape handled by the library. The tape used by
the two alternatives is the same, so this criterion does not affect the trade-off

results.

7.4. Media/Drive Ratio

The average amount of media serviced per drive. Large media/drive ratios
will result in poorer performance because requests for data may have to wait

for an available drive.
7.5. Weight

The physical weight of the unit. This measure also serves as a surrogate
measure of quality. Because tape libraries have a large mechanical component
to move tapes to drives, they must be sturdy. Light units are likely to be made

of cheap materials and thus be more subject to mechanical failures. Very heavy
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units, on the other hand, present logistical problems for installation. The
aggregate scoring function is a "band-pass" function with both a lower limit

and upper limit to the acceptable range.

7.6. Port

Some units provide a port which allows a tape to be entered into the library
without interrupting operations. This is more important for operational use

than a research prototype, and is weighted accordingly.
7.7.  SCSI Interface

A Small Computer System Interface (SCSI) allows the use of standard device

drivers and provides better error reporting than other interfaces.
7.8. Standard Drives

Some units modify the tape drives to facilitate robotic access, which requires
that drives be purchased from the tape library vendor. By contrast, the use of

standard drives simplifies drive maintenance and replacement.
79. Company Revenues

This is a surrogate measure for stability of the vendor. The mechanical nature
of tape libraries and subsequent need for relatively frequent adjustment and
repair means that it is desirable to have some assurance that the company will

be in existence to maintain the product.
7.10. Months in Production

This is used as a predictor of problems that might interfere with research or

operational use of the equipment. Products under a year old are deemed more
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likely to have problems in the field. If accurate mean time between failure

(MTBF) estimates were available, they could be used instead.
711 Results

The trade-off analysis resulted in the selection of the Exabyte EXB-120
Cartridge Handling System. The following section briefly describes the other

system components and the configuration of the prototype system.
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8.  Prototype Implementation

8.1. Physical Configuration

The physical configuration of the prototype is depicted in Figure 12. Note that
the components for the file storage manager are located in Bedford,
Massachusetts, while the components for the DBMS storage manager are
located in McLean, Virginia. This configuration was dictated by other uses of
the equipment unrelated to the prototype, but coincidentally allowed

investigation of some effects of geographic distribution on the design.

The prototype implementation is capable of managing databases over 500 GB
in size. An operational system would undoubtedly increase the cache size for
better performance and large file handling. Nonetheless, the prototype
successfully demonstrates relational access to this volume of data at a system
cost of about 40¢ per megabyte, suggesting that very large databases are

feasible from a cost perspective.
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Disk Cache
* 1 GB capacity

[11]
; SCSI Bus
i Tape Library
I:“lle Storage Manager * Exabyte EXB-120
" Sun SPARC2 « 116 cartridges, 500 GB
UniTree 1.7 « 4 EXB-8500 tape drives
Bedford Ethernet
Router - AGS GS2-BFX
56 Kbps Link
Router - AGS+ GS3-BFX
outer McLean Ethernet
DBMS Storage Database Server Client Applications
Manager ® Teradata DBC-1012 e Sun SPARC 1
e Sun SPARC 2 * 32 disks, 16 GB capacity e« AVS
e TIP * SAS
* PV Wave

Figure 12.  Prototype physical configuration. Resources are geographically
distributed as typical of real systems.
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8.2. Operational Flow

The response to a client query is depicted in Figure 13.

( Client ’

1 10

( DBMS Storage Manager )
A
4

2113 19 ( File Storage Manager )
7

‘ 5
LS
1 DBMS e8] File |eb&( Tape

System Archive

Figure 13. Prototype response to a data request. The system may perform many
storage management activities transparent to the client.

In the case where the selected rows are in the tape archive, the following steps

are performed:
1. The client issues a query requesting the desired data.

2. The DBMS storage manager issues a control query to determine the
physical location of the data. The response to the query indicates that

the physical table resides in the file system.

3. The DBMS storage manager issues a sub-query (keys only) and retrieves

arow subset pointing to records in the file system.

4. The DBMS storage manager accesses the file storage manager for the

specified records, including non-key fields.
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5,6. The file storage manager recognizes that the needed files are not resident

in the file system, mounts the proper tape, and stages the necessary files

to the file system.

7,8. The DBMS storage manager reads the record subset through the file
storage manager and inserts the records as rows into a temporary table

in the database.

9,10. The DBMS storage manager reissues the original query and returns the

results to the client.

Subsequent queries to the same physical table are likely to execute much more
quickly, because the data will probably be found in the file system cache and

the tape archive will not need to be accessed.
8.3. Performance Optimization

Early in the design of the prototype we realized that inserting data into the
DBMS would be time consuming. Experimentation with the prototype
confirmed this: retrieving sixteen 24KB satellite images required about one
minute to stage the file from tape to a disk file, and another minute to stage the
rows from the disk file to the database. For the row insertion step, response

time becomes progressively worse as the number of rows increases.

The reason for inserting the records into the database is to avoid having to
implement a full SQL processor in the DBMS storage manager. The final query
(Figure 13, step 9) may have to process non-key predicates, data formatting
qualifiers in the "project” clause, "having" clauses, and so on. It would be self-

defeating to re-implement a full DBMS on the file system.
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However, there are common queries that require very little additional
processing. In particular, if all the fields referenced in the "where" clause are
present in the key table, all of the records indicated by the sub-query to the key
table (Figure 13, step 3) will be returned to the client. It seems unproductive to

insert them into the database only to retrieve all of them again.

The DBMS storage manager was changed to recognize this special case, order
the fields according to the "project” clause, and return the data directly to the

client. This bypass is depicted in Figure 14, step 8.

Client
1
y
( DBMS Storage Manager )
4
Y
20 (3 ile Storage Manager )
5
1
T
T 1T 1 1]
—+ DBMS Tape
Archive

Figure 14. DBMS insert bypass for special cases. Awvoiding inserts reduces query
latency more than 95%.

The key table was also revised so that it contained all the searchable metadata
for each satellite image, but not the image itself (which appears in the "project”
clause but never appears in the "where" clause). This met the requirements for
the special case, and reduced the latency introduced by the DBMS storage
manager in our test scenario from about one minute to a few seconds—a
reduction of more than 95%. This performance improvement is shown in more

detail in Figure 15. Note that without the performance optimization, the query
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time is substantial, even if no rows are selected. This is due to the overhead
associated with establishing a session with the DBMS, and because some rows
meet the criteria of the intermediate query (Figure 13, step 3) and must be
inserted into the temporary table, even though none of these rows meet the
criteria of the final query. With a larger number of rows (more than 44), the
marginal performance cost of inserting additional rows is more apparent. Itis
also interesting to note that with the bypass, performance is actually better than
with an unmodified DBMS when the number of rows is large. This is because
the file system has better performance characteristics for delivering large
amounts of data than the DBMS in the test configuration.* The bypass case

essentially adds a small overhead to what is otherwise local file system I/O.

41n the test configuration, the DBMS was attached via Ethernet, while the file system used local

disks.
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Figure 15. Query performance with and without optimization. Performance is shown
for three cases: all data in the DBMS , data in the DBMS and File System, and data in
the DBMS and File System with the insert bypass optimization added. Note that the
time to cache data from tape to disk is not included. For the DBMS+FS case, 22 rows
are inserted for every 16 rows selected.
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9, Future Work

There are many areas of the prototype that would benefit from further

investigation. Some of them are described in the following sections.
9.1. Database Row Caching

The prototype currently discards the data staged in the temporary tables after
the successful completion of each query. In the cases where inserts cannot be
completely bypassed, it should be possible to retain data in the temporary
tables and avoid inserting rows that have been previously inserted and thereby

improve performance.
9.2. Commercial DBMS Storage Manager

The DBMS storage manager is a special case of a heterogeneous database
manager, of which several commercial implementations exist. Replacing the
DBMS storage manager with one of these commercial products would allow

the prototype to be connected to many different types of DBMSs.

9.3. Other DBMS Extensions

The DBMS storage manager interprets SQL to provide the storage management
extension to the DBMS. Similarly, many other extensions—such as spatial
indices, integration with a geographic information system, or user-defined
functions—could be added. Some of these extensions might be transparent,
and some might be provided as extensions to the standard query language. In
particular, integration of this prototype with the R-tree spatial index prototype
at the University of Maryland [8] would be interesting, because it uses a system

structure compatible with the prototype described here.
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9.4. DBMS Name Server

The prototype currently references tables stored in the file system by file name,
requiring a file name lookup. Replacing the file name with the Bitfile Identifier
would result in a DBMS-based Name Server per the IEEE Mass Storage
Reference Model [9]. Note, however, that we exploited the non-uniqueness of
file names by redirecting the DBMS storage manager to both local and remote

directories for test purposes—a capability that would be lost with this change.
9.5. Object-Oriented DBMS Storage Manager

The current DBMS storage manager migrates and caches tables or portions of
tables. Similarly, it should be possible to migrate and cache objects in an
object-oriented DBMS. The recursive structure of objects is more amenable to

fine granularity caching than is the definition of tables.
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10. Conclusions

The prototype presented above successfully integrates data management with
storage management. This effectively provides a high-level DBMS interface to
large volumes of data stored in tape archives, and suggests that it is feasible
from both technical and cost perspectives to store not just metadata, but large
satellite images in a DBMS. The actual location of the data, whether in the
DBMS, file system, or tape archive, is transparent to clients, allowing

cost/ performance optimization to be performed without affecting the interface
to the client. Further, in common cases where database inserts can be

bypassed, the performance of the prototype is roughly equivalent to file system

I/0.
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