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Summary In this work we calculate the eigenvalues obtained by
preconditioning the discrete Helmholtz operator with Sommerfeld-
like boundary conditions on a rectilinear domain, by a related opera-
tor with boundary conditions that permit the use of fast solvers. The
main innovation is that the eigenvalues for two and three-dimensional
domains can be calculated exactly by solving a set of one-dimensional
eigenvalue problems. This permits analysis of quite large problems.
For grids fine enough to resolve the solution for a given wave number,
preconditioning using Neumann boundary conditions yields eigenval-
ues that are uniformly bounded, located in the first quadrant, and
outside the unit circle. In contrast, Dirichlet boundary conditions
yield eigenvalues that approach zero as the product of wave number
with the mesh size is decreased. These eigenvalue properties yield the
first insight into the behavior of iterative methods such as GMRES
applied to these preconditioned problems.
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1 Introduction

This paper is concerned with properties of the eigenvalues of matrices
arising from discretization of the Helmholtz quation

—Au — k*u = f. (1)

This problem is of fundamental use for the models of scattering of
acoustic waves in fluids [7]. We will consider it on domains 2 C R,
d =1,2,3, where {2 is either the unit interval, square, or cube, with
Sommerfeld-like boundary conditions

Uy, — thu =0 (2)

on 02, where u, is the outward normal derivative.
Discretization of the problem (1)—(2) results in a linear system of
equations

Au = J. (3)

where A is typically complex, non-Hermitian, indefinite, and in two or
three dimensions, very large and sparse. In [1], we developed a set of
preconditioning techniques for this problem in the three-dimensional
case, and we demonstrated their effectiveness in a collection of nu-
merical experiments on benchmark problems. Although the results
in this work were encouraging, the indefiniteness of the matrices to-
gether with the large size of the three-dimensional problems make it
difficult to derive an analysis that explains the behavior of such tech-
niques. The purpose of this paper is to introduce a methodology for
computing the eigenvalues of various preconditioned operators asso-
ciated with (3), and to use the computed eigenvalues to help explain
the performance of the ideas presented in [1].

The approach under consideration for preconditioning derives from
perturbation of the boundary conditions leading to A. That is, we use
a discrete Helmholtz operator (1) but replace the Sommerfeld-like
conditions (2) on some subset of the boundary with either Dirich-
let conditions (prescribed values of u) or Neumann conditions (pre-
scribed values of w,). Let the resulting preconditioning matrix be
denoted M. One great advantage of such preconditioners is that the
preconditioning operation, i.e., the computation of the action of M~1,
can be performed using a fast direct method in time proportional to
the number of mesh points times a logarithmic factor [11]. Moreover,
since the preconditioner differs from the matrix by a relatively low-
rank operator (depending only on the number of grid points on the
boundary), many of the eigenvalues of the preconditioned operator
will be identically one, and therefore we expect good performance of
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Krylov minimization or projection methods such as GMRES [10] or

QMR [4].

Thus, we seek an understanding of the nonunit eigenvalues of
M~ A, The methodology presented here is to examine the eigen-
values of one-dimensional versions of these preconditioned problems,
and then to bootstrap these results into expressions for eigenvalues
for problems in two or three dimensions. This technique applies in
the case where both the discretization matrix and the precondition-
ing matrix are tensor products of one-dimensional problems, so we
consider finite difference discretizations. For problems in one dimen-
sion, the difference between the discrete Sommerfeld and perturbed
operators is a matrix of rank two, and identification of the eigenval-
ues of the preconditioned problem entails the (trivial) computation
of eigenvalues of a 2 x 2 matrix. We then show that in two and three
dimensions, the eigenvalues of the preconditioned operators can be
computed by solving a set of smaller eigenvalue problems derived by
generalizing the approach used for one dimension. In particular, the
computations entail the solution of eigenvalue problems for matrices
of size at most O(n), where n is the number of grid points in one
dimension. This enables the identification of the eigenvalues of the
higher-dimensional problems, a task that would otherwise be compu-
tationally intractable for fine grids, especially in the three dimensional
case. Using these computed values, we demonstrate a correlation be-
tween the performance of the various preconditioners as presented in
[1] and the spectral properties of the preconditioned operators.

Manteuffel and Parter [8] and Joubert, Manteuffel, Parter, and
Wong [6] have proven a very interesting series of results about prob-
lems similar to ours. In particular, if the preconditioner M and the
given operator A are both discretizations of second-order elliptic op-
erators, then the Ly condition number of the preconditioned problem
AM™! is bounded independent of h if and only if M and A have
the same boundary conditions. Similarly, the Lo condition number
of M~1A is bounded independent of % if and only if the adjoint
problems M* and A* have the same boundary conditions. They also
show results on the Hy condition number. Unfortunately, these beau-
tiful results do not directly yield insight into the behavior of iterative
methods such as GMRES and QMR; see, for example, [9]. The first
two statements say that the singular values of AM™! and those of
M~'A can behave quite differently. In contrast, the eigenvalues of
AM~1 are the same as those of M~1A, and the convergence proper-
ties of GMRES and QMR are largely determined by these eigenvalues
along with their eigenvectors. Hence the need for this study.
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A summary of the paper is as follows. In Sections 2, 3 and 4, we
locate the eigenvalues of the preconditioned problems in one, two and
three dimensions, respectively. In Section 5, we show how the perfor-
mance of the preconditioned GMRIES algorithm for three-dimensional
problems is correlated with eigenvalue distributions. The final section
draws some conclusions.

2 One-dimensional problems

Let Ag be the n x n matrix derived from finite difference approxima-
tion to (1) and (2) using a mesh z; = jh, 7 = 0,1,...,n 4+ 1, with
h =1/(n+1). We use central differences for the second derivatives in
(1), using discrete values u; to approximate u(z;). For the boundary
conditions, we approximate the normal derivative by one-sided first-
order accurate finite differences to obtain equations for ug and w,+1,
and we then use these equations to eliminate these values from the
central differences for —Au = —u” at x; and z,,. We thus obtain the
n X n matrix

[vs —1
14 -1
AS = )
18 —1
I —17s |
where
6=2-— kzhz,
14+ ikh
=2 - k*p? - ——— |
s 1+ k2R

For this one-dimensional problem, we wish to determine the eigen-
values and eigenvectors of M~!Ag, where M is a preconditioning
matrix.

2.1 Preconditioning by changing the boundary conditions

Suppose we choose as our preconditioner the matrix corresponding
to imposing different boundary conditions at the two endpoints. This
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yields the matrix

[var —1
15 -1

18 -1
=1Ly ]

A similarity transformation that moves the first row and column of
Ag and M to the last will put the troublesome part of the matrices
in the bottom right corner:

P e
18 -1
L [y Oy
M= SN :[0304]’
18 -1
Ly
L -1 ™ ]
P 0
18 -1
L [y Oy
As = 1 B -1 = [03 04]
1 B -1
-1 s
L -1 vs |

Two lemmas provide the formulas we need to obtain the eigenvalues
of the preconditioned problem.

Lemma 1 Given two matrices

_[C1 Oy _ [C1 C
M_[CSC4] ’A_[CSCJ ’

where M is nonsingular, then

— O 081

][004—C4]EI+UV*,

where the Schur complement is defined by S = Cy — C3C7Cy.

Proof The formula is verified by direct computation.
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Lemma 2 If U and V are full-rank matrices of dimension n X p
(p < n), then the matriz UV™* has n—p eigenvalues equal to zero, with
right eigenspace equal to the orthogonal complement of the column
space of V, and p eigenvalues matching those of the p X p matriz

o =V*U.

Proof The matrix UV* is similar to the matrix WUV*W ! for any
nonsingular matrix W. Let

o- [t

V*
where the columns of V form an orthonormal basis for the subspace
orthogonal to the column space of V. Clearly, the n — p columns of

V span the null space of . If V. = )R, where the columns of ) are
orthonormal and the matrix R is upper triangular, then

Wl = [QR V]
and
V*U 0

WUvw! = [ e 0] .

This matrix clearly has rank at most p, and the block triangular form
tells us that the nonzero eigenvalues are those of &.

Corollary 1 Given M and A as in Lemma 1, the nonunit eigen-
values of MY A are equal to 1 + p where p is an eigenvalue of

¢ =V*U = (04 - 04)5_1.
Applying the first lemma to our reordered matrices yields
M 'As=T4+UV",

where .
U= [ZES

O] v =0t

Here Z = Cy' is the inverse of the Toeplitz tridiagonal matrix with
[ on the main diagonal and —1 above and below, £ = (5 is an
(n — 2) X 2 matrix containing the last and first unit vectors,

6:(75_7]\4)7

and

— Zp—9n—2 —Zp—
SI’VMfzxz—ETZE _ VM n—2,n—2 n—2,1
—Z1,n-2 T™M — Z11
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Applying the second lemma, we see that & = 6571, so its eigenval-
ues depend only on four elements of Z: 211 = 2z,—9 p—2 and 21,2 =
Zp—2,1. Computation of these eigenvalues yields ¢11£¢12, so the eigen-
values of the preconditioned matrix are

/\(A]T}AS) = {14 ¢11 £ 12,1} . (4)

This analysis requires that M be nonsingular, which will not hold
for certain values of k and h in the one-dimensional case. For the
two- and three-dimensional problems, however, the preconditioners
are always nonsingular.

2.2 Preconditioning using Neuwmann boundary conditions

If we choose as our preconditioner the matrix () = An corresponding
to imposing Neumann boundary conditions at the two endpoints,
approximating these conditions with a first order difference, then

v =1 —E*h?.

Figure 1 displays the nonunit eigenvalues of A]_Vl Ag for various values
of k and n, calculated using (4).} As n is increased , the eigenvalues
come closer to each other, with the one with smaller real part staying
relatively stationary near the value 1 and with the real part of the
other one converging to 1.

2.8 Preconditioning using Dirichlet boundary conditions

Suppose instead that we precondition by the matrix that corresponds
to Dirichlet boundary conditions at both ends of the interval:

C 5 1
-1 8 -1

g
~1 4 |

1 If central differences are used for the boundary conditions, instead of one-sided

differences, then the resulting matrices Ay and As are of dimension (n + 1) X
(n+1), with yy =1— k22h2 and vs = yn — tkh. In this case, the matrix ¢ is pure
imaginary, so the real part of each eigenvalue is 1, localizing all eigenvalues to the

right half plane.
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Fig. 1. Nonunit eigenvalues of the 1-d Sommerfeld problem preconditioned by the
1-d Neumann. The top figure shows eigenvalues for various & values with n = 1600.
The bottom figure shows eigenvalues for various n values with k = 4, 16, 64.
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Fig. 2. Nonunit eigenvalues of the 1-d Sommerfeld problem preconditioned by the
1-d Dirichlet. The top figure shows eigenvalues for various &k values with n = 1600.
The bottom figure shows eigenvalues for various n values with k = 4, 16, 64.
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In this case, yar = (. Using (4), we can determine the eigenvalues
of the preconditioned matrix /151 Ag. Figure 2 displays the two non-
unit eigenvalues for various values of k and n. As n is doubled, the
distance between these eigenvalues and the distance to the origin
are both halved. As k is increased, the eigenvalues move away from
the origin and away from each other. The overall result is that an
eigenvalue approaches zero as k is decreased or n is increased.

3 Two-dimensional problems

We now consider problem (1), (2) in two spatial coordinates. In this
case, the coefficient matrix in (3) has the tensor product form

A=A, 0I+1 As
and the preconditioners have the form
M:MO®I+I®1457

where /10 = /15 + k2h?1, MO = M+ E2h%I, and /15 and M are
as in the one-dimensional problem. Thus, the preconditioners are
discretizations of the same differential operator but with different
boundary conditions on two of the four edges of the unit square. This
approach was first developed in [2]. As above, we wish to determine
the eigenvalues of the preconditioned matrix, which now takes the
form

(M, @ T+ 1T As) (A, @0 T+ 1® Asg). (5)

Let M, = FXF*, where F is the matrix of eigenvectors and X is
diagonal. We simplify our matrix (5) somewhat through a similarity
transformation using F ® I to obtain

(YOI+I0As) W (E4+R)@I+I0As) = [+H(Zol+10As) H(RRI),
(6)
where R = F(As — M,)F* is a rank-2 matrix:

R = (Sflfl* + (75 - an)fnf;)

=(vs —qu)([fr fa] [g])
=6GG™,
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and f; is the first row of the eigenvector matrix and f; is the last.
Lemma 2 tells us how the eigenvalues of the matrix in (6) can be
computed from those of a matrix of dimension 2n x 2n:

(Yol+10As)  (RaI)
=6(YRI+1IoAs) " HGa NG e I)
As—|-0'1[ -

y N (GonG o,

AS +o,1

s0 we need the eigenvalues of the 2n x 2n matrix

-1

AS + 0'1[
C=6G"®I) . (GolI)

AS +o,1

_ [ Yoy FA(As + o)™ Y fifin(As + Ujf)_ll ‘
Z?:l f]lf]n(AS + UjI)_l Z?:l ]Zn(AS + UjI)_l

Now the eigendecomposition of each of the matrices in the summation

is of the form Ag+o;1 = U(A+ O']‘I)U_l, so each block of C' can be

diagonalized by a similarity transformation involving the eigenvectors

of Ag:

[U‘l 0 ]C[U 0] _ | Yia fAA+ o DT Y fifin(A+ o D)7
0 U_l 0U B Z?:lf]lf]n(/l—l_(j]])_l Z?:l ]Zn(A—I_O-]I)_l ’

and if we permute the rows and columns of this matrix by taking them
in order 1,n4+1,2,7+2, ..., the problem breaks into n eigenproblems
of dimension 2 x 2 with entries

Sm tm
tm Sm |’

s :Zn: ]21 ¢ :Zn: f]lf]n
m /\m_l_o_jv m j:17Am+Uj.

J=1

with

Therefore, the eigenvalues are s, £ ¢,,, m=1,...,n.
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3.1 Preconditioning using Neuwmann boundary conditions

If we construct the preconditioning matrix using Neumann bound-
ary conditions on two sides of the domain, then multiplication by
the matrix F' corresponds to a discrete inverse cosine transform, and
multiplication by F™ corresponds to a discrete cosine transform. For
j=1,...,n, the eigenvalues of M, are

U=ty

o; =4 (sin o

and the eigenvector components are

1 (j—)r
f]l - \/m cos m ’
g = L @2n-1(-Dr |

except that fi; = f1, = 1/4/n. Figure 3 shows the location of the
eigenvalues for the preconditioned problem for n = 50 and for n =
500. These computations were done using Matlab 4.2, since Matlab
5 does not correctly handle Kronecker products of sparse complex
matrices.

We note that all of the eigenvalues are in the right half plane, and
that they remain outside the unit circle centered at the origin, except
for n = 50,k = 30, which has an eigenvalue 0.9939 from the origin.
Note that this mesh size is generally considered to be too coarse for
this value of k, since it has fewer than ten grid points per wavelength;
the usual rule is to keep k& < 27/(10h) [5].

3.2 Preconditioning using Dirichlet boundary conditions

If we construct the preconditioning matrix using Dirichlet bound-
ary conditions on two sides of the domain, the situation is similar.
Multiplication by the matrix F' corresponds to a discrete inverse sine
transform, and multiplication by F™* corresponds to a discrete sine
transform. For j = 1,...,n, the eigenvalues of M, are

o; =4 sin —— ] ,
2(n+1)
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Fig. 3. Eigenvalues of the problem for a 50 x 50 grid (2500 unknowns, top) and
500 x 500 grid (250, 000 unknowns, bottom) using a preconditioner with Neumann
boundary conditions on two edges. Eigenvalues are displayed for k =1 (*), k = 10

(0), k=20 (x), and k =30 (+).

6
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Fig. 4. Eigenvalues of the problem for a 50 x 50 grid (2500 unknowns, top) and a
500 x 500 grid (250,000 unknowns, bottom) using a preconditioner with Dirichlet
boundary conditions on two edges. Eigenvalues are displayed for k =1 (*), k = 10
(0), k=20 (x), and k =30 (+).
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and the eigenvector components are

f 1 . T

1 = Sin

Nt D)2 nt 1

. 1 . jnw
Jn =

N CESVEAE T

Figure 4 shows the results for a 50 x 50 grid, for a 500 x 500
grid. Note that most eigenvalues lie on a smooth curve, with an ac-
cumulation point far from the origin and a few outliers. The curve
moves away from the origin as k increases and toward the origin as
n increases, and it has a slope of about 0.05%.

4 Three-dimensional problems

In three dimensions, we consider the discretized version of (1), (2) pre-
conditioned by the discretized version of the same operator but with
the Sommerfeld boundary conditions replaced by separable boundary
conditions on four faces of the unit cube. The coeflicient matrix is

A wIel+IoAd,@l+I01® As,
the preconditioner has the form
My@I@I+I@M,0I+I®10As,

and we wish to determine the eigenvalues of the preconditioned ma-
trix

(M@ II+IQM,@I+1010As) " (A,0I0I+I0A,QI+I0I0 As) .

Again we can simplify our matrix through a similarity transfor-
mation using F'®@ F ® I (recall that M, = FXF™* is the eigendecom-
position) to obtain

(CQIQI+IoXol+I0l® Ag)™!

(Y4+RQIQI+I@(Y+RQI+I®10 As)
=T+ (ZQIQI+I0YN0I+I10I0As) {ROI+IQR)QI, (7)

where R = F(As— M,)F* = §GG* is a rank-2 matrix. Now (R® I +
I ® R) is a matrix of rank 4(n — 1) and can be expressed as WZ*,
where W and Z have 4(n — 1) columns. (These columns span the
row and column spaces and can be computed by the singular value
decomposition or by taking W to have the first 2(n — 1) columns of
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Table 1. Iteration counts for GMRES(20) applied to the preconditioned discrete
Helmholtz problem.

Dirichlet Neumann
n n

k| 20 40 60 80 k 20 40 60 80

1|16 23 36 42 1 6 6 6 6

5113 18 23 30 5 11 11 11 11
10 | 14 20 26 30 10 17 18 19 18
20 [ 18 | 22 28 32 20 51 57 57 58
30 | 26 37| 36 40 30 78 94 101 101
40 | 29 55 55 53 40 | 101 118 135 137
50 | 24 75 69 81 50 | 155 171 196 206

R®1I and columns 1,2,n4+1,n4+2,...,(n=3)n+1,(n—=3)n+2,(n—
n+1,(n—1)n+ 2 from I @ R.) We can now apply Lemma 2 to
compute the eigenvalues of the preconditioned matrix from those of
a matrix of dimension 4n(n — 1) x 4n(n — 1):

(270NN EQIol+IoXS0l+I0loAs) (Wal).

Just as in the 2-dimensional case, applying the similarity transforma-
tion that diagonalizes Ag breaks this eigenvalue problem into a set
of smaller ones: in this case, n problems of size 4(n — 1). Using the
second basis, these problems can be further decomposed, but we will
not exploit this fact in the computations here.

4.1 Preconditioning using Neumann boundary conditions

Figure 5 shows the location of the eigenvalues for the preconditioned
problem for n = 50 and n = 80. Again, the eigenvalues are all in the
right half plane and nearly outside the unit circle

4.2 Preconditioning using Dirichlet boundary conditions

Figure 6 shows the results for a 50 x 50 x 50 grid and for a 80 x
80 x 80 grid. All of the eigenvalues have negative imaginary part, and
eigenvalues are closer to zero as k/n decreases.

5 Correlation of Spectra and GMRES Iteration Behavior

Consider the preconditioned version of (3),

[AM™] [Mu] = . (8)
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Fig. 5. Eigenvalues of the problem for a 50 x 50 x 50 grid (125,000 unknowns,
top) and 80 x 80 x 80 grid (512,000 unknowns, bottom) using the Neumann pre-
conditioner. Eigenvalues are displayed for k =1 (*), k =5 (o), k = 10 (x), and
k=15 (+).
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Fig. 6. Eigenvalues of the problem for a 50 x 50 x 50 grid (125,000 unknowns,
top) and 80 x 80 x 80 grid (512,000 unknowns, bottom) using the Dirichlet pre-
conditioner. Eigenvalues are displayed for k =1 (*), k =5 (o), k = 10 (x), and
k=15 (+).
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Fig. 7.
60 x 60 grid.
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Eigenvalues () and generalized Ritz values for m = 20 (o, v/, &, <, >,

o) of preconditioned three-dimensional problems, for a 60 x 60 x 60 grid.
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Fig. 9. Subsets of eigenvalues and generalized Ritz values of selected problems,
for a 60 x 60 x 60 grid.
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Suppose the coefficient matrix is diagonalizable, i.e., AM ™1 = VAV L,
It is well known that the GMRES algorithm produces a sequence of
approximate solutions w,, whose residuals r,, = f — Au,, satisfy

7l = min [V (4) V™ o]z

where the minimum is over all polynomials of degree m such that
Pm(0) = 1. Thus, the values taken on by p, at the spectrum of
AM™! play a significant role. In this section, we explore the cor-
relation between the spectra of the preconditioned operators AM ™!
and the performance of GMRES(m), the restarted GMRES algorithm
with restarts every m steps.

We first present one table from [1], showing iteration counts of
GMRES(20) (restarts every twenty steps), for three-dimensional pre-
conditioned Helmholtz problems (8) with various values of wave num-
ber k and mesh size n, and both Dirichlet and Neumann precondi-
tioners. (Entries above the jagged line correspond to problems with
at least ten grid points per wave.) The stopping criterion was

17512

/112

the true solution was smooth, and the initial guess was ug = 0. Note
from Table 1 that performance as the mesh size decreases clearly
correlates with the trends observed for & — 0 in Section 4. That is,
the Neumann preconditioner, for which the eigenvalues appear to be
bounded away from the origin, is insensitive to mesh size, whereas the
Dirichlet preconditioner, for which there are eigenvalues approaching
zero with h, declines somewhat in effectiveness as the mesh is refined.

Next, we focus on the three values £ = 10,20,30 and grid size
n = 60, for which the iteration counts are highlighted in Table 1.
Here, the performance of the Dirichlet preconditioner degrades only
slightly as k& decreases, whereas the Neumann preconditioner is better
for k = 10 but its performance deteriorates significantly for the larger
values. Figure 7 shows the eigenvalues for these six problems, com-
puted using the method of Section 4. The six plots have the same
scale. It is evident that the eigenvalues for the Dirichlet precondi-
tioned problem are fairly insensitive to the wave number £, whereas
the spectra for the Neumann preconditioner are spreading signifi-
cantly as k increases. These results are largely consistent with the
iterative performance.

We explore these trends further in Figures 8 and 9. Let p,, now
denote the iteration polynomial generated by m steps of GMRES. It

<107°,
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is shown in [3] that the roots of this polynomial are the eigenvalues
of the matrix ) )
(Hy,) (HyHp),

where H,, is the rectangular upper Hessenberg matrix of dimension
(m + 1) x m generated by m steps of the Arnoldi computation used
for GMRES [10] , and H,, is the square submatrix of H,, obtained
by removing the last row. We refer to these as the (generalized) Ritz
values. The graphs in Figure 8 show the Ritz values for each of the six
problems. These occur in groups of twenty, corresponding to the sets
of twenty steps of GMRES occurring between restarts; the groups of
Ritz values are differentiated using different symbols as indicated in
the caption, with o denoting those in the first group, etc. The graphs
in Figure 9 show subsets of the data from Figure 8 in more detail,
for k = 10 and k£ = 30, and for one other test, using GMRES(40) for
k = 30 and the Neumann preconditioner.

In discussing these results, we will distinguish among three types
of eigenvalues, loosely defined as follows:

— Group 1: those that seem to lie along a smooth curve.
— Group 2: those near Group 1 but not in it.
— Group 3: the remaining eigenvalues.

For k = 10 and k& = 30, the Group 1 and 2 eigenvalues are shown in
Figure 9. The number of Group 3 eigenvalues increases with & but
remains less than 35.

For k = 10 in Figure 9, where both preconditioners result in very
fast convergence, there are relatively few eigenvalues in Group 2. The
Group 1 eigenvalues are well approximated by using a small number
of Ritz values. A polynomial of low degree fit to Group 1 gives very
small values on all of it, and placing just a few polynomial roots within
Group 2 is enough to produce small residual values. In contrast, for
larger k& and especially for the Neumann preconditioner, there are
significantly more eigenvalues in Group 2, and they are more widely
distributed in the plane. In this case, a polynomial of low degree fit
to Group 1 would have very large function values on the Group 2
eigenvalues, and thus more of the GMRES polynomial roots must be
concentrated in Group 2 in order to reduce the residual significantly.
Figure 8 indicates that even after multiple restarts, degree 20 is not
large enough to approximate all of these Group 2 eigenvalues well.
We believe these observations account for the differences in perfor-
mance of convergence of restarted GMRES in the examples under
consideration.

Figures 10 — 12 refine these considerations by explicitly examining
the absolute values of the iteration polynomials for the case & = 30.
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Figures 10 and 11 show the results for the Neumann preconditioner
and m = 20 and 40, respectively, and Figure 12 shows the results for
the Dirichlet preconditioner. The left sides of the figures show the val-
ues of the polynomial on the more than 14,000 eigenvalues in Groups
1 and 2, and the right sides are for the Group 3 eigenvalues. The
horizontal axes are indices of the eigenvalues, which are sorted by in-
creasing distance from the point (1,0) in the complex plane. Thus, in
the left sides of the figures, eigenvalues with larger indices tend to be
those in Group II, or, for the Dirichlet preconditioner, those in Group
I furthest from the accumulation point. Multiple eigenvalues appear
multiple times, except for the eigenvalue 1, which has multiplicity
n(n — 2)% and is the first eigenvalue in the list.

We first note that the extreme (Group 3) eigenvalues are not signif-
icantly affecting performance. For those that are not captured quickly
by Ritz values, the iteration polynomials are very large; consequently,
the corresponding eigenvectors cannot figure prominently in the ini-
tial residual.

In contrast, the polynomials have small values on the vast ma-
jority of the Group 1 and 2 eigenvalues. Moreover, in each of the
three cases, one GMRES(m) cycle nearly uniformly damps all of
these eigenvalues, except some of those with larger indices. In the
residual r,, remaining after one cycle, the components of eigenvec-
tors corresponding to the damped eigenvalues are much smaller, and
subsequent iteration polynomials will be largely determined by the
other eigenvalues. One consequence of this is that the iteration poly-
nomials generated by cycles of GMRES(m) after the first are larger
on the majority of eigenvalues than the first iteration polynomial.

The values of the iteration polynomials for m = 20 are clearly
much larger for the Neumann preconditioner (Figure 10) than for the
Dirichlet preconditioner (Figure 12). We attribute this to the obser-
vations made above, that the magnitudes and number of eigenvalues
in Group II are much larger for the Neumann preconditioner. In con-
trast, degree 40 polynomials for the Neumann preconditioner (Figure
11) are comparable to the degree 20 polynomials for the Dirichlet
preconditioner (Figure 12). This explains Figure 13, which shows the
history of residual norms and indicates that roughly the same num-
ber (1.8) of cycles is needed to solve this problem with these two
preconditioners and restart parameters.

Finally, we note that we also observed in [1] that when the Dirich-
let preconditioner was used to solve problems with a nonsmooth so-
lution, the sensitivity to mesh refinement was considerably less pro-
nounced than when the solution is smooth (as in Table 1). We have
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Fig. 10. Polynomial values |p2o(A)| for eigenvalues A of Neumann preconditioned
operator, k = 30, 60 x 60 x 60 grid.
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also examined the Ritz values for nonsmooth problems of this type,
and found them to be less closely aligned with those eigenvalues of
Group I, especially those far from the accumulation point. The results
of Sections 3 — 4 suggest that it is these eigenvalues that are tending
to zero with h, and these observations indicate that the correspond-
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Fig. 11. Polynomial values |pso(A)| for eigenvalues A of Neumann preconditioned
operator, k = 30, 60 x 60 x 60 grid.
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Fig. 12. Polynomial values |p2o ()| for eigenvalues X of Dirichlet preconditioned
operator, k = 30, 60 x 60 x 60 grid.
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Fig. 13. TIteration counts of preconditioned restarted GMRES for £ = 30, 60 x
60 x 60 grid.
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ing eigenvectors are in some sense smooth and figure less prominently
in problems with nonsmooth solutions.

6 Conclusions

We have viewed some preconditioned Helmholtz problems from a
capacitance matriz viewpoint, popularized by Olof Widlund, which
exploits the structure of matrices of the form identity plus a low rank
matrix. These discrete problems are quite difficult to analyze, because
the usual tools related to positive definiteness or M-matrix properties
are lacking. Using the capacitance matrix viewpoint, we have been
able to explicitly calculate the eigenvalues of 1, 2, and 3 dimensional
problems by solving a set of 1-dimensional eigenvalue problems. These
calculations have revealed that the Dirichlet preconditioned matrix
has eigenvalues that approach zero as the mesh size is decreased, while
those of the Neumann preconditioned matrix are more dispersed but
bounded away from zero. We have been able to use this insight to
explain the behavior of GMRES on these problems.

Future work will extend these preconditioners to the case of non-
constant wave number k.
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