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Quantum graphs provide a setting to test the hypothesis that all ray-chaotic systems 

show universal wave chaotic properties. I study the quantum graphs with a wave 

chaotic approach. Here, an experimental setup consisting of a microwave coaxial 

cable network is used to simulate quantum graphs. Some basic features and the 

distributions of impedance statistics are analyzed from experimental data on an 

ensemble of tetrahedral networks. The random coupling model (RCM) is applied in 

an attempt to uncover the universal statistical properties of the system. Deviations 

from RCM predictions have been observed in that the statistics of diagonal and off-

diagonal impedance elements are different. Waves trapped due to multiple reflections 

on bonds between nodes in the graph most likely cause the deviations from universal 

behavior in the finite-size realization of a quantum graph. In addition, I have done 

some investigations on the Random Coupling Model, which are useful for further 

research. 
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Chapter 1: Introduction 

 

1.1 Motivations 

 
Our daily life is involving more and more electronic devices and technologies. Every day, 

we are using smart phones, laptops with Wi-Fi, cellular or wireless networks. The electronic 

devices are all in a very complicated electromagnetic environment. This new trend in real life 

leads us to think about the problems and mechanisms of electromagnetic coupling and wave 

propagations in different kinds of systems or environment. This will affect the quality of the 

usage for the electronics devices or some time may affect the health of our bodies. For 

researchers in this electromagnetic compatibility and interference (EMC/EMI) field, it is 

quite interesting to develop efficient electromagnetic interaction models to analyze and 

understand complicated electromagnetic systems, especially for higher frequencies where the 

system is very sensitive to small changes.  

In real life, more and more complex scenarios in electronics and wave propagation in 

cavities or through multiple paths make it very difficult to set up precise models [1]. When 

analyzing a practical electromagnetic problem, we always meet with the challenge that waves 

propagate in a complicated environment with many details which need to be considered. For 

example, if we want to analyze the electromagnetic coupling or interference into a 

complicated system, like a plane, a ship or a building, the structure, the connections between 

enclosures and the specific details in the system will affect the electromagnetic wave 

propagating in between these systems.  

One may try to find the exact equations and get the exact solutions of wave propagation 

in the problem. However, it is very hard or even impossible to find such solutions and the 

exact approach and solutions are changed if just small details in the system are different, and 
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this is very common in real life. Therefore, it is more practical to solve the problem with a 

statistical approach. The Random Matrix Theory (RMT) has been applied successfully to 

describe the wave properties and set up a statistical model of complex systems. The goal for 

my research is mainly to extend the basic Random Coupling Model (RCM) to analyze the 

electromagnetic problems in complicated inter-connected systems. So, in this thesis, I mainly 

study the wave propagation problems based on the Random Coupling Model (RCM) on 

quantum graphs simulated by microwave networks, which is a simpler model compared to a 

real complicated system scenarios. This is the basic first-step study that can lead us to solve a 

more complicated one.  

One method to analyze the electromagnetic coupling problem in complex systems is to 

simplify the system into networks which are the nodes connected by bonds. Then we apply 

some models or equations to solve for the wave propagation on the networks. For my 

research, the theory and model are from the Random Coupling Model and I first try to apply 

those to Quantum Graphs. Quantum graphs are networks with Schrodinger operators on 

bonds, which are very interesting one-dimensional potentially chaotic systems we can 

analyze in a wave chaotic approach. Experimentally, we can realize the quantum graphs with 

microwave networks, which are easy to be set up in the lab just with different junctions and 

coaxial cables. For the most part of this thesis, I focus on the experimental study of the 

microwave networks with a simple tetrahedral topology.  

1.2 Quantum Graphs 

 
A graph or network is a set of elements which are connected in a certain topology and has 

applications in many different branches of engineering, science, sociology and biology [2]. A 

quantum graph, introduced by Pauling in the 1930s, is a linear network structure of vertices 

connected by bonds with a differential or pseudo-differential operator acting on functions 
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defined on the bonds [3]. In physics, quantum graphs have been used to model many 

phenomena, such as acoustic and electromagnetic waveguide networks, quantum Hall 

systems and mesoscopic quantum systems [2].  

Quantum graphs are good models for wave chaos applications from spectral statistics to 

chaotic scattering and wave function statistics. Methods from quantum chaos and random 

matrix theory on universality in the spectral fluctuations of quantum graphs have been 

discussed recently [2]. Researchers have studied quantum graphs experimentally and 

numerically [4-7]. Quantum graphs have been realized as microwave networks with different 

topologies such as tetrahedral, irregular hexagon fully connected networks, and fully 

connected five vertex networks [4-7]. Spectral statistics of graph systems [4,6], the statistics 

of the reaction matrix K [5,6] and the reflection statistics for one-port graphs [5,6] have been 

studied, and results from both numerical calculation and experimental measurement show 

good agreement with theory. 

 

 

Figure 1.1: Integrated Nearest-neighbor spacing (INNS) distributions from numerical 

calculations (triangle) and experimental data (circle). Results are compared with 

theoretical predictions for GOE (solid line) and GUE (dashed line).  Reproduced from 

Ref. [3]. 
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I have listed two examples here from researchers in other groups. The first one is shown 

for the integrated nearest-neighbor spacing (INNS) distribution in Fig. 1.1. The solid line is 

the theoretical prediction for the GOE case and dashed line is the theoretical predictions for 

the GUE case. The GOE and GUE are statistical ensembles of random matrices and are 

introduced in section 1.3 Wave Chaos, readers can refer to that part to understand the 

definitions and physical meanings of them. Numerical calculations and experimental 

measurements were carried out for a 1-port tetrahedral microwave network. The two results 

are presented to compare with the theoretical predictions. The triangles show the numerical 

calculations and the circles show the experimental data. We can see both results agree with 

the GOE predictions well, which are from graphs or networks with time reversal invariance. 

 

 

Figure 1.2: Numerically calculated distribution of the imaginary part (v) and the real 

part (u) of the K matrix compared with the theoretical predictions. Reproduced from 

Ref. [5]. 

 

Another example shows the impedance statistics of the quantum graphs. In Fig. 1.2, 

probability density functions (PDF) of impedance statistics from numerical calculations are 

fit to the predictions from analytical calculations of the K matrix. Both the real part and 

imaginary part of the impedance statistics agree well with theoretical predictions with 

different loss in the quantum graph, as shown in solid dots and empty dots. The INNS and the 
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PDFs of the impedance statistics both show that the quantum graphs have similar statistical 

behavior as expected for quantum chaos systems. However, in the following chapters, from 

the experiments we have done, we find out that one cannot directly apply these theories to 

describe the features of finite-sized quantum graphs. 

Let us analyze the wave propagations on the bonds of the quantum graph. We can endow 

the graphs with a metric which will enable us to define the Schrodinger operator on the graph. 

The Schrodinger operator of the one-dimensional operators associated with each bond is [2]: 

Hb = [(
1

i

d

dxb
+ Ab)2 + wb(xb)],                                            (1.1) 

where wb(xb) is a non-negative potential function and smooth on the bond. Ab are real, 

positive constants and represent the vector potential.  

In spectral theory, the trace formula is a useful tool. The trace formula represents a sum 

over periodic orbits of the underlying classical dynamics.  

The state counting function can be expressed by a smooth term (the Weyl term) and an 

oscillating term 

N(k) = NWeyl(k) + Nosc(k),                                            (1.2) 

and the Weyl term is given as  

𝑁𝑊𝑒𝑦𝑙(𝑘) =
𝐵𝐿

𝜋
𝑘 + 𝑁𝑊𝑒𝑦𝑙(0),                                          (1.3) 

From the first term 
BL

π
k, we can see in the quantum graphs, the counting function is 

linearly increasing with wavenumber or frequency. That is different from the two-

dimensional or three-dimensional systems. For the quasi-two-dimensional system, the mean-

spacing between the eigenvalues ∆kn
2 ≅ 4π/A, where A is the area of the system. And for the 

three-dimensional system  ∆kn
2 ≅ 2π2/(kV), where V is the volume of the system. 
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1.3 Wave Chaos 

We are interested in the solutions of wave equations when the quantum mechanical 

wavelength is much shorter compared with the size of the system to be analyzed. The 

statistical models we use in this thesis are based on the theory from nuclear physics and 

quantum wave systems [8,9].  Because the density of energy levels is high, especially at high 

energy, and solution of the wave equations was not possible, so Wigner proposed the 

statistical approach about the problem. The statistical approach to wave equations in physics 

is called ‘quantum chaos’ [8, 9]. Wigner used a random matrix from a certain ensemble to 

replace the Hamiltonian matrix 𝐻.  Their analysis showed that the statistical properties of the 

eigenvalues of the random matrices agree with those of real nuclei. This approach is the well-

known ‘random matrix theory’. Eugene Wigner [10] studied the energy levels of large nuclei.  

Consider the n×n random Hamiltonian matrices and compute the eigenvalues k
2
. ∆kn

2 is 

the mean spacing of the eigen-energy.  Weyl [11] showed results for the approximate average 

eigenvalue density for the much smaller wavelength compared to the size of the system. We 

can normalize the spacing using the Weyl formula, 

𝑠𝑛 =
(𝑘𝑛+1

2 − 𝑘𝑛
2)

∆𝑘𝑛
2 ,                                                              (1.4) 

Depending on the symmetries, there are two cases mostly considered, which are the 

Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary Ensemble (GUE). The results 

for the nearest-neighbor spacing probability distributions are [10]; 

For GOE case,  

𝑃𝐺𝑂𝐸(𝑠) ≅ (
𝜋

2
) 𝑠 𝑒𝑥𝑝 (−

𝜋𝑠2

4
),                                                   (1.5) 

and for GUE case, 

𝑃𝐺𝑈𝐸(𝑠) ≅ (
32

𝜋
) 𝑠2𝑒𝑥𝑝 (−

4𝑠2

𝜋
),                                                (1.6) 
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The GOE ensemble is invariant under orthogonal conjugation, and it models 

Hamiltonians with time-reversal symmetry. The GUE ensemble is invariant under unitary 

conjugation and it models Hamiltonians lacking time-reversal symmetry. In this thesis, we 

will examine both of the cases in experiment. 

The basis for most of the previous work on statistical electromagnetics is the random 

plane wave hypothesis. With some assumptions, the fields in the cavity behave as a random 

superposition of isotropically propagating plane waves. The predictions from the random 

plane wave hypothesis are consistent with eigenfunction statistical data in the cases of time 

reversal symmetry and of broken time reversal symmetry [12]. As the wavelength becomes 

much smaller compared to the size of the cavity, scarring becomes less and less significant, 

occurring on a smaller and smaller fraction of modes and with smaller energy density 

enhancement near the associated periodic orbit [13]. 

1.4 Complicated Systems with Electromagnetic Topology Analysis 

As mentioned in the Motivations, one of the goals for this thesis is to analyze the 

electromagnetic problem for complicated wave systems. And one approach to deal with the 

problem is to replace the complicated systems with networks which are formed by nodes 

connected by bonds.  

From my knowledge of some previous traditional papers and notes, I will summarize 

some key points in the electromagnetic topological analysis. The goal of this method is to 

understand how electromagnetic energy penetrates a complex enclosure and propagates into 

each sub-enclosure.  An example is shown in Fig. 1.3.  The Power Balance Method is used to 

analyze energy propagation in this case.  In this method, we shall assume that all the volumes 

or cavities are perfectly shielding with walls, and the wave can only couple into the cavities 

through apertures on the walls or cables. 

https://en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics)
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(a) 

 

(b) 

Figure 1.3: Example of application of the PWB method to topologically decompose a 

real system into shielding diagram and interaction sequence diagram [14]. In (a), a real 
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system is simplified into equipment level with the volumes, coupling cross sections, 

running cables and so on. In (b), the mean dissipated power and mean power density 

are associated to the nodes. Branches between nodes represent the propagation of the 

power. Reproduced from Ref. [14]. 

 

In Fig. 1.3, I have shown an example for how to decompose a real problem with the 

effects of electromagnetic coupling into a network representation. With EM topology-based 

approach [36], the system can be replaced with an interaction sequence diagram, which 

follows the running of the power transferred into the cavities. In the Power Balance Method 

(PWB) [14], the model is like a plumbing model for energy flow.  All of the connections in 

the diagram are considered to be of zero length.  In other words, interference effects and 

delay phase shifts are completely ignored in this treatment.  Compared to the more 

sophisticated treatment we want to include interference effects, this example gives us some 

useful hints. When analyzing a complicated system with the RCM, we can apply a similar 

way to decompose the system into equipment level and form a network. The difference will 

be that in the RCM, we need to consider the interactions and model the interactions between 

bonds and nodes. In other words, we want to retain the interference effects for wave 

propagation between nodes.  We can numerically calculate the statistical power transfer in the 

RCM and compare the accuracy of results with the PWB. 

1.5 Outline of the Thesis 

 
In this chapter, I have introduced a big picture of the wave chaotic study related to the 

thesis. In the following chapters, I will talk about the details of the theory, the experiments 

and some new investigations related to wave chaos and will focus on the non-universal 

features of the simple microwave network.  
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Chapter 2 introduces the Random Coupling Model, which is the main theory we used in 

the experiments of the thesis. The models are developed by previous members in our group. 

Basically, for my M.S. study, I mainly capture the model and apply it into my experiment on 

Microwave Networks.  

In Chapter 3, I will introduce some investigations I have done based on the Random 

Coupling Model, which may be useful in some aspects. The first part is to compare the 

Random Coupling Model with the Power Balance Method. Equations are derived and 

statistical results are presented from numerical calculations and experimental data. The 

second part is the comparison between the Random Coupling Model and a similar K-matrix 

theory. In that part, I have numerically calculated the impedance statistics in the GUE case. 

The last part is about the Random Coupling Model impedance statistics with different loss 

parameters. This will become a strong supporting evidence for the way we deal with the 

experimental data. 

In Chapter 4, I focus on the experimental results of the microwave networks. I will 

introduce some basic features of the microwave networks including the radiation impedance, 

and networks with/without time reversal invariance. Next I will talk about the impedance 

statistics of the networks from experiment and apply the Random Coupling Model to describe 

the statistical properties. Finally, I will discuss the non-universal features of long-range 

statistical properties of the networks. 

In Chapter 5, I will make conclusions for the thesis and give some suggestions for future 

work. 
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Chapter 2: The Random Coupling Model 
 

The random coupling model (RCM) describes the coupling of radiation into and out of 

electrically large enclosures with chaotic ray dynamics [1]. The RCM gives a prescription for 

determining both the universal and non-universal features of the experiment.  The RCM has 

successfully analyzed the statistical properties of the impedance (Z) and scattering (S) 

matrices of open electromagnetic cavities where the waves are coupled through transmission 

lines or waveguide [15]. In [16, 17], a 2D chaotic 
1

4
-bowtie cavity and in [18] a 3D chaotic 

GigaBox cavity have been studied and impedance statistics have been analyzed from 

experimental measurement. In this thesis, the RCM is applied for the analysis of 

electromagnetic propagation in quasi-one-dimensional microwave networks. 

2.1 Basic Random Coupling Model 

The Random Coupling Model was first introduced by Zheng et al.[19]. The random plane 

wave hypothesis and random matrix theory (RMT) are used to describe the statistical 

properties of the impedance matrix Z of a wave chaotic system, and the system-specific 

features which are incorporated through coupling ports. 

In the linear case, a system can be modeled as an N-port network where the wave can 

scatter in and out through the coupling ports. And for the N-port system, the 𝑁 × 𝑁 cavity 

impedance matrix can be expressed as 

𝑍𝑐𝑎𝑣 = 𝑗𝐼𝑚 [𝑍𝑟𝑎𝑑] + 𝑅𝑒 [𝑍𝑟𝑎𝑑]
1/2

𝑧 𝑅𝑒 [𝑍𝑟𝑎𝑑]
1/2

,                                (2.1) 

In Eq. (2.1), the impedance matrix of the cavity is obtained by the universal fluctuating 

property predicted by RMT (𝑧) and the system-specific features (𝑍𝑟𝑎𝑑). 
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The matrix z in Eq. (2.1) is the normalized impedance, the statistical properties of which 

can be predicted by random matrix theory, and the z matrix describes the universal 

fluctuation properties. 

In [1], the normalized impedance z can be modelled as, 

𝑧 (𝑘0) = −
𝑖

𝜋
∑

𝜙𝑛 𝜙𝑛
𝑇

𝑘0
2 − 𝑘𝑛

2

𝛥𝑘2 + 𝑖𝛼𝑛

,                                                     (2.2) 

where ϕn is a vector of length M for an M-port system. The elements of ϕn  are the variables 

describing the coupling of each mode n to the ports.  We assume that the Berry hypothesis 

applies so that on average the statistical properties of the fields at any point inside the system 

are described by a random superposition of plane waves of all possible directions and phases.  

Based on this hypothesis we take the ϕn to be Gaussian random variables, which follows 

from the random plane-wave hypothesis, and this assumption will be called into question for 

finite-size graphs later in the paper.  Also, Δk2 is the mean mode spacing of the closed 

system, which can be approximated by Weyl's formula in the limit of small wavelength 

compared to the system size. 

For two-dimensional systems, 

Δk2 ≅
4𝜋

𝐴
,                                                                   (2.3) 

where A is the area of the enclosure. 

For three-dimensional systems, 

Δk2 ≅
2𝜋2

𝑘𝑉
,                                                                (2.4) 

where V is the volume  of the cavity. 

And for the quasi-one-dimensional system which will be investigated in the following 

chapters, 
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Δk2 ≅
2𝜋𝑘

𝐿√𝜀
,                                                             (2.5) 

where L is the total length of the graph or network and 𝜀 is the dielectric constant of the 

coaxial transmission line. 

The kn are the closed cavity mode wavenumbers and k0 is the wavenumber of interest. 

We take the spectrum of eigenmodes kn to be that of a Gaussian orthogonal random matrix 

for time-reversal invariant systems. The statistically fluctuating properties of the normalized 

impedance z in the RCM is determined by a single loss parameter α, defined as 

𝛼 =
𝑘0

2

𝛥𝑘2𝑄
,                                                             (2.6) 

where Q is the loaded quality factor of the  cavity or network. The losses are assumed 

uniformly distributed in the graph, and the variation of the Q from one mode to the next is 

expected to be small, so that an average Q meaningfully quantifies the degree of loss. The 

loss parameter can also be thought of as the ratio of the 3-dB bandwidth of a typical mode to 

the mean spacing of the modes.  As such, the loss parameter is a slowly varying function of 

frequency in most systems. A lossless system has α = 0, and typical systems encountered in 

real life have loss parameters between 0.1 and 10. 

The loss parameter α can be calculated directly through knowledge of the average quality 

factor over a certain frequency range, along with knowledge of the length of the graph. This 

gives an alternate way which can be compared with the loss parameter obtained from fitting 

PDFs of normalized impedance z extracted from experimental data. In Fig. 2.1 we can see 

that the PDFs of  z are only dependent on the loss parameter α. 
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Figure 2.1: Random Matrix Theory predictions for the PDFs of real and imaginary part 

of normalized impedance with different 𝛂 for a one-port wave chaotic system with time-

reversal invariance symmetry Hemmady et al.[34]. 

 

2.2 The Random Coupling Model with Short-Orbit Corrections 

Hart et al. [20] introduced an extended Random Coupling Model which includes the 

short-orbit effect 

𝑍𝑐𝑎𝑣 = 𝑗𝐼𝑚 [< 𝑍𝑐𝑎𝑣 >] + 𝑅𝑒[< 𝑍𝑐𝑎𝑣 >]1/2𝑧 𝑅𝑒[< 𝑍𝑐𝑎𝑣 >]1/2,                (2.7) 

The matrix < Zcav > is the ensemble-averaged cavity impedance matrix, which captures 

the system-specific features, including the radiation impedance of the ports and short-orbits 

that exist in the ensemble [21].  Short orbits are trajectories that go from a port and bounce a 

limited number of times before the energy leaves the graph through the same port or another 

port.  This should be contrasted with longer orbits, which contribute to the universal 

impedance fluctuations. 

In the real experiments, when measuring the statistics of wave scattering properties, we 

need an ensemble measurement of the system with many different realizations. We can 

typically vary the geometrical configurations of the cavities or networks locally or globally. 

In addition the measurements can be taken at different frequencies.[17,22,23,24,25]. These 



 

 15 

 

variations create different realizations that have the same universal system properties, with a 

fixed contribution from  the system-specific details. This will require that we can create an 

ensemble of the system with a high statistical quality. In the first tests of the microwave 

network realization of quantum graphs, we did not get very good realizations from 

experiments, which prevented application of the RCM with the short orbits effects. In 

Chapter 3, I will check the quality of the ensemble from the experimental data utilizing a 

quantitative measure. 
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Chapter 3: Investigations with the Random Coupling Model 
 

I name this chapter “investigations with the RCM”, meaning that there are “little” 

new things I have found during this thesis study. Section 3.1 shows the results when I was 

investigating the power balance method and comparing it with the Random Coupling Model. 

Section 3.2 shows the results of comparisons between theory of the Random Coupling Model 

and the K matrix. This came about when I was investigating the previous research related 

with quantum graphs. Section 3.3 discusses the impedance statistics from the RCM with 

different loss parameters. I have summarized these results when I was getting the PDFs of the 

normalized impedance statistics from the experimental data. 

All these results I put in this chapter, I hope, will give some hints for further study 

related to the RCM and the EMC/EMI problems. 

3.1 Power Balance Method and the Random Coupling Model 

A network formulation of the power balanced method was introduced by Jean-

Philippe Parmantier and colleagues [14] to estimate high frequency coupling mechanisms in 

complex systems. The power balanced method (PWB) is based on statistical concepts and 

some parameters in this method are considered to be not precisely known. The main 

assumption is that the dimension of the system under test is much larger compared to the 

wavelength of the electromagnetic wave, which is the same as in the RCM. The power 

balanced method also incorporates some of the concepts of the RMT. As the RCM and power 

balance method can solve similar electromagnetic problems and some assumptions are the 

same, it is very interesting to compare the two models. 

Based on the equations in [14] computed with the PWB approach, for the single 

cavity case, the variance of S21, σS21
2 , which represents the power transfer between two 

coupling ports, can be derived as: 
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𝜎𝑆21
2 =

𝜆3𝑄

16𝜋2𝑉
(1 − |𝑆11|2)(1 − |𝑆22|2),                                         (3.1) 

where λ is the wavelength, Q is the quality factor and V is the volume of the cavity. S11 and 

S22 are the measured S-parameter of the waveguide or antenna attached to the coupling ports. 

The measured S-parameters are considered to be made up of un-stirred components and 

stirred components [37]. In the measurements, there are line of sight paths and signals that are 

transferred between the antennas or waveguides that do not interact with the mode-stirrers. 

The variance of S21, σS21
2 , removes the unstirred components and represents the mean 

transferred power. 

In this case, the pre-factor on the right hand side of Eq. 3.1 is constant, and the 

scattering parameter values vary rapidly with frequency. We can use Eq. 3.1 to numerically 

calculate the variance of S21 and predict the mean transferred power between the two ports. 

In the RCM, for the 3D cavity case, the loss parameter α =
k3V

2π2Q
, and the wavelength 

λ is related to the wavenumber k by λ =
2π

k
. Based on the equations above, the variance of 

S21, σS21
2 , in the RCM can be derived as, 

𝜎𝑆21
2 =

1

4𝜋𝛼
(1 − |𝑆11|2)(1 − |𝑆22|2),                                       (3.2) 

The S11 and S22 are the reflection coefficients of the antennas or waveguides. In the 

calculations for Eq. (3.2), I try two ways to get the reflections of the antennas or waveguides 

used in this experiment. 1) The radiation impedance of the waveguides or antennas. 2) The 

averaged S parameters over all the realizations. Both of the cases will be discussed below. 

To test Eq. (3.2), experimentally measured data in a 3-D Gigbox are used from our 

collaborators at NRL [18]. The data was taken in frequency ranges from 3.7 GHz to 5.5 GHz 

and 5.5 GHz to 8.25 GHz. 

The variance of S21, σS21
2 , can be calculated from the experimental data as follows 

[14], 
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𝜎𝑠21
2 = 𝐸 [|𝑆21

𝑖 |
2

] − |𝐸[𝑆21
𝑖 ]|

2
=

1

𝑁 − 1
∑|𝑆21

𝑖 |
2

𝑁

𝑖=1

−
𝑁

𝑁 − 1
|
1

𝑁
∑ 𝑆21

𝑖

𝑁

𝑖=1

|

2

,         (3.3) 

where N is the number of realizations in the ensemble, and S21
i  are the raw data of different 

realizations. 

To estimate the quantity σS21
2  in the RCM method, the key parameter is the loss 

parameter α. The α values should be as precisely known as possible over the frequency range 

under test. Hence, the data are cut into small frequency ranges and α values are calculated for 

each of them. In Fig. 3.1 (a), the α values are shown for ten frequency ranges from low to 

high. We can see that the α value is discontinued around 6 GHz, which I believe may be 

caused by some materials with a higher loss in the cavity around 6 GHz. The α values are 

found by fits of the PDFs of normalized impedance from measured data to the RCM 

predictions. This process is the same as will also be shown in Chapter 4 for the analysis of the 

impedance statistics of microwave networks. The measured scattering matrix ensemble data 

for each of the small frequency ranges can be used to examine the statistics of the normalized 

impedance matrix z in Eq. (2.7) and compared to the predictions of RMT in Eq. (2.2). In Fig. 

3.2(b), we can see that the PDFs of the normalized impedance from experimental 

measurements agree well with the RCM predictions, which ensures that the loss parameter 𝛼 

we used in the calculations is very accurate.  

 

(a) 
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(b) 

 

Figure 3.1: (a) 𝛂 values of the cavity in [18] over the 3.7-5.5 GHz and 5.5-8 GHz ranges. 

The cavity is a 2-port reverberation chamber (rectangular aluminum box with 

dimensions of 1.22 m × 1.27 m × 0.65 m). (b) PDFs of normalized impedance (z11 and z12) 

from the experimental measurements (4.3 GHz to 4.5 GHz) fits to the RCM predictions. 

 

After the α values have been obtained, Eq. (3.2) can be used to estimate the variance 

of S21. First, the radiation impedances of the waveguides or antennas are applied in the 

computation and the results are shown in Fig 3.2. Because the cavity is a very large one, it is 

not that easy to measure the radiation impedance if we use the traditional way in which we 

put absorbers on all the inner walls and measure the radiation impedance. In [35], a time 

gating technique was introduced to obtain the radiation impedance, which is applied for this 

cavity. 
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Figure 3.2: Variance of S21 of the 3-D Gigbox over the two frequency ranges. Black 

curves are the RCM computation with radiation impedance and the red curves are the 

experimental data calculated from Eq. (3.3). 

 

The curves in the right two plots in Fig. 3.2 are the curves in the left two plots 

smoothed by averaged in a frequency range of 75 MHz. As shown in Fig 3.2, the computation 

results from RCM method agree well with the experimental data. Next, the averaged S 

parameters over all the realizations are applied in the computation and the results are shown 

in Fig. 3.3.   
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Figure 3.3: Variance of S21 of the 3-D Gigbox over the two frequency ranges. Black 

curves are the RCM computation with averaged S-parameters and the red curves are 

the experimental data. 

 

Compared to the curves in Fig 3.2, the deviations between the predictions and 

experimental data are smaller. The reason is that the averaged S parameters incorporate the 

short-orbits effects in the cavity, which incorporate more specific-details in the system.  

In the above, we have numerically calculated the power transfer represented by σS21
2  

using the RCM, for a single cavity case. The results in Fig. 3.2 and Fig. 3.3 show that the 

calculations predict the experimental data well, which means this numerical calculation 

method works well for the power transfer in the one cavity case. 
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Following similar derivations, the computations for σS21
2  of multiple cavities in a 

certain topology can be obtained. For example, the expression of σS21
2  for two coupled 

cavities should be, 

𝜎𝑆21
2 =

1

4𝜋𝛼𝑢𝛼𝑙

< 𝜎 >

𝜆2
(1 − |𝑆11|2)(1 − |𝑆22|2),                                (3.4) 

where the αl and αu are the loss parameter in the lower and upper cavities, < σ > is the 

average coupling cross section and λ is the wavelength of interest.  

We can test the Eq. (3.4) once we have a high quality data set from measurements of 

two coupled cavities. And following the theories with different topologies, we can derive the 

equations with more complicated networks.  

 

3.2 K-Matrix and the Random Coupling Model 

In the RCM, the normalized impedance matrix z describes the universal statistical 

properties of a chaotic system. Fyodorov and Savin have found the joint distribution function 

of the local Green function for a chaotic system with a uniform energy loss or absorption, 

which is known as the K matrix [26]. In this part, the two kinds of impedance matrices will 

be compared with various losses in both the GOE and GUE cases.  

The direct relationship between the K matrix and Z is that iK ≡ Z. Thus, the 

imaginary part v of the K matrix is the real part of z and the real part u of the K matrix is the 

imaginary part of z. The explicit form for the distributions of the real part u and imaginary 

part v of the K matrix at arbitrary absorption are calculated in the GOE and GUE case [26]. 

In the GOE case, 

𝑃𝑢(𝑢) =
𝒩1𝑒−𝛾/4

2𝜋𝑢̃
[
𝐴

2
√

𝛾

4
𝐷 (

𝑢̃

2
) + 𝐵𝐾1 (

𝛾𝑢̃

4
)],                                  (3.5) 
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𝑃𝑣(𝑣) =
𝒩1𝑒−𝑎

𝜋√2𝛾𝑣
3
2

(𝐴[𝐾0(𝑎) + 𝐾1(𝑎)]𝑎 + √𝜋𝐵𝑒−𝑎),                      (3.6) 

and in the GUE case, 

𝑃𝑢(𝑢) =
𝛾

2𝜋
[𝑠𝑖𝑛ℎ

𝛾

2
𝐾0 (

𝛾𝑢̃

2
) +

𝑐𝑜𝑠ℎ
𝛾
2

𝑢̃
𝐾1 (

𝛾𝑢̃

2
)],                            (3.7) 

 

𝑃𝑣(𝑣) = (𝛾/16𝜋)1/2𝑣−3/2𝑒𝑥 𝑝 [−
𝛾(𝑣 + 𝑣−1)

4
] × [2𝑐𝑜𝑠ℎ

𝛾

2
+ (𝑣 + 𝑣−1 − 2/𝛾)𝑠𝑖𝑛ℎ

𝛾

2
] , (3.8) 

 

where ũ ≡ √u2 + 1 and a ≡
γ

16
(√v + 1/√v)

2
 with α-dependent constants A ≡ eα − 1 and 

B ≡ 1 + α − eα. The parameter α is a quantity scaling the absorption parameter as α ≡ γβ/2, 

where γ is the dimensionless absorption strength and β is the Dyson index counting the 

number of real components per matrix element in the random matrices (i.e.  = 1 for GOE 

and  = 2 for GUE). 𝐾𝑣(𝑧) is the MacDonald function and 

𝐷(𝑧) ≡ ∫ 𝑑𝑞√1 + 𝑧(𝑞 + 𝑞−1)𝑒−𝛾𝑧(𝑞+𝑞−1)/4∞

0
 is introduced for convenience. 

In the equations above, the absorption parameter γ can be related to the loss 

parameter α in the RCM as γ = 4πα, which has been shown in Hemmady et al.[34]. 

First, in the GOE case, the PDFs of real and imaginary parts of the K matrix and the z 

matrix with different loss parameters are compared below. 
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Figure 3.4: PDFs of real and imaginary part of K-matrix from analytical calculations 

and real and imaginary part of  z matrix from numerical calculations in GOE cases. 

The five red curves are PDFs of K-matrix from analytical calculations with 𝛄 =12.6, 

25.1, 62.8, and 88.0. The dots represent the numerical calculations from the RCM, black 

(𝜶 = 𝟏), blue (𝜶 = 𝟐), yellow (𝜶 = 𝟓), green (𝜶 = 𝟕). 

 

In  Fig. 3.4, PDFs of impedance statistics from the RCM of four loss parameters are 

shown, that is α = 1 (black dots), α = 2 (blue dots), α = 5 (yellow dots) and α = 7 (green 

dots). As mentioned above γ = 4πα, so the four red curves are the PDFs of impedance 

statistics from K matrix calculations with γ = 12.6, 25.1, 62.8 and 88.0. The two groups of 

PDFs from the RCM and the K matrix calculations agree well with small deviations. This 

shows that the good connections between the two methods for analyzing the impedance 

statistics of chaotic systems. 

 

 
Figure 3.5: PDFs of real and imaginary part of K-matrix from analytical calculations 

and real and imaginary part of  z matrix from numerical calculations in GUE cases. The 

five red curves are PDFs of K-matrix from analytical calculations with 𝛄 =12.6, 25.1, 

62.8, and 88.0. The dots represent the numerical calculations from the RCM, black 

(𝜶 = 𝟏), blue (𝜶 = 𝟐), yellow (𝜶 = 𝟓), green (𝜶 = 𝟕). 
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The comparisons of the K matrix and z in the GUE case are also examined. In Fig. 

3.5, PDFs of impedance statistics from the RCM of four loss parameters are shown. We test 

the same set of loss parameters, which are α = 1 (black dots), α = 2 (blue dots), α = 5 

(yellow dots) and α = 7 (green dots). The four red curves are the PDFs of impedance statistics 

from K matrix calculations with γ = 12.6, 25.1, 62.8 and 88.0. 

From the comparisons above, we can see that the two theories actually deal with the 

same statistical quantities with just very small deviations. For the numerical calculations of 

the Random Coupling Model in the GUE case, I follow the procedures described in the 

previous PhD dissertation of Zheng et al. [19] in our group. 

 

3.3 The Random Coupling Model Impedance Statistics with Different Loss 

Parameters 

When the RCM is applied to analyze the electromagnetic problem of a chaotic 

system, the impedance statistics from a set of data are assumed to be described by a single 

value of loss parameter α. As the data from a wide range of frequencies are included in the 

impedance statistics, the loss parameter is expected to vary. In this section, the question of 

whether or not a single α value is applied in the RCM to describe the impedance statistics 

with a certain range of loss parameters is discussed. 

Normalized impedance statistics numerically calculated based on the RCM are used 

to analyze the problem. Each data set is calculated with a single α value and there are 200000 

data points.  

 

Data Set σRe[z11]
2  σIm[z11]

2  σRe[z12]
2  σIm[z12]

2  

α = 0.1 4.09 4.16 1.54 1.59 



 

 26 

 

α = 1 0.342 0.338 0.160 0.158 

Composite Data Set 2.22 2.25 0.85 0.87 

 

Table 3.1: Variances of normalized impedance of 𝛂 = 𝟎. 𝟏, 𝟏 and variances of combined 

normalized impedance statistics. 

 

 

 

 
Figure 3.6: PDFs of composite normalized impedance statistics (𝛂 = 𝟎. 𝟏, 𝟏) with the 

best fitting PDFs from RCM predictions. 

 

We create a composite data set consisting of equal contributions from two data sets 

with α = 0.1 and α = 1.  In Table 3.1, I have shown the variances for the real and imaginary 

part of z11 and z12 for a single value of α = 0.1, 1 and the composite data set. In Fig. 3.6, we 

can see that the PDFs deviate far from the RMT predictions, and no single governing loss 
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parameter can be determined. Therefore, if the composite data are from systems with very 

low and intermediate loss parameter, the new composite data set cannot be described by the 

RCM predictions. 

 

Data Set σRe[z11]
2  σIm[z11]

2  σRe[z12]
2  σIm[z12]

2  

α = 1 0.342 0.338 0.160 0.158 

α = 2 0.165 0.163 0.080 0.079 

Composite Data Set 0.253 0.251 0.120 0.119 

α = 1.5 0.223 0.221 0.106 0.105 

 

Table 3.2: Variances of normalized impedance of 𝛂 = 𝟏, 𝟐 and variances of combined 

normalized impedance statistics. 
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Figure 3.7: PDFs of composite normalized impedance statistics (𝛂 = 𝟏, 𝟐) with the best 

fitting PDFs from RCM predictions. 

Data Set σRe[z11]
2  σIm[z11]

2  σRe[z12]
2  σIm[z12]

2  

α = 1 0.342 0.338 0.160 0.158 

α = 1.5 0.223 0.221 0.106 0.105 

α = 3 0.108 0.106 0.053 0.052 

Composite Data Set 0.224 0.222 0.106 0.105 

α = 1.8 0.185 0.183 0.089 0.087 

 

Table 3.3: Variances of normalized impedance of 𝛂 = 𝟏, 𝟏. 𝟓, 𝟑 and variances of 

combined normalized impedance statistics. 
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Figure 3.8: PDFs of composite normalized impedance statistics (𝛂 = 𝟏, 𝟏. 𝟓, 𝟑) with the 

best fitting PDFs from RCM predictions. 

 

In Table 3.2, Table 3.3, Fig. 3.7 and Fig. 3.8, I have tried two different composite 

data sets, the variances of which are very close.  From the plots, we can see that the PDFs of 

the real and imaginary parts of z11 and z12 are simultaneously fit (black curves) by RMT with 

a single loss parameter, α = 1.5 and α = 1.8. Therefore, we can create composite data set 

from 2 or more data sets with relatively close loss parameters (with  > 1), and the composite 

data set can be predicted by the RCM well. 

 

Data Set Estimated 𝛼 from Im[z11] Estimated 𝛼 from Re[z11] 

4-6 GHz 1.1 1.4 

6-8 GHz 1.8 2 
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8-10 GHz 2.5 3.1 

10-12 GHz 3.5 4 

 

Table 3.4: Estimated 𝛂 values from the real and imaginary part of z11 over different 

frequency ranges.  

α = 1.1; 1.8; 2.5; 3.5 

 

α=1.4; 2; 3.1; 4 

 

Figure 3.9: PDFs of composite normalized impedance statistics with loss parameters 

from experimental data from the microwave networks with the best fitting PDFs from 

RCM predictions. 

 

The last data sets I have tried are created from the loss parameters estimated in 

experiments with microwave networks which will be introduced in Chapter 4. I want to make 

sure that we can deal with the statistics from experiment in such ways.
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Chapter 4: Experimental Study of Quantum Graphs with Microwave Networks 

4.1 One Port and Two-Port Tetrahedral Microwave Networks 

4.1.1 Basic Features of Microwave Networks 

 
 
Figure 4.1: Experimental Setup of the microwave networks.  The network analyzer 

(left) is connected to the tetrahedral graph by means of two coaxial cables (shown in 

red).  The ports are made up of two tee-junctions (inset), while the other nodes are 

simple tee-junctions (upper right inset). 

 

The experimental setup is shown in Fig. 4.1. Coaxial cables are connected by the T 

junctions to form a tetrahedral network. For the coupling ports, two T junctions are connected 

to form the 4-coaxial-connector junction. Each cable used in the graph has a unique length.  

The minimum length of the cables is 1 m and maximum is 1.5 m with the average length of 

1.3 m. Hence, the total length of the networks is around 7.8 m. For the frequency range we 

have measured, the wavelengths range from 0.01 m to 0.05 m, making the graph electrically 

large and highly over-moded.  A network analyzer is connected to two ports of the network 
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and the 2 by 2 scattering matrix is measured as a function of frequency (or wavenumber) 

from 1 GHz to 18 GHz.  

 

 
Figure 4.2: Experimental Setup of measuring the radiation impedance of the networks. 

 

One of the properties of the network systems we can measure is the radiation 

impedance, which is the impedance in the situation that waves go into the system and do not 

return to the port. In the experiment, to achieve this we can terminate the four-connector 

coupling port with three 50 Ohm loads as the characteristic impedance of the cable and the T-

junctions is 50 Ohms. 

The raw data can be examined to yield insights for use in the RCM analysis. Fig. 4.3 

shows the resistance and reactance of three kinds of impedance obtained from the measured 

raw data in the 9 to 10 GHz subset of the data. The blue curve is the impedance of one 

realization of the network, labeled as Z. The red curve is the impedance averaged over all the 
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realizations of the graph, labeled as Zavg. The green curve is the measured radiation 

impedance of the ports, labeled as Zrad.  The radiation impedance Zrad was measured by 

removing the graph in Fig. 4.3 and placing absorptive loads on the three open coaxial 

connectors of the two ports.  From the plots, we can see that Z and Zavg are both fluctuating 

around the slowly-varying Zrad.  The small oscillations in Zavg are manifestations of the short-

orbits that survive in many realizations of the networks. 

 

 
 

 
Figure 4.3: Resistance and reactance (real and imaginary parts of impedance) of one 

realization of a 1-port tetrahedral graph network (blue, labeled Z), averaged impedance 

over all realizations (red, labeled Zavg), and measured radiation impedance (green, 

labeled Zrad) from 9 to 10 GHz. 

 

To achieve a randomized electromagnetic environment and a high quality ensemble of 

the microwave networks, different realizations are generated in the experiment. The system is 

perturbed globally by changing the total length of the network. In each member of the 

ensemble one of the bonds is changed to another cable of a different length, and in all about 

80 unique realizations are created. To test the quality of this ensemble, the ratio Λ of the 

maximum transmitted power to the minimum transmitted power at each frequency point for 

the different realizations is compiled [17]. 
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Figure 4.4: Plot of 𝚲 vs. frequency for an ensemble of 81 realizations of the tetrahedral 

microwave graph. A value of 𝚲 is found for every measured frequency point between 4 

and 18 GHz. (b) Histogram of the ratio 𝚲 of the maximum transmitted power to the 

minimum transmitted power over an ensemble of 81 realizations of the tetrahedral 

graph.  

 

In Fig. 4.4 we can see that the histogram of Λ is widely spread with a mean of 23 dB 

and a standard deviation of 6.5 dB.  The dynamic range of Λ over the frequency range of 4 to 

18 GHz is about 60 dB, and this shows that the ensemble is of high quality and suitable for 

further statistical analysis [27]. 

 

 

 
 

Figure 4.5: Experimental Setup of microwave networks with circulator. 
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As mentioned in the Introduction, the two symmetries of the chaotic systems are the 

Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary Ensemble (GUE). GOE is the 

system with time reversal invariance and GUE is the system lacking time reversal invariance. 

For the microwave networks, we try to break the time reversal invariance and analyze the 

statistical properties of the system in the GUE regime. 

The way we break time-reversal invariance is to replace one of the T-junctions with a 

circulator. By this action we have changed the scattering matrix of the node and change the 

wave propagations back and forth between the two coupling ports. 

Ideally, the scattering matrix of a T-junction is as follows, 

𝑆 = (

−1/3 2/3 2/3
2/3 −1/3 2/3
2/3 2/3 −1/3

),                                              (4.1) 

and the scattering matrix of a circulator is as follows, 

𝑆 = (
0 0 1
1 0 0
0 1 0

),                                                           (4.2) 

From the scattering matrix we can see that if a wave goes into the ports of a T-

junction, it can ‘freely’ propagate between the ports. However, if a wave goes into the ports 

of a circulator, it just propagates in a fixed direction. We can check the raw data of S12 and 

S21 of the tetrahedral graph containing the circulator as shown in Fig. 4.6. The two curves are 

totally different, showing that time-reversal invariance of the graph has been broken. 
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Figure 4.6: The magnitude of S12 and S21 of the networks with circulator (shown in Fig. 

4.5) over the frequency range 7-12 GHz. 

 

Another more efficient and quantitative way to check the degree of time reversal 

invariance breaking is to calculate the time-reversal asymmetry parameter A  

A = ∫(||S12| − |S21||)df/ ∫(|S12| + |S21|) df,                     (4.3) 

where the integrals are carried out over one resonant peak.  

The parameter A is shown in Fig. 4.7 over a 1 GHz range. Apparently, the parameter 

A is nearly zero in the case that the networks have no circulator. And the parameter A is 

fluctuating between 0.1 to 0.7 in this frequency range, when the networks contain a 

circulator.  
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Figure 4.7: Time-reversal asymmetry parameter A over the frequency range 7-8 GHz 

for both tetrahedral networks without circulator (Blue dots) and tetrahedral networks 

with circulator (Red dots). 

 

In Hemmady et al. [34], for the loss parameter α >>1, there are some relationships 

between the variance of the normalized impedance and the loss parameter as follows. 

In the case with time reversal invariance (GOE), 

𝜎𝑅𝑒[𝑧]
2 ≈ 𝜎𝐼𝑚[𝑧]

2 ≅
1

𝜋𝛼
,                                                        (4.4) 

and in the case without time reversal invariance (GUE), 

𝜎𝑅𝑒[𝑧]
2 ≈ 𝜎𝐼𝑚[𝑧]

2 ≅
1

2𝜋𝛼
,                                                     (4.5) 

So, there is a factor of 2 difference for the variance between the two cases. We can 

check this over a frequency range as shown in Fig. 4.8. The variances are obtained for every 

2 GHz range from the normalized impedance. From the results we can see that the variances 

are almost following the equations above.  
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Figure 4.8: Variances of real and imaginary part of normalized impedance of the 1-port 

microwave networks with and without circulator. 

 

4.1.2 Impedance Statistics of Microwave Networks 

As described in Chapter 2, the measured scattering matrix ensemble data can be used 

to examine the statistics of the normalized impedance matrix z in Eq. (2.7) and compared to 

the predictions of RMT in Eq. (2.2). The matrix < Zcav > is computed by taking the average 

of the measured Zcav over all the realizations at each frequency point. The impedance matrix z 

is obtained by solving Eq. (2.7) using the measured matrix Zcav along with < Zcav >. As 

shown in Fig. 4.3, the averaged impedance < Zcav > includes the radiation impedance along 

with the short-orbits effects in the network. The normalization process is expected to remove 

the non-universal coupling of the ports and the short-orbit effects in the networks, and based 

on the RCM, the normalized impedance matrix z is expected to display universal statistical 

properties. 

First, we check the impedance statistics for one port networks. Since, there is just one 

coupling port to measure the scattering matrices, we can only obtain the z11 statistics. In Fig. 

4.9, we show the impedance statistics of the networks without circulator from the data of 4-12 

GHz and compare to the RCM predictions in the GOE case. Although there are some 

deviations from the RCM predictions, the fitting result is pretty good. 



 

 39 

 

  
 
Figure 4.9: Normalized impedance (4-12 GHz) from a 1-Port Graph without Circulator 

and RCM Predictions (GOE).  

 

In Fig. 4.10, we show the impedance statistics of the networks with circulator from 

the data of 4-12 GHz and compare to the RCM predictions in the GUE case. We can also get 

very good fitting results. 

 

 

 

Figure 4.10: Normalized Impedance (4-12 GHz) from 1-Port Graph with Circulator and 

RCM Predictions (GUE). 

 

In Fig. 4.11, we put the curves of the two cases in the same plot. It is clear that the 

two curves follow different RCM predictions. And the good thing here is that we get the same 

loss parameter value in both cases.  

I have also tried to fit the curve from networks with a circulator with the RCM 

predictions in the GOE case. I can get a very good fit, but with a much higher loss parameter. 
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To make sure that the loss parameter in the two cases are truly the same. I have calculated the 

quality factor Q for both cases utilizing the time-domain method. And for both cases the 

quality factor Q is around 390. So the results from the fitting curves are trustable.  

 

 

 

Figure 4.11: Normalized Impedance (4-12 GHz) from One Port Graph both with and 

without Circulator and RCM Predictions (GOE and GUE). 

 

4.2 Non-universal Features in the Networks 

4.2.1 Non-universal Behavior in Impedance Statistics 

In the previous section, we have examined the impedance statistics for one-port 

networks. Next we can examine the two port networks. We can examine the statistics of 

diagonal and off-diagonal impedance z elements, as shown in Fig. 4.12, over a large 

frequency range of 4 to 12 GHz.  Over this range the loss parameter of the graphs is expected 

to vary in a smooth and monotonic manner.  In Section 3.3 above, an investigation by means 

of RCM numerical calculations shows that it is reasonable that the RCM can describe the 

impedance statistics of data resulting from a composite of different loss parameters.  

First we note that all of the PDFs in Fig. 4.12 can be fit to the PDFs predicted by 

RMT as long as the loss parameter is allowed to vary.  In particular, note that the same loss 
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parameter can be used to fit both the real and imaginary data for a given impedance matrix 

element (namely z11, z12 and z21).  It is expected that all impedance matrix elements should 

have statistics governed by a single value of the loss parameter.  However, we note that 

different loss parameters are required to fit the impedance statistics of diagonal (z11) and off-

diagonal (z12, z21) elements. In Fig. 4.12, the PDFs of z11 are best fit to RMT with a loss 

parameter α = 2.7, while the PDFs of z12 and z21 are best fit to RMT with α =0.8. Note that, 

the loss parameters fitting the two off-diagonal elements (z12 and z21) are the same for both 

real and imaginary parts.  

In [18], the RCM was successfully applied to describe the electromagnetic statistics 

in complex three-dimensional enclosures.  However, non-universal behavior similar to that 

observed here has also been seen in a 3D cavity case [28], where the enclosures have one 

wall with an electrically-large aperture. In that case any ray inside the cavity that reaches the 

aperture will exit the system, leading to a source of loss that is not homogeneous.  This also 

leads to the situation that the Berry random plane-wave hypothesis may not be obeyed for 

waves at the ports. 
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Figure 4.12: PDFs of the real and imaginary parts of z11 and z12 from experimental 

measurements of tetrahedral graphs (red dots) and best fit RCM predictions (black 

curves) with associated 𝛂 values. The data are from measurements over a frequency 

range from 4 to 12 GHz. 

4.2.2 Numerical Calculation and Quality Factor Calculation 

 
A numerical simulation model of the tetrahedral network is also set up in the 

Computer Simulation Technology (CST) software as shown in Fig. 4.13. Following the same 

procedure as in the experimental measurements, the 2 by 2 scattering matrix as a function of 

frequency can be obtained from the numerical calculation. In this model, the two main 

modules are the coaxial cable and T-junction. For the coaxial cable block, the parameters for 

the resistance, dielectric constant, inner and outer diameter of the coaxial cable model are all 

adjusted to make the S-parameters of the block as close as possible to those of the cables used 

in the experiment. The lengths of the coaxial cables can be easily changed during the 

simulation, which allows us to efficiently generate an ensemble of the networks. A Touchtone 

file with directly measured S-parameter data as a function of frequency is imported as the 

block for the T-junction (labeled “TS” in Fig. 4.13). 



 

 43 

 

 

 

Figure 4.13: Numerical model of the microwave networks in CST. The white and blue 

blocks represent the scattering matrix as a function of frequency of the T-junctions, and 

the white and yellow blocks contain the propagation properties of the transmission 

lines, whose length can be modified.  The two ports of the graph are shown as yellow 

rectangles labeled “1” and “2”. 

 

To get deeper insight into the data, the numerical simulation results in CST are 

treated the same way as the data, and the resulting statistical properties of the impedance 

matrix elements are presented in Fig. 4.14.  
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Figure 4.14: PDFs of the real and imaginary parts of z11 and z12 from numerical 

simulation of tetrahedral graphs (red dots) and RCM fit predictions (black lines) along 

with best-fit 𝛂 values. The data are from calculations in the frequency range from 4 to 

12 GHz. 

 

Numerical calculation results show a number of similar features to the data.  First there is 

good agreement with RMT predictions for the PDFs.  In addition, the same value for the loss 

parameter fits both the real and imaginary statistical fluctuations for a given impedance 

matrix element.  However, the same difference in loss parameter fit value between diagonal 

and off-diagonal impedance matrix elements is seen as in the experimental measurements. In 

both cases the PDFs of diagonal impedance elements show a higher loss parameter fit value 

than the off-diagonal impedance elements.  

An independent method to check the true loss parameter of the networks is to determine 

the quality factor Q and, based on Eq. (2.6), evaluate the loss parameter based on the known 

wavenumber and mean mode spacing of the graph. A time domain method is applied to 

determine the quality factor Q for a given frequency range, as illustrated in Fig. 4.15.  



 

 45 

 

 

                              (a)                                                           (b) 

Figure 4.15: Inverse Fourier transform of the measured (a) S11 and (b) S12 averaged 

over all realizations to compute the decay time 𝛕 for the frequency range 4 to 12 GHz. 

Both data sets give a clear and consistent single decay time of 7.8 ns, determined from a 

straight line fit shown in red. 

 

In Fig. 4.15, the inverse Fourier transforms of both measured S11 and S12, averaged over 

all realizations, are plotted in the time domain. The averaged quality factor computed from 

both spectra is Q = 394 for the frequency range from 4 to 12 GHz using the equation Q = ωτ, 

where ω is the median value of the frequency range. In Eq. (2.6), k is chosen as the median 

value for the frequency range, and the loss parameter obtained by this method is αQ = 1.1, 

which is close to the value fitting the PDFs of the real and imaginary of the off-diagonal 

impedance matrix elements z12 and z21 in  Fig. 4.12. 

One thing we can see that for one-port and two-port cases of the microwave networks, 

which are generated with the same setup, is that the loss parameters from fitting the PDFs of 

z11 with the RCM predictions are different. In Fig.4.9, the α value is 2.2 for one-port 

networks and in Fig 4.12 the α value is 2.7 for two-port networks. To verify the deviations, I 

extract the quality factor of the networks in the two cases. 
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                             (a)                                                                         (b) 

Figure 4.16: Inverse Fourier transform of the measured S11 averaged over all 

realizations to compute the decay time 𝛕 for the frequency range 4 to 12 GHz for (a) 1-

Port case and (b) 2-Port case. Two data sets give different decay times of 8.4 ns and 7.8 

ns, determined from a straight line fit shown in red. 

 

As shown in Fig. 4.16, the decay times computed from the two data sets are different. For 

the 1-Port case, the decay time is 8.4 ns, so the quality factor Q = 421. And the loss parameter 

α is 1.04, a little bit smaller than the α value from 2-Port case, which is 1.11. I think this is 

consistent with the method of fitting with PDFs, which may be explained by the fact that the 

coupling and the reflections from the additional port increases the loss in the system. And this 

can be observed in the PDFs of normalized impedance which removes the effects of the 

system-specific features from coupling. 

4.2.3 Discussion about the Non-universal Features 

Plûhar and Weidenmuller [28] recently showed conditions for universal behavior in 

quantum graphs and the statistical equivalence to RMT. In [29, 30], experiments with 

microwave networks are carried out to show the non-universal behavior for long-range 

fluctuating properties in the spectra of quantum graphs. The universal behavior is obtained 

only in the limit of infinitely intricate graphs with infinitely many bonds and nodes. In this 

study, the simple and small tetrahedral networks in the experiment have a finite number of 
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elements, and deviations from universal behavior are expected. Some particularly simple 

graphs, like the star graph, can show entirely non-universal behavior [32]. In this 

experimental study, the impedance statistics of tetrahedral graphs show some results similar 

to the universal behavior but also some deviations from RMT. 

The non-universal behavior observed in the data may be due to a breakdown of the 

random plane-wave (Berry) hypothesis in the graph.  This may arise from resonances that 

occur for waves traveling on the bonds between nodes. Consider a single bond of length L in 

a much larger graph, and ignore loss. Take b1 and b2 to be the amplitudes of the counter-

propagating waves at the beginning and end of the bond, and each end of the bond has 

reflection coefficients ρ1 and ρ2 presented by the nodes.  The scattered waves from other 

bonds are considered as sources s1 and s2. The two amplitudes can be calculated as, 

b1 = ρ1b2eiϕ + s1,                                                          (4.6) 

b2 = ρ2b1eiϕ + s2,                                                          (4.7) 

where ϕ = kL is the phase shift of the wave after it crosses the bond. These equations can be 

solved for the individual amplitudes as, 

b1 =
s1 + ρ1eiϕs2

1 − ρ1ρ2ei2ϕ
,                                                         (4.8) 

b2 =
s2 + ρ2eiϕs1

1 − ρ1ρ2ei2ϕ
,                                                        (4.9) 

Let R = |ρ1ρ2| and ψ = 2ϕ + arg (ρ1ρ2), then a normalized resonance function like that 

present in the amplitudes given by Eq. (4.10) can be defined as, 

 

λ2(ψ) =
1 − R2

1 + R2 − 2Rcosψ
,                                        (4.10) 

This function is normalized in the sense that integrating λ2(ψ) over the angles ψ gives unity. 

Note that the resonance function is bounded by 
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1 − R

1 + R
< λ2(ψ) <

1 + R

1 − R
,                                             (4.11) 

 
For current conserving, or Neumann boundary conditions at the nodes, we may relate 

the reflection coefficients to the number of connected bonds, with the coefficients 

approaching unity as the number of connected bonds increases.  Hence the resonance 

function is unable to be very large or very small when N is a finite number, as in the 

experiment. Large or small amplitudes for the propagating waves on the bond thus do not 

show up, but this behavior is not expected in a wave chaotic system. In the case of infinitely 

large graphs, the resonances (hence amplitudes and impedance values) are expected to be 

unbounded.  This argument suggests that a finite-sized graph, such as that considered 

experimentally, will not support waves characteristic of a fully wave chaotic system.   Hence 

it is reasonable to expect deviations between the data and RMT statistics such as those 

observed in this study of simple and small networks. Field-theoretical results for spectral 

statistics in finite quantum graphs have largely focused on the size of these deviations, and 

criteria for their disappearance in the limit of large graphs [29, 33]. 

Prof. Antonsen has proposed that the statistics of the signal level on a bond can be 

modeled by the following random variable, 

𝑋𝑖 = 𝜆(ψ) [𝑁−
1
2 ∑ 𝑌𝑗

𝑁

𝑗=1

],                                                    (4.12) 

where Yj are independent, zero mean and unit variance random variables and N is the number 

of the bonds that are connected to the node of the single bond. A set of random variables 

characterized by the two parameters N and R. If we assume that N is large then we can expect 

the sum of the Y’s to by a zero mean Gaussian Random Variable. So the variable X has just 

one distribution depending only on R. If there are no reflections on the node, that means that 

R is zero and 𝜆 = 1 and it easy to see that X will be a Gaussian Random Variable. 
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Figure 4.17: PDFs of Y (Gaussian Random Variable) and X with different values of R. 

 

In Fig. 4.17, I have numerically calculated the PDFs of X if Y is a Gaussian Random 

Variable with different R values when N is a large one. We can see that when R = 0.1 (black 

curve) that there are just small deviations from PDF of Y (red curve). With the R increasing, 

the deviations are becoming larger. 

 

  

                                                                       (a) 

 

                                                                        (b) 
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                                                                        (c) 

Figure 4.18: Experimental measurements of scattering matrix of T-junctions over the 

frequency range 0-16 GHz. (a) The magnitudes of reflection coefficients for the three 

ports on the T-junctions. (b) The calculated R for different combinations of the ports. 

(c) The values of (1-R)/(1+R) (black curve) and (1+R)/(1-R) (red curve). 

 

I have checked the values of R in the experiment, as shown in Fig. 4.18. In (a), the 

curves are the raw measured data of the reflection coefficients for the three ports of the T-

junctions. The magnitude of the data is very close to the ideal one as shown in the Eq. (4.1), 

with some deviations over the frequency range. Fig. 4.18(c) shows the range of values of λ, 

and they varybetween 0.5 and 2.  

For the arguments of the non-universal features in the networks, we can check the 

values of R in Fig. 4.18(b). The Figure shows the values of R range between 0.1 and 0.3. And 

in Fig. 4.17, we can see that when the R is 0.2 or 0.3, the deviations are clear to see from the 

Gaussian Random Variable.  This suggests that our finite-size tetrahedral graph will not show 

the universal behavior expected in the limit of very large graph intricacy. 
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Chapter 5:  Conclusions and Suggestions for Future Work 

5.1 Conclusions 

In this thesis, I have analyzed the electromagnetic coupling problem and wave 

propagation in complicated systems. For the first-step study, we can focus on studying the 

quantum graphs realized as microwave networks. In this work, an experimental study of very 

simple and small quantum graphs simulated by microwave networks is carried out. I have 

examined some basic features of the microwave networks.  This includes the radiation 

impedance characteristics, and systems with and without time reversal invariance. In addition 

we have done a lot of work on the impedance statistics analysis. The statistical properties of 

the impedance matrix of a 2-port tetrahedral graph ensemble displays many properties 

consistent with random matrix theory.  However, a non-universal feature is observed for the 

impedance statistics.  Numerical simulations of similar graphs show very similar non-

universal statistical properties.  It is argued that because of resonances of the bonds between 

nodes in the finite-size and small quantum graphs there will be non-universal results.  

In addition, I have investigated some other calculations or models related to the 

Random Coupling Model. For example, the comparison between the RCM and the Power 

Balance Method, the calculations of the K matrix and the RCM. I hope these new ‘little’ 

things can help us in the future studies. 

5.2 Future Work 

For the future work, the first goal is to further study the non-universal behavior and 

find a very robust and systematic theory or explanation for it. Right now, we are doing the 

simulations in the CST microwave studio to show the eigen-modes for a closed microwave 

network. We are hoping to see that the eigen-modes will have large amplitude at different 

locations with different quality factor. The expectation is that the eigen-modes have stronger 
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weight near the coupling ports will have lower quality factor than the eigen-modes with 

weight around other locations on the networks.  

The next step is to set up a process to apply the RCM to numerically calculate the 

properties of the wave propagations in a complicated system. The aim is to make this model 

more sophisticated than the existing models based on traditional EM field treatments. 
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