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High quantum efficiency (QE) photocathodes are useful for many accelerator

applications requiring high brightness electron beams, but suffer from short oper-

ational lifetime due to QE decay. For most photocathodes, the decrease in QE

is primarily attributed to the loss of a cesium layer at the photocathode surface

during operation. The development of robust, long life, high QE photoemitters is

critically needed for applications demanding high brightness electron sources. To

that end, a controlled porosity dispenser (CPD) photocathode is currently being

explored and developed to replace the cesium during operation and increase photo-

cathode lifetime. A theoretical model of cesium resupply, diffusion, and evaporation

on the surface of a sintered wire CPD photocathode is developed to understand and

optimize the performance of future controlled porosity photocathodes. For typical

activation temperatures within the range of 500K–750K, simulation found differ-

ences of less than 5% between the quantum efficiency (QE) maximum and minimum

over ideal homogenous surfaces. Simulations suggest more variation for real cases



to include real surface non uniformity. The evaporation of cesium from a tungsten

surface is modeled using an effective one-dimensional potential well representation

of the binding energy. The model accounts for both local and global interactions

of cesium with the surface metal as well as with other cesium atoms. The theory

is compared with the data of Taylor and Langmuir comparing evaporation rates to

sub-monolayer surface coverage of cesium, gives good agreement, and reproduces

the nonlinear behavior of evaporation with varying coverage and temperature.
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Chapter 1

Introduction

Free Electron Lasers (FELs) are light sources that emit coherent radiation

by passing a relativistic beam of electrons through a series of magnets called an

“undulator” [43]. In order to reduce space charge induced effects such as beam

breakup [56, 42, 9], radio frequency (rf) electric fields are typically used [28] to

quickly accelerate the electron beam to relativistic speeds. Accelerators that employ

rf fields to accelerate charged particles are called rf linear accelerators (rf-linacs).

The peak rf field gradients inside these accelerating structures can be as high as

several hundred MV/m [9, 40]. Within the rf field cavities, the electric fields oscillate

with frequencies on the order of a GHz. For the half rf period corresponding to

acceleration in the forward direction, only a few degrees of phase (typically a few

picoseconds) around the maximum field amplitude do the electrons get optimally

accelerated. Therefore, the electron beam going into the rf cavities needs to be

in the form of a pulse train of electron bunches, with each bunch matched to the

correct phase and length necessary to be optimally accelerated by the rf fields.

For this reason, laser switched photocathodes are electron sources suitable for

direct injection into rf linacs because they can be switched on and off very fast by

pulsing the drive laser. In photoemission, incident photons from the drive laser excite

the electrons near the surface of the material to be emitted. The rapid switching
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from the drive laser enables photocathodes to emit short bunches of electrons at

frequencies equal to or at a subharmonic of the frequencies of the rf-fields.

For photocathodes, the ratio of the number of electrons emitted per incident

photon is called the quantum efficiency, or QE. Higher QE results in higher charge

per bunch emitted from the photocathode. A high QE (≥ 10%) photocathode is

desirable for high peak and high average current accelerator applications involving

electron beams, such as but not limited to future high performance FELs [24].

A.H. Sommer summarized the development of photocathodes from 1930 to

1980 [50]:

Basic science contributed only one important rule in the search for

new cathodes. This rule states that whatever cathode material synthe-

sized, the photoemissive performance is enhanced by the incorporation

of cesium. (A.H. Sommer 1982)

The presence of cesium (Cs) serves to lower the electron binding energy near the

surface of the material, greatly enhancing emission [55]. For the purposes of this

thesis, the term “workfunction” is synonymous with the barrier height in the absence

of an applied field for cesium on metal. Workfunction lowering by sub-monolayer

coverages of cesium on the surface has been treated in detail by Gyftopoulos and

Levine [16].

Fig 1.1 shows a graph of the QE vs lifetime of some common photocathodes

[36]. As shown in Fig 1.1, all high QE photocathodes have Cs in their chemical

formula. From the graph, there is a noticeable trend between higher QE and lower

2



Figure 1.1: Quantum efficiency (y-axis) vs 1/e lifetime for some common
photocathode materials. Notice all high efficiency photocathodes have Cs in their

formula [36].

photocathode lifetime. This downward trend is one of the primary challenges lim-

iting modern high QE photocathodes. For many applications including FELs, the

short lifetime greatly limits the photocathodes usefulness and reliability.

The reason for this decrease in lifetime lies in the continuous loss of Cs atoms

at the surface during operation, causing QE to drop quickly [39]. The thin layer of

Cs atoms at the cathode surface is very easily lost to evaporation or contamination

during operation. The technology gap for a high QE and long lifetime photocath-

ode is clearly seen from Fig 1.1. In order for photocathodes to remain useful for

3



future high brightness electron beam applications such as FELs, novel techniques

need to be developed to make the Cs layer on the surface robust to evaporation and

contamination in the harsh operating environment of an rf photoinjector. The pro-

posed method to accomplish this borrows an idea from another cathode technology,

thermionic barium (Ba) dispenser cathodes, where the Ba at the surface is replaced

in-situ from a Ba reservoir within the bulk cathode material [23]. The research

presented in this dissertation seeks to fill the technology gap shown in Fig 1.1 by

the modeling and design of a controlled porosity dispenser (CPD) photocathode to

dispense and replace lost Cs instead of Ba, thereby extending photocathode lifetime.

1.1 Historical Background of CPDs

Experiments at the University of Maryland College Park have shown that

recessiating the surface of Cs-based photocathodes can indeed restore QE back up

to the original value [38]. The experiments support the claim that if one is able

engineer photocathodes to replace lost cesium on the surface during operation, the

lifetime could be greatly extended [33]. A sought after solution to fill the technology

gap has been to replace the lost cesium in-situ through a controlled periodic array

of pores on the cathode surface leading down to a cesium reservoir beneath [37].

A dispenser with a periodic array of pores leading from the reservoir to the

surface is known as a controlled porosity dispenser (CPD) cathode. To allow for

greater reproducibility, controlled resupply, and uniformity in emission on the sur-

face, a CPD photocathode is desired. CPD cathodes have been previously studied

4
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rapid reactivation in poisoning environments. Fig. 13 
shows an example of a slotted CPD cathode surface made 
at the Hughes Electron Dynamics Division. The slotted 
pores for dispensing were fabricated with a laser drilling 
technique. Slots are about 5-7 pm wide and 100 pm long. 
The large grooves were fabricated in the structure to pro- 
vide nonemitting regions which would be in registry with 
a control grid electrode. 

Although the CPD approach has significant advantages 
for improving cathode reproducibility and performance, 
at present the difficulty of fabricating it in a batch pro- 
cessing mode (especially for concave surfaces) limits its 
availability and consequent usefulness. However, antici- 
pating that methods will become available to enable its 
efficient fabrication, this type of cathode structure prob- 
ably has the greatest potential for future improvement of 
dispenser cathodes. 
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V.  SCANDATE CATHODES 
Emitters referred to as scandate cathodes have been un- 

der study for a number of years. However, until recently 
their performance has not been very stable or reproduci- 
ble. A recent version developed by Philips Research Lab- 
oratories (Eindhoven, the Netherlands) [ 161-[ 181 has 
demonstrated consistently high emission densities at low 
temperatures for several thousand hours in diode tests. 
The basic structure of this cathode is shown in Fig. 14. 
The cathode is built on the standard W matrix structure, 
but the emitting surface is composed of a thinner plug or 
“top layer” of W mixed with Sc203 ( - 5  percent by 
weight). After sintering the top plug onto the main W 
matrix, the entire matrix is impregnated with 
BaO : CaO : A1203, usually the 4 : 1 : 1 ratio. Stable emis- 
sion densities of 100 A/cm2 at 1225 K for thousands of 
hours have been reported [ 181. 

Present limitations of this cathode are nonuniform 
emission, difficulty of reproducibility, and emission deg- 
radation under back-ion bombardment. This latter effect 
would make it unsuitable for dc or high-duty operation. 
An emission map illustrating the nonuniformity is shown 
in Fig. 15. The emission mapping apparatus is the same 
as used for the M cathode data. The data of the map in 

Figure 1.3: Cross section schematic of thermionic CPD cathode prototype first
developed by Falce and Thomas.
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Figure 6 i s  a schematic  representation  of 
the  cathode  construction. The reservoir   behind 
t h e   f o i l  is  BaO which is backed by a tungsten 
matrix  cathode.  Tantalum  can  serve  as  the 
back-up material   instead  of  the  tungsten 
impregnated  cathode.  Figure 7 shows two emission 
micrographs  of  the  cathode  operating at  two 
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Figure 1.2: Cross section schematic of thermionic CPD cathode prototype first
developed by Falce and Thomas. Fig obtained from [12]

for the application of barium based thermionic dispenser cathode. This section gives

a short background of the previous advancements in CPD technology and put the

present dissertation into perspective.

An iridium-barium oxide controlled porosity dispenser(CPD) cathode was first

investigated and developed by L.R. Falce and R.E. Thomas at the Naval Research

Laboratory in 1978 [12]. The cathode uses an iridium coated molybdenum foil con-

taining an array of holes 0.001” in diameter formed by photolithography techniques.

A schematic of their CPD design is shown in figure 1.2. The periodic array of holes

allows for BaO to migrate to the surface from a reservoir behind the controlled

porosity iridium foil. At the time, the design for a CPD thermionic cathode was a

novel concept and promised increased emission uniformity, controllable rejuvenation

rate of Ba or BaO, as well as much better performance reproducibility than conven-
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rapid reactivation in poisoning environments. Fig. 13 
shows an example of a slotted CPD cathode surface made 
at the Hughes Electron Dynamics Division. The slotted 
pores for dispensing were fabricated with a laser drilling 
technique. Slots are about 5-7 pm wide and 100 pm long. 
The large grooves were fabricated in the structure to pro- 
vide nonemitting regions which would be in registry with 
a control grid electrode. 

Although the CPD approach has significant advantages 
for improving cathode reproducibility and performance, 
at present the difficulty of fabricating it in a batch pro- 
cessing mode (especially for concave surfaces) limits its 
availability and consequent usefulness. However, antici- 
pating that methods will become available to enable its 
efficient fabrication, this type of cathode structure prob- 
ably has the greatest potential for future improvement of 
dispenser cathodes. 
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Fig. 12. Barium diffusion from circular pore and slot geometry 

V.  SCANDATE CATHODES 
Emitters referred to as scandate cathodes have been un- 

der study for a number of years. However, until recently 
their performance has not been very stable or reproduci- 
ble. A recent version developed by Philips Research Lab- 
oratories (Eindhoven, the Netherlands) [ 161-[ 181 has 
demonstrated consistently high emission densities at low 
temperatures for several thousand hours in diode tests. 
The basic structure of this cathode is shown in Fig. 14. 
The cathode is built on the standard W matrix structure, 
but the emitting surface is composed of a thinner plug or 
“top layer” of W mixed with Sc203 ( - 5  percent by 
weight). After sintering the top plug onto the main W 
matrix, the entire matrix is impregnated with 
BaO : CaO : A1203, usually the 4 : 1 : 1 ratio. Stable emis- 
sion densities of 100 A/cm2 at 1225 K for thousands of 
hours have been reported [ 181. 

Present limitations of this cathode are nonuniform 
emission, difficulty of reproducibility, and emission deg- 
radation under back-ion bombardment. This latter effect 
would make it unsuitable for dc or high-duty operation. 
An emission map illustrating the nonuniformity is shown 
in Fig. 15. The emission mapping apparatus is the same 
as used for the M cathode data. The data of the map in 
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Present limitations of this cathode are nonuniform 
emission, difficulty of reproducibility, and emission deg- 
radation under back-ion bombardment. This latter effect 
would make it unsuitable for dc or high-duty operation. 
An emission map illustrating the nonuniformity is shown 
in Fig. 15. The emission mapping apparatus is the same 
as used for the M cathode data. The data of the map in 
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Figure 1.3: Comparison of emission images [54]. (a) Type-B cathode at 0.6 A/cm2

(b) CPD cathode at 0.7 A/cm2

tional impregnated dispenser cathodes. Fig 1.3 compares the emission uniformity

between a CPD and a type B impregnated thermionic cathode operating with sim-

ilar currents [54]. As shown in the figure, a CPD dispenser cathode emits current

considerably more uniformly than traditional impregnated cathodes.

Although the CPD concept developed in the 1980s was novel and offered great

potential in improving dispenser cathodes, it was too difficult and expensive to

fabricate in batch processing mode. At the time, the array of micron diameter

holes either had to be laser drilled or etched. Both of the two techniques were very

inefficient as well as too costly for CPDs to be useful at the time [54]. Because of

this, further development of CPDs was abandoned for a number of years.

It was not until 2005, that Lawrence Ives et al. [20] developed a novel and inex-

pensive process for practically manufacturing CPD tungsten cathodes. Their tech-

nique was based on an experiment performed in 1957 by Alexander and Balluffi[1].

6
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Fig. 6. Elimination of voids in regions of trapped grain boundaries in copper
sintered 408 h at 1075 C. X 80 [16].

Fig. 7. Void size and rugosity coefficient for sintered copper wires as a
function of time and temperature. Arrows indicated approximate times when
grain growth occurred.

can be controlled by the sintering temperature. This has implica-
tions for cathode manufacture, since it provides an independent
mechanism for controlling the pore size and resulting barium
diffusion rate.

Alexander and Balluffi provide a thorough mathematical
treatment of the relationship between time, temperature, and
material properties on void characteristics, including com-
parison with experimental measurements for sintered copper
wires. Interested readers are referred to their publication for
additional details.

III. EXPERIMENTAL SINTERING OF TUNGSTEN WIRES

An experiment was devised to extend the work of Alexander
and Balluffi to tungsten to verify that structures appropriate for
CPD cathodes could be obtained. The experiment consisted of
sintering and evaluating 20- m-diameter tungsten wire wound
on a “rectangular’ molybdenum spool. A photograph of the wire
wound spool is shown in Fig. 8. The spool produced four rectan-
gular tungsten sections that were 18 13 3 mm. The wire was
wound parallel to the 18-mm side; consequently, a cross section
of the wires was 13 3 mm with voids that penetrated through
the 18-mm length.

The structure was sintered at 2075 C for 75 min. The sec-
tions were removed from the spool at the corners and cross
sectioned using tungsten electro discharge machining. The face
was lapped and examined using a scanning electron microscope
(SEM). Fig. 9 shows an SEM photo of a region of the cross

Fig. 8. Molybdenum spool with 10 000 m of 20- m-diameter tungsten wire
and one of four rectangular sections produced. The wires/voids are parallel to
the long dimension of the section. The grid shown is 0.25-in on each side.

Fig. 9. SEM photograph of 20- m-diameter tungsten wires sintered at 2075
C for 75 min. The periodicity is approximately 20 m with extent of the pores

being approximately 4 m .

section. Based on the images in Fig. 5, it would appear that
this represents an intermediate stage in the sintering process

Authorized licensed use limited to: NRL. Downloaded on March 10,2010 at 17:28:08 EST from IEEE Xplore.  Restrictions apply. 

Figure 1.4: SEM image of a CPD surface formed by stacking and sintering 20
micron diameter tungsten EDM wire [19].

The process consists of sintering together micron diameter tungsten wires under

high heat around 2000 C◦. When the sintering is performed over time, a hexagonal

pattern of pores is formed throughout the tungsten material. Figure 1.4 shown a

SEM image of a CPD surface formed by sintering 20 micron diameter tungsten wire

at 2075 C◦ for 75 min. This new method of fabricating CPD arrays from sintered

tungsten wire is attractive because it is cheap and unlike alternative methods such

as laser drilling or focused ion beam drilling, scales well to large numbers of pores.

1.2 Present Challenges for Developing CPD Photocathodes and Scope

of the Dissertation

While CPDs have initially been developed as thermionic dispenser cathodes, a

new area of research is to design CPDs as dispenser photocathodes. The techniques
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developed by Lawrence Ives et al. [19] are readily adaptable for the fabrication of

sintered wire CPD photocathodes. However, because of the novel nature of the tech-

nology, there is a lack of a physical model designed to simulate CPD photocathodes

during operation. Such a model would not only serve as an efficient diagnostics tool

for the future design of CPD photocathodes, but also greatly aid in efficient opti-

mization of minimum CPD operating temperatures [44]. With that point, there are

three major physical processes that happen for CPDs which need to be understood

and modeled simultaneously:

1. Cesium flow and resupply from the reservoir through the pores onto the surface

2. Cesium diffusion across the surface from the pores

3. Cesium evaporation off the CPD pores and surface during operation

Such is the scope of this present dissertation. The next chapter will give a roadmap

for modeling each of these processes on the surface of CPD photocathodes.

1.3 Chapter Conclusions

• Laser switched photocathodes are the electron source of choice for producing

short pulse, high peak current electron beams required by many applications,

of which the most demanding are next generation Free Electron Lasers (FELs)

[10].

• There is currently a technology gap for a photocathode that is both robust

and efficient.

8



• The tradeoff in lifetime and quantum efficiency is due to the loss of cesium at

the surface.

• Controlled Porosity Dispenser Photocathodes (CPDs) promise to replace the

cesium as it’s being lost, so there is a significantly improved tradeoff between

lifetime and quantum efficiency.

• Modeling the resupply, diffusion, and cesium loss through evaporation of the

surface of a CPD is needed to predict its performance during operation as well

as optimize design parameters.

9



Chapter 2

Roadmap to Modeling Controlled Porosity Dispenser Photocathode

Performance

Beginning with the end in mind, the ultimate goal in this study is to simulate

the surface of a controlled porosity dispenser photocathode (CPD) during operation.

The purpose of this chapter is to outline the approach used to model the surface of a

CPD as well as introduce the remaining chapters in this dissertation. The equation

used to model the surface is presented below:

∂Θ

∂t
= ∇ · [D(T )∇Θ]− Fevap (2.1)

Θ(Ω) = Θpore, Ω ∈ pore edges

Eq (2.1) captures the three major processes that occur simultaneously at the CPD

surface. The first is the flow of cesium through the source pores onto the surface.

This is included by fixing the the pore boundaries, Ω, to be at a constant equilib-

rium coverage Θpore. The second is the spreading of the cesium across the surface

via diffusion. The diffusion term ∇ · [D(T )∇Θ] takes into account temperature de-

pendent diffusivities for cesium on the cathode surface. The third is the continued

loss of cesium at the surface due to evaporation. This process is accounted for by

evaporation loss term Fevap. In the end, these three processes are integrated into one

equation which governs the evolution of the cesium coverage across the surface of a

CPD. While Eq (2.1) may look deceptively simple, solving it to produce a realistic
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predictive model of the CPD is nontrivial and will be the focus of this dissertation.

The next couple of sections will give a breakdown overview of the remaining chapters

in this dissertation. The last two sections in this chapter will discuss some general

assumptions made by the modeling followed by chapter conclusions.

2.1 Cesium Migration to the Surface

The first process to be covered in chapter 3 is the diffusion and cesium flow

through the pores from the reservoir beneath the CPD to the surface. Preceding the

cesium diffusion and evaporation at the CPD surface, the atoms need to get from

the reservoir to the surface in the first place. A model for cesium transport along

the walls of the pores up to the surface is presented in chapter 3 and will serve to

determine the boundary condition Θpore in Eq (2.1).

During rejuvenation, the reservoir is heated and cesium vapor is released in-

side. Since gas flows down a pressure gradient, there will be a net flow of cesium

atoms from the reservoir with a high partial vapor pressure of cesium, down each

source tube towards the surface of the cathode which is maintained in vacuum. Fur-

thermore, there will also be a net diffusion of cesium along the pore walls towards

the surface. The model of cesium transport through the pores accounts for three

physical processes: 1) the diffusion of cesium along the walls of the pore, 2) Knudsen

flow transport and flux onto the pore walls, and 3) the evaporation loss of cesium

along the pore walls during rejuvenation. These three processes work together to

maintain an equilibrium coverage, Θpore, at the pore boundaries on the surface.
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The last section in chapter 3 presents a model of CPD lifetime. The equations

governing total cesium flow out of each pore are derived. Furthermore, comparisons

between pores having a circular cross section to those having a triangular cross sec-

tion are made. It is argued that difference between the two geometries are negligible.

Therefore, the model is justified into approximating the triangular-like pores in Fig

1.4 as cylindrical.

2.2 Cesium Spreading Across the Surface

Chapter 4 will focus on modeling the spreading out of the cesium as it moves

from a higher concentration to lower concentration across the surface, commonly

referred to as diffusion. Diffusion is described by Fick’s Law which simply states

that a collection of atoms goes from higher concentration to lower concentration on

average. In order to numerically solve 2D diffusion efficiently for the CPD geometry

in question, numerical techniques are developed for the diffusion operator on a tri-

angular net lattice grid mesh. A triangular grid faithfully reproduces the geometry

of the CPD pore arrangement but additionally has greater accuracy than a square

grid in modeling diffusion.

2.3 Cesium Leaving the Surface

Modeling cesium evaporation, the third physical process which occurs on a

CPD surface, is covered in chapter 5. Cesium loss from cathode surfaces, if not

replaced, is the main reason why photocathodes lose QE over time as explained

12



in the first chapter. For CPDs, the evaporation will work in conjunction with the

resupply of cesium from the pores as well as diffusion to maintain an equilibrium

coverage of cesium Θ averaged across the surface. A first-principles analytic model

for cesium evaporation off of tungsten was developed. The model takes into account

cesium nearest neighbor interactions on the surface as well as captures the nonlinear

coverage and temperature dependence of Fevap.

2.4 Results

Chapter 6 presents the results obtained for modeling the surface of a CPD

tungsten photocathode using Eq (2.1). Results for modeling the cesium migration

along the pore walls during rejuvenation as well as the model for cesium evaporation

are presented. The methods used for modeling cesium resupply (chapter 3), diffusion

(chapter 4), and evaporation (chapter 5) are all combined to yield a map of the

surface over time as the cathode is being rejuvenated. The QE is also calculated

from the cesium coverage. Different ideal and non ideal cases for a CPD surface

were simulated the results are compared. This completes the modeling for a CPD

photocathode.

2.5 Discussion

The CPD photocathode modeled in this dissertation is a cesiated tungsten

photocathode. There are several reasons why the cesium on tungsten is modeled.

First, tungsten-cesium is a widely studied system which can serve as a surrogate
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for many other materials. The model developed here is broadly applicable across a

range of alkali metal adsorbates and transition metal substrates. For examples of

prior work on Na, K, and Cs on W see [32]. Second, while high QE photocathodes

are usually complex multi-coating cesiated semiconductors [22], the binary cesium

on tungsten system provides a stepping stone to model more complicated systems.

A proof of principle study is first needed. Once the model has been proven for

simple systems, it can then be further modified to describe systems of higher com-

plexity or similar binary systems with alkali metal adsorbate and transition metal

substrates. Finally, note that the CPD photocathodes currently in the process of

being fabricated and tested are made from tungsten wires. As mentioned in the pre-

vious chapter, the method is adopted from the techniques developed by Lawrence

Ives et. al. for thermionic barium CPD cathodes [19]. Therefore, modeling the

cesium-tungsten binary system first allows for comparison with experiment.

There are some general simplifications that Eq (2.1) makes. First, cesium

atoms are lost not only through evaporation from the surface, but also through

contaminants from the vacuum environment. Ion back bombardment at high en-

ergies (high photo injector field strengths) also causes the surface to degrade and

get damaged over time. So the question becomes whether the lifetime is contami-

nation limited or evaporation limited. Eq (2.1) in this study assumes that lifetime

is evaporation limited.

Additional assumptions that are made specifically for modeling resupply (Chap-

ter 3), diffusion (Chapter 4), and evaporation (Chapter 5) are presented in their

corresponding chapters.
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2.6 Chapter Conclusions

• The ultimate goal in this study is to simulate the coverage of cesium on the

surface of a tungsten based controlled porosity dispenser photocathode (CPD).

The specific cathode is fabricated by stacking and sintering micron diameter

tungsten wires, described in Chapter 1 (Fig 1.4).

• The equation used to model the resupply and coverage of cesium across the

surface of a CPD during operation is given by Eq (2.1).

• Eq (2.1) accounts for the three physical processes that occur simultaneously

for a CPD: 1) Cesium resupply to the surface through the source pores. 2)

Cesium diffusion across the surface 3) Cesium loss through evaporation off the

surface.

• The model for cesium migration and resupply to the surface through the source

pores is presented in chapter 3.

• The numerical methods used to model cesium diffusion across the surface are

presented in chapter 4.

• The analytic model developed for cesium evaporation off the surface, which

accounts for the nonlinear dependence of evaporation on coverage and tem-

perature, is presented in chapter 5.

• Chapter 6 focuses on presenting the results of the modeling presented in chap-

ters 3-5.
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Chapter 3

Modeling Cesium Flow from the Reservoir to the Surface

During operation of the CPD, cesium will diffuse out from the reservoir,

through the pores and onto the surface; this is shown schematically in Fig 3.1.

As shown in Fig 3.1, there will be a cesium coverage Θpore maintained at the pore

boundaries on the surface. This chapter is focused on presenting the model to de-

termine Θpore in Eq (2.1). This boundary condition, when combined with diffusion

and evaporation in Eq (2.1), will model the cesium coverage profile and QE across

the surface of the CPD during operation. At the surface, Θpore is maintained by

1) total cesium flux onto the surface from within the pore, 2) diffusion of cesium

along the pore walls onto the cathode surface, and 3) evaporation of cesium off of

the surface, schematically shown in Fig 3.1.

This chapter is organized as follows: The first section introduces the main

equation used to model the flow of cesium along the walls of the pore from the

CPD reservoir to the surface. The equation combines Knudsen Flow, diffusion and

evaporation to model the coverage of cesium maintained down the length of the pore

walls at equilibrium. This yields the correct boundary condition Θpore used to model

the CPD surface. The next section give a more detailed derivation of the Knudsen

Flow flux equations [5, 6, 7, 8]. The last two sections discuss the assumptions of the

model as well as summarize the main points of the chapter.
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Figure 3.1: Diagramatic overview of modeling the cesium resupply rate the the
surface

3.1 Modeling Θpore

Let each pore be approximated as cylinder1. Fig 3.1 gives a schematic diagram

of Θpore as well as the three physical processes that occur inside the walls of each

pore: 1) the cesium flux onto the walls, 2) diffusion, and 3) evaporation off the pore

walls. From symmetry, there should be no azimuthal angular dependence for the

cesium density along the walls. Let ρ be the cesium density along the wall a distance

1Though from Fig 1.4 of the actual sintered wire CPD surface, the pores are actually triangular

in shape, it will later be shown that the difference between assuming a cylindrical pore versus a

triangular pore is negligible
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z down the pore, then the equation that models ρ and Θpore is given by:

∂ρ

∂t
= D

∂2ρ

∂z2
+

Pz√
2πmkBT

+ Jwz − F z
evap (3.1)

ρ(0) = ρ0 , ρ(L) = Θpore

In Eq (3.1), D is the diffusivity of cesium on tungsten, which will be further discussed

in Chapter 4. The incoming flux of cesium atoms due to the background cesium

vapor pressure at z, given by: Pz/
√

2πmkBT [29], where m is the mass of cesium, kB

is the Boltzmann constant and T is temperature 2. Jwz is the flux onto the pore wall

at z due to contributions from cesium evaporation throughout the entire length of

the pore [57], and F z
evap is the cesium evaporation rate at location z. The expression

for Jwz will be derived in the next section. The model for the cesium evaporation

rate F z
evap is presented in Chapter 5.

In Eq (3.1), the boundary condition at the reservoir, z = 0, is set to be ρ0.

ρ0 is the equilibrium coverage maintained by the tungsten surface in the presence

of cesium vapor in the reservoir with pressure P0. The other boundary condition

at z = L is Θpore. This connects Eq (3.1), which models cesium migration up the

pores from the reservoir, to Eq (2.1) which models the cesium across the surface.

Recall from Eq (2.1) that Θpore is the coverage maintained at the pore edges on the

surface.

The value of Θpore is not fixed, but is determined by the cesium migration

through the pore as well as across the surface. Therefore, Eq (2.1) and Eq (3.1)

work together to determine the coverage at the pore boundaries, Θpore. In order to

2In SI units, kB = 1.381× 10−23m2kgs−2K−1 and the mass of a cesium atom m = 132.9 amu
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step the equations forwards in time, the following relationship is needed:

ρ(L) = Θ(Ω) (3.2)

where Ω, the pore boundaries at the surface, was defined previously in Eq (2.1).

With Eq (3.2), the model can be stepped forwards in time as follows: for a

given initial Θ across the surface, Eq (2.1) is numerically stepped forwards in time

to yield Θ for the next time step. From Θ, the value of Θ(Ω) is obtained. The new

value of Θ(Ω) is then inputted as the boundary condition ρ(L) for Eq (3.1). Eq

(3.1) can then be stepped forwards in time to yield a new value of ρ(L), or Θpore.

At ρ(L), the value of the surface coverage at Θ(Ω + δz) will be used as the upwind

point to calculate the numerical second derivative in Eq (3.1). The new value of

Θpore is then inputted into Eq (2.1) and the process is repeated.

To numerically solve Eq (3.1), an implicit discretization in time was used.

Discretizing Eq (3.1) yields:

ρn+1,j − ρn,j
δt

=D
1

2

[(
∂2ρ

∂z2

)
n+1,j

+

(
∂2ρ

∂z2

)
n,j

]
+

Pz√
2πmkBT

+
1

2

[(
Jwz − F z

evap

)
n+1,j

+
(
Jwz − F z

evap

)
n,j

]
(3.3)

ρ(0) = ρ0 , ρ(L) = Θpore

where the “n” index represents the time discretization and “j” represents the spatial

discretization. The pressure profile Pz down the length of the pore is assumed to

not change over time. A solution for ρ at each time step is obtained by implicitly

using the average value of ρ for the nth and n + 1 time step. Eq (3.3) produces

a system of N nonlinear equations3 (N is the number of grid points used) where

3the equations are nonlinear because the evaporation rate F z
evap and flux term Jw

z both have a
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the coverage ρ for the next time step n+ 1 is obtained by solving the system. The

second derivatives are evaluated using a second order central differencing method,

given by: (
∂2ρ

∂z2

)
n,j

=
ρn,j−1 − 2ρn,j + ρn,j+1

δz2
+O(δz2) (3.4)

where δz is the spatial discretization of the pore length.

The time step δt was chosen to be the smaller one of either the characteristic

time of diffusion (δtdiff ), or of evaporation (δtevap). The two are given by:

δtdiff =
δz2

D
(3.5)

δtevap =
ρ0

F z
evap

where the characteristic evaporation time δtevap was calculated assuming that ρ0 is

1% of a full monolayer of cesium in atoms per area (since F z
evap is in atoms per area

per second). Choosing ρ0 to be only 1% of a full monolayer ensures that δtevap would

not be too large and that the δt at each time step will be chosen small enough to

allow proper convergence.

In order to test convergence, the model was run using two cases. The first case

used a discretization that spatially divided the pore length from 0 to L using one

thousand grid spacings. The second assumed a much coarser discretization and only

used one hundred grid spacings for the same pore length. The results obtained for

the two cases match very closely for large times, so convergence to a unique solution

is shown.

nonlinear dependence on the cesium coverage ρ.
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3.2 Flux Due to Pore Walls Jwz

 R

z

ẑ

R̂

 ̂

(R, 1, z)

(R, 2, zw)

d⌦

✓

dAz

dAw dAz

dAw

Figure 3.2: Schematic diagram of flux onto the differential wall element dAz due to
evaporation from dAw

This section derives the expression for Jwz , the net flux of cesium down the

pore due to evaporation off the walls in Eq (3.1). Figure ?? gives a schematic rep-

resentation of the flux onto the differential area element dAz, a distance z down the

pore, due to evaporation from dAw. Let J be the flux onto dAz due to evaporation

from dAw. J can then be written as:

JdAz = Fevapf(θ)dΩdAw (3.6)

where dΩ is the solid angle subtended by dAz from dAw. Fevapf(θ) is the total
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evaporation flux off of dAw multiplied by a distribution function f(θ), with θ being

the angle measured from the normal. The total flux onto dAz can be obtained by

integrating Eq (3.6) over the entire tube. To set up the integration, it is convenient

to work in cylindrical coordinates. From Fig ??, let the location of dAz and dAw

be given by ~rz and ~rw respectively:

~rz = R cosψ1x̂ +R sinψ1ŷ + zẑ (3.7)

~rw = R cosψ2x̂ +R sinψ2ŷ + zwẑ

The density of cesium within the tube is low enough such that the mean free path

of the cesium gas is much much longer than the tube diameter, hence that cesium-

cesium collisions may be safely ignored. Assuming that cesium atoms travel in

straight line trajectories upon evaporation off dAw towards dAz, their trajectory is

given by:

~l = (R cosψ1 −R cosψ2) x̂ + (R sinψ1 −R sinψ2) ŷ + (z − zw) ẑ (3.8)

With ~l determined, the solid angle dΩ subtended by the area dAz in Fig ?? can be

expressed as:

dΩ =
l̂ · ~dAz
l2

(3.9)

The vector ~dAz and ~dAw is always normal to the surface. From Fig ??, ~dAz and

~dAw in cylindrical coordinates are given by:

~dAz =−Rdψ1dzz r̂ (3.10)

~dAw =−Rdψ2dzwr̂
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It will be assumed that the cesium atoms evaporating off the walls follow a cos θ

distribution, where θ is the angle to the normal. This approximation is well used in

the Knudsen flow analysis [45]. With this assumption, f(θ) in Eq (3.6) is given by:

f(θ) =
cos θ

π
≡ −l̂ · r̂

π
(3.11)

Combining Eq (3.7)–Eq (3.11), Eq (3.6) can be integrated over dAw to give an

expression for the total flux onto dAz from the entire length of the pore:

Jwz =

∫ L

0

∫ 2π

0

Fevap · (R−R cosψ)2

π [2R2 + (z − zw)2 − 2R2 cosψ]2
Rdψdzw (3.12)

where the following substitution was made for the angular integration:

ψ ≡ ψ1 − ψ2 (3.13)

Upon performing the angular integration over 2π, the expression given previously

for Jwz by Eqs (3.15) – (3.16) is reproduced:

Jwz =

∫ L

0

F zw
evap

2R

1−

|z−zw|√
2R

(
3 +

(
z−zw√

2R

)2
)

(
2 +

(
z−zw√

2R

)2
)3/2

 dzw (3.14)

The final expression for Jwz can be written as:

Jwz =

∫ z/
√

2R

(z−L)/
√

2R

√
2F u

evap

2

(
1− u(3 + u2)

(2 + u2)3/2

)
du (3.15)

The following substitution was made for the integration variable zw in Eq (3.14)

over the entire pore from 0 to L:

u ≡ |z − zw|√
2R

(3.16)

where R is the radius of the pore, and F u
evap is the cesium evaporation rate at u.
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To evaluate Eq (3.15), the evaporation flux F zw
evap down the length of the pore

must be known. For the CPD in question, F zw
evap is simply the evaporation rate of

for cesium off of tungsten, which will be discussed and modeled in detail in Chapter

5. Suffice it to say for now that F zw
evap at location zw has a nonlinear dependence on

the temperature and coverage of cesium at zw.

Before going on however, it is useful for completeness to examine the behavior

of Eq (3.15) to see if it is indeed consistent. The first thing to verify is whether or

not Eq (3.15) converges to the correct limits for the case where the length of the

pore goes to infinity. For an infinitely long pore with uniform coverage, the flux

onto the pore wall at any point must equal the evaporation off the wall. For the

limit which L→∞, it can be shown that:

lim
L→∞

∫ L

0

1

2R

1−

zw√
2R

(
3 +

(
zw√
2R

)2
)

(
2 +

(
zw√
2R

)2
)3/2

 dzw =
1

2
(3.17)

For an infinitely long pore with uniform coverage, the evaporation flux Fevap should

be equal to the flux onto the wall Jwz . With uniform coverage, Fevap is constant

throughout the entire pore and the following result follows from Eq (3.17):

Jwz =

∫ ∞
−∞

Fevap
2R

1−

|z−zw|√
2R

(
3 +

(
z−zw√

2R

)2
)

(
2 +

(
z−zw√

2R

)2
)3/2

 dzw = Fevap (3.18)

3.3 Assumptions of the model

In applying Eq (3.1) to calculate the cesium resupply rate to the surface, the

pressure profile through the pore Pz needs to be known. In theory, this can be calcu-

lated from first principles but it is not entirely obvious how it can be done. Because
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of the lack of data as well as theory to determine Pz, the model simply assumes

the simplest possible pressure profile that yields the correct boundary values. At

the surface of the cathode or where z = L, the pressure is assumed to be close to

zero since its vacuum. At the reservoir end of the pore or z = 0, the pressure is

assumed to be simply the partial vapor pressure of cesium within the reservoir P0.

The pressure profile throughout the pore assuming that the reservoir maintains a

partial cesium vapor pressure of P0 is taken to be:

Pz = P0

(
1− z

L

)
(3.19)

This pressure profile is the usual approximation used in the Knudsen analysis [5, 6,

7].

The second assumption made by the model was that the mean free path of

cesium atoms is greater than or on the same order as the characteristic size of the

pores, such that cesium-cesium collisions can be ignored. This assumption can be

verified by treating the cesium in the reservoir as an ideal gas, and using the equation

for the mean free path given by:

l =
kBT

π
√

2d2P0

(3.20)

where kB is Boltzmann’s constant, T is temperature, d is the diameter of the cesium

atom, and P0 is the pressure of cesium in the reservoir. Assuming that the pressure

of cesium in the reservoir is equal to the vapor pressure of cesium over bulk cesium,

then the mean free path for a temperature range from 400K−700K is about 0.02−

1.8 × 10−6 meters. This is greater than or equal to the radius of the pores, which
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is only on the order of several microns. Therefore, the assumption about the mean

free path for the temperatures of interest holds.

3.4 Modeling CPD Lifetime

Apart from the model for Θpore and cesium migration down the walls (Eq

(3.1)), the total cesium flux through each pore can be modeled. This section outlines

the model for the total cesium flux passing through a pore with given cross sectional

area. This model is the same model used in the Knudsen flow literature [5, 6,

7]. Various pore cross-sectional geometries are considered and compared with the

cylindrical pore approximation assumed for modeling the CPD. It will be shown

that the difference between assuming a cylindrical pore versus a triangular pore is

small.

Figure 3.3 gives a schematic representation of the flux passing through a dif-

ferential cross section dA due to evaporation from dS. Let J be the flux passing

through dA due to evaporation from dS. J can then be written as:

JdA = Fwf(θ)dΩdS (3.21)

where Fw is the flux coming off of dS, f(θ) is the distribution function given by

Eq (3.11), and dΩ is the solid angle subtended by dA from dS. From Fig 3.3, the

expressions for f(θ), dΩ, dA and dS can be written in terms of the variables r, l,

w, and ψ from purely geometrical arguments alone. From Fig 3.3, the expression

for f(θ) is given by:

f(θ) =
cos θ

π
=
r cosψ

πl
(3.22)
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Figure 3.3: Schematic diagram of flux through the differential area element dA
due to evaporation from dS

The expression for the differential solid angle dΩ can be obtained by writing the

area vector for ~dA as rdrdψn̂ and convincing oneself that l̂·n̂ = w/l. The expression

for dΩ is then given as:

dΩ =
l̂ · n̂
l2

rdrdψ =
wrdrdψ

l3
(3.23)

The last piece of Eq (3.21), dS, is simply the differential wall element and from Fig

3.3, can be written as:

dS = 2πRdw (3.24)

Let Q be the total number of cesium atoms per unit time passing through the cross

sectional area A. Q can be calculated by integrating Eq (3.21) throughout the

entire pore. Inserting the expressions for f(θ), dΩ, dA and dS given by equations
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Eq (3.22) - Eq (3.24), Q can be calculated from the following expression:

Q =

∫ 2R cosψ

0

r2dr

∫ π/2

−π/2
cosψdψ

∫ L

0

wFw

πl4
2πRdw (3.25)

where the limits of integration over dr goes from 0 to 2R cosψ, which is the upper

limit describing the edge of the circle bounding the area A. To get Fw, the theory

continues to assume from Eq (3.19) that the pressure profile down the pore is linear,

with the partial cesium vapor pressure at the reservoir to be P0 and the pressure at

the CPD surface to be vacuum. The flux off the pore walls Fw is given by:

Fw =
P0w

L
√

2πmkBT
(3.26)

where the length parameter w is has boundary conditions such that w = 0 is the

surface side of the pore and w = L is the reservoir side. Inserting Eq (3.26) into Eq

(3.25) and assuming that L/R >> 1, integrating out the integral over dw yields the

following:

Q =
P02πR

4L
√

2πmkBT

∫ 2R cosψ

0

rdr

∫ π/2

−π/2
cosψdψ (3.27)

It is useful when comparing to other pore cross-sectional geometries to rewrite Eq

(3.27) in terms of a dimensionless tube cross section geometry factor W , given by

[52]:

Q =
P0

4
√

2πmkBT
AW (3.28)

where A is the cross sectional area of the pore tube and W is defined as:

W ≡ PA
L
〈cosψ〉A (3.29)

Here, PA is the perimeter of the cross sectional area A and 〈cosψ〉A is an averaged

value independent of pore area and depends only on shape. The expression for
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A ψ

dSA
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Figure 3.4: Circular cross section where the shape factor 〈cosψ〉A is independent
with respect to location around the perimeter

〈cosψ〉A is given below [52]:

〈cosψ〉A =
1

A

∫ ∫
A

cosψdA (3.30)

Observe that 〈cosψ〉A is an average value of a dimensionless quantity – it is a pure

number =< 1 because cosψ =< 1. So the shape of the tube only factors into the

total flux Q by appending it with a coefficient of order unity.

3.4.1 Comparison between Circular and Noncircular Pores

From Eq (3.28), it becomes straightforward to make comparisons of how the

total cesium flow through the pores will differ between various pore geometries.

Specifically, the value of 〈cosψ〉A in Eq (3.30) will change for different shape pores.

For a cylindrical pore cross sections, the value of 〈cosψ〉A is the same for all locations

around the area A. This is simply a result of azimuthal symmetry as shown in Fig
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Figure 3.5: The shape factor 〈cosψ〉A for a triangular pore is dependent with
respect to location but is bounded by the two cases shown above.

3.4. 〈cosψ〉A calculated for the cylindrical pore is [52]:

〈cosψ〉A =

∫ 2R cosψ

0
rdr

∫ π/2
−π/2 cosψdψ∫ 2R cosψ

0
rdr

∫ π/2
−π/2 dψ

=
8

3π
≈ 0.8488 (3.31)

For non azimuthally-symmetric cases such as a triangular pore with all sides the

same length, the value of 〈cosψ〉A would not be independent of location around

the pore area. However, there are two locations for which the integrals giving

〈cosψ〉A can be calculated analytically. These locations are shown in Fig 3.5. For

convenience, the height of the triangular areas are set to unity in Fig 3.5. For the

first case labeled as a in Fig 3.5, the integral giving 〈cosψ〉A is given by:

〈cosψ〉A = 2
√

3

∫ 1/
√

3

0

dx

∫ 1−
√

3x

0

ydy√
x2 + y2

≈ 0.721 (3.32)

For the second case labeled as b in Fig 3.5, the integral giving 〈cosψ〉A is given by:

〈cosψ〉A =
6
√

3

5

∫ 1/
√

3

0

dx

∫ 1

x/
√

3

ydy√
x2 + y2

≈ 0.864 (3.33)

30



From a limiting cases arguments, all values of 〈cosψ〉A for the triangular pore must

be bounded between Eq (3.32) and Eq (3.33). This gives an average value of about

0.8 for the shape dependent area factor in Eq (3.30). When compared with the

cylindrical case, the difference is only about 5%. Therefore, even if the actual

sintered wire CPD pores are closer to triangular in shape (Fig 1.4), and even if the

pores are non-uniform (where some are more circularly necked during sintering), the

error involved in assuming that the pores are cylindrical for modeling purposes is

negligible.

3.5 Chapter Conclusions

• The cesium resupply rate for a CPD is modeled by setting the value of cesium

coverage at the pore boundaries on the surface to be Θpore in Eq (2.1).

• A model for cesium transport along the walls of the pores up to the surface is

developed and presented in this chapter to determine the boundary condition

Θpore in Eq (2.1).

• The model takes into account the cesium diffusion, evaporation, and flux on

the walls of the pore during rejuvenation.

• The model assumes that the cesium vapor pressure varies linearly from the

reservoir up to the surface of the CPD photocathode during operation.

• The difference between assuming a cylindrical pore geometry and a triangular

pore geometry is small.
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Chapter 4

Diffusion

This chapter will focus mainly on the numerical methods that are used to

model diffusion across the cathode surface. Diffusion is what governs how fast and

how smoothly the cesium atoms will spread across the surface as they come up

through the source pores. Because the pores on a CPD are arranged in a periodic

array, specific methods for solving the diffusion equation unique to the periodic

arrangement and geometry of the cathode surface are discussed and derived in this

chapter.

The chapter can be divided into the following sections: The first section gives

an introduction to Fick’s law and shows how to obtain the basic diffusion equation.

The second section presents the numerical methods used to model Eq (2.1) on a

hexagonal grid mesh. The motivation and advantages for modeling on a hexagonal

grid are also discussed. The third section gives a brief summary of some experimental

studies done in literature for obtaining the diffusivity of cesium on tungsten. The

final section summarizes the main points of the chapter.

4.1 Fick’s Law and the Diffusion Equation

On a macroscopic scale, the granular structure produced by single atoms gets

averaged out and the density of material present in any space can by approximated
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by a smoothly varying function. Fick’s Law is an equation that relates the flux

of the material passing through a boundary to its density. Fick’s law is based on

the empirical observation that material will spread from high concentration to low

concentration. Mathematically, it simply states that the flux is proportional to the

negative gradient of the density at that point. If ~J is the flux, Θ is the density of

material, and D is the proportionality factor, Fick’s Law can be written as:

~J = −D~∇Θ (4.1)

Fick’s law by itself cannot fully describe a given system since there are two un-

knowns, ~J and Θ, and only one equation. A second equation relating the flux ~J

and density Θ is required to fully solve the system. This second equation comes

from conservation of matter, or the continuity equation. In order for matter to be

conserved, the change in the density at any given point is equal to the net amount

entering or leaving from that point. The net amount entering or leaving a given

region is simply the divergence of the flux. Assuming that no material is created or

destroyed at any given instance or location, the continuity equation is given by:

∂Θ

∂t
+ ~∇ · ~J = 0 (4.2)

Combining Eq (4.1) and (4.2) by substituting for the flux ~J , the standard diffusion

equation is given by [29]:

∂Θ

∂t
= ~∇ · (D~∇Θ) (4.3)

With appropriate boundary conditions, the diffusion equation describes how an

initial given density of material spreads or evolves over time.

33



For modeling the surface of a CPD, Eq (2.1) presented in chapter 2 of this

dissertation is used. Eq (2.1) is equivalent to the 2-d diffusion equation on a surface

with sources and sinks. The source term is provided by the pore boundaries on

the surface, and the sink term is the evaporation rate of cesium across the surface.

Eq (2.1) can be obtained by adding the cesium evaporation sink term, −Fevap, to

Eq (4.2) and doing the same substitution. The source is modeled by setting the

boundary conditions at the pores to be Θpore.

4.2 Numerical Methods Used for Modeling

Eq (2.1) for modeling the surface of a CPD is rewritten below explicitly for 2

dimensions:

∂Θ

∂T
= D

(
∂2Θ

∂X2
+
∂2Θ

∂Y 2

)
+
∂D

∂Θ

[(
∂Θ

∂X

)2

+

(
∂Θ

∂Y

)2
]
− Fevap (4.4)

Θ(Ω) = Θpore, Ω ∈ pore edges

The sintered tungsten wires create a periodic hexagonal array of pores shown in Fig

4.1. Fig 4.1 highlights a region of the cathode that is modeled. From symmetry

arguments, the boundary conditions for the highlighted region are assumed to be

periodic. Effects from the edge of the cathode surface are ignored. This is valid since

the area of the simulated region is orders of magnitude smaller than the entire size

of the cathode. For typical CPD cathodes made from 20 micron diameter tungsten

wire, the simulated area would be around 800 square microns. This is several orders

of magnitude smaller than the area of the entire cathode, usually on the order of

millimeters squared.
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Figure 4.1: SEM image of the sintered wire CPD cathode surface. Highlighted red
region represents the region that is modeled assuming periodic boundary

conditions.

Equation 4.4 is solved numerically. Because of the geometry of the surface,

all the numerics were performed on a hexagonal mesh grid, schematically shown in

Fig 4.1. The main advantage in working with a hexagonal mesh is that it allows

natural inclusion of the periodic boundary conditions. A hexagonal grid is also more

accurate than the traditional rectangular grid for evaluating the discrete Laplacian

and differencing operators. It is useful to work with Eq (4.4) in its non-dimensional

form when doing the numerics [49]. To do this, the following dimensionless variables
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are defined:

x ≡ X

L
(4.5)

y ≡ Y

L
(4.6)

θ ≡ Θ

Θ0

(4.7)

d ≡ D

D0

(4.8)

Where x, y, θ, and d are the dimensionless distances, coverage, and diffusivity respec-

tively. Substituting back in (4.4) and assuming that the diffusivity is independent

on coverage yields:

Θ0
∂θ

∂T
=

Θ0D0d

L2

(
∂2θ

∂x2
+
∂2θ

∂y2

)
− Fevap (4.9)

Rearranging and collecting terms gives the dimensionless version of equation (4.4)

to be:

∂θ

∂t
= d

(
∂2θ

∂x2
+
∂2θ

∂y2

)
− L2

D0Θ0

Fevap (4.10)

It is straightforward to show that the dimensionless time variable t is:

t =
D0T

L2
(4.11)

4.2.1 Discreet Laplacian and Gradient Operators on a Hex Lattice

The expressions for the discrete 2D Laplacian and derivative operators on a

hexagonal grid lattice are derived in this subsection. Fig 4.2 schematically illustrates

the basic stencil for the hexagonal mesh. In a traditional rectangular grid, the center

point would be surrounded by neighboring four points. For the hexagonal mesh,
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û1

h

Figure 4.2: Schematic wire stencil of the hexagonal grid showing the discretization
parameter h as well as the points used to evaluate the Laplacian operators.

a center point is surrounded by a six point stencil. The directional unit vectors

pointing from the center point to each neighboring point on the hexagonal stencil

are given by:

û1 = x̂ (4.12)

û2 =
1

2
x̂+

√
3

2
ŷ (4.13)

û3 = −1

2
x̂+

√
3

2
ŷ (4.14)

û4 = −x̂ (4.15)

û5 = −1

2
x̂−
√

3

2
ŷ (4.16)

û6 =
1

2
x̂−
√

3

2
ŷ (4.17)

From calculus, directional derivatives from the center point to each of the six

surrounding points are given by:

θu = ~∇θ · ûi (4.18)
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where θu represents the partial derivative along the direction ûi, given by Eqs (4.12)-

(4.17). In much the same way, the directional derivatives of the second order can

be written as:

θuu = ~∇θu · ûi (4.19)

In order to approximate the Laplacian operator for such a hexagonal mesh

grid, it is necessary to use Eqs (4.18) and (4.19) to write out the Taylor series

expansions for the value of θ at each of the six nearest neighbors. For a given point

on the grid located at position r0r̂, the position of each of its six nearest neighbors

can be written as r0r̂ + hûi, where h is the discretization length. The Taylor series

expansion up to fourth order about r0r̂ for each of the six neighboring points for a

given hexagonal stencil is given by:

θ(r0r̂ + hûi)− θ(r0r̂) = θu(r0r̂)h+
h2

2
θuu(r0r̂) +

h3

6
θuuu(r0r̂) +O(h4) (4.20)

It can be shown from symmetry as well as explicitly that the following relationships

are true for all points on the hexagonal mesh:

∑
u

θu = 0 (4.21)

∑
u

θuuu = 0 (4.22)

Where the sums extends over all six directional derivatives. From (4.21) and (4.22),

summing up all the Taylor series expansions over all six directions û about r0r̂ yeilds:(∑
u

θ(r0r̂ + hûi)

)
− 6θ(r0r̂) =

h2

2

∑
u

θuu +O(h4) (4.23)

It can be shown that the following relationship is true:

∑
u

θuu = 3(θxx + θyy) ≡ 3∇2θ (4.24)
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Therefore from Eqs (4.23) and (4.24), the approximation to the Laplacian for the

hexagonal unit cell to O(h2) is given by:

∇2θ =
2

3h2

(
−6θ(r0r̂) +

∑
u

θ(r0r̂ + hû)

)
+O(h2) (4.25)

4.2.2 Discretizing the Nonlinear Diffusion Equation Implicitly in Time

In this subsection, the system of equations that determine the cesium coverage

at each time step on the cathode surface is derived. There is one equation for each

grid point on the discrete hexagonal lattice. Let the index n represent the nth time

step such that:

t = n δt (4.26)

where δt is the discretization of the dimensionless time t given by Eq (4.11). From

Eq (4.10), the following relationship is obtained between the nth time step and the

n+ 1 time step:

θn+1 − θn
δt

=
d

2

[(
∂2θ

∂x2
+
∂2θ

∂y2

)
n+1

+

(
∂2θ

∂x2
+
∂2θ

∂y2

)
n

]
− L2

2D0Θ0

[
F n+1
evap + F n

evap

]
(4.27)

The Laplacian as well as the evaporation rate Fevap are approximated by averaging

their values at the nth and n + 1 time step. This is known as the implicit scheme

for numerically solving the partial differential equation [49]. Eq (4.27) implicitly

assumes knowledge of θ for the n+ 1 time step. The grid points on the hexagonal

lattice are indexed by i. The index numbering goes from left to right along the

diagonals of the hexagonal lattice. Fig 4.3 shows an example of the numbering for
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Figure 4.3: The numbering scheme used for the numerical discretization of the
hexagonal lattice. N j

D are the number of grid points contained in the jth diagonal.

a small hexagonal lattice grid. As shown in Fig 4.3, let N j
D be the number of grid

points in the jth diagonal on the hexagonal grid. The index m, to be used shortly,

will be defined by:

m ≡ N j
D + 1 (4.28)

From Eqs (4.25), and (4.27) the coverage at the ith grid point, θi, not including the

boundaries can be be expressed as:

r(θi,n+1 − θi,n) = d
[
(θi−1 + θi+1 + θi−m + θi−m+1 + θi+m + θi+m+1 − 6θi)n+1

+ (θi−1 + θi+1 + θi−m + θi−m+1 + θi+m + θi+m+1 − 6θi)n] (4.29)

− 3h2L2

2D0Θ0

[
F n+1
evap + F n

evap

]
where m is defined in Eq (4.28) and r is defined by:

r ≡ 3h2

δt
(4.30)
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The boundaries of the hexagonal grid have periodic boundary conditions that are

reflected in the calculation of the Laplacian. Let the coverage values for all the

points on the hex mesh at the nth time step be contained in the vector ~θn. A square

matrix M was created such that the ith row of the operation M · ~θn will be:

[
M · ~θn

]
i

= θi−1 + θi+1 + θi−m + θi−m+1 + θi+m + θi+m+1 − 6θi (4.31)

The above equation will be valid for all indices of i not corresponding to a boundary

point on the hexagonal lattice. At the boundaries, the points used to calculate

the Laplacian reflect the periodic boundary conditions of the lattice. The rows of

matrix M for the boundaries will also be modified accordingly. Finally, the system

of equations that give ~θn+1 from ~θn at the previous time step can be written as:

(r · I− d ·M) · ~θn+1 +
3h2L2

2D0Θ0

~F n+1
evap = (r · I + d ·M) · ~θn −

3h2L2

2D0Θ0

~F n
evap (4.32)

where I is the identity matrix. The equations are nonlinear because the evaporation

term Fevap is nonlinear in coverage. Solutions to this system were numerically found

using MATLAB 2011.

4.3 Diffusivity Measurements of Cs:W in Literature

The diffusivity D in Eq (4.3) characterizes how fast a macroscopic coverage

of atoms spreads across the surface in units of length squared per unit time. From

(4.3), measurement of coverage over position and time will yield a measurement for

the diffusivity [2]. On a microscopic scale, the diffusivity D is related to the rate at

which an atom jumps from one surface site to the next as well as the energy barrier
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∆Ed associated with the jump [15]. From statistical mechanics, the diffusivity has

an Ahrrenius temperature dependence [47]. The relationship between diffusivity

and temperature is given by:

D = D0e
∆Ed/kT (4.33)

An Ahrrenius plot of measured diffusivity D for various temperatures should yield

values for D0 and ∆Ed. In the literature, there have been two well known indepen-

dent experiments for diffusion of cesium on tungsten.

The first study of diffusion was reported by Langmuir and Taylor in 1932 [26].

For their experiment, a tungsten filament wire was surrounded by a concentric elec-

trode. The electrode was segmented such that a central section was surrounded by

guard rings on either side. The central section was electrically insulated from the

guard rings. With this setup, Langmuir and Taylor were able to measure the amount

of cesium atoms present on the surface of tungsten filament in the central section at

any time and temperature by flashing. At temperatures above 1000 K, any cesium

on the surface will evaporate as a cesium ion. By measuring the total ion charge ac-

cumulated from the center electrode, the amount of cesium atoms previously present

on the surface is determined. The experiment proceeded as follows. The tungsten

filament was first exposed to a cesium vapor to coat the surface with a uniform

coverage of cesium. The center section of the tungsten wire was then cleaned by

heating. The result was a uniform coverage of cesium on the guard ring sections of

the wire, and no cesium on the central section. This established the initial coverage

profile of cesium on the filament. The filament was then maintained at a constant
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temperature and diffusion of cesium from the either side of the central section was

allowed to take place. Langmuir and Taylor measured the total amount of cesium

that flowed into the central region after a given time interval. The measurements

were repeated for a series of different times. Comparing to analytic solutions of the

diffusion equation given the initial conditions set up by the experiment, Langmuir

and Taylor found the diffusivity for cesium on tungsten to be:

D = 0.2e−14×103/RT cm2/sec (4.34)

The second measurement of diffusivity for cesium on tungsten was done by

Love and Wiederick [30] using a technique developed by Bosworth [4]. An initial

uniform cesium profile was deposited onto the tungsten surface through a mask.

Concentration changes, as well as concentration gradients were then measured by

sweeping across the surface with a laser beam profile and observing the changes

in photocurrent. The spatial resolution of the laser was high enough compared to

the dimensions of the cesium profile on the surface. Their measurements for the

diffusivity of cesium on tungsten done under ultrahigh vacuum yielded:

D = (0.23± 0.1)e−13.1±0.5×103/RT cm2/sec (4.35)

This was in good agreement with earlier data taken by Langmuir and Taylor.

There are some fine points that must be mentioned in interpreting these mea-

surements for diffusivity D. Both Eq (4.34) and (4.35) were measurements of dif-

fusion averaged over a range of coverage values on the surface. It is well known

that the diffusivity is a coverage dependent quantity [11]. Furthermore, the mea-

surements of Langmuir and Taylor were done on a polycrystalline tungsten surface,
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while the second measurement by Love and Wiederick were done for the W[110]

crystal plane. The differences in diffusion rates for various single crystal planes have

not been extensively measured.

4.4 Chapter Conclusions

• After the cesium atoms travel from the reservoir to the surface through the

pores, they will undergo surface diffusion on the photocathode. A two dimen-

sional diffusion equation is used to model the time evolution of coverage.

• Because of the geometry of the pore arrangements for a CPD dispenser, all

diffusion modeling needed to be done on a hexagonal lattice mesh. The hexag-

onal grid allows for straightforward implementation of the periodic boundary

conditions of the surface as well as increased numerical accuracy when com-

pared to using a traditional cartesian mesh.

• Laplacian operators for a hexagonal grid lattice were derived and Eq (4.4) and

the model for the surface was discretized implicit in time on the hexagonal

grid.

• Values used for the diffusivity D were based on previously measured values

for D done by Taylor and Langmuir [26] as well as Love and Wiederick [30].
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Chapter 5

Evaporation of Cesium off Cathode Surfaces

This chapter will analyze and derive the expression used for the evaporation

term, first appearing in Eq (2.1) as Fevap, and later on in chapter 3 Eq (3.1). As

introduced in chapter 1, CPD photocathodes aim to extend cathode lifetime by

replacing the cesium evaporating off the surface with fresh cesium diffusing from

controlled source pores on the cathode surface. The size and spacing of the source

pores as well as reservoir temperature can be designed such that the cesium resupply,

and evaporation will work together to maintain an optimum coverage of cesium at

the surface, maximizing the QE and lifetime.

This chapter is focused on presenting the evaporation theory and modeling

done in this study. The chapter is organized as follows: the first section gives a

brief history on previous evaporation work found in the literature. The second and

third sections outlines and derives the evaporation model developed in this study.

Finally, limitations of the model as well as future work are discussed.

5.1 Previous Evaporation Studies

Previously, there have been two well known independent experimental studies

of cesium evaporation from tungsten at various temperatures and coverages. The

first study was done by Joseph A. Becker and reported in his 1926 paper titled
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Thermionic and adsorption characteristics of cesium on tungsten and oxidized tung-

sten [3]. The second study was done by Irving Langmuir and John Bradshaw Taylor

and reported in their 1933 paper titled The evaporation of atoms, ions and electrons

from cesium films on tungsten [53]. This section will give an overview of these two

studies, as well as further motivate the need for evaporation modeling.

An explanation on the basic approach for measuring the evaporation rate for

both Becker and Langmuir will now be summarized. Evaporation is a process that

balances out condensation at equilibrium. Both Langmuir and Becker’s experiments

do not focus on measuring the evaporation rate directly, but rather the fractional

coverage θ maintained at equilibrium for various filament temperatures. The rate

of arrival1 then gives the cesium evaporation rate for various θ and T .

5.1.1 Becker’s Experiment

Becker’s method for studying evaporation will now be outlined. Becker uses

a tungsten wire filament of diameter 0.0076 cm and length 4.5 cm enclosed in an

airtight glass tube containing a molybdenum plate. The tube was also connected to

a vacuum pump of some type 2. The filament was heat treated at around 2800 K

with the vacuum pump running to get rid of any surface impurities or contaminants.

Cesium was then introduced into the system by breaking a capsule (initially filled

with cesium vapor) within the glass tube. The tube was sealed off from the vacuum

1Measuring the rate of arrival, which changes depending on the cesium vapor pressure, will be

explained in the next subsection
2At the time, the pump was most likely a mercury diffusion vacuum pump
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pump before the cesium was released so cesium vapor would be present inside. The

vapor pressure of cesium could be raised or lowered by heating or cooling the tube.

By either negatively biasing or positively biasing the molybdenum plate, Becker was

able to measure either the electron current, or cesium ion current coming from the

filament.

At equilibrium for a given vapor pressure, the atomic rate of arrival of cesium

atoms onto the tungsten surface exactly balances the evaporation of cesium off

the surface. Langmuir and Kingdon in their 1923 paper [25] have shown that at

temperatures close to 1000 K◦, every cesium atom hitting the surface of tungsten,

or oxidized tungsten will not stick but leave as an ion with charge e. By measuring

the ion current from the tungsten filaments at 1040 K and dividing by e as well as

the filament surface area, Becker was able to obtain the number of cesium atoms

that strike per cm2 per second. Changing the vapor pressure of cesium in the tube

will change the rate of arrival of cesium at the surface. The remainder of Becker’s

experiment is aimed at determining the fractional coverage θ that is maintained on

the surface at equilibrium. This will yield evaporation data as a function of θ and

T .

The coverage θ as measured by Becker was done as follows: Upon equilibrium

at T , the tungsten filament is quickly cooled to a temperature of around 600 K. The

time it takes for the current to reach a maximum value after cooling is recorded by

Becker as t3. Becker interprets t3 as the time it takes for the surface to be covered

with a full monolayer after the tungsten is suddenly cooled from T to 600 K. Becker

at the time assumed that maximum electron emission for tungsten occurs when the
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surface is covered with a full monolayer of cesium. The assumption made by Becker

is that at 600 K, every cesium atom hitting the tungsten surface will stick until

maximum electron emission is reached (full monolayer). The coverage θ at T is then

given by:

θ = 1− t3
tm

(5.1)

Where tm is the time it takes for a full monolayer of cesium to form on an initially

clean surface assuming a sticking coefficient of unity. Becker measured tm by cooling

the filament quickly from 1040 K directly to 600K and recording the time it takes

for the current to reach a maximum value. The vapor pressure of cesium in the

tube is the same for both t3 and tm measurements. By changing the vapor pressure

different equilibrium points for θ and temperature T can be reached.

5.1.2 Langmuir’s Evaporation Studies

Langmuir used a different technique than Becker to measure the equilibrium

coverage θ. The two filament method used by Langmuir will now be described.

In a cylindrical tube, two straight tungsten filament wires, A and B, were

mounted parallel to each other. A sketch provided in Langmuir’s paper of the

experimental setup is shown in Fig 5.1. The cylindrical tube was divided into

three sections c0, c1 and c2. In each section, the tube glass was coated with a thin

layer of conducting platinum and attached to wires embedded inside the glass. Both

electron and ion emission from the filaments could then be collected depending of the

biasing of c0, c1 and c2 relative to the filament wires. The sections were electrically
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Figure 5.1: Filament and collector arrangement for Langmuir’s setup
[53].

insulated from each other. The middle section c0 was attached to a galvanometer

that allowed measurements of both ion currents and electrical currents from the the

length of the filaments within c0. During the course of the experiment, the tube

was sealed in vacuum with cesium vapor already present within. The cesium vapor

pressure was controlled by changing the temperature of the tube. The temperature

was controlled by immersing the whole tube in a large Dewar heat bath containing

kerosene vigorously stirred at temperature T . With this setup, Langmuir was able

to measure θ at various temperatures and vapor pressures of cesium.

To measure θ at equilibrium, filament B was maintained at a high temperature
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of around 2400 K, while the temperature of the other filament, filament A, was

allowed to accumulate cesium at various temperatures from 300 K to 1000 K until

equilibrium was reached. Filament A was then flashed at a high temperature of

1800 K to instantly evaporate all the accumulated cesium atoms. A fraction of the

evaporated cesium atoms will hit the hot filament B and be converted into cesium

ions. The ion current is measured as a ballistic kick on a galvanometer attached to

c0. The fractional cesium coverage θ of filament A at temperature T can then be

calculated from the equation:

θ =
Q

SAefσA1

(5.2)

where Q is the total charge due to the cesium ions measured by the galvanometer, f

is the fraction of cesium atoms intercepted by filament B and converted into cesium

ions, SA is the surface area of the section of filament A in c0, e the electronic charge,

and σA1 is the number of cesium atoms per cm2 for a full monolayer.

5.1.3 Discussion and Summary of Previous Studies

A major source of error in Becker’s experiment was that Becker had assumed

that maximum electron emission from tungsten occurred at a full monolayer coverage

of cesium. It is now well known that optimum emission occurs for θopt of 0.67 [16]

[22]. Becker measures t3 and tm as the time it takes the electron emission to reach

an optimum value, which Becker incorrectly assumes to occur at θopt equal to 1.

Furthermore, t3 and tm were measured at 600 K under the assumption that every

atom hitting the surface sticks until maximum emission. This assumption at the time
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was not yet proven and there has been evidence in Langmuir’s study that indicates

evaporation does occur before θopt at these temperatures. This will increase the

values measured for t3 and tm as well as skew the data towards higher coverage

values than actually present at a given temperature and introduce error in Eq (5.1).

Langmuir’s experiment on the other hand measures the coverage θ directly by

measuring deflections on the galvanometer and thus Q, the total cesium ion current

as outlined in the previous section.

Langmuir’s data will be used for the remainder of the chapter to compare

with the theory developed in this study. In both Langmuir and Becker’s study, a

theory for evaporation was not present. At best, the data is fitted to a function with

adjustable parameters. The following sections present a simplified theory of evapo-

ration that captures the main features of Langmuir’s data and also tie into the rest

of this dissertation to model and predict the performance of CPD photocathodes.

5.2 Overview of the Evaporation Model

This section introduces and derives the model developed to describe the evap-

oration of cesium atoms off single crystal face metal surfaces. A simple model was

sought after to predict the evaporation off the surface at a given temperature and

partial monolayer coverage of cesium.

From an atomic scale, one can view a single crystal face solid surface as a pe-

riodic two dimensional Bravais lattice formed by the atoms of the material. Specific

sites able to accommodate an adsorbed atom such as cesium are then present on the
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surface of the crystal lattice. Cesium atoms will occupy these well defined adsorp-

tion sites at the surface. This has been shown from low energy electron diffraction

studies [48]. At each adsorption site, a cesium atom is held to the surface by a

binding potential, characteristic of the surface and the various types of interactions

present [27].

A bound cesium atom at an adsorption site will have a number of discrete

bound energy states available for it to occupy. Assuming the cesium atoms are in

thermal equilibrium with the rest of the solid lattice, the probability of finding a

cesium atom at a particular energy state E is given by the Boltzmann distribution

e−E/kT , ignoring normalization. At any instant in time, let P be the probability

that a given cesium atom at the surface will have enough energy to overcome the

binding potential and evaporate. P is then given by:

P =

∑
free

e−E/kT

n∑
i=0

e−Ei/kT +
∑
free

e−E/kT
(5.3)

where the numerator sums over all the free energy states E and the normalization

factor in the denominator sums over all the bound states Ei as well as the free states.

The evaporation rate is a product of the frequency at which the Cs atom oscillates,

the probability that it has sufficient energy to overcome the binding potential, and

the local surface density of atoms. Evaporation per unit area per unit time is then

given by:

Eevap =
1

τ
Pσθ (5.4)

where τ is the characteristic evaporation time, σ is the number density per unit area
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Figure 5.2: Arrangement of a cesium atom on the [100] surface of
tungsten.

of available binding sites, and θ is the fraction of those sites which are occupied (aka

the coverage).

In Eq (5.4), σ is determined from information on the type of solid and the

crystal face. For the purposes of this study, the evaporation of cesium atoms off of

tungsten is considered. A tungsten solid forms a body centered cubic lattice with a

lattice constant of 3.15 Å. Knowing this, it is easy to calculate the atomic density

per unit area of tungsten atoms for various crystal face cuts. A bound cesium atom

at the surface will preferentially occupy spaces that are left in between adjacent

tungsten atoms. For cesium on tungsten, the size of a cesium atom is such that

there will be enough space on the tungsten lattice to accommodate 1 cesium atom

for every 4 tungsten atoms [16]. An example of this arrangement for the [100] face

of tungsten is shown in Fig 5.2. A calculated value of about 10.0× 1014 atoms/cm2

was obtained for the surface density of tungsten atoms on the [100] crystal face.
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Dividing by 4 yields the calculated density of binding sites for cesium atoms to

be 2.5 × 1014 sites/cm2. This is lower than the measured cesium density on the

surface of tungsten reported by Taylor and Langmuir in their 1933 paper [53]. This

difference is to be expected as an area of any tungsten surface will likely have more

than one crystal face, not just [100]. The other crystal faces of tungsten, the [110]

and [111] crystal faces, have tungsten atom densities that are 14.0×1014 atoms/cm2

and 17.0×1014 atoms/cm2 respectively [16]. The actual distribution of crystal faces

for a solid tungsten surface is oftentimes an unknown. Therefore, there is some

degree of ambiguity as to what the actual density of binding sites at the surface is.

However, all values fall within an order of magnitude of 1014 sites/cm2, and should

not greatly affect the theory. For the rest of the chapter however, the assumption

of a [100] crystal face of tungsten with σ = 4× 1014 sites/cm2 is made.

With σ determined, most of the remaining work in applying Eq (5.4) is then

calculating P and τ . The remainder of this section is dedicated to explaining how

these quantities are obtained.

5.3 Calculating the Evaporation Probability “P” and V0

In order to apply Eq (5.3) to calculate P , the bound state energies En, and

free state energies Efree need to be determined. These energies depend on the shape

and size of the potential well each cesium atom experiences at its binding site. In

this subsection, the assumptions and theory used for calculating En and Efree are

explained. Parameters for cesium on tungsten are applied to the theory to yield

54



values for P as a function of coverage θ.

From quantum mechanics, the bound state and free state energies for any ar-

bitrary potential can be solved numerically from Schrödinger’s equation. Therefore,

to calculate En and Efree, most of the theory goes into determining the size and

shape of the binding potential at the surface. It is assumed that the potential has

no explicit dependence on time. Despite the complexity of the system, some reason-

able simplifications can be made which allow the theory to develop further. Ignoring

the possibility of surface roughness and contaminants, the binding sites for cesium

atoms on a given crystal face cut should be indistinguishable from each other. As

the cesium atom moves from site to site across the surface, it will experience the

same periodic potential regardless of which direction it moves. Since the motion of

the cesium atom along the plane of the surface does not contribute to evaporation, it

is assumed that the problem can be reduced to an effective one dimensional binding

potential in the z direction perpendicular to the surface. The second assump-

tion that needs to be made is in the actual shape of the effective potential in the

z direction. While many of the common potentials encountered in textbooks3 are

idealizations and do not represent realistic potentials encountered in nature, their

simplicity alone is enough to make them useful as a first order approximation to

many physical problems when other assumptions in the problem outweigh the need

to seek for more accuracy. Because a simple theory to capture the physics of evapo-

ration was sought after, a one dimensional square well potential shown in Fig 5.3 is

used to approximate the desorption energy barrier. This leaves only two parameters

3harmonic oscillator, square well, linear, dirac delta potential, etc.
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Figure 5.3: Effective 1D potential well used to model the evaporation.

to determine for the potential barrier: the well width w and the well depth V0 .

The well width w shown in Fig 5.3 is related to the range of the interaction

forces between the cesium atoms and the lattice on which they are bound to. Since

cesium atoms evaporate mostly as neutrals, the well width w is less than a nm (here,

5 Å, or the covalent diameter of a Cs atom), and is set in a larger bounded region

of length L� w so that Efree is discrete as well.

The remaining focus will now be in calculating the well depth parameter V0.

The theory here assumes that V0 is separable into several independent terms aris-

ing from the different physics that are present on the surface. The various terms

contributing to V0 will now be introduced. More detailed derivations for each term

present in V0 will be given separately in the sections that follow.

The first contribution to V0 is due to the Coulomb interactions arising from
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the partial transfer of charge ±Fe between the cesium atoms and the surface. In

this expression, F is a dimensionless number and e is the fundamental charge of

an electron. Cesium atoms partially ionize on solids to form a dipole layer at the

surface4 [16]. The dipole barrier is responsible for the electrostatic contribution to

the binding potential V0 at the surface. Gyftopoulos et. al. also showed that this

dipole barrier vanishes as a uniform monolayer of cesium is reached on the surface.

Therefore, the Coulomb contributions to V0 vanish for a full monolayer coverage.

The second component to V0 is due to a combination of van der Waals disper-

sion forces as well as Pauli repulsion between cesium atoms on the surface with each

other. While the totality of these interactions are complex and still not well under-

stood, they are well approximated by the semi-empirical Lennard-Jones potential.

Unlike the Coulomb interactions at the surface which vanish as a full monolayer is

reached, the Lennard-Jones interactions do not. Including these interactions ensures

that as the surface coverage approaches a full monolayer, the interactions approach

those for a neutral cesium lattice.

The third contribution to V0 is due to the thermodynamics of the surface for a

given coverage and temperature. Physical systems will tend towards configurations

which maximize the entropy and minimize the free energy [18]. It will be shown

that the thermodynamic contribution to V0 will be proportional to a thermodynamic

factor given by ∂(µ/kT )/∂(log θ).

Finally, the fourth contribution to V0 arises from the covalent bond formed

between the adsorbed cesium and the substrate due to the partial sharing of the

4This is what leads to work function lowering of surfaces coated with cesium
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valence band electrons. The covalent contribution should be independent of coverage

and temperature and will be approximated as a constant that will be determined

from experimental data. This constant is the only parameter in the model that is

determined from fitting to experiment. Experimental data on cesium evaporation

off tungsten taken by Taylor and Langmuir [53] was used to determine the covalent

contribution to V0.

In summing all these contributions together, the potential energy V0 is given

to be:

V0 = VC + VLJ + Vµ + VCV (5.5)

Where VC is the Coulomb contribution, VLJ is the Lennard-Jones contribution, Vµ

is the thermodynamic contribution, and VCV is the covalent contribution. The first

three contributions are dependent on coverage θ as well as temperature T . They will

be discussed in turn in the the next few subsections. The last term VCV is constant

and will be determined from experimental data.

5.3.1 The Coulomb Contribution to V0

Let VC be the contribution to the well depth V0 arising from electrostatic forces

on the surface. The expression sought after for the Coulomb contribution, VC , is of

the form:

VC = δ +
4∑
i=0

N(i, θ)V i
nn (5.6)

Eq (5.6) takes into account changes to VC due to interactions with the surface,

partially charged nearest neighbor cesium atoms, as well as interactions from atoms
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farther away on the surface. The equation can be understood as follows: The first

term δ accounts for global interactions from charged cesium atoms farther away

(because the electrostatic force is long range, it would be in error to consider only

nearest neighbor interactions). The second term is the weighted average over the

number of possible nearest neighbor configurations, where N(i, θ) is the probability

that a cesium atom will have i nearest neighbors for a given θ. V i
nn is the electrostatic

potential a partially charged cesium atom on the surface experiences in the presence

of “i” nearest neighbors. For i = 0, V 0
nn reduces to the electrostatic potential

between the partially ionized cesium atom and the tungsten surface. For the [100]

face of tungsten, a cesium atom can have between 0 to 4 nearest neighbor atoms.

The weighting term, N(i, θ), is the probability that a cesium atom on the surface

will have i nearest neighbors given a particular surface coverage θ.

The expression used for V i
nn will now be derived. In the dipole model of

the surface, a partially charged cesium atom at the surface will form an image of

equal but opposite charge a distance d away into the surface. Therefore, a cesium

atom with i nearest neighbors will interact with both the atoms as well as their

corresponding images. A schematic diagram of the interaction between a pair of

cesium atoms on the surface is shown in Fig 5.4. Let ±F (θ)e be the charge of the

cesium atoms and their images, then V i
nn for a square lattice is:

V i
nn =

−kF 2e2

d
+ i ·

(
kF 2e2

a
− kF 2e2

√
d2 + a2

)
(5.7)

where a is the nearest neighbor separation distance, d is the distance between the

cesium atom and its corresponding image, e is the fundamental charge unit, and k
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is the Coulomb constant. From the theory by Gyftopoulos and Levine [16], ±F (θ)e

can be derived from knowing the strength of the dipole moment M produced by each

cesium atom at the surface. The dipole moment M can be written as M = Fed,

where d is the thickness of the surface dipole layer. Knowledge of M and d will

result in F being determined.

According to Pauling [46] and Malone [31], the magnitude of the dipole pro-

duced when two dissimilar atoms come in contact is proportional to the difference

in their relative electronegativities. From Pauling’s rule, the strength of the dipole

moment produced is given by:

M0 = χ (xs − xCs) (5.8)

where χ = 3.83× 10−30C-m/V is taken from literature. xs and xCs are the relative

electronegativities of the substrate atom and the adsorbed cesium atom respec-

tively. Gyftopolous and Levin states that Pauling’s correlation in Eq (5.8) does not

correctly account for self depolarization. A more correct expression for the dipole

moment is:

M0 = χ
(xs − xCs)

(1 + α/(4πε0R3))
(5.9)

where R is the sum of the cesium and substrate covalent radii and α is the polariz-

ability of cesium. For the [100] face of tungsten, a cesium atom on the surface will

be in contact with 4 surrounding tungsten atoms in the geometry shown in Fig 5.2.

The net dipole moment produced is then given by:

M = 4M0 cos β (5.10)
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From Eq (5.9) and Eq (5.10), the factor F as a function of coverage can be written

as:

F (θ) =
M

ed
=

4χ (xs − xCs)G(θ)

eR (1 + α/(4πε0R3))
(5.11)

where an extra factor G(θ) is added to account for the electronegativity variation

with coverage at the surface. G(θ) is commonly known as the Gyftopolous structure

factor [16]. R cos β is the expression that Gyftopolous et. al. uses for “d”, the

thickness of the dipole layer at the surface. Lastly, β, presented in Fig 5.2, varies

with crystal face.

Some care must be taken to point out the simplifications and incorrect physics

used in this dipole model. The electron, a fundamental particle with charge e, can

never be divided further. Therefore, the quantity “F (θ)e” in Eq (5.11) is unphysical

in reality. A more realistic explanation of the physics is that when the cesium atom

sits on the surface, the electron clouds redistribute in a particular way to produce

a net electric field that mimics that of a dipole field. The calculation of the actual

electron cloud distribution for the cesium-substrate system is an extremely difficult

numerical problem and for most models including this one, unnecessary. Therefore,

the dipole model is a good approximation for the fields the cesium atoms produce

when sitting on the surface. The dipoles for a given coverage θ are modeled with

cesium atoms having partial charge +F (θ)e and their corresponding image charges

a distance “d” away with charge −F (θ)e.

The weighting term N(i, θ) in Eq (5.6) is now discussed. N(i, θ) is taken from

the statistics for nearest neighbor occupation numbers for a given lattice already
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developed in the Beth-Peierls approximation [47]. For a square lattice with each

site having 4 neighboring sites, the probability N(i, θ) of a cesium atom having i

nearest neighbors where θ is the surface coverage is given by:

N(i, θ) =

(
4

i

) (
ze−ε/kTT

)i
(1 + ze−ε/kTT )

4

z =
(η − 1 + 2θ)

(2e−ε/kTT (1− θ))
(5.12)

η =
√

1− 4θ (1− θ) (1− e−ε/kTT )

Eq (5.12) for N(i, θ) can be understood as follows: The combinatorics term
(

4
i

)
is

necessary to account for the number of ways i atoms can be arranged around the

4 neighboring sites. This is multiplied by a weight that is very similar to that of

the grand canonical ensemble. In the equation, z is a fugacity like term to account

for the background chemical potential set up by the fractional θ coverage of cesium

globally. It is noted in Eq (5.12) that z is θ dependent. The Boltzmann factor e−ε/kTT

accounts for the interactions between nearest neighbor cesium atoms with ε being the

interaction energy between two cesium atoms on the surface. The
(
1 + ze−ε/kTT

)4

factor in the denominator is simply to ensure that the probabilities sum to unity.

Because of the similarity between z and fugacity, the Beth-Peierls approximation is

oftentimes known as the quasi-chemical approximation [18]. The interaction energy

ε in Eq (5.12) is simply the work that’s required to bring a cesium atom an infinite

distance away on the surface to the nearest neighbor separation distance of a:

ε ≡ −
∫ a

∞

~Nnet · ~dx (5.13)

~Nnet is the net force acting on the cesium atom as it is moved from infinity to a.
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Figure 5.4: Cesium interaction with image charge and nearest neighbor

~Nnet can be calculated from the schematic force diagram in Fig 5.4. From Fig 5.4,

the component of the net force on the cesium atom and its image charge parallel to

the surface is given by:

2N1x + 2N2x = 2k
F 2e2

x2
− 2k

F 2e2

x2 +R2
cos θ (5.14)

where k is again the Coulomb constant, and x is the distance of interaction shown

in Fig 5.4. Combining Eq (5.13) and Eq (5.14), and assuming a ≈ R, the Coulomb

interaction energy between nearest neighbor cesium pairs on the surface is:

ε = k
F 2e2

R

(
2
√

2− 2√
2

)
(5.15)

With ε determined, Eq (5.7) and Eq (5.12) can be applied to obtain N(i, θ) as well

as
4∑
i=0

N(i, θ)V i
nn. To complete the expression for VC (Eq (5.6)), all that remains
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is to calculate the effect of long range interactions δ for various temperatures and

coverages.

Globally, partially charged cesium atoms move around on the surface in a

way that can be approximated as 2D Maxwell-Boltzmann ensemble in equilibrium.

Borrowing from plasma physics and in semiconductor physics, the effective inter-

action between the cesium atoms far away will be through a “screened” Coulomb

interaction in 2 dimensions. The screening factor can be given by the Debye-Hückel

approximation to be e−k0r [41]. The damping factor “k0” describes the strength

of the shielding. Using the Debye-Hückel approximation, the contribution to the

electrostatic energy from far away atoms can be expressed as:

δ =
∑
i

kF 2e2(2
√

2− 2)

ri
√

2
e−k0ri (5.16)

where the summation index i sums over all occupied sites on the surface. For the

[100] crystal face of tungsten, the surface in which the cesium atoms move on is a

square lattice. It will be assumed that differences between various crystal faces are

negligible. Indexing each cesium adsorption site the by (m,n) Eq (5.16) reduces to:

δ = θε

∞∑
n=−∞

∞∑
m=−∞

1√
m2 + n2

e−k0a
√
m2+n2

where m,n 6= 0 (5.17)

where ε is given by Eq (5.15) and θ is the fractional coverage of the surface. The sum-

mation can be approximated by noting that
∫∞
−∞

∫∞
−∞(1/

√
x2 + y2)e−k0a

√
x2+y2dxdy =

2π/(k0a). The expression for k0 given by the Debye-Hückel approximation [13] is:

k0 =

√
kσ1θe2

kTT
(5.18)
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The final expression for δ is then given by:

δ ≈ 2πθε

a
√

(kθσ1e2)/(kTT )
(5.19)

This completes the expression for VC , the electrostatic contribution to V0 given by

Eq (5.6):

VC = δ +
4∑
i=0

N(i, θ)V i
nn

There is one last correction to VC in Eq (5.6) still needing to be made. While

the cesium atoms are partially ionized at the surface, they will still evaporate off

as neutrals for temperatures below 900 K. So far, the expression for VC in Eq (5.6)

is the electrostatic energy required to remove a cesium ion with charge +Fe from

the surface. But in practice, for the temperatures of interest in this dissertation

cesium evaporates as a neutral not an ion. The correction that needs to be made is

to add the energy required to remove the negative charge −Fe from the surface and

add it to the cesium atom with charge +Fe to create a neutral atom. The energy

required to remove a charge of −Fe from the surface is given by Fψe, where ψe is

the workfunction of the material [27]. Combining the fractional electron with charge

−Fe with the partially ionized cesium atom releases an amount of energy equal to

F 2Vf , where Vf is the ionization potential of cesium [27]. The final expression for

VC with these corrections is given by:

VC = δ − Fψe + F 2Vf +
4∑
i=0

N(i, θ)V i
nn (5.20)
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5.3.2 The Lennard-Jones Contribution to V0

The second component to V0 is from the Lennard-Jones potential. The Lennard-

Jones potential is an empirical formula for the short range energy of interaction

between atoms due to van der Waals dispersion forces as well as Pauli repulsion.

The potential is given in most texts to be the following [17]:

L = 4ε

[(rm
r

)12

−
(rm
r

)6
]

(5.21)

where ε and rm are known as Lennard-Jones parameters, usually to be determined

experimentally, and r is the separation distance between the atoms. The Lennard-

Jones parameters used in the theory were given in Ref [14].

Since the Lennard-Jones potential is short ranged and falls off rapidly for

increasing distance, only the nearest neighbor cesium atoms are considered. From

simple superposition, the Lennard-Jones contribution to the well depth V0 from i

nearest neighbors is given by:

Li = i4ε

[(rm
a

)12

−
(rm
a

)6
]

(5.22)

The net contribution to the well depth V0 is from the weighted average of the

Lennard-Jones contributions given by:

VLJ =
4∑
i=0

N(i, θ)Li (5.23)

where N(i, θ) is given by the Bethe-Pierls approximation in Eq (5.8).
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5.3.3 The Thermodynamic Contribution to V0

The third contribution to V0 is the thermodynamic contribution. The thermo-

dynamic contribution to the well depth is given to be:

Vµ = kTθ

(
∂(µ/kT )

∂ log θ

)
T,A

(5.24)

where thermodynamic contribution Vµ is proportional to kTθ, the free energy per

unit adsorption site. The proportionality factor ∂(µ/kT )/∂(log θ), is given by the

Darken equation relating the change in the relative “order” of the surface to the

chemical potential µ set up by the cesium atoms on the surface [15]. The Darken

equation is given by: (
∂(µ/kT )

∂ log θ

)
T,A

=
〈n〉
〈∆n2〉

(5.25)

where 〈n〉 is the average surface density and 〈∆n2〉 is the average local fluctuation

away from 〈n〉 on the surface. Since the fluctuations 〈∆n2〉 of the system is directly

related to the entropy, ∂(µ/kT )/∂(log θ) is also a measure for the change in entropy

of the surface as the coverage θ is varied between 0 and 1. Since any system naturally

tends towards states of higher disorder, the net effect of Vµ should be to lower the well

depth V0 as the coverage approaches a monolayer. For a two dimensional Langmuir

surface of hard spheres, the expression for the chemical potential is given by:

µ = µ0 + kT log

(
θ

1− θ

)
(5.26)

Applying this Eq (5.24), the following expression is obtained for the thermodynamic

contribution Vµ:

Vµ = kT

(
θ

1− θ

)
(5.27)
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5.3.4 Summary

All terms in Eq (5.5) to evaluate V0 are now in place: with V0 in Eq (5.5)

determined as a function of θ and T , Eq (5.3) is applied to determine P , the proba-

bility of a cesium atom having enough energy to evaporate. Combined with τ and σ,

Eq (5.4) then gives the evaporation rate per unit area per unit time. As mentioned

in previous sections, the theory here assumes a [100] crystal face of tungsten with

σ given to be σ = 4 × 1014 sites/cm2. The value of τ , the characteristic time of

evaporation on the surface, will now be calculated in the next section.

5.4 Calculating time τ

From section 5.3, the variable τ is the average time the cesium atom spends

in a particular bound energy state before undergoing a transition. From Eq (5.4),

the evaporation rate is proportional to 1/τ . In this subsection, the expression for

1/τ is calculated.

In the model, it is assumed that a bound cesium atom on the surface will likely

undergo an energy change upon collision will any neighboring atoms on the surface.

With this assumption, 1/τ is simply the collision frequency for the cesium atom in

a given energy state.

In the absence of nearest neighbor atoms, a cesium atom on the surface will

only undergo collisions with the surface lattice itself. The collision frequency in this

case can simply be approximated as the frequency of oscillation for the cesium atom

in the effective 1-D potential set up by the surface introduced in section 5.3 earlier
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(Fig 5.3). The potential well with parameters V0 and w derived in the previous

section for calculating the escape probability P will also be used here.

Quantum mechanically, a bound particle with energy E will undergo oscil-

lations with frequency given by E/2πh̄. Therefore, the oscillation frequency ν0

averaged over all the available bound states is given by:

〈ν0〉 =

n∑
i=0

Ei
2πh̄

e−Ei/kT

n∑
i=0

e−Ei/kT

(5.28)

Here, Ei are the bound energy states calculated using the appropriate parameters

V0 and w. Eq (5.28) gives the ensemble averaged collision frequency of a cesium

atom that sits by itself on the lattice with no nearest neighbors.

If the cesium atom is surrounded by nearest neighbor atoms, then the calcu-

lation for the collision frequency will be modified. In the case of nearest neighbors,

not only can the atom undergo collisions with the surface, but also with adjacent ce-

sium atoms. In the latter case, collisions with neighboring atoms on the surface are

caused by the transverse momentum components of the cesium atom. Continuing

with the assumption that the transverse and perpendicular directions are separable

on the surface, collisions with the surface lattice and collisions with other cesium

atoms can be separated as follows – the contribution from collisions with the surface

will be from the oscillation frequency of the atom bound within the potential in the

z direction. The contribution from collisions with adjacent atoms will be from the

oscillation frequency of the atom bound within a potential in the x and y directions

across the surface.
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The potential in the z direction is simply the potential well with parameters V0

and w derived in the previous section for calculating P , also used earlier to calculate

the collision frequency with no nearest neighbors ν0 in Eq (5.28). Assuming that

nearest neighbor cesium atoms can be approximated as immovable hard spheres,

the potential in the x and y directions for a cesium atom surrounded by nearest

neighbors can be approximated by infinite potential walls. This oversimplification

must be made for tractability and its validity will be determined by comparison with

experiment. A more realistic model probably would have been to assume a harmonic

oscillator potential to account for nearest neighbors. However, the lattice coupling

constant between cesium atoms on the surface is unknown and would introduce an

additional fitting parameter, which is not desirable for the model.

For a cesium atom surrounded by 4 nearest neighbors, the xy potential can be

approximated by a two dimensional infinite square box with side length “a”. Here,

“a” characterizes the distance in between adjacent atoms. The energy levels for a

particle in a 2 dimensional infinite square box is given by the following:

Enx,ny =
h̄2π2

(
n2
x + n2

y

)
2ma2

(5.29)

It should be noted that the neighboring cesium atoms are finite in size so the infinite

square box potential does not take this into account. However, if the atoms assume a

Maxwell-Boltsmann ensemble, then higher energies states do not contribute much to

the average quantities. At low energies, the energy levels for the finite potential box

and the infinite box are very close to one another. The expression for the collision
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frequency for a cesium atom surrounded by 4 nearest neighbors is then given by:

〈ν4〉 =

nx,ny∑
j,k=0

n∑
i=0

Ei + Ej,k
2πh̄

e−(Ei+Ej,k)/kT

nx,ny∑
j,k=0

n∑
i=0

e−(Ei+Ej,k)/kT

(5.30)

where Ei are the bound energy states in the z direction calculated using the appro-

priate parameters V0 and w, and Ej,k is given by Eq (5.29).

The next case to consider is a cesium atom that is surrounded by 2 nearest

neighbor atoms, one on each side. Depending on the orientation, the cesium atom

will undergo collisions with its neighbors in only one dimension, either x or y. The

transverse contribution to the collision frequency for this case can therefore be ap-

proximated by calculating the frequency of oscillation of the cesium atom in a 1-D

infinite square well.

〈ν2〉 =

nx∑
j=0

n∑
i=0

Ei + Ej
2πh̄

e−(Ei+Ej)/kT

nx∑
j=0

n∑
i=0

e−(Ei+Ej)/kT

(5.31)

where the x direction was chosen with no loss of generality and Ej are the energy

levels for a particle in a 1-D infinite box. Before proceeding further, it must be

mentioned that there is another arrangement possible for an atom surrounded by 2

nearest neighbors. The 2 neighboring atoms need not be arranged on opposite sides

of the center atom, but also can be arranged adjacent to each other. For simplicity,

the collision frequency for this case is assumed to be similar to the one calculated

in Eq (5.31).

Lastly, the collision frequency for 〈ν1〉 is approximated as the average be-

tween 〈ν0〉 and 〈ν2〉. The collision frequency for 〈ν3〉 is approximated as the average
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between 〈ν2〉 and 〈ν4〉. The net cesium collision frequency at the surface is then

calculated as:

〈ν〉 =
4∑
i=0

〈νi〉N(n, θ) (5.32)

where N(i, θ), the probability of a cesium atom having i nearest neighbors for a

surface coverage θ, is given by the Beth-Peierls approximation introduced in the

previous section.

5.5 Limitations of the Model and Future Work

In this section, an overview of the limitations and future work of the evapora-

tion model presented in this chapter are discussed.

The first limitation of the model is that it cannot predict evaporation rates

for coverages θ outside of the range from 0 to 1. The evaporation model developed

in this chapter has a singularity which causes the well depth parameter V0 in Eq

(5.5) to diverge to infinity at θ = 1, or a monolayer. The singularity is caused by

the presence of a 1− θ term in the denominator of the thermodynamic contribution

Vµ to the well depth in Eq (5.27). The 1 − θ term comes from assuming that the

chemical potential of the surface is that of a two dimensional Langmuir layer given

by Eq (5.26). The hard sphere interaction of the Langmuir layer causes the chemical

potential to diverge as θ goes to unity. Therefore, the model is nonphysical for values

of θ greater than θmax, the value of θ in which the well depth V0 in Eq (5.5) goes

to zero. In the model, θmax will be close to 1 but will vary slightly for different

parameters such as temperature. At coverages around or greater than a monolayer,
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the evaporation rates are high enough such that it becomes difficult to maintain

an equilibrium coverage of cesium. Such high values of θ are not of interest for

the purposes of predicting the performance of CPD photocathodes since optimum

electron emission typically occurs for cesium coverages of around 0.6. Therefore,

almost all simulations using the evaporation model are such that the singularity at

θ = 1 is irrelevant.

The second limitation of the model is that it does not take into account varying

crystal faces on the surface. In the derivation, the model assumes a [100] crystal face

geometry. Other crystal face geometries such as the [110], and [111] face can also be

considered, but it has been assumed here that they do not significantly change the

results. However, an area of future work will be to perform the model for evaporation

over various crystal face surfaces. Such an analysis would yield further predictive

capabilities of the model.

Lastly, in the derivation, the model simplifies the potential into the one shown

in Fig 5.3. It will be shown later in comparing to experiment that this fictitious po-

tential gives good agreement, and reproduces the nonlinear behavior of evaporation

with varying coverage and temperature. However, it will be another area for future

research to apply various other well shapes such as a harmonic well, or linear well

and see how the results or predictions would vary.
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5.6 Chapter Conclusions

• A model for cesium evaporation off tungsten was developed as part of a pro-

gram to optimize and predict the performance of CPD photocathodes

• The evaporation model uses an effective one-dimensional potential well repre-

sentation of the binding energy at the surface

• The evaporation model accounts for both local and global interactions of ce-

sium with the surface metal as well as with other cesium atoms

• The end model contains only one constant parameter to be determined from

experimental evaporation data taken by Taylor and Langmuir [53]. No other

parameter is varied over the range of coverages and temperatures considered.
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Chapter 6

Simulations of Cesiated Tungsten Controlled Porosity Dispenser

Photocathode

The results obtained for the modeling are presented in this chapter. The first

section in this chapter presents the results from chapter 3 for modeling the cesium

coverage along the pore walls up to the surface. The second section discusses the

results for the evaporation model presented in chapter 5 of cesium off tungsten

surfaces. The third section combines the models and techniques developed for cesium

resupply, diffusion, and evaporation (chapters 3-5) to give a map of the quantum

efficiency of the CPD photocathode surface shown in Fig 1.4.

The results demonstrate that the model can be used as a predictive tool for

the performance of a CPD photocathode for various parameters. Parameters such

as the temperature, cathode thickness as well as pore size are all inputs that can be

varied. The results for the simulations indicate that CPD photocathodes are able

to maintain a uniform cesium coverage across the surface during operation.

6.1 Results for Modeling the Cesium Flow through CPD Pores

The results for modeling the cesium diffusion and flow through the source

pores leading from the reservoir to the surface of a CPD during operation is now

presented. In chapter 3, the cesium resupply rate from a CPD reservoir onto the
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Figure 6.1: Results from modeling the cesium coverage along the pore walls as a
function of distance down the pore

surface is primarily determined by the diffusion and flux of cesium along the walls of

the pore, modeled by Eq (3.1). Eq (3.1) gives the cesium density Θ maintained along

the walls of the pores during CPD operation. This then determines the boundary

conditions at the surface pore edges, Θpore in equation (2.1) which determines the

rate of cesium resupply to the surface.

Fig 6.1 shows plots of cesium coverage along the pore walls down the length of

each pore for various temperatures. The results in Fig 6.1 were generated assuming

an emitter thickness of one millimeter. Typical emitter thicknesses vary around
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several millimeters with a pore radius of only several microns. The emitter thickness

to pore radius ratio in this case was about L/R = 100 (1 mm thickness with pore

radius of 1 micron). Results in Fig 6.1 with L/R = 100 reveal that the cesium

coverage along the pore walls is fairly uniform for given temperatures. This is

expected as diffusion happens much faster than evaporation. The same simulation

was performed for L/R = 10 and the results also show the coverage profile to be

close the uniform down the pore. From these results it is argued that increasing the

L/R value should not change the final distribution of coverage along the pore walls

by much. In chapter 3 Eq (3.17)-(3.18), it was shown that for an infinitely long pore

with uniform coverage, the evaporation flux Fevap exactly balances the flux onto the

pore walls at all values of z. The result is that the coverage will stay uniform and

not change for L/R >> 1.

The other input parameter that was necessary to generate Fig 6.1 was the

source term, or the flux of cesium atoms at the back end of the CPD emitter cap.

The flux will be from the cesium vapor maintained at the back end of the emitter cap.

For practical operation of CPD photocathodes, the cesium vapor in the reservoir is

not directly exposed to the back of the CPD emitter cap. To limit the total cesium

throughput, there will be a diffusion barrier between the actual reservoir filled with

cesium vapor and the CPD emitter. This design was invented and prototyped by

Montgomery, Ives, et al. in 2012 [34]. A schematic of the arrangement is shown in

Fig 6.2. The diffusion barrier is made up of a sintered powder tungsten dispenser.

The cesium diffuses through the sintered powder in a much slower and controlled

manner before being available to pass into the source pores of the CPD emitter

77



Cs

IVES et al.: CONTROLLED POROSITY CATHODES FROM SINTERED TUNGSTEN WIRES 2803

Fig. 6. Elimination of voids in regions of trapped grain boundaries in copper
sintered 408 h at 1075 C. X 80 [16].

Fig. 7. Void size and rugosity coefficient for sintered copper wires as a
function of time and temperature. Arrows indicated approximate times when
grain growth occurred.

can be controlled by the sintering temperature. This has implica-
tions for cathode manufacture, since it provides an independent
mechanism for controlling the pore size and resulting barium
diffusion rate.

Alexander and Balluffi provide a thorough mathematical
treatment of the relationship between time, temperature, and
material properties on void characteristics, including com-
parison with experimental measurements for sintered copper
wires. Interested readers are referred to their publication for
additional details.

III. EXPERIMENTAL SINTERING OF TUNGSTEN WIRES

An experiment was devised to extend the work of Alexander
and Balluffi to tungsten to verify that structures appropriate for
CPD cathodes could be obtained. The experiment consisted of
sintering and evaluating 20- m-diameter tungsten wire wound
on a “rectangular’ molybdenum spool. A photograph of the wire
wound spool is shown in Fig. 8. The spool produced four rectan-
gular tungsten sections that were 18 13 3 mm. The wire was
wound parallel to the 18-mm side; consequently, a cross section
of the wires was 13 3 mm with voids that penetrated through
the 18-mm length.

The structure was sintered at 2075 C for 75 min. The sec-
tions were removed from the spool at the corners and cross
sectioned using tungsten electro discharge machining. The face
was lapped and examined using a scanning electron microscope
(SEM). Fig. 9 shows an SEM photo of a region of the cross

Fig. 8. Molybdenum spool with 10 000 m of 20- m-diameter tungsten wire
and one of four rectangular sections produced. The wires/voids are parallel to
the long dimension of the section. The grid shown is 0.25-in on each side.

Fig. 9. SEM photograph of 20- m-diameter tungsten wires sintered at 2075
C for 75 min. The periodicity is approximately 20 m with extent of the pores

being approximately 4 m .

section. Based on the images in Fig. 5, it would appear that
this represents an intermediate stage in the sintering process

Authorized licensed use limited to: NRL. Downloaded on March 10,2010 at 17:28:08 EST from IEEE Xplore.  Restrictions apply. 

Figure 1.5: SEM image of a CPD surface formed by stacking and sintering 20 micron
diameter tungsten EDM wire.

1.4 Present Challenges for Developing CPD Photocathodes and Scope

of the Dissertation

While CPDs have initially been developed as thermionic dispenser cathodes, a

new area of research is to design CPDs as dispenser photocathodes. The techniques

developed by Lawrence Ives et al. [10] are readily adaptable for the fabrication of

sintered wire CPD photocathodes. However, because of the novel nature of the tech-

nology, there is a lack of a physical model designed to simulate CPD photocathodes

during operation. Such a model would not only serve as an e�cient diagnostics

tool for the future design of CPD photocathodes, but also greatly aid in e�cient

optimization[25]. With that point, there are three major physical processes that

happen for CPDs which need to be understood and modeled simultaneously:

1. Cesium flow and resupply from the reservoir through the pores onto the surface
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CPD Surface

Cesium Reservoir

Sintered Tungsten
 Powder Dispenser

CPD Emitter Cap

Figure 6.2: Schematic overview of the hybrid CPD dispenser [34]. The cesium
throughput is limited and controlled by adding a sintered tungsten powder

diffusion barrier between the reservoir and the CPD emitter [35].

array. Therefore, the cesium going into the source pores will be from the cesium

atoms evaporating off the surface of the sintered tungsten powder directly behind

the CPD emitter cap as shown in Fig 6.2. As discussed in Chapter 5, knowing the

coverage that will be maintained at the surface will also determine the evaporation or

flux unique to that temperature and coverage. The work then becomes to determine

the coverage that is maintained for a given operating temperature at the surface of

the sintered powder diffusion barrier.

In this case the coverage is inferred from past experimental data taken at UMD

[36] for sintered powder dispenser photocathodes. QE measurements of cesium based

sintered tungsten powder photocathodes can be used to back calculate the coverage
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Figure 6.3: Extrapolated curves from Langmuir’s paper [53] for cesium coverage at
various cesium vapor pressures. The coverage maintained goes linear in

temperature over a wide range of temperatures, especially for lower vapor
pressures.

from the workfunction lowering. At temperatures around and below 450K, the QE

is such that there is close to a monolayer of cesium maintained on the surface of

the sintered powder dispenser cathode. Above 700K, almost no QE is measured

which indicates that very little cesium is present or is able to be maintained on the

surface. For the inputs to the model, it was assumed that the cesium coverage on

the surface of the sintered tungsten powder linearly decreases with 1/T (where T is

temperature) from θ = 0.9 at 450K, to θ = 0.1 at 700K. The linear dependence on

1/T is supported from experimental data from published by Taylor and Langmuir

shown in Fig 6.3. Fig 6.3 shows curves extrapolated from Taylor and Langmuir

for cesium coverage maintained at various temperatures. Each curve in Fig 6.3
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is a different partial cesium vapor pressure the surface is exposed to. It can be

seen that especially for the lowest curves, the coverage at the surface has roughly

a linear dependence with 1/T for the given vapor pressure. This completes the

determination of the input parameters used to apply equation (3.1) to calculate

the results presented in Fig 6.1. Note that from the hybrid design, the coverage

maintained on the surface of the diffusion barrier will be the same as or very close

to the coverage of cesium maintained on the back end of the CPD emitter cap.

6.2 Results for Modeling Cesium Evaporation rates off CPD surfaces

The results of the evaporation modeling presented in chapter 5 are given in

this section. In the context of this dissertation, evaporation Fevap appears in both

Eq (2.1) in chapter 2 for modeling the CPD surface, as well as in (3.1) in chapter 3

for modeling the cesium resupply to the surface.

Fig 6.4 shows the comparison between the evaporation rates calculated from

the theory with experimental data (and its extrapolation by Taylor and Langmuir)

for cesium evaporation off tungsten. The extrapolated data presented by Taylor and

Langmuir[53] is shaded in gray on the plot. The equation used for the extrapolation

is given in their paper to be[53]:

log10 Fevap = A−B/T (6.1)

where A and B are coverage dependent fitting parameters determined from exper-

imental data. Table 6.1 at the end of the chapter gives the tabulated values for A

and B reported by Taylor and Langmuir.
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Figure 6.4: Comparison between theory and experimental data for evaporation of
cesium off tungsten

From Fig 6.4, the model presented in chapter 5 captures the qualitative behav-

ior of cesium evaporation over a wide rage of coverages and temperatures. Quan-

titatively, the evaporation values predicted by the model agree to within 5% over

the range of Langmuir’s data shaded in gray. In Fig 6.4, Eq (6.1) was used to ex-

trapolate the data even further, beyond the range of Langmuir’s extrapolation. The

model continues to give good qualitative agreement with the extrapolation even for

coverages and evaporation rates outside of the shaded area. However, outside the

shaded area, evaporation data has no real meaning since Tayler and Langmuir did

not measure any such values and since it quickly becomes too low or too high to
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measure accurately. A useful order of magnitude of reference for evaporation rates

is a monolayer per second, which corresponds to roughly 1014atoms/cm2 · sec.

As discussed previously in chapter 5, the model has a singularity at θ = 1.

However, for the purposes of simulating a CPD photocathode and comparing to the

data within the gray area, the value for Fevap at θ close to 1 is irrelevant. From Fig

6.4, there is still good agreement for coverages close to a monolayer up to 0.98.

6.3 Simulations for the QE map of a CPD photocathode

This section presents the results for modeling the surface QE distribution from

cesium coverage for a CPD photocathode when the models for cesium resupply,

diffusion, and evaporation are combined together via Eq (2.1).

In order to obtain the QE from the cesium coverage θ, the Modified Fowler-

Dubridge Model for QE was used [22] :

QE ≈ (1−R)Fλ(T )

(
U [βT (h̄ω − Φ(θ))]

U [βTµ]

)
(6.2)

Here, h̄ω is the energy of the incident photon, T is the temperature of the photo-

cathode, βT is the usual 1/kT , and µ is the Fermi level of the surface. A complete

treatment of photoemission is beyond the scope of this dissertation and the reader

is referred to the following references: [21] [51]. Eq (6.2) captures the major pro-

cesses of photoemission as follows – the reflectivity of the surface, R, determines

how much incident light is absorbed by the material; afterwards Fλ(T ) gives the

fraction of electrons that do NOT suffer a scattering event during their transport to

the surface (if they do, they’re lost, at least in the leading order approximation). Fi-
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Figure 6.5: Results for modeling the cesium coverage θ and the corresponding QE
map across the surface for an operating temperature of 500 K at a wavelength of

475 nm

nally, U(x) is the Fowler-Duridge function and gives the probability for the electrons

reaching the surface to escape into vacuum and be “emitted”. The cesium coverage

θ comes into play in determining the surface workfunction Φ [36]. The worfunction

vs cesium coverage for various metals including tungsten are studied and reported

in previous works [16] [21].

Fig 6.5 presents a plot of the cesium coverage θ and the corresponding QE

map across the surface of a hexagonal region on the CPD (Fig 4.1) after equilibrium

has been established. As discussed in chapter 4, because of the periodic nature of

the CPD surface, it is only necessary to model a small region and assume periodic

boundary conditions. At equilibrium, the simulations show that the QE across the

surface is nearly uniform. As seen on the QE scale in Fig 6.5, there is less than a 1%

variation in the QE maintained across the surface. The model also predicts that the
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QE maintained across the surface changes with temperature as expected. Higher

temperatures yield lower cesium coverages on the surface thereby changing the QE.

A plot of the average QE across the surface at various wavelengths as a function of

cathode temperature is given in Fig 6.6. Though typical operating temperatures for

a CPD photocathode will be closer to 500 K if rejuvenated continuously, or room

temp (or lower) if rejuvenated periodically, the plot shows the predictive capabilities

of the model over a range of temperatures.

Pore variations and non-homogeneity for realistic surfaces were also studied.

Comparison with a scenario where two of the six pores in the simulated region were

intentionally blocked off is shown in Fig 6.7. The ideal case where all the pores have

the same Cs output is displayed next to it. Even for the non ideal case, there is no
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greater than a 5% variation in QE across the surface compared to a less than 1%

variation for an ideal surface where all the pores emit cesium uniformly.

0.2
0.4

0.6
0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

0.0239 0.0241 0.0243 0.0245 0.0247

Student Version of MATLAB

Quantum Efficiency (QE)

0.02470.0239 0.0243

QE with Two Clogged Pores

Figure 6.7: Results for modeling the QE map across the surface for an operating
temperature of 500 K when two out of six pores are clogged

At peak operation, a CPD photocathode may be required to produce on the or-

der of a nC of charge in less than 50 ps from mm2 areas, suggesting current densities

on the order of 1kA/cm2. Differences in QE therefore can introduce non-uniformity

which is correlated with increases in cathode intrinsic emittance. The present sim-

ulations for the CPD photocathodes concluded that the periodic pore arrangement,

in both pore size and spacing, bodes well for maintaining more uniform coverage

than would be possible using the random pore distribution and size characteristic

of conventional sintered tungsten dispenser cathodes. The simulations also demon-

strate that non uniformity in QE still can arise for realistic CPD surfaces. The
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extent to which this affects the beam quality and emittance will be the subject of a

separate investigation in a future work.

6.4 Chapter Conclusions

• The development of robust, long life, high efficiency photoemitters is critically

needed for applications demanding high brightness electron sources, such as

particle accelerators and high power Free Electron Lasers (FELs) [43].

• A model of the surface of a CPD, using a novel numerical technique, was

developed to include resupply, evaporation, and migration of cesium.

• Simulations of cesium migration within the pores suggest that the coverage

maintained along the pore walls to be close to uniform over the pore length.

The cesium coverage able to be maintained at the surface is not strongly

dependent on emitter thickness.

• The theory of cesium evaporation agrees with the experimental data taken by

Taylor and Langmuir reported in their paper [53] to within 5%.

• Simulations of the CPD surface show the QE to be uniform at equilibrium dur-

ing operation at various temperatures, with optimum operating temperatures

at around 500 K.
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Table 6.1: Experimental fitting data for evaporation rate extrapolation[53].
log10 Fevap = A−B/T

Coverage A B

.002 24.2328 14043.2

.005 24.6401 14013.3

.01 24.9558 13963.8

.02 25.2859 13866

.03 25.4913 13769

.04 25.6459 13673

.05 25.7719 13579

.06 25.8804 13486

.07 25.9764 13394

.08 26.0633 13304

.10 26.2179 13127

.12 26.3556 12954

.15 26.5388 12703

.20 26.8081 12306

.25 27.050 11934

.30 27.276 11583

.40 27.707 10939

.50 28.142 10364

.55 28.375 10098

.60 28.629 9849

.65 28.916 9623

.70 29.256 9425

.75 29.683 9256

.80 30.266 9110

.85 31.159 8985

.90 32.821 8881

.95 37.495 8798
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Chapter 7

Concluding Remarks

7.1 Discussion of Results

Controlled porosity dispenser photocathodes (CPDs) are electron sources be-

ing developed for accelerator applications demanding high brightness electron beams

such as Free Electron Lasers (FELs). CPDs promise to fill the current technology

gap for a robust, long life, high efficiency photoemitters (Fig 1.1). The work done

in this dissertation focuses on the modeling and simulation for the operation of

tungsten based CPDs fabricated by sintering micron diameter tungsten wire (Fig

1.4). Such a model is useful for optimizing CPD performance during operation, as

well as exploring the parameter space for CPDs. The results obtained in this study

demonstrate that the model can be used to predict the operation of the CPD at

various cathode temperatures and configurations.

The three major physical processes for a CPD photocathode that were modeled

in this dissertation were:

1. Chapter 3: Cesium flow and resupply from the reservoir through the pores

onto the surface

2. Chapter 4: Cesium diffusion across the surface from the pores

3. Chapter 5: Cesium evaporation off the CPD pores and surface during opera-
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tion

For modeling the cesium flow and resupply from the reservoir through the pores,

the results show the cesium coverage along the pore walls to be close to uniform

over various temperatures, Fig 6.1. The coverage along the pore walls determine the

cesium coverage at the pore boundaries on the surface which is how cesium resupply

was simulated. The emitter thickness does not have a large affect on the cesium

coverage along the pore walls and the cesium resupply rate to the surface for the

regime where L/R >> 1 (where L is the emitter thickness and R is pore radius).

The assumption of a linear pressure profile needs to be looked into and verified in a

future work.

In modeling the cesium resupply, diffusion and evaporation at the surface, a

QE map of the CPD surface was generated for various cathode temperatures and

configurations. For the ideal configuration where all the pores are functioning, the

model shows that the periodic geometry of the CPD allows the surface QE to not

vary by more than 5% during normal cathode operation, as in Fig 6.5. In the case

where some of the pores are blocked off, the simulations show more variation and

structure to the QE maps generated, as in Fig 6.7. Such QE maps of the surface

can be used in a future work to simulate the beam quality and or intrinsic emittance

from the cathode for accelerator applications.

For the evaporation modeling of cesium off the surface of tungsten, comparison

with experimental data taken by Taylor and Langmuir [53] gave impressive agree-

ment across several orders of magnitude, as depicted in Fig 6.4. It is seen in Fig 6.4
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that the theory performs well in capturing the qualitative behavior of evaporation

over a wide range of coverages and temperatures. Quantitatively, the evaporation

values predicted by the model agree to within 5% for the shaded gray region of

Taylor’s own reported extrapolations. In modeling the CPD, it was assumed that

evaporation was primary mechanism in which cesium is lost on the CPD surface.

Effects such as contamination and ion back bombardment, all things which are lim-

ited by vacuum quality, were not included. The model assumes that the vacuum

is optimized such that affects from contamination are negligible when compared to

evaporation over the lifetime of the CPD.

In the end, the theory developed is complete and is able to make predictions

on the QE for CPD photocathodes at various temperatures and configurations in

vacuum. It remains for future studies to modify the existing assumptions in the

model as well as obtain predictions for the beam profile and emittance coming off

the cathode going into the accelerator.
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Appendix A

Main Source Code in MATLAB

% This i s a d i f f u s i o n code t ha t s imu la t e s 2D sur f a ce d i f f u s i o n on a hexgr id

% p l o t t e d on a t r i a n gu l a r i n t e r l a c e d l a t t i c e g r i d . On t h i s g r i d each po in t

% w i l l be at the cen ter o f a hexagonal pa t t e rn and have s i x ne i ghbor ing

% po in t s surrounding i t The 2D l a p l a c i an opera tor f o r each po in t on t h i s

% t r i a n g u l a r g r i d w i l l use a l l s i x o f the ne i ghbor ing po in t s .

%% Beginning Value A l l o c a t i on s

global N Dx Dy A11 y d r h v s i z e d 1 n1 Beta Gamma pores AA T

N = input ( ’ pore d i s c r e t i z a t i o n parameter ? \n ’ ) ;

RR = input ( ’ Wire Radius in meters ? \n ’ ) ;

LL = input ( ’ Emitter Thickness in meters ? \n ’ ) ;

T = input ( ’Temp? \n ’ ) ;

t imes teps = input ( ’What i s the number o f time s t ep s you wish to i t e r a t e ? \n ’ ) ;

NN t = 2∗N+30;

pore1 = zeros (1 ,N+2∗sum( 1 :N−1)) ;

pore2 = zeros (1 ,N+2∗sum( 1 :N−1)) ;

s = (NN t∗2∗10)+(20+N∗2 ) ;

s2 = (NN t/2+5)∗NN t∗2+20+(N∗2)+20+1;
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nn1 = 1 ;

nn2 = 1 ;

for i = 1 :N

pore1 ( nn1 : nn1+2∗( i −1))=s : s +2∗( i −1);

pore2 ( nn2 : nn2+2∗(N−i ))= s2 : s2 +2∗(N−i ) ;

s = s+2∗NN t−2;

s2 = s2 + 2∗NN t ;

nn1 = nn1+2∗( i −1)+1;

nn2 = nn2+2∗(N−i )+1;

end

i 2 = N−2;

i n t e r i o r 1 = 0 ;

i n t e r i o r 2 = 0 ;

i n t e r i o r 3 = 0 ;

i n t e r i o r 4 = 0 ;

i n t e r i o r 5 = 0 ;

i n t e r i o r 6 = 0 ;

N2 = 2∗NN t ;

ve r t ex x1 = zeros ( 1 , (N2+1)ˆ2);

ve r t ex y1 = zeros ( 1 , (N2+1)ˆ2);

nn = 1 ;

s1 = 0 ;

for i = 1 :N2+1
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ver t ex x1 (nn : nn+N2) = s1 : 0 . 5 : s1+N2∗ 0 . 5 ;

ve r t ex y1 (nn : nn+N2) = 0 : sqrt ( 3 ) / 2 : sqrt (3)/2∗N2 ;

nn = nn+N2+1;

s1 = s1 +1;

end

s1 =1;

vs2 = 1 :N2+1;

t r i = zeros (2∗N2∗N2 , 3 ) ;

for i = 1 :N2

vs1 = vs2 ;

vs2 = vs1+N2+1;

t r i ( s1 : 2 : s1 +(2∗N2−1)−1 ,1) = vs1 ( 1 : N2 ) ;

t r i ( s1 : 2 : s1 +(2∗N2−1)−1 ,2) = vs2 ( 1 : N2 ) ;

t r i ( s1 : 2 : s1 +(2∗N2−1)−1 ,3) = vs1 ( 2 : N2+1);

t r i ( s1 +1:2 : s1 +(2∗N2−1) ,1) = vs1 ( 2 : N2+1);

t r i ( s1 +1:2 : s1 +(2∗N2−1) ,2) = vs2 ( 2 : N2+1);

t r i ( s1 +1:2 : s1 +(2∗N2−1) ,3) = vs2 ( 1 : N2 ) ;

s1 = s1+2∗N2 ;

end

pore11 = zeros (1 ,N+2∗sum( 1 :N−1)) ;

pore22 = zeros (1 ,N+2∗sum( 1 :N−1)) ;

nn1 = 1 ;

nn2 = 1 ;

for i = 1 :N
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pore11 ( nn1 : nn1+2∗( i −1)) = pore1 ( nn1 : nn1+2∗( i −1))+N2∗10+N2∗( i ) ;

pore22 ( nn2 : nn2+2∗(N−i ) ) = pore2 ( nn2 : nn2+2∗(N−i ))+N2∗(NN t/2+5)+N2∗( i ) ;

nn1 = nn1+2∗( i −1)+1;

nn2 = nn2+2∗(N−i )+1;

end

pore33 = pore22−60−2∗N−2∗N;

pore44 = pore11+ 2∗N2∗(NN t−1)+N2 ;

pore55 = pore22+ 2∗N2∗(NN t−1)+N2 ;

pore66 = pore44+60+2∗N+2∗N;

pore id1 = zeros (1 , s ize ( pore11 , 2 ) ) ;

pore id2 = zeros (1 , s ize ( pore11 , 2 ) ) ;

pore id3 = zeros (1 , s ize ( pore11 , 2 ) ) ;

pore id4 = zeros (1 , s ize ( pore11 , 2 ) ) ;

pore id5 = zeros (1 , s ize ( pore11 , 2 ) ) ;

pore id6 = zeros (1 , s ize ( pore11 , 2 ) ) ;

for i = 1 : s ize ( pore11 , 2 )

pore id1 ( i ) = sum( ve r t ex x1 ( t r i ( pore11 ( i ) , 1 : 3 ) ) )+

sum( ve r t ex y1 ( t r i ( pore11 ( i ) , 1 : 3 ) ) ) ;

pore id2 ( i ) = sum( ve r t ex x1 ( t r i ( pore22 ( i ) , 1 : 3 ) ) )+

sum( ve r t ex y1 ( t r i ( pore22 ( i ) , 1 : 3 ) ) ) ;

pore id3 ( i ) = sum( ve r t ex x1 ( t r i ( pore33 ( i ) , 1 : 3 ) ) )+

sum( ve r t ex y1 ( t r i ( pore33 ( i ) , 1 : 3 ) ) ) ;

pore id4 ( i ) = sum( ve r t ex x1 ( t r i ( pore44 ( i ) , 1 : 3 ) ) )+

sum( ve r t ex y1 ( t r i ( pore44 ( i ) , 1 : 3 ) ) ) ;

pore id5 ( i ) = sum( ve r t ex x1 ( t r i ( pore55 ( i ) , 1 : 3 ) ) )+
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sum( ve r t ex y1 ( t r i ( pore55 ( i ) , 1 : 3 ) ) ) ;

pore id6 ( i ) = sum( ve r t ex x1 ( t r i ( pore66 ( i ) , 1 : 3 ) ) )+

sum( ve r t ex y1 ( t r i ( pore66 ( i ) , 1 : 3 ) ) ) ;

end

Npore = N;

N = N2 ;

ver tex x11 = zeros ( 1 , (N+1)ˆ2−((N/2∗N/2)+N/ 2 ) ) ;

ve r tex y11 = zeros ( 1 , (N+1)ˆ2−((N/2∗N/2)+N/ 2 ) ) ;

mm = s ize ( ver tex x11 ) ;

mm = mm( 2 ) ;

mm = mm−N/2 ;

n1 = 1 ;

s1 = 0.5∗N/2 ;

s2 = N;

ny1 = N/2∗( sqrt ( 3 ) / 2 ) ;

%% Hex Grid ( x , y ) Coordinate A l l o ca t i on

%

% The f o l l ow i n g s e c t i on o f code a s s i gn s the co r r e c t ( x , y ) coord ina te va l u e s

% to the v e c t o r s t ha t s t o r e them ve r t e x x 1 and v e r t e x y1 . The code

% s y s t ema t i c a l l y f i l l s each vec t o r from both ends towards the cen ter

% s imu laneous ly . Graph ica l l y , t h i s i s the same as s t a r t i n g from the l e f t

% and r i g h t most d iagona l o f the hex g r i d l a t i c e and working towards the

% center d iagona l .

for i = 1 :N/2+1
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ver tex x11 ( n1 : n1+N/2+( i −1)) = s1 : 0 . 5 : s1 +0.5∗((N/2)+ i −1);

ve r tex x11 (mm:mm+N/2+( i −1)) = s2 : 0 . 5 : s2 +0.5∗((N/2)+ i −1);

ve r tex y11 ( n1 : n1+N/2+( i −1)) = ny1 : sqrt ( 3 ) / 2 : ny1+sqrt ( 3 ) /2∗ ( (N/2)+ i −1);

ve r tex y11 (mm:mm+N/2+( i −1)) = 0 : sqrt ( 3 ) / 2 : sqrt ( 3 ) /2∗ ( (N/2)+ i −1);

mm = mm−(N/2+ i +1);

n1 = n1+N/2 + i ;

s1 = s1 +0.5 ;

s2 = s2−1;

ny1 = ny1−sqrt ( 3 ) / 2 ;

end

xmax = vertex x11 ( (N+1)ˆ2−((N/2∗N/2)+N/ 2 ) ) ;

mm = 2∗N∗N∗(1−1/4);

nn = 1 ;

mm2 = s ize ( ver tex x11 ) ;

mm2 = mm2( 2 ) ;

mm2 = mm2−N/2 ;

n1 = 1 ;

t r i = zeros ( 1 , 3 ) ;

h = 1/( ver tex x11 ( (N+1)ˆ2−((N/2∗N/2)+N/2))− ver tex x11 ( 1 ) ) ;

%% Generate the Vertex S p e c i f i c a t i o n ” t r i ” Matrix to Generate Hex Grid Base

for n = 1 :N/2
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vs1 = nn : nn+N/2+(n−1);

vs2 = nn+N/2+n : nn+N+2∗n ;

t r i ( n1 : 2 : n1+2∗(N/2+n−1) ,1) = vs1 ;

t r i ( n1 : 2 : n1+2∗(N/2+n−1) ,2) = vs2 ( 1 : n+N/ 2 ) ;

t r i ( n1 : 2 : n1+2∗(N/2+n−1) ,3) = vs2 ( 2 : n+N/2+1);

t r i ( n1 +1:2 : n1+2∗(N/2+n−1) ,1) = vs1 ( 1 : n+N/2−1);

t r i ( n1 +1:2 : n1+2∗(N/2+n−1) ,2) = vs2 ( 2 : n+N/ 2 ) ;

t r i ( n1 +1:2 : n1+2∗(N/2+n−1) ,3) = vs1 ( 2 : n+N/ 2 ) ;

n1 = n1+2∗(N/2+n−1)+1;

nn = nn+N/2 + n ;

vs1 = mm2:mm2+N/2+(n−1);

vs2 = mm2−(N/2+n+1): mm2−1;

t r i (mm−2∗(N/2+n−1) :2 :mm, 1 ) = vs2 ( 1 : n+N/ 2 ) ;

t r i (mm−2∗(N/2+n−1) :2 :mm, 2 ) = vs1 ;

t r i (mm−2∗(N/2+n−1) :2 :mm, 3 ) = vs2 ( 2 : n+N/2+1);

t r i (mm−2∗(N/2+n−1)+1:2:mm, 1 ) = vs2 ( 2 : n+N/ 2 ) ;

t r i (mm−2∗(N/2+n−1)+1:2:mm, 2 ) = vs1 ( 1 : n+N/2−1);

t r i (mm−2∗(N/2+n−1)+1:2:mm, 3 ) = vs1 ( 2 : n+N/ 2 ) ;

mm = mm−2∗(N/2+n−1)−1;
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mm2 = mm2−(N/2+n+1);

end

s i z e t r i = s ize ( t r i , 1 ) ;

hh = zeros ( s i z e t r i , 1 ) ;

for i = 1 : s i z e t r i

hh ( i , 1 ) = sum( ver tex x11 ( [ t r i ( i , 1 ) t r i ( i , 2 ) t r i ( i , 3 ) ] ) ) +

sum( ver tex y11 ( [ t r i ( i , 1 ) t r i ( i , 2 ) t r i ( i , 3 ) ] ) ) ;

end

nnid1 = zeros (1 , s ize ( pore11 , 2 ) ) ;

nnid2 = zeros (1 , s ize ( pore11 , 2 ) ) ;

nnid3 = zeros (1 , s ize ( pore11 , 2 ) ) ;

nnid4 = zeros (1 , s ize ( pore11 , 2 ) ) ;

nnid5 = zeros (1 , s ize ( pore11 , 2 ) ) ;

nnid6 = zeros (1 , s ize ( pore11 , 2 ) ) ;

for i = 1 : s ize ( pore11 , 2 )

nnid1 ( i ) = find (abs (hh−pore id1 ( i ) ) < 0 . 0 0 0 0 1 ) ;

nnid2 ( i ) = find (abs (hh−pore id2 ( i ) ) < 0 . 0 0 0 0 1 ) ;

nnid3 ( i ) = find (abs (hh−pore id3 ( i ) ) < 0 . 0 0 0 0 1 ) ;

nnid4 ( i ) = find (abs (hh−pore id4 ( i ) ) < 0 . 0 0 0 0 1 ) ;

nnid5 ( i ) = find (abs (hh−pore id5 ( i ) ) < 0 . 0 0 0 0 1 ) ;

nnid6 ( i ) = find (abs (hh−pore id6 ( i ) ) < 0 . 0 0 0 0 1 ) ;

end
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pores = zeros (1 ,3∗3∗ s ize ( pore11 , 2 ) ) ;

pores ( 1 :end) = [ t r i ( nnid1 , : ) t r i ( nnid2 , 1 : 3 ) t r i ( nnid3 , 1 : 3 ) ] ;

i f i2>0

nn1 = 3 ;

nn2 = 3 ;

s = 1 ;

s2 = 1 ;

for i = 1 : i 2

i n t e r i o r 1 ( s : s +2∗( i −1)) =

t r i ( nnid1 ( nn1 : nn1+2∗( i −1) ) , 2 ) ;

i n t e r i o r 2 ( s2 : s2 +2∗(Npore−3)−2∗( i −1)) =

t r i ( nnid2 ( nn2 : nn2+2∗(Npore−3)−2∗( i −1) ) , 2 ) ;

i n t e r i o r 3 ( s2 : s2 +2∗(Npore−3)−2∗( i −1)) =

t r i ( nnid3 ( nn2 : nn2+2∗(Npore−3)−2∗( i −1) ) , 2 ) ;

i n t e r i o r 4 ( s : s +2∗( i −1)) = t r i ( nnid4 ( nn1 : nn1+2∗( i −1) ) , 2 ) ;

i n t e r i o r 5 ( s2 : s2 +2∗(Npore−3)−2∗( i −1)) =

t r i ( nnid5 ( nn2 : nn2+2∗(Npore−3)−2∗( i −1) ) , 2 ) ;

i n t e r i o r 6 ( s : s +2∗( i −1)) = t r i ( nnid6 ( nn1 : nn1+2∗( i −1) ) , 2 ) ;

s = s +2∗( i −1)+1;

nn1 = nn1+i ∗2+1;

s2 = s2 +2∗(Npore−3)−2∗( i −1)+1;

nn2 = nn2+2∗(Npore−3)−2∗( i −1)+5;

end

end
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%% Preparat ion to Obtain the Laplac ian Operator on the Hex Grid

%

%

% The main hex g r i d program cr ea t e s the 2D Laplacian matrix in sparce band

% s to rage mode us ing the func t i on ” spd iag s ” . The way spd iag s ( inpu t s ) works

% i s t ha t i t on ly s t o r e s the nonzero d iagona l s o f a p a r t i c u l a r matrix and

% re f e r enc e s on ly those va l u e s when c a l l i n g any matrix i n v e r s i on or any

% other opera t ion . In t h i s manner , the func t i on spd iag s i s ex t remly

% e f f i c i e n t when i t comes to working wi th huge banded matr ices such as in

% our d i f f u s i o n problem . The zeros in t h e s e s banded matr ices would take up

% too much ex t ra memory us ing conven t iona l matrix s t o rage schemes . In

% order to c a l l the func t i on spd iag s we need to have a l l the necessary

% inpu t s to g i v e i t . The func t i on c a l l f o r ” spd iag s ” i s :

%

%

% A = spd iag s (B−matrix , d , m, n)

%

%

% A == The m by n banded matrix one wishes to c r ea t e and s t o r e

% us ing spd iag s

% B−matrix == A min(m, n)−by−p matrix , u s u a l l y ( but not n e c e s s a r i l y ) f u l l ,

% whose columns are the d i agona l s o f A.

% d == A vec to r o f l e n g t h p whose i n t e g e r components s p e c i f y the

% d iagona l s in A.

%

% We proceed in the next few l i n e s to genera te the B−matrix and d column
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% vec to r . The reader i s r e f e r e d on l ine to :

% h t t p ://www. mathworks . com/ he lp / techdoc / r e f / spd iag s . html f o r a more

% complete d i s cu s s i on o f how the d iagona l s o f a banded matrix are l a b e l e d

% by i n t e g e r s in the spd iag func t i on c a l l .

%

% The way the B−matrix i s c rea t ed i s in s e c t i o n s . While the f u l l banded

% matrix i s never s t o r ed or crea t ed in t h i s program ( thanks to the ” spd iag ”)

% the c r ea t i on o f the inpu t s necessary f o r spd iag to work such as B−matrix

% or d vec to r f r e q u en c t l y r e qu i r ed one to focus and th ink about how the

% f u l l banded matrix l o o k s .

%

% The f u l l matrix l a p l a c i a n opera tor ( c a l l i t f u l l (A)) f o r the hex g r i d can

% be d i v i d ed in t o s e c t i o n s . Each s e c t i on i s a d i f f e r e n t d iagona l on the

% hex g r i d l a t t i c e . As an example , one i s r e f f e r e d to FIG 1 in t h i s code .

% In t h i s sec t i on , po in t s 01 02 03 04 would be a s e c t i on in the matrix

% f u l l (A) and po in t s 05 06 07 08 09 would be a d i f f e r e n t s e c t i on .

s = 0 ;

y = zeros (1 ,N/ 2 ) ;

for i = 1 :N/2

y ( i ) = N/2+3+s ;

s = s + N/2+2+( i −1);

end

d = zeros (N+5 ,1) ;

z = −(N/2+2);
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d (1) = −(N/2+2)+1;

d(N+5) = N/2+1;

z1 = N/2+2;

for n = 1 :N/2

d(n+1) = z ;

z = z−1;

d(N+5−(n ) ) = z1 ;

z1 = z1 +1;

end

%% Generating the 2D Laplacian Operator on the Hex Grid La t t i c e

%

%

% The f i r s t column of B−matrix conta ins the nonzero e lements o f the

% diagona l number s p e c i f i e d by the f i r s t e lement in vec to r d . The second

% column of the B−matrix conta ins the nonzero e lements o f the d iagona l

% number s p e c i f i e d by the second element in vec to r d and so on and so on .

% The B−matrix i s f i l l e d by moving a long the down rows o f the f u l l (A)

% matrix . Each ” s e c t i on ” o f f u l l (A) i s grouped and a l l o c a t e d in to i t s

% proper l o c a t i o n in the B−matrix s e p a r a t e l y . The ” s e c t i o n s ” o f the

% f u l l (A) matrix i s d e s c r i b ed in the prev ious commented s e c t i on .

% S p e c i f i c a l l y , each po in t on the hex g r i d uses i t s s i x ne i ghbor ing po in t s

% to form the approximation to the l a p l a c i a n . The d iagona l s used in the

% f u l l (A) matrix are the same in each s e c t i on . V i sua l l y the s e c t i o n s are

% simply d i f f e r e n t d iagona l−s t r i p s on the hex g r i d as exp l a ined in the
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% prev ious s e c t i on . I f the boundary cond i t i on s on the hex g r i d are known ,

% then the f i r s t non−cons tant po in t i s po in t N/2+3 and the diagona l−s t r i p

% in t h i s s e c t i on conta ins N/2 po in t s o f i n t e r e s t . The d iagona l s to be

% used f o r t h i s f i r s t s e c t i on are d iagona l s −(N/2+2) , −(N/2+1) , −1 ,0 ,1 ,

% N/2+2 and N/2+3. The d iagona l numbers and how they r e l a t e to the f u l l (A)

% matrix are exp l a ined in the MATLAB webs i t e g i ven e a r l i e r . S u f f i c e to say

% tha t the nega t i v e d i agona l s are d i a gona l s be low the main d iagona l in the

% matrix and the p o i s i t i v e d i agona l s are the d i agona l s above the main

% diagona l in the matrix .

Nhalf = ( (N/2+1)ˆ2+sum( 0 :N/ 2 ) ) ;

kev = 8.617343∗10ˆ(−5) ;

L = 30∗10ˆ−6;

D0 = 0.23∗exp(− .67/( kev∗T) ) ;

D0 = D0∗ (1/100)∗ (1/100) ;

t d i f f u s i o n = (hˆ2∗Lˆ2)/(D0 ) ;

EE = t d i f f u s i o n ;

dt = (EE∗D0)/Lˆ2 ;

r = (3∗hˆ2)/ dt ;

d (N/2+2:N/2+4) = [−1 0 1 ] ;

s i z e d 1 = s ize (d , 1 ) ;

B = zeros ( Nhalf , s ize (d , 1 ) ) ;

B( 1 :end , N/2+3) = 1 ;

z = ones ( Nhalf , 1 ) ;
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VarDx = zeros ( Nhalf , s ize (d , 1 ) ) ;

VarDy = zeros ( Nhalf , s ize (d , 1 ) ) ;

for n = 1 :N/2

i f n ˜=N/2

B( y (n ) : y (n)+N/2−2+n , [ n : n+1 N/2+2 N/2+4 s ize (d,1)−n−1: s ize (d,1)−n ] ) = −1;

VarDx( y (n ) : y (n)+N/2−2+n , n+1) = 1 ;

VarDx( y (n ) : y (n)+N/2−2+n , s ize (d,1)−n−1) = −1;

B( y (n ) : y (n)+N/2−2+n ,N/2+3) = 6+(3∗hˆ2)/ dt ;

z ( y (n ) : y (n)+N/2−2+n) = (3∗hˆ2)/ dt − 6 ;

VarDy( y (n ) : y (n)+N/2−2+n , [ n N/2+4]) = 1 ;

VarDy( y (n ) : y (n)+N/2−2+n , [N/2+2 s ize (d,1)−n ] ) = −1;

else

B( y (n ) : y (n)+N/2−2+n , n : n+1) = −2;

B( y (n ) : y (n)+N/2−2+n , [ N/2+2 N/2+4]) = −1;

VarDx( y (n ) : y (n)+N/2−2+n , n+1) = 1 ;

VarDx( y (n ) : y (n)+N/2−2+n , n) = −1;

B( y (n ) : y (n)+N/2−2+n ,N/2+3) = 6+(3∗hˆ2)/ dt ;

z ( y (n ) : y (n)+N/2−2+n) = (3∗hˆ2)/ dt − 6 ;

VarDy( y (n ) : y (n)+N/2−2+n , [N/2+4 n ] ) = 1 ;

VarDy( y (n ) : y (n)+N/2−2+n , [N/2+2 n+1]) = −1;

end

end
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B( 2 :N/ 2 , [N/2+2 N/2+4]) = −1;

B( 2 :N/2 , [ s i zed1−1 s i z e d 1 ] ) = −2;

B( 2 :N/2 ,N/2+3) = 6+(3∗hˆ2)/ dt ;

z ( 2 :N/2) = (3∗hˆ2)/ dt − 6 ;

VarDx ( 2 :N/2 , s i z e d 1 ) = −1;

VarDx ( 2 :N/2 , s i zed1 −1) = 1 ;

VarDy ( 2 :N/2 , [N/2+2 s i z e d 1 ] ) = −1;

VarDy ( 2 :N/2 , [N/2+4 s ized1 −1]) = 1 ;

B(1 , N/2+4) = −2;

B(1 , s i z e d 1 ) = −2;

B(1 , s i zed1 −1) = −2;

B(1 ,N/2+3) = 6+(3∗hˆ2)/ dt ;

z (1 ) = (3∗hˆ2)/ dt − 6 ;

B(N/2+1, N/2+2) = −2;

B(N/2+1, s i zed1 −1) = −2;

B(N/2+1, s i z e d 1 ) = −2;

B(N/2+1,N/2+3) = 6+(3∗hˆ2)/ dt ;

z (N/2+1) = (3∗hˆ2)/ dt − 6 ;

% BOTTOM LEFT BOUNDARY

for i = 1 : (N−2)/2
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B( y ( i )−1 , [ i N+5− i ] ) = −1;

B( y ( i )−1 , [N/2+4 N+4− i ] ) = −2;

B( y ( i )−1 , N/2+3) = 6+(3∗hˆ2)/ dt ;

VarDx( y ( i )−1 , N+4− i ) = 1 ;

VarDx( y ( i )−1 , N+4) = −1;

VarDy( y ( i )−1 ,[ i N/2+4 ] ) = 1 ;

VarDy( y ( i )−1 ,[N+5− i N+4− i ] ) = −1;

z ( y ( i )−1) = (3∗hˆ2)/ dt − 6 ;

end

% TOP BOUNDARY

for i = 1 : (N−2)/2

B( y(1+ i )−2 , [ i+1 N+4− i ] ) = −1;

B( y(1+ i )−2 , [N+5− i N/2+2 ] ) = −2;

B( y(1+ i )−2 , N/2+3) = 6+(3∗hˆ2)/ dt ;

z ( y(1+ i )−2) = (3∗hˆ2)/ dt − 6 ;

VarDx( y(1+ i )−2 , N+4− i ) = 1 ;

VarDx( y(1+ i )−2 , i +1) = −1;

VarDy( y(1+ i )−2 , [N/2+2 N+5− i ] ) = 0 ;

end

B( y (N/2)−1 , N/2+3) = 6+(3∗hˆ2)/ dt ;

B( y (N/2)−1 , [ i N/2+4]) = −3;

z ( y (N/2)−1) = (3∗hˆ2)/ dt − 6 ;

B( y (N/2)−1+N, N/2+3) = 6+(3∗hˆ2)/ dt ;

B( y (N/2)−1+N, [N/2+2 i +1]) = −3;
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z ( y (N/2)−1+N) = (3∗hˆ2)/ dt − 6 ;

xx = 0:(10∗10ˆ−6)/10:LL ;

g2 = s ize ( xx , 2 ) ;

s lopeyy0 = ( .9 − . 1 )/( (1/450) − (1/700)) ;

b factoryy0 = .9−( s lopeyy0 )∗ ( 1 / 4 5 0 ) ;

yy0=s lopeyy0 ∗(1/T)+bfactoryy0 ;

dude = zeros (1 , g2 ) ;

dude ( 1 : g2 ) = yy0 ;

dude = dude ’ ;

B( pores , : ) = 0 ;

B( pores ,N/2+3) = 6+(3∗hˆ2)/ dt ;

z ( pores ) = 0 ;

VarDx( pores , : ) = 0 ;

VarDy( pores , : ) = 0 ;

s i zeB = s ize (B, 2 ) ;

s i zeB1 = s ize (B, 1 ) ;
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for n = 1 : s i zeB

m = B( : , n ) ;

m = m (mod ( ( 1 : s i zeB1)−d(n)−1 , s i zeB1 )+1);

B( : , n ) = m;

end

s izeDx = s ize (VarDx , 2 ) ;

s izeDy = s ize (VarDy , 2 ) ;

for n = 1 : s izeDx

m = VarDx ( : , n ) ;

m = m (mod ( ( 1 : s i zeB1)−d(n)−1 , s i zeB1 )+1);

VarDx ( : , n ) = m;

end

for n = 1 : s izeDy

m = VarDy ( : , n ) ;

m = m (mod ( ( 1 : s i zeB1)−d(n)−1 , s i zeB1 )+1);

VarDy ( : , n ) = m;

end

B1 = −B;

B1 ( : ,N/2+3) = z ;

B2 = B1 ;

B2 ( : ,N/2+3) = 0 ;

A = spdiags (B, d , Nhalf , Nhalf ) ;
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A1 = spdiags (B1 , d , Nhalf , Nhalf ) ;

A11 = spdiags (B2 , d , Nhalf , Nhalf ) ;

f f = A ˜= −1 & A ˜= 6+(3∗hˆ2)/ dt & A˜=0 & A ˜=1 & A˜=−2 & A˜=−3;

A( f f ) = −1;

f f = find (A1 ˜= 1 & A1˜=(3∗hˆ2)/ dt − 6 & A1 ˜=0 & A1˜=2 & A1˜=3);

A1( f f ) = 1 ;

A11( f f ) = 1 ;

Dx = spdiags (VarDx , d ( 1 : s izeDx ) , Nhalf , Nhalf ) ;

Dy = spdiags (VarDy , d ( 1 : s izeDy ) , Nhalf , Nhalf ) ;

f f = find (Dx < −1);

Dx( f f ) = −1;

f f = find (Dx>1);

Dx( f f ) = 1 ;

f f = find (Dy<−1);

Dy( f f ) = −1;

f f = find (Dy>1);

Dy( f f ) = 1 ;

zz = zeros ( (N+1)ˆ2−((N/2∗N/2)+N/ 2 ) , 1 ) ;

z = zeros ( Nhalf , 1 ) ;

z ( pores ) = yy0 ;

v = 1 ;

h11 = 1 ;

ver tex x11 = vertex x11 . / xmax ;

ver tex y11 = vertex y11 . / xmax ;

ymax = max( ver tex y11 ) ;
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Beta = 1 ;

Gamma = 0 ;

z1 = z ;

f f = find (A1==(3∗hˆ2)/ dt − 6 ) ;

A1( f f ) = −6;

f f = (N+1)ˆ2−((N/2∗N/2)+N/2)+1;

f f = f f /2 ;

uox = vertex x11 ( f f ) ;

uoy = vertex y11 ( f f ) ;

FFF = moviein ( t imes teps ) ;

AA = ((3∗h ˆ2)/2 )∗ ( (Lˆ2)/(D0 ) ) ;

z j j 0 1 = z1 ;

for f = 1 :500

eev = AA∗Langmuir ( z1 ,T) / ( ( 4∗1 0 ˆ 1 4 ) ) ;

eev ( pores ) = 0 ;

bb = r ∗ z1+(A1∗ z1 ) . ∗ ( Beta)−eev ;

bb( pores ) = ( r +6)∗z1 ( pores ) ;

while h11>0.001

evap11 = AA∗Langmuir ( z j j 01 ,T) / ( ( 4∗1 0 ˆ 1 4 ) ) ;

evap11 ( pores ) = 0 ;
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b = −evap11+bb ;

z1 = A\b ;

h11 = sum(abs ( z1−z j j 0 1 ) ) ;

z j j 0 1 = z1 ;

end

h11 = 1 ;

end

ysu r f = z1 (max( i n t e r i o r 1 +2)) ;

for f = 1 : t imes teps

dude = Knud di f fus ion (RR, LL ,T, dude , ysur f , yy0 , xx ) ;

z1 ( pores ) = dude (end−1);

eev = AA∗Langmuir ( z1 ,T) / ( ( 4∗1 0 ˆ 1 4 ) ) ;

eev ( pores ) = 0 ;

bb = r ∗ z1+(A1∗ z1 ) . ∗ ( Beta)−eev ;

bb( pores ) = ( r +6)∗z1 ( pores ) ;

while h11>0.001

evap11 = AA∗Langmuir ( z j j 01 ,T) / ( ( 4∗1 0 ˆ 1 4 ) ) ;

evap11 ( pores ) = 0 ;

b = −evap11+bb ;
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z1 = A\b ;

h11 = sum(abs ( z1−z j j 0 1 ) ) ;

z j j 0 1 = z1 ;

end

h11 = 1 ;

y su r f = z1 (max( i n t e r i o r 1 +2)) ;

end
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Appendix B

Functions and Subroutines

function y = Knud di f fus ion (RR, L ,T, yy , ysur f , yy0 , x2 )

%The f o l l ow i n g func t i on ‘ ‘ Knud d i f fus ion ” i s used to model the cesium

% coverage a long the pore wa l l s a t each time s t ep :

kev = 8.617343∗10ˆ(−5) ;

sigma1 = 4∗10ˆ18;

R = r r r (RR, . 0 3 ) ;

dh = (10∗10ˆ(−6))/10;

D0 = (1/100)∗ (1/100)∗0 .23∗exp(− .67/( kev∗T) ) ;

dt = zeros ( 1 , 2 ) ;

dt (1 ) = (dh)ˆ2/D0 ;

dt (2 ) = ( . 0 1∗ sigma1 )/(100∗100∗Langmuir (max( yy ) ,T) ) ;

dt = min( dt ) ;

dt = ( dt∗D0)/Lˆ2 ;

z2 = find ( x2 == 10∗10ˆ−6);

e2 = find ( x2 == L−10∗10ˆ−6);

g2 = s ize ( x2 , 2 ) ;

x = [−1: 1/1000 :0−1/1000 0−1/1000+1/10000: 1/10000 :0+1/1000

0+1/1000+1/1000: 1/1000 : 1 ] ;
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x = x∗10∗10ˆ−6;

ee = ones ( g2 , 1 ) ;

A = spdiags ([− ee (2∗ ( dh . ˆ 2 ) / ( dt ))+2∗ ee −ee ] , −1 :1 , g2 , g2 ) ;

A( 1 , : ) = 0 ;

A(1 , 1 ) = (2∗ ( dh )ˆ2/( dt ) ) ;

A( g2 , : ) = 0 ;

A( g2 , g2 ) = 1 ;

A1 = spdiags ( [ ee (2∗ ( dh . ˆ 2 ) / ( dt ))−2∗ ee ee ] , −1 :1 , g2 , g2 ) ;

A1 ( 1 , : ) = 0 ;

A1(1 , 1 ) = (2∗ ( dh )ˆ2/( dt ) ) ;

A1( g2 , : ) = 0 ;

A1( g2 , g2 ) = 1 ;

error = 1 ;

y = yy ;

y11 = y ;

Ssource = 100∗100∗Langmuir ( yy0 ,T)∗(1−x2/L ) ;

S = zeros (1 , g2 ) ;

for i = 1 : g2

i f i<=z2

xnew = x+x2 ( i ) ;
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index = find (xnew>=0);

S( i ) = trapz (xnew( index ) , poreprob (xnew( index ) , x2 ( i ) , x2 , y ,R,T))+

trapz ( [ xnew(end) x2 ( z2+i : end ) ] ,

poreprob ( [ xnew(end) x2 ( z2+i : end ) ] , x2 ( i ) , x2 , y ,R,T) ) ;

e l s e i f i>=e2

xnew = x+x2 ( i ) ;

index = find (xnew<=L ) ;

S( i ) = trapz ( [ x2 ( 1 : i−(g2−e2 )−1) xnew (1) ] ,

poreprob ( [ x2 ( 1 : i−(g2−e2 )−1) xnew ( 1 ) ] , x2 ( i ) , x2 , y ,R,T))+

trapz (xnew( index ) , poreprob (xnew( index ) , x2 ( i ) , x2 , y ,R,T) ) ;

else

S( i ) = trapz ( x2 ( 1 : i−(g2−e2 ) ) , poreprob ( x2 ( 1 : i−(g2−e2 ) ) , x2 ( i ) , x2 , y ,R,T))+

trapz ( x+x2 ( i ) , poreprob ( x+x2 ( i ) , x2 ( i ) , x2 , y ,R,T))+

trapz ( x2 ( i+z2−1:end ) , poreprob ( x2 ( i+z2−1:end ) , x2 ( i ) , x2 , y ,R,T) ) ;

end

end

gsource = S+Ssource ;
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gsource = gsource ’ ;

gsource1 = gsource ;

fevap = Langmuir (y ,T)∗100∗100 ;

fevap1 = Langmuir (y ,T)∗100∗100 ;

while error>.01

b = A1∗y+((dh .ˆ2∗Lˆ 2 ) . / (D0∗ sigma1 ) ) . ∗ ( gsource+gsource1 )

−((dh .ˆ2∗Lˆ 2 ) . / (D0∗ sigma1 ) ) . ∗ ( fevap+fevap1 ) ;

b (end) = ysu r f ;

y1 = A\b ;

fevap1 = Langmuir ( y1 ,T)∗100∗100 ;

error = sum(abs ( y1−y11 ) ) ;

y11 = y1 ;

for i = 1 : g2

i f i<=z2

xnew = x+x2 ( i ) ;

index = find (xnew>=0);

S( i ) = trapz (xnew( index ) , poreprob (xnew( index ) , x2 ( i ) , x2 , y1 ,R,T))+

trapz ( [ xnew(end) x2 ( z2+i : end ) ] ,

116



poreprob ( [ xnew(end) x2 ( z2+i : end ) ] , x2 ( i ) , x2 , y1 ,R,T) ) ;

e l s e i f i>=e2

xnew = x+x2 ( i ) ;

index = find (xnew<=L ) ;

S( i ) = trapz ( [ x2 ( 1 : i−(g2−e2 )−1) xnew (1) ] ,

poreprob ( [ x2 ( 1 : i−(g2−e2 )−1) xnew ( 1 ) ] , x2 ( i ) , x2 , y1 ,R,T))+

trapz (xnew( index ) , poreprob (xnew( index ) , x2 ( i ) , x2 , y1 ,R,T) ) ;

else

S( i ) = trapz ( x2 ( 1 : i−(g2−e2 ) ) ,

poreprob ( x2 ( 1 : i−(g2−e2 ) ) , x2 ( i ) , x2 , y1 ,R,T))+

trapz ( x+x2 ( i ) , poreprob ( x+x2 ( i ) , x2 ( i ) , x2 , y1 ,R,T))+

trapz ( x2 ( i+z2−1:end ) , poreprob ( x2 ( i+z2−1:end ) , x2 ( i ) , x2 , y1 ,R,T) ) ;

end

end

gsource1 = Ssource+S ;

gsource1 = gsource1 ’ ;

end
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y = y1 ;

end

function y = poreprob (x , L , x0 , theta0 ,R,T)

%The f o l l ow i n g func t i on i s c a l l e d by ‘ ‘ Knud d i f fus ion ”

% in e va l ua t i n g the f l u x i n t e g r a l s :

theta = interp1 ( x0 , theta0 , x ) ;

xx = ( ( x−L)/( sqrt (2)∗R) ) . ˆ 2 ;

y = ( ( 1 ) . / ( 2 ∗R)) .∗ (1 − ( sqrt ( xx ) .∗(3+ xx )) ./(2+ xx ) . ˆ ( 3 / 2 ) ) ;

y = Langmuir ( theta ,T)∗100∗100 .∗y ;

end

function y = Langmuir (x ,T)

%The f o l l ow i n g func t i on g i v e s the i n t e r p o l a t i o n o f the evapora t ion ra t e

%of cesium o f f tungs ten from Langmuir ’ s data shown in t a b l e 6 . 1 :

B a = column 3 t a b l e 6 . 1 ;

A a = column 2 t a b l e 6 . 1 ;

theta = column 1 t a b l e 6 . 1 ;

AA = interp1 ( theta , A a , x ) ;

BB = interp1 ( theta , B a , x ) ;

y = exp(AA−BB. /T) ;
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i f min( x)<.01

n1 = find (x< . 01) ;

y ( n1 ) = 0 ;

end

i f max( x)>.95

n2 = find (x> . 95) ;

AA = interp1 ( theta , A a , . 9 5 ) ;

BB = interp1 ( theta , B a , . 9 5 ) ;

AA1 = interp1 ( theta , A a , . 9 4 ) ;

BB1 = interp1 ( theta , B a , . 9 4 ) ;

dy = (exp(AA−BB. /T)−exp(AA1−BB1. /T) ) / . 0 1 ;

y ( n2 ) = exp(AA−BB. /T)+dy∗( x ( n2 ) − . 95) ;

end
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