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The importance of unsteady aerodynamics for prediction of rotor dynam-
ics is unquestioned today. The purpose of unsteady aerodynamic models is
to represent the effect of unsteady airfoil motion on the lift, moment and
drag characteristics of a blade section. This includes unsteady motion (arbi-
trary motion) of the airfoil in angle of attack (pitch) and vertical movement
(plunge), as well as the effects of an airfoil travelling through a vertical gust
field. However, the additional degrees of freedom, namely the fore-aft mo-

tion and the unsteady freestream variations commonly are acknowledged,

but neglected in virtually all analyses.

Since the effect of unsteady freestream results in a stretching and com-
pressing of the shed wake vorticity distribution behind an airfoil, it will have
an effect on the airfoil characteristics. The subject of this thesis is to provide
a review of the analytic and experimental work done in the area of unsteady
freestream and unsteady fore-aft motion, to clarify the limits of the various
theories, and to show the differences between them. This will be limited to

the attached flow regime since all theories are based on the small disturbance



assumption in incompressible flow. As far as possible the theories are com-

pared with experimental data, however most of the available experimental

data are confined to stalled flow conditions and are not useful here.

In addition to the theories, a semiempirical mathematical model will be

used based on the aerodynamics of indicial functions. The purpose is to show

the differences of using the theories of unsteady airfoil motion in a constant

flow, and those accounting for unsteady freestream flow. This will help to

justify whether it is necessary to include the unsteady freestream effect in

comprehensive rotor codes.

eneralisation of Isaacs unsteady aerodynamic theory for an

Finally, a g
airfoil undergoing a frequency spectra in pitch and plunge in a freestream

oscillating with the fundamental frequency is presented here for the first

time. Therein the axis of rotation of the airfoil is a free parameter.
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Chapter 1

Introduction

A helicopter rotor blade in forward flight encounters a highly nonuniform

flowfield. In order to predict the aeroelastic behavior of the rotor, it is

necessary to accurately calculate the aerodynamic loads acting on the blades.

These consist of both steady as well as unsteady components. One source

of aerodynamic loads is the varying oncoming flow velocity at each blade

station. This leads to a dynamic pressure variation containing steady, 1/rev

and 2/rev components. Additional degrees of freedom result from the blade

motion in flap, lag and torsion, and the nonuniform inflow.

In forward flight, an unsteady aerodynamic theory must be used to predict

the aerodynamic loads. This has been discussed by various authors, for
example by Johnson and Kaza [1, 2]. Both state that the lift deficiency

function (k) must be gene
effects. This generalisation was

the Theodorsen lift deficiency functi
d. However, the direct applic

ralized to account for the unsteady freestream

given by Johnson [3], but in most analysis

on for constant freestream flow [4] is

ation of Theodorsen’s theory to

used instea
A theory including the effect of

rotorcraft in forward flight is questionable.
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periodically stretching and compressing the shed wake vorticity distribution
behind the oscillating and/or plunging airfoil should be used in order to

include the effects of varying freestream on the unsteady aerodynamic forces

and moments.

In addition to this, one has to differentiate between two kinds of veloc-
ity changes that a rotor blade encounters in forward flight. First there will
be a fore-aft (lead-lag) motion of the rotor blade, and second, an oscillating
freestream velocity resulting from the superposition of the rotational veloc-

ity and the forward speed of the helicopter. The first case (lead-lag) leads

to a uniform velocity distribution across the airfoil chord, while the second

produces a velocity gradient across the chord. For of very high frequencies

lead-lag motion will result in very high noncirculatory forces, while in the
oscillating freestream the noncirculatory lift will reduce to zero again since

several modes along the chord cancel each other. For the form of the wake be-

hind the airfoil, however, there is no difference to be seen between both cases

because the positioning and velocity of vorticity in the shed wake relative to

the airfoil is the same in both cases.

A complicating factor, is the fact that helicopter blade sections operate

over the whole range of subsonic Mach numbers and at different Reynolds

numbers; both are periodically changing at a given radial station. Addi-

tionally, some flow separation regimes can occur, especially at high forward

speeds. It is also of interest, what the impact of decelleration and accelera-
tion of flow velocity on the separated flow characteristics of the airfoil will

be.



The following sections give an overview of the theoretical and experimen-
tal work previously done in the past concerning the problem of freestream

velocity changes, and its impact on the unsteady aerodynamic loads.

1.1 Short Historical Review, Analytical Ap-

proaches

The general solution for an airfoil undergoing harmonic motion in angle of

attack about an arbitrary axis and plunge motion at constant freestream

velocity was given by Theodorsen in 1935 [4], and in 1940 in operational

form by Sears [5]. Probably the first attempt to derive a solution for the case

of unsteady freestream velocity variations was given by Isaacs ten years later,

and then only for the case of constant angle of attack [6]. This reflects the

increasing complexity of the solution when the varying freestream velocity is

taken into account. In 1946, Isaacs gave a solution to this problem, including

a periodic change in angle of attack, in order to fulfill the needs of helicopter

aerodynamicists [7]. His solution, however, was confined to a pitch axis at half

chord, and therefore it was not very appropriate for helicopter calculations

since nearly all helicopter blades have a feathering axis at the quarter chord.

It must be noted here that both publications [6, 7] claim to handle the

effect of freestream velocity fluctuations, however the instantaneous value of

the oncoming flow velocity is taken as constant along the chord. This means

that the problem is modelled as a fore-aft motion of the airfoil instead as an
unsteady freestream flow problem. This latter case would cause a velocity

gradient along chord, and therefore is a different physical problem. For small

frequencies, however, the gradients are small and both types of unsteady

3



motion are very similar. In the second report Isaacs [7] gave solutions for

lift and moment development, and the latter can be reduced to the case

of constant angle of attack. No graphical presentation of the results were

given in [6, 7], but a numerical example for the Fourier coefficients of the

lift response at constant angle of attack at a moderate freestream oscillation

amplitude and a small reduced ferquency was given in [6].

In the same year Greenberg [8] published his extension of Theodorsen’s

theory to include harmonic variations of the freestream velocity; also in view

of the needs of helicopter engineers. Even today,

be the most reliable for application to rotorcraft aeroelastic problems; for

his results are thought to

example, by Diniavari and Friedmann [9]. However, Greenberg made some

additional assumptions about the shed wake behind the airfoil to obtain a

solution in terms of the Theodorsen function only. Also, Greenberg’s theory

claims to handle the unsteady freestream effect, but this theory has assumed

that the instantaneous value of the velocity along the chord is a constant.

In an appendix to [8] Greenberg explicitly writes: “Consider an airfoil mov-

ing back and forth harmonically in a uniform stream having a velocity V.

Greenberg gave equations for lift and moment, but no graphical presentation.

The only comparison with Isaacs’ theory was done by examining the Fourier
coefficients of the lift response for th

[6]. The agreement for the 1/rev response was fo

e same conditions as used by Isaacs in

und to be good.

In 1952 Ashley et. al developed two methods for predicting the unsteady

lift of an airfoil in accelerated motion [10]. Examples were given for an airfoil

undergoing a sudden change in speed in a stationary atmosphere (i.e., Wag-

ner’s problem [11], which is for a step change in angle of attack in a uniform

4



flow field). A case of constant airfoil acceleration was presented in [10] with
respect to the case of an airplane launched via a catapult, for example on

a ship. It was found that the unsteady lift build-up lags significantly the

quasisteady lift, leading to longer runway requirements for the airplane to

become airborne. An example was given for the Helioplane!, see Fig. 1.1.

Ashley et. al [10] gave no solution for a periodically varying velocity, and

therefore the result for a helicopter blade will be of qualitative nature; in the

accelerating region (rear part of the rotor disk) the lift buildup will lag the

quasisteady lift.

sts on the aerodynamic coefficients was the

erich’s work in 1957 [12]. Indicial

The influence of horizontal gu

subject of interest in Drischler and Died

functions for the lift and moment response penetrating gusts having both

vertical as well as horizontal speed were given in integral form, and must be

Therefore, they are not of direct use in rotor cal-

integrated numerically.
ow significant effects in the time history of lift

culations, but the results sh

buildup after the gust hits the airfoil, Fig. 1.2. In case of the horizontal ve-

being infinitely greater than the vertica

In the case of zero horizontal velocity, the Kissner function

. 1 velocity, the result of Wagner

[11] is obtained.
[13] is the result. A pos
the lift for the first instant o

itive gust (approaching the wing) leads to a peak in
f time, while a negative gust (travelling away

from the wing, but is overtaken by it) leads to very slow lift build-up.

Strand’s study of 1972 [14] is related to the maximum lift of an airplane

in decelerating flight with a simulataneously increasing angle of attack. He

designed at MIT, see “New Slow-Flying Plane Developed,”

I This is a light airplane
20, pp- 51-52, 1949

Aviation Week, Vol. 50, No.

b}



found an increase in lift (compared to the quasisteady lift) proportional to
the time rate of change in velocity and angle of attack, but in comparison to
flight and wind tunnel measurements this increase was of minor importance.
Strand concludes that the measured lift increases were the result of viscous

effects, both for the airplane and the helicopter case. No results for the

aerodynamic pitching moment was given.

After Greenberg’s results were published [8], it took more than 30 years
to develop a new theory directly related to rotorcraft. This was in 1977 by
Kottapalli [15], and again in 1985 [17] where the main subject of consider-
ation was the development of the unsteady drag under unsteady freestream
conditions. His derivation also gives results for the lift and moment devel-
opment (published in 1985 for airfoils with inplane motions), however he
developed his theory explicitly by applying the boundary condition of small
lead-lag oscillation amplitudes with respect to the mean velocity. Conse-
quently, Kottapalli limits the validity of his approach to the case of blade
flutter in the hover condition. Consequently, Kottapalli’s results seem to be
of limited help for helicopter applications in forward flight, since the assump-
tion of small flow oscillation amplitudes holds only for very small advance
ratios. In 1979 there was another publication by Kottapalli and Pierce [16]
regarding the computation of drag on an airfoil in a fluctuating free stream,
but here too the amplitudes were confined to small values. Comparisons were

not made with Isaacs’ or Greenberg’s theory, and no graphical presentation

of lift or moment development was made.

Ando and Ichikawa presented a study concerning the lift development

during the acceleration of an airplane [18]. The conclusions are basically the

6



same as those of Ashley et. al; an acceleration leads to a lag in unsteady lift

buildup, see Fig. 1.3. No comparisons were made, and there were no results

presented for the pitching moment.

Johnson published some discussion regarding the problem of a varying

velocity in his famous book Helicopter Theory [3]. Using the same assump-

tions made by Isaacs [6, 7], Johnson basically followed Isaacs’ theory to give

expressions for lift and moment of an airfoil having plunge as well as pitch

motion about an arbitrary pitch axis. This approach is very interesting, but
the final result is given in form of integrals without giving the appropriate
solution of these in terms of Bessel functions. No comparisons were made
with the other existing theories, but a result is given for the second harmonic

component of the resulting lift deficiency function, see Fig. 1.4, for flow os-

cillation amplitudes from zero to 90% of the mean velocity and a reduced

frequency of k = 0.04, based upon the mean velocity.

The effect of varying velocity is described by Johnson as:

“On the advancing side, the increased velocity lowers the reduced fre-

quency and hence the lift deficiency function is nearer unity. On the retreat-

ing side there ts the greatest accumulation of shed vorticity in the wake near

the trailing edge, and thus the greatest reduction in lift.

In summary ... all these effects basically produce 1/rev variations of the

loads.”
Johnson’s conclusion is that the approximation using the Theodorsen

function with the local reduced frequency will work for flow oscillation am-

plitudes of up to 70% of the mean velocity. For small flow oscillation am-

plitudes, the Theodorsen function calculated using the mean velocity will be

7



accurate enough, which effectively means neglecting the unsteady freestream

fluctuations. However, this statement seems to be based only on one pre-

sented result, and it s doubtful whether or not it will hold for other mean

reduced freuencies and other harmonics of the response.

Until now, there is no other theory available. It must be kept in mind

that all the theoretical approaches were made with certain assumptions. In

summary, these are:

1. Two-dimensional flow (i.e., no spanwise effects or curved wake forms

included)
2. Incompressible flow (i.e., infinite speed of sound)
3. Small desturbances (i.e., thin airfoil, small angles, small frequencies)

4. No friction forces (i.e., infinite Reynolds number = nonviscous flow)

5. Planar, infinite wake (i.e., no distortion, no diffusion)

Therefore, the results can be valid only in the attached flow regime. In case

of comparisons with experimental data, these have to be taken at a very low

wind tunnel speed. Especially, the assumption of an infinite planar wake is

questionable when it comes to the application to rotorcraft since the wake

there is more of a helical form. However for unsteady aerodynamics, the part

of the wake closest to the airfoil generating it (some chord lengths behind

it) is of primary importance, since in view of the Biot-Savart law the more

distantly positioned clements of the wake have only a minor effect. Therefore
the results of a planar wake should also be representative for rotorcraft wake

geometries.



Another approximation is the assumption of incompressible flow. Even

in hover a rotor blade tip operates at Mach numbers of typically 0.64, and in

fast forward flight can increase to values very close to 1.0. Keeping in mind

that the incompressible theory is applicable only to Mach numbers of up

to about 0.3, only a small range of rotorcraft aerodynamics can be handled

with an incompressible flow theory. However, there are no theories capable

of handling the compressible subsonic case of unsteady motion of airfoil and

freestream velocity, therefore one has no choice but to start with the available

incompressible theories.

In the following chapter, the theories of Isaacs, Greenberg and Kottapalli

are examined in order 10 clarify their implicit assumptions and restrictions

in application. This will be done, not by rederiving them, but by presenting

the final results and the basis of the derivations. This will be accompanied

sentation of these results. The gra

d to compare the different results obtained by the

by graphical pre phical presentation is the

most satisfactory metho

different theories.

1.2 Experimental Approaches

| work done in this area of research is the measure-

Most of the experimenta
ients in a wind tunnel. Because wind tunnels

ment of the aerodynamic coeffic
provide a steady freest
ery difficult task to produ
d with amplitudes of up to the mean velocity it-

ream velocity and as turbulence-free

were build to
ce harmonic flow oscillations

as possible, 1t isav

at various frequencies an
certain modifications to obtain harmonically

self. Therefore oné has to apply

in the test section. A number of experiments with airfoils

varying velocities



oscillating in a constant freestream velocity have been conducted, for example
[19, 20]. Only few experiments have been done in an oscillating freestream

velocity environment, which is of interest here.

Probably the first experiments on this problem were done by Fejer, Sax-

ena and Morkovin at Illinois Institute of Technology in 1976 [21, 22]. A

1 ft-chord NACA 0012 model with pressure transducers was mounted in a
low speed wind tunnel providing flow oscillations amplitudes of 18% of the
freestream by means of periodically opening and closing shutters behind the

test section. The aspect ratio of the model was only 2.0, so that three di-

mensional effects could be expected. The Reynolds numbers were about

2.5 x 10°, and therefore relatively small compared to helicopters. However,

a trip was mounted to forc
reduced frequencies of 0.18 and 0.9 could be achieved. It was found

e the boundary layer to be turbulent. With this

facility,
in [21, 22

of frequency

] that at these moderate flow oscillation amplitudes, the influence
is an important parameter affecting the pressure distribution

and the boundary layer behavior. This was especially true when the angle

of attack was above the static stall angle; large oscillations in the normal

force coefficient occured and the average value of the normal force coefficient

was about 60% higher than in the steady case. In case of angles below the
stall angle, there was an increasing unsteady behavior of the leading edge

separation bubble. An example of pressure distributions at a fixed angle of

attack of a = 14.2° is shown in Fig. 1.5 for different times during one flow

oscillation cycle. In addition, there is a region of separated flow over the

airfoil, indicating significant dependency of the instantaneous velocity.

In later tests, angle of attack variations in an oscillating flow were made
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[23, 24]. It has been found that in periodically changing flows, dynamic
stall of airfoils can assume a variety of forms depending on the frequency
and amplitude of the oscillations. The airfoil coefficients do not behave in

a quasisteady manner anymore, and it was concluded that for the case of

helicopter dynamic stall the freestream flow fluctuations must be taken into

account and cannot be neglected.

Parallel to the analytical work of Kottapalli at Georgia Institute of Tech-

nology, some experiments were also conducted there by Pierce, Kunz and

Malone [25] in 1976. The exit of a low speed wind tunnel was provided with

a system of periodically opening and closing vanes to produce flow oscilla-

tions. The mean velocity in the test section was at 42.5ft/s (= 13m/s) with

a normalized amplitude of A = 0.177 at a flow oscillation frequency in most

cases set to 1Hz, while the pitch frequency was set to 6 times of that value.

The reason for this was mainly to have one airfoil oscillation during the more

or less linear regime of accelerating flow, and one in the appropriate regime of

decelerating flow. The instrumentation used in this experiment was limited

and consisted of an accelerometer for angle of attack determination, and a

strain gage bridge on the drive arm outside the test section to measure the

total moment on the entire model. Therefore wind tunnel interference effects

and 3-D flow effects are included in the measurements, and cannot be elim-

inated. Additionally there is no possibility of measuring lift or drag using

this equipment.

Steady tests showed thin airfoil stall characteristics on the NACA 0012

airfoil. This is not surprising, since the Reynolds number was only Re =

902 x 10°. The Mach number was about M = 0.04, so the flow can be

11



considered as incompressible. Dynamic tests showed a large effect of flow

oscillations on the dynamic stall behavior, and some moment hysteresis loops

were given; an example is shown here in Fig. 1.6. However, all experiments

included separated flow, so they are not useful for comparing with attached

flow theories. Additionally, there are some results which are questionable

since in steady flow, for example, the break in pitching moment appears at

the lowest angles of attack, and not at the highest as one would expect.

At about the same time, the French team of Maresca, Favier and Rebont

at IMFM Marseille started a series of experiments with an airfoil undergoing
fore-aft motions, plunge motions and pitch motions in a steady stream [26,

27]. In order to obtain high velocity amplitudes at the airfoil, the mean

velocity of the flow was very small. Therefore, the basic concern in all these

experiments will be the low Reynolds number, here 2.5x10°. Flow and plunge

oscillations took place at the same frequency by moving the airfoil model in

the test section along an inclined path, and the model itself was fixed with

a certain angle relative to this path. The tunnel speed remained constant,

and all variations in freestream velocity were produced by the model drive

mechanism. There was also no possibility to have different phase angles
between the flow and plunge oscillations, other than the in-phase or out-

of-phase condition. Because of a very low aspect ratio of 1.65, there are

also serious three dimensional effects to be expected. Aerodynamic forces

and moments were measured by torsional dynamometers. Additionally there

were pressure transducers for measurement of steady pressures, and some

hotfilm gauges for skin friction measurement.

The measurements performed were first pure fore-aft motion at a fixed

12



angle of attack (that could be a good comparison with Isaacs’ theory, but

the angle of attack was set to 20°, so there is entirely separated flow on th
e

airfoil, and therefore this prohibits any kind of comparison). As a result of th
. e

combined fore-aft and plunge motion, the flow oscillations were nearly pure

sinusoids, but the resulting angle of attack oscillation also contained several
higher harmonics. As an example, the influence of the flow oscillations on
the lift and drag development is given here in Fig. 1.7. The differences in the
unsteady lift and drag development as compared to quasisteady theory are

obvious; namely a lag in the force development, as well as a change in the

amplitude in comparison to the quasisteady values.

me authors presented some additional measurements of

In 1982 the sa

combined motion for oscillations below the static stall angle, as well as for
)

those going beyond stall, and compared the results for lift, drag and moment
with the appropriate plunge oscillations in a constant freestream flow [29]
The hyster

below stall, the m

esis loops were found to be entirely different, and for oscillations
oment coefficient clearly indicated flow separation, with a

significant peak at high angle of attack, see Fig. 1.8. The Reynolds number

was Re = 1.44 X 10%, and therefore one must be careful to assume the flow

ow the static stall angle as attached since the airfoil is very likely to

bel

experience thin airfoil stall.

redesigned the drive mechanism to be able to oscillate the

After having
airfoil about its pitch axis,
presented in 1988 [30]. Now any

ttack oscillations could be achiev
was varied at two different angles of attack; one below static stall

additional measurements were conducted and
phase angle between the flow and the angle

g ed. For pure fore-aft motion, the flow

frequency
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and the other at the static stall angle. Results were given as time histories,
as well as in the form of lift amplitude and phase so they could be compared
with unsteady theories. Additionally lift hysteresis loops were given, showing
even at the smallest reduced frequency of k = 0.1 a clockwise sense of rotation

(phase lead) that normally would appear only at higher reduced frequencies.

Therefore, the sta

the angles lower than the stati

tement of attached flow conditions cannot hold even at

¢ stall angle, since the airfoil underwent thin

airfoil stall with flow separation regimes beginning to form at very small
angles. This leads to serious questions whether or not these results can be

compared with any of the attached flow theories. It was shown, however

that the phase of the flow velocity and the angle of attack oscillations is an

important parameter and changes the lift coefficient hysteresis in a significant

manner, see Fig. 1.9.

Recently a transonic wind tunnel at the University of the Bundeswehr in

Munich, Germany, was made operational. This tunnel has been constructed

to produce periodically chang

shutter at the end of the test section itself. Up to now no results have been

es of velocity in the test section by means of a

published, but this facility seems to be the only one in the moment to be able

to handle freestream fluctuations at Mach numbers and Reynolds numbers

typical of helicopter rotors.

As a result of the foregoing, it can be stated that there is only limited

airfoil data for freestream fluctuations available to compare with theory, and

the data already published are mostly confined to the dynamic stall phe-

nomenon, not to the case of attached flow. In case of the tests having angles

of attack smaller than the static stall angle, the flow will also not be attached

14



because of the small Reynolds numbers, leading to thin airfoil stall charac-
teristics with separation regimes beginning at very small angles of attack.
Therefore it will be very difficult, if not impossible, to compare the theo-

ries with experimental data. The reason is that the theories are developed

for attached incompressible flow at high Reynolds number, but experiments

were done at high angles of attack at very low Reynolds numbers, where stall

effects are starting to show up even at very small angles of attack.

1.3 Problem Statement

From all of the unsteady aerodynamic theories, there are only three direcly

related to rotorcraft application in hover and forward flight: Isaacs’, Green-
berg’s and Kottapalli’s theor

either numerically or graphically to show t

Furthermore, the limitations and simplifications in these theories are

ies. None of these authors have presented results

he differences between these the-

ories.

not clear, especially for the Isaacs’ and Greenberg’s. The effect of periodically

accelerating and decelerating flow with superimposed oscillations in angle of

attack on the lift and moment coefficient is not compared or even shown. A

conclusion as to whether the inclusion of these effects is really necessary for

the helicopter rotor is still lacking.

1.4 Present Work

In this study, the theories of Isaacs, Greenberg and Kottapalli will be anal-

ysed and compared. There will be strong emphasis on a graphical presenta-

tion of the results in order to compare the theories with each other, and with

quasisteady theory. Also, predictions made using Theodorsen’s theory will

15



be compared, since this is widely used. The limitations and assumptions will

be clearly shown and, as far as possible, the results will be compared with

available experimental measurements.

The objective is first to find an answer to whether or not it is necessary
to model the effects of unsteady freestream fluctuations in a rotor loads
or aeroelastic analysis in forward flight. The second objective, is to show
whether or not it is possible to simulate the attached flow behavior using

an arbitrary motion theory, comprizing of Duhamel’s integral and indicial

functions for step changes in angle of attack, pitch rate and plunge velocity.
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Chapter 2

Review of Theories for
Unsteady Freestream and
Unsteady Inplane Motion

Before describing the airfoil theories for modeling the unsteady airloads in

an unsteady freestream, it is worthwhile to examine the basic assumption of

small angles. Since the flow velocity appears in the denominator when deter-

mining the angle of attack in plunge motion (or pitch rate), it is questionable

whether or not the small angle assumption is violated by the theory. Also

the limits of applying this assumption are unclear, and it is necessary to be

aware of this. The airfoil theory results for a constant freestream velocity

(Theodorsen’s theory) will be presented first since this gives a good physical

insight into unsteady aerodynamics, and the rt?sults also form the basis of the

unsteady aerodynamics in an unsteady freestream. Furthermore, the princi-

ple of arbitrary motion will be first shown for the case of constant freestream

velocity, and is also applied later to the case of an unsteady freestream.
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2.1 Introduction
2.1.1 Definition of an Unsteady Freestream

Before any unsteady aerodynamic theory due to unsteady freestream effects
can be derived, it must be defined what an unsteady freestream physically
means. This sounds trivial, but there are mainly two possibilities, as in the
case of vertical gusts. In the first case, the freestream can be viewed as a mass

of fluid changing velocity with time as a whole, e.g., the fluid particles at every

location change their velocity at the same time by the same amount. This

is identical to an airfoil having a pure lead-lag type of motion in a constant
freestream velocity, since both produce a normal velocity distribution along
the airfoil that is constant in space, but varying in time. The other possibility
(let us call it the second case), that is more real for a helicopter, is to view the

unsteady freestream as a system of longitudinally propagating gusts. This

leads to a nonlinear (sinusoidal) gradient in the normal velocity distribution
across the airfoil, and therefore, it is much more difficult to handle in a

general analytical approach. The relative velocity of the wake behind the

airfoil to the airfoil trailing edge, however, is the same in both cases.

Another issue, is that large differences are to be found in the noncircula-

tory parts of the loading that contribute to the airfoil characteristics. Also,
there is an effect on the circulatory part of the bound vortex sheet when the
reduced frequency is high. The reason is that in the first case the noncir-
culatory lift, for example, becomes infinite because of the constant normal
velocity distribution along chord, while in the second case several waves are
found to act on the chord at the same time, and therefore effectively cancel
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each other out. Therefore, the final value of noncirculatory lift for very high
reduced frequency in the second case will be zero, as in constant freestream
flow. For small reduced frequencies however, the gradient of the normal ve-

locity across chord will be small. Therefore, the gradient may be handled as

zero with a constant normal velocity distribution in a first approximation,

even for the case of large freestream velocity oscillation amplitudes. There-

fore, the first case (lead-lag) can be viewed only as an approzimation for the

second case (longitudinal gusts) for small reduced frequencies.

In a helicopter rotor environment, it is the second case that is of interest.

In Fig. 2.1 a rotor blade in a forward flight condition is shown. Since the aero-
dynamic problem is viewed as two dimensional, this amounts to a projection
of the rotating environment onto a two dimensional plane. For a rotating
blade like that shown, we mu
It is obvious that the leading edge has a different

st look at the velocities at a constant radius

(lower part of the figure).

normal velocity than the trailing edge,
are separated by the chord in distance. Thus, a velocity

simply because they are not at the

same azimuth and
gradient exists along the chord. A special case is the position of zero azimuth,
where the leading edge has a small component of forward flight velocity that

adds to the rotational velocity, while at the trailing edge there is a small

amount subtracted from it (and vice versa at 180° azimuth). Therefore, the

projection of the rotating blade element onto a two dimensional plane leads

to an unsteady freestream problem with a velocity gradient across the chord,;
and any angle of attack produces a gradient in normal velocity. However, the

classical view is that the airfoil (upper part of Fig. 2.1) is not taken from the

rotating coordinate system, but from the cartesian blade coordinate system.
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Therefore, the tangential velocities are defined to be the same at the leading
edge and the trailing edge. In this case, no velocity gradient exists across

the chord and the previous case (lead-lag) of the two possibilities comes into

account. The advantage is a much easier derivation of aerodynamic theory
)

that is already complicated enough. Yet, it must be kept in mind that this

is a small frequency approximation for the real case of a system of longitu-

dinally propagating gusts and is only exact, when the motion of the airfoil

itself is under investigation.

2.1.2 The Small Perturbations Assumption

Since all the theories are built up on the assumption of small perturbations,
say small geometric angles and small accelerations, it is necessary to prove

whether or not this assumption can be made in a helicopter rotor environ-

ment. In an incompressible flow, the angle of attack at 3/4 chord is of interest
he multplication with the oncoming

d. This is

for the circulatory part of the lift since t
flow velocity gives the normal velocity at 3/4 chor

v 128 ;
aC< 2 )+tan‘—}; (2.1)

a3/q = Ogeo + tan

For the small angle assumption, the tangent can be replaced by its argument.

Now, when the freestream velocity V is varying, it is questionable whether

or not the argument still remains small to justify this assumption.

Consider a rotor blade undergoing flap motion in a simple case of a rigid

blade hinged at the axis of rotation,
In forward flight the flap motion is upwards

and with an amplitude at the tip of

10% of the radius (see Fig. 2.2).
on the advancing side and downwards on the retreating side, with maximum
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A 0 0.2 04 06 08 09 095 0.99
0.1 0.125 0.167 025 0.5 1.0 2.0 10.0

v
V12700

Table 2.1: Relation between flow oscillation amplitude and angle of attack
at 1 = 270°

velocities at ¢ = 90° and ¥ = 270°. Now the argument of the tangent in
Eq. 2.1 takes the following form
r
= (0.1R —
h(r) ( cos ) 7

Vir) = WVR(%-HISHH/J)

h sin i
- = 01—/ with = —
v 1+ (u/y)sin ¥ YR (2.2)
The worst case occurs at the retreating side at 1 = 270° and so
Rl 01 01 ,
V0o 1-n/y 1-2X (2:3)

At high forward speed, the flow oscillation amplitude A increases, and small

radial positions y also cause an increase in A. Since the available theories are

ate in the reversed flow region, the parameter A must be limited to

not adequ
a maximum of 1. Some values for the ratio A are listed in Table 2.1. None of
these values aeff = h/V fulfills the requirement that it be small (say about
0.05 or less) compared to 1. When ) is equal to one, then the velocity is zero

at ¢ = 270° and therefore an angle of attack of 90° is produced by any flap

motion.

The reduced frequencies at which the blade sections are operating are
also of interest. These are defined by the mean velocity, that is the velocity
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normal to the blade in hover. Taking a typical value of R/c = 20, the

distribution of reduced frequencies depends on the geometry only

wyc wyc 0.025
(2.4)

Y —
~o

ZW:Z‘JVT‘ Y

kv

So the reduced frequencies at a typical rotor blade section range from 0.025

at the tip, to 0.125 at the beginning of the profiled section that starts at

radius. The reduced frequencies are not very high, since only the

about 20%

1/rev motion was taken into account, but high enough to justify the need

of unsteady aerodynamic theory in rotor calculations. When considering

torsional motion of the rotor blade, the reduced frequencies are considerably

higher.

As an example, Table 2.2 gives an idea for the values of A encountered

at different blade sections at different forward speed of the helicopter. A

value of A = 0.9 will be encountered at 55% radius, when the advance ratio
is u = 0.5, or, when g = 0.3, at 33% radius. Also, a value of A = 0.6 will

be found at 83% radius,
ections with high lift encounter significant changes in

when p = 0.5. This shows, that in fast forward

flight even the blade s
velocity. So these combinations occur in normal flight conditions at high

speed. In addition, the values at the blade tip on the retreating side are of

interest since a lot of lift is produced b
— 0.025 the following ratios are typical for

y the tip region on the retreating side.

Here, at a reduced frequency of k

nce ratios (Table 2.3).
re the small perturbation assumption, here more a small

different adva So even for the tip, none of these values

is small, and therefo
neral is violated when the flow fluctuation amplitude

angle assumption, in ge

is of medium (A = 0.5) or higher value.
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A=0.6 A=10.9
p=03 y=05 k= 0.05 pu=03 y=0333 k=0.075
or: and or:
p=05 y=08 k= 0.03 p=05 y=055 k=0.045

Table 2.2: Relation between advance ratio, radial station and reduced fre-
quency for different flow oscillation amplitudes. Basis is a 1/rev
plunge motion with amplitude of 10%R.

(=02 — A=02 g| =012
p=03 — A=03 3| =0143
pu=05 — A=05 71,0, = 0-200

Table 2.3: Proof of small angle assumption at ¢ = 270° for the blade tip,

k = 0.025
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This is not the case when the angle of attack stays constant, and only
flow oscillations (or lead-lag motion) are taken into account. In this case, the
angle of attack at 3/4 chord is constant and small. The small perturbations

assumption is only limited by the resulting accelerations, here represented

by the reduced frequency.

2.1.3 Theodorsen’s Theory of Unsteady Airfoil Mo-
tion in a Constant Freestream Flow

Before the unsteady freestream is taken into account, it is worthwhile to
examine the well-known result of Theodorsen [4] for unsteady airfoil motion

in pitch and plunge in a constant freestream. The lift and moment is split

into circulatory and noncirculatory parts,
2 .
B, = np%[h +Va -~ aga]
1—=2a\ . :

Here the parameter a accounts for the position of the axis of rotation. It is

positive for an offset of the rotational axis behind the midchord position. In

most cases is @ = —0.5, that is the rotational axis is at the quarter chord.

For the noncirculatory part, all accelerations normal to the chord are

involved and integrated over the chord, so the distribution of acceleration

across the chord is of interest here.

C (k) is the well known Theodorden function that represents the influence
of the unsteady wake on the circulatory lift. From the a-term in the circu-
latory lift it can be seen that for a rotation axis at 3/4 chord, there is no
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influence of & on the circulatory part of the lift. Therefore, in incompressible
flow under the assumptions made by Theodorsen, only the velocity normal
to the chord at the 3/4 chord point is of importance for the circulatory lift
response. This leads to a simple superposition of angle of attack and plunge
motion, and so the pitch and plunge effects can be handled separately and

the frequencies of angle of attack and plunge motion are not necessarily the

same.

Since only the time derivatives of h are involved, it is more physical to take

the normal velocity produced by plunge motion wy, = h into the equation. In

the case of different frequencies, one can generally write for simple harmonic

motions
a = ao[@o + G1ssinwat + Q1c €08 Wal]

wh = ao%[ﬁ)ls Sinwat + Wy cos wat] (26)

wherein the nondimensional amplitudes are defined as
ais = ac

- 16= =~

ap (844]

—knhic _— knhis

s = 1C
- 000/2 006/2
dorsen’s result can be written in nondimensional form

amean —_ .
Qp=——"—" ays =
ao

For convenience, Theo

by dividing by the lift at mean angle of attack,

Lo = 27r§V2ca0 (2

to obtain the nondimensional lift response, including different reduced fre-
quencies for pitch and plunge oscillations, 1.€.,

L.
Lo

wic sin wht]

= %{kh [w,5 coswht —
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+ ko[ cOSwat — @10 SINWat + aka(G1s sinwat + Q1o cos wat)]}
L, B B 1—2a\ _ .
— = &+ [(als — ko ( ) ) alc) SN Wyt

B 1—2a\ _
4. (oac + kq ( ) alg) cos wat] C(ka)

T (15 sinwnt + Bic coswit) C(kn) (2.8)

The reduced frequency k is introduced for both of the motions,

WaC WHhC
(2.9)

A i
2V T oy

It is important to notice, that with help of this parameter the product of

frequency and time can be transformed into
wyt = kys (2.10)

This result will be helpful when Duhamel’s integral is applied to arbitrary

motion of the airfoil in a later section of this thesis.

The lift transfer function of the circulatory part and of the total lift
(including the noncirculatory part) with respect to the reduced frequency is
shown in Fig. 2.3 for plunge and pitch oscillations about the quarter chord,
and for pitch oscillations about the midchord and 3/4 chord in Fig. 2.4. For
small reduced frequencies, the amplitude of lift decreases while there is a
phase lag. For higher frequencies, due to the noncirculatory parts of the lift,

the phase lag changes to a lead, and the normalized lift amplitude begins to
increase above unity.

Considering only the circulatory lift transfer function for plunge motion,

(that is identically to the Theodorsen function C(k) itself), the influence of
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the unsteady wake reduces the lift amplitude for high reduced frequencies
to 1/2 of its value at k = 0; the phase lag reaches its maximum at about
k = 0.3. In case of pitch oscillation about the quarter chord, the range of
phase lag is decreased to values of k from 0 to about 0.25, while at higher
frequencies a phase lead and lift amplitude increase occurs. This is due to
the position of the rotation axis being a half chord ahead the 3/4 chord point,
introducing a factor k.(1 —2a)/2 into the circulatory lift transfer function.
The inclusion of the noncirculatory terms leads to a change in phase from lag
to lead at k = 0.35 in plunge, and an increase of amplitude proportional to
k. Basically the same effect can be seen in pitch motion; the range of phase
lag appears only at 0 < k < 0.14 and at higher frequencies a phase lead due
to the noncirculatory parts becomes important. Since the noncirculatory lift

also affects the real part of the lift by k2a/2, the phase lead becomes more

than 90°.

92.1.4 Arbitrary Motion Theory in a Constant Free-
stream Flow

In general, the operational environment of a helicopter blade section can be
considered as an airfoil in an arbitrary varying freestream with perturbations
in pitch, plunge and lead-lag. This general case will be covered in a later
for a background understanding it is worthwhile to look to the

chapter, but

case of a pitching and plunging airfoil in a constant incompressible freestream

velocity. Basically, this is the same starting point as for Theodorsen’s theory.

The basic idea is to handle the arbitrary motion response as the superpo-

sition of small increments of step responses, the so called indicial functions.
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These functions represent the lift (and moment) development after a sudden

step change in angle of attack or plunge velocity; there are different indicial

functions for step changes in a, & and for the gust problem. All basics of the

theory of arbitrary motion and its applications have been published several
times, for example [31, 32, 33].

The indicial functions ¢ are generally expressed in the form of a series of

exponential functions with different coefficients representing the response in

the time domain

N
ZOEDI (2.11)

The noncirculatory part of the lift (or moment) depends on the instantaneous

motion only (for incompressible flow), and therefore the lift development is

obtained by the use of Duhamel’s integral applied only to the circulatory

part
2 aw3/4

o ) c
L= 7rp—4—[h + Vé — bad] + 27rpV§ [w3/4(0)¢(s) + | =

#(s — a)da]
(2.12)

The velocity at 3/4 chord is composed of the vertical motion of the airfoil,

and the instantaneous angle of attack, a

. c(l—-2a\ .

s well as the pitch rate term

) is the distance travelled by the airfoil, i.e.,

2 t

The variable s (in semichords

Here V is constant, so s = 2Vt/c. For harmonic motion, a and h may be

defined as

a = olao+ s sin ks + @ ¢ cos ks]
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. _
b e ag'z—[hls sin ks + hic cos ks] (2.15)
itch and plunge are kept the same here for simplicity,

The frequencies in p

but this is not the ge
in Appendix A, the final result for the lift is

neral case and can be changed as required. As shown

2 .
L = wp%[h + Va — bad) + 27rpV2§ag {do
1=2aX\ _ .
+[(w15+a15—k( 5 )010) sinwt
1—2a\ _ N
+(wlc+dlc+k( 5 )als) COSWt]gb?+k2
B 1—2a\ _
+ [(71)15 +as—k ( 2 ) alC) cos wt

~ B 1—2a\ _ . N ‘
= (wlC + ajc + k (T) 015) smwt] E b? iy ”

(2.16)

L the result obtained by Theodorsen, one immediately
obtains the identity C(k) = F(k)+iG(k) for an infinite number of exponential
ctical case where the series is truncated after NV terms

Comparing this wit

terms, and in the pra

one obtains the approximation, denoted by F and G

N Ak2 A
ZbZ_*_kZ = k)
A;kb; A

Z b? + k2 = G(k) (2.17)

1=1 "t

In most cases, the above approximation is very close to the exact Theodorsen
function. A very commonly used approximation is the one obtained by Jones
[34], using the coefficients listed in Table 2.4. This approximation leads to
the correct values for zero as well as for infinite reduced frequency, while
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i |1 2 3
A; |1 -0.165 -0.335
b | 0 -0.0455 -0.3

Table 2.4: Coeflicients of Jones’ approximation of the Theodorsen function

t |1 2 3 4
A; |1 -0.1058 -0.2876 -0.1011
b; | 0 -0.0367 -0.1853 -0.5912

Table 2.5: Coefficients of Petersen and Crawley’s approximation of the
Theodorsen function

for any frequencies in between it 1s an approximation. To obtain a better
approximation, one can use a set of coefficients recently evaluated by Peter-
son and Crawley [35] (Table 2.5) or Eversmann and Tewari [36] (Table 2.6)
who claim that their two element approximation is closer to the Theodor-
sen function than the three element series of Peterson and Crawley. It is
noteworthy, that the final value for infinite reduced frequency of both ap-
proximations is not identical to that of the Theodorsen function, because
only the range of reduced frequencies up to £ = 1 was approximated. The
mation of Eversmann and Tewari even does not give the exact value

approxi

for zero reduced frequency in order to obtain a better overall agreement in

the range of reduced frequencies from zero to one. However, the differences
to Jones classical approximation are not significant enough to justify one
e in the exponential series, since this means more computing time

term mor

for the aerodynamic subroutine in a rotor analysis.
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? 1 2 3
A; 1 0.9962 -0.1667 -0.3119
b; 0 -0.0553 -0.2861

Table 2.6: Coefficients of Eversmann and Tewari’s approximation of the
Theodorsen function

2.1.5 Theodorsen’s Theory and Unsteady Freestream

To apply Theodorsen’s result to unsteady freestream, it is necessary to in-
clude the freestream variations into the noncirculatory and circulatory parts.
This may be referred to as the direct effect of velocity changes on the lift
development; the additional phase lags and amplifications to be expected by

an unsteady freestream are not included. Starting from

62 - . C .
L = wp=[h+(Va) - agé)

1-2 ;
2r Ve {Vao+ 5 (5 “Ya+ Vaun + | CB)} (218

L.

and defining a freestream variation and airfoil motion of the form

V(t) = Vo(l1+ Asinwyt)

alt) = a (& + as sinwyt + a;c cos wyt)
h(t) = gao (515 sinwyt + hyc cos wvt) (2.19)

this leads to the following result for the lift in the form of a Fourier series

k B -
Lne . [)\&o + ays + kv (a@ic — hic)| coswyt + Aayc cos 2wy t

I 2 _ . )
0 g [—&10 + ky(adis — his)| sinwyt + Aa;s sin 2wvt}
(2.20)
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with the coefficients

X A
ag (1 + —é—) t3 [fis + F(kv)ais — G(kv)ac] (2.21)
22
+ fic + T [F(ky)aic + G(kv)c"us]} cos wyt
ox
+{¢2X a0 + fis + T [F(kv)ays — G(kv)dlc]} sin wyt
A
= [,\ao + flS + F(kv)als — G(kv)c_llc] cos 2wyt
+:)- [ fic + F(kv)aic + G(kv)ays] sin 2wyt
12
X [P (k) + Gk )dus] cos 3wyt
A .
—Z_[F(kv)éas — G(kv)aac]sin 3wyt
1-2 - T
iy = F(kv) (6—215 — ky ( 5 a) a o+ th)
’ 153 . 4
—G(kv) |a1c + kv (( 5 a) s + hlS)
3 1 -2\ _ :
he = F(kv) |aac + kv (< 5 ) s + hlS) (2.22)
i 1—-2 .
+G(kv) |ans — kv (( 5 a) oo + th)

From these equations, the quasisteady theory result follows as a special case.

This assumes very small frequencies, and therefore the noncirculatory part

becomes zero while the Theodorsen function takes the values F'(ky) = 1 and
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G(ky) = 0. Therefore
- 32 _ k 1—2a\ _
—L = @ (1 + —2—) + A [als - ‘5‘1 (( ) ajc + th)] (2.23)

Lo 2
1—2a _
+ apc |1+ ‘:1‘ (( > s + h1s) cos wyt

FA 1-
+ (2D ap + Q15 14 e —ky (( 2 ) Qic + hw) sinwyt
1—2a
> + )] cos 2wyt
+

ills)J sin 2wyt

<

- [/\ao 4+ 2845 — kv (

(5
A0 e (59

2

/\2
——74—&15 SiIl 3wvt

— —4—0110 cos Jwy't

Even from this simple result it can be seen that the lift response includes

a 3/rev component becaus

tions. When the compression a
in the shed wake does not have a sinusoidal form

e of the multiplication of the trigonometric func-

nd stretching of the shed wake is taken into

account, then the vorticity

anymore but more of a kind of Fourier series of harmonics. The conclusion

is that there will also be a series of harmonics in the lift and moment re-
Additionally, if

hat is not predicted by quasisteady assumptions.

sponse t
the airfoil is set at a constant angle of attack and has no pitch or plunge
motion, both Theodorsen’s theory and quasisteady theory lead to the same
circulatory lift since no lift deficiency function is in effect. Thus, the use of
rsen’s theory in an unsteady freestream velocity

quasisteady theory or Theodo

is questionable, In general.

the quasisteady theory is a reasonable simplification for

Despite this,
small reduced frequencies, but it is unclear whether this statement holds
also for large flow oscillation amplitudes A, even when the reduced frequency
will be clarified using results from more complex theories.

is small. This
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An example for the combination of Theodorsen’s theory and quasisteady
theory is given in Fig. 2.6 for a pure sinusoidal oscillation in angle of attack.
Basically one obtains a very similar result as for a constant freestream where
the lift deficiency function of Theodorsen leads to a phase lag as well as to
an amplitude modification to the lift (and lift coefficient). The freestream

amplitude, even at values very close to one, does not change the sinusoidal

form of the lift coefficent.

2.2 Isaacs’ Theory
2.2.1 Constant Angle of Attack
Starting from the model given in Fig. 2.7, the freestream velocity consists of

a constant and a sinusoidal part, i.e.,

V(t) = Vo(1 + Asinwyt) A <1 (2.24)

and the angle of attack is constant with respect to time

a = ap (2.25)

The normal velocity along the airfoil chord is given as
Un(.’E, t) = a()V(t) + ’Unyw(l', t) (226)

The second part of Eq. 2.26 is the contribution of the shed wake. It is impor-
tant to note here that the velocity of the unsteady freestream is not thought
of as to produce a different normal velocity at different airfoil chordwise po-
sitions; instead it is considered as constant along chord. This is true only

in case of pure fore-aft motion of the airfoil, but not in the case of unsteady
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freestream with a gradient in normal velocity along chord. Therefore, it is
clear that the results may not agree well with results obtained for the phys-

ically different environment of an unsteady freestream velocity, especially at

higher reduced frequencies.

Now an integral relationship between the varying velocity at the airfoil
and the circulation of the airfoil can be derived. Without showing all the
steps, this problem can be solved in form of a Fourier series and the result is

made nondimensional by dividing through by the lift at the mean velocity,

. ‘/0,
Lo = gvgczmo (2.27)

This gives for the noncirculatory and circulatory parts of the lift

&
Lne = )-Y cos wyt
Lo
s A? . - _
= 14 il (1 + Asinwyt) + A > (Im cos mwyt + 1, sin mwyt)
0 m=1

(2.28)

where ky is the reduced frequency of the freestream velocity oscillations

wycC
o TIim— ‘)
kv =5 (2.29)

It must be noted that there are no additional simplifications or assumptions
included, so this is the mathematically exact result. This result contains the
steady case of constant angle of attack in a constant freestream (Lo, the “1”
in the first térm of Eq. 2.28), a term of noncirculatory origin, (Aky /2) cos wyt,
and the rest of the terms are of circulatory origin including the unsteady wake

offect in the coefficients I, and I,,. The coefficients of the Fourier series are
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given by

L+l = —%i{F"[J"’L"‘(n)‘) = Jnem (nA)] + (G [Jngm () + Juem (nA)]}
(2.30)

and herein
Fn - Jn+1 (n/\) = Jn_l(n/\) F(nkv)
G, } - 2 G(nky) (231)

It is interesting to examine this result in the case of very small reduced

frequencies, say kv — 0, so F(kv) =1 and G(ky) = 0. Then

b + il ——fZ Juta (1) — JrOX) (7 (1) = Jocmmd)]  (2:32)

It can be seen, that even the quasisteady case contains an infinite number of

harmonics. Now, when A — 0, the sum over m in Eq. 2.28 disappears and

we get the same result as in quasisteady theory.

Comparing to the result of quasisteady theory (from Eq. 2.23),

A2 A2
L[i,(;,s _ (1 afs E.) + 2Asinwyt — 5 608 2wyt (2:33)

The mean values obtained by the quasisteady and unsteady theory are the

same for the case of constant angle of attack, but the quasisteady theory does

not give harmonics above the second, while the unsteady theory includes

harmonics up to infinity.
A closer look at Isaacs’ result Eq. 2.28 indicates certain limitations in its
application since there are two nested summations involved.

1. The first sum (over m) represents the harmonic content of the lift re-

sponse. If the interest is mainly in the rotor performance, one can

36



neglect the higher harmonics and will obtain sufficiently accurate re-

sults with the first few harmonics alone.

9. The second sum (over n) has to be calculated for every item in the first

sum. Since here Bessel functions of the first kind and n-th integer order

are involved, as well as the computation of the Theodorsen function,

this part requires enormous computational time when it is necessary to

calculate higher harmonics. One has to keep in mind that the Theo-

dorsen function also consists of Bessel functions of the first and second

kind. This series, therefore, has to be terminated after computing a

sufficient number of elements in order to reduce computational time.

(thought to be typical for helicopters in 1945) of a

For the special case
freestream oscillation amplitude of

reduced frequency ky = 0.0424 and a
al lift ratio L/Lo and

A = 0.4, Isaacs gave a numerical example for the tot

compared it to the quasisteady theory leading to the result:

“..so that for this case the effects herein considered' are not large.”

This sentence often seems to be in mind when it comes to justifying the
n this special case of moder-

flow oscillation effect. Since it 18 based only o
nowadays helicopters encounter much greater values of

ate flow amplitude (
it is not to be taken as the general case. Only

A, even larger than unity)

with a variety of parametric variations including all re-

a systematic study
flow oscillation amplitudes, will

duced frequencies of interest, as well as all

be required to justify the necessity of including these effects.

Since the calculation of Bessel functions was not easy in 1945, it is ques-

1Unsteady freestream effects are meant here
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Ao Aic Ass Agc Azs
(1) [1.08  -0.0376 0.770 20.0790 20.00697
(2) | 1.08 -0.0381595 0.770396 -0.079016 -0.0061575
Asc Ass Asc Ays
(1) -0.00061 -0.0050 -0.00003 0.000042
(2) -0.00061028 -0.00037179 -0.000074784 0.000047096

| (1): Isaacs (2): Recalculation k =0.0424 A =0.4 o= ao ]

Table 2.7: Coefficients of lift response given by Isaacs in comparison to the

recalculation

tionable if the coefficients in the numerical example were calculated correctly.
Therefore the author recalculated these coefficients for up to the 30tk element
in the sum of the Bessel functions by using the IMSL subroutines in double

precision. The result is shown in Table 2.7 and indicates some differences to

Isaacs’ results as assumed.

An expression for the pitching moment was not given in [6], but it can be
derived from Isaacs’ work including periodic variations in angle of attack [7]

by setting the harmonic components of angle of attack to zero. The pitching

moment is nondimensionalized by the steady moment about the midchord

position, My,
c
M, = Log = 42‘/020227"010 (2.34)

and split into circulatory and noncirculatory parts, i.e.,

M,
Mo

= ¥
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AP N
& o <1 s —2-) + 2\ sinwyt — 5 e 2wy t+ (2.35)

[ee]
+A Z (tm cos mwyt + t,, sin mwyt)

m=1
Here the coefficients t,, and ¢/, are calculated in the same mannor as /,, and
I' for the lift, except that F(nky) must be replaced by F(nky) — 1. There

is no noncirculatory moment, since the reference point for the moment is the

midchord and no pitch oscillations are involved.

2.2.2 Oscillating Angle of Attack about Midchord

In Isaacs’ first publication [6], he did not give a solution for the aerodynamic
pitching moment, yet this was given in his second paper [7] that also includes

a 1/rev variation in angle of attack with the same frequency. This was

thought to be representative for rotorcraft aerodynamics, i.e.,
a = ao(a@p + ayssinwyt + ac cos wyt) (2.36)

In this case, the derivation becomes more complicated but the result can
again be expressed in the form of a Fourier series. However, the constraint
here is that the derivation is made for a rotational axis at midchord without a

parameter accounting for another position of the center of rotation. In rotor-

craft this is usually the quarterchord point. Again, the result is decomposed

into its noncirculatory and circulatory parts, 1.€.,

Lgs = _I?K [(A&o + @5) coswyt — aic sinwyt
Lo 2

+ Masc cos 2wyt + a5 sin 2wyt)

39



A2 k ]
Le _ [do (1 + -2—) + A (5115 = TVC_YIC)J (1+ Asinwyt) (2.37)

+ Z (I, cos mwyt + I, sin mwyt)

m=1

with the coefficients looking very similar to the case of constant angle of

attack Eq. 2.28, i.e.,

Iy + il = —22.% >, {Fn[Jn+m(nA) — Jn-m(nA)] (2.38)
n=1
+ iG[Jngm(nA) + Jn_m(n/\)]}
Here B g
: nt o
Fo +1Gy = [F(nkv) +iG(nky )] ——— (2.39)
with
_ A kv _ 2J.(n))
Hy, = Int1(nA) 5 Jn-i(e}) <A5lo — g = —2‘/‘0410) = n(/\ )0115
= L(nA) [ k
H = Jng1(nd) J"‘l("A)alc + : (A" ) [alc(l — A - %aISJ (2.40)
" n

On first examination, the result in Eq. 2.37 looks different from the earlier

equation presented (Eq. 2.28), but setting a1s
] expression as in Eq. 2.28. The quasisteady formulation

= ajc = 0 and ap = 1 one

obtains the identica

yields for a = 0 (rotation about midchord)
¢ k
Lo = 0o (1 + L) + A (@15 - Tvalc)
Lo 2
A2 ky _
+ [ ac |1+ 1 + 7015 cos wyt

~ 3% ky .
-} [2/\60 +ays |1+ —4—‘ = 70110 sin wyt
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8| >

k
(/\C_Yo + 2a45 — —-2!&1(;) cos 2wyt

A

k
+2 ( 2010 + 7‘/&15> sin 2wyt

Y A

——Zdlc cos Jwy't — Idls sin wy (2.41)

Comparing the two expressions (the quasisteady result Eq. 2.41 and the
unsteady result Eq. 2.37), one can see that the mean values again are the same
in both cases as they were in case of constant angle of attack. The dynamic
part, however, is different since it includes the lift deficiency function for
dynamic pitch in oscillating flow. This consists of the Theodorsen function

for the pitch oscillation as well as of Bessel functions for the unsteady flow

effect.

In addition to the lift, there is a similar result for the pitching moment,

2 k? )
L Qo (1 + /\— + Aags + —81(5110 coswyt + aissinwyt)  (2.42)

M, ) ;
A _ _ .
+aic (1 + —4—) coswyl + [2)\010 + oy (1 + Z/\z)] sinwyt

2
)\ (é\- o 5115) cos 2wyt + Aagc sin 2wyt — Z&IC cos 3wy t

2 ad .
—Lc—r]s sin 3wyt + Z (tm cos mwyt + ¢! sinmwyt)
m=1

Herein. the coefficients tm and t/ are calculated in the same manner as
l,, and I’ for the lift in Eq. 2.38 except that F(nky) must be replaced by

F(nky)—1. The only contribution to the noncirculatory part originates from

about the axis of rotation at midchord

an acceleration in angle of attack (&) ‘
2/8 in Eq. 2.42). There is no Va term included, since this

(the term with k&

produces a lift acting at midchord, and therefore does not lead to a moment
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about that point. Surprisingly, there is no term from Vé&. It will be shown

later that this term is included in the ¢,, and ¢/ terms.

It is interesting whether or not the well known result from Theodorsen for
pure angle of attack oscillation about the midchord axis in a steady freestream
can be extracted by setting A = 0. From the behavior of the Bessel functions,
with the argument — 0 one will only get a value for the zero order function

Jo(0) = 1, while all others are zero, J,(0) = 0. Additionally,

R 1C)

r—0 ax

. Jalm)

== =10 (n>1) (2.43)

so that the sum over all m reduces to only the first element, and the same is

in effect for the sum over n. The result for the lift is finally

an kV = ~ 1
= —(mscoswyt — e sinwyt)
Lo
L. ~ o
- = ao + h coswyt + I} sinwyt (2.44)
0

where k = ky and

k ok
= F“ﬂ(mc+My§>+G%ﬂ(ms_mG%)

k _ _ kv
I = F(kv) (0715 = C-110‘21) — G(kv) (alc . 0115?) (2.45)

and it can easily be seen that it is identical to Theodorsen’s result, leading

to
kv, _ .
ays coswyt—aycsinwyt)| C(ky)

L. B
1. =00+ |agsinwyitaic COSWVH?(
0
(2.46)
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Additionally, one obtains for the noncirculatory and circulatory moment

about the midchord

2 k )
ﬂ = _]_J_E 3 k_V(alc coswyl + ais sinwvt) = b (6115 coswyt — ayo Sin wvt)
My Lo 8 2
(2.47)

The additional noncirculatory contribution of V& was hidden in the coeffi-
cients t,, and t., by replacing F(nky) by F(nky) — 1. Also, the pitching
moment coefficient is identical to Theodorsen’s result. Therefore, Isaacs’
theory of combined periodic flow and angle of attack oscillations with arbi-
trary phase angle between both of these motions can be considered as the
best available theory for attached flow. However, when it comes to practical
application, the tremendous amount of computational effort involved with

the repeated evaluation of Bessel functions places many limitations on this

theory.

2.3 Generalisation of Isaacs’ Theory

Since Isaacs’ derivation [7] was made for a fixed pitch axis at midchord, the

results are not very useful because in helicopter applications the pitch axis is

usually the quarter chord point. In other applications, it may be even another
axis, so that a more general formulation is required where the position of the

pitch axis is a free parameter, just like in the result given by Theodorsen for

unsteady airfoil motion in a constant freestream flow.

Additionally, Isaacs’ theory does not include the effect of plunge motion

although this degree of freedom is a very important one in helicopter aerody-

namics. The subject of this section is to derive results including all degrees
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of freedom in two dimensions:
e Pitch motion (including higher harmonics) about an arbitrary location
of pitch axis on the chord.
e Fore-aft motion (1/rev) with velocity amplitudes smaller than the ve-

locity of the freestream itself.

e Plunge motion (including higher harmonics).

This extension of Isaacs’ theory was never given before, and therefore it will
be made here for the first time. The complete derivation is very lengthy and

is not shown here, but is included in Appendix B. The general procedure

follows very closely to the derivation of Isaacs given in [6, 7].

The configuration is shown in Fig. 2.8, where the pitch axis has an arbi-

trary offset of ac/2 from the midchord, positive aft. From this, the normal

velocity across the chord is defined as
va(z,t) = a(t)V(t) + (1‘ B ag) &(t) + h(t) + vnw(z, ) (2.48)

where the wake velocity v, is produced by the shed vorticity —I"(7)dr.

Since the circulation of the airfoil ' is a function of its own time history,
shed into the wake, one gets an integral equation to be solved.

For the special case of harmonically varying fore-aft motion, angle of

attack and plunge motion like

Vig) = Yoll+ Asinwt) [A] <1

[o.e]
alt) = ao (50 + Y aps sinnwt + anc cos nwt)

n=1
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¥

h(t) = ao Z(iznssinnwt+/_znccosnwt) (2.49)
n=1

NG oY

the integral equation can be solved (the method is shown in Appendix B)

and one gets the following result for the lift

an k _ _ = _
== \ap + ars + k(adic — hic) — 5 @c| cos (7
Ly 2

> N >

+ —ayc + k(atys — 7115) — —ag| siny

N

+3° n[ Gns + nk(a@ne — hac) + 5 (d(n-l)c = d(n-}-l)C)} cos ni
ne2

> N

+ 3" n|—anc + nk(adns — hns) + 3 (5‘(n—1)5 - C_Y(n+1)S)J sin ni

n=2
(2.50)
L 22 - k 1—2a\ _ = A
— = {(1+—2—)d0+A{als—§<< 5 )CYIC'f'th)—Zach}

(1 + Asin )

[S]

g i (I,, cosmyp + I, sin map)
e (2.51)
with 1 = wyt. The coeflicients I, I! are built up in the same way as in
Eq. 2.38 and Eq. 2.39, but the values of H, and H! include the position 6f
axis of rotation a, as well as the amplitude of plunge motion hnc and h,s, and
those of pitch in @nc,ans. In the case of pure 1/rev and steady components,

the coefficients H, and H), can be written in a form very similar to Isaacs.

In

= 1-2a\ _ % _
H, = ']”;12_‘]_”21 [,\@0 —as— k (( 5 a> ac + th)] =T %e (2.52)

1—2a "
H = Jnt1 — Jn—ldlc 4 ‘_]ﬂ [&10(1 — /\2) -k (( 9 ) ars + hls)J
n n A
(2.53)

This will be used later to show the effect of another pitch axis location on

the lift development.
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2.4 Greenberg’s Theory

2.4.1 General Theory
Like Theodorsen, Greenberg worked at NACA and he extended Theodorsen’s

theory of harmonic airfoil motion in a constant freestream flow to the case of
an additional periodically varying freestream flow conditions [8]. However,
Greenberg also defines the freestream velocity as constant over the chord,
and this really means an unsteady fore-aft motion of the airfoil and not a
varying freestream. As shown previously, the real case will lead to a velocity
gradient over the chord. This is indicated in an appendix to [8], where
Greenberg explaines the assumptions about the wake form: “Consider an
airfoil moving back and forth...”. Despite this, everywhere else Greenberg
refers to flow oscillations. However, for the positioning of the wake relative to
the airfoil there indeed is no difference whether the airfoil is fixed in a varying
freestream or it is moving back and forth in a constant freestream velocity.
A fundamental difference can only be seen in the velocity distribution on

the chord, and will result in different noncirculatory as well as circulatory

aerodynamic forces.

Therefore, Greenberg’s derivation includes the third degree of freedom of

the airfoil, and the procedure is basically the same as that used by Theo-

ted with a velocity potential function, and solved the

dorsen. Greenberg star
eady flow by the small disturbance assump-

equation of motion for the unst

tion, including the Kutta condition at the trailing edge, i.e.,

The velocity changes and pitch and plunge motion are considered of gen-
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eral harmonic type with a different frequency:

V = VO[1+Ae"wvf]

a = ap [&0 i def(waHd/a)]

h = hoel@nttin) (2.54)

where the phase angles 1, and ¥, allow for different phase with respect to
the velocity oscillation as the reference, and the amplitudes A\, @ and A are
of a general complex type. Of course, the restriction that [A] < 1is made in
order to have the wake complete behind the airfoil, and not to overlap the
vorticity sheets with each other and the airfoil itself. In addition, Greenberg
places some assumptions on the form of the wake. These are, first that
the effects of mean value and sinusoidal part can be handled separately and
that the sinusoidal part may be considered as an airfoil in a constant stream
undergoing fore-aft motions. The second assumption considers the wake

vorticity to be distributed sinusoidally, and this is derived by the final value

of infinite frequency of fluctuations in the inplane motion. This assumption

is questionable, since the theory is built up on the basic assumption of small

disturbances and therefore of small frequencies in airfoil motion as well as

However, the sinusoidal wake form leads to key

freestream fluctuations.
e wake integrals in order to obtain a closed

simplifications in evaluating th
form solution of Theodorsen’s type. This solution is presented here in its

noncirculatory and circulatory components for lift and moment about the

axis of rotation a of the airfoil

c? . . c.
b = sz‘[h +Va+Va-— aéa]
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L, = gk Vc{%ao 1 +Ae'wv‘0(kv)+Ae'wv‘* “"“’C’(kv+k )

—2a
+1khhe"""tC(kh) +a[ ; J etk )}
1-2a, - ¢ [l
Mnc - - N 2 (— 2) ”J
7rp8 [V 5 & — Vaa — ah+2 8+a &
142
M, = — = &, (2.55)

It can be seen from these equations, that they are very similar to Theo-

dorsen’s results and in case of setting A = 0 they are identical to those of

Theodorsen. It is noteworthy that the pulsating wake has no influence in the

plunge motion results since there is no term like C(kv + ki) involved. This

type of coupling is only related to the unsteady parts of the freestream and

angle of attack variations.

The reason for this is found in the small angle assumption, because the

angle of attacl\ resulting from plunge motion is @ = tan"Y(h/V) = h/V.

Then the norrna] velocity at 3/4 chord is the product of velocity and angle

of attack w = Va =~ h, and therefore there is no influence of the oncoming

velocity. Nevertheless, this remains questionable since the flow oscillation
produces a periodic stretching and comp

plunge motion, and this should have an effect o

ression of the wake also under pure
n the resulting lift and moment

development similar to the case of pure angle of attack oscillations.

2.4.2 Transformation of the Results into a Real Fou-

rier Series

Now it remains to rewrite these equations Eq. 2.55 in the form of a real
Fourier series. This is required for any application, and in order to make
comparisons with Isaacs’ theory possible. This form of the results was not
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given by Greenberg, and therefore the derivation was made here in this thesis.

One has to define the complex amplitudes as follows (the form of V' was used

by Greenberg to compare the case of constant angle of attack with Isaacs’

theory)

V = LR [1 - z')\e"“"’t} = V(1 + \sinwyt)
a = aqR [50 + (810 — ials)eiwat] = ap(@o + aic coswyt + assinw,t)
°R [(illc — ii—zls)e“”h‘] = ao—;-(iuc cos wit + h1s sinwyt) (2.56)

and vy are expressed by the cosine and sine

Herein, the phase angles ¥a
n, the lift will be nondimensionalized by the lift

amplitude components. Agai
gle of attack, Lo One has to be very careful

of mean velocity and mean an
in applying the specific functions for velocity, angle of attack and plunge

motion. The Theodorsen function is applied to the angle of attack motion,

and reduces to an effective angle of attack. Therefore we obtain

L. ' o — ¢
L B [1 B z')\e'wvt] R {Oto — 1Adp€
T = Qa) ot [F(ky) +1G (ko )]

+(ac — 1015) (
+(hic — ihos)ikne™ [F (kn) + 1G (k1))

e idlg)ei“’vtei“’°‘[F(kv + ko) +1G(kv + ka)]}
(2.57)

Care must be taken for the evaluation of the last term. Using the Fuler

formula for trigonometric functions
(2.58)

¢t = coswt + 1sinwt
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one ends up with the multiplication of trigonometric functions with different

frequencies in their argument. These lead to the following expressions

1
sinarsinbr = 3 [cos(a — b)z — cos(a + b)z]
1

= 3 [sin(a — b)z + sin(a + b)z] (2.59)

sinazx cosbr =

Then the Theodorsen function C(a+b) is applied to the term with frequency
a+b, and of course C(a—b) to the term with frequency a —b. The latter term

does not immediately appear in the complex exponential notation, but the
physics of unsteady aerodynamics lead always to the Theodorsen function
with the frequency of the oscillation as argument. Now, we are interested in

the case of ky = kp = ko, and therefore a = b. This leads to C(a — b) = 1

and

sinazsinbzC(a+b) = -;— [cos(a — b)zC(a — b) — cos(a+ b)zC(a + b)]

azb % [1 — cos 2azC/(2a)]

. :
sin ax cos bzC(a+b) = 5 [sin(a — b)zC(a — b) + sin(a + b)zC(a + b)]

= 2MEC(?a) (2.60)

Thus, after extracting the real part on the right side of Eq. 2.57 we end up

with
L _ A .
= = {4 sinwyt){ @ + ‘2'015 + [AaoG (kv ) + fic] coswyt
0
+[MaoF(kv) + fis]sinwyt
A A .
__-2-f25cos2wvt+ Efzc sin 2wy t (2.61)

where the coefficients fis and fic are the same as defined before, while

fas = F(2kv)&15 - G(2k‘v)alc
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foic = F(2kv)ac + G(2kv)ans (2.62)

Multiplication and sorting of terms finally yields

LTLC k = 7
Lo = 2V {[/\&o + &5 + kv(adic — th)] coswyt + Aa;c cos 2wyt
5t [-—5110 + kv(atys — hlS)] sinwyt + Aa;s sin 2wvt}
N 1+£F(k)+§[f + as]
Lo Qo 2 1% ) 1S T ai1s
22
-+ )\EloG(kv) + fic + If2c coswyt

2 AZ

A
+ [Xao[l + F(kv)] + fis + '4—f25 + —2*615J sin wyt

—= [MaoF(kv) + fis + fas] cos 2wy t
+‘2‘ [AaoG(kv) + fic + fac] sin 2wyt

X2 2
—Z—fzc cos Jwyt — 'Zfzs sin 3wyt

M, A 1—2a _ 1 al - _ )
M, = ky Zalc + [ 5 aic + kv ([g +a J a5 — ahls)] sin wyt
-9 1 .
- [ adls—/\aéo—kv <[g+azJ &1c—ah1c)] coswyt
. (211— — a) (@15 sin 2wyt + @y €OS 2wy t)
M. s
M, (14 2(1)5(; (2.63)

2.5 Kottapalli’s Theory

2.5.1 General Theory

Like in the theories presented before, Kottapalli [15] also assumed the in-
stantaneous velocity distribution along the chord as a constant, but his pub-

lication in 1979 [16] was titled with “ . Fluctuating Free Stream”. In another

paper in 1985 [17], however he explicitly states that the velocity fluctuation
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is only due to inplane motion of the airfoil in a constant freestream. The
additional restriction of small oscillation amplitudes of this lead-lag motion
limits the applicability of his theory to the case of a hovering rotor, or one at
low advance ratios in forward flight. Consequently, he acknowledges that the

primary use of this derivation should be the stability analysis of a hovering

rotor.

For the derivation, Kottapalli uses the singularity method and prescribes
simple harmonic motion for the airfoil. For the wake vorticity a sum of
exponential functions is used, and the coefficients are identified by satisfying
the Kutta condition at the trailing edge, applying the assumption of small
amplitudes in velocity oscillation, and therewith dropping all terms of order
A2, A% and higher order. The final results for the lift and moment coefficients

(the latter taken about the axis of rotation a), both referenced to the dynamic

pressure of the mean velocity, are

CI = _£_ = co+cleiwt +czei2wt
2Ty Lo
C M 1wt 12wt
_m T =dy+ die" + dre 2.64
7('00/2 Mo o ! ( )

with the following coefficients

Cco = Qo

c; =
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dO o (1 + 2(1)&0

d = (1+2a) i)\ao + [a + dao + ik (1 ;2‘1& 4 ‘)] C(k)}
b ( _22‘15 - aAdO> + k2 [(é + az) - aﬁ]
dy = 2M\1+ 2a) [a + ik (1 _22a& + h)] C(k) (2.65)
—ikA(1 + 20) (1 =i B) C(2k)
—ik\a —240

Here, the parts containing the Theodorsen function indicate the circulatory
contribution, while the coefficients ¢1, ¢, dy,dy also contain the noncircula-
tory part (always the last term). Setting A = 0, one obtains the Theodorsen
result, as required for airfoil oscillations in constant freestream velocity. In

case of pure velocity oscillations for an airfoil of constant pitch, the following

result can be extracted (setting b = & = 0)

.y
L _ a0{1+A[l+C(k)+%Je‘”‘}

Lo
M _ s {(1+20) {1414 C(k)e} +ikare™}  (2.66)
Mo

If the moment is taken about the quarterchord (a = —0.5) there will be no

circulatory contribution, and the pitching moment is only produced by the

noncirculatory part.

2.5.2 Transformation of the Results into a Real Fou-

rier Series

The above given results are given in complex notation, however they can
, - Y :
be transformed into a real Fourier series like Greenberg’s results. Since the
. . p! 9 b ey e
noncirculatory part is the same as 1 [saacs’ or Greenberg’s result, it is not
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considered here. For the circulatory lift, one applies the same formalism used
in transforming Greenberg’s results into a real Fourier series. Therefore, we
substitute A\ by —i), @ by aj¢ — 25 and h by hic — ihys. Also, care must
be taken where two dynamic parts are multiplied by each other. These lead
to a constant contribution and, again, here the Theodorsen function has the
argument w 4w, leading to C(0) = 1 and to C(2kv). It is interesting to note,
that in this mixed term of Eq. 2.64 the Theodorsen function also appears with

only 1ky as the argument; Kottapalli made no comment to this in [17], where

these formulas were published. The final result is

L. B B kv /1—2a_ _
'L_O = ap+ A|ays — 'EV‘ ( 2 ajc + th)J (2.67)

+ [MaoG(kv) + fic) coswt + [Aao(1 + F(kv)) + fis]sin wt
k
- %fw + fls] cos 2wt — A [—Qngg - fch sin 2wt

with the coefficients fis, fic like defined before and

fas = F(2kv) (l —22ad15 + f_hs) — G(2ky) (
fsc = F(2kv) (1 ;2‘1&10 & BIC) + G(2kv) (1

t Kottapalli’s derivation includes only two harmon-

1 —2a

aje + 7110)

—2a _ =
as + h1s) (2.68)

Immediately one sees tha
ics in contrast to three harmonics even in quasisteady theory. Here, the

assumption of small flow oscillation amplitudes is responsible since all terms

of higher order in A are missing and the 3/rev was multiplied with A\ in the

quasisteady, Theodorsen’s and Greenberg’s theories.
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2.6 Arbitrary Motion Theory in an Unstea-
dy Freestream

After investigating the various thin airfoil theories that are all set up for
oscillating motion of the airfoil or the freestream, it is of utmost interest,
whether or not the theory of arbitrary motion will lead to the same results
as the exact theory in the case of an unsteady freestream. The methodology is

the same as has been used in the Section 2.1.4, except that now the freestream

velocity is no longer constant. Therefore, additional deficiency functions

occur, as will be shown. This method is based on the superposition principal

and the use of Duhamel’s integral in combination with the indicial response

of lift (or moment) due to a sudden change in any of the degrees of freedom.

In incompressible flow the circulatory lift is determined from the normal

velocity at 3/4 chord of the airfoil, while the noncirculatory lift is the result

of the instantaneous local accelerations. Thus, the total lift is

2

f= 7(,,% (2.69)

o . C.
[h(t) +V(®)at) + V(t)a(t) — aia(t)]

C . 5103/4(‘7)
+2mpV(t)5 [ 3/4(0)8(s) +/0 —5, P15~ o)do
where ¢(s) is Wagner’s deficiency function for the lift [11], s the distance
travelled by the airfoil (in half chords) and ws/4(t) the instantaneous value

of normal velocities at the three quarter chord point. The normal velocity

depends on the angle of attack a(t), the flap or plunge motion A(t), the

position of the pitch axis ac/2, and the time-dependent velocity V(t). This

velocity may originate from freestream variations or lead-lag motion of the

airfoil or a combination of both. However, it is assumed here to depend on
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time only, so the velocity distribution along the chord is the same everywhere.
As explained earlier in Section 2.1.1, this is realistic for the lead-lag motion,
but is somewhat unrealistic for a freestream velocity variation. An unsteady
freestream velocity should be handled in general as a type of propagating
gust, and therefore must lead to a gradient in velocity along chord. However,
in order to compare results of arbitrary motion theory with those of the other
theories analysed so far, the velocity i

Thus, the normal velocity at three quarter chord is

wsya(t) = Via(t) + (0 + 5 (7 ) 60 (2.70)

s considered to be constant across chord.

There are two approaches that can be taken. First, for a given forcing func-
tion one can analytically integrate to obtain a closed form solution; second,
one can let the type of motion be unknown and apply a finite difference

method. Both cases will be handled in the following sections.

2.6.1 Analytical Solution for Periodic Motion

motion theory with the others, some spe-

In order to compare the arbitrary
d velocity must be assumed. These

cific function for angle of attack, plunge an

are, as before,

Vi) = 1+ Asinwyt)

Vo (
a(t) = ao(do+&155inwvt+&1ccoswvt)

c
h(t) = 00-2‘

(ﬁlgsinwvt + hic COSWW) (2.71)

nd pitch and plunge. The product of

with the same frequency for velocity a
essed in terms of the reduced

time ¢ and frequency of oscillation w can be expr
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frequency ky and the mean value of the distance travelled by the airfoil s

wyctVo _
= =k it
wyt Ve 6/2 VS (2 72)

while the actual distance travelled by the airfoil s results from the integral

over the velocity and therefore is

1 rt
= — | V{t)dt
y c/2/0 ®)
——-Vot— —)‘—coswvt

o C/Q kv

35— —é—(cos kvi—1)+CI
kv
is identified through the requirement that the

(2.73)

The integration constant C7
mean distance travelled in one period has to be 5. Therefore, one finds
C; = —\/ky. It is important to note that this value of s forms the upper
limit of the integral and therefore the final response will have functions of

the following type
sin kys = sin(kvs — A cos kv S) V (2.74)

This is a periodic function, and therefore can be replaced by a Fourier series

with an infinite number of harmonics.

To obtain the final result, the derivative of the normal velocity must be
e integral. The indicial response function ¢ is

calculated and included in th
s a very difficult function, (it is expressed

the Wagner function, but since this i

, it 1s much more convenient to replace ¢ by one

in terms of Bessel functions)
itten in form of a series of

of its common approximations. These can be wr

exponential functions N

4(s) = 3 A (2.75)



and usually this series is cancelled after the second or third term, because

the degree of accuracy achieved is sufficiently high. The following steps

to evaluate a final result are straight forward, but somewhat lengthy and

complicated, since Bessel functions are involved. Therefore they are not

shown here, but are included in Appendix C. From that, the final result is,

L,

fo = Do—)\c:f(Dl)

+ [2R(D1) — AS‘;(DQ)] coswyt + [A[Do — R(D,)] — 23(Dy)] sinwy t

+ i {[2%(Dm) + A (S(Dm_l = Dm+1)] cos mwyt

 [29(Dy) + MR (Do)~ Drstlsinment] .70

with the following coefficients

2
Dp= 3 Cai®™ ™ n-m(=1) (2.77)
n=-—2

including the complex amplitudes

Co = ¢pds X B
¢ = L [Piwac +Glv)as =i (Flv)as - Glkv)arc)] = C
2 . _
C, — | [F(?kv)62c + G(2kv )e2s — 1 (F(2kv)czs = G(2kv)020)] = s
4 (2.78)

and therein

A

co = @+t 70s

ae = @i + kv <<

= Ao+ s — kv ((

a1s —

) __22(1) a1s + 7115)

! —22a> aic + 7110)
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A
0 = —=@1s

>
A (2.79)

c2s = 5&10

Note that the real and imaginary part of Theodorsen’s function, F and (e
here are represented by the coefficients of the approximation of the Wagner
function by an exponential series and therefore are denoted by F and G’

instead of F' and G.

The noncirculatory part of the lift leads to the same results as in the thin
airfoil theories, and therefore is omitted. The case of A = 0 reduces exactly
to the case of Theodorsen’s theory in a constant freestream, as required. Yet,
one difference to the exact theory of Isaacs 18 immediately obvious. Isaacs’
theory includes the Theodorsen function of all harmonics up to infinity, and
here only the first two harmonics are included, like in Greenberg’s theory.

2.6.2 Solution with the Method of Finite Differences

Another possibility to come to a solution for the case of arbitrary motion is
n as unknown. Then Duhamel’s integral yields for

to assume the airfoil motio

the circulatory part of the lift like above
+/ 8w3/4 - a)da}

L, = 27r-§V(t)c [w3/4

= 27rgV(t)c W3/4,ef f (2.80)
and again the normal velocity at 3/4 chord is written as
1—2a)\ .

want) = Vel + i +5 () 400 (2.81)
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Now the derivative dwsya(0)/00 13 generally

Bwga(c)  OV(o da(o) Oh(o) ¢ (1-2a) di(o)
6/0( ): afy)a(a)—%V(a) do i 0o +2< 2 ) oo

e

(2.82)

The method of finite differences introduces the calculation at different time
steps with a stepwidth being rather small relative to the highest frequency
encountered. Therefore, normally about 45 to 60 steps are made within one

cycle. However, this implies the use of some mechanism to describe the state
between the time steps, and this is usually done by a zero order hold. By
this a finite difference approximation can be made for the integrals, when

using one of the common exponential sereis approximations for the Wagner

function. .
4(s) = 3 Are™’ (2.83)

k=1
Then, for the sample with index n being the current sample, the expression

in the brackets in Eq. 2.80 for the effective normal velocity at 3/4 chord
})ecomes u}3/4,6ff = w3/4'n.
- ¢ (1=28Y s o AL L& ) (o4
Wyfgn = [V,-Aa,» + a;AVi+ 5 (—',,—‘ qi + Akl =D X (2.84)
i=0 & - i=1k=2
Herein, the X are called deficiency functions and contain the information of

the time history of the different degrees of freedom. They are [33]

PO LTt i (2.85)
The values A, and by are those of the usual approximation to the Wagner
function; for example Jones approximation ([34], see Table 2.4). If a higher

order approximation is used, such as that of Peterson and Crawley ([35], see

Table 2.5), than additional deficiency functions are added, as indicated by
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the upper limit N. This is not usually desirable, since more terms lead to
ading to any significant gains in

additional computational effort without le
e that 4N deficiency functions

the accuracy of the results. One has to not
have to be computed, and therefore one must

The values denoted by AU) are the differential chan

keep N as small as possible.

ges of the four derivatives

in the current sample [33], i.e.,

AD = V,Aa, A® = A
A® = 2 ( = 2a> Adm, AW = Ah, .
2 2
and the increment in the distance travelled by the airfoil As is
Vi + Va-
_ Dt elpg (2.87)

9 t+At
F— [ V(1) dt =

c
The total response of lift due to arbitrary motion of the airfoil can be calcu-
lated by updating the deficiency functions at each sample.

L Va w3/4,n
Len _ 70 /00 (2.88
Lo Vb VOaO )

When this formalism is applied to 2 constant freestream, Theodorsen’s result

i represented to an accuracy depending on the coefficients of the indicial

function ¢. In this case A =0 and

A
po=War=2t (2:89)
c 14

With ¢ = wy ¢ = ky5 being the rotor azimuth.

This formalism mow can be applied to any type of airfoil motion, for
example harmonic motion like that of £

of investigation. In all the cases presente

q. 2.71. This will now be the subject

d, the number of steps in one cycle
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herefore is on the conservative

was set to 64. This is somewhat high, and t
e steps, and therefore no

side. So here space steps are used instead of tim
e a time spacing

difficulties occur when it comes to high frequencies wher

leads to fewer steps within one cycle than at lower frequencies.
2.6.3 Introduction of Compressibility Effects

In general a helicopter rotor has a relatively high tip speed, normally with a

tip Mach number of about M = 0.64 in hover. In
— 1 on the advancing side,

fast forward flight the local

Mach number approaches M while it is reduced on

the retreating side. So a rotor blade is in a most complicated sit
freestream environment, also with changing

uation with

periodic motion in an unsteady
Mach numbers and changing Reynol
numbers have a significant influence on t

theories shown before, the flow is considered t
Now, the arbitrary motio

ds numbers. Both Reynolds and Mach
he airfoil behavior, however in all
o be incompressible and with
infinite Reynolds number. n theory has the impor-

tant advantage that the deficiency functions can be adapted
] have shown the validity of doing so in

to compressible

flow and various comparisons [33, 37
iency function includes the Glauert

a constant freestream. The modified defic

Compressibility factor f = \/I_‘TME

N 2
¢(3) = ZA,'eb'ﬂ ’ (290)
=1
and the lift curve slope changes its gradient by
CLa inc. 27 (2 9
CLa ﬁ ﬂ

e Mach number 1s a function varying

Of course in the case of a helicopter, th
fore has to be calculated contin-

Periodically with time and radius and there
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uously. It must be kept in mind, that this modification is only valid up to
Mach numbers of about M = 0.8, depending on the airfoil shape. The lift
curve slope at subsonic Mach numbers closer to one drops significantly and

this is not included in this compressibilit

difference method presented in the section befor

y correction factor. In the finite

e, the deficiency functions

now are
] ] ] 2As/2
X,({Z])c — X,(lJ__)]'kebkﬂzAs ER AkA(J)ebkﬂ / (292)
C
Lc,n — %pV(t)§w3/4,eff (293)

h somewhat more

Thus, with a minimal amount of additional work, but wit
y to include the compressibility effects is

computational effort a possibilit
tal data of oscillating airfoils in oscil-

given. However, there are no experimen
elocity has a Mach number of

lating freestream available, where the mean Vv

0.6 or even near that. All experiments Were made i
about 0.05 or less, so there are

o. no exact theory exists for unsteady
)

n essentially incompress-
. ligi
ible flow at Mach numbers of only negligible

compressibility effects included. Als
eam and therefore no theoretical

airfoil motion in a subsonic varying freestr

data exist as a basis for comparison.

rts of the lift no Jonger depend only on

Furthermore, the noncirculatory pa
pressible case. Therefore, they

the instantaneous motion, unlike in the incom
irculatory terms they also

are much more difficult to calculate since like the ¢

s introduces additional deficiency functions;

have a time history effect. Thi

for more detail see [37].
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Chapter 3

Results and Discussion

30
1 Isaacs’ Theory
3.1 . .
.1 Lift Transfer Function for Constant Pitch
Th .
e formulas in Eq. 2.28 are not very expressive for a physical understanding

of ¢t .

he problem, since there will be a response with
frequency in V(t). Since
of steady, 1/rev and 2/rev

a whole range of frequen-

the lift is proportional

ci .
es to the input of only one
he input consists

consist of these harmonic

ft coefficient, based on the inst

to t
the square of the velocity, t
s, including some

a
Parts, and the output will mainly
antaneous

ph
ase lag effects. The circulatory li
as predicted by quasisteady theory,

dvnam;
ynamic pressure, is far from uniform,
= 0.05 and 0.2.

an -
d this is shown in Fig. 3.1 for 2 reduced frequency of kv

ated by including terms up to the 15th harmonic,

These results were calcul
educed frequency and

he 25th order in the r

an
d for each harmonic up to t
plitude A- This is requi

red to include as

in the
the freestream oscillation am
The higher order

w the correct solution.

zero because of the factor n? in the

man
Y terms as necessary to sho

ter
ms become smaller and aPPfoaCh
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denominator of Eq. 2.31, and because of the behavior of the Bessel functions

for large arguments. Nevertheless, a calculation with fewer terms has shown

that for high freestream amplitudes, say A = 0.8, the peak in lift coefficient

at the minimum velocity (wyt = 270°) has not yet

take all these terms into account. Of course, this results in a huge a

converged, so one has to

mount

of computational time and this again makes this theory very impractical for

rotorcraft applications. However, there are no restrictions made with respect

to the flow oscillation amplitude, except that ) has to be less than one.

Therefore, this theory is a kind of “best theory available”, with which the

other theories with more rigorous assumptions can be compared.

These results show the typical effects of unsteady aerodynamics already

known from constant freestream theory. First, there is a phase lag resulting

in a lag in the lift buildup with respect t

there is an effect on the circulatory lift amplitud
is at maximum) and more lift in

o the change in velocity. Second,

e resulting in a smaller

value of maximum lift (where the velocity
the regime where the velocity is a minimum. It must be noted here, that
both effects strongly depend on the reduced frequency, and for high reduced

frequencies, the phase lag reduces to zero and the reduction in lift amplitude

approaches a final value that will be determined later. This behavior was

not unexpected, since the solution contains the Theodorsen function.

The steady part of the lift transfer function is the same as in quasisteady

theory, and therefore not shown here. More interesting is the dynamic part,

since Isaacs’ theory produces a Fourier series with an infinite number of
harmonics as the system response, even at constant angle of attack. The

first four harmonics of the response are shown in Fig. 3.2. One can see the
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typical behavior of the Theodorsen function in the 1/rev and 2/rev of the

lift response. With increasing flow oscillation amplitudes, the amplification

remain the same except for high values

also increases, but the phases angles
n can be found in the 3/rev

of ). Interesting forms of the transfer functio

and 4/rev components; here loop-type transfer functions are encountered.

This means a change in phase angle of 180 from zero frequency to very high

reduced frequencies in the 3/rev-part and a change of 270°
e amplification starts with zero for zero

in the 4/rev-part

of the lift transfer function. Also, th

reduced frequenc, obtains its maximum at reduced frequencies of about 0.2,

and becomes smaller again for high reduced frequencies with a final value of

zero for infinite frequency.

It must be noted here, that for the 1/rev and 2/rev-parts terms up to the

25th in ky and \ are sufficiently enough and for values of A < 0.8 this holds

also for the 3/rev and 4/rev-part. However, fo
needs much more terms to obtain a converged solution,

one must include up to the 50th multiple of ky and A. For
has to include up to the 200th multiple. Therefore, the computational effort

r the high flow amplitudes one
that is, for A = 0.9
A = 0.999999 one

increases tremendously with A becoming close to unity.

Now the results of combining flow oscillations with periodic airfoil pitch

changes will be presented and discussed. Unfortunately, with increasing de-

grees of freedom the number of parameters to be varied are increase signifi-
cantly, therefore one has to reduce these variations to a few examples showing

the most important combinations. First, this will be a pure sinusoidal motion

in pitch, than the pure cosine, and then the so called helicopter case of com-

bined steady and sinusoidally oscillating angle of attack where the motion of
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angle of attack is in counterphase to the velocity changes.

3.1.2 Lift Transfer Function for Sinusoidal Pitch Os-

cillations

The angle of attack is assumed to consist only of its sinusoidal part, say

& = Gyp = 0 and G5 = 1. The lift response is shown in the time domain in
Fig. 3.3 for two reduced frequencies of kv = 0.05 and 0.2. In both cases, the

quasisteady theory result as well as the result of Theodorsen’s theory also

plotted for comparison.

At low reduced frequencies, two interesting observations can be made

1. At the maximum Velocity (th == 900), the unsteady hft for hlgh free-

stream amplitudes is very close to the quasisteady value, with a small

phase lag. The lift amplitude reduction is not as much as Theodorsen’s

theory would predict.

2. At the minimum velocity (wvt = 270°), the unsteady lift for high free-

stream amplitudes is closer to zero, as in the quasisteady case Or 1n

Theodorsen’s theory. This can be seen very clearly in the lift coefi-

cient, for example at A = 0.8.

The reason for this surprising behavior is due to the effect of stretching and

compressing the shed wake vorticity, respectively. The stretching leads to

a smaller effective reduced frequency, while the compression leads to larger

effective reduced frequencies with a more significant reduction of circulatory

lift. This observation is in agreement with Johnson’s results [3]. For the

higher reduced frequency of k = 0.2, these effects become more dramatic
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especially in the low velocity region. Here, the lift deficiency function drops
very rapidly. With increasing freestream amplitude, the circulatory lift even
becomes positive, although the angle of attack has its maximum negative
value here. Since the lift itself is very small because of the very small dynamic

pressure, this can be seen most clearly in the lift coefficient.

The frequency domain presentation of lift response gives the amplitude

and phase, and is given in Fig. 3.4 for the constant part and in Fig. 3.5 for
the first four harmonics. The constant part of lift response due to the a5
term in Isaacs’ theory (Eq. 2.37) is identical to the quasisteady theory re-
sult (MA@, s), but Theodorsen’s theory (see Eq. 2.21) includes the Theodorsen
function (Aays[F(kv) — kv G(kv)(1 — 2a)/4]). Therefore, the mean value of

lift is significantly underpredicted with increasing reduced frequencies. This

is important even for the small fundamental reduced frequencies encountered

by a rotor blade. For small flow oscillation amplitudes Theodorsen’s theory

can be used, but for higher frequencies this theory is not applicable.

There are significant differences in the 1/rev-part of the lift response, see

Fig. 3.5 for the first four harmonics of the dynamic part of the lift transfer

function. In Isaacs’ theory, the transfer function for A = 0 is only shifted to

the right with increasing freestream am
The combination of Theodorsen’s theory with

to rather different results, since the reduction in ampli

plitude, and does not change its shape.
the unsteady freestream leads

tude is larger and the

phases angles are larger for high values of . Only minor differences can be
found in the 2/rev-part; here both theories lead to very similar results. It is
that the transfer function of the 2/rev-part simply looks

Interesting to note,
at A = 0, but rotated by a phase angle of

like a transfer function of the 1/rev
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90°. The 3/rev-part also shows very similar results for both theories, but the

final values for high reduced frequency here is not infinite but zero for the

cosine part, and a finite number for the sine part. Most interesting now, is the

4/rev-part of the lift response since there are no harmonic contributions of
more than 3/rev either in the quasisteady result or the combined Theodorsen
Therefore one cannot expect a form of transfer

- unsteady freestream theory.

function like that of pitch oscillation in a constant flow. Here a loop-type

transfer function can be observed, changing its phase by 180° from zero to

very high reduced frequencies.

3.1.3 Lift Transfer Function for Cosine Pitch Oscilla-

tions

Now ap = @5 = 0 and & = 1. Again, the effect of freestream velocity

oscillations will be shown in the time domain as W
Fig. 3.6 shows the lift development for reduced frequencies o

0.2 for pure cosine angle of atttack motion in a sinusoidally varying free-
on is 90° out of phase with the freestream

ell as in frequency domain.

f ky = 0.05 and

stream; that is the pitch variati

variation. Again, Isaacs’ results are compared to Theodorsen’s theory com-

bined with the unsteady freestream and with quasisteady theory results.

From the time domain response, the following can be observed:

1. As for sinusoidal motion, the unsteady lift response is closer to the

quasisteady result than the results obtained with Theodorsen’s theory.

This is because the stretching of the shed wake vorticity le
where the velocity is a maximum.

ads to a

smaller effective reduced frequency,
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2. In the region with lowest velocity, a lift overshoot occurs. This is in

contrast to the sinusoidal pitch motion where the lift deficiency func-

tion shows a reduction in lift. It is evident, that the combination of
Theodorsen’s theory with an unstead

predict the lift coefficient. However, since th

y freestream cannot be used to

e total velocity is small

here, the difference in lift is not too significant.

The constant (mean) part of the lift transfer function is shown in Fig. 3.7.

It can be seen that Theodorsen’s theory leads to an increase in this mean

value of the total circulatory lift for small reduced frequencies. This is due

to the —G(ky)-term in Eq. 2.21. For the range of reduced frequencies a he-

licopter blade encounters, this leads to completely incorrect trends; however

the magnitude of this mean part of the lift is small and therefore the absolute

differences are not so severe.

The frequency response in Fig. 3.8 looks very similar to that for sinusoidal

pitch motion, although it seems to be rotated by 90°. A closer look reveals

some differences that appear in the scaling of the axis. Again, the 1/rev

of Isaacs’ theory shows smaller phase lags than Theodorsen’s theory when

the reduced frequency is smaller than about unity, especially when the free-

stream amplitude is high. There are also higher harmonics present in Isaacs
theory that cannot be predicted by quasisteady theory, or the combination

of Theodorsen’s theory with the unsteady freestream.

3.1.4 The Helicopter Case

Here there is a collective pitch represented by @o and the longitudinal cyclic

pitch by a;s. For a helicopter, on€ has to alleviate the rolling and pitching
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moments produced by nonsymmetric aerodynamic environment in forward
flight. Therefore a 1/rev cyclic pitch control setting is introduced. Basically

this periodic angle of attack is such as to reduce the lift where the dynamic

pressure is high (advancing side), and to increase the lift where the dynamic

The phase between the velocity and
d before.

pressure is minimum (retreating side).

the angle of attack will be about 180°, as mentione

To cover the range of reduced frequencies encountered, one calculation is

performed at a reduced frequency of k = 0.05, and another at k = 0.2. The

results are shown in Fig. 3.9. For comparison the result of the quasisteady

theory and Theodorsen’s theory are also plotted. The following characteris-

tics of unsteady combined motion can be observed:

1. This case, which should be more relevant to a rotor environment, leads

to more Lift in the first quadrant of the disk due to the phase lag of
It is interesting that smaller lift is obtained in

angle of attack motion.

the third quadrant at small values of A, compared to the quasisteady

¢ \ 2 0.5, and more lift for higher
peak at ¢ = 270° while

case. There is about the same lift a

A. Again, the lift coefficient develops a strong
changes for this low

the quasisteady formulation does not show any
the lift

reduced frequency of 0.05. In contrast to Theodorsen’s theory,
coefficient amplitude increases in comparison to the quasisteady values

when the flow oscillation amplitude is non-zero. It is also of interest,

that due to the unsteady shed wake vo
< 1) < 30°, when the flow amplitude

rticity the lift coefficient develops

a phase lead in the area from 300°

is high.
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2. b) With increasing frequency, one obtains a similar result, including a

larger phase lag and a stronger reduction in lift amplitude. This leads

to more lift on the advancing blade in the first quadrant, compared

to quasisteady lift. The obtaine

starts for A = 0.6, while it was obtained

d of higher lift around ¢ = 270° now

at A = 0.5 in case of the smaller

reduced frequency. There was only a slight increase in the peak of the

lift coefficient with increasing reduced frequency

All these results generally show that the unsteady freestream effects are

not small, and should be included, especially when the relative amplitude of

the freestream oscillations exceeds values of about A = 0.2.

3.2 Greenberg’s Theory

3.2.1 Numerical Comparison with Isaacs’ results

In order to compare Greenberg’s results (Eq. 2.63) with those of Isaacs, the

case of constant angle of attack in a pulsating freestream velocity was chosen

1l reduced frequency of

by Greenberg. This was done at a relatively sma
A = 0.4. These

kv = 0.0424 and for a medium flow oscillation amplitudes of
values were considered representative for current helicopter operations at

that time. Assuming a representative radial station of y = r/R = 0.75,
these values correspond to a ratio of ¢/R = 0.0636 and an advance ratio of
# = 0.3. Todays helicopters, however, exceed these values, for example the

world speed record set by a Westland Lynx obtained an advance ratio of

K= 0.5.
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In contrast to Isaacs’ result which has an infinite series of harmonics (see

Eq. 2.28), here only a 1/rev and 2/rev component exist (Eq. 2.63). Addi-
tionally the pure sinusoidal shed wake vorticity leads only to the Theodorsen

function of the reduced frequency itself, but not to any multiples of ky like

in Isaacs’ theory; not even a C(2ky)-term is included. The noncirculatory

parts are identical, since they result only from the instantaneous motion of

the airfoil and freestream, and therefore must be independent of any theory.

A comparison of the numerical values of the coefficients was made, and

only small differences were found. Additionally, it was stated in [8] that this

agreement with Isaacs’ results holds for relatively large values of A at rela-

tively small values of reduced frequency. With respect to the assumptions

made in the form of the wake, even better agreement should be expected at

high reduced frequencies, citing Greenberg [8]. Putting the total lift (noncir-

culatory and circulatory parts) into the form of a Fourier series

L ) (
Ao + Ajc coswyt + Arssinwyt + Asc cos 2wyt + ... (3.2)

Lo
the coefficients can be compared. The coefficients given by Greenberg are

listed in Table 3.1. It should be noted, that the coefficient Ao of Isaacs theory
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Ao Aic Ais A Ass Asc Ass
(1) [1.079 -0.0376 0.770 -0.079 20.00697 -0.00061 -0.005

(2) | 1.074 -0.0305 0.768 -0.074 -0.00960 i
[ (1): Isaacs (2): Greenberg k=0.0424 A =04 o= T |

Table 3.1: Coefficients of lift resp onse given by Greenberg in comparison

to the result of Isaacs

(given by Greenberg) is not identical to that given by Isaacs in [6], since Ag

should have been exactly 1.08 (as can be easily pr:
error could have occured. All harmonic coefficient

by Isaacs. Indeed, the differences seem to be small 1

oved). It is unclear how this
s were the same as given
n this special case, but

an analysis with a wider spectrum of reduced frequencies and flow oscillation
amplitudes give a better basis for comparison. Also, it is questionable how
accurately the Bessel functions could be calculated in 1946. Therefore, a re-
made, using

calculation using the IMSL-subroutines in double precision was
hird

up to the 30th multiple in k. There are some differences even in the t

decimal digit, and this is somewhat surprising. A recalculation of the coeffi-

cients was done here using up to the 200th multiple in reduced freauency and

in A, and is given in Table 3.2. This comparison Covers the same configura-

tions as were used by Isaacs in [6] to show the effect of unsteady freestream

effect on lift development.

In the following sections, the lift transfer functions obtained from Green-
berg’s results are compared to [saacs’ results. First, the case of constant
angle of attack will be shown for different reduced frequencies, then the com-
bined motion of velocity and angle of attack. The lift transfer function for
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4 Aic Ais Azc Ass
(17 1:080000 -0.0381595 0770396 -0.079016  -0.0061575
(2) | 1073792 -0.0304386  0.768058 0073792  -0.0093837
Asc Ass Aqc Aus
(1) 0061098 0.00037179 _-0.000074784 0.000047096
(2) ] : ; ]
I: (1): Isaacs (2): Greenberg k = 0.0424 A=04 ap=1 B

Table 3.2: Coefficients of lift response of Greenberg’s and Isaacs’ solution,

recalculated

the combined motion will finally show the differences in lift amplitude and

phase angle. It must be kept in mind that the comparison is made for the
same frequency in pitch and velocity oscillations, since [saacs’ results cannot

account for different frequencies, unlike those given by Greenberg.

3.2.2 Lift Transfer Function for Constant Pitch

In case of a constant pitch setting, it can be seen from Fig. 3.10 that Green-

berg’s theory significantly underpredicts the peak of lift in the area of high
smallest velocity the lift calculated by Green-

On the left side of

velocity. Also, in the area of
hat obtained by Isaacs.

berg’s theory is smaller than t
circulatory lift coefficients are plotted for a

Fig. 3.10 the circulatory lift and
reduced frequency of kv = 0.09, while on the right the reduced frequency is

ky =0.2.

es increase with both the flow oscilla-

The differences between the theori
tion amplitude as well as with the reduced frequency. These differences can
be seen more clearly in the lift coefficient development, while for small values
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of A < 0.2 both theories lead to almost the same results. The significant peak

in lift coefficient for higher values of A as shown by Isaacs’ results, reduces

to about half of the magnitude in Greenb

simplifications made in the wake model of Greenber

erg’s theory. This is due to the
g’s theory, and this leads
especially in the

to smaller lift coefficients for higher A nearly everywhere,
). Except in the

region of small dynamic pressure (retreating side of the disk

region of decelerating flow around 135 <wt < 200°, the lift coefficient is al-
ways slightly smaller. Good agreement between both theories were obtained

for freestream amplitudes of up to A = 0.4; the higher the reduced frequency,

the smaller the values of A have to be for good agreemen

this behavior can be seen in the assumptions made for the wake, leading to
e constant part of the circulatory lift, but

t. The reason for

different solutions especially in th

also in the harmonic parts.

Looking at the total circulatory lift in Fig. 3.10, however, the discrepan-
gnificant than those

cles in the region of high dynamic pressure are more Sl
s in lift

in the low dynamic pressure region. Here, the absolute difference

coefficient are small, but in terms of total lift they are very large. Again, it

becomes obvious that under time varying freestream flow conditions the lift
coefficient looses its importance since the physically active parameter is the
lift force and not the lift coefficient. Thus, definition of a force coefficient,

tant velocity (for example Vp), seems to be a

nondimensionalized by a cons
physically more meaningful approach than using the classical lift coefficient,

that depends on the local velocity.

The lift transfer function is given in Fig. 3.11 and Fig. 3.12 for the con-

stant and dynamic parts of the lift response- Especially for the constant part,
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there are significant differences to be seen. This is somewhat surprising, since

normally the dynamic parts are more difficult to determine than the steady

ones. While Isaacs’ theory shows an independence of the constant part with
respect to reduced frequency, Greenberg’s theory leads to a dependency on

the Theodorsen function (see Eq. 2.63).

flow oscillation amplitudes and small reduced

This is of importance even for small
frequencies. Therefore, the

mean value of the lift is significantly underpredicted by Greenberg’s theory.

Looking to the right half of Fig. 3.11, where only the rang
helicopter blade is shown, one can see, that the

[8] is not very representative.

e of reduced fre-

quencies encountered by a

numerical comparison made by Greenberg in

At ky = 0.0424 and A = 0.4 indeed the differences are not very large, but

with higher reduced frequencies the differences between both theories in-

crease significantly, even for small values of A, see Fig. 3.11. This is contrary

to Greenberg’s statement [8] that the agreement for hi

will be better than at low ones because of the high frequenc

gh reduced frequencies

y assumption

made for the wake.

More differences are revealed by the dynamic part of the lift transfer
function, see Fig. 3.12. For values of A < 0.4, the agreement with Isaacs’

theory is very good for the 1/rev component, but for hig
Greenberg’s theory are larger t

her flow amplitudes

han those of

the phase angles predicted by
Isaacs. Furthermore, the final values for infinite reduced frequencies are not
the same; Greenberg’s theory underpredicts them significantly, especially for

high X\, The 2/rev-part shows good agree

there are no higher harmonic response compone

ment with I[saacs’ result. However,

nts in Greenberg’s theory,

while Isaacs’ theory still has contributions for all harmonics allthough they
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are smaller with each higher harmonic. Typically, these higher harmonics

start at zero for small reduced frequencies, and produce to a change in phase
of 180° at high reduced frequencies in the 3/rev-part, and 270° in the 4/rev-

part. The sum of all these harmonics leads to important effects on the total

lift response.

The next comparison covers the simultaneous oscillation of inplane veloc-

ity and angle of attack, both with the same frequenc

phases. First the in-phase condition with sinusoidally pitc
ase of cosine motion in pitch. Both h

y, but with two different
h changes will be

ave been

considered, and then the c
investigated in the previous section, and will be compared to [saacs’ theory.

3.2.3 Lift Transfer Function for Sinusoidal Pitch Os-

cillations

— 0.05 and 0.2, Greenberg’s results are com-

For a reduced frequency of kv
ays = 1 while all other

pared with Isaacs’ results in Fig. 3.13. Here only

amplitudes are set to zero. The following differences can be seen:

the lift is significantly underpredicted by

1. In the region of high velocity
Greenberg’s theory. This means that the effective reducgd frequency is

too high here, leading to a lift deficiency that is too large.

2. In the region of smallest velocity, the additional loss in lift is not com-

Greenberg’s theory, so here the effective reduced

pletely predicted by
small, leading to more lift than pred

total lift, this will hardly be noticed s

icted by the exact

frequency is too
ince the

theory of Isaacs. In the
dynamic pressure is very small, but if the issue of interest is the lift
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coefficient, this will be very important. This is especially true, if the

lift, coefficient is operating near stall conditions like on the retreating

side of the disk.

Both effects can be seen as a sequence of the wake approximation Greenberg

made in his derivation. In general the effects of “stretching and compressing”

the shed wake vorticity described before, and by Johnson in [3], are repre-
sented by Greenberg’s theory in the corr

is not completely correct. More informatio

ect trend. However the magnitude
0 can be obtained from the lift

transfer function, which is shown in Fig. 3.14 for the constant part of the lift,

and in Fig. 3.15 for the first four harmonics. Even from the constant part

of the lift, it can be seen that the statement made by
[8] does not hold. While in [saacs’ theory

Greenberg of “good

agreement with Isaacs’ theory” in

tly proportional to \@;s, in Greenberg’s

t depends on the Theodorsen func-
(kv) — 05k‘vG(k‘v)], see Eq. 2.63.
s is only 0.75 of that of

the constant part of the lift is direc
formulation the constant part of the lif
tion and is proportional to 0.5 a1s[1 + F
Therefore, the final value for high reduced frequencie

Isaacs theory. Thus the constant part of lift response 1s si
Even the case of small reduced frequency

(A = 0.4) re-

gnificantly under-

predicted by Greenberg’s theory.

(kv = 0.0424) and a moderate flow oscillation amplitude of
veals large differences, and it seems that the assumption made for the wake
in Greenberg’s derivation is not justified. Greenberg’s theory leads to good
agreement, with Isaacs’ theory only for small and medium freestream ampli-

tudes and small reduced frequencies.

nt dif-

Looking to the dynamic parts of the lift response, the most significa

ferences can be seen in the 1/rev-part. Here, for reduced frequencies greater
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than about 0.15, the phase lags are overpredicted and the final values for high

reduced frequency are smaller in the sine-components. Good agreement can

be found in the second and third harmonics, but there is no higher harmonic

lift response calculated by Greenberg’s formulas. this is in contrast to Isaacs

results as shown before.

3.2.4 Lift Transfer Function for Cosine Pitch Oscilla-

tions

It is interesting to examine how the lift transfer function of Greenberg’s the-

ory behaves for the case of out of phase pitch motion, say aic = 1, for which

all other amplitudes are zero. The lift development is shown in Fig. 3.16 for

a reduced frequency of ky = 0.05 and 0.2. It can be seen that the overall
agreement with Isaacs’ theory is good for this case, and the lift overshoot in

the decellerating flow region is also predicted by Greenberg’s theory in the
s slightly overpredicted at the

correct trend, but not in magnitude. The lift i
des (0 < wyt < 90°).

begining of the period for high flow oscillation amplitu

¢ this case is given in Fig. 3.17 and Fig. 3.18 for
pectively. The biggest differences are to
portional to —0.5 a10[G(kv) +

The transfer function fo
the constant and dynamic part, res

be found in the constant part, which is pro

0.5F(kv)ky] in Greenberg’s formulation, while Isaacs only gives a linear pro-

for helicopter rotors the interesting

portionality to —Akyajc/4. However,
(right half of Fig. 3.17)

range of reduced frequencies in freestream oscillations
1s smaller. In this range the magnitude of the constant part of lift response

is small and the differences might not be as severe compared to the harmonic

content in Fig. 3.18. Indeed, rather good agreement is found especially in
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the second and third harmonic. Only for the first harmonic the phase lag is

g flow amplitude,

overpredicted for small reduced frequencies with increasin
oth

and the final values for high reduced frequencies are not the same for b
theories. Again, Greenberg’s theory does not give higher harmonics than the

third, so all harmonic content of the lift response beyond that is missing.

Overall, Greenberg’s theory appears useful as long as only small reduced
frequencies and small to medium flow oscillation amplitudes are concerned.
In the helicopter case, where mainly a sinusoidally change in angle of attack is

introduced by control inputs, Greenberg’s theory leads to erraneous results.

That is the lift in the high velocity region is significantly underpredicted,

and in the low velocity range it leads to a smaller lift loss than predicted by

Isaacs’ exact theory.

3.3 Kottapalli’s Theory

3.3.1 Lift Transfer Function for Constant Pitch

An example for the lift development predicted by Kottapalli’s theory is shown

in Fig. 3.19 for reduced frequencies of ky = 0.05 and 0.2, and a constant an-

gle of attack. This also demonstrates the limits in applicability t
t the agreement with Isaacs’ theory is good

o helicopter

problems. It can be seen tha
tudes; for higher amplitudes the theory

s only described by a 1/rev com-

mewhat strange behavior

only for very small freestream ampli
is invalid. In Kottapalli’s theory, the lift i

ponent, and therefore the lift coefficient shows a s0

for values of A\ beyond the permitted limits. The constant part of the lift

and therefore is constant. The dynamic content

is only proportional to &o,
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of the circulatory lift is proportional to AaoG(ky) in the cosine part and

A&o[l 4+ F(ky)] in the sine part (see Eq. 2.67). Therefore, this is identical

to the expression of Greenberg for the 1/rev in Eq. 2.63 an
the differences are the same as can be seen in

d the transfer

function is not shown here;

Fig. 3.12. Of course, here no 2/rev part is included.

3.3.2 Lift Transfer Function for Sinusoidal Pitch Os-

cillations

The lift development for harmonic in-phase motion of the angle of attack is
shown in Fig. 3.20. Here, much better agreement is found between Kotta-
palli’s and Isaacs’ theory in the range of flow oscillation amplitudes up to
A = 0.2. It can be seen that the additional lift loss in the small velocity region

is overpredicted by Kottapalli’s theory, but the lift in the high velocity region

is underpredicted with increasing \. The mean value, however, is the same
as for Isaacs’ theory, since it is proportional to \ay s and does not depend on

the reduced frequency (unlike Greenberg’s result). From these results, again,

the observation can be made that Kottapalli’s theory is useful only for small

values of ).

From the formulas of Kottapalli, see Eq. 2.67, one can see immediately
that the 1/rev response due to ays is not a function of A, and therefore
cannot predict the amplitude and phase correctly. This becomes obvious in
the transfer function of the dynamic parts of lift response, see Fig. 3.21. For
all values of \, the 1/rev remains the same, leading to larger phase lags and
to smaller lift amplitudes for higher flow oscillation amplitudes. The 2/rev

ment with Isaacs’ theory, but all harmonics

part, however, shows good agree
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beyond the 2/rev are missing in Kottapalli’s theory, leading to erroneous

results for A > 0.2 in this case.

3.3.3 Lift Transfer Function for Cosine Pitch Oscilla-

tions

Now only @;¢ is considered, and the results arecompared to Isaacs’ theory

again. For the lift development at kv = 0.05 and 0.2, as shown in Fig. 3.22,

heories are small up to

asingly underpredicted in the region

the differences between the two t values of A = 0.4.

For higher amplitudes, the lift is incre
of high velocity while it is overpredicted in t
differences between the two theories are more

function (Fig. 3.23. The constant part is proportiona
(as for in the case of sine motion).

he smaller velocity region. The
obvious in the lift transfer

| to —Akvaic/4, and

therefore is identical to Isaacs’

As for the

response are given in Fig. 3.23.

The dynamic parts of the lift
f attack, the 1/rev-part predicted by

case of a sinusoidally varying angle o

Kottapalli’s theory is independent of ), and therefore is only valid for small
flow oscillation amplitudes. Again, the 2/rev-part is in fairly good agreement,

and all higher harmonics were omitted by Kottapalli thus restricting the

applicability of his theory to small values of A.

Overall, Kottapalli’s theory seems to be of limited use for a helicopter

analysis in forward flight; only in hover for aeroelastic analyses it will be of

any value and can be viewed as an alternative to Greenberg’s theory. The

correct representation of the mean value of lift in Kottapalli’s theory (in

contrast to Greenberg’s theory) makes this theory an interestin alternative,
g L y g

and obviously more correct, for these cases.
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3.4 Arbitrary Motion Theory in an Unstea-
dy Freestream

3.4.1 Lift Transfer Function for Constant Pitch, An-
alytic Approach

As a comparison, the case of constant angle of attack in an oscillating free-
stream will be investigated. This case is shown in Fig. 3.24 and compared

to the exact theory of Isaacs. It is easy to see that the results derived in

this section are not identical to Isaacs’ theory; it is only for A = 0. With in-

creasing freestream oscillation amplitudes, the differences become larger and

the lift deficiencies are not plausible. Thus, the derivation includes a system-

atic error although exactly the same formulation works well in a constant

freestream.

The fact that there are only the first two harmonics considered in the
Although in the

Theodorsen function leads to an interesting experiment.

derived formulas Bessel functions are involved, they seem to be related to

the results of Greenberg. The experiment now is to replace s in the upper

boundary of the integral for the lift by its mean value 3, and therefore im-

Mathematically this means

mediately one eliminates the Bessel functions.
the distance travelled by the airfoil does not depend on the flow oscillation

amplitude, or that the flow oscillation amplitude is zero. Consideration of

the distance travelled, s, gives
s=3§——coskys (3.3)

%
and it is clear that for very small A this equation reduces to s = 5. The r

18 surprisingly exactly the same as that of Greenberg’s derivation in Eq. 2.63,

esult
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but obtained with a different method. However, here an the approximation

to the Wagner function is involved, and so there are small differences between

the exact values for C(kv) and C(ky)- Afi
because the result of the analytical derivation wit

as can be seen in Figs. 3.10 to 3.18. Very small differen

gure is not included for this case,
h s = § is almost the same,

ces are due to the

fact, that the Theodorsen function now is represented by the approximation

to the Wagner function. This result leads to the following observation:

Greenberg’s high frequency assumption for the wake integral really means

a small amplitude approzimation for the flow oscillation amplitude X for
parts of the derivation (not all parts since ther

retained). This clarifies why Greenberg’s theory works no
m amplitudes and places certain restrictions to the

¢ are other terms with ¥

t as well for me-

dium and high freestrea
application of this theory, since in the helicopter case the assumption of

small \ is not applicable.

A possibility for the afore mentioned systematic error when deriving an

analytic solution for the periodic motion may be an incorrect solution for the

derivative dws4(c)/do. In the integral of Eq. 2.69, 0 is a d
_ 5 there also o = & is valid (in

ummy variable

for s and since in steady flow conditions s

steady flow the actual distance travelled 1s identical to the mean distance

travelled). Now the normal velocity ws/4 is only a function of 5, not of

With o being the dummy variable of s,

say 0 = & — (\/ky)coskyo, therefore do = [1 + Asin ky5)0a. Thus, the

s, as can be seen from Eq. 2.71.

derivative may be written as

Ows/a(0) _ (____1_____) Ows/a(0) (3.4)
oo = X1 <+ Xsin ky& Jdo '
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and the variable of integration is o. So the integral may more correctly be

written as

/’ (______1, ) Owspa(®) 45 _g)de A <1 (3.5)
o \14 Asinkyo 0o

The fraction 1/(1 4 Asin kyo) is periodic, and in general can be expressed in
form of an infinite Fourier series whose coefficients, because of the trigono-

metric function, will consist of Bessel functions with nky as the argument.

From this, as in Isaacs’ theory, an infinite series over all multiples of the re-

duced frequency will be introduced, in additio
However, a Fourier series expansion of

n to that over all multiples of

the freestream oscillation amplitude.
this fraction could not be found in the mathematical literature and there
f of the correctness of this assumption here.

fore

it is not possible to give the proo

This will be a subject of future research. However, 1t seems to be the right

step in order to obtain an analytical result close to the derivation of Isaacs.

3.4.2 Lift Transfer Function for Constant Pitch, Fi-

nite Difference Approach

To perform the calculation, the numerical algorithm of arbitrary motion the-

ory requires several cycles in order to eliminate all transients. The number

of cycles has been set to 10, and it was found that this is enough for all

the reduced frequencies investigated here. In the case of constant angle of
attack, the results obtained by Isaacs Eq. 2.28 and the arbitrary motion the-

ory are almost identical, so there is no result presented here; the form of the

lift response was already shown in Fig. 3.1. Small differences are due to the

approximation of the Wagner function by a truncat

the same reason the constant part of the lift transfer function

ed exponential series. For

is not shown

86



here. There excellent agreement was found for all reduced frequencies (up to

kv = 2.0 as plotted in Fig. 3.2) and all values of . The dynamic part of the

lift transfer function is given in Fig. 3.25. I

for all harmonics we find nearly perfect agreement W
which are mainly related to the use

t can be seen in Fig. 3.25, that
ith the exact theory of

Isaacs, with certain small differences,

of an approximation to the Theodorsen function instead of using the Bessel

functions.
This result can be used as proof that:

The arbitrary motion theory 1s able to calculate the aerodynamic loads
for a constant angle of attack in an unsteady flow environment to a preci-

sion that is dependant only on the accuracy of the approzimation made for

the Wagner function.

3.4.3 Lift Transfer Function for Sinusoidal Pitch Os-

cillations

In addition to the case of constant angle of attack, the case of pure sinu-

soidally motion is presented in Fig. 3.96 for the lift development at two

reduced frequencies, ky = 0.09 and 0.2. It can be seen that the arbitrary
motion theory represents the unsteady lift behavior in an almost perfect man-
d frequencies, where

ner. The only differences to be seen are at higher reduce
f the lift

the magnitude of lift is slightly underpredicted. Also, the behavior o
coefficient in the region of smallest velocity is correct in the trend, but not
completely correct in magnitude.

In Fig. 3.27 and Fig. 3.28, the lift transfer function for this case is given
for the constant and dynamic part of the lift transfer functions, respectively.
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From the constant part of the transfer function, it can be seen that the
arbitrary motion theory leads to an underprediction of lift with increasing
reduced frequency, but in the range of ky encountered of a rotor blade the
differences are not as severe. However, this behavior of the arbitrary motion

theory cannot be explained with the approximation of the Wagner function.

To clarify this behavior, additional research is necessary.

The dynamic parts of the lift transfer function (Fig. 3.28) show differ-
ences in the 1/rev component for ky > 0.2. These differences are increasing
with increasing freestream amplitude. All other harmonics are in excellent
agreement with Isaacs’ theory and differences are mainly related to the ap-

r function by a truncated series of exponential

proximation of the Wagne
functions.

3.4.4 Lift Transfer Function for Cosine Pitch Oscilla-
tions
For pure cosine motion, the results are presented in Fig. 3.29. No significant

differences can be seen in the lift development for either reduc
o be found in the lift transfer function, see

ed frequencies.

This excellent agreement can als
Fig. 3.30 for the constant part and Fig. 3.31 for the dynamic part. In all these
ory produces results almost

cases, it can be seen that the arbitrary motion the

identical to the exact theory of Isaacs. The small differ
acy of the approximation made to t

ences remaining can

he Wagner

be explained by the inaccur
function by a finite number of exponential functions instead of an infinite

number as required to make C(k) = C (k).

In general, the results obtained for constant, as well as for oscillating,
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angle of attack show excellent agreement with Isaacs’ theory. This is the

proof that

The arbitrary motion theory is able to calculate the unsteady aero-

dynamic loads, even in an unsteady freestream flow environment, if

all the appropriate deficiency functions involved are retained.

be kept in mind that the excellent agreement is found

t and oscillating angle of attack 90°

motion the constant part of circulatory lift

However, it must
only in the case of a constan out-of-phase.
In the in-phase (sinusoidal pitch)
and the 1/rev-part show some differences that can not be explained with the

approximation to the Wagner function alone.

3.4.5 Reduced Algorithm

putational effort, only a reduced al

ion in the number of deficiency functions in-

Very often, because of com gorithm can

be applied. This means a reduct
volved, and the functions regularly ne
in velocity. Then the velocity at 3/4 chor
w - c(l1—2a . : 3.8 x ) .
3/4;n = Z [V}Aai + 2 (-T Ad; + Ahi| — Z Z nk (3.6)
j=1k=2

1=0

glected are those related to the changes

d is simply

Herein AV, is eliminated, and the philosophy behind this step is that the
changes in flow oscillation are assumed to be of relatively low frequency in
relation to that of plunge or pitch motion. This is a quasisteady assumption
made only for the velocity (and thereby for the fore-aft motion) while all

other degrees of freedom are considered as unsteady.
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The results for constant angle of attack case are not shown, since it is

easy to see from the equations that in this case the quasisteady theory is ex-
actly reproduced. Therefore, the reduced algori

the characteristic lift overshoot where the velocity is 1

nusoidally varying angle of attack, for in-phase a

thm is not able to calculate
owest. More interest-

Ing, is the case of si nd 90°
out-of-phase motion relative to the velocity oscillation. The results for re-
duced frequencies of ky = 0.05 and 0.2 are given in Fig. 3.32 and Fig. 3.33,
greement with the exact the-

respectively. For the in-phase motion, good a

ory is apparent only for the total lift, while the lift coefficent is inaccurately
predicted over larger parts in the second half of the period, especially for
high flow oscillation amplitudes. However, this is hard to see in the lift itself
because the dynamic pressure is very small over most of this range. Similar
agreement was found for the cosine motion of angle of attack. The lift is
slightly overpredicted nearly over the entire period, and the characteristic

lift coefficient overshoot in the second half is not predicted by th

ing statement can be made:

e reduced

algorithm. Therefore the follow

The reduced algorithm of arbitrary motion theory, assuming the oscillations

in velocity to be quasisteady, is not appropriate for calculating Lift coef-

he value of A = 0.2.

ficients when the flow oscillation amplitude exceeds 1
It must be noted that the reduced algorithm can also be applied to the

analytic derivation, omitting the derivative @V (a)/da. The approach of

handling the freestream oscillation in a quasisteady manner was also used 1n
the combination of Theodorsen’s theory wit

fore, a relation must exist between Theodorsen’s th

h unsteady freestream. There-
eory and the reduced

algorithm of arbitrary motion theory. By the same procedure that was
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ach by setting s = s

done with the full algorithm in the analytic appro
d. Then one

instead of s = 5 — (A kv)coskvs, this relation is obtaine

gets a result identical to Theodorsen, see Eq. 2.21, only that the Theo-

dorsen function C(ky) = F(kv) + 1G(kv)
Clky) = ﬁ'(kv) + i@(kv) where the real and imaginary part are built up

from the coefficients of the exponential ser

is replaged by its approximation

ies approximation to the Wagner

function. Additional results are not shown for this case; the accuracy of the
approximation is as good as in the comparison with Greenberg’s theory using

the full algorithm and the same substitution.

3.5 Influence of the Position of Pitch Axis

Until now only a pitch motion about the midchord has been investigated.
Normally, for a helicopter rotor this is not the case because the feathering
r. In incompressible flow, this is

axis is very close to the aerodynamic cente
ers take a great effort to

the quarter chord point, and helicopter manufactur

bring the elastic axis (as well as the center of gravity)

to the 1/4 chord point. The derivation in Appendix B gives th
ment, which was not given by the theory of

and the feathering axis

e influence

of pitch axis on lift develop
Isaacs. Therefore, since also Greenberg’s, Kottapalli’s and the combination
of Theodorsen’s theory with unsteady frees

influence can now be studied and compared. As cou
(see Fig. 2.3 and Fig. 2.4), the pitch axis

has a significant influence on the

tream include this parameter, its

1d be seen in Theodorsen’s

theory in a constant freestream
position (represented by the parameter a)

lift transfer function.

In general, if @ = 0.5, then the axis of rotation is at 3/4 chord, where in
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incompressible flow the reference point for the normal velocity is considered.

In that case, & does not contribute to the circulatory lift. This is expressed

by the factor (1 — 2a)/2 in Eq. 2.5 and Eq. 2.53. In th
(pitch axis at 3/4 chord), and then

e following figures,

this parameter is first set to a = 0.5

t0 @ = —0.5 which is the helicopter case, where the pitch axis is at quarter

ar in the constant part of the lift transfer

chord. Generally a does not appe
function, and so that part is not shown here. Only the dynamic parts are

affected.

3.5.1 Effect of a on the Lift Transfer Function for a;s

The first case of a = 0.5 is shown in Fig. 3.34, and it is compared with

results for @ = —0.5 in Fig. 3.35. Because the multiplier at the @-term is
(1 —2a)/2 = 0 in the first case, th

the reduced frequency, and therefore th

is eliminates the terms proportional to
e transfer functions of the different

harmonics do not asymptote to infinity. They results basically follow the

Theodorsen function, with different scalings. This

harmonic, which is built up only from the Bessel function

the coefficients H! and H, in Appendix B depend on a,
dition to the result of Isaacs,

bination of Theodorsen’s theory with

(a = 0.5) and Fig. 3.35 (a =

is for all except the 4th
s. However, since
the 4/rev-part

changes its shape slightly. In ad the result of

Greenberg’s, Kottapalli’s and the com

unsteady freestream are plotted in Fig. 3.34
~0.5). All of these results show the same behavior, and have good agreement

in the second and third harmonic. The main differences are in the first

harmonic, and are more significant than in the case of a = 0.

In order to make a direct comparison, the scaling is kept the same in
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Fig. 3.34 and Fig. 3.35. Sofora = —0.5 the multiplier becomes (1—2a)/2 = 1.

This is very important now, because it leads t

lift, as can be seen in Fig. 3.35 for the first and secon

o infinite amplification of the
d harmonic where this

factor appears. It is interesting to note that in all of Greenberg’s, Kottapalli’s

and Theodorsen’s theory, the third harmonic 1s independent of a, while in
Isaacs’ theory a appears in the sum over all reduced frequencies in every
harmonic, and therefore changes the lift transfer function in every harmonic.
cosine part) and in its final value for

This can be seen in the maximum value (
en the other theories become

high reduced frequency. The differences betwe

more apparent in the 2/rev and remain in the 1/rev.

3.5.2 Effect of a on the Lift Transfer Function for &;¢

Again, this is demonstrated for ¢ = 0.5 in Fig. 3.36 and for a = —0.5 in
Fig. 3.37. Basically we find the same behavior and changes that were ob-
served in case of the sinusoidal motion. Especially noteworthy is the large
difference between Isaacs’ theory and the other theories in the 1/rev compo-
nent, where Greenberg’s and Theodorsen’s theory predict much larger phase
lags. The 2/rev-parts are in good agreement, while in the 3/rev-parts of

Greenberg’s, Kottapalli’s and Theodorsen’s theory do not show any depen-

dency on a. However, this is the case in Isaacs’ theory, and leads to a change
in amplification of the lift and in the final values for high reduced frequencies.

Over all, the parameter a leads to important changes in the 1/rev and
2/rev components of the lift response, while in steady flow only the 1/rev is
all higher harmonics, only Isaacs’ theory is able

influenced. For the 3/rev and
h axis location. However the differences

to show a dependency on the pitc
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obtained by changing from a pitch axis at midchord to one at quarter chord

are not severe even there.
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Chapter 4

Summary and Conclusions

In this study five theories handling the effect of unsteady freestream have

been analysed. These are:
e [saacs’ theory
e Greenberg’s theory

e Theodorsen’s theory combined with unsteady freestream

Kottapalli’s theory

e Arbitrary motion theory

It was found, that all of these theories handle the case of a fore-aft moving

airfoil instead of an unsteady freestream. This latter case should be more

correcly viewed as a system of horizontally propagating gusts. A helicopter
rotor blade section in forward flight encounters both unsteady freestream

(the superposistion of rotation and forward flight velocity comp
It was found, that both phenomena are

onents) and

fore-aft motion (through lead-lag).

physically different, but in the range of reduced frequencies encountered by
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a helicopter blade the results will be very similar. Thus, the interpretation

of unsteady freestream as an equivalent to fore-aft motion can be viewed as
a good approximation in the helicopter case.

All of the theories cited above lead to the same noncirculatory expressions,

and all of them reduce to Theodorsen’s theory when the freestream oscillation

amplitude becomes zero. The general effect of an oscillating freestream is a

“stretching and compressing” of the shed wake vorticity behind the airfoil.

From the analysis and comparisons of Chapter 2 and 3 the following

conclusions can be made:

1. Isaacs’ Theory:

This is the only theory for the case of an unsteady freestream that gives

an analytic solution without additional simplifications,
The lift for oscillating free-

and therefore

can be seen as the only “exact theory”.

stream flow conditions is represented as an infinite Fourier series. The

induced phase lags and amplifications depend on the type of motion of

the airfoil. Therefore, at constant angle of attack there is a significant

lift coefficient overshoot, where the velocity is smallest, but in case of

sinusoidally varying angle of attack (in-phase motion) an additional lift

deficiency occurs. A cosine motion (90° out-of-phase) also leads to lift

coefficient overshoots, but they are not as significant as in the case of

constant angle of attack.

2. Greenberg's Theory:

This theory is similar to Theodorsen’s theory, but includes the unsteady

freestream as additional degree of freedom and the result for the lift
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contains up to three harmonics. To obtain a simple closed form solu-
he wake was made.

tion, an additional simplification to the form of t

That was that an infi

nite frequency assumption makes the wake vor-

ticity sinusoidal again. It was shown with an analytical derivation via

that this is equivalent to neglecting the flow

arbitrary motion theory,

oscillation amplitude for the induced veloc
is an assumption of quasisteady

ities. Therefore Greenberg’s

high frequency assumption physically
for the shed wake.
stream oscillation amplitudes, and it was

convection velocity This makes Greenberg’s the-

ory questionable for high free
found that the differences with the exact theory of Isaacs are significant
above )\ ~ 0.4. For constant or oscillating angle of attack the basic be-
tudes and phase angles

havior was correctly represented, but the magni

were not well represented in the important constant and 1/rev parts of

lift response.

3. Kottapalli’s Theory:

From the beginning, an assumption for small freestream amplitudes was

made reducing this theory for the c

hover, or very small forward flight condi

ases of aeroelastic investigations in
tions. The agreement with

y for that range of freestream oscillations was found to

o that of Greenberg’s results.

p to the second harmonics describe the

Isaacs’ theor

be slightly better tha

Because of the

assumption made here, only u
lift response.

4. Theodorsen’s Theory Combined with Unsteady Freestream:
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Here the changes in velocity are viewed as quasisteady and the The-
odorsen function is only applied to angle of attack and plunge mo-

tion. The characteristic lift coefficient overshoots cannot be predicted

by this method. It was proved that with an analytical derivation via

from the reduced algorithm
that this is equivalent to

arbitrary motion theory (omitting the de-

hanges in velocity),

ficiency functions for the
itude for the induced velocities.

neglecting the flow oscillation ampl

5. Arbitrary Motion Theory:
The finite difference approach using the superposition principle and

Duhamel’s integral leads nearly exatly to the same results as for Isaacs’

t or oscillating 90° out-of-

when the angle of attack is constan
al angle of attack motion (in-phase

asing reduced frequencies for the constant

theory,
) there are in-

phase. For sinusoid

creasing differences with incre
and 1/rev-part of the lift response. In the range of reduced frequencies

d by a rotor blade, this seems not
ynamic lift response 1s represent

on used for the Wagner function. This

to be a severe limita-

encountere
ed correctly,

tion. In all cases the d
depending on the approximati

is proof that the arbitrary motion theor

nsteady freestream conditions.

y can accurately calculate the

The often used “reduced

lift even in u

he freestream variations as quasisteady, leads

algorithm”, considering t
to good results for the lift, but the characteristic overshoots in the lift

coefficient related to the compression of the shed wake vorticity (at the

retreating side of the rotor), are not represented.

The conclusion is, that when the lift coefficient is the subject of investi-
gation, Isaacs’ theory or the arbitrary motion theory with all the appropriate
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deficiency functions are necessary to calculate the correct lift coefficient over-

shoots or deficiencies. If the lift i

amplitudes all theories are useful, for mediu

tself is the subject, then for small freestream
m amplitudes Isaacs, Greenberg’s

and arbitrary motion theory are valid, and for high oscillation amplitudes

Isaacs’ or arbitrary motion theory with all deficiency functions are necessary

to accurately calculate the lift response.

As an additional contribution to the analytical side of the problem, Isaacs’

theory (that was derived for 1/rev oscillations in an

neralized to the case of an infinite Fourier ser

gle of attack only about

midchord) has been ge ies in an-
gle of attack about an arbitrary axis, including also an infinite Fourier series
for plunge motion. As a recommendation for future research, this derivation
can be used for a general unsteady aerodynamic theory, featuring infinite
Fourier series in all types of motion (also fore-aft motion) and with different

fundamental frequencies for pitch, plunge and freestream oscillations.

For the application of unsteady freestream aerodynamic theory to rotor-

craft problems, the arbitrary motion theory appears to be the most promos-

oefficients of the exponential series representing the

ing approach since the ¢
represent compressibility effects. How-

Wagner function can be modified to
ever, it is very difficult to justify whether the ¢

these coefficients, that have prooved to be correct in uns
are also correct in an unsteady freestream. To

ompressibility corrections of

teady aerodynam-

ics in a constant freestream,
validate this, experimental measurements in compressible flow are necessary.
However to achieve high values of freestream oscillation amplitudes at the re-

f a rotor blade section seems 10 be an unsolvable problem

duced frequencies o

for todays wind tunnels.
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A final comment in this thesis must be made regarding the experimen-

tal aspect. Only very few experiments have been conducted to cases when

unsteady freestream variations are involved, compared to the tremendous

amount of experiments related to unsteady airfoil motion in pitch, and even in

plunge, for example [19, 20]. Naturally the ex

difficult, leading to very small mean velocities in ord
[21] - [30], separated flow

perimental setup is much more

er to achieve high veloc-

ity amplitudes. In all experimental data available
all angle of attack occur due to

parison with experimental data cannot be

conditions even for sm very small Reynolds

number, and therefore a direct com
made. A recommendation for future measurements must be the introduction

of a means to keep the flow attached to the airfoil, and therefore to artificially

prohibit laminar flow separation on the surface of the airfoil.
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Figure 2.2: Flapping hinged blade
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Appendix A

Arbitrary Airfoil Motion in a
Constant Freestream

Starting from the indicial function for a step change in angle of attack, the

so called Wagner function

¢ (2—6‘11!) = ¢(s) = :;Aiﬁb” (A.1)

perposition of steps to an arbitrary motion

s 0 4
O)0(s) + || g ols =)o
(A.2)

and the Duhamel integral for su

2 ..
L= wp%[h + Vé — bad) + 27r—g—Vc [103/4

one can obtain a closed form solution for harmonic motion in angle of attack

and plunge.

a = aolatais sin ks + @1 €O8 ks)

h = aog‘[ﬁlssirlk3+ﬁlc~cosks] (A.3)

by vertical motion of the airfoil and

at 3/4 chord is build up

well as its time derivative

. cl—2a.
U)3/4:v0’+h+‘2‘ 5 ! (A.4)

The velocity

the instantaneous angle of attack as

161



The derivatives needed are

—g—g— = agk[aiscos ko — @ic Sin ko)
_B_a_ = -—ao———k2[615 sin ko + a1 €08 ko]
do c
—8—}1 = —aOsz[izls sin ko + hic cos ko) (A.5)
ao. .t
So the integral in the circulatory part of the lift becomes
B’LU —0
/0 Qs (s — o)do = aOV?;kA / hite=?)
X {[0115 ~k (1 1-295,0 + hlc)] cos ko
— [a1c +-k (1 1-2845,0+ h15>] sin ko p do
(A.6)

Now the integral can be evaluated by means of (for example [38], p- 566, No.

407 and 412)

—bijo

/e—b.-a cos kodo = Z?e—;——k;(~bi cos ko + ksinko)
—bso
/e—m sin kodo = b;+ (—bisinko - k cos ko) (A7)
to get finally
s Qws/a . :
/ ——é——-(ﬁ(s —o)do = aoV Y Bicos ks + Baisin ks (A.8)
0 g 1=1
with the coefficients
Bii = e S(biC1 kC2)
11— b + k2 1 2
Ak
By = o kQ(kcl — b,C2)
1-2 =
c, = aas—k (—*'2"%5110 F th)
_ 1—2a_ =
y = GeT k ( ais + h15> (A.9)
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Thus, one finally gets
et i " P2 _
7rp——[h + Va — bad] + 27r—-V cop § @0

1—2a .
+[( 5+a15—k———-—-—2 alc)smwt

I =

§ oo B N A
+ (ﬁilc + aic + k—-—z—"ms) cos wt] ; 7R

_ _ 1-—2a_
+ [(wls tas— k=5 010) cos wi

1-2a B
c+ k—Tals) smwt] Z

= (ﬁilc +
(A.10)
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Appendix B

Extension of Isaacs Theory

Theory for an Airfoil Pitching

B.1 General
Arbitrary Axis with Inplane

about an
and Plunging Motion

Ths derivation is made following that of Isaacs for constant and varying angle
The purpose is t0 include the following

of attack about midchord [6, 7]

extensions:

o The location of pitch axis on the airfoil chord now is arbitrary.

e Plunge motion is added as additional degree of freedom.

ought to be a Fourier series including higher

e Pitch and plunge are th

harmonics.
Therefore the result is the general oscillating airfoil theory for incompressible

ns theory is restricted to a constant flow with-

inviscid flows while Theodorse
iven degrees of

out inplane motion and Isaacs theory excludes the above g
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additional degrees of freedom change

freedom. In order to identify where the

expressions, Isaacs theory has to rederived carefully.

Fig. 2.8 shows an airfoil pitching and undergoing fore-aft motion in a
We have the following equation for the

constant freestream of velocity Vo.

elocity distribution along chord (small angles assumed)

va(z,t) = OV () + (z = a%) &(t) + (t) + vnu(@:1) (B.1)

normal v

tream velocity V, and the velocity

includes the frees
ms —a(c/2)a(t) + h(t) have been

Here the velocity V(t)
he fore-aft motion. The ter

[saacs in [7
amplitudes of motion. In order

imposed by t
]. Eq. B.1 is a function of all

added to the expression given by

Varjables like time, coordinate, frequency and

e variables have to be separated and the first variable to be

to simplify it, th

eliminated is the coordinate T-

B.1.1 Eliminating the Coordinate 7

The induced velocity of the wake (index w) behind the airfoil U il b
containing the shed vorticity, varies across the chord. At time T the shed

gth that is given by the tim
ble flow the induced velocity can

wake vorticity has a stren e derivative of the bound

vorticity —I'(r)dr, so that in incompressi

be calculated using
' R A G B

;i d .

Un,w(wvt) o /—-oo (6/2 = 1-) + [W(t) — W(T)] T (B )

lled by the airfoil, so that dW (t)/dt = W'(t) =

Here W (1) is the distance trave
transformation

V(t). To simplify the derivation, one can us€ a coordinate
0, ie.

from z to an angular coordinate

(B.3)

c
r = —cos®
2
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In addition, the denominator of Eq. B.1 can be nondimensionalised by di-

viding by the airfoil semichord, c/2, as a reference length and separated into

coordinate ©® and another term contalning a

a part depending on the new

tant and time dependent part , 1.6,

cons
I'(r)
Vaw(©t) =~ / e
w(0,1) w1+Wtc7:VT—cos®T (B.4)
Defining the variable ai(t,T) as
wi(t) = W(r)
t )y =1+—"79 =1
(11( T) + C/2 Z (BS)
the induced velocity 18
1 rt I'(7)
n,w 7t = —'—"/- — <0
nu(€:1) 0 a1(t,7) —cos@dT (B.6)
Expanding this into a Fourier series one obtains
1 7o(t, ) =
= L) e Nt A Lk (®)
@t T — cos © 2 * 2;17 (¢,7) cosm (B:T)

are obtained from an integral evaluation:

[al— a%——l]
if (11>l

The Fourier coefficients

| M
9 r cosn® 2
— _ORTY _do = 2 — :
7r./0 a1~cos@ af —1 (B.8)
—2sinn0/sin® if _1<a <1
Therefore, from B.8 the coefficients 1n Eq. B.7 are
ar(t,7) — a?(t,7)—1 y
At T) = gl e ’ ] (B.9)
Jai(t, ) — 1
The induced velocity distribution can be replaced by a Fourier series
(B.10)

Ul

t 0]
= 9952 + Z b (1) cos O
n=1
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and the coefficients of this series are found by comparison with Eq. B.6 to be

bo(l) = /oo I (r)a(t, 7)dT

al (t,7) ai(t
/oo (B.11)

J/

The airfoil is considered as a bound vortex sheet (index b) with unknown

strength 75(©,t). The self-induced normal velocity is given by
7b(¢7 ) sin ¢
sl 6,1 -————————d )
vas(0:1) = o cos © — cos @ % (B.12)

B.12, as well as the self-induced velocity, can be written

The nominator of Eq.

as a Fourier series

- co(t) + 3 ealt) cosnd
vn(0,1) or Jo cos @ — cos ¢ 4

/0” cosneg dé

cos © — cos ¢

dqﬁz

N Co(t)/“
- 2 Jo cos@-cosqﬁ

t) cosn©

(B.13)

Using the integral relation in Eq. B.8 for the calculation of the coefficients

and a sequence of trigonometrical relationships, the relationship between the

bound vorticity and the induced normal velocity coefficients are found to be

C,,(t) = dn+1 (t) - dn—l(t) n > 0 (Bl4)

It is necessary to satisfy the requirement of flow tangency on the surface of

the airfoil. This means that the self-
t the net velocity normal to the airfoil surface

induced normal velocity equals the other

contributions so tha is zero,
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0 = a()V(t) + <x _ ag) &(1) + h(t) + vaw(@, 1) = vnp(, 1)

Putting into the Fourier series for the wake-induced velocity (Eq. B.10) and

self-induced velocity (Eq. B.13), one obtains

(B.15)

bo(t) — do(t)

=a(t)V(t)+ %(cos 0 —a)a(t) + h(t) + —
- - (B.16)
+ Z )] cos n©

A comparison of the coefficients of Eq. B.10 and Eq. B.14 gives

bi(£) + bo(t) + 2a()V(1) + 5(1 —2a)a(t) + 2h(t) (B.17)

coft) =

a(t) = by(t) —bo(t) = 2a()V() + acil(t) — 2h(t) (B.18)
o(t) = bg(t)—bl(t)—gd(t) (B.19)
eal) = bupr(t) = baa(t) n>2 (B.20)

All terms with a& and j have been added to the expressions given by Isaacs

[7]. The coefficient co is found by invoking the Kutta condition at the trailing
edge where the bound vorticity y(c/2,t) = 0. This and the fact that the

Fourier coefficients b, — 0 for n — 00, implies that

co(t = icn

n=1

(B.21)

s the result in Eq. B.17. The total circulation about the airfoil is the

and give
the change

integral of the bound vorticity over the surface. In the following,

in Eq. B.3 is used, as well as a change in limits of integration

r() = /C/2 (@, 1) da

—c/2

of variable
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0 C
- -/ (0, 1) sin © dO
—/ (6, t)sm@ 40

= 2/ [ ea(t) cosnO | dO

Il

= 3 co(t) (B.22)

sion for co(t) in Eq. B.17 into Eq. B.22 and using

Setting the previous eXpres

d by(t) given by Eq. B.11, the expression for the

the coefficients bo(t) an
circulation becomes
c ) .
I'(t) = ——[2a( YWi(t)+ 5(1 —2a)a(t) + 2h(t)]
/ 1+al(t’T)_ a%(th)_ld
V "
00 \/a%(t, 7") i 1

m the aerodynamic prob-

(B.23)

inate T has been eliminated fro

and the local coord
as a function of itself to be

lem. It remains an equation for the circulation

solved.

gral Equation for the Circulation

(t,7) from Eq. B.5 leads to

[ al(t,T)+1 ——l} i

B.1.2 The Inte

Rearranging Eq. B.23 and resubstituting a1

7[2a<t>vu>+5<1—za)a<t>+2h<t)1=r<t>+ [rONaen—1
(B.24)
a time varying

For brevity, the left side of Eq. B.24 may be denoted as

function g(t).




_ F(t)+/_oor’(7) [\/;(t)_cwmﬂ—l] dr  (B.25)

With the substitution =t —17, dT' = _dr the limits of integration change

fromr:ttoT:Oandfromr:-—ootoT:t+oo:oo.

g(t) = F(t)—/:r’(t—T) [/I;(t)—;/(t—T)H_l] dT
= F(t)+/0°°F’(t—T) [\/;/(t)_;/(t_T) +1—1J dT (B.26)

rmation brings this into a more managable form. Denoting

A second transfo
pendent variable instead of time ¢, and therefore setting

W(t) as an inde
— Q(X) with X = W(t-T)

I(1) = Q(W(1) and T(t = T) = QW (t = T))

w() C
g(t)=Q(W(t))+/;oo Q'(X) [‘/W(t)—/\’+1-l} dX (B.27)

ing A = W(t)-X, and again changing

gives

Now a third transformation is made, us

the limits of integration yields finally

o) = QW)+ [ QWD -1) [,/% 1 = 1] dA (B.28)

This is the sought after relationship between velocity, angle of attack and
then Eq. B.28 is a differential

If the circulation @ is given,
n Eq. B.28 is an integral

circulation.
equation for W and a. If the latter are given, the

uation for the circulation (). By integration of the velocity, the distance

€q
travelled W is known, and may be inverted to give t a
so that the left side of Eq. B.28 also becomes a

s a function of W. This

can be substituted in g(t)

function of W.
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By the same transformations one finds for the Fourier coefficients of the

wake-induced velocity

b(t) = —— [~ QW)= A)]
a3(A) -1

we Jo

where az(A) = 1+ 2A/c.

B.2 Periodic Fore-aft Motion
V(t)

Until now, no use has been made of a specific function for the velocity
or the angle of attack variations «

s all the V, a,

(t), or the plunge motion h(t). In rotary
and A are periodic in time with a basic

wing aircraft problem
consisting of a constant freestream

he total velocity,

frequency w. In general t
V,, can be written as

velocity Vo and a fore-aft motion

(B.30)

Vo(t) = Vesinwl
(B.31)

Vt) = Vo(1 + Asinwt)

where A = V,/Vy is the nondimensional amplitude of fore-aft velocity. There-

fore the distance travelled b

Wi(t) = /V(t)dt =W (t - gcoswt>

(t,7) becomes

y the airfoil through the flow is
(B.32)

and using the abbreviation in Eq. B.5, a;
2V A

a(t,7) = 1+ = [t——r— —(coswt—coswr)} =11 (B.33)
c w

can be written, in

The left side of Eq. B.28 will also be periodic in time, and

general, as
oo o0
)= 3 g™ = 2 S (B.34)

n=-—00 n=-—0o0
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with the nondimensional time variable ¥ that can be interpreted as the rotor
o be periodic and therefore @ can be

azimuth. The circulation must als

written as
o0
in(w/Vo)W (1) (B.35)

Q(W(t)): Z a;e

n=-00

coefficients will be a(—n) = a,. Also

Because @ has to be real, the
dQ(W(t) — A) w m(w/Vo)(W(t)-A)
dQW(t) =) _ @'(W(t) - Jin—e E:
=== 3 winy (B-36)
Reduced Frequency E
Amplitude Effect

B.2.1 Separating the ffect and
the Freestream

odorsen’s theory the reduced frequency appears in Bessel

As known from The
ected here for the reduced

ment. The same can be exp

functions as the argu
ude ). Inserting the series

frequency k as well as for the freestream amplit

o the integral equation of Eq. B.28 gives

for the circulation int
in(w/Vo)W (1) {1 + m__/ o —in(w/Vo)A [,/;\- +1- l]dA}

Zgn ”"“Z

N i (B.37)
or
Z gne€ :mjz _ Z A€ in(w/Vo) YW (t) (B38)
with
A, = an{ zn—/ g il Vol [\/—/C( +1- 1] dA}
— anBn (B.39)
By defining the reduced frequency as
(B.40)

w
b=
2Vo
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Eq. B.39 becomes

A, = an {1 3 ink-g /Owe-‘"k<“/°> [,/% +1- 1] dA} (B.41)

From a comparison of the coefficients, it follows that

Ry = 1
wC
= L) = U(nk
R. \Il(n2V0> (nk)
Ripy = fin (B.42)

where Eq. B.42 results from the fact Eq. B.38 is real. The function W is

a function of multiples of the reduced freque
A = n(w/Vo)A with dA = dA/[n(w/Vo)] is applied, thus

o o[ [2nk .
\Il(nk)=1+i/ e"”‘[ —%+1—1} dA (B.43)
0

8 by

ncy. Here the transformation

A, are obtained by multiplying both sides of Eq. B.3

The coeflicients
The advantage is to

(1 4+ Asin 1/))6“m(¢"\°°5"’) and integrating from 0 to 2x.

use the following re

dip = dr /(1 + Asin 1Y)

lationship in which we substitute kK = ¥ — Acos® with

O m="n

2m 2m=A .
: i(n—m)(w—/\cosd)) _ i(n—m)K J,. —
/(; (14 Asin®)e dg/)——/_A e dk {271- S

(B.44)
Therefore,
A — __1_ i g /2"(1 + Asin ,‘l,)ci(m—n)wein,\coswdw
" . e " Jo
= = bW —,T—n-ngn_m(n)\) n#0 (B.45)
B e g

A ~ .
Ao = 90— -2—2.(91 - ) (B.46)
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The J,_n are the well known Bessel functions, here with multiples of the
nondimensional amplitude of the fore-aft motion, A, as the argument. By
this procedure the variables reduced frequency and freestream amplitude
nctions Rn(nk) and Ju_m(nA).

have been separated in form of the fu

B.2.2 Periodic Angle of Attack and Plunge Motion

Now the expression for the angle of attack as well as for plunge motion has
to be introduced. Here, both are assumed to be a Fourier series; later only

the 1/rev component will be used.

ap |@o + Z(c’vng sin nap + @nc cosnY) (B.47)

n=1

gao Z(ﬁns sinny + hnc cos nt)
n=1

a(t) =
h(t) = (B.48)

The expression for the velocity was given in Eq. B.31 so that g(t) in Eq. B.25

takes the form

g(¥) = %f {200% [&o + 3" (@ns sin ng + ane €08 ml’)] (14 Asin)
n=1

+200Vok Z n(ilns cosny — hnc sinni))
n=1
Z n(ans cos niy — Qe Sin n)

ezl — 2a)
2 n=1
(B.49)
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A rearrangement leads to

A
9(¥) = hVo { do + 5 s
- 1—2a_ _ A
+ aic+k ( 5 as t+ hlS) + -2‘025 cos
1—2a - A
4+ [Aa0 +as — F ( ac + th) - -2'020 sin ¢
— 2a = A
+ Z [anc + nk ( Gns + hnS) + 2 (5(n+1)s - @(n-l)s) cos ni
1-— 2a - A
+ Z [an9 ( anc 5 hnC> = é’ (C_Y(n+1)c - d(n_1)c):l sin nz,/)}
(B.50)

n=2

The extension to arbitrary pitch axis location

where h stands for h = mcao.
h a, h,s and hnc, all known

and plunge motion is to be seen in the terms wit

from Theodorsen’s result. Basically g(3) is of the form

g(¢) =Go + i[Gns sinny + G o cos m/)] (B_51)

n=1

By comparison of Eq. B.38 with Eq. B.49 and
= (GnS + ZGnC)/(2Z) (B52)

gn +g—n=Gnc }___}{ gn
i(gn — G—n) = Gns gn = (—Gas + 1Gac)/(21)

we find the coefficients gn, n = —09- + oo to be
(B.53)

A
g = kW [510 + ‘2‘515J
h V¢
g1 = '7;1,2{)\&0+&15—k<
o 1—2a_ = A B
+i |aic +k ( 5 s + hls) + 5@ = g1
Vo & 1 =26 _ _
> {dns —nk ( 5 @nC + hnC> (a(n+1)c — Q(n- 1)()

9 = o
(a(n+1).5 Q(n- 1¢>J}

1 —2a . A i
aic + h]C> = 5&2(; (8.54)

1 —2a_

lvl» t\,|>,

ans + hnS)

F
;n
(1§

-~
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It should be noted, that in [7] there was a typographical error, since it was

stated there g, = —g—1. With this, the coefficients Ao and A, can be calcu-

lated (g1 — g1 = 20 Im(g1)), i.e.,

(15
Ao = hVe {ao $ 0125
A % P k _ = A
__52 [—Z (Aao + a5 — ’2‘(1 - 2(1)010 = khlc = 5620):'}

A2
(142 e
k k- A
+A [&15 = Z(l —2a)aic — §h10 - Zdch}
(B.57)

A, = fn—hVo(Hn +iH)

q. B.45. In case of only 1/rev

where the coefficients H, are evaluated from E
m in Eq. B.45 can be simplified

in angle of attack and plunge motion the su
using the well known relationship of the Bessel functions:

Jn+1(l‘) + Jn__l(I) = Q—J?Jn(l') (B58)

q. B.45 is only taken for m = —2 to m = 2 since for larger

Here the sum in E
m the coefficients gm = 0. This is not the case when the input function of

angle of attack or plunge contains a series of harmonics.

In order to reduce the number of Bessel functions J to be computed here
H, and H! will be derived following Isaacs

a short form of the coeflicients

7).

A 2 =1 1 2
; = *"._2g-2Jn+2 + —._19—1Jn+1 o ._l'glJn—l + -.gng -2
i"/n 7 ? ? ?

2(9—2Jn+2 = ngn—'z) = i(g—lJnH + glJn—l) (B-59)
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it is omitted. For

Since the argument of the Bessel functions is always nA,

= hVo(A — iB)/2. Therefore g(-1) = hVo(A +1B)/2, as
hVo(—C + :D)A/4. Then

conciseness set g1

well as g2 =
A, A B
Vot n = 50(:\]7;—2 — Jns2) + —2’(»77;:1 — Jn-1) (B.60)
+1 'z"D(Jn+2 A& Sz ) — —2-(Jn+1 + Jn—l)]
Now one uses the results
2
']n—l S Jn+l = :\'Jn (B61)
2zn —1 2(n +1
Jp—2 — In+2 = '(’n'r—)—']n——l— n"’[ wl )J l—t]n}
2 1 1
= ‘/'\‘ [Jn—l — Jntl T "(Jn—l + Jn+1)
n y
2 4
= —X(Jn_l = ) = /\277,]" (B.62)
2
Jn_2t Jnt2 'X [Jn_l + Jn+1 + ’T;(Jn+l - Jn—l)w —2Jn
2 4
=i E_X(Jn+l - n-l) + (_)\—2— - 2> JIn (863)
It follows that
2Jn Jn - Jn—-
Hn = "‘;’{"C + C(Jn—l - n+l) + B-—’tl’_:z—"’_l—
o _%C_{_M(B_QC) (B.64)
nA 2
H = plai =t 4 oy - XD - PSR
n n A 2
— Jn— Jn
= Dflﬂ——;——l + 502 A?)D — A (B.65)

1 there is only a 1/rev in angle of attack

r, this 1s only useful, whe
ubstitution of

Howeve
In that case

unge under consideration. the result after s

and pl
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A= )\d0+&15-—(k/2)(1 —20)610——167110, B = &1C+(k/2)(1 —‘20,)&15"*‘]\7;1,15,
C = ays and D = &1c is finally
Joy1 — JIn- - ~ 1—2a - N
Sngl =W [)\ao —as—k ("2“"011() i th)] o —7170115 (B.66)

H, =
2
Jn "Jn—_ Jn = 1—'2(1_ -
W = _ﬁ,n,,_law 2 [am(l _\)—k (——2——0115 i h15>] (B.67)
he brackets include more terms now because of the

Comparing to Isaacs [7] t
ow from an = An/Rn

d plunge motion. N

influence of pitch axis location an
it follows that
apg — Ao (B68)
A
= — B.
@ = J(nk) (B-69)

the circulation can be calculated. It must be noted, however,

and from Q(W) t

that this reducti
s a series of harmonics, like 1

on can take other forms if the angle of attack and plunge

n a dynamic response problem.

motion contain

Then Eq. B.45 h

as to be written

" © m
An = _17 Z ——gm«]n-—m
28 m .
= _;L— Z (;;gm — ml ngn+m>
m=1
= = o mJ 22m—m']n m
n 1;1 zm (g g + )
" © m .
= ; Z ;,'n_ (ngn-m - (—1) ngn+nz)
m=1
" . m GmS =t z'G'mC ’—GmS + Z'C”YmC )
== S /Jn—m — (-1 m——/']n m
n mzzl 3™ ( 2t (=1 2t +
L ("l)m«]n+m]+iGmC[Jn—m‘(‘l)m-lm—m]}

m
] {GmS [Jn——m +
(B.70)

3
)

I
[E’]a
H

<
-~
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and the coefficients Gms and Gc are given in Eq. B.50.

The fore-aft motion is restricted to 1/rev only since a series of harmonics
in V(t) will lead to a series of harmonics in W (t), and this leads to additional

complications in solving the integral Eq. B.28.

Using the formulas for the case of plunge motion one must be aware
desturbance and small angle assumption. Especially at high

of the small
(X slightly smaller than 1) eve

amplitudes of fore-aft motion
great angles of attack and probably violate

n a small vertical

s the small angle

velocity produces

Therefore one must carefully check the conditions of airfoil

assumption.
motion before applying this theory.

B.3 Calculation of the Lift

s of circulatory and noncirculatory parts. Following

The total lift consist
lift Ly and an “impulsive

[saacs in [6] it is split up into a “Joukowsky”

pressure” lift L, 16y

L(t) = Ls(t)+Lit)

d rc/?
— VOT() + 7 /_C/2 i) (g _ T) dz

VN + g T

> ; d
= pV(i)ng_:oo ane WO/ 4 o I(2) (B.71)
where the integral (t) is
c/2 c/2
1 = —;-/_/2 7b(x,t)dx—/_/2 (@, )z d
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_ %[‘(t)——%/o (1) sin 6 cos ¢ d
- %F(t)—%/ [ +?=:1 t) cosn¢ cos ¢ do
2
_ ‘ro) - ”; a(t) (B.72)

() from Eq. B.18, as well as those for by(t) and

Using the expression for &1

bo(t) from Eq. Bl

_9a(t)V(t) + aca(t) 2h(t) 2
T) — al(t, ) = 1] 1 } ’

— T
—00 a?(t,7) — 1

Cl(t) =

_ _aa(t)V(t) +aca(t) ~ 2h(t)
—i F - al{f,r)= 1= a(t,7) a(t,7) — ldT
o a%(taT) =}
——2a )V (t)+ aca(t ) 9iL(t) (B.73)

/oo [ 2T) - 1] i

from Eq. B.5 gives

Resubstituting ay(t,7)
3 2,

I(t) = T(t) + %C—a(t)V(t) af-g-a(t) + ”: T h(t)
¢ [t w(t) - W(r) W -wl’
—§/~OOF(T)[1+—————C—/’§”’— l:l—}-——»—;ﬁ”’] — dr
(B.74)

passing from Eq. B.25 to Eq. B.28.

Q(W(t)— A), and this results in

me transformation is made as in

_ wi(r) with @(W(7) =

Now the sa
Here, A = W(t)

I(t) = -’r—:— [a(t)V(t) _ a2a(t) Lt )] + ;Q



for the circulation in Eq. B.35 it follows that

By use of the series expansion

1) = 2 ey - aga) A | (B.76)
i % {2 - 6mk(2W(t)/c)
00 . 2
x{1-m-‘i/ gl Vel [1+2é— [1+%’l] —1}(1/\}
Vo Jo c c
nc? c. .
_ 2 eV —agd) 0] (B.77)
g_ _E: AL — i5n (nk)]e ink(2W()/)
The S-function sn g, BLTT 18 given by
Sp = ¢£(nk) n#0
o0 A A\ .
= -tA . _ d
[ e [1 b (1 g nk) 1} A (B9
S = 0 (B.79)

Replacing the distance travelled by Eq. B.32 and making the derivation with

respect to time, 1.€.,

é_lt_ [eink(2W(t)/c)] — jnwe mk(2W( ( + )\SIHT,[J) (BSO)
the lift contribution L becomes
7I'C . .
i = 5 oo+ eV~ oSi(t)+ 0
+p2 Z ainw(l — i5ule ink(@W(O/)(1 4 Asin )
rct [. . c. . e
- = [a(t)V( 1) + ot )V(t)—aza(t)+h(t)] (B.81)
+pV (1) ) S a,ink[1 — 15nle ink(2W (1)/°)

n=—00
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the total lift becomes

Now
Lidy= p7r£4— [d(t)\/(t) +at)V(t) - ag-a(t) + (1) (B.82)
+pV(t) fj a1 + nk(Sn + s

ction 1s encoun-

Here a, has to be replaced by A, /Ry, and the following fun

tered
1 + nk[Sa(nk) + i 1 n=>0
k) | C@R) n>0 (B.83)

] known Theodorsen function with multiples of the reduced

C(nk) is the wel

e argument, 1.8

frequency as th
| 4 nklE(nk) + 1]

C(nk) =
(n) U(nk)
(k)
H® (nk) + i H (nk)
= Jl(nk) = in(le)
= Ji(nk)+ Yo(nk) + i[Jo(n,k) — Yy(nk)]
F(nk)+iG(nk) (B.84)
The J-functions are Bessel functions, Y are Weber functions, and H are
ilt up from Bessel and Weber func-

nder functions that are bu
and the upper

Gince L has to be re

Hankel’s cyli
index the kind of the

tions. The lower index gives the order
al we have

e function,

_ Thus the lift tak

appropriat see for example (39].
es the following form

C(~nk) = C(nk)

L(t) = pV (1) [Ao +3 A, C(nk)e

n#0
o [d(t)V(t) L (V) — agdt) + h(t)]

ink(‘ZW(t)/c)]
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A? k (1—2a . A
—— 2 Y y (Y
= phV, {(1 + —2—> ao+ A [als —3 ( 5 aic t h1c> - :1'0720] }

x(1 + Asin¢)

mc e
+p—4——wV0ao {Z n [(&ns cos Ny — Qipc SN nip)(1 + Asinp)

n=1

+ nk [a(&ns sin ny + @nc €08 ny) — h,ssinny — hnc cos m/)]}

+Acosy (do + Z g sinny + anc COS m/)) }
+pv Z A, Cn_l ink(2W (t)/¢)
n#0
(B.85)

85 can be viewed in terms of a Fourier series

Now, the last term in Eq. B.

kW O/ = phVg Y (Im €08 map + I, sin )

pVg(1+)\sm¢ ZAC nk)e
n#0 m=1
(B.86)

1 velocity and the mean value of

and after defining a steady lift for the mea

the angle of attack as

Lo = gVOQchrao = phVO2 (B.87)

the nondimensiona]ised unsteady lift finally becomes

nc k — - - T A
—LZ(-)— =3 { oo + q1s + k(acic — hic) — 55120 cos 1
- A
+ —ayc + k(adis — his) — '2'&25 sin ¥
o0 - - _ A - -
+Y n { ans + nk(aanc = hnc) + 5 ((X(n_nc - a(n+1)c)] cos n1p
n_-2
A/ - ;
4 Z n [—anc + nk(adns — hns) + 3 (a(n—l)S - a(n+1)5)] sin m/ﬂ}
n=2
(B.88)
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Le A%\ _ _ k(l—2a . A
{(1+—;2—) ao-{-)\[als—-z-(f—{—‘&w-’rhlc)—15120]} (B.89)
x(1 4 Asin®)

+ > (Imcos map + I, sin ma)
=1

with ¥ = wt and

I, +il, = ——2% S {Fn[Jner(n)x) — Ju-m(nM)] (B.90)
n=1
4 iG[Jngm(nX) + 7 _m(n)\)]}
and
H, +iH,
— (B.91)

F,+1iGn = [F(nk) + iG(nk)] -
e in BEq. B.97 and Eq. B.45.

. @ 1o
H, . = ———=Jn-

and H. is not valid in case of

with Hn and Hy, defined befor

the formula for Hx

As mentioned before,
e are under consideration,

higher harmonic motion in pitch or plunge. If thes

Eq. B.57 has to be used instead.

This result 1s built up similarly to that of Isaacs in (7], but includes

ms of noncirculatory and circulatory nature originating

several additional ter
re. It should be noted that

grees of motion included he

from the additional de
higher harmonics 1n angle

here also for the inclusion of

the derivation is given
knowledge that was never

of attack and plunge motion. For the best of my

given before. In the ca

se of only 1/rev components in velocity and angle of

(Bnc e e 2=/0) pitc
[7]. In the case of A

h about midchord(a = 0)

attack, no plunge motion
hat of Isaacs in

this result reduces to t — 0 it reduces

identically to Theodorsen’s result as required.
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Appendix C

Arbitrary Airfoil Motion in an
Unsteady Freestream

ory lift is determined from the normal

pressible flow the circulat

In incom
s the result

at 3/4 chord of the airfoil, while the noncirculatory lift i

velocity
of the instantaneous local accelerations. Thus the total lift s
2 . .
L= npS [+ VOO V(a(t) — 4S5 0) (1)
s Qwsal0
womoV (0 [wa(@96) + dwyl?) 4(s — 7)do
2 0 oo
where &(s) is the lift deficiency function for the lift, s the way travelled by the
lue of normal

half chords as unit) and wy4(t) the instantaneous vVa

point. The indicial response function ¢

airfoil (in

s at the three quarter chord

velocitie
t function it

since this is a very difficul

y the Wagner function, but

is exactl
roximations.

t by one of its common app

is much more conveniant to replace 1

1 be written in form of a series of exponential functions

These ca

N
3(s) =D Aie® {C.2)

i=1
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The following degrees of freedom are encountered by the airfoil:

V() = Vo(l-}—/\sinwt)

at) = o (@ + aus sinwt + oic coswt)
C /s . _

h(t) = a0—2- (hls sinwt 4 hic o8 wt) §C.3)

locity at 3/4 chord can be obtained from Fig. 2.8

Vta(t) + h(D) + S e

The normal ve
'I,U3/4(t) =
N A _ 1—2a _ -
= aVo{@t 'é'alS + [alC + kv (——Taxs + h15>] cos wt

1 -2 .
+ [/\070 + ays — kv (———2’(15110 + hlc>] sin wt

A
5&15 cos 2wt + —2—&10 sin 2wt

— aoVo(co+ 1008 wt + c1551M wt + ¢2c oS owt + €25 sIn 2uwt)
(C.4)
and therefore the derivative 3w3/4(0)/80 with wt = kv o becomes
Q-lﬁa/ﬁgz —  apVokv (c15 €08 kyo — cic sin ky o
4+9¢y5 cos 2kvo — 9¢oc SIN 2kyo) (C.5)

Now the integral is

s N s
/ Mqﬁ(s —o)do = aoVokv Z A;e"® / (c15 €08 kyo — ¢ic sin kyvo
0 9o i=1 0 42¢y5cO8 2kyo
—9¢yc SN 2ky o) e do
(C.6)

and the kernel integrals are already given in Appendix A. After setting 1n

the upper and lower limits of the integral one finds

/ (c15 €os kyo — cac sin ky o + 2¢25 €08 2kyo — 2¢ac sin 2ky o) e bi%do
0
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e—b,s
= Ui [(kveic — bicys) cos kys + (kvers + bicic) sin ky s]
' Vv
e—b.’s
4—2————~——b2 T 2k )? [(2kv cac — bicas) cos 2kv s + (2ky cas + bicye) sin 2ky s

1 2 .
————bf 7 k‘z/ (kVCIC . biClS) ey b?_—_—f- (2kv)2 (QkVCZC - [),‘CQS) ((/./)

Also, the product of normal velocity at time zero with the indicial response

function ¢(s) has to be evaluated.

N
w34(0)@(s) = aoVp (co + c1c + c2c) Y, Aeb (C.8)

i=1

Now one introduces the actual values of the approximation of the indicial
response function to take advantage of their characteristics. The values for
the commonly used approximation by Jones are listed in Table 2.4. All the
values of b; are negative except b, = 0. Therefore, as time takes very big
values, the exponential function approaches zero for all © > 1 and this means
that all initial transient processes have died out. That is the case we are

interested in and therefore the bracket in the governing equation for the lift

becomes

[703/4(0)¢(s> b [ 2oy a)a'a]

= L{)C()A]
N Aiky
+ao Vo Z Yy [(kveic — biers) cos kys + (kyers + bicie) sin ky s

1 | %

1=1
N
A2k
4 [(2ky c2c — bicas) cos 2ky s

T S
=1 b0+ (2hv) +(2kvcas + bicye) sin 2ky s]
(C.9)
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Herein the way travelled by the airfoil s 18

= ,_1__ tV dt = 8 A g

g = 272 Jo / (t)dt =35 — " cos kv 8 (C.10)
given by tVo/(c/2). As s easy to see, there ap-

with s as the mean value,

metric function inside another trlgonometrlc function and

peares a trigono
ult to handle. Also, this

this is more diffic happens only, when the flow os-
de X > 0. When A = 0

the case of constant freestream

cillation amplitu
ted and the results can easily be shown to be identical to

:dentity C (k) = F(k)+ iG(k) with

velocity 1s represen
ts, when using the 1
o A,’(nkv )2
ky) = — 2
F(nkv) £ b} (nkv)?
oo A;(nky)bi
_ S
G(nkv) > e (C.11)

i=1

Theodorsen’s resul

r the first few terms and therefore small

he sum 18 cancelled afte

build in.

Normally t
entiate between

s are implicitly Then it is better to differ
lues of the Theodorsen

a ~ here.

inaccuracie
ined by a finite

the exact va function and those obta

series approx1mat10n denoted by

> 7t (ke Ailnky) o Pluky)

ﬁ(nkv) = nkv
: N Ay (nky)bi |

= ,./ ~ C.12
G(nkv) ; Wt (nkv)? G(nkv) (C.12)

The expression for the circulatory lift (made nondimensional by the lift of
\d mean angle of attack) becomes

mean velocity arl

L. _ (1 + sin kv3) [coAl + (F(kv)clc + CAr'(kv)clg) cos kvs

I
+ (F(kv)ers — G(ky)erc) sin kvs
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+ (F(2kv)eac + Gi(2ky)eas) cos 2hv s

+ (ﬁ'(?kv)ms - G(Zkv)cw) sin 2kvs]

2
(14 sin kys) Cae™v’ (C.13)

n=—2

with the complex amplitudes

C, = ¢

0, & _12- [F(kV)CIC + G(kv)ers — i (F(kv)cls - G(kv)clcﬂ =C

C, = % [F(zkv)czc + G(2kv)cas ~ U (ﬁ(zkv)czs e G(ka)czc)] =C2
(C.14)

jc functions with period 27, but

d sin nky s areé period
jantly be written 1n

Now, since €08 nkys an
nt nkvs, they can more conven

with a periodic argume
having the

¢ with an infinite pumber of harmonics,

form of a Fourier serie
ifficulty is to identify the coefficients of these Fourier
In general,

argument mkys. The di
as will be shown.

series because they contain Bessel functions,
i1l be of the following kind

the complex Fourier series W1
. Z Cn mkvs _in\coskvs — Z Dm
m=—0

2
Z C 6inkvs
n
n=—2

n=-—2

imkvs  (C.15)

—imky

h sides with €

d by multiplyng bot
= kys.

are calculate

d of 27.

and the coefficients D
gra,tion s

over the perio

2
Z Cﬂ27l'

TL:——

m for the Bessel fu

The variable of inte

and integrating
2T . :
e,(n,m)wc—-m/\coswdd, ((‘16)

By use of the integral for nctions
el il T \
gt eieosVdy (C.17)

J.(2) = —2—; A
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that can be found in [40] on page 149, we find

Dp = 22 Cri™ ™ (=1 ) (C.18)
n=-2
Rearranging, this is
Dy = Co+2[S(C1)N(X) — R(C2)J2(A)]
D, = ™{i[C-1Jms1(A) + (=1)"C1Jm=1(N)] (C.19)
—C_gdmi2(2X) = (=1)"Codpm-2(2))} m > 0 (C.20)
Now the circulatory lift becomes
—LL_OC = (1+ Asin ;/))mgoo D,, (cosmip + 2sinmy)
a m:z_oo D {cos T Ll ;" sl oy
L [sin i Acos(l —m)i 2— cos(1 + m)i/f]}(c_zl)

Now we can use two properties of complex Fourier series coeflicients, that is

D_,, = D,, and Dy = real. With this we can rewrite the expression for the

lift
L. :
= Do(l + Asinp)

L
+ Y R(Dwm)[2cos mip + Asin(m + 1)y — Asin(m — 1)¢]
m=1
— Y (D) [2sinmap — A cos(m + 1)) + A cos(m — 1)y]
m=1
(C.22)

A further substitution brings the expression into the sought form. Set M =

m+l—-m=M-landm=1—-> M =2 Also,set N=m—1—>m = N+1
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and m=1— N =0. Thus

Le Do(1 4 Asine) + i [R(D,) cos myp — (D, ) sin mp]

Lo
+A i [?R(DM_l)Sm M + S(Dar—1) cos M|
M=2
- i [R(Dn+1)sin Np + S(Dn 1) cos Ny
:0

[2%(01) — AS(Dy)] cosp + [A[Do — R(D;)] — 23(Dy)]sinp
+ Z {2‘% (D) + AM(S(Dm-1 = Dy1)] cos my

+ [—QS(Dm) + /\?R(Dm_l) o Dm+] )J SiI] mz/’} (C23)
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