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T he importance of unsteady aerodynamics for prediction of rotor dynam­

ics is unquestioned today. The purpose of unsteady aerodynamic models is 

to represent the effect of unsteady airfoil motion on the lift, moment and 

drag characteristics of a blade section. This includes unsteady motion ( arbi ­

trary motion) of the airfoil in angle of attack (pitch) and vertical movement 

(plunge), as well as the effects of an airfoil travelling through a vertical gust 

field. However, the additional degrees of freedom, namely the fore-aft mo­

tion and the unsteady freestream variations commonly are acknowledged, 

but neglected in virtually all analyses. 

Since the effect of unsteady freestream results in a stretching and com­

pressing of the shed wake vorticity distribution behind an airfoil, it will have 

an effect on the airfoil characteristics. The subject of this thesis is to provide 

a review of the analytic and experimental work done in the area of unsteady 

freestream and unsteady fore-aft motion, to clarify the limits of the various 

theories, and to show the differences between them. This wil l be limited to 

the attached flow regime since all theories are based on the small disturbance 



assumption in incompressible flow. As far as possible the theories are com­

pared with experimental data, however most of the available experimental 

data are confined to stalled flow conditions and are not useful here. 

In addition to the theories, a semiempirical mathematical model will be 

used based on the aerodynamics of indicial functions. The purpose is to show 

the differences of using the theories of unsteady airfoil motion in a constant 

flow, and those accounting for unsteady freestream flow. This will help to 

justify whether it is necessary to include the unsteady freestream effect in 

comprehensive rotor codes. 

Finally, a generalisation of Isaacs unsteady aerodynamic theory for an 

airfoil undergoing a frequency spectra in pitch and plunge in a freestream 

oscillating with the fundamental frequency is presented here for the first 

time. Therein the axis of rotation of the airfoil is a free parameter. 
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Chapter 1 

Introduction 

A helicopter rotor blade in forward flight encounters a highly nonuniform 

flowfield. In order to predict the aeroelastic behavior of the rotor, it is 

necessary to accurately calculate the aerodynamic loads acting on the blades. 

These consist of both steady as well as unsteady components. One source 

of aerodynamic loads is the varying oncoming flow velocity at each blade 

station. This leads to a dynamic pressure variation containing steady, I/rev 

and 2/rev components. Additional degrees of freedom result from the blade 

motion in flap, lag and torsion, and the nonuniform inflow. 

In forward flight, an unsteady aerodynamic theory must be used to predict 

the aerodynamic loads. This has been discussed by various authors, for 

example by Johnson and Kaza [1, 2]. Both state that the lift deficiency 

function C( k) must be generalized to account for the unsteady freestream 

effects. This generalisation was given by Johnson [3], but in most analysis 

the Theodorsen lift deficiency function for constant freestream flow [4] is 

used instead . However, the direct application of Theodorsen 's theory to 

rotorcraft in forward flight is questionable. A theory including the effect of 

1 



periodically stretching and compressing the shed wake vorticity distribution 

behind the oscillating and/or plunging airfoil should be used in order to 

include the effects of varying freestream on the unsteady aerodynamic forces 

and moments. 

In addition to this, one has to differentiate between two kinds of veloc­

ity changes that a rotor blade encounters in forward flight. First there will 

be a fore-aft (lead-lag) motion of the rotor blade, and second, an oscillating 

freestream velocity resulting from the superposition of the rotational veloc­

ity and the forward speed of the helicopter. The first case (lead-lag) leads 

to a uniform velocity distribution across the airfoil chord, while the second 

produces a velocity gradient across the chord. For of very high frequencies, 

lead-lag motion will result in very high noncirculatory forces, while in the 

oscillating freestream the noncirculatory lift will reduce to zero again since 

several modes along the chord cancel each other. For the form of the wake be­

hind the airfoil, however, there is no difference to be seen between both cases 

because the positioning and velocity of vorticity in the shed wake relative to 

the airfoil is the same in both cases. 

A complicating factor, is the fact that helicopter blade sections operate 

over the whole range of subsonic Mach numbers and at different Reynolds 

numbers; both are periodically changing at a given radial station. Addi­

tionally, some flow separation regimes can occur, especially at high forward 

speeds. It is also of interest, what the impact of decelleration and accelera­

tion of flow velocity on the separated flow characteristics of the airfoil will 

be. 
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The following sections give an overview of the theoretical and experimen­

tal work previously done in the past concerning the problem of freestream 

velocity changes, and its impact on the unsteady aerodynamic loads. 

1.1 Short Historical Review, Analytical Ap­

proaches 

The general solution for an airfoil undergoing harmonic motion in angle of 

attack about an arbitrary axis and plunge motion at constant freestream 

velocity was given by Theodorsen in 1935 [4], and in 1940 in operational 

form by Sears [5]. Probably the first attempt to derive a solution for the case 

of unsteady freestream velocity variations was given by Isaacs ten years later, 

and then only for the case of constant angle of attack [6]. This reflects the 

increasing complexity of the solution when the varying freestream velocity is 

taken into account. In 1946, Isaacs gave a solution to this problem, including 

a periodic change in angle of attack, in order to fulfill the needs of helicopter 

aerodynamicists [7]. His solution, however, was confined to a pitch axis at half 

chord, and therefore it was not very appropriate for helicopter calcu lations 

since nearly all helicopter blades have a feathering axis at the quarter chord. 

It must be noted here that both publications [6 , 7] claim to handle the 

effect of freestream velocity fluctuations, however the instantaneous value of 

the oncoming flow velocity is taken as constant along the chord. This means 

that the problem is modelled as a fore-aft motion of the airfoil instead as an 

unsteady freestream flow problem. This latter case would cause a velocity 

gradient along chord, and therefore is a different physical problem. For small 

frequencies, however, the gradients are small and both types of unsteady 
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motion are very similar. In the second report Isaacs [7] gave solutions for 

lift and moment development, and the latter can be reduced to the case 

of constant angle of attack. No graphical presentation of the results were 

given in [6, 7], but a numerical example for the Fourier coefficients of the 

lift response at constant angle of attack at a moderate freestream oscillation 

amplitude and a small reduced ferquency was given in [6]. 

In the same year Greenberg [8] published his extension of Theodorsen's 

theory to include harmonic variations of the freestream velocity; also in view 

of the needs of helicopter engineers. Even today, his results are thought to 

be the most reliable for application to rotorcraft aeroelastic problems; for 

example, by Diniavari and Friedmann [9]. However, Greenberg made some 

additional assumptions about the shed wake behind the airfoil to obtain a 

solution in terms of the Theodorsen function only. Also, Greenberg 's theory 

claims to handle the unsteady freestream effect, but this theory has assumed 

that the instantaneous value of the velocity along the chord is a constant. 

In an appendix to [8] Greenberg explicitly writes: "Consider an airfoil mov­

ing back and forth harmonically in a uniform stream having a velocity Vo". 

Greenberg gave equations for lift and moment, but no graphical presentation. 

The only comparison with Isaacs' theory was done by examining the Fourier 

coefficients of the lift response for the same conditions as used by Isaacs in 

[6]. The agreement for the 1/rev response was found to be good. 

In 1952 Ashley et. al developed two methods for predicting the unsteady 

lift of an airfoil in accelerated motion [10]. Examples were given for an airfoil 

undergoing a sudden change in speed in a stationary atmosphere (i.e., Wag­

ner's problem [11], which is for a step change in angle of attack in a uniform 
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flow field). A case of constant airfoil acceleration was presented in [10) with 

respect to the case of an airplane launched via a catapult, for example on 

a ship. It was found that the unsteady lift build-up lags significantly the 

quasisteady lift, leading to longer runway requirements for the airplane to 

become airborne. An example was given for the Helioplane1, see Fig. 1.1. 

Ashley et. al [10] gave no solution for a periodically varying velocity, and 

therefore the result for a helicopter blade will be of qualitative nature; in the 

accelerating region (rear part of the rotor disk) the lift buildup will lag the 

quasisteady lift. 

The influence of horizontal gusts on the aerodynamic coefficients was the 

subject of interest in Drischler and Diederich's work in 1957 [12]. Indicial 

functions for the lift and moment response penetrating gusts having both 

vertical as well as horizontal speed were given in integral form, and must be 

integrated numerically. Therefore, they are not of direct use in rotor cal­

culations, but the results show significant effects in the time history of lift 

buildup after the gust hits the airfoil, Fig. 1.2. In case of the horizontal ve­

locity being infinitely greater than the vertical velocity, the result of Wagner 

[11] is obtained. In the case of zero horizontal velocity, the Kiissner function 

[13] is the result. A positive gust (approaching the wing) leads to a peak in 

the lift for the first instant of time, while a negative gust (travelling away 

from the wing, but is overtaken by it) leads to very slow lift build-up. 

Strand's study of 1972 [14] is related to the maximum lift of an airplane 

in decelerating flight with a simulataneously increasing angle of attack. He 

1This is a light airplane designed at MIT, see "New Slow-Flying Plane Developed," 

Aviation Week, Vol. 50, No. 20, pp. 51-52, 1949 
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found an increase in lift ( compared to the quasisteady lift) proportional to 

the time rate of change in velocity and angle of attack, but in comparison to 

flight and wind tunnel measurements this increase was of minor importance. 

Strand concludes that the measured lift increases were the result of viscous 

effects, both for the airplane and the helicopter case. No results for the 

aerodynamic pitching moment was given. 

After Greenberg's results were published (8], it took more than 30 years 

to develop a new theory directly related to rotorcraft. This was in 1977 by 

Kottapalli [15], and again in 1985 [17) where the main subject of consider­

ation was the development of the unsteady drag under unsteady freestream 

conditions. His derivation also gives results for the lift and moment devel­

opment (published in 1985 for airfoi ls with in plane motions), however he 

developed his theory explicitly by applying the boundary condition of small 

lead-lag oscillation amplitudes with respect to the mean velocity. Conse­

quently, Kottapalli limits the validity of his approach to the case of blade 

flutter in the hover condition. Consequently, Kottapalli's results seem to be 

of limited help for helicopter applications in forward flight, since the assump­

tion of small flow oscillation amplitudes holds only for very small advance 

ratios. In 1979 there was another publication by Kottapalli and Pierce [16) 

regarding the computation of drag on an airfoil in a fluctuating free stream, 

but here too the amplitudes were confined to small values . Comparisons were 

not made with Isaacs' or Greenberg's theory, and no graphical presentation 

of lift or moment development was made. 

Ando and Ichikawa presented a study concernmg the lift development 

during the acceleration of an airplane [18). The conclusions are basically the 
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same as those of Ashley et. al; an acceleration leads to a lag in unsteady lift 

buildup, see Fig. 1.3. No comparisons were made, and there were no results 

presented for the pitching moment. 

Johnson published some discussion regarding the problem of a varying 

velocity in his famous book Helicopter Theory [3]. Using the same assump­

tions made by Isaacs [6, 7], Johnson basically followed Isaacs' theory to give 

expressions for lift and moment of an airfoil having plunge as well as pitch 

motion about an arbitrary pitch axis. This approach is very interesting, but 

the final result is given in form of integrals without giving the appropriate 

solution of these in terms of Bessel functions. No comparisons were made 

with the other existing theories, but a result is given for the second harmonic 

component of the resulting lift deficiency function, see Fig. 1.4, for flow os­

cillation amplitudes from zero to 90% of the mean velocity and a reduced 

frequency of k = 0.04, based upon the mean velocity. 

The effect of varying velocity is described by Johnson as: 

"On the advancing side) the increased velocity lowers the reduced fre­

quency and hence the lift deficiency function is nearer unity. On the retreat­

ing side there is the greatest accumulation of shed vorticity in the wake near 

the trailing edge) and thus the greatest reduction in lift. 

In summary . . . all these effects basically produce 1/rev variations of the 

loads. n 

Johnson's conclusion is that the approximation usmg the Theodorsen 

function with the local reduced frequency will work for flow oscillation am­

plitudes of up to 70% of the mean velocity. For small flow oscillation am­

plitudes, the Theodorsen function calculated using the mean velocity will be 
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accurate enough, which effectively means neglecting the unsteady freestream 

fluctuations. However, this statement seems to be based only on one pre­

sented result, and it is doubtful whether or not it will hold for other mean 

reduced freuencies and other harmonics of the response. 

Until now, there is no other theory available. It must be kept in mind, 

that all the theoretical approaches were made with certain assumptions. In 

summary, these are: 

1. Two-dimensional flow (i.e., no spanwise effects or curved wake forms 

included) 

2. Incompressible flow (i.e., infinite speed of sound) 

3. Small desturbances (i.e., thin airfoil, small angles, small frequencies) 

4. No friction forces (i.e., infinite Reynolds number = non viscous flow) 

5. Planar, infinite wake (i.e., no distortion, no diffusion) 

Therefore, the results can be valid only in the attached flow regime. In case 

of comparisons with experimental data, these have to be taken at a very low 

wind tunnel speed. Especially, the assumption of an infinite planar wake is 

questionable when it comes to the application to rotorcraft since the wake 

there is more of a helical form. However for unsteady aerodynamics, the part 

of the wake closest to the airfoil generating it (some chord lengths behind 

it) is of primary importance, since in view of the Biot-Savart law the more 

distantly positioned elements of the wake have only a minor effect. Therefore, 

the results of a planar wake should also be representative for rotorcraft wake 

geometries. 
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Another approximation is the assumption of incompressible flow. Even 

in hover a rotor blade tip operates at Mach numbers of typically 0.64, and in 

fast forward flight can increase to values very dose to 1.0. Keeping in mind 

that the incompressible theory is applicable only to Mach numbers of up 

to about 0.3, only a small range of rotorcraft aerodynamics can be handled 

with an incompressible flow theory. However, there are no theories capable 

of handling the compressible subsonic case of unsteady motion of airfoil and 

freestream velocity, therefore one has no choice but to start with the available 

incompressible theories. 

In the following chapter, the theories of Isaacs, Greenberg and Kottapalli 

are examined in order to clarify their implicit assumptions and restrictions 

in application. This will be done, not by rederiving them, but by presenting 

the final results and the basis of the derivations. This will be accompanied 

by graphical presentation of these results. The graphical presentation is the 

most satisfactory method to compare the different results obtained by the 

different theories. 

1.2 Experimental Approaches 

Most of the experimental work done in this area of research is the measure­

ment of the aerodynamic coefficients in a wind tunnel. Because wind tunnels 

were build to provide a steady freestream velocity and as turbulence-free 

as possible, it is a very difficult task to produce harmonic flow oscillations 

at various frequencies and with amplitudes of up to the mean velocity it­

self. Therefore one has to apply certain modifications to obtain harmonically 

varying velocities in the test section. A number of experiments with airfoils 
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oscillating in a constant freestream velocity have been conducted, for example 

[19, 20]. Only few experiments have been done in an oscillating freestream 

velocity environment, which is of interest here. 

Probably the first experiments on this problem were done by Fejer, Sax­

ena and Morkovin at Illinois Institute of Technology in 1976 [21, 22]. A 

lft-chord NACA 0012 model with pressure transducers was mounted in a 

low speed wind tunnel providing flow oscillations amplitudes of 18% of the 

freestream by means of periodically opening and closing shutters behind the 

test section. The aspect ratio of the model was only 2.0, so that three di­

mensional effects could be expected. The Reynolds numbers were about 

2.5 x 105 , and therefore relatively small compared to helicopters. However, 

a trip was mounted to force the boundary layer to be turbulent. With this 

facility, reduced frequencies of 0.18 and 0.9 could be achieved. It was found 

in [21, 22] that at these moderate flow oscillation amplitudes, the influence 

of frequency is an important parameter affecting the pressure distribution 

and the boundary layer behavior. This was especially true when the angle 

of attack was above the static stall angle; large oscillations in the normal 

force coefficient occured and the average value of the normal force coefficient 

was about 60% higher than in the steady case. In case of angles below the 

stall angle, there was an increasing unsteady behavior of the leading edge 

separation bubble. An example of pressure distributions at a fixed angle of 

attack of a = 14.2° is shown in Fig. 1.5 for different times during one flow 

oscillation cycle. In addition, there is a region of separated flow over the 

airfoil, indicating significant dependency of the instantaneous velocity. 

In later tests, angle of attack variations in an oscillating flow were made 



[23, 24). It has been found that in periodically changing flows, dynamic 

stall of airfoils can assume a variety of forms depending on the frequency 

and amplitude of the oscillations. The airfoil coefficients do not behave in 

a quasisteady manner any'more, and it was concluded that for the case of 

helicopter dynamic stall the freestream flow fluctuations must be taken into 

account and cannot be neglected. 

Parallel to the analytical work of Kottapalli at Georgia Institute of Tech­

nology, some experiments were also conducted there by Pierce, Kunz and 

Malone [25] in 1976. The exit of a low speed wind tunnel was provided with 

a system of periodically opening and closing vanes to produce flow oscilla­

tions. The mean velocity in the test section was at 42.5Jt/s (:::::: 13m/s) with 

a normalized amplitude of.-\ = 0.177 at a flow oscillation frequency in most 

cases set to Ill z, while the pitch frequency was set to 6 times of that value. 

The reason for this was mainly to have one airfoil oscillation during the more 

or less linear regime of accelerating flow, and one in the appropriate regime of 

decelerating flow. The instrumentation used in this experiment was limited, 

and consisted of an accelerometer for angle of attack determination, and a 

strain gage bridge on the drive arm outside the test section to measure the 

total moment on the entire model. Therefore wind tunnel interference effects 

and 3-D flow effects are included in the measurements, and cannot be elim­

inated. Additionally there is no possibility of measuring lift or drag using 

this equipment. 

Steady tests showed thin airfoil stall characteristics on the NACA 0012 

airfoil. This is not surprising, since the Reynolds number was only Re = 

2.02 x 105 . The Mach number was about M ::::::: 0.04, so the flow can be 
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considered as incompressible. Dynamic tests showed a large effect of flow 

oscillations on the dynamic stall behavior, and some moment hysteresis loops 

were given; an example is shown here in Fig. 1.6. However, all experiments 

included separated flow, so they are not useful for comparing with attached 

flow theories. Additionally, there are some results which are questionable 

since in steady flow, for example, the break in pitching moment appears at 

the lowest angles of attack, and not at the highest as one would expect. 

At about the same time, the French team of Maresca, Favier and Rebont 

at IMFM Marseille started a series of experiments with an airfoil undergoing 

fore-aft motions, plunge motions and pitch motions in a steady stream [26, 

27]. In order to obtain high velocity amplitudes at the airfoil, the mean 

velocity of the flow was very small. Therefore, the basic concern in all these 

experiments will be the low Reynolds number, here 2.5 x 105
• Flow and plunge 

oscillations took place at the same frequency by moving the airfoil model in 

the test section along an inclined path, and the model itself was fixed with 

a certain angle relative to this path . The tunnel speed remained constant , 

and all variations in freestream velocity were produced by the model drive 

mechanism. There was also no possibility to have different phase angles 

between the flow and plunge oscillations, other than the in-phase or out­

of-phase condition. Because of a very low aspect ratio of 1.65, there are 

also serious three dimensional effects to be expected. Aerodynamic forces 

and moments were measured by torsional dynamometers. Additionally there 

were pressure transducers for measurement of steady pressures, and some 

hotfilm gauges for skin friction measurement. 

The measurements performed were first pure fore-aft motion at a fixed 
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angle of attack (that could be a good comparison with Isaacs' theory, but 

the angle of attack was set to 20°, so there is entirely separated flow on the 

airfoil, and therefore this prohibits any kind of comparison). As a result of the 

combined fore-aft and plunge motion, the flow oscillations were nearly pure 

sinusoids, but the resulting angle of attack oscillation also contained several 

higher harmonics. As an example, the influence of the flow oscillations on 

the lift and drag development is given here in Fig. 1. 7. The differences in the 

unsteady lift and drag development as compared to quasisteady theory are 

obvious; namely a lag in the force development, as well as a change in the 

amplitude in comparison to the quasisteady values. 

In 1982 the same authors presented some additional measurements of 

combined motion for oscillations below the static stall angle, as well as for 

those going beyond stall, and compared the results for lift, drag and moment 

with the appropriate plunge oscillations in a constant freestream flow [29]. 

The hysteresis loops were found to be entirely different, and for oscillations 

below stall, the moment coefficient clearly indicated flow separation, with a 

significant peak at high angle of attack, see Fig. 1.8. The Reynolds number 

was Re = 1.44 x 105, and therefore one must be careful to assume the flow 

below the static stall angle as attached since the airfoil is very likely to 

experience thin airfoil stall. 

After having redesigned the drive mechanism to be able to oscillate the 

airfoil about its pitch axis, additional measurements were conducted and 

presented in 1988 [30]. Now any phase angle between the flow and the angle 

of attack oscillations could be achieved. For pure fore-aft motion, the flow 

frequency was varied at two different angles of attack; one below static staIJ 
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and the other at the static stall angle. Results were given as time histories, 

as well as in the form of lift amplitude and phase so they could be compared 

with unsteady theories. Additionally lift hysteresis loops were given, showing 

even at the smallest reduced frequency of k = O. l a clockwise sense of rotation 

(phase lead) that normally would appear only at higher reduced frequencies. 

Therefore, the statement of attached flow conditions cannot hold even at 

the angles lower than the static stall angle, since the airfoil underwent thin 

airfoil stall with flow separation regimes beginning to form at very small 

angles. This leads to serious questions whether or not these results can be 

compared with any of the attached flow theories. It was shown, however, 

that the phase of the flow velocity and the angle of attack oscillations is an 

important parameter and changes the lift coefficient hysteresis in a significant 

manner, see Fig. 1.9. 

Recently a transonic wind tunnel at the University of the Bundeswehr in 

Munich, Germany, was made operational. This tunnel has been constructed 

to produce periodically changes of velocity in the test section by means of a 

shutter at the end of the test section itself. Up to now no results have been 

published, but this facility seems to be the only one in the moment to be able 

to handle freestream fluctuations at Mach numbers and Reynolds numbers 

typical of helicopter rotors. 

As a result of the foregoing, it can be stated that there is only limited 

airfoil data for freestream fluctuations available to compare with theory, and 

the data already published are mostly confined to the dynamic stall phe­

nomenon, not to the case of attached flow. In case of the tests having angles 

· of attack smaller than the static stall angle, the flow will also not be attached 
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because of the small Reynolds numbers, leading to thin airfoil stall charac­

teristics with separation regimes beginning at very small angles of attack. 

Therefore it will be very difficult, if not impossible, to compare the theo­

ries with experimental data. The reason is that the theories are developed 

for attached incompressible flow at high Reynolds number, but experiments 

were done at high angles of attack at very low Reynolds numbers, where stall 

effects are starting to show up even at very small angles of attack. 

1.3 Problem Statement 

From all of the unsteady aerodynamic theories, there are only three direcly 

related to rotorcraft application in hover and forward flight: Isaacs', Green­

berg's and Kottapalli's theories. None of these authors have presented results 

either numerically or graphically to show the differences between these the­

ories. Furthermore, the limitations and simplifications in these theories are 

not clear, especially for the Isaacs' and Greenberg's. The effect of periodically 

accelerating and decelerating flow with superimposed oscillations in angle of 

attack on the lift and moment coefficient is not compared or even shown. A 

conclusion as to whether the inclusion of these effects is really necessary for 

the helicopter rotor is still lacking. 

1.4 Present Work 

In this study, the theories of Isaacs, Greenberg and Kottapalli will be anal­

ysed and compared. There will be strong emphasis on a graphical presenta­

tion of the results in order to compare the theories with each other, and with 

quasisteady theory. Also, predictions made using Theodorsen 's theory will 
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be compared, since this is widely used. The limitations and assumptions will 

be clearly shown and, as far as possible, the results will be compared with 

available experimental measurements. 

The objective is first to find an answer to whether or not it is necessary 

to model the effects of unsteady freestream fluctuations in a rotor loads 

or aeroelastic analysis in forward flight. The second objective, is to show 

whether or not it is possible to simulate the attached flow behavior using 

an arbitrary motion theory, comprizing of Duhamel's integral and indicial 

functions for step changes in angle of attack, pitch rate and plunge velocity. 
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Chapter 2 

Review of Theories for 

Unsteady Freest ream and 

Unsteady In plane Motion 

Before describing the airfoil theories for modeling the unsteady airloads in 

an unsteady freestream, it is worthwhile to examine the basic assumption of 

small angles. Since the flow velocity appears in the denominator when deter­

mining the angle of at tack in plunge motion ( or pitch rate), it is questionable 

whether or not the smalJ angle assumption is violated by the theory. Also 

the limits of applying this assumption are unclear, and it is necessary to be 

aware of this. The airfoil theory results for a constant freestream velocity 

(Theodorsen 's theory) will be presented first since this gives a good physical 

insight into unsteady aerodynamics, and the r~sults also form the basis of the 

unsteady aerodynamics in an unsteady freestream. Furthermore, the princi­

ple of arbitrary motion will be first shown for the case of constant freestream 

velocity, and is also applied later to the case of an unsteady freestream. 
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2.1 Introduction 

2.1.1 Definition of an Unsteady Freestream 

Before any unsteady aerodynamic theory due to unsteady freestream effects 

can be derived, it must be defined what an unsteady freestream physically 

means. This sounds trivial, but there are mainly two possibilities, as in the 

case of vertical gusts. In the first case, the freestream can be viewed as a mass 

of fluid changing velocity with time as a whole, e.g., the fluid particles at every 

location change their velocity at the same time by the same amount. This 

is identical to an airfoil having a pure lead-lag type of motion in a constant 

freestream velocity, since both produce a normal velocity distribution along 

the airfoi l that is constant in space, but varying in time. The other possibility 

(let us call it the second case), that is more real for a helicopter, is to view the 

unsteady freestream as a system of longitudinally propagating gusts. This 

leads to a nonlinear (sinusoidal) gradient in the normal velocity distribution 

across the airfoil, and therefore, it is much more difficult to handle in a 

general analytical approach. The relative velocity of the wake behind the 

airfoil to the airfoil trailing edge, however, is the same in both cases. 

Another issue, is that large differences are to be found in the noncircula­

tory parts of the loading that contribute to the airfoil characteristics. Also, 

there is an effect on the circulatory part of the bound vortex sheet when the 

reduced frequency is high. The reason is that in the first case the noncir­

culatory lift, for example, becomes infinite because of the constant normal 

velocity distribution along chord, while in the second case several waves are 

found to act on the chord at the same time, and therefore effectively cancel 
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each other out. Therefore, the final value of noncirculatory lift for very high 

reduced frequency in the second case will be zero, as in constant freestream 

flow. For small reduced frequencies however, the gradient of the normal ve­

locity across chord will be small. Therefore, the gradient may be handled as 

zero with a constant normal velocity distribution in a first approximation 
' 

even for the case of large freestream velocity oscillation amplitudes . There-

fore, the first case (lead-lag) can be viewed only as an approximation for the 

second case (longitudinal gusts) for small reduced frequencies. 

In a helicopter rotor environment, it is the second case that is of interest. 

In Fig. 2.1 a rotor blade in a forward flight condition is shown. Since the aero­

dynamic problem is viewed as two dimensional, this amounts to a projection 

of the rotating environment onto a two dimensional plane. For a rotating 

blade like that shown, we must look at the velocities at a constant radius 

(lower part of the figure). It is obvious that the leading edge has a different 

normal velocity than the trailing edge, simply because they are not at the 

same azimuth and are separated by the chord in distance. Thus, a velocity 

gradient exists along the chord. A special case is the position of zero azimuth, 

where the leading edge has a small component of forward flight velocity that 

adds to the rotational velocity, while at the trailing edge there is a small 

amount subtracted from it (and vice versa at 180° azimuth). Therefore, the 

projection of the rotating blade element onto a two dimensional plane leads 

to an unsteady freestream problem with a velocity gradient across the chord; 

and any angle of attack produces a gradient in normal velocity. However, the 

classical view is that the airfoil ( upper part of Fig. 2. 1) is not taken from the 

rotating coordinate system, but from the cartesian blade coordinate system. 
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Therefore, the tangential velocities are defined to be the same at the leading 

edge and the trailing edge. In this case, no velocity gradient exists across 

the chord and the previous case (lead-lag) of the two possibilities comes into 

account. The advantage is a much easier derivation of aerodynamic theory, 

that is already complicated enough. Yet, it must be kept in mind that this 

is a small frequency approximation for the real case of a system of longitu­

dinally propagating gusts and is only exact, when the motion of the airfoil 

itself is under investigation. 

2.1.2 The Small Perturbations Assumption 

Since all the theories are built up on the assumption of small perturbations 
' 

say small geometric angles and small accelerations, it is necessary to prove 

whether or not this assumption can be made in a helicopter rotor environ­

ment. In an incompressible flow, the angle of attack at 3/4 chord is of interest 

for the circulatory part of the lift since the multplication with the oncoming 

flow velocity gives the normal velocity at 3/4 chord. This is 

· (l-2a) · ac - 2- h 

a 3; 4 = ageo + tan 2
V + tan V (2.1) 

For the small angle assumption, the tangent can be replaced by its argument. 

Now when the freestream velocity V is varying, it is questionable whether 

' 
or not the argument still remains small to justify this assumption. 

Consider a rotor blade undergoing flap motion in a simple case of a rigid 

blade hinged at the axis of rotation, and with an amplitude at the tip of 

IO% of the radius (see Fig. 2.2). In forward flight the flap motion is upwards 

on the advancing side and downwards on the retreating side, with maximum 
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0 

0.1 

0.2 

0.125 

0.4 0.6 

0.167 0.25 
0.8 0.9 0.95 0.99 

0.5 1.0 2.0 10.0 

Table 2.1: Relation between flow oscillation amplitude and angle of attack 

at 1/; = 270° 

velocities at 1/; = 90° and 1/; = 270°. Now the argument of the tangent in 

Eq. 2.1 takes the following form 

h(r) 

V(r) 

h --v 

r 
(0. lR cos 1/;) R 

wv R ( ~ + µ sin 1/;) 

sin 1/; 
= -O.ll+(µ/y)sin1/; 

r 
with y = -

R 

The worst case occurs at the retreating side at 1/; = 270° and so 

0.1 

l - µ/y 

0.1 

1 - A 

(2.2) 

(2.3) 

At high forward speed, the flow oscillation amplitude A increases, and small 

radial positions y also cause an increase in A. Since the available theories are 

not adequate in the reversed flow region, the parameter A must be limited to 

a maximum of 1. Some values for the ratio A are listed in Table 2.1. None of 

these values O:e f 1 = h/V fulfills the requirement that it be small (say about 

0.05 or less) compared to 1. When A is equal to one, then the velocity is zero 

at 1P = 270° and therefore an angle of attack of 90° is produced by any flap 

motion. 

The reduced frequencies at which the blade sections are operating are 

also of interest. These are defined by the mean velocity, that is the velocity 
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normal to the blade in hover. Taking a typical value of R/ c = 20, the 

distribution of reduced frequencies depends on the geometry only 

kv = wvc = wvc ~ 0.025 

2V 2wvr y 
(2.4) 

So the reduced frequencies at a typical rotor blade section range from 0.025 

at the tip, to 0.125 at the beginning of the profiled section that starts at 

about 20% radius. The reduced frequencies are not very high, since only the 

1/rev motion was taken into account, but high enough to justify the need 

of unsteady aerodynamic theory in rotor calculations. When considering 

torsional motion of the rotor blade, the reduced frequencies are considerably 

higher. 

As an example, Table 2.2 gives an idea for the values of ,\ encountered 

at different blade sections at different forward speed of the helicopter. A 

value of,\ = 0.9 will be encountered at 55% radius, when the advance ratio 

is µ = 0.5, or, when µ = 0.3, at 33% radius. Also, a value of ,\ = 0.6 will 

be found at 83% radius, when µ = 0.5. This shows, that in fast forward 

flight even the blade sections with high lift encounter significant changes in 

velocity. So these combinations occur in normal flight conditions at high 

speed. In addition, the values at the blade tip on the retreating side are of 

interest since a lot of lift is produced by the tip region on the retreating side. 

Here, at a reduced frequency of k = 0.025 the following ratios are typical for 

different advance ratios (Table 2.3). So even for the tip, none of these values 

is small and therefore the small perturbation assumption, here more a small 

' 
angle assumption, in general is violated when the flow fluctuation amplitude 

is of medium (.\ = 0.5) or higher value. 
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,X = 0.6 ,X = 0.9 

µ = 0.3 y = 0.5 k = 0.05 µ = 0.3 y = 0.3335 k = 0.075 

or: and or: 

µ = 0.5 y = 0.83 k = 0.03 µ = 0.5 y = 0.55 k = 0.045 

Table 2.2: Relation between advance ratio, radial station and reduced fre­

quency for different flow oscillation amplitudes. Basis is a 1/rev 

plunge motion with amplitude of l0%R. 

µ = 0.2 ,X = 0.2 h = 0.125 - v 2100 

µ = 0.3 - ,X = 0.3 ~, = 0.143 
270° 

µ = 0.5 - ,X = 0.5 1 = 0.200 
V 0 

Table 2.3: Proof of small angle assumption at 1/J = 270° for the blade tip , 

k = 0.025 
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This is not the case when the angle of attack stays constant, and only 

flow oscillations (or lead-lag motion) are taken into account. In this case, the 

angle of attack at 3/4 chord is constant and small. The small perturbations 

assumption is only limited by the resulting accelerations, here represented 

by the reduced frequency. 

2.1.3 Theodorsen's Theory of Unsteady Airfoil Mo­

tion in a Constant Freestream Flow 

Before the unsteady freestream is taken into account, it is worthwhile to 

examine the well-known result of Theodorsen [ 4] for unsteady airfoil motion 

in pitch and plunge in a constant freestream. The lift and moment is split 

into circulatory and noncirculatory parts, 

(2.5) 

Here the parameter a accounts for the position of the axis of rotation. It is 

positive for an offset of the rotational axis behind the midchord position. In 

most cases is a = -0.5, that is the rotational axis is at the quarter chord. 

For the noncirculatory part, all accelerations normal to the chord are 

involved and integrated over the chord, so the distribution of acceleration 

across the chord is of interest here. 

C( k) is the well known Theodorden function that represents the influence 

of the unsteady wake on the circulatory lift. From the a-term in the circu­

latory lift it can be seen that for a rotation axis at 3/4 chord, there is no 
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influence of a on the circulatory part of the lift. Therefore, in incompressible 

flow under the assumptions made by Theodorsen, only the velocity normal 

to the chord at the 3/4 chord point is of importance for the circulatory lift 

response. This leads to a simple superposition of angle of attack and plunge 

motion, and so the pitch and plunge effects can be handled separately and 

the frequencies of angle of attack and plunge motion are not necessarily the 

same. 

Since only the time derivatives of hare involved, it is more physical to take 

the normal velocity produced by plunge motion wh = h into the equation. In 

the case of different frequencies, one can generally write for simple harmonic 

motions 

a = ao[iio + i.i-1s sin Wat + O'JC cos Wat] 

wh = a0 Vo[w1s sin wat + w1c cos wat] 

wherein the nondimensional amplitudes are defined as 

_ O'mean 

ao = -­
ao 

W1S = 

a1s 
0'1S = -

ao 

- O'JC 
a1c = -­

ao 

(2.6) 

For convenience, Theodorsen's result can be written in nondimensional form 

by dividing by the lift at mean angle of attack, 

Py2 
Lo == 2?r- cao 

2 
(2.7) 

to obtain the nondimensional lift response, including different reduced fre­

quencies for pitch and plunge oscillations, i.e., 
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+ka[a1s cos Wat - a1c sin Wat + aka( a1s sin Wat+ aw cos Wat)]} 

ao + [ ( a1s - ka (
1 ~ 2a) aw) sinwat 

+ (aw+ ka (
1 ~ 2a) a1s) COS Wat] C(ka) 

+ ( w1s sin wht + ww cos wht) C( kh) 

The reduced frequency k is introduced for both of the motions, 

k - WaC 

a - 2V 
k - WhC 

h - 2V 

(2.8) 

(2.9) 

It is important to notice, that with help of this parameter the product of 

frequency and time can be transformed into 

wvt = kvs (2.10) 

This result will be helpful when Duhamel's integral is applied to arbitrary 

motion of the airfoil in a later section of this thesis. 

The lift transfer function of the circulatory part and of the total lift 

(including the non circulatory part) with respect to the reduced frequency is 

shown in Fig. 2.3 for plunge and pitch oscillations about the quarter chord, 

and for pitch oscillations about the midchord and 3/4 chord in Fig. 2.4. For 

small reduced frequencies, the amplitude of lift decreases while there is a 

phase lag. For higher frequencies, due to the noncirculatory parts of the lift, 

the phase lag changes to a lead, and the normalized lift amplitude begins to 

increase above unity. 

Considering only the circulatory lift transfer function for plunge motion, 

( that is identically to the Theodorsen function C( k) itself), the influence of 
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the unsteady wake reduces the lift amplitude for high reduced frequencies 

to 1/2 of its value at k = O; the phase lag reaches its maximum at about 

k = 0.3. In case of pitch oscillation about the quarter chord, the range of 

phase lag is decreased to values of k from O to about 0.25, while at higher 

frequencies a phase lead and lift amplitude increase occurs. This is due to 

the position of the rotation axis being a half chord ahead the 3/ 4 chord point, 

introducing a factor k0 (l - 2a) / 2 into the circulatory lift transfer function. 

The inclusion of the noncirculatory terms leads to a change in phase from lag 

to lead at k = 0.35 in plunge, and an increase of amplitude proportional to 

k. Basically the same effect can be seen in pitch motion; the range of phase 

lag appears only at O < k < 0.14 and at higher frequencies a phase lead due 

to the noncirculatory parts becomes important. Since the noncirculatory lift 

also affects the real part of the lift by k;a/2, the phase lead becomes more 

than 90°. 

2.1.4 Arbitrary Motion Theory in a Constant Free­
stream Flow 

In general, the operational environment of a helicopter blade section can be 

considered as an airfoil in an arbitrary varying freestream with perturbations 

in pitch, plunge and lead-lag. This general case will be covered in a later 

chapter, but for a background understanding it is worthwhile to look to the 

case of a pitching and plunging airfoil in a constant incompressible freestream 

velocity. Basically, this is the same starting point as for Theodorsen's theory. 

The basic idea is to handle the arbitrary motion response as the superpo­

sition of small increments of step responses , the so called indicial functions. 
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These functions represent the lift ( and moment) development after a sudden 

step change in angle of attack or plunge velocity; there are different indicial 

functions for step changes in a, a and for the gust problem. All basics of the 

theory of arbitrary motion and its applications have been published several 

times, for example [31, 32, 33]. 

The indicial functions </> are generally expressed in the form of a series of 

exponential functions with different coefficients representing the response in 

the time domain 
N 

</>( S) = L A;i•3 

i=l 

(2.11) 

The non circulatory part of the lift ( or moment) depends on the instantaneous 

motion only (for incompressible flow), and therefore the lift development is 

obtained by the use of Duhamel's integral applied only to the circulatory 

part 

c
2 

•. c [ ( ) ,1..( ) f3 8w3/4 ] 
L = 7rp4[h + Va - baa]+ 21rpV 2 WJ/4 0 'f' s + lo ~</>(s - a-)da-

(2.12) 

The velocity at 3/4 chord is composed of the vertical motion of the airfoil, 

and the instantaneous angle of attack, as well as the pitch rate term 

· C (} - 2a) 
w314 = Va + h + 2 2 

a (2.13) 

The variable s (in semi chords) is the distance travelled by the airfoil, i.e., 

211 s = - Vdt 
C 0 

(2.14) 

Here V is constant, so s = 2Vt/c. For harmonic motion, a and h may be 

defined as 

a a0[a0 + a1s sin ks+ aIC cos ks] 
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(2.15) 

The frequencies in pitch and plunge are kept the same here for simplicity, 

but this is not the general case and can be changed as required. As shown 

in Appendix A, the final result for the lift is 

L 1rp :
2 

[h +Va - baa]+ 21rpV2 ~ao { ao 

+ [ ( w1s + a1s - k ( 
1 ~ 2a) aic) sin wt 

( (
l-2a) _ ) ]N A·kz 

+ w1c+a1c+k 2 
0:1s coswt L ? ' 

2 
•=lb, + k 

+ [ ( w1s + a1s - k (
1 ~ 2a) aic) coswt 

( (1 - 2a) ) ] N A-kb-

- w1c + aic + k 2 
n1s sin wt L ? ' '

2 
•=l b, + k 

(2.16) 

Comparing this with the result obtained by Theodorsen, one immediately 

obtains the identity C(k) = F(k)+iG(k) for an infinite number of exponential 

terms, and in the practical case where the series is truncated after N terms 

A 
A 

one obtains the approximation, denoted by F and G. 

F(k) ~ .;..- A;k2 = F(k) 
r-v ~ b? + k2 

•=l I 

G(k) ~ - .;..- A;kb; = G(k) 
~bz+k2 
1=] I 

(2.17) 

In most cases, the above approximation is very close to the exact Theodorsen 

function. A very commonly used approximation is the one obtained by Jones 

[34] , using the coefficients listed in Table 2.4. This approximation leads to 

the correct values for zero as well as for infinite reduced frequency, while 
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z 1 2 3 
A· I 1 -0.165 -0.335 
b I 0 -0.0455 -0.3 

Table 2.4: Coefficients of Jones' approximation of the Theodorsen function 

z 1 2 3 4 
A; 1 -0.1058 -0.2876 -0.1011 
b; 0 -0.0367 -0.1853 -0.5912 

Table 2.5: Coefficients of Petersen and Crawley's approximation of the 
Theodorsen function 

for any frequencies in between it is an approximation. To obtain a better 

approximation, one can use a set of coefficients recently evaluated by Peter­

son and Crawley [35] (Table 2.5) or Eversmann and Tewari [36] (Table 2.6) 

who claim that their two element approximation is closer to the Theodor­

sen function than the three element series of Peterson and Crawley. It is 

noteworthy, that the final value for infinite reduced frequency of both ap­

proximations is not identical to that of the Theodorsen function, because 

only the range of reduced frequencies up to k = l was approximated. The 

approximation of Eversmann and Tewari even does not give the exact value 

for zero reduced frequency in order to obtain a better overall agreement in 

the range of reduced frequencies from zero to one. However, the differences 

to Jones classical approximation are not sign ificant enough to justify one 

term more in the exponential series, since this means more computing time 

for the aerodynamic subroutine in a rotor analysis . 
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l 1 2 3 
A; 0.9962 -0.1667 -0.3119 
b; 0 -0.0553 -0.2861 

Table 2.6: Coefficients of Eversmann and Tewari 's approximation of the 
Theodorsen function 

2.1.5 Theodorsen's Theory and Unsteady Freestream 

To apply Theodorsen 's result to unsteady freestream, it is necessary to in­

clude the freestream variations into the noncirculatory and circulatory parts. 

This may be referred to as the direct effect of velocity changes on the lift 

development; the additional phase lags and amplifications to be expected by 

an unsteady freestream are not included. Starting from 

and defining a freestream variation and airfoil motion of the form 

V(t) Vo(l + ,\sinwvt) 

a(t) 

h(t) 

a0 ( a0 + &1s sin wvt + iiIC cos wvt) 

~a0 (li1ssinwvt + hICcoswvt) 

(2.18) 

(2.19) 

this leads to the following result for the lift in the form of a Fourier series 

{ [,\a0 + &1s + kv( a~1c - ~1c )l c~s wvt + ,\~ic ~os 2wvt 

+ [-aJC + kv( aa1s - h1s) sm wvt + Aa1s sm 2wvt} 
(2.20) 

31 



a0 (1 + ~
2

) + ~ U1s + F(kv)a1s - G(kv)aw] 

+ I fie + :' [F( kv )ii,c + G( kv )ii!S)} cos wvl 

3A
2 

} + 2Aao + f1s + 4 [F( kv )ii1s - G( kv )aw] sin wvt 

A -J [Aao + !1s + F(kv )a1s - G(kv )aw] cos 2wvt 

+- [ fw + F(kv )aw+ G(kv )a1s] sin 2wvt 
22 

-,~ [F(kv )aw+ G(kv )ii1s] cos 3wvt 
~ 

-~ [F(kv )a1s - G(kv )aw] sin 3wvt 
4 

with the coefficients 

!is = F( kv) [ a1s - kv ( ( 
1 ~ 2a) aw + hw)] 

-G(kv) [ iiw + kv ( (
1 ~ 2a) ii1s +his)] 

f1c F(kv) [aw+ kv ( (
1 ~ 2a) a1s +his)] 

+G( kv) [ a1s - kv ( ( 
1 ~ 2a) aw + hw)] 

(2.21) 

(2.22) 

From these equations, the quasisteady theory result follows as a special case. 

This assumes very small frequencies, and therefore the noncirculatory part 

becomes zero while the Theodorsen function takes the values F( kv) = 1 and 
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G( kv) = 0. Therefore 

a 3/rev component because of the multiplication of the trigonometric func­

tions. When the compression and stretching of the shed wake is taken into 

account, then the vorticity in the shed wake does not have a sinusoidal form 

anymore but more of a kind of Fourier series of harmonics. The conclusion 

is that there will also be a series of harmonics in the lift and moment re­

sponse that is not predicted by quasisteady assumptions. Additionally, if 

the airfoil is set at a constant angle of attack and has no pitch or plunge 

motion, both Theodorsen 's theory and quasi steady theory lead to the same 

circulatory lift since no lift deficiency function is in effect. Thus, the use of 

quasisteady theory or Theodorsen 's theory in an unsteady freest ream velocity 

is questionable, in general. 

Despite this, the quasisteady theory is a reasonable simplification for 

smalJ reduced frequencies, but it is unclear whether this statement holds 

also for large flow oscillation amplitudes A, even when the reduced frequency 

is small. This wilJ be clarified using results from more complex theories . 
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An example for the combination of Theodorsen 's theory and quasisteady 

theory is given in Fig. 2.6 for a pure sinusoidal oscillation in angle of attack. 

Basically one obtains a very similar result as for a constant freestream where 

the lift deficiency function of Theodorsen leads to a phase lag as well as to 

an amplitude modification to the lift ( and lift coefficient). The freestream 

amplitude, even at values very close to one, does not change the sinusoidal 

form of the lift coefficent. 

2. 2 Isaacs' Theory 

2.2.1 Constant Angle of Attack 

Starting from the model given in Fig. 2. 7, the freestream velocity consists of 

a constant and a sinusoidal part, i.e., 

V(t) = Vo(l + A sin wvt) (2.24) 

and the angle of attack is constant with respect to time 

a = a 0 (2.25) 

The normal velocity along the airfoil chord is given as 

Vn(x, t) = O'.o V(t) + Vn,w(x, t) (2.26) 

The second part of Eq. 2.26 is the contribution of the shed wake. It is impor­

tant to note here that the velocity of the unsteady freestream is not thought 

of as to produce a different normal velocity at different airfoil chordwise po­

sitions; instead it is considered as constant along chord. This is true only 

in case of pure Jore-aft motion of the airfoil, but not in the case of unsteady 
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freestream with a gradient in normal velocity along chord. Therefore, it is 

clear that the results may not agree well with results obtained for the phys­

ically different environment of an unsteady freestream velocity, especially at 

higher reduced frequencies. 

Now an integral relationship between the varying velocity at the airfoil 

and the circulation of the airfoil can be derived. Without showing all the 

steps, this problem can be solved in form of a Fourier series and the result is 

made nondimensional by dividing through by the lift at the mean velocity, 

Vo, 
Lo= ~V0

2c2rro:o (2.27) 

This gives for the noncirculatory and circulatory parts of the lift 

Lnc kv 
- =-X-coswvt 
Lo 2 

Le= (1 + ,\
2

) (1 +,\sin wvt) + ,\ f (/m cos mwvt + t:,. sin mwvt) 
Lo 2 m=l 

(2.28) 

where kv is the reduced frequency of the freestream velocity oscillations 

wvc 
kv = 2Vo (2.29) 

It must be noted that there are no additional simplifications or assumptions 

included so this is the mathematically exact result. This result contains the 
' 

steady case of constant angle of attack in a constant freestream (Lo, the "1" 

in the first term of Eq. 2.28), a term of noncirculatory origin, (,\kv /2) cos wvt, 

and the rest of the terms are of circulatory origin including the unsteady wake 

effect in the coefficients lm and 1:n. The coefficients of the Fourier series are 
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given by 

00 

lm + il'm = - ; L {Fn[Jn+m(n-X) - Jn-m(n-X)] + iGn [ln+m(n-X) + ln-m(n-X)]} 
n=l 

(2.30) 

and herein 

(2.31) 

It is interesting to examine this result in the case of very small reduced 

frequencies, say kv -+ 0, so F( kv) = 1 and G( kv) = 0. Then 

(2.32) 

It can be seen, that even the quasisteady case contains an infinite number of 

harmonics. Now, when A -+ 0, the sum over m in Eq. 2.28 disappears and 

we get the same result as in quasisteady theory. 

Comparing to the result of quasisteady theory (from Eq. 2.23), 

-'- = I + - + 2-X sm wvt - - cos 2wvt Lcqs ( A
2

) . V 
Lo 2 2 

(2.33) 

The mean values obtained by the quasisteady and unsteady theory are the 

same for the case of constant angle of attack, but the quasisteady theory does 

not give harmonics above the second, while the unsteady theory includes 

harmonics up to infinity. 

A closer look at Isaacs' result Eq. 2.28 indicates certain limitations in its 

application since there are two nested summations involved. 

I. The first sum ( over m) represents the harmonic content of the lift re-

sponse. If the interest is mainly in the rotor performance, one can 
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neglect the higher harmonics and will obtain sufficiently accurate re­

sults with the first few harmonics alone. 

2. The second sum ( over n) has to be calculated for every i tern in the first 

sum. Since here Bessel functions of the first kind and n-th integer order 

are involved, as well as the computation of the Theodorsen function 
' 

this part requires enormous computational time when it is necessary to 

calculate higher harmonics. One has to keep in mind that the Theo­

dorsen function also consists of Bessel functions of the first and second 

kind. This series, therefore, has to be terminated after computing a 

sufficient number of elements in order to reduce computational time. 

For the special case (thought to be typical for helicopters in 1945) of a 

reduced frequency kv = 0.0424 and a freestream oscillation amplitude of 

A = 0.4, Isaacs gave a numerical example for the total lift ratio L / Lo and 

compared it to the quasisteady theory leading to the result: 

" .. . so that for this case the effects herein considered1 are not large." 

This sentence often seems to be in mind when it comes to justifying the 

flow oscillation effect. Since it is based only on this special case of moder­

ate flow amplitude (nowadays helicopters encounter much greater values of 

A, even larger than unity) it is not to be taken as the general case. Only 

a systematic study with a variety of parametric variations including al1 re­

duced frequencies of interest, as well as all flow oscillation amplitudes , will 

be required to justify the necessity of including these effects. 

Since the calculation of Bessel functions was not easy in 1945, it is ques-

1 Unsteady freestream effects are meant here 
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Ao AlC A1s A2c A2s 

(1) 1.08 -0.0376 0.770 -0.0790 -0.00697 

(2) 1.08 -0.0381595 0.770396 -0.079016 -0.0061575 

A3c A3s A4c A4s 

(1) -0.00061 -0.0050 -0.00003 0.000042 

(2) -0.00061028 -0.00037179 -0.00007 4 784 0.00004 7096 

(1): Isaacs (2): Recalculat10n k = 0.0424 A= 0.4 a= a 0 

Table 2. 7: Coefficients of lift response given by Isaacs in comparison to the 

recalculation 

tionable if the coefficients in the numerical example were calculated correctly. 

Therefore the author recalculated these coefficients for up to the 30th element 

in the sum of the Bessel functions by using the IMSL subroutines in double 

precision. The result is shown in Table 2. 7 and indicates some differences to 

Isaacs' results as assumed. 

An expression for the pitching moment was not given in [6], but it can be 

derived from Isaacs' work including periodic variations in angle of attack [7] 

by setting the harmonic components of angle of attack to zero. The pitching 

moment is nondimensionalized by the steady moment about the midchord 

position, M 0 , 

M, = Lo~ = f V.:2 c221rno 
0 2 4 0 

(2.34) 

and split into circulatory and noncirculatory parts , i.e., 

= 0 
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( 
A

2
) V 1 + 2 + 2Asinwvt - 2 cos 2wvt+ (2.35) 

00 

+A L (tm cos mwvt + t:,, sin mwvt) 
m=l 

Here the coefficients tm and t~ are calculated in the same mannor as lm and 

/~ for the lift, except that F( nkv) must be replaced by F( nkv) - 1. There 

is no noncirculatory moment, since the reference point for the moment is the 

midchord and no pitch oscillations are involved. 

2.2.2 Oscillating Angle of Attack about Midchord 

In Isaacs ' first publication (6], he did not give a solution for the aerodynamic 

pitching moment, yet this was given in his second paper [7] that also includes 

a I/rev variation in angle of attack with the same frequency. This was 

thought to be representative for rotorcraft aerodynamics, i.e., 

(2.36) 

In this case, the derivation becomes more complicated but the result can 

again be expressed in the form of a Fourier series. However, the constraint 

here is that the derivation is made for a rotational axis at midchord without a 

parameter accounting for another position of the center of rotation. In rotor­

craft this is usually the quarterchord point. Again , the result is decomposed 

into its noncirculatory and circulatory parts, i.e., 

kv 
2 

[ ( Aao + a1s) cos wvt - ii'1c sin wvt 

+ A( O'.JC cos 2wvt + a1s sin 2wvt)] 
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[<>o (I+ ~') + A ( <>1s - ~<>JC)] (I+ A sin wvt) (2.37) 

00 

+ L Um cos mwvt + 1:n sin mwvt) 
m=l 

with the coefficients looking very similar to the case of constant angle of 

attack Eq. 2.28, i.e., 

{ FnfJn+m(nA) - Jn-m(nA)] (2.38) 

+ iGnfJn+m(nA) + Jn-m(nA)]} 

Here 

) . ( )] Hn + ill~ 
Fn + iGn = [F(nkv + zG nkv 

2 n (2.39) 

with 

On first examination, the result in Eq. 2.37 looks different from the earlier 

equation presented (Eq. 2.28), but setting a1s = OJC = 0 and a0 = l one 

obtains the identical expression as in Eq. 2.28. The quasisteady formulation 

yields for a= O (rotation about midchord) 
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(2.41) 

Comparing the two expressions (the quasisteady result Eq. 2.41 and the 

unsteady result Eq. 2.37), one can see that the mean values again are the same 

in both cases as they were in case of constant angle of attack. The dynamic 

part, however, is different since it includes the lift deficiency function for 

dynamic pitch in oscillating flow. This consists of the Theodorsen function 

for the pitch oscillation as well as of Bessel functions for the unsteady flow 

effect. 

In addition to the lift, there is a similar result for the pitching moment, 

M ( ,\ 2) , - + ki ( - t + - . ) 
Mo a 0 l + 2 + ACY1s 8 aICcoswv a 15 smwvt (2.42) 

+aIC (1 + ~
2

) coswvt + [2,\ao + ii1s (1 + },\ 2
)] sinwvt 

(

,\ ) - . ,\2 -
-,\ 2 + a 1s cos 2wvt + Aa1c sm 2wvt - 4 a 1c cos 3wvt 

,\2 . 00 1 • 

--a1s sm 3wvt + L (tm cos mwvt + tm sm mwvt) 
4 m=l 

Herein, the coefficients tm and t:,, are calculated in the same manner as 

lm and [' for the lift in Eq. 2.38 except that F( nkv) must be replaced by 
m 

F( nkv )-1. The only contribution to the non circulatory part originates from 

an acceleration in angle of attack (a) about the axis of rotation at mid chord 

( the term with ki /8 in Eq. 2.42). There is no Va term included, since this 

produces a lift acting at midchord , and therefore does not lead to a moment 
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about that point. Surprisingly, there is no term from Va. It will be shown 

later that this term is included in the tm and t~ terms. 

It is interesting whether or not the well known result from Theodorsen for 

pure angle of attack oscillation about the midchord axis in a steady freest ream 

can be extracted by setting A = 0. From the behavior of the Bessel functions, 

with the argument -+ 0 one will only get a value for the zero order function 

Jo(O) = 1, while all others are zero, Jn(O) = 0. Additionally, 

I
. J1(x) 
1m-­

x-o X 

I
. Jn(x) 
1m-­

x-o X 

0.5 

0 (n > l) (2.43) 

so that the sum over al] m reduces to only the first element, and the same is 

in effect for the sum over n. The result for the lift is finally 

kv ( _ . t) 
- a1s COS wvt - 0:'1C SW Wy 
2 

a0 + /1 cos wvt + 1; sin wvt 

where k = kv and 

11 F(kv) ( iirc + iirs ;') + G(kv) ( ii1s - ii,c k;) 

1; = F(kv) ( ii1s - iirc ;') - G(kv) ( ii,c + ii1s ;') 

(2.44) 

(2.45) 

and it can easily be seen that it is identical to Theodorsen 's result, leading 

to 

1: =iio + [ars sinwvt+iirc coswvt+ k; (iirs coswvt-iirc sin wvt1 C(kv) 

(2.46) 
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Additionally, one obtains for the noncirculatory and circulatory moment 

about the midchord 

M Le ki _ _ . kv _ 
~" = -L + -(aICcoswvt + a1ssmwvt)- -(a1scoswvt- awsinwvt) 

1 no o 8 2 
(2.4 7) 

The additional noncirculatory contribution of Va was hidden in the coeffi-

cients tm and t~ by replacing F( nkv) by F( nkv) - 1. Also, the pitching 

moment coefficient is identical to Theodorsen's result. Therefore, Isaacs' 

theory of combined periodic flow and angle of attack oscillations with arbi­

trary phase angle between both of these motions can be considered as the 

best available theory for attached flow. However, when it comes to practical 

application, the tremendous amount of computational effort involved with 

the repeated evaluation of Bessel functions places many limitations on this 

theory. 

2.3 Generalisation of Isaacs' Theory 

Since Isaacs ' derivation [7] was made for a fixed pitch axis at midchord, the 

results are not very useful because in helicopter applications the pitch axis is 

usually the quarter chord point. In other applications, it may be even another 

axis, so that a more general formulation is required where the position of the 

pitch axis is a free parameter, just like in the result given by Theodorsen for 

unsteady airfoi l motion in a constant freestream flow. 

Additionally, Isaacs' theory does not include the effect of plunge motion 

although this degree of freedom is a very important one in helicopter aerody­

namics. The subject of this section is to derive results including all degrees 
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of freedom in two dimensions: 

• Pitch motion (including higher harmonics) about an arbitrary location 

of pitch axis on the chord. 

• Fore-aft motion (I/rev) with velocity amplitudes smaller than the ve­

locity of the freestream itself. 

• Plunge motion (including higher harmonics). 

This extension of Isaacs' theory was never given before, and therefore it will 

be made here for the first time. The complete derivation is very lengthy and 

is not shown here, but is included in Appendix B. The general procedure 

follows very closely to the derivation of Isaacs given in [6, 7]. 

The configuration is shown in Fig. 2.8, where the pitch axis has an arbi­

trary offset of ac/2 from the midchord, positive aft. From this, the normal 

velocity across the chord is defined as 

Vn(x, t) = a(t)V(t) + ( X - a~) a(t) + h(t) + Vn,w(x, t) (2.48) 

where the wake velocity Vn,w is produced by the shed vorticity -I''(T)d7 . 

Since the circulation of the airfoil r is a function of its own time history, 

shed into the wake, one gets an integral equation to be solved. 

For the special case of harmonically varying fore-aft motion, angle of 

attack and plunge motion like 

V(t) Vo(l + A sin wt) /A/ < l 

a( t) a,0 ( iio + f ii,s sin nwt + ii,c cos nwt) 
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C oo - -

h ( t) = ao 2 I) hns sin nwt + hnc cos nwt) 
n=l 

(2.49) 

the integral equation can be solved (the method is shown in Appendix B) 

and one gets the following result for the lift 

{ f-' i>o + a,s + k( ai>IC - ~,c) -ya,c! cos 1P 

+ -aic + k( aa1s - h1s) - 2a2s sin 1P 

oo [ _ ,\ ] 
+ J; n ans + nk( aanc - hnc) + 2 ( O(n-l)C - a(n+i)C) cos n?p 

+ ~ n [-anc + nk( aans - hns) + ~ ( O(n-l)S - a(n+l)S)] sin n?p} 

(2.50) 

1; - { (1 + ~
2

) no+.\ [a1 s - ~ ( (1 ~ 2a) a1c + hic) -¾a2c]} 

x (1 +,\sin 1P) 

00 

+ L ( lm cos m?p + z:n sin m?p) 
m=l 

(2.51) 

with 1P = wvt. The coefficients lm , z:n are built up in the same way as in 

Eq. 2.38 and Eq. 2.39, but the values of Hn and H~ include the position of 

axis of rotation a, as well as the amplitude of plunge motion hnc and hns, and 

those of pitch in anc, ans• In the case of pure l/rev and steady components, 

the coefficients Hn and H~ can be written in a form very similar to Isaacs. 

J _ J [ (( 1 - 2a) _ - )] 2Jn _ 
Hn = n+l 2 n - l Ano - a1s - k 2 ll'lC + hic - n,\ 0'1s (2.52) 

H~ = ln+l : ln-1 a1c + ~n [aic(l - ,\2) - k ( (1 ~ 2a) a1s + h1s)] 

(2.53) 

This will be used later to show the effect of another pitch axis location on 

the lift development . 
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2.4 Greenberg's Theory 

2.4.1 General Theory 

Like Theodorsen, Greenberg worked at N ACA and he extended Theodorsen 's 

theory of harmonic airfoil motion in a constant freestream flow to the case of 

an additional periodically varying freestream flow conditions [8]. However, 

Greenberg also defines the freestream velocity as constant over the chord 
' 

and this really means an unsteady fore-aft motion of the airfoil and not a 

varying freestream. As shown previously, the real case will lead to a velocity 

gradient over the chord. This is indicated in an appendix to [8], where 

Greenberg explaines the assumptions about the wake form: "Consider an 

airfoil moving back and forth ... ". Despite this, everywhere else Greenberg 

refers to flow oscillations. However, for the positioning of the wake relative to 

the airfoil there indeed is no difference whether the airfoil is fixed in a varying 

freestream or it is moving back and forth in a constant freestream velocity. 

A fundamental difference can only be seen in the velocity distribution on 

the chord, and will result in different noncirculatory as well as circulatory 

aerodynamic forces. 

Therefore, Greenberg's derivation includes the third degree of freedom of 

the airfoil, and the procedure is basically the same as that used by Theo­

dorsen. Greenberg started with a velocity potential function, and solved the 

equation of motion for the unsteady flow by the small disturbance assump­

tion, including the Kutta condition at the trailing edge, i.e., 

The velocity changes and pitch and plunge motion are considered of gen-
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era1 harmonic type with a different frequency: 

V Vo [ 1 + >.eiwvt] 

a ao [ iio + aei(wot+,t,o)] 

h (2.54) 

where the phase angles 1Pa and '/Ph allow for different phase with respect to 

the velocity oscillation as the reference, and the amplitudes >., a and ho are 

of a general complex type. Of course, the restriction that />./ < 1 is made in 

order to have the wake complete behind the airfoil, and not to overlap the 

vorticity sheets with each other and the airfoil itself. In addition, Greenberg 

places some assumptions on the form of the wake. These are, first that 

the effects of mean value and sinusoidal part can be handled separately and 

that the sinusoidal part may be considered as an airfoil in a constant stream 

undergoing fore-aft motions. The second assumption considers the wake 

vorticity to be distributed sinusoidally, and this is derived by the final value 

of infinite frequency of fluctuations in the inplane motion. This assumption 

is questionable, since the theory is built up on the basic assumption of small 

disturbances and therefore of small frequencies in airfoil motion as well as 

freestream fluctuations. However, the sinusoidal wake form leads to key 

simplifications in evaluating the wake integrals in order to obtain a closed 

form solution of Theodorsen 's type. This solution is presented here in its 

noncirculatory and circulatory components for lift and moment about the 

axis of rotation a of the airfoil 
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It can be seen from these equations, that they are very similar to Theo­

dorsen 's results and in case of setting ,\ = 0 they are identical to those of 

Theodorsen. It is noteworthy that the pulsating wake has no influence in the 

plunge motion results since there is no term like C( kv + kh) involved. This 

type of coupling is only related to the unsteady parts of the freestream and 

angle of attack variations. 

The reason for this is found in the small angle assumption, because the 

angle of attack resulting from plunge motion is a = tan-1 (h/V) ~ h/V. 

Then the normal velocity at 3/4 chord is the product of velocity and angle 

of attack w = Va ~ h, and therefore there is no influence of the oncoming 

velocity. Nevertheless, this remains questionable since the flow oscillation 

produces a periodic stretching and compression of the wake also under pure 

plunge motion, and this should have an effect on the resulting lift and moment 

development similar to the case of pure angle of attack oscillations. 

2.4.2 Transformation of the Results into a Real Fou­

rier Series 

Now it remains to rewrite these equations Eq. 2.55 in the form of a real 

Fourier series. This is required for any application, and in order to make 

comparisons with Isaacs' theory possible. This form of the results was not 
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given by Greenberg, and therefore the derivation was made here in this thesis. 

One has to define the complex amplitudes as follows (the form of V was used 

by Greenberg to compare the case of constant angle of attack with Isaacs' 

theory) 

V Vo~ [ 1 - i).eiwvt] = Vo(l +). sin wvt) 

a - a,0 ~ [ao + ( iitC - ia-1s)eiwat] = ao( iio + iitC coswvt + ii1s sin wa-t) 

h - a0 i~ [(h 1c - ih15 )eiwht] = ao~(hJCcoswht + h1ssinwht) (2.56) 

Herein, the phase angles 1/la- and 1/lh are expressed by the cosine and sine 

amplitude components. Again, the lift wi11 be nondimensionalized by the lift 

of mean velocity and mean angle of attack, Lo. One has to be very careful 

in applying the specific functions for velocity, angle of attack and plunge 

motion. The Theodorsen function is applied to the angle of attack motion 
' 

and reduces to an effective angle of attack. Therefore we obtain 

~ [1 - i).eiwvt] ~ { iio - i).aoeiwvt[F(kv) + iG(kv )] 

+(atC - ia-1s) (1 + ikv l ~ 2a) eiw01 [F(ka-) + iG(ka-)] 

+(h 1c - ih1s)ikheiwht[F(kh) + iG(kh)] 

- iA(a1c - ia-1s)eiwvteiwat[F(kv + ka-) + iG(kv + ka-)]} 

(2.57) 

Care must be taken for the evaluation of the last term. Using the Euler 

formula for trigonometric functions 

iwt = cos wt + i sin wt (2.58) 
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one ends up with the multiplication of trigonometric functions with different 

frequencies in their argument. These lead to the following expressions 

sin ax sin bx 
1 

2 [cos(a - b)x - cos(a + b)x] 

sin ax cos bx ~ [sin(a - b)x + sin(a + b)x] 
2 

(2.59) 

Then the Theodorsen function C (a+ b) is applied to the term with frequency 

a+b, and of course C(a-b) to the term with frequency a-b. The latter term 

does not immediately appear in the complex exponential notation, but the 

physics of unsteady aerodynamics lead always to the Theodorsen function 

with the frequency of the oscillation as argument. Now, we are interested in 

the case of kv = kh = k0 , and therefore a = b. This leads to C ( a - b) = 1 

and 

sin ax sin bxC(a + b) 

sin ax cos bxC(a + b) = 

1 

2 [cos(a - b)xC(a - b) - cos(a + b)xC(a + b)] 

1 

2 [1 - cos 2axC(2a)] 

~ [sin(a - b)xC(a - b) + sin(a + b)xC(a + b)] 
2 
sin 2axC(2a) 

2 
(2.60) 

Thus, after extracting the real part on the right side of Eq. 2.57 we end up 

with 

(1 + sinwvt) { &o + ~ii1s + [,\iioG(kv) + !JC] coswvt 

+[,\iioF(kv) + !1s] sinwvt 

,\ ,\ . } - 2 hs cos 2wv t + 2 J2c sm 2wv t (2.61) 

where the coefficients / 1s and J1c are the same as defined before, while 

!zs = F(2kv )&1s - G(2kv )atC 
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fzc = F(2kv )iitC + G(2kv )ii1s (2.62) 

Multiplication and sorting of terms finally yields 

Lne 
Lo 

Le -
Lo 

2.5 

2.5.1 

- k; { [ Aiio + ii1s + kv( aii1c - hlC)] cos wvt + Aii1c cos 2wvt 

+ [-ii1c + kv(aii1s - h1s)] sinwvt + Aii1s sin 2wvt} 

,x.2 ] ,x_ 

iio 1 + 2 F(kv) + 2 U1s + ii1s] 

+ AiioG( kv) + fie + ~
2 

fzc ] cos wvt 

,x.2 ,x.2 ] 
+ Aiio[l + F(kv )] + !1s + 4 !2s + 2 01s sinwvt 

-- [AiioF(kv) + !1s + fzs] cos 2wvt 

+~ [A<>oG(kv) +!IC+ J,c)sin2wvt 

,x_ 2 ,\. 2 

- - fzc cos 3wvt - - fzs sin 3wvt 
4 4 

[ ,\. [l - 2a _ ([l 21 _ - )] 
kv 14ii1c + 2 

OtC + kv 8 + a a1s - ah1s sinwvt 

- [ ~ 2a ii1s - Aaiio - kv (rn + a2
] iitC - ahlC)] coswvt 

-,\_ (}-a) ( ii1s sin 2wvt + iitC cos 2wvt)} 

Le 
(I + 2a) Lo (2.63) 

Kottapalli's Theory 

General Theory 

Like in the theories presented before, Kottapalli [15] also assumed the in­

stantaneous velocity distribution along the chord as a constant, but his pub­

lication in 1979 [16] was titled with " ... Fluctuating Free Stream". In another 

paper in 1985 [17], however he explicitly states that the velocity fluctuation 
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is only due to inplane motion of the airfoil in a constant freestream. The 

additional restriction of small oscillation amplitudes of this lead-lag motion 

limits the applicability of his theory to the case of a hovering rotor, or one at 

low advance ratios in forward flight. Consequently, he acknowledges that the 

primary use of this derivation should be the stability analysis of a hovering 

rotor. 

For the derivation, Kottapalli uses the singularity method and prescribes 

simple harmonic motion for the airfoil. For the wake vorticity a sum of 

exponential functions is used, and the coefficients are identified by satisfying 

the Kutta condition at the trailing edge, applying the assumption of small 

amplitudes in velocity oscillation, and therewith dropping all terms of order 

A 2 , A 3 and higher order. The final results for the lift and moment coefficients 

( the latter taken about the axis of rotation a), both referenced to the dynamic 

pressure of the mean velocity, are 

C1 
21rao 

Cm 
--
1rao/2 

L · ·2 

+ 1wt +C e' wt - = Co C1e 2 
Lo 

Af _ d + d iwt + d i2wt 
- - o 1e 2e 
Mo 

with the following coefficients 

Co iio 

{ [
I - 2a -1} 

Aiio+ ii+Aao+ik 
2 

ii+h C(k) 

+~[i(ii + Aa0 ) + k(aa - h)] 
2 

{ [
I - 2a -1} 

2A a+ik 
2 

ii+h C(k) 

(
I-2a - ) 

-ikA 
2 

a+ h C(2k) 

+ikAii 
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do 

(2.65) 

Here, the parts containing the Theodorsen function indicate the circulatory 

contribution, while the coefficients C1, c2, d1, d2 also contain the noncircula­

tory part ( always the last term). Setting A = 0, one obtains the Theodorsen 

result, as required for airfoil oscillations in constant freestream velocity. In 

case of pure velocity oscillations for an airfoil of constant pitch, the following 

result can be extracted (setting h =a= 0) 

L 

Lo 
M 

Mo 

a0 { l + ,\ [ l + C ( k) + i;] e iw'} 

= no {(l + 2a) {1 + .\[l + C(k)]eiwt} + ika.\eiwt} (2.66) 

If the moment is taken about the quarterchord (a = -0.5) there will be no 

circulatory contribution, and the pitching moment is only produced by the 

noncirculatory part. 

2.5.2 Transformation of the Results into a Real Fou­

rier Series 

The above given results are given in complex notation, however they can 

be transformed into a real Fourier series like Greenberg's results. Since the 

noncirculatory part is the same as in Isaacs' or Greenberg's result, it is not 
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considered here. For the circulatory lift, one applies the same formalism used 

in transforming Greenberg's results into a real Fourier series. Therefore, we 

substitute A by -i\ a by O'IC - io-1s and h by h1e - ih1s- Also, care must 

be taken where two dynamic parts are multiplied by each other. These lead 

to a constant contribution and, again, here the Theodorsen function has the 

argument w±w, leading to C(O) = 1 and to C(2kv ). It is interesting to note, 

that in this mixed term of Eq. 2.64 the Theodorsen function also appears with 

only lkv as the argument; Kottapalli made no comment to this in [17], where 

these formulas were published. The final result is 

[ 
kv(l-2a - )] 

ao + A &1s - 2 2 
&1e + hIC 

+ [Aa0 G(kv) + fie] cos wt+ [Aao(l + F(kv )) + f1s] sin wt 

[
kv ] [kv ] . -A 2 he+ !is cos 2wt - A 2 hs - fie sm 2wt 

(2.67) 

with the coefficients f 1s, f 1e like defined before and 

( 
1 - 2a - ) ( 1 - 2a - ) 

hs = F(2kv) 
2 

01s + h1s - G(2kv) 2 
OJC + hIC 

( 
1 - 2a - ) ( 1 - 2a _ - ) 

he = F(2kv) 
2 

&1e + h1e + G(2kv) 2 
n1s + h1s (2.68) 

Immediately one sees that Kottapalli's derivation includes only two harmon­

ics in contrast to three harmonics even in quasisteady theory. Here, the 

assumption of small flow oscillation amplitudes is responsible since all terms 

of higher order in A are missing and the 3/rev was multiplied with A2 in the 

quasisteady, Theodorsen 's and Greenberg's theories. 
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2.6 Arbitrary Motion Theory in an Unstea­

dy Freestream 

After investigating the various thin airfoil theories that are all set up for 

oscillating motion of the airfoil or the freestream, it is of utmost interest 
' 

whether or not the theory of arbitrary motion will lead to the same results 

as the exact theory in the case of an unsteady freestream. The methodology is 

the same as has been used in the Section 2.1.4, except that now the freestream 

velocity is no longer constant. Therefore, additional deficiency functions 

occur, as will be shown. This method is based on the superposition principal 

and the use of Duhamel's integral in combination with the indicial response 

of lift ( or moment) due to a sudden change in any of the degrees of freedom. 

In incompressible flow the circulatory lift is determined from the normal 

velocity at 3/4 chord of the airfoil, while the noncirculatory lift is the result 

of the instantaneous local accelerations. Thus, the total lift is 

(2.69) 

where </>( s) is Wagner's deficiency function for the lift [ll], s the distance 

travelled by the airfoil (in half chords) and W3/4(t) the instantaneous value 

of normal velocities at the three quarter chord point. The normal velocity 

depends on the angle of attack a(t), the flap or plunge motion h(t), the 

position of the pitch axis ac/2, and the time-dependent velocity V(t). This 

velocity may originate from freestream variations or lead-lag motion of the 

airfoil or a combination of both. However, it is assumed here to depend 00 

55 

'" 
I' 



time only, so the velocity distribution along the chord is the same everywhere. 

As explained earlier in Section 2.1.1, this is realistic for the lead-lag motion, 

but is somewhat unrealistic for a freestream velocity variation. An unsteady 

freestream velocity should be handled in general as a type of propagating 

gust, and therefore must lead to a gradient in velocity along chord. However 
' 

in order to compare results of arbitrary motion theory with those of the other 

theories analysed so far, the velocity is considered to be constant across chord. 

Thus, the normal velocity at three quarter chord is 

• C (1 - 2a) 
W3;4(t) = V(t)a(t) + h(t) + 2 2 a(t) (2. 70) 

There are two approaches that can be taken. First, for a given forcing func­

tion one can analytically integrate to obtain a closed form solution; second, 

one can let the type of motion be unknown and apply a finite difference 

method. Both cases will be handled in the following sections. 

2.6.I Analytical Solution for Periodic Motion 

In order to compare the arbitrary motion theory with the others, some spe­

cific function for angle of attack, plunge and velocity must be assumed. These 

are, as before 
' 

V(t) Vo (l +,\sin wvt) 

a(t) a0(a0 +a1ssinwvt+a1ccoswvt) 

h(t) 
(2. 71) 

with the same frequency for velocity and pitch and plunge. The product of 

time t and frequency of oscillation w can be expressed in terms of the reduced 
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frequency kv and the mean value of the distance travelled by the ai1foil s 

wvc tVo 
wvt = ---- = kvs 

2Vo c/ 2 
(2.72) 

while the actual distance travelled by the airfoil s results from the integral 

over the velocity and therefore is 

s = I lot - V(t)dt 
c/ 2 o 
Vo ,\ 
-t - -coswvt 
c/2 kv 

,\ 
s - -( cos kv s - I) + C 1 

kv 
(2.73) 

The integration constant C1 is identified through the requirement that the 

mean distance travelled in one period has to be s. Therefore, one finds 

Ci = -,\/ kv. It is important to note that this value of s forms the upper 

limit of the integral and therefore the final response will have functions of 

the following type 

sin kvs = sin( kvs - ,\ cos kvs) (2. 74) 

This is a periodic function, and therefore can be replaced by a Fourier series 

with an infinite number of harmonics. 

To obtain the final result, the derivative of the normal velocity must be 

calculated and included in the integral. The indicia1 response function ¢ is 

the Wagner function, but since this is a very difficult function, (it is expressed 

in terms of Bessel functions), it is much more convenient to replace¢ by one 

of its common approximations. These can be written in form of a series of 

exponential functions 
N 

</>( s) = L Aie6iS 
i=l 

(2. 75) 
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and usually this series is cancelled after the second or third term, because 

the degree of accuracy achieved is sufficiently high. The following steps 

to evaluate a final result are straight forward, but somewhat lengthy and 

complicated, since Bessel functions are involved. Therefore they are not 

shown here, but are included in Appendix C. From that, the final result is , 

Le 
Lo = D0 - ).'Zs( Di) 

+ [2?R(Di) - .\8'(D2)] coswvt + P [Do - ?R(D2)] - 28'(D1)] sinwvt 

+ f, { [2?R(Dm) + A (8'(Dm-1 - Dm+1)] cos mwvt 

+ [-28'(Dm) + .\?R (Dm_i) - Dm+dJ sin mwvt} (2. 76) 

with the following coefficients 

2 

Dm= L Cni(n-m)Jn-m(-n.\) (2.77) 

n=-2 

including the complex amplitudes 

Co eoA1 

C1 ~ [F(kv)c1c + G(kv)c1s -i (F(kv)c1s -G(kv)cJC)] = C_ 1 

C2 ~ [F(2kv )c2c + G(2kv )c2s - i (F(2kv )c2s - G(2kv )c2c )] = C_ 2 

(2.78) 

and therein 

Co 

C1S 
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,\ 
C2c --n-1s 

2 
,\ 

C2s -ate 
2 

(2.79) 

Note that the real and imaginary part of Theodorsen's function, F and G, 

here are represented by the coefficients of the approximation of the Wagner 

function by an exponential series and therefore are denoted by F and G, 

instead of F and G. 

The noncirculatory part of the lift leads to the same results as in the thin 

airfoil theories, and therefore is omitted. The case of,\ = 0 reduces exactly 

to the case of Theodorsen's theory in a constant freestream, as required. Yet, 

one difference to the exact theory of Isaacs is immediately obvious. Isaacs' 

theory includes the Theodorsen function of alJ harmonics up to infinity, and 

here only the first two harmonics are included, like in Greenberg's theory. 

2.6.2 Solution with the Method of Finite Differences 

Another possibility to come to a solution for the case of arbitrary motion is 

to assume the airfoil motion as unknown. Then Duhamel's integral yields for 

the circulatory part of the lift like above 

Le = 21rgv(t)c [w3;4(0)<P(s) + Ls ow¼;(<l) <P(s - <l)d<J] 

21rgV(t)c W3/4,eff 
(2.80) 

and again the normal velocity at 3/4 chord is written as 

· c (l - 2a) 
W3;4(t) = V(t)a(t) + h(t) + 2 2 a(t) (2.81) 
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Now the derivative 8w3 ; 4(a-)/8a is generally 

8w3;4 (a) av(a) aa(a) aii(a) ~ (1 - 2a) Ba(a) 

Ba = oa a(a) + V(a) 0(7 + 0(7 + 2 2 ~ (2. 82) 

The method of finite differences introduces the calculation at different time 

steps with a stepwidth being rather small relative to the highest frequency 

encountered . Therefore , normally about 45 to 60 steps are made within one 

cycle. However , thi s implies the use of some mechanism to describe the state 

between the time steps, and this is usually done by a zero order hold. By 

this a finite difference approximation can be made for the integrals , when 

using one of the common exponential sereis approximations for the Wagner 

fun ction. 
(2.83) 

k==l 

Then, for the sample with index n being the current sample, the expression 

in the brackets in Eq. 2.80 for the effective normal velocity at 3/4 chord 

becomes w 3 /4, e f f = W J /4 ,n · 

u,3/< ,• ~ t, [ V;L'.a; + a;L'. V. + ~ (1 ~ 2") L'.fi; + t.h,] -t. t, X~'./ ( 2.84) 

Herein , the X arc called deficiency functions and contain the information of 

the time hi story of the different degrees of freedom. They are [33] 

(2.85) 

The values Ak and bk are those of the USUal approximation to the Wagner 

fun ction ; for example Jones approximation ([34], see Table 2.4). If a higher 

order approximation is used , such as that of Peterson and Crawley ([35], see 

Table 2.5) , than additional deficiency functions are added , as indicated by 
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the upper limit N. This is not usually desirable, since more terms lead to 

additional computational effort without leading to any significant gains in 

the accuracy of the results. One has to note that 4N deficiency functions 

have to be computed, and therefore one must keep N as small as possible. 

The values denoted by ~ (j) are the differential changes of the four derivatives 

in the current sample [33], i.e., 

Vn~an 
~ (1 - 2a) ~. 
2 2 O'n 

(2.86) 

and the increment in the distance travelled by the airfoil ~s is 

2 it+dt V,, + Vr.-1 
~s = - V(t) dt = ---~t 

C t C 

(2.87) 

The total response of lift due to arbitrary motion of the airfoil can be calcu­

lated by updating the deficiency functions at each sample. 

Lc,n V,, WJ/4,n 

Lo = Vo Voao 
(2.88) 

When this formalism is applied to a constant freestream, Theodorsen 's result 

is represented to an accuracy depending on the coefficients of the indicial 

function </>. In this case ,\ = 0 and 

2V ~1/; 
~s= -~t = -

c kv 
(2.89) 

With 1P = wvt = kvs being the rotor azimuth. 

This formalism now can be applied to any type of airfoil motion, for 

example harmonic motion like that of Eq. 2. 71. This will now be the subject 

of investigation. In all the cases presented, the number of steps in one cycle 
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was set to 64. This is somewhat high, and therefore is on the conservative 

side. So here space steps are used instead of time steps, and therefore no 

difficulties occur when it comes to high frequencies where a time spacing 

leads to fewer steps within one cycle than at lower frequencies. 

2 -6.3 Introduction of Compressibility Effects 

In general a helicopter rotor has a relatively high tip speed, normally with a 

tip Mach number of about M = 0.64 in hover. In fast forward flight the local 

Mach number approaches M = l on the advancing side, while it is reduced on 

the retreating side. So a rotor blade is in a most complicated situation with 

Periodic motion in an unsteady freestream environment, also with changing 

Mach numbers and changing Reynolds numbers. Both Reynolds and Mach 

numbers have a significant influence on the airfoil behavior, however in all 

theories shown before the flow is considered to be incompressible and with 

' 
infinite Reynolds number. Now, the arbitrary motion theory has the impor-

tant advantage that the deficiency functions can be adapted to compressible 

flow and various comparisons f 33, 37] have shown the validity of doing so in 

a constant freestream. The modified deficiency function includes the Glauert 

compressibility factor /3 = II - M 2 . 

(2.90) 

and the lift curve slope changes its gradient by 

21r 

/3 
(2.91) 

Of course in the case of a helicopter, the Mach number is a function varying 

Periodically with time and radius and therefore has to be calculated contin-
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uously. It must be kept in mind, that this modification is only valid up to 

Mach numbers of about M = 0.8, depending ·on the airfoil shape. The lift 

curve slope at subsonic Mach numbers closer to one drops significantly and 

th
is is not included in this compressibility correction factor. In the finite 

difference method presented in the section before, the deficiency functions 

now are 

xU> = xU) eb1Jl2As + A _6 U)ik/3
2
As/2 

n,k n-1,k k 
(2.92) 

21r C 

Lc,n = /JpV(t) 2w3/4,eJJ (2.93) 

Thus, with a minimal amount of additional work, but with somewhat more 

computational effort a possibility to include the compressibility effects is 

given. However, there are no experimental data of oscillating airfoils in oscil­

lating freestream available where the mean velocity has a Mach number of 

' 
0-6 or even near that. All experiments were made in essentially incompress-

ible flow at Mach numbers of about 0.05 or less, so there are only negligible 

compressibility effects included. Also, no exact theory exists for unsteady 

airfoil motion in a subsonic varying freestream and therefore no theoretical 

data exist as a basis for comparison. 

Furthermore, the noncirculatory parts of the lift no longer depend only on 

the instantaneous motion unlike in the incompressible case. Therefore, they 

' 
are much more difficult to calculate since like the circulatory terms they also 

have a time history effect. This introduces additional deficiency functions; 

for more detail see [37]. 
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Chapter 3 

Results and Discussion 

3 · 1 Isaacs' Theory 

3
•1.I Lift Transfer Function for Constant Pitch 

The formulas in Eq. 2.28 are not very expressive for a physical understanding 

of 
th e problem, since there will be a response with a whole range of frequen ­

cies to the input of only one frequency in V(t) . Since the lift is proportional 

to 
th e square of the velocity, the input consists of steady, I/rev and 2/rev 

Parts, and the output will mainly consist of these harmonics, including some 

Phase lag effects. The circulatory lift coefficient, based on the instantaneous 

dynamic pressure, is far from uniform, as predicted by quasisteady theory, 

a
nd 

this is shown in Fig. 3.1 for a reduced frequency of kv = 0.05 and 0.2. 

These results were calculated by including terms up to the 15th harmonic, 

ao
d for each harmonic up to the 25th order in the reduced frequency and 

10 
the freestream oscillation ampli tude ,\_ This is required to include as 

rnany terms as necessary to show the correct solution. The higher order 

terrns become smaller and approach zero because of the factor n 2 in the 
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denominator of Eq. 2.31, and because of the behavior of the Bessel functions 

for large arguments. Nevertheless, a calculation with fewer terms has shown 

that for high freestream amplitudes, say A = 0.8, the peak in lift coefficient 

at the minimum velocity (wvt = 270°) has not yet converged, so one has to 

take all these terms into account. Of course, this results in a huge amount 

of computational time and this again makes this theory very impractical for 

rotorcraft applications. However, there are no restrictions made with respect 

to the flow oscillation amplitude, except that A has to be less than one. 

Therefore, this theory is a kind of "best theory available", with which the 

other theories with more rigorous assumptions can be compared. 

These results show the typical effects of unsteady aerodynamics already 

known from constant freestream theory. First, there is a phase lag resulting 

in a lag in the lift buildup with respect to the change in velocity. Second, 

there is an effect on the circulatory lift amplitude resulting in a smaller 

value of maximum lift (where the velocity is at maximum) and more lift in 

the regime where the velocity is a minimum. It must be noted here, that 

both effects strongly depend on the reduced frequency, and for high reduced 

frequencies, the phase lag reduces to zero and the reduction in lift amplitude 

approaches a final value that will be determined later. This behavior was 

not unexpected, since the solution contains the Theodorsen function . 

The steady part of the lift transfer function is the same as in quasisteady 

theory, and therefore not shown here. More interesting is the dynamic part, 

since Isaacs' theory produces a Fourier series with an infinite number of 

harmonics as the system response, even at constant angle of attack. The 

first four harmonics of the response are shown in Fig. 3.2. One can see the 
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typical behavior of the Theodorsen function in the 1/rev and 2/rev of the 

lift response. With increasing flow oscillation amplitudes, the amplification 

also increases, but the phases angles remain the same except for high values 

of A. Interesting forms of the transfer function can be found in the 3/rev 

and 4/rev components; here loop-type transfer functions are encountered. 

This means a change in phase angle of 180° from zero frequency to very high 

reduced frequencies in the 3/rev-part and a change of 270° in the 4/rev-part 

of the lift transfer function. Also, the amplification starts with zero for zero 

reduced frequenc, obtains its maximum at reduced frequencies of about 0.2, 

and becomes smaller again for high reduced frequencies with a final value of 

zero for infinite frequency. 

It must be noted here, that for the 1/rev and 2/rev-parts terms up to the 

25th in kv and ,\ are sufficiently enough and for values of ,\ ::S 0.8 this holds 

also for the 3/rev and 4/rev-part. However, for the high flow amplitudes one 

needs much more terms to obtain a converged solution, that is, for ,\ = 0.9 

one must include up to the 50th multiple of kv and ,\_ For ,\ = 0.999999 one 

has to include up to the 200th multiple. Therefore, the computational effort 

increases tremendously with ,\ becoming close to unity. 

Now the results of combining flow oscillations with periodic airfoil pitch 

changes will be presented and discussed. Unfortunately, with increasing de­

grees of freedom the number of parameters to be varied are increase signifi­

cantly, therefore one has to reduce these variations to a few examples showing 

the most important combinations. First, this will be a pure sinusoidal motion 

in pitch, than the pure cosine, and then the so called helicopter case of com­

bined steady and sinusoidally oscillating angle of attack where the motion of 

66 



angle of attack is in counterphase to the velocity changes. 

3.1.2 Lift Transfer Function for Sinusoidal Pitch Os­

cillations 

The angle of attack is assumed to consist only of its sinusoidal part, say 

00 = 0 w = 0 and &1s = I. The lift response is shown in the time domain in 

Fig. 3.3 for two reduced frequencies of kv = 0.05 and 0.2. In both cases, the 

quasisteady theory result as well as the result of Theodorsen 's theory also 

plotted for comparison. 

At low reduced frequencies, two interesting observations can be made 

1. At the maximum velocity (wvt = 90°), the unsteady lift for high free­

stream amplitudes is very close to the quasisteady value, with a small 

phase lag. The lift amplitude reduction is not as much as Theodorsen 's 

theory would predict . 

2. At the minimum velocity (wvt = 270°), the unsteady lift for high free­

stream amplitudes is closer to zero, as in the quasisteady case or in 

Theodorsen 's theory. This can be seen very clearly in the lift coeffi­

cient, for example at ,\ = 0.8. 

The reason for this surprising behavior is due to the effect of stretching and 

compressing the shed wake vorticity, respectively. The stretching leads to 

a smaller effective reduced frequency, while the compression leads to larger 

effective reduced frequencies with a more significant reduction of circulatory 

lift. This observation is in agreement with Johnson's results [3]. For the 

higher reduced frequency of k = 0.2, these effects become more dramatic 
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especially in the low velocity region. Here, the lift deficiency function drops 

very rapidly. With increasing freestream amplitude, the circulatory lift even 

becomes positive, although the angle of attack has its maximum negative 

value here. Since the lift itself is very small because of the very small dynamic 

pressure, this can be seen most clearly in the lift coefficient. 

The frequency domain presentation of lift response gives the amplitude 

and phase, and is given in Fig. 3.4 for the constant part and in Fig. 3.5 for 

the first four harmonics. The constant part of lift response due to the o:15 

term in Isaacs' theory (Eq. 2.37) is identical to the quasisteady theory re­

sult (Aa1s), but Theodorsen's theory (see Eq. 2.21) includes the Theodorsen 

function (Aa15 [F(kv) - kvG(kv )(l - 2a) /4]). Therefore, the mean value of 

lift is significantly underpredicted with increasing reduced frequencies. This 

is important even for the small fundamental reduced frequencies encountered 

by a rotor blade. For small flow oscillation amplitudes Theodorsen's theory 

can be used, but for higher frequencies this theory is not applicable. 

There are significant differences in the l/rev-part of the lift response, see 

Fig. 3.5 for the first four harmonics of the dynamic part of the lift transfer 

function. In Isaacs' theory, the transfer function for A = 0 is only shifted to 

the right with increasing freestream amplitude, and does not change its shape. 

The combination of Theodorsen 's theory with the unsteady freestream leads 

to rather different results, since the reduction in ampli tude is larger and the 

Phases angles are larger for high values of A. Only minor differences can be 

found in the 2/rev-part; here both theories lead to very simi lar results. It is 

interesting to note, that the transfer function of the 2/rev-part simply looks 

like a transfer function of the l/rev at ,\ = 0, but rotated by a phase angle of 
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900
- The 3/rev-part also shows very similar results for both theories, but the 

final values for high reduced frequency here is not infinite but zero for the 

cosine part, and a finite number for the sine part. Most interesting now, is the 

4/rev-part of the lift response since there are no harmonic contributions of 

more than 3/rev either in the quasisteady result or the combined Theodorsen 

- unsteady freestream theory. Therefore one cannot expect a form of transfer 

function like that of pitch oscillation in a constant flow. Here a loop-type 

transfer function can be observed, changing its phase by 180° from zero to 

very high reduced frequencies. 

3.1.3 Lift Transfer Function for Cosine Pitch Oscilla­

tions 

Now no = o:1s = 0 and aw = 1. Again, the effect of freestream velocity 

oscillations will be shown in the time domain as well as in frequency domain . 

Fig. 3.6 shows the lift development for reduced frequencies of kv = 0.05 and 

0.2 for pure cosine angle of atttack motion in a sinusoidally varying free­

stream; that is the pitch variation is 90° out of phase with the freestream 

Variation. Again, Isaacs' results are compared to Theodorsen 's theory com­

bined with the unsteady freestream and with quasisteady theory results. 

From the time domain response, the following can be observed: 

1. As for sinusoidal motion, the unsteady lift response is closer to the 

quasisteady result than the results obtained with Theodorsen 's theory. 

This is because the stretching of the shed wake vorticity leads to a 

smaller effective reduced frequency, where the velocity is a maximum. 
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2. In the region with lowest velocity, a lift overshoot occurs. This is in 

contrast to the sinusoidal pitch motion where the lift deficiency func­

tion shows a reduction in lift. It is evident, that the combination of 

Theodorsen 's theory with an unsteady freestream cannot be used to 

predict the lift coefficient. However, since the total velocity is small 

here, the difference in lift is not too significant. 

The constant (mean) part of the lift transfer function is shown in Fig. 3.7. 

It can be seen that Theodorsen's theory leads to an increase in this mean 

value of the total circulatory lift for small reduced frequencies. This is due 

to the -G(kv )-term in Eq . 2.21. For the range of reduced frequencies a he­

licopter blade encounters, this leads to completely incorrect trends; however 

the magnitude of this mean part of the lift is small and therefore the absolute 

differences are not so severe. 

The frequency response in Fig. 3.8 looks very similar to that for sinusoidal 

pitch motion, although it seems to be rotated by 90°. A closer look reveals 

some differences that appear in the scaling of the axis. Again, the l/rev 

of Isaacs' theory shows smaller phase Jags than Theodorsen 's theory when 

the reduced frequency is smaller than about unity, especially when the free­

stream amplitude is high. There are also higher harmonics present in Isaacs 

theory that cannot be predicted by quasisteady theory, or the combination 

of Theodorsen 's theory with the unsteady freestream. 

3.I.4 The Helicopter Case 

Here there is a collective pitch represented by iio and the longitudinal cyclic 

pitch by &15. For a helicopter, one has to alleviate the rolling and pitching 
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moments produced by nonsymmetric aerodynamic environment in forward 

flight. Therefore a I/rev cyclic pitch control setting is introduced. Basically 

this periodic angle of attack is such as to reduce the lift where the dynamic 

pressure is high (advancing side), and to increase the lift where the dynamic 

pressure is minimum (retreating side). The phase between the velocity and 

the angle of attack will be about 180°, as mentioned before. 

To cover the range of reduced frequencies encountered, one calculation is 

performed at a reduced frequency of k = 0.05, and another at k = 0.2. The 

results are shown in Fig. 3.9. For comparison the result of the quasisteady 

theory and Theodorsen 's theory are also plotted. The following characteris­

tics of unsteady combined motion can be observed: 

1. This case, which should be more relevant to a rotor environment, leads 

to more lift in the first quadrant of the disk due to the phase lag of 

angle of attack motion. It is interesting that smaller lift is obtained in 

the third quadrant at small values of ,\, compared to the quasisteady 

case. There is about the same lift at ,\ ~ 0.5, and more lift for higher 

A. Again, the lift coefficient develops a strong peak at tp = 270° while 

the quasisteady formulation does not show any changes for this low 

reduced frequency of 0.05. In contrast to Theodorsen 's theory, the lift 

coefficient amplitude increases in comparison to the quasisteady values 

when the flow oscillation amplitude is non-zero. It is also of interest, 

that due to the unsteady shed wake vorticity the lift coefficient develops 

a phase lead in the area from 300° < tp < 30°, when the flow amplitude 

is high. 
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2. b) With increasing frequency, one obtains a similar result, including a 

larger phase lag and a stronger reduction in lift amplitude. This leads 

to more lift on the advancing blade in the first quadrant, compared 

to quasisteady lift. The obtained of higher lift around 'Ip = 270° now 

starts for A = 0.6, while it was obtained at A = 0.5 in case of the smaller 

reduced frequency. There was only a slight increase in the peak of the 

lift coefficient with increasing reduced frequency. 

All these results generally show that the unsteady freestream effects are 

not small, and should be included, especially when the relative amplitude of 

the freestream oscillations exceeds values of about A = 0.2. 

3.2 Greenberg's Theory 

3 .2.1 Numerical Comparison with Isaacs' results 

In order to compare Greenberg's results (Eq. 2.63) with those of Isaacs, the 

case of constant angle of attack in a pulsating freestream velocity was chosen 

by Greenberg. This was done at a relatively small reduced frequency of 

kv = 0.0424 and for a medium flow oscillation amplitudes of A = 0.4. These 

values were considered representative for current helicopter operations at 

that time. Assuming a representative radial station of y = r / R = 0. 75, 

these values correspond to a ratio of c/ R = 0.0636 and an advance ratio of 

µ = 0.3. Todays helicopters, however, exceed these values, for example the 

World speed record set by a Westland Lynx obtained an advance ratio of 

µ ~ 0.5. 
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From Eq. 2.63, one gets for the case of a1s = &1c = h1s = hlC = 0 

Lnc 
Lo 
Le - -
Lo { 

A2 
ao l + 2 F(kv )+ (3.1) 

+A[G(kv) coswvt + [l + F(kv )] sinwvt]-

A2 } 
- 2 [F(kv) cos 2wvt - G(kv) sin 2wvt] 

In contrast to Isaacs' result which has an infinite series of harmonics (see 

Eq. 2.28), here only a I/rev and 2/rev component exist (Eq. 2.63). Addi­

tionally the pure sinusoidal shed wake vorticity leads only to the Theodorsen 

function of the reduced frequency itself, but not to any multiples of kv like 

in Isaacs' theory; not even a C(2kv )-term is included. The noncirculatory 

parts are identical, since they result only from the instantaneous motion of 

the airfoil and freestream, and therefore must be independent of any theory. 

A comparison of the numerical values of the coefficients was made, and 

only small differences were found. Additionally, it was stated in [8] that this 

agreement with Isaacs' results holds for relatively large values of A at rela­

tively small values of reduced frequency. With respect to the assumptions 

made in the form of the wake, even better agreement should be expected at 

high reduced frequencies, citing Greenberg [8]. Putting the total lift (noncir­

culatory and circulatory parts) into the form of a Fourier series 

L 
Lo =Ao+ AIC cos wvt + A1s sin wvt + A2c cos 2wvt + ... (3.2) 

the coefficients can be compared . The coefficients given by Greenberg are 

listed in Table 3.1. It should be noted , that the coefficient A0 of Isaacs theory 
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Ao AlC A1s A2c A2s A3c A3s 

(1) 1.079 -0.0376 0.770 -0.079 -0.00697 -0.00061 -0.005 

(2) 1.074 -0.0395 0.768 -0.074 -0.00960 - -

[ (1): Isaacs (2): Greenberg k = 0.0424 ,\ = 0.4 ao = l 

Table 3.1: Coefficients of lift resp onse given by Greenberg in comparison 

to the result of Isaacs 

(given by Greenberg) is not identical to that given by Isaacs in [6], since A0 

should have been exactly 1.08 (as can be easily proved). It is unclear how this 

error could have occured. All harmonic coefficients were the same as given 

by Isaacs. Indeed, the differences seem to be small in this special case, but 

an analysis with a wider spectrum of reduced frequencies and flow oscillation 

amplitudes give a better basis for comparison. Also, it is questionable how 

accurately the Bessel functions could be calculated in 1946. Therefore, a re­

calculation using the IMSL-subroutines in double precision was made, using 

up to the 30th multiple in k. There are some differences even in the third 

decimal digit, and this is somewhat surprising. A recalculation of the coeffi­

cients was done here using up to the 200th multiple in reduced freauency and 

in A, and is given in Table 3.2. This comparison covers the same configura-

f ions as were used by Isaacs in [6] to show the effect of unsteady freestream 

effect on lift development. 

In the following sections, the lift transfer functions obtained from Green­

berg's results are compared to Isaacs' results. First, the case of constant 

angle of attack will be shown for different reduced frequencies, then the com­

bined motion of velocity and angle of attack. The lift transfer function for 
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Ao AlC A1s A2c A2s 

(1) 1.080000 -0.0381595 0. 770396 -0.079016 -0.0061575 

~(2) 1.073792 -0.0394386 0. 768958 -0.073792 -0.0095837 

(1) 
A3c A3s A4c A4s 

-0.00061028 -0.00037179 -0.000074784 0.00004 7096 

(2) - - - -

L (1): Isaacs (2): Greenberg k = 0.0424 ,\ = 0.4 ao = l I 

Table 3.2: Coefficients of lift response of Greenberg's and Isaacs' solution, 

recalculated 

the combined motion will finally show the differences in lift amplitude and 

phase angle. It must be kept in mind that the comparison is made for the 

same frequency in pitch and velocity oscillations, since Isaacs' results cannot 

account for different frequencies, unlike those given by Greenberg. 

3 .2.2 Lift Transfer Function for Constant Pitch 

In case of a constant pitch setting, it can be seen from Fig. 3.10 that Green­

berg's theory significantly underpredicts the peak of lift in the area of high 

velocity. Also, in the area of smallest velocity the lift calculated by Green ­

berg's theory is smaller than that obtained by Isaacs. On the left side of 

Fig. 3.10 the circulatory lift and circulatory lift coefficients are plotted for a 

reduced frequency of kv = 0.05, while on the right the reduced frequency is 

kv = 0.2. 

The differences between the theories increase with both the flow oscilla­

tion amplitude as well as with the reduced frequency. These differences can 

be seen more clearly in the lift coefficient development , while for small values 
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of A S 0.2 both theories lead to almost the same results. The significant peak 

in lift coefficient for higher values of,\ as shown by Isaacs' results, reduces 

to about half of the magnitude in Greenberg's theory. This is due to the 

simplifications made in the wake model of Greenberg 's theory, and this leads 

to smaller lift coefficients for higher ,\ nearly everywhere, especially in the 

region of small dynamic pressure (retreating side of the disk). Except in the 

region of decelerating flow around 135° < wt < 200°, the lift coefficient is al­

ways slightly smaller. Good agreement between both theories were obtained 

for freestream amplitudes of up to,\ ~ 0.4; the higher the reduced frequency, 

the smaller the values of ,\ have to be for good agreement . The reason for 

this behavior can be seen in the assumptions made for the wake, leading to 

different solutions especially in the constant part of the circulatory lift, but 

also in the harmonic parts. 

Looking at the total circulatory lift in Fig. 3.10, however, the discrepan­

cies in the region of high dynamic pressure are more significant than those 

in the low dynamic pressure region. Here, the absolute differences in lift 

coefficient are small, but in terms of total lift they are very large. Again , it 

becomes obvious that under time varying freestream flow conditions the lift 

coefficient looses its importance since the physically active parameter is the 

lift force and not the lift coefficient. Thus, a definition of a force coefficient, 

nondimensionalized by a constant velocity (for example Vo) , seems to be a 

physically more meaningful approach than using the classical lift coefficient, 

that depends on the local velocity. 

The lift transfer function is given in Fig. 3.11 and Fig. 3.12 for the con­

stant and dynamic parts of the lift response. Especially for the constant part , 
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there are significant differences to be seen. This is somewhat surprising, since 

normally the dynamic parts are more difficult to determine than the steady 

ones. While Isaacs' theory shows an independence of the constant part with 

respect to reduced frequency, Greenberg's theory leads to a dependency on 

the Theodorsen function (see Eq. 2.63). This is of importance even for small 

flow oscillation amplitudes and small reduced frequencies. Therefore, the 

mean value of the lift is significantly underpredicted by Greenberg's theory. 

Looking to the right half of Fig. 3.11, where only the range of reduced fre­

quencies encountered by a helicopter blade is shown, one can see, that the 

numerical comparison made by Greenberg in [8] is not very representative. 

At kv = 0.0424 and ,\ = 0.4 indeed the differences are not very large, but 

with higher reduced frequencies the differences between both theories in­

crease significantly, even for small values of,\ , see Fig. 3.11. This is contrary 

to Greenberg's statement [8] that the agreement for high reduced frequencies 

will be better than at low ones because of the high frequency assumption 

made for the wake. 

More differences are revealed by the dynamic part of the lift transfer 

function, see Fig. 3.12. For values of,\ < 0.4, the agreement with Isaacs ' 

theory is very good for the 1/rev component, but for higher flow amplitudes 

the phase angles predicted by Greenberg's theory are larger than those of 

Isaacs. Furthermore the final values for infinite reduced frequencies are not 

' 
the same; Greenberg's theory underpredicts them significantly, especially for 

high A. The 2/rev-part shows good agreement with Isaacs' result . However, 

there are no higher harmonic response components in Greenberg's theory, 

while Isaacs' theory still has contributions for all harmonics allthough they 
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are smaller with each higher harmonic. Typically, these higher harmonics 

start at zero for small reduced frequencies, and produce to a change in phase 

of l80° at high reduced frequencies in the 3/ rev-part, and 270° in the 4/rev­

part. The sum of all these harmonics leads to important effects on the total 

lift response. 

The next comparison covers the simultaneous oscillation of in plane veloc­

ity and angle of attack, both with the same frequency, but with two different 

phases. First the in-phase condition with sinusoidally pitch changes will be 

considered, and then the case of cosine motion in pitch. Both have been 

lilVestigated in the previous section, and wil l be compared to Isaacs' theory. 

3 .2.3 Lift Transfer Function for Sinusoidal P itch Os-

c illat ions 

For a reduced frequency of kv = 0.05 and 0.2, Greenberg's results are com­

pared with Isaacs' results in Fig. 3.13. Here only &1s = l while all other 

amplitudes are set to zero. The following differences can be seen: 

1. In the region of high velocity the lift is significantly underpredicted by 

Greenberg's theory. This means that the effective reduced frequency is 

too high here, leading to a lift deficiency that is too large. 

2· In the region of smallest velocity, the additional loss in lift is not com­

pletely predicted by Greenberg's theory, so here the effective reduced 

frequency is too small, leading to more lift than predicted by the exact 

theory of Isaacs. In the total lift, this wi ll hardly be noticed since the 

dynamic pressure is very small, but if the issue of interest is the lift 
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coefficient, this will be very important. This is especially true, if the 

lift coefficient is operating near stall conditions like on the retreating 

side of the disk. 

Both effects can be seen as a sequence of the wake approximation Greenberg 

made in his derivation. In general the effects of "stretching and compressing" 

the shed wake vorticity described before, and by Johnson in [3], are repre­

sented by Greenberg's theory in the correct trend. However the magnitude 

is not completely correct. More information can be obtained from the lift 

transfer function, which is shown in Fig. 3.14 for the constant part of the lift, 

and in Fig. 3.15 for the first four harmonics. Even from the constant part 

of the lift, it can be seen that the statement made by Greenberg of "good 

agreement with Isaacs' theory" in [8] does not hold. While in Isaacs' theory 

the constant part of the lift is directly proportional to Ao:1s, in Greenberg's 

formulation the constant part of the lift depends on the Theodorsen func­

tion and is proportional to 0.5Ao:1s[l + F(kv) - 0.5kvG(kv )], see Eq. 2.63. 

Therefore, the final value for high reduced frequencies is only 0. 75 of that of 

Isaacs theory. Thus the constant part of lift response is significantly under­

predicted by Greenberg's theory. Even the case of small reduced frequency 

(kv === 0.0424) and a moderate flow oscillation amplitude of (A = 0.4) re­

veals large differences, and it seems that the assumption made for the wake 

in Greenberg's derivation is not justified. Greenberg's theory leads to good 

agreement with Isaacs' theory only for small and medium freestream ampli ­

tudes and small reduced frequencies. 

Looking to the dynamic parts of the lift response, the most significant dif­

ferences can be seen in the I/rev-part. Here, for reduced frequencies greater 
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than about 0.15, the phase lags are overpredicted and the final values for high 

reduced frequency are smaller in the sine-components. Good agreement can 

be found in the second and third harmonics, but there is no higher harmonic 

lift response calculated by Greenberg's formulas. this is in contrast to Isaacs 

results as shown before. 

3 -2.4 Lift Transfer Function for Cosine Pitch Oscilla­

tions 

It is interesting to examine how the lift transfer function of Greenberg's the­

ory behaves for the case of out of phase pitch motion, say a1c = l, for which 

all other amplitudes are zero. The lift development is shown in Fig. 3.16 for 

a reduced frequency of kv = 0.05 and 0.2. It can be seen that the overall 

agreement with Isaacs' theory is good for this case, and the lift overshoot in 

the decellerating flow region is also predicted by Greenberg's theory in the 

correct trend, but not in magnitude. The lift is slightly overpredicted at the 

begining of the period for high flow oscillation amplitudes (0 < wvt < 90°). 

The transfer function for this case is given in Fig. 3.17 and Fig. 3.18 for 

the constant and dynamic part, respectively. The biggest differences are to 

be found in the constant part, which is proportional to -0.5-\atC[G(kv) + 

O.SF( kv )kv] in Greenberg's formulation , while Isaacs only gives a linear pro­

portionality to --\kvatC/4. However, for helicopter rotors the interesting 

range of reduced frequencies in freestream oscillations (right half of Fig. 3.17) 

is smaller. In this range the magnitude of the constant part of lift response 

is small and the differences might not be as severe compared to the harmoni c 

content in Fig. 3.18. Indeed, rather good agreement is found especially in 
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the second and third harmonic. Only for the first harmonic the phase Jag is 

overpredicted for smalJ reduced frequencies with increasing flow amplitude, 

and the final values for high reduced frequencies are not the same for both 

theories. Again, Greenberg's theory does not give higher harmonics than the 

third, so all harmonic content of the lift response beyond that is missing. 

Overall, Greenberg's theory appears useful as long as only small reduced 

frequencies and small to medium flow oscillation amplitudes are concerned. 

In the helicopter case, where mainly a sinusoidally change in angle of attack is 

introduced by control inputs, Greenberg's theory leads to erraneous results. 

That is the lift in the high velocity region is significantly underpredicted, 

and in the low velocity range it leads to a smaller lift Joss than predicted by 

Isaacs' exact theory. 

3.3 Kottapalli's Theory 

3 -3.I Lift Transfer Function for Constant Pitch 

An example for the lift development predicted by KottapalJi 's theory is shown 

in Fig. 3.19 for reduced frequencies of kv = 0.05 and 0.2, and a constant an­

gle of attack. This also demonstrates the limits in applicability to helicopter 

Problems. It can be seen that the agreement with Isaacs' theory is good 

only for very small freestream amplitudes; for higher amplitudes the theory 

is invalid. In Kottapalli's theory, the lift is only described by a I/rev com­

ponent, and therefore the lift coefficient shows a somewhat strange behavior 

for values of ,\ beyond the permitted limits. The constant part of the lift 

is only proportional to a0 , and therefore is constant. The dynamic content 
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of the circulatory lift is proportional to ,\a0G( kv) in the cosine part and 

Aao[l + F(kv )] in the sine part (see Eq. 2.67). Therefore, this is identical 

to the expression of Greenberg for the l/rev in Eq. 2.63 and the transfer 

function is not shown here; the differences are the same as can be seen in 

Fig. 3.12. Of course, here no 2/rev part is included. 

3 .3.2 Lift Transfer Function for Sinusoidal Pitch Os-

cillations 

The lift development for harmonic in-phase motion of the angle of attack is 

shown in Fig. 3.20. Here, much better agreement is found between Kotta­

palli 's and Isaacs' theory in the range of flow oscillation amplitudes up to 

,\ = 0.2. It can be seen that the additional lift loss in the small velocity region 

is overpredicted by Kottapalli's theory, but the lift in the high velocity region 

is underpredicted with increasing ,\. The mean value, however, is the same 

as for Isaacs' theory, since it is proportional to ,\a1s and does not depend on 

the reduced frequency (unlike Greenberg's result). From these results, again , 

the observation can be made that Kottapalli's theory is useful only for small 

values of ,\. 

From the formulas of Kottapalli, see Eq. 2.67, one can see immediately 

that the l/rev response due to a15 is not a function of ,\, and therefore 

cannot predict the amplitude and phase correctly. This becomes obvious in 

the transfer function of the dynamic parts of lift response, see Fig. 3.21. For 

all values of,\, the I/rev remains the same, leading to larger phase lags and 

to smaller lift amplitudes for higher flow oscillation amplitudes. The 2/rev 

Part, however, shows good agreement with Isaacs' theory, but all harmonics 
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beyond the 2/rev are missing in Kottapalli's theory, leading to erroneous 

results for A > 0.2 in this case. 

3 .3.3 Lift Transfer Function for Cosine Pitch Oscilla­

tions 

Now only o-1c is considered, and the results arecompared to Isaacs' theory 

again. For the lift development at kv = 0.05 and 0.2, as shown in Fig. 3.22, 

the differences between the two theories are small up to values of A = 0.4. 

For higher amplitudes, the lift is increasingly underpredicted in the region 

of high velocity while it is overpredicted in the smaller velocity region. The 

differences between the two theories are more obvious in the lift transfer 

function (Fig. 3.23. The constant part is proportional to -.\kvii1c/4, and 

therefore is identical to Isaacs' ( as for in the case of sine motion). 

The dynamic parts of the lift response are given in Fig. 3.23. As for the 

case of a sinusoidally varying angle of attack, the 1/rev-part predicted by 

Kottapalli's theory is independent of.\, and therefore is only valid for small 

flow oscillation amplitudes. Again, the 2/rev-part is in fairly good agreement, 

and all higher harmonics were omitted by Kottapalli thus restricting the 

applicability of his theory to small values of.\. 

Overall, Kottapalli's theory seems to be of limited use for a helicopter 

analysis in forward flight; only in hover for aeroelastic analyses it will be of 

any value and can be viewed as an alternative to Greenberg's theory. The 

correct representation of the mean value of lift in Kottapalli's theory (in 

contrast to Greenberg's theory) makes this theory an interesting alternative, 

and obviously more correct, for these cases. 
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3.4 Arbitrary Motion Theory in an Unstea­

dy Freestream 

J.4.1 Lift Transfer Function for Constant Pitch, An-

alytic Approach 

As a comparison, the case of constant angle of attack in an oscillating free­

stream wi]J be investigated. This case is shown in Fig. 3.24 and compared 

to the exact theory of Isaacs. It is easy to see that the results derived in 

this section are not identical to Isaacs' theory; it is only for A = 0. With in­

creasing freestream osciJJation amplitudes, the differences become larger and 

the lift deficiencies are not plausible. Thus, the derivation includes a system­

atic error although exactly the same formulation works well in a constant 

freestream. · 

The fact that there are only the first two harmonics considered in the 

Theodorsen function leads to an interesting experiment. Although in the 

derived formulas Bessel functions are involved , they seem to be related to 

the results of Greenberg. The experiment now is to replace s in the upper 

boundary of the integral for the lift by its mean value s, and therefore im­

mediately one eliminates the Bessel functions. Mathematically this means 

the distance traveJJed by the airfoil does not depend on the flow oscillation 

amplitude, or that the flow osci llation amplitude is zero. Consideration of 

the distance travelled s gives 
' ' 

,\ 
s = s - - cos kv s 

kv 
(3.3) 

and it is clear that for very small ,\ this equation reduces to s = s. The result 

is surprisingly exactly the same as that of Greenberg's derivation in Eq. 2.63, 
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but obtained with a different method. However, here an the approximation 

to the Wagner function is involved, and so there are small differences between 

the exact values for C(kv) and C(kv ). A figure is not included for this case, 

because the result of the analytical derivation with s = sis almost the same, 

as can be seen in Figs. 3.10 to 3.18. Very small differences are due to the 

fact, that the Theodorsen function now is represented by the approximation 

to the Wagner function. This result leads to the following observation: 

Greenberg's high frequency assumption for the wake integral really means 

a small amplitude approximation for the flow oscillation amplitude ,\ for 

parts of the derivation (not all parts since there are other terms with V 

retained). This clarifies why Greenberg's theory works not as well for me­

dium and high freestream amplitudes and places certain restrictions to the 

application of this theory, since in the helicopter case the assumption of 

small ,\ is not applicable. 

A possibility for the afore mentioned systematic error when deriving an 

analytic solution for the periodic motion may be an incorrect solution for the 

derivative ow3; 4(a-)/ou. In the integral of Eq. 2.69, u is a dummy variable 

for s and since in steady flow conditions s = s there also u = o- is valid (in 

steady flow the actual distance travelled is identical to the mean distance 

travelled). Now the normal velocity w3 ; 4 is only a function of s, not of 

s, as can be seen from Eq. 2. 71. With u being the dummy variable of s, 

say u = a - (,\/ kv) cos kva, therefore ou = [I + ,\ sin kva]oa-. Thus, the 

derivative may be written as 

OW3;4(a) = ( 1 ) Ow3;4(0-) 

8u 1 + ,\ sin kvif oif 
(3.4) 
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and the variable of integration is a-. So the integral may more correctly be 

written as 

/A l < I (3.5) 

The fraction 1/(1 +,\sin kvo-) is periodic, and in general can be expressed in 

form of an infinite Fourier series whose coefficients, because of the trigono­

metric function, will consist of Bessel functions with nkv as the argument. 

From this, as in Isaacs' theory, an infinite series over all multiples of the re­

duced frequency will be introduced, in addition to that over all multiples of 

the freestream oscillation amplitude. However, a Fourier series expansion of 

this fraction could not be found in the mathematical literature and therefore 

it is not possible to give the proof of the correctness of this assumption here. 

This wi ll be a subject of future research. However, it seems to be the right 

step in order to obtain an analytical result close to the derivation of Isaacs. 

3 -4.2 Lift Transfer Function for Constant Pitch, Fi-

nite Difference Approach 

To perform the calculation, the numerical algorithm of arbitrary motion the­

ory requires several cycles in order to el iminate all transients. The number 

of cycles has been set to 10, and it was found that this is enough for all 

the reduced frequencies investigated here. In the case of constant angle of 

attack, the results obtained by Isaacs Eq. 2.28 and the arbitrary motion the­

ory are almost identical, so there is no result presented here; the form of the 

lift response was already shown in Fig. 3.1. Small differences are due to the 

approximation of the Wagner function by a truncated exponential series. For 

the same reason the constant part of the lift transfer function is not shown 
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here. There excellent agreement was found for all reduced frequencies ( up to 

kv = 2.0 as plotted in Fig. 3.2) and all values of.\. The dynamic part of the 

lift transfer function is given in Fig. 3.25. It can be seen in Fig. 3.25, that 

for all harmonics we find nearly perfect agreement with the exact theory of 

Isaacs, with certain small differences, which are mainly related to the use 

of an approximation to the Theodorsen function instead of using the Bessel 

functions. 

This result can be used as proof that: 

The arbitrary motion theory is able to calculate the aerodynamic loads 

for a constant angle of attack in an unsteady flow environment to a preci­

sion that is dependant only on the accuracy of the approximation made for 

the Wagner function. 

3 -4.3 Lift Transfer Function for Sinusoidal Pitch Os-

cillations 

In addition to the case of constant angle of attack, the case of pure sinu­

soidally motion is presented in Fig. 3.26 for the lift development at two 

reduced frequencies, kv = 0.05 and 0.2. It can be seen that the arbitrary 

motion theory represents the unsteady lift behavior in an almost perfect man­

ner. The only differences to be seen are at higher reduced frequencies, where 

the magnitude of lift is slightly underpredicted. Also, the behavior of the lift 

coefficient in the region of smallest velocity is correct in the trend, but not 

completely correct in magnitude. 

In Fig. 3.27 and Fig. 3.28, the lift transfer function for this case is given 

for the constant and dynamic part of the lift transfer functions, respecti ve!y. 
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From the constant part of the transfer function, it can be seen that the 

arbitrary motion theory leads to an underprediction of lift with increasing 

reduced frequency, but in the range of kv encountered of a rotor blade the 

differences are not as severe. However, this behavior of the arbitrary motion 

theory cannot be explained with the approximation of the Wagner function. 

To clarify this behavior, additional research is necessary. 

The dynamic parts of the lift transfer function (Fig. 3.28) show differ­

ences in the I/rev component for kv > 0.2. These differences are increasing 

with increasing freestream amplitude. All other harmonics are in excellent 

agreement with Isaacs' theory and differences are mainly related to the ap­

proximation of the Wagner function by a truncated series of exponential 

functions. 

3 -4.4 Lift Transfer Function for Cosine Pitch Oscilla-

tions 

For pure cosine motion, the results are presented in Fig. 3.29. No significant 

differences can be seen in the lift development for either reduced frequencies. 

This excellent agreement can also be fou~d in the lift transfer function , see 

Fig. 3.30 for the constant part and Fig. 3.31 for the dynamic part. In all these 

cases, it can be seen that the arbitrary motion theory produces results almost 

identical to the exact theory of Isaacs. The smalJ differences remaining can 

be explained by the inaccuracy of the approximation made to the Wagner 

function by a finite number of exponential functions instead of an infinite 

n b 
• 

um er as required to make C(k) = C(k). 

In general, the results obtained for constant, as well as for oscillating, 
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angle of attack show excellent agreement with Isaacs' theory. This is the 

Proof that 

The arbitrary motion theory is able to calculate the unsteady aero­

dynamic loads, even in an unsteady freestream flow environment, if 

all the appropriate deficiency functions involved are retained. 

However, it must be kept in mind that the excellent agreement is found 

only in the case of a constant and oscillating angle of attack 90° out-of-phase. 

In the in-phase (sinusoidal pitch) motion the constant part of circulatory lift 

and the I/rev-part show some differences that can not be explained with the 

approximation to the Wagner function alone. 

3.4.5 Reduced Algorithm 

Very often, because of computational effort, only a reduced algorithm can 

be applied. This means a reduction in the number of deficiency functions in­

volved, and the functions regularly neglected are those related to the changes 

in velocity. Then the velocity at 3/4 chord is simply 

3 N 

n [ c (l - 2a) . · ] ~ ~ (j) 

w3/4,n = L Vi~O'i + 2 2 ~O'; + ~hi - 0 ~ xn,k 

•=0 
J-1 k-Z 

(3.6) 

Herein ~ Via; is eliminated, and the philosophy behind this step is that the 

changes in flow oscillation are assumed to be of relatively low frequency in 

relation to that of plunge or pitch motion. This is a quasisteady assumption 

rnade only for the velocity ( and thereby for the fore-aft motion) while all 

other degrees of freedom are considered as unsteady. 
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The results for constant angle of attack case are not shown, since it is 

easy to see from the equations that in this case the quasisteady theory is ex­

actly reproduced. Therefore, the reduced algorithm is not able to calculate 

the characteristic lift overshoot where the velocity is lowest. More interest­

mg, is the case of sinusoidally varying angle of attack, for in-phase and 90° 

out-of-phase motion relative to the velocity oscillation. The results for re­

duced frequencies of kv = 0.05 and 0.2 are given in Fig. 3.32 and Fig. 3.33, 

respectively. For the in-phase motion, good agreement with the exact the­

ory is apparent only for the total lift, while the lift coefficent is inaccurately 

predicted over larger parts in the second half of the period, especially for 

high flow oscillation amplitudes. However, this is hard to see in the lift itself 

because the dynamic pressure is very small over most of this range. Similar 

agreement was found for the cosine motion of angle of attack. The lift is 

slightly overpredicted nearly over the entire period, and the characteristic 

lift coefficient overshoot in the second half is not predicted by the reduced 

algorithm. Therefore the following statement can be made: 

The reduced algorithm of arbitrary motion theory, assuming the oscillations 

in velocity to be quasisteady, is not appropriate for calculating lift coef­

ficients when the flow oscillation amplitude exceeds the value of,\ ~ 0.2. 

It must be noted that the reduced algorithm can also be applied to the 

analytic derivation, omitting the derivative 8V(a)/8a. The approach of 

handling the freestream oscillation in a quasisteady manner was also used in 

the combination of Theodorsen 's theory with unsteady freestream. There­

fore, a relation must exist between Theodorsen 's theory and the reduced 

algorithm of arbitrary motion theory. By the same procedure that was 
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done with the full algorithm in the analytic approach by setting s = s 

instead of s = s - (>./ kv) cos kvs, this relation is obtained. Then one 

gets a result identical to Theodorsen, see Eq. 2.21, only that the Theo­

dorsen function C( kv) = F( kv) + iG( kv) is replaced by its approximation 

C'(kv) = F(kv) + iG(kv) where the real and imaginary part are built up 

from the coefficients of the exponential series approximation to the Wagner 

function. Additional results are not shown for this case; the accuracy of the 

approximation is as good as in the comparison with Greenberg's theory using 

the full algorithm and the same substitution. 

3.5 Influence of the Position of Pitch Axis 

Unti l now only a pitch motion about the midchord has been investigated. 

Normally, for a helicopter rotor this is not the case because the feathering 

axis is very close to the aerodynamic center. In incompressible flow, this is 

the quarter chord point, and helicopter manufacturers take a great effort to 

bring the elastic axis ( as well as the center of gravity) and the feathering axis 

to the 1/4 chord point. The derivation in Appendix B gives the influence 

of pitch axis on lift development, which was not given by the theory of 

Isaacs. Therefore, since also Greenberg's, Kottapalli 's and the combination 

of Theodorsen 's theory with unsteady freestream include this parameter, its 

influence can now be studied and compared. As could be seen in Theodorsen 's 

theory in a constant freestream (see Fig. 2.3 and Fig. 2.4), the pitch axis 

Position (represented by the parameter a) has a significant influence on the 

J"f 1 t transfer function . 

In general, if a = 0.5, then the axis of rotation is at 3/4 chord, where in 
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mcompressible flow the reference point for the normal velocity is considered. 

In that case, ci, does not contribute to the circulatory lift. This is expressed 

by the factor (1 - 2a)/2 in Eq. 2.51 and Eq. 2.53. In the following figures, 

this parameter is first set to a = 0.5 (pitch axis at 3/4 chord), and then 

to a = -0.5 which is the helicopter case, where the pitch axis is at quarter 

chord. Generally a does not appear in the constant part of the lift transfer 

function, and so that part is not shown here. Only the dynamic parts are 

affected. 

3.5.1 Effect of a on the Lift Transfer Function for a15 

The first case of a = 0.5 is shown in Fig. 3.34, and it is compared with 

results for a = -0.5 in Fig. 3.35. Because the multiplier at the a-term is 

( 1 - 2a) /2 = 0 in the first case, this eliminates the terms proportional to 

the reduced frequency, and therefore the transfer functions of the different 

harmonics do not asymptote to infinity. They resuits basically follow the 

Theodorsen function, with different scalings. This is for all except the 4th 

harmonic, which is built up only from the Bessel functions. However, since 

the coefficients H~ and Hn in Appendix B depend on a, the 4/rev-part 

changes its shape slightly. In addition to the result of Isaacs, the result of 

Greenberg's, Kottapalli's and the combination of Theodorsen's theory with 

unsteady freestream are plotted in Fig. 3.34 ( a = 0.5) and Fig. 3.35 ( a = 

-0.5). All of these results show the same behavior, and have good agreement 

in the second and third harmonic. The main differences are in the first 

harmonic, and are more significant than in the case of a = 0. 

In order to make a direct comparison, the scaling is kept the same in 
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Fig. 3.34 and Fig. 3.35. So for a= -0.5 the multiplier becomes (I-2a)/2 = I. 

This is very important now, because it leads to infinite amplification of the 

lift, as can be seen in Fig. 3.35 for the first and second harmonic where this 

factor appears. It is interesting to note that in all of Greenberg's, Kottapalli 's 

and Theodorsen 's theory, the third harmonic is independent of a, while in 

Isaacs' theory a appears in the sum over all reduced frequencies in every 

harmonic, and therefore changes the lift transfer function in every harmonic. 

This can be seen in the maximum value (cosine part) and in its final value for 

high reduced frequency. The differences between the other theories become 

more apparent in the 2/rev and remain in the I/rev. 

3.5.2 Effect of a on the Lift Transfer Function for a1c 

Again, this is demonstrated for a = 0.5 in Fig. 3.36 and for a = -0.5 in 

Fig. 3.37. Basically we find the same behavior and changes that were ob­

served in case of the sinusoidal motion. Especially noteworthy is the large 

difference between Isaacs' theory and the other theories in the I/rev compo­

nent, where Greenberg's and Theodorsen's theory predict much larger phase 

lags. The 2/rev-parts are in good agreement, while in the 3/rev-parts of 

Greenberg's, Kottapalli 's and Theodorsen 's theory do not show any depen­

dency on a. However, this is the case in Isaacs' theory, and leads to a change 

in amplification of the lift and in the final values for high reduced frequencies. 

Over all, the parameter a leads to important changes in the I/rev and 

2/rev components of the lift response, while in steady flow only the I/rev is 

influenced. For the 3/rev and all higher harmonics, only Isaacs' theory is able 

to show a dependency on the pitch axis location . However the differences 
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obtained by changing from a pitch axis at midchord to one at quarter chord 

are not severe even there. 
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Chapter 4 

Summary and Conclusions 

In this study five theories handling the effect of unsteady freestream have 

been analysed. These are: 

• Isaacs' theory 

• Greenberg's theory 

• Theodorsen 's theory combined with unsteady freestream 

• Kottapalli's theory 

• Arbitrary motion theory 

It was found, that all of these theories handle the case of a fore-aft moving 

airfoil instead of an unsteady freestream. This latter case should be more 

correcly viewed as a system of horizontally propagating gusts. A helicopter 

rotor blade section in forward flight encounters both unsteady freestream 

(the superposistion of rotation and forward flight velocity components) and 

fore-aft motion (through lead-lag). It was found, that both phenomena are 

physically different, but in the range of reduced frequencies encountered by 
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a helicopter blade the results will be very similar. Thus, the interpretation 

of unsteady freestream as an equivalent to fore-aft motion can be viewed as 

a good approximation in the helicopter case. 

All of the theories cited above lead to the same noncirculatory expressions, 

and all of them reduce to Theodorsen 's theory when the freestream oscillation 

amplitude becomes zero. The general effect of an oscillating freestream is a 

"stretching and compressing" of the shed wake vorticity behind the airfoil. 

From the analysis and comparisons of Chapter 2 and 3 the following 

cone] usions can be made: 

1. Isaacs' Theory: 

This is the only theory for the case of an unsteady freestream that gives 

an analytic solution without additional simplifications, and therefore 

can be seen as the only "exact theory". The lift for oscillating free­

stream flow conditions is represented as an infinite Fourier series. The 

induced phase lags and amplifications depend on the type of motion of 

the airfoil. Therefore, at constant angle of attack there is a significant 

lift coefficient overshoot, where the velocity is smallest, but in case of 

sinusoidally varying angle of attack (in-phase motion) an additional lift 

deficiency occurs. A cosine motion (90° out-of-phase) also leads to lift 

coefficient overshoots, but they are not as significant as in the case of 

constant angle of attack. 

2. Greenberg's Theory: 

This theory is similar to Theodorsen 's theory, but includes the unsteady 

freestream as additional degree of freedom and the result for the lift 
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contains up to three harmonics. To obtain a simple closed form solu­

tion, an additional simplification to the form of the wake was made. 

That was that an infinite frequency assumption makes the wake vor­

ticity sinusoidal again. It was shown with an analytical derivation via 

arbitrary motion theory, that this is equivalent to neglecting the flow 

oscillation amplitude for the induced velocities. Therefore Greenberg's 

high frequency assumption physically is an assumption of quasisteady 

convection velocity for the shed wake. This makes Greenberg's the­

ory questionable for high freestream oscillation amplitudes, and it was 

found that the differences with the exact theory of Isaacs are significant 

above ,\ ~ 0.4. For constant or oscillating angle of attack the basic be­

havior was correctly represented, but the magnitudes and phase angles 

were not well represented in the important constant and I/rev parts of 

lift response. 

3. Kottapalli's Theory: 

From the beginning, an assumption for small freestream amplitudes was 

made reducing this theory for the cases of aeroelastic investigations in 

hover, or very small forward flight conditions. The agreement with 

Isaacs' theory for that range of freestream oscillations was found to 

be slightly better than that of Greenberg's results. Because of the 

assumption made here, only up to the second harmonics describe the 

lift response. 

4- Theodorsen 's Theory Combined with Unsteady Freestream: 
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Here the changes in velocity are viewed as quasisteady and the The­

odorsen function is only applied to angle of attack and plunge mo­

tion. The characteristic lift coefficient overshoots cannot be predicted 

by this method. It was proved that with an analytical derivation via 

arbitrary motion theory from the reduced algorithm (omitting the de­

ficiency functions for the changes in velocity), that this is equivalent to 

neglecting the flow oscillation amplitude for the induced velocities. 

5. Arbitrary Motion Theory: 

The finite difference approach using the superposition principle and 

Duhamel's integral leads nearly exatly to the same results as for Isaacs' 

theory, when the angle of attack is constant or oscillating 90° out-of­

phase. For sinusoidal angle of attack motion (in-phase) there are in­

creasing differences with increasing reduced frequencies for the constant 

and I/rev-part of the lift response. In the range of reduced frequencies 

encountered by a rotor blade, this seems not to be a severe limita­

tion. In all cases the dynamic lift response is represented correctly, 

depending on the approximation used for the Wagner function. This 

is proof that the arbitrary motion theory can accurately calculate the 

lift even in unsteady freestream conditions. The often used "reduced 

algorithm", considering the freestream variations as quasisteady, leads 

to good results for the lift, but the characteristic overshoots in the lift 

coefficient related to the compression of the shed wake vorticity ( at the 

retreating side of the rotor), are not represented. 

The conclusion is, that when the lift coefficient is the subject of investi­

gation, Isaacs' theory or the arbitrary motion theory with all the appropriate 
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deficiency functions are necessary to calculate the correct lift coefficient over­

shoots or deficiencies. If the lift itself is the subject, then for small freestream 

amplitudes all theories are useful, for medium amplitudes Isaacs, Greenberg's 

and arbitrary motion theory are valid, and for high oscillation amplitudes 

Isaacs' or arbitrary motion theory with all deficiency functions are necessary 

to accurately calculate the lift response. 

As an additional contribution to the analytical side of the problem, Isaacs' 

theory (that was derived for I/rev oscillations in angle of attack only about 

midchord) has been generalized to the case of an infinite Fourier series in an­

gle of attack about an arbitrary axis, including also an infinite Fourier series 

for plunge motion. As a recommendation for future research, this derivation 

can be used for a general unsteady aerodynamic theory, featuring infinite 

Fourier series in all types of motion (also fore-aft motion) and with different 

fundamental frequencies for pitch, plunge and freestream oscillations. 

For the application of unsteady freestream aerodynamic theory to rotor­

craft problems, the arbitrary motion theory appears to be the most promos­

ing approach since the coefficients of the exponential series representing the 

Wagner function can be modified to represent compressibility effects. How­

ever, it is very difficult to justify whether the compressibility corrections of 

these coefficients, that have prooved to be correct in unsteady aerodynam­

ics in a constant freestream, are also correct in an unsteady freestream. To 

validate this, experimental measurements in compressible flow are necessary. 

However to achieve high values of freestream oscillation amplitudes at the re­

duced frequencies of a rotor blade section seems to be an unsolvable problem 

for todays wind tunnels. 
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A final comment in this thesis must be made regarding the experimen­

tal aspect. Only very few experiments have been conducted to cases when 

unsteady freestream variations are involved, compared to the tremendous 

amount of experiments related to unsteady airfoil motion in pitch, and even in 

plunge, for example [19, 20]. Naturally the experimental setup is much more 

difficult, leading to very small mean velocities in order to achieve high veloc­

ity amplitudes. In all experimental data available [21 J - [30], separated flow 

conditions even for small angle of attack occur due to very small Reynolds 

number, and therefore a direct comparison with experimental data cannot be 

made. A recommendation for future measurements must be the introduction 

of a means to keep the flow attached to the airfoil, and therefore to artificially 

prohibit laminar flow separation on the surface of the airfoil. 
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Figure 1.3: Lift of flat two-dimensional airfoils flying with constant acceler­

ation from rest, calculations. From [IS]. 
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Figure 2.2: Fla.pping hinged blade 
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Legend to the figures 

In Fig . 2.5: 

Quasisteady theory 

Theodorsen's theory 

In Fig. 3.1 to 3 .37: 

Isaacs' theory 

Greenberg's theory 

Theodorsen's theory 

Kotta polli' s theory 

Arbitrary mot ion theory 

----------

--- --- - ---- ------
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Figure 2.5: Legend for the following fi gures 
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Appendix A 

Arbitrary Airfoil Motion 

Constant Freestream 

• 
Ill a 

Starting from the indicial function for a step change in angle of attack, the 

so called Wagner function 

(A.l) 

and the Duhamel integral for superposition of steps to an arbitrary motion 

c
2 

•• 
p [ Ls OW3/4 ] 

L = 1rp-[h + Va - baa]+ 21r-Vc w3; 4(0)¢(s) + -~-¢(s - O")dO" 

4 
2 . 0 UO" 

(A.2) 

one can obtain a closed form solution for harmonic motion in angle of attack 

and plunge. 

a ao[ao + &1s sin ks+ &1c cos ks] 

h 
C - -

ao 2[ h1s sin ks+ h1c cos ks] (A.3) 

The velocity at 3/4 chord is build up by vertical motion of the airfoil and 

the instantaneous angle of attack as well as its time derivative 

· C 1 - 2a 

W3/4 = Va + h + 2 2 a (A.4) 
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The derivatives needed are 

00' 
8a-
8a 

8a-
8h 
aa-

a 0 k[a1s cos ka- - ci-IC sin ka-] 

-a0 
2

V k2 [a15 sin ka- + ci-IC cos ka-] 

C 

2 - -

-a0 V k [ h1s sin ka- + hlC cos ka-] 

So the integral in the circulatory part of the lift becomes 

[9 a:3/4 <P( s - a-)da- = ao V £ kA; [9 i;(s-o) 

lo ua-
i=t lo 

(A.5) 

X { [a1s - k (1-;2aa1C + h1c)] cos ka-

- [alC + k (1-;2aa1s + h1s)] sin ka-} da­

(A.6) 

Now the integral can be evaluated by means of (for example [38], p. 566, No. 

407 and 412) 

I 
e-b;u 

e-b;u cos ka-da- = 2 
( -b; cos ka- + k sin ka-) 

b; + k2 

I 
e-b;u 

e -b;u sin ka-da- = 
2 

( -b; sin ka- - k cos ka-) 

b; + k2 

(A .7) 

to get finally 

r aw314 ;, . 
lo ~<P( s - a-)da- = ao V ~ B 1; cos ks+ B2; srn ks (A.8) 

with the coefficients 

(A .9) 
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Thus, one finally gets 

[( 
l - 2a ) 

+ wis + ais - k 
2 

ll'IC sin wt 

( 
l - 2a ) ] N A-k2 

+ wic + aIC + k 2 
ais cos wt L 

62 
' 2 

•=i '+ k 

[( 
l - 2a ) 

+ wis + a1s - k 
2 

a1c cos wt 

( 
1 - 2a ) ] N A -kb -

- WIG + aic + k--ais sin wt L 
62 

' '
2 

2 i=i i + k 
(A .IO) 
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Appendix B 

Extension of Isaacs Theory 

B. 1 General Theory for an Airfoil Pitching 

about an Arbitrary Axis with lnplane 

and Plunging Motion 

Ths derivation is made following that of Isaacs for constant and varying angle 

of attack about midchord [6, 7]. The purpose is to include the following 

extensions: 

• The location of pitch axis on the airfoil chord now is arbitrary. 

• Plunge motion is added as additional degree of freedom. 

• Pitch and plunge are thought to be a Fourier series including higher 

harmonics. 

Therefore the result is the general oscillating airfoil theory for incompressible 

inviscid flows while Theodorsens theory is restricted to a constant flow with­

out inplane motion and Isaacs theory excludes the above given degrees of 
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freedom. In order to identify where the additional degrees of freedom change 

expressions, Isaacs theory has to rederived carefully. 

Fig. 2.8 shows an airfoil pitching and undergoing fore-aft motion in a 

constant freestream of velocity Va. We have the following equation for the 

normal velocity distribution along chord (small angles assumed) 

Vn(x, t) = a(t)V(t) + (x - ai) a(t) + h(t) + Vn,w(x, t) (B.l) 

Here the velocity V(t) includes the freestream velocity Vo and the velocity 

imposed by the fore-aft motion. The terms -a(c/2)a(t) + h(t) have been 

added to the expression given by Isaacs in [7]. Eq. B.1 is a function of aJl 

variables like time, coordinate, frequency and amplitudes of motion . In order 

to simplify it , the variables have to be separated and the first variable to be 

eliminated is the coordinate x. 

B .1.1 Eliminating the Coordinate x 

The induced velocity of the wake (index w) behind the airfoil Vn,w(x, t), 

containing the shed vorticity, varies across the chord. At time T the shed 

wake vorticity has a strength that is given by the time derivative of the bound 

vorticity -I''(T)dT, so that in incompressible flow the induced velocity can 

be calculated using 

l it I''(T) 

Vn,w(x, t) = - 211" - oo (c/2- x) + [W(t)- W(T)]dT 
(B.2) 

Here W(t) is the distance travelled by the airfoil , so that dW(t)/dt = W'(t) = 

V(t). To simplify the derivation , one can use a coordinate transformation 

from x to an angular coordinate 0 , i.e. 

C 

x = -cos 0 
2 
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In addition, the denominator of Eq. B.l can be nondimensionalised by di­

viding by the airfoil semichord, c/2, as a reference length and separated into 

a part depending on the new coordinate 0 and another term containing a 

constant and time dependent part , i.e., 

l J_t I''( r) 

Vn,w(0, t) = -- W(t)-W(r) dr 

7rC -oo 1 + / - COS 0 
C 2 

(B.4) 

Defining the variable a1(t, r) as 

W(t) - W(r) 

(t ) = 1 + ------'----- > 1 
a1 , r c/2 

_ 
(B.5) 

the induced velocity is 

l lt I''(r) 

Vnw 0,t = -- -------'---'--dr 

' ( ) 1rc -ooa 1(t,r)-cos0 
(B.6) 

Expanding this into a Fourier series one obtains 

1 = ' 0 
( t' r) + f ,n ( t, r) cos n 0 

a1(t, r) - cos 0 2 n=l 

(B. 7) 

The Fourier coefficients are obtained from an integral evaluat ion : 

21,,. cosn0 
- ---d0= 

1r o a 1 - cos 0 

if a1 > 1 
(8.8) 

-2sinn0/ sin0 if -1 < a1 < l 

Therefore, from B.8 the coefficients in Eq. B. 7 are 

[a1(t ,r)- ja?(t,r)-1 r 
,n(t,r)=2 . /

2 ya1(t,r)-l 

(B.9) 

The induced velocity distribution can be replaced by a Fourier series 

b (t) 
00 

Vn,w(0, i) = _o_ + L bn(t) COS n0 

2 n=I 

(B.10) 
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and the coefficients of this series are found by comparison with Eq. B .6 to be 

l J_t 
-- I''(r hn(t, T )dr 

7rC -oo 

2/_t , [a1(t,r)-/ai(t,r) - 1r 

-- I'(r)------;::::===---C-dr 

7rC -oo /ar(t,T)-1 
(B.11) 

The airfoil is considered as a bound vortex sheet (index b) with unknown 

strength ,b(0, t). The self-induced normal velocity is given by 

Vn,b(e, t) = _!_ r 1b( <P, t) sin <P dqy 
21r lo cos 0 - cos </> 

(B.12) 

The nominator of Eq. B.12, as well as the self-induced velocity, can be written 

as a Fourier series 
00 

eo(t) + L Cn(t) cos nqy 

_!_ r n=l dqy 

21r lo cos 0 - cos </> 

eo(t) r l dqy + OO Cn(t) r cos nqy dqy 

21r lo cos 0 - cos </J f 21r lo cos 0 - cos </J 

d (t) 00 

T +]; dn(t) cos n0 
(B.13) 

Using the integral relation in Eq. B.8 for the calculation of the coefficients 

and a sequence of trigonometrical relationships, the relationship between the 

bound vorti city and the induced normal velocity coefficients are found to be 

n>O (B.14) 

It is necessary to satisfy the requirement of flow tangency on the surface of 

the airfoil. This means that the self-induced normal velocity equals the other 

contributions so that the net velocity normal to the airfoil surface is zero , 
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I.e., 

0 = a(t)V(t) + (x - a~) a(t) + h(t) + Vn,w(x, t) - Vn,b(x, t) (B.15) 

Putting into the Fourier series for the wake-induced velocity (Eq. B.10) and 

self-induced velocity (Eq. B.13), one obtains 

c · bo ( t) - do ( t) 
O = a(t)V(t) + 2(cos 0 - a)a(t) + h(t) + 

2 
00 

+ L)bn(t) - dn(t)] COS n0 
(B.16) 

n=I 

A comparison of the coefficients of Eq. B.10 and Eq. B.14 gives 

eo(t) 
C . 

b1(t) + b0(t) + 2a(t)V(t) + 2(1- 2a)a(t) + 2h(t) (B.17) 

CJ ( t) b2(t) - b0 (t) - 2a(t) V(t) + aca(t) - 2h(t) (B.18) 

c2( t) b3(t) - b1(t) - ~a(t) (B.19) 

Cn(t) = bn+1(i) - bn-1(i) n >2 (B.20) 

All terms with aa and h have been added to the expressions given by Isaacs 

[7]. The coefficient Co is found by invoking the Kutta condition at the trailing 

edge where the bound vorticity ,b( c/2, t) = 0. This and the fact that the 

Fourier coefficients bn -+ 0 for n -+ oo, implies that 

00 

eo(t) = - L Cn(t) (B.21) 

n=l 

and gives the result in Eq. B.17. The total circulation about the airfoil is the 

integral of the bound vorticity over the surface. In the following, the change 

of variable in Eq. B.3 is used, as well as a change in limits of integration 

I'(t) = r12 
1b(x, t) dx 

L c;2 
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1
0 C 

- 1'b(0, t)- sin 0 d0 
,r 2 

er 
2 lo 1b(e, t) sin 0 d0 

~ la,,,- [eo(t) + E cn(t) cos n0] d0 

7rC 

2 eo(t) 
(B.22) 

Setting the previous expression for eo(t) in Eq. B.17 into Eq. B.22 and using 

the coefficients bo(t) and b1 (t) given by Eq. B.11 , the expression for the 

circulation becomes 

7rC 
C 

• 

I'(t) = 2 [2a(t)V(t) + 2(1 - 2a)a(t) + 2h(t)] 

it , l+a1(t,r)-/a;(t,r)-1 

- r ( r )--------;::========-----dr 

-oo /a;(t , r)-1 

(B.23) 

and the local coordinate x has been eliminated from the aerodynamic prob-

lem. It remains an equation for the circulation as a function of itself to be 

solved. 

B.1.2 The Integral Equation for the Circulation 

Rearranging Eq. B.23 and resubstituting a1(t , r) from Eq. B.5 leads to 

1r
2
c[2a(t)V(t) + !:(I -2a)a(t) + 2h(t)]=I'(t) + f1 I''(r) [ a)t , 

7 j + 1 
- 1] dr 

2 
Loo a1 t , T - 1 

(B.24) 

For brevity, the left side of Eq . B.24 may be denoted as a time varying 

function g(t). 

t [ l + W(t)-W(r ) + l ] 

g(t) I'(t) + l oo I''(r) 1 + W(t)c!~(r) - 1 - 1 dr 

c/ 2 
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(B.25) 

With the substitution T = t - ,, dT = -d, the limits of integration change 

from , = t to T = 0 and from , = -oo to T = t + oo = oo. 

g(t) = I'(t) - j~ I''(t - T) [ ✓ W(t) _ ~(t _ T) + 1 - 1] dT 

= I'(t) + fo
00 

I''(t -T) [✓ W(t) _ ~(t -T) + 1 - 1] dT (B.26) 

A second transformation brings this into a more managable form. Denoting 

W(t) as an independent variable instead of time t, and therefore setting 

I'(t) = Q(W(t)) and I'(t - T) = Q(W(t - T)) = Q(X) with X = W(t - T) 

gives 

g(t) = Q(W(t)) + 1:(t) Q'(X) [ ✓ W(t)c- X + 1 - 1] dX (B.27) 

Now a third transformation is made, using J\ = W(t)-X, and again changing 

the limits of integration yields finally 

g(t) = Q(W(t)) + fo00 

Q'(W(t) - J\) [ ✓ ~ + 1 - 1] di\ (B.28) 

This is the sought after relationship between velocity, angle of attack and 

circu lation. If the circulation Q is given, then Eq. B.28 is a diITerential 

equation for W and a. If the latter are given, then Eq. B.28 is an in tegral 

equation for the circulation Q. By integration of the velocity, the distance 

travelled Wis known , and may be inverted to give t as a function of W. This 

can be subst ituted in g(t) so that the left side of Eq. B.28 also becomes a 

function of W. 
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By the same transformations one finds for the Fourier coefficients of the 

wake-induced velocity 

bn(t) = _2 / oo Q'(W(t) - J\) [a 2(J\) - Ja~(J\) - 1] n di\ 

1rc lo JaHA) - 1 
(B.29) 

where a2(J\) = l + 2J\/c. 

B.2 Periodic Fore-aft Motion 

Until now, no use has been made of a specific function for the velocity V(t) 

or the angle of attack variations a(t), or the plunge motion h(t). In rotary 

wing aircraft problems all the V, a, and h are periodic in time with a basic 

frequency w . In general the total velocity, consisting of a constant freest ream 

velocity Vo and a fore-aft motion Vx, can be written as 

Vx(t) 

V(t) 

V,, sin wt 

Vo(l + A sin wt) 

(8.30) 

(B.31) 

where A = Vx/Vo is the nondimensional amplitude of fore-aft velocity. There­

fore the distance travelled by the airfoil through the flow is 

W(t) = j V(t)dt = Vo (t - ~ cos wt) (B.32) 

and using the abbreviation in Eq. B.5, a1 (t , T) becomes 

2Vo [ ,\ ] 
a1(t , r) = 1 +-;;- t - T - ;:;(cos wt - coswr) ~ 1 (B.33) 

The left side of Eq. B.28 will also be periodic in time, and can be written, in 

general, as 
00 

00 

g(t) = L gn einwt = L gn ein,/1 (B.34) 

n=-oo n =-oo 
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with the nondimensional time variable 1/; that can be interpreted as the rotor 

azimuth. The circulation must also be periodic and therefore Q can be 

written as 00 

Q(W(t)) = L anein(w/V0 )W(t) (B.35) 

n=-oo 

Because Q has to be real, the coefficients will be a(- n) = an. Also 

dQ(W(t) - A) = Q'(W(t) - A) = f anin_:::_ein(w/Vo)(W(t)-A) (B.36) 

dW(t) 
n=-oo Vo 

B.2.1 Separating the Reduced Frequency Effect and 

the Freestream Amplitude Effect 

As known from Theodorsen 's theory the reduced frequency appears in Bessel 

functions as the argument. The same can be expected here for the reduced 

frequency k as well as for the freestream amplitude A. Inserting the series 

for the circulation into the integral equation of Eq. B.28 gives 

or 00 

A /n(w/Vo)W(t) 
n 

(B.38) 

n=-oo n=-oo 

with 

An lln { 1 + in~ fo
00 

e -in(w/Vo)A [ ✓ ~ + 1 - 1] di\} 

anRn 

(B.39) 

By defining the reduced frequency as 

(B.40) 
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Eq. B.39 becomes 

An = an { l + ink~ fo00 
e-ink(2

A/c) [ ✓ ~ + l - 1] dA} (B.41) 

From a comparison of the coefficients, it follows that 

~ 1 

Rn \JI (n 2~
) = \J!(nk) 

R(-n) 
(B.42) 

where Eq. B.42 results from the fact Eq. B.38 is real. The function \JI is 

a function of multiples of the reduced frequency. Here the transformation 

X = n(w/Vo)A with d>. = dA/[n(w/Vo)] is applied, thus 

/ 00 -[~ ] 
\J!(nk) = I+ i lo e-,A VT+ l - 1 dA (B.43) 

The coefficients An are obtained by multiplying both sides of Eq. B.38 by 

(1 + >.sin ¢)e-im(,J,,-.>.cos,J,,) and integrating from Oto 21r. The advantage is to 

use the following relationship in which we substitute K = ¢ - >.cos¢ with 

d¢ = dK/(I +>.sin¢) 

Therefore, 

n =/- 0 

Ao 
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m=n 

m =/- n 

( 8.44) 

(8.45) 

(B.46) 



The Jn-m are the we1l known Bessel functions, here with multiples of the 

nondimensiona1 amplitude of the fore-aft motion, ,\, as the argument. By 

this procedure the variables reduced frequency and freestream amplitude 

have been separated in form of the functions Rn(nk) and Jn-m(n,\). 

B.2.2 Periodic Angle of Attack and Plunge Motion 

Now the expression for the angle of attack as well as for plunge motion has 

to be introduced. Here, both are assumed to be a Fourier series; later only 

the I/rev component will be used . 

a(t) ao [ ll'.o + t ( O'.nS sin mp+ O'.nC COS mp)] (B.47) 

C oo - -

h(t) = 2aoI)hnssinmp+hnccosmp) 

n=l 

(B.48) 

The expression for the velocity was given in Eq. B.31 so that g(t) in Eq. B.25 

takes the form 

g( 1/;) = 1rc {2a0 Vo [ao + f ( ans sin n'l/; + cine cos n'l/; )] (l + ,\ sin 'I/; ) 

2 n=l 

(B.49) 
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A rearrangement leads to 

g(¢) = hVo { ao + ;a1s 
+ I a1c + k ( 

1 ~ 2a a1s + h1s) + ;a2sj cos¢ 

(
1 - 2a - ) ,\ 

+ .-\aO + a1s - k 
2 

alC + hlC - 2a2c sin¢ 

+ ~ [anc + nk (
1 ~ 2a O'nS + hns) +; ( O'(n+J)S - O'(n-J)S)] cos n'lj; 

+~[ans - nk (
1 ~ 2a O'nC + hnc) - ; (a(n+J)C - O'(n-1)c)] sin n'lj;} 

(B.50) 

where h stands for h = 1rca0 . The extension to arbitrary pitch axis location 

and plunge motion is to be seen in the terms with a, hns and hnc, al1 known 

from Theodorsen 's result. Basically g( ¢) is of the form 

00 

g( 1/)) = Go + I)Gns sin n'lj; + Gnc cos n'lj;] (B.51) 

n=J 

By comparison of Eq. B.38 with Eq. B.49 and 

9n + 9-n = Gnc } { 9n = (Gns + iGnc)/(2i) 

i(gn - 9-n) = Gns ---+ 9-n = (-Gns + iGnc )/(2i) 
(B.52) 

we find the coefficients 9n, n = -oo ... + oo to be 

9o = hVo [ao + ;a1s] 
(B.53) 

(B.54) 

9n 

= 9-n 
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It should be noted, that in [7] there was a typographical error, since it was 

stated there g1 = -g-1. With this, the coefficients A0 and An can be calcu­

lated (g1 - g1 = 2i lm(gi)), i.e., 

{ 
a1s.\ 

Ao = h Vo ao + -
2

-

-~ [-i (-'<>o + <>1s - ~(1 - 2a)<>1c - kh1c - t<>,c)]} 

= hVo { (1 + ~
2

) ao 
(B.56) 

+.\ [ &1s - ~(l - 2a)a1c - ;hie - ~a2c]} 

·n 

An = '!._h Vo(Hn + iH~) 
(B.57) 

n 

where the coefficients Hn are evaluated from Eq. B.45. In case of only 1/rev 

in angle of attack and plunge motion the sum in Eq. B.45 can be simplified 

using the well known relationship of the Bessel functions: 

(B.58) 

Here the sum in Eq. B.45 is only taken form = -2 tom= 2 since for larger 

m the coefficients 9m = 0. This is not the case when the input function of 

angle of attack or plunge contains a series of harmonics. 

In order to reduce the number of Bessel functions J to be computed here 

a short form of the coefficients Hn and H~ will be derived following Isaacs 

[7]. 

-2 -1 1 2 

~g- 2ln+2 + -. -1 g- i ln+J + ~g] ln-1 + -:-;;_g2Jn - 2 
z- z- z 7, 

2(g-2Jn+2 - g2Jn-2) - i(g_ifn+J + 91 Jn _i) (B .59) 
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Since the argument of the Bessel functions is always n-\, it is omitted. For 

conciseness set 9 1 = h Vo(A - iB)/2. Therefore 9(-l) = h Vo(A + iB)/2, as 

well as 92 = -hVo(C + iD)A/4, and 9(-2) = hVo(-C + iD)-\/4. Then 

(B .60) 

Now one uses the results 

2 
).Jn 

(B.61) 

2(n-l) [2(n+l) ] 

nA ln-1 - ln - nA ln+l - ln 

; [Jn- l - Jn+l - ~(Jn-1 + ln+i)] 

2 4 

).(Jn-l - ln+i) - Vn ln 
(B.62) 

; [ ln-l + ln+I + ~( ln+I - ln-l)] - 2Jn 

n~ (ln+I - Jn_i) + (A~ - 2) ln (B .63) 

It follows that 

(B.64) 

H' n (B.65) 

However, this is only useful, when there is only a 1/rev in angle of attack 

and plunge under consideration. In that case the result after substitution of 
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A= .\ao+a1s-(k/2)(1-2a)aic-khic, B = aIC+(k/2)(1-2a)a1s+kh1s, 

C = &1s and D = a1c is finally 

(B.66) 

(B.67) 

Comparing to Isaacs [7] the brackets indude more terms now because of the 

influence of pitch axis location and plunge motion. Now from an = An/ R,, 

it follows that 

ao 

w(nk) 

(B.68) 

(B.69) 

and from Q(W) the circulation can be calculated. It must be noted, however, 

that this reduction can take other forms if the angle of attack and plunge 

motion contains a series of harmonics, like in a dynamic response problem. 

Then Eq. B.45 has to be written 

in 00 m 

An= - L -. 9mJn-m 
n m=-oo zm 
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and the coefficients Gms and Gmc are given in Eq. B.50. 

The fore-aft motion is restricted to I/rev only since a series of harmonics 

in V(t) will lead to a series of harmonics in W(t), and this leads to additional 

complications in solving the integral Eq. B.28. 

Using the formulas for the case of plunge motion one must be aware 

of the small desturbance and small angle assumpt ion. Especially at high 

amplitudes of fore-aft motion (,\ slightly smaller than 1) even a small vertical 

velocity produces great angles of attack and probably violates the small angle 

assumption. Therefore one must carefully check the conditions of airfoi l 

motion before applying this theory. 

B.3 Calculation of the Lift 

The total lift consists of circulatory and noncirculatory parts. Following 

Isaacs in [6] it is split up into a "Joukowsky" lift LJ and an "impu lsive 

pressure" lift L1, i.e., 

L(t) LJ(t) + L1(t) 

d r/2 (c ) 
pV(t)I'(t) + p dt j_c/

2 
"/b(X, t) 2 - X dx 

d 
pV(t)I'(t) + p dt I(t) 

oo 
d 

pV(t) L aneink(2W(t)/c) + p dt J(t) 

n=-oo 

(B. 71) 

where the integral J(t) is 

c / c/2 / c/2 
I(t) = - ,b(x, t)dx - ,b(x, t)x dx 

2 - c/2 - c/2 
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C C2 r 
= 2I'(t)- 410 rb(</;,t)sin</;cos</;d</; 

- ~I'(t) - :
2 

fo1r [eo(t) + f cn(t)cosn</;] cos</; d</; 

C 7rC
2 

= 2r(t) - 8 c1(t) 
(B.72) 

Using the expression for c1 (t) from Eq. B.18, as well as those for b2(t) and 

bo(t) from Eq. B.11 

-2a(t)V(t) + aca(t) - 2h(t) 

_ _ 21t f' ( 
7

) [-=--[ a1_( t_, r )-=-=✓=a;=(-t, =-r_) _----=--1 r _ ---;::::::==l =] dr 

7rC - 00 Jaf(t, r) - 1 Jar(t , r) - 1 

= -2a(t)V(t) + aca(t) - 2h(t) 

41t , ai(t, r) -1 - a1(t, r)Ja;(t, r) -1 

-- f (r)------;:::===---dr 

1rc -oo 
Ja;(t, r) -1 

-2a(t)V(t) + aca(t) - 2h(t) 
(B .73) 

+-±-it I''(r)[a1(t,r)-Ja;(t,r)-l]dr 

7rC -oo 

Resubstituting a 1 (t, r) from Eq. B.5 gives 

C 7rC
2 7rC

3 7rC
2 • 

I(t) = 2r(t) + 4
a(t)V(t) - a8

a(t) + 4
h(t) 

-~11 I''(r) [1 + W(t)- W(r) - ~[1_+_W-(t)---W-(-r)-]2 ___ 1] dr 

2 -oo 
c/2 

c/2 
(B. 74) 

Now the same transformation is made as in passing from Eq. B.25 to Eq. B.28. 

Here, A= W(t) - W(r) with Q'(W(r)) = Q'(W(t) - A), and this results in 

J(t) = 7rC

2 

[a(t)V(t) - a~a(t) + h(t)j + ~Q(W(t))- (B .75) 

4 
2 2 ______ _ 

-Hoo Q'(W(t) - A) [I+ 2CA - /[I+ 2: r -I J dA 
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By use of the series expansion for the circulation in Eq . B.35 it foilows that 

I(t) = 

The S-function in Eq. B. 77 is given by 

So = O 

(B. 76) 

(B . 77) 

(B . 78) 

(B. 79) 

Replacing the distance travelled by Eq . B.32 and making the deri vation with 

respect to time, i.e., 

~ {eink(2W(t)/c)} = inweink(2W(t)/c>(l +,\sin 1P ) (B .80) 

the lift contribution L1 becomes 

L1(t) = p 7r:
2 

[ a(t)V(t) + a(t)V(t) - a¥a(t) + h(t)] 

00 

+p.: L aninw[l - iSn] / nk(2W(t)/c)(l +,\ sin 1/; ) 

2 n=-oo 

p 1r;
2 

[ a(t)V(t) + a(t)V(t) - a¥a(t) + h(t)] (B .81) 

00 

+pV(t) L anink[l - i Sn ]e•nk(2W(t)/c) 

n=-oo 
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Now the total lift becomes 

2 

L(t) = p1r: [a(t)V(t) + a(t)V(t) - a~a(t) + h(t)] 

00 

(B.82) 

+pV(t) L an[l + nk(Sn + i)]/nk(2W(t)/c) 

n=-oo 

Here an has to be replaced by An/ Rn, and the following function is encoun­

tered 
1 + nk[Sn(nk) + i] = { 1 

Rn(nk) C(nk) 

n=O 
n>O 

(B.83) 

C( nk) is the well known Theodorsen function with multiples of the reduced 

frequency as the argument, i.e., 

C(nk) = 
1 + nk[((nk) + i] 

\J!(nk) 

n?>(nk) 

nl2>c nk) + iHJ
2>c nk) 

J1(nk) - iYi(nk) 

J1 (nk) + Yo(nk) + i[Jo(nk)- Yi(nk)] 

F(nk) + iG(nk) 
(B.84) 

The )-functions are Bessel functions, Y are Weber functions, and H are 

Hankel's cylinder functions that are built up from Bessel and Weber fun c­

tions. The lower index gives the order and the upper index the kind of the 

appropriate function, see for example [39]. Since L has to be real we have 

C(-nk) = C(nk). Thus the lift takes the following form 

L(t) = pV(t) [Ao+ L AnC(nk)e'nk(ZW(t)/c)] 

n;iO 

+p 1r;
2 

{a(t)V(t) + a(t)V(t) - a~ii(t) + i~(t)} 
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2 {( ,\

2

) _ [- k (l - 2a _ - ) ,\ ]} 

ph"Vo 1+ 2 ao+A a1s- 2 2 
a1C+h1C - 4

a2c 

x (1 + ,\ sin 1jJ) 

~c2 { 
00 

[ 

+p4 w Voao f n ( ans cos n?jJ - &nc sin n?jJ )(I +,\sin 1P) 

+ nk [a( &ns sin n?jJ + &nc cos n?jJ) - hns sin n?jJ - hnc cos n?jJ]] 

+A cos 1P ( ao + f G'nS sin n?jJ + G'nC cos n?jJ)} 

+pV(t) L AnC(nk)e•nk(2W(t)/c) 

n;iO (B.85) 

Now, the last term in Eq. B.85 can be viewed in terms of a Fourier series 

00 

p Vo(l + A sin 1/)) L An C ( nk )eink(2W(t)/c) = ph "Vo2 L (/m cos m?jJ + !~ sin 1jJ) 

n;eO 
m=I 

(B.86) 

and after defining a steady lift for the mean velocity and the mean value of 

the angle of attack as 

(B.87) 

the nondimensionalised unsteady lift finally becomes 

+ -aJC + k(aa1s - his) - 2a2s sin 1P 
~:c -g { /-'<>o + <>1s + k( ai>1c - ~,c) -f ",ci cos 1P 

+ ~ n [ O'.nS + nk(aanc - hnc ) + t ( O'.(n - J)C - O'.(n+l)C)] cos n?jJ 

+ t, n [-a.c + nk( a<>.s - h.s) + ; ( <>tn-1Js - <>tn+1JS)] sin n,j,} 

(B.88) 
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{ ( 
--\

2

) _ [ - k (1 - 2a _ _ ) ,\ ]} 

1 + 2 ao + ,\ a1s - 2 2 
aic + h1c - 4

a2
c 

x(l +,\ sin ¢ ) 

(B.89) 

00 

+ L ( lm cos m?j, + 1:,, sin m?j,) 

m=l 

with ¢=wt and 

m 
00 

{ 

lm +ii:,,= -2im E Fn[ln+m(n--\) - Jn-m(n--\)] (B.90) 

+ iGnfJn+m(n--\) + ln-m(n--\)]} 

and (B.91) 

with Hn and H~ defined before in Eq. B.57 and Eq. B.45. 

H ·n' ~ I 91 ( ) 

n + Z n = L.,, i} h Vr ln-1 n,\ 
i=-oo O 

(B.92) 

As mentioned before, the formula for Hn and H~ is not valid in case of 

higher harmonic motion in pitch or plunge. If these are under considerat ion , 

Eq. B.57 has to be used instead. 

This result is built up similarly to that of Isaacs in [7] , but includes 

several additional terms of noncirculatory and circulatory nature originating 

from the additional degrees of motion included here. It should be noted that 

the derivation is given here also for the inclusion of higher harmonics in angle 

of attack and plunge motion. For the best of my knowledge that was never 

given before. In the case of only I/rev components in velocity and angle of 

attack, no plunge motion (hnc = hns = 0) , pitch about midchord( a = 0) 

this result reduces to that of Isaacs in [7] . In the case of ,\ = 0 it reduces 

identically to Theodorsen 's result as required. 
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Appendix C 

Arbitrary Airfoil Motion 

Unsteady Freest ream 

• 1n an 

In incompressible flow the circulatory lift is determined from the normal 

velocity at 3/4 chord of the airfoil, while the noncirculatory lift is the result 

of the instantaneous local accelerations. Thus the total lift is 

L = 1rp :
2 

[h(t) + V(t)a(t) + V(t)a(t)- a~a(t)] (C.l) 

+21rpV(t)~ [w3; 4 (0)</>(s) + fo
3 owJ;(<J) </>(s - <J)d<J] 

where </>( s) is the lift deficiency function for the lift, s the way travelled by the 

airfoil (in half chords as unit) and w3; 4(t) the instantaneous value of normal 

velocities at the three quarter chord point. The indicial response function </> 

is exactly the Wagner funct ion , but since this is a very difficult function it 

is much more conveniant to replace it by one of its common approximations. 

These can be written in form of a series of exponential functions 

N 

</>( S) = L A,e6•s 
(C.2) 

i=l 
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The following degrees of freedom are encountered by the airfoil: 

V(t) Vo (1 +,\sin wt) 

a(t) 

h(t) 

ao (ao + a1ssinwt + CTJC cos wt) 

ao~ (h1ssinwt + h1ccoswt) 

The normal velocity at 3/4 chord can be obtained from Fig. 2.8 

• C 1 - 2a 

W3;4(t) = V(t)a(t) + h(t) + 2 2 a(t) 

aoVo { ao + ;a-1s + [aJC + kv (1 ~ 2a ci1s + h1 s)] cos wt 

+ [ .\ao + ci1s - kv ( 
1 ~ 2a O'JC + hlC)] sin wt 

,\ 
,\ } 

- 201s cos 2wt + 2a1c sin 2wt 

(C.3) 

ao Vo ( Co + CIC cos wt + c1s sin wt + Czc cos 2wt + c2s sin 2wt) 

and therefore the derivative ow3;4( r7 )/ Or7 with wt = kvr7 becomes 

OW3;4( r7) 

0(7 

Now the integral is 

(C.4) 

/5 Ow3;4(r7) 
N /9 

lo Or7 ¢>( s - r7 )dr7 = ao Vokv L,. __ 

1 

Aii •s lo ( c1s cos kvr7 - c1c sin kvr7 

+2c2s cos 2kvr7 

-2c2c sin 2kvr7) e-b,,, dr7 
(C.6) 

and the kernel integrals are already given in Appendix A. After sett ing in 

the upper and lower limits of the integral one finds 

is ( c1s cos kvr7 - c1c sin kvr7 + 2c2s cos 2kvr7 - 2czc sin 2kvr7) e-b,,, dr7 
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Also , the product of normal velocity at time zero with the indicia / response 

fun ct ion </>( s) has to be evaluated. 

N 

WJ/4(0)</>(s) = ao Vo (Co+ c,c + C2c ) L A,eb, s 
l= l 

(C.8 ) 

Now one introduces the actual values of the approximation of the indicia l 

response function to take advantage of their characteristics. The va lues for 

the commonly used approximation by Jones a re listed in Table 2.4. Al/ the 

values of b, are negative except b1 = 0. Therefore, as time takes very big 

values, the exponential function approaches zero for al/ i > 1 and this mean s 

tha t all initi al transient processes have died out . Th a t is the case we a rc 

interested in and therefore the bracket in the governing equa tion for the Jift 

becomes 

[ 
f9 Ow3;4(cr) ] 

W3;,,(0 )</>(s ) + lo ocr </>(s - cr)dcr 

(C.9) 
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Herein the way travelled by the airfoil s is 

1 it ,\ 
s = 12 

V(t)dt = s - - coskvs 

c o kv 
(C.10) 

withs as the mean value, given by tVo/(c/2). As is easy to see, there ap­

peares a trigonometric function inside another trigonometric function and 

this is more difficult to handle. Also, this happens only, when the flow os­

cillation amplitude ,\ > 0. When ,\ = 0 the case of constant freestream 

velocity is represented and the results can easily be shown to be identical to 

Theodorsen 's results, when using the identity C ( k) = F( k) + iG( k) with 

F(nkv) 

G(nkv) = 

00 A;(nkv)2 

~ b; + (nkv )2 

_ f A,(nkv )b; 

i=l b; + (nkv )2 

(C.11) 

Normally the sum is cancelled after the first few terms and therefore small 

inaccuracies are implicitly build in. Then it is better to differentiate between 

the exact values of the Theodorsen function and those obtained by a finite 

series approximation, denoted by a · here. 

F(nkv) 

G(nkv) 

£ 2A,.(nkv )\ ~ F(nkv) 

i=l b; + (nkv) 

_ 0 A;( nkv )b; ~ G( k ) 

{;;: b; + (nkv )2 ~ n v 
(C.12) 

The expression for the circulatory lift (made nondimensional by the lift of 

mean velocity and mean angle of attack) becomes 

(1 + sin kvs) [eoA1 + ( F( kv )cJC + G( kv )c1s) cos kvs 

+ ( F( kv )c1s - G( kv )c1 c) sin kvs 
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+ ( F(2kv )c2c + G(2kv )c2s) cos 2kvs 

+ ( F(2kv )c2s - G(2kv )c2c) sin 2kvs} 

2 

= (1 + sin kvs) L Cneinkvs 

(C.13) 

n=-2 

with the complex amplitudes 

Co eoA1 

C1 t [Pc kv )c1c + G( kv )c1s - i ( F( kv )c1s - G( kv )c1c)] = C_1 

C2 ~ {.fr(2kv )c2c + G(2kv )c2s - i (.fr(2kv )c2s - G(2kv )c2c)} = C_ 2 

(C.14) 

Now, since cos nkvs and sin nkvs are periodic functions with period 21r, but 

with a periodic argument nkvs, they can more conveniantly be written in 

form of a Fourier series with an infinite number of harmonics, 1Javing the 

argument mkvs. The difficulty is to identify the coefficients of these Fourier 

series because they contain Bessel functions, as will be shown. In general, 

the complex Fourier series will be of the following kind 

2 
2 

00 

~ C inkvs _ ~ C inkv s -in,\coskvs _ ~ D eimkvs 

L...., ne - L...., ne e 
- L...., m 

(C.15) 

n=-2 
n=-2 

m=-oo 

and the coefficients Dm are calculated by multiplying both sides with e-imkv s 

and integrating over the period of 21r. The variable of integration is 1P = kvs. 

(C.16) 

By use of the integral form for the Bessel functions 

(C.17) 
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that can be found in [40) on page 149, we find 

2 

Dm = L Cni(n- m) ln-m (- n>.) 
n=- 2 

Rearranging, this is 

(C. 18) 

im {ifC- 1lm+1(>.) + (-1rC1lm- 1(>.)] 

-C-2lm+2(2>.) - (- 1 r c2 l m-2 (2>.)} 

(C. 19) 

m > O (C.20) 

Now the circulatory lift becomes 

00 

(1 +>. sin ¢ ) L Dm (cos m¢ + isin m ¢ ) 
m=-oo 

= 
~ { , sin(l - m)¢ + sin (l + m )¢ 
~ Dm cos m?p + A 

2 m=-oo 

. [. ). cos(l - m)¢- cos(l + m)¢ ] }cc ) +z sm m ¢ + 
2 

.21 

Now we can use two propert ies of complex Fourier series coeffi cients, th a t is 

D_m = Dm and D0 = real. With this we can rewrite the expression for the 

lift 

Le = Do(l +>. sin ?p ) 
lo 

00 

+ L 2R(Dm) [2 cos m ¢ + >. sin(m + l )v!, - >. sin(m - l)1p) 
m=l 

00 

m= l 

(C.22) 

A furth er substitution brings the expression into the sought form . Set M = 

m+l -+ m = M - landm = l ---+ M =2. A1so, set N = m - J ---,m = N+ I 
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and m = 1 ---t N = 0. Thus 

00 

+). L [2R(DM_i) sin M¢ + C:S(DM-i) cos M¢] 

M=2 
00 

-A L [2R(DN+i) sin N¢ + C:S(DN+i) cos N¢] 
N=O 

= Do - ).C:S(Di) 

+ [22R(D1 ) - ).C:S(D2)] cos¢+[). [Do - 2R(D2)] - 2C:S(D1 )] sin ¢ 

+ f, {[22R(Dm) +). (C:S(Dm-1 - Dm+1)] cos m¢ 

+ [- 2C:S(Dm) + ).2R (Dm-iJ - Dm+i)J sin m¢} (C .23) 
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