

ABSTRACT

Title of Document: A COMPARISON BETWEEN AN ORIGIN

BASED METHOD AND A NONLINEAR-
COMPLEMENTARITY BASED METHOD
FOR SOLVING THE TRAFFIC
ASSIGNMENT PROBLEM

 Rafael E. Olarte

M.Sc. in Civil and Environmental Engineering
2009

Directed By: Ali Haghani, Ph.D.

Chair of the Department of Civil and
Environmental Engineering

This thesis compares Bar-Gera’s Method and Aashtiani’s Method for solving the
static traffic assignment problem with fixed demand. Specifically, it compares the
computational time spent by their corresponding algorithms in thirteen networks
based on real cities. It also verifies whether the assumptions made by both methods
and the data used allowed such a comparison. To implement Aashtiani’s algorithm, a
computer code was appropriately designed. To implement Bar-Gera’s algorithm, a
non-open source application was used. Numerical results showed mixed results but
still showed the following trends: (1) Aashtiani’s algorithm seems to be faster when
solving complex networks, (2) Bar-Gera’s algorithm is almost always faster for very
high levels of accuracy while Aashtiani’s algorithm is faster for lower levels of
accuracy, and (3) Bar-Gera’s algorithm almost always increases its speed consistently
as more accuracy is demanded. Numerical results also showed that for small networks
(specifically, when the number of arcs times the number of links is less than 107),
both algorithms spent practically no more than one second, rending these networks
not recommendable for carrying out future comparisons. As expected, Bar-Gera’s
method required less memory. This thesis also presents a unified terminology for both
methods and adapted Aashtiani’s formulation to this specific problem.

A COMPARISON BETWEEN AN ORIGIN BASED METHOD AND A
NONLINEAR-COMPLEMENTARITY BASED METHOD FOR SOLVING

THE TRAFFIC ASSIGNMENT PROBLEM

By

Rafael E. Olarte

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2009

Advisory Committee:
Professor Ali Haghani, Chair
Professor Gang-Len Chang
Professor Paul Schonfeld

© Copyright by
Rafael E. Olarte

2009

ii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION ... 1

Motivation and Background ... 1

Literature Review.. 5

Scope ... 8

Organization .. 9

CHAPTER 2: DESCRIPTION OF THE TWO METHODS 11

Notation... 11

Formulations ... 13

Beckman’s transformation .. 14

Aashtiani’s formulation .. 15

Algorithms .. 15

Bar-Gera’s Algorithm ... 15

Aashtiani’s Algorithm ... 18

Discussion on the Assumptions Required by both Methods 20

Discussion on the Data Structures Recommended for the Implementation 21

CHAPTER 3: COMPARATIVE RESULTS ... 24

Software and Data Sources ... 24

Procedure for Comparing both Methods ... 27

Numerical Results ... 34

Analysis... 76

CHAPTER 4: CONCLUSION .. 80

APPENDIX: THE TWO METHODS IN DETAIL .. 84

Definitions and Notation ... 84

Formulations ... 89

iii

Beckman’s transformation .. 90

Aashtiani’s formulation .. 91

Algorithms .. 93

Bar-Gera’s Algorithm ... 93

Aashtiani’s Algorithm ... 109

BIBLIOGRAPHY ... 117

 1

CHAPTER 1: INTRODUCTION

The traffic assignment problem (TAP) is a classical problem in the field of
transportation. Primarily, it interests decision makers when planning changes in a
municipal street network. There are several versions of the TAP. This thesis focuses
on the static TAP with fixed demand (S-TAP-F). The objective of this thesis is to
compare two methods used for solving this type of problem based on numerical
results obtained from thirteen city networks. Each method comprises a model –a
manner in which the problem is conceived– and an algorithm –the sequence of steps
used to solve that model–. In the first method, Beckman, McGuire and Winsten
conceived (1956) the model and Bar-Gera (1999) proposed the algorithm. This thesis
will refer to this first methodology as “Bar-Gera’s method”. In the second method,
Aashtiani (1979) conceived both the model and the algorithm. Although Toobaie
(1998) would later enhance the algorithm by improving the original data structures,
this thesis will simply refer to this second methodology as “Aashtiani’s method”.

Three reasons explain why comparing both techniques is important. First, several
authors recognize the effectiveness of Bar-Gera’s method (Boyce, Mahmassani, and
Nagurney 2005, p. 89) but nobody has yet compared it against Aashtiani’s method.
Second, Aashtiani’s method uses an “asymmetric model” which, like other models of
this type, is attractive for being able to solve a wider range of versions of the TAP,
but have not reached popularity among practitioners because, as argued by some
authors (Patriksson 1994, p. 34), they are more difficult to calibrate in practice.
Therefore, if this thesis shows that Aashtiani’s method generates similar results to
Bar-Gera’s, practitioners might acquire a revived interest in shifting towards
asymmetric models. Finally, a recent comparison among almost any type of method
is, in general, well received by the academic community due to (1) the continuous
developments in computer technology, (2) the advancements in collection of data,
and (3) the increasing size of the networks solved. This thesis takes into account these
three trends by using (1) current computer technology, (2) an extensive number of
networks representing real cities, and (3) networks of very different sizes.

Motivation and Background
Decisions related to transportation tend to be a priority for public officials. Examples
of these decisions include constructing or widening roads, charging car users with
tolls, reallocating traffic lights, adding new bus lines or adopting a new mode of
transportation for a city. Some decisions are related to transportation but also reach
other aspects such as the environment and the welfare of a community. As in any
decision process, public officials need adequate information. Most of this information
comprises specific quantifiable data. Sheffi (1985, p. 3) refers to these data as
“measures of interest” and classifies them into four types as shown on Table 1-1.

 2

Type Measure of interest Transportation Decisions
Level of
service
measures

Travel time and travel cost (of passing by a
street segment)

Constructing or widening roads
Charging car users with tolls
Reallocating traffic lights
Adding new bus lines
Adopting a new mode of
transportation
Providing cheaper transportation by
reducing transit fees or giving easier
access to some neighborhoods.
Charging vehicle users in order to
reduce pollution

Operating
characteristics

Revenues and profits (collected from tolls
or from a public transportation fee)

Flow by-
products

Exhaust emissions
Changes in land values

Welfare
measures

Accessibility measures
Equity measures

Table 1-1. Types of measures of interest, as suggested by Sheffi (1985), and examples of
transportation decisions that require these measures.

Every measure of interest serves in almost every decision process. For example,
exhaust emissions not only allow public officials to determine tax increases on
gasoline but also the adoption of new bus lines or the restriction in the use of some
streets. From the time that it takes a vehicle to travel across a street to how much of a
change in value would a new road generate, these measures of interest comprise a
long list. But what is striking about this apparent myriad of data is that they all share a
common feature: calculating them is only possible if the traffic flow of the network,
that is, the number of vehicles that pass through all the streets in a period of time, is
known beforehand. As shown in Figure 1-1, knowing the traffic flow (or just the
flow) allows the subsequent calculation of measures of interest by feeding different
types of problems such as environmental models, link performance functions, and
other types of mathematical computations.

Figure 1-1. How the traffic assignment problem is a pivotal step for calculating the measures of
interest.

Problems OutputsProblem Output / Input Inputs

Infrastructure

Policies

Demand

Traffic
Assignment

Problem
Traffic Flow

i.e. Link
Performance

Functions
Level of service

measures

Operating
characteristics

Flow by-products

Welfare
measures

i.e. Cost
Calculations

i.e. Environmental
Models

i.e. Welfare
Models

 3

This thesis distinguishes three types of flow. The term total link flow will refer to the
number of vehicles that pass through a link, that is, a street bounded by two street
intersections (or other points of interest). The term origin-based link flow will refer to
the number of vehicles that pass through a link but share a common origin. The term
route flow will refer to the number vehicles that start at the same origin, pass through
the same links and end in the same destination. Figure 1-2 shows the relationships
between total link flows, origin-based link flows and route flows. Arrows of the same
color indicate the links that belong to the same route.

Figure 1-2. Difference between total link flow, origin-based link flow and route flow. The values
shown below the brackets correspond to flows measured on link 34.

The different degrees of complexity needed in the measures of interest require the
calculation of different types of flows. For example, route flows allow more detailed
values because they specify the flow at every route. Total link flows on the other
hand, are aggregated values that do not allow complex calculations. Route-link flows
offer several advantages such as allowing (1) more accurate pollution models, (2)
more consistent models for determining fees on users and (3) flexibility in scaling
solutions (Bar-Gera 1999, p. 11-12). Origin-link flows fall in the middle in terms of
complexity.

Finally, the reader can observe in Figure 1-1 that the traffic flow is the result of
solving the traffic assignment problem (TAP). Strictly speaking, solving the TAP
requires using many inputs regarding the infrastructure (roads, capacity of the roads,
intersections, transit lines and interaction with other modes such as light rail and
subways), the operating and control policies (traffic lights and traffic signs, tolls) and
the demand (from which origin to which destination users need to travel).
Nevertheless, this thesis will consider only four inputs and also, it will focus in the S-
TAP-F, a narrower version of the TAP. The S-TAP-F can be defined as the follows:

Origin
Nodes

Destination
Nodes

4 veh/h
2 veh/h

3 veh/h
2 veh/h

4 veh/h

1

2

3 4

5

6

7

Route flow25 =2 veh/h Route flow26 =3 veh/h Route flow27 =4 veh/hRoute flow16 =4 veh/h

Origin-based link flow 1 = 6 veh/h Origin-based link flow 2 = 9 veh/h

Total link flow = 15 veh/h

Route flow15 =2 veh/h

 4

Given
 (1) a street network,
 (2) an origin-destination matrix (or the demand),
 (3) the link performance functions, and
 (4) assumptions on the behavior of vehicle drivers,
determine
 the flow, for a specific period of time.

The above definition does not specify whether the problem requires determining total
link flows, origin-based link flows or route flows. Unless specified, solving the S-
TAP-F can mean obtaining any of them. The specific period of time refers to the
hours of a particular day for which the problem needs to be solved and in which the
flows can be assumed to be constant. Examples of typical periods of time are (1) from
6:00 am to 8:00 am on weekdays for a city with traditional rush hour patterns, (2)
from 6:00 am to 6:00 pm on weekdays for a small town without traffic congestion, or
(3) from 6:00 am to 6:30 am on Mondays for a city with high levels of congestion.
When traffic patterns change within very small periods of time or in very
unpredictable manners, solving the S-TAP-F becomes inappropriate. In such cases,
other types of TAPs such as the “TAP with elastic demand” or the “dynamic TAP”
become the proper problems to solve.

Figure 1-3 shows in more detail the four inputs required for solving the S-TAP-F.
The graph (a mathematical concept brought from graph theory), refers to the set of
links and nodes that represent the actual street network. The origin-destination matrix
(or OD matrix) indicates the origins where users start their trips and it indicates their
final destination. The OD matrix also provides the demand or trips, that is, how many
vehicles per unit of time need to travel from an origin to a destination during the
period of time considered. The static TAP with fixed demand is named as such due to
the fixed values, not variables, that the OD matrix contains. The link performance
function refers to how travel time (or travel cost) evolves on a link as this link gets
more congested with vehicles. Finally, the fourth input corresponds to the
assumptions regarding how vehicle drivers choose their routes. This thesis will follow
the widely accepted assumption that (1) drivers will choose the route that minimizes
their time (or the cost) to arrive to their destination and that (2) they have access to all
the information needed to make that choice (this thesis does not consider so-called
“system-optimum” models).

 5

Figure 1-3. Examples of the inputs needed for solving the S-TAP-F.

Literature Review
Prior to the appearance of any model that could describe the TAP mathematically,
Wardrop (1952) proposed a “principle”, that is, a condition that any traffic flow
should satisfy in order to be considered a legitimate solution to the TAP (he actually
proposed two principles but the second one is not within the scope of this thesis). This
condition, widely known as Wardrop’ first principle, states that the time spent by
travelers on their chosen routes should be equal or less than the time spent if they
were using any other routes. This principle was later transformed by Prager (1954)
into a mathematical model. As with the first models of the 1950s, it is an optimization
problem composed of an objective function and a set of constraints. He derived his
model from comparing traffic flows with electrical currents. Nevertheless, his
assumptions (according to Patriksson 1994, p. 34) were too restrictive to be useful.
The real breakthrough came soon after with the work of Beckmann, McGuire and

Input 1
Graph

Input 2
OD Matrix

Input 3
Link Performance Function

Input 4
Assumptions on the

driver’s behavior

Destination Nodes

4 6 8 11 13

O
rig

in
 N

od
es

 2 31 veh/h 10 veh/h 10 veh/h 30 veh/h 45 veh/h
3 27 veh/h 2 veh/h 30 veh/h 30 veh/h 7 veh/h
5 13 veh/h 10 veh/h 6 veh/h 30 veh/h 48 veh/h
9 38 veh/h 15 veh/h 30 veh/h 4 veh/h 11 veh/h
14 9 veh/h 18 veh/h 40 veh/h 10 veh/h 20 veh/h

flow [veh/min]

tim
e

[m
in

]

capacity

Drivers choose the route that
minimizes the time (or cost) to
arrive to their destination. To
make this choice, drivers have
access to all the information
needed.

link

node

2
3

7 6 5

1

26 27 28

29

4

30 31 32 33

34 35 36 37 38

39 40 41 42 43

44 45

46 47
48 49

12 13 14 15 16

8

18 17
19 20 21 22 23

24 25

9 10 11

 6

Winsten (1956). Their book, “Studies in Economics of Transportation”, was the first
to translate successfully Wardrop’s first principle into a rigorous mathematical model
widely known today as Beckmann’s transformation (Boyce, Mahmassani, and
Nagurney 2005, p. 81; Sheffi 1985, p. 61). Originally, Beckman’s transformation was
a model for the static TAP with elastic demand but (as mentioned by Patriksson 1994,
p. 36) Dafermos was the first person to simplified it for the S-TAP-F (Dafermos
1968; Dafermos and Sparrow 1969). Nevertheless, the book does mention examples
when the demand is fixed (see Boyce, Mahmassani, and Nagurney 2005).

A second generation of models, known as asymmetric models, appeared during the
1970s. Contrary to the first generation, asymmetric models are not optimization
problems in the classical sense. They are mathematical problems of other nature that
include “complementarity problems”, “variational inequality problems” and “fixed
point problems”. They consist in finding a (and not the best) solution that complies
with a set of constraints. Usually this solution is unique. But these problems do not
have an objective function. As with the previous optimization models, they are based
solely on Wardrop’s first principle. The main advantage of these asymmetric models
is that they have a wider application because they allow travel costs to be “non-
separable”. In other words, the travel time on each link is not a function solely of the
link but of any subset of links. In consequence, these models allow more realistic
scenarios. For example, links that share a common intersection have travel times that
are interrelated. Another example is the relation of the travel time of traffic traveling
on opposite directions within the same link. Nevertheless, these more realistic
scenarios are more difficult to construct and to translate into adequate performance
functions. As a result, practitioners and software companies tend not to use
asymmetric models. The historical appearance of these models is as follows. Sender
and Netter (1970) and Asmuth (1978) formulated the S-TAP-F as a fixed point
model. Smith (1979) presented a formulation that later, Dafermos (1980) recognized
as a variational inequality problem. In the same year, Aashtiani (1979) proposed his
nonlinear complementarity problem.

Figure 1-4 describes the classification of the five models mentioned above as well as
their major contributors. Beckman’s transformation and Aashtiani’s nonlinear
complementarity model are the two models of concern for this thesis since they are
part of Bar-Gera’s and Aashtiani’s methods. Figure 1-4 also shows that the five
models correspond to formulations of Wardrop’s first principle and do not include
other conditions that might be also important (for a further discussion see Patriksson
1994, p. 58-60).

 7

Figure 1-4. Classification of models for formulating the TAP.

Patriksson (1994, p. 105) suggests that although the number of algorithms used for
solving the above models is extensive, almost all of them are based on one or on a
combination of the following mathematical concepts: partial linearization,
decomposition and column generation. For solving Beckman’s transformation, the
most widely used is the Frank-Wolfe algorithm (Frank and Wolfe 1956) which uses
partial linearization. Its original purpose was to solve quadratic optimization
problems but then, LeBlanc, Morlok and Pierskalla (1975) and later, Nguyen (1976)
made this algorithm popular by applying it to the TAP. The Frank-Wolfe algorithm
became the basis for popular software such as UROAD-UTPS (Ruiter 1974),
TRAFFIC (Nguyen and James 1975), EMME/2 and EMME/3 (INRO 2008). Its main
drawback is its slow convergence which prompted further research in trying to
ameliorate this characteristic (for a review of these contributions, see Patriksson
1994, p. 102-104).

Another way to classify the algorithms used for the TAP is according to the type of
flows that they provide (recall Figure 1-2). Therefore, there are total link flow
algorithms, origin-based link flow algorithms and route link algorithms. Total link
flow algorithms require the least amount of data storage. Route flow algorithms are
the most expensive in terms of data storage but as explained before, a route flow
solution is more detailed and can better be used for obtaining the necessary measures
of interest. The Frank-Wolfe algorithm is a total link flow algorithm which, with its
slow convergence, proves that low data storage does not imply a faster algorithm.

Ma
jor

Co

ntr
ibu

tio
ns

Prager 1954
Saishu and

Moriwaki 1972
Sasaki and Inouye

1974

Beckman, McGuire
and Winsten 1956

Dafermos 1968

Smith 1979
Dafermos 1980

Aashtiani 1979

Sender and
Netter 1970

Asmuth 1978

Models for
formulating the

TAP

Formulations of
Wardrop’s 1st

Principle

Other models

Optimization

Models

Asymmetric

Models

Variational

Inequality Model

Nonlinear
Complementarity

Model

Fixed Point Model

Electrical network

models

Beckmann’s

Transformation

 8

Nevertheless, if the solution needed does not require to be very accurate, the Frank-
Wolfe algorithm is considered to be fast enough. Origin-based link flow algorithms
can be seen as a trade-off between costs in data storage and great detail in its solution.

Bar-Gera’s algorithm (1999) is, for example, an origin-based algorithm. Besides not
requiring as much data storage as route flow algorithms, Bar-Gera’s algorithm offers
faster convergence than the Frank-Wolfe algorithm and has received recognition from
experts in the field of transportation (Boyce, Mahmassani, and Nagurney 2005, p.
180). Bar-Gera’s algorithm was designed to solve the S-TAP-F using Beckman’s
transformation.

On the other hand, Aashtiani’s algorithm was designed to solve the nonlinear
complementarity model and it is a route flow algorithm. Aashtiani’s algorithm uses
techniques of partial linearization and decomposition. Aashtiani (1979) showed
successful results not only for solving the S-TAP-F but also with elastic demand and
more complex problems where the static TAP is combined with another classical
problem in transportation, known as mode choice. Although a formal proof of the
convergence of his algorithm is still pending, Toobaie continued with his work by
challenging his algorithm against the Frank-Wolfe method (Toobaie 1998). He
improved the data storage by using link-based data structures and showed its
superiority over the Frank-Wolfe algorithm in terms of convergence and accuracy. As
a result, his work raises the question on whether the algorithm proposed by Aashtiani
and improved by Toobaie can be faster and more accurate than Bar-Gera’s origin-
based link flow algorithm.

Looking at the second classification of the algorithms, another question arises. In
today’s world where computers are becoming less expensive, is data storage really
the challenge that practitioners want to overcome? In other words, do decision makers
want a faster and more accurate solution? Or are decision makers more concerned
with a solution that requires less data storage? Most probably, they prefer the first
alterative. Therefore, as computers become faster, route flow models (and their
algorithms) will become more attractive to software developers and therefore,
transportation decision makers.

Scope
This thesis compares Bar-Gera’s and Aashtiani’s methods based on experimental
results. For this purpose, this thesis compares the time spent by Bar-Gera’s algorithm
with the time spent by Aashtiani´s algorithm in providing a solution to the S-TAP-F.
To assure the reader that this comparison is feasible, this thesis revisits the theoretical
underpinnings of not only the algorithms but also the formulations.

Although Bar-Gera’s method generates origin-based link solutions and Aashtiani’s,
route flow solutions, this thesis transforms both solutions into total link flows and, in
this manner, compares the computational times. By solving thirteen problems based
on real cities, the reader will obtain a sense of which method to prefer for the S-TAP-
F. Nevertheless, the reader should be aware that these problems (and their graphs) are
just approximations of the real city grids.

 9

Framing a TAP into a mathematical formulation varies greatly with the assumptions
made. Also, the appropriateness of some algorithms depends on more assumptions
than the ones previously considered for the formulation. Therefore, it is important to
capture what this thesis does not intend to solve. For the convenience of the reader,
this thesis presents here the assumptions made when referring to the S-TAP-F, the
performance functions and the features of the networks used.

• The S-TAP-F is, by definition, a static TAP. Contrary to the dynamic TAP, the
demand in the static TAP does not change with the period of time considered.

• The S-TAP-F is, by definition, a TAP with fixed demand. Contrary to the so-
called TAP with elastic demand, the demand is not dependant on the shortest time
(or cost) between each origin and destination. It is fixed, it is constant.

• The S-TAP-F considered in this thesis is a deterministic TAP. The problem
assumes that users perceive precisely what the costs are of choosing any of the
available routes.

• The S-TAP-F considered in this thesis requires obtaining a solution in terms of
total route flows.

• The solution (the total link flows) does not need to be an integer solution.
Although flow can only be measured in whole numbers of vehicles over a period
of time (a period of time which is in some way arbitrarily), this simplification of
the problem is a good approximation for real sized networks.

• Every performance function considered in this thesis depends solely on the total
link flow that passes through it and not on other total link flows.

• Every performance function considered in this thesis is monotonically positive,
continuous and strictly increasing. The graph in Figure 3 serves as an example.

The reader might not be familiar with some of the terminology used in the last three
assumptions. It is not important to understand their complete meaning for the
moment. The Section “Discussion on the Assumptions Required by both Methods”
revisits these assumptions. It also explains the special performance functions used for
some types of links, the so-called connectors.

Organization
This thesis is organized as follows. Chapter 2 explains briefly the two methods. It
starts by defining the concepts that both methods use and by providing a unified
notation. It then explains each of the methods allowing a better interpretation of the
numerical results. This chapter is also important because it adapts Aashtiani’s
formulation to the S-TAP-F, because it discusses the importance of the assumptions
made regarding the formulations and algorithms, and because it discusses the impact
of the data structures used. Chapter 3 focuses on the numerical comparison between
both methods. First, it gives information regarding the software and the data sources.

 10

Second, it explains very briefly the metrics used for the comparison. Third, it presents
the results and the corresponding analysis. Finally, Chapter 4 concludes on the
performance of both methods by linking the numerical results to the theoretical
aspects. It also presents lessons learned and provides suggestions for further research.

A brief description of the two methods as presented on Chapter 2 would not allow the
reader to really grasp how they function. Also, the reader might not obtain from this
chapter all the theoretical elements necessary for contrasting the assumptions made
by both methods. Therefore, this thesis contains an Appendix which presents a much
more detailed explanation of the two methods.

 11

CHAPTER 2: DESCRIPTION OF THE TWO METHODS

This chapter summarizes how Bar-Gera’s method and Aashtiani’s method operate. It
starts by establishing a common notation. It then explains the two methods briefly. It
finalizes by discussing the assumptions made by both methods and the importance of
the data structures used for their implementation. The reader can refer to the Appendix
in order to understand the mechanisms of the methods in more detail (the Appendix is
completely self contained and therefore, does not require reading any other chapter or
appendix from this thesis).

Notation
The notation used by Bar-Gera (1999) is not flexible for describing also Aashtiani’s
method. Vice versa, Aashtiani’s notation (1979) is not rich enough for capturing the
concepts that Bar-Gera’s method uses. This thesis adopted a notation that facilitates
the comparison between both methods and that facilitates the reading of summations
heavily used in this topic. Tables 2-1 to 2-5 present this notation allowing the reader
to easily refer to Bar-Gera’s (1999) and Aashtiani’s (1979) original works. The reader
can refer to the Appendix for a clear description of what the following terms mean.
Any of the vectors mentioned on this thesis are row vectors unless they appear as
transposed.

Term as assigned in
this Thesis

Notation as assigned
in this Thesis by Bar-Gera by Aashtiani

node n i
j
u
v

set of nodes N N N
arc (or link) a a a
set of arcs A A A
tail ta ta
head ha ha

Table 2-1. Notation used in this thesis, Bar-Gera’s work (1999) and Aashtiani’s work (1979)
regarding the geometry of the networks.

 12

Term as assigned in
this Thesis

Notation as assigned
in this Thesis by Bar-Gera by Aashtiani

Origin node (or origin) p p IO
set of origin nodes oN oN
destination node (or destination) q q
set of destination nodes dN dN
set of destinations for a given
origin

()pdN ()pdN

OD pair i
()qp,

 i

set of OD pairs I I
Route (or path) ir

()qpr ,
[]qnnp ,,',, K

r
[]nvv ,,1 K

p

set of routes R R
set of routes that connect an OD
pair

iR

()qp,R

pqR iP

demand id

()qpd ,
pqd id (fixed demand)

iD (variable demand)

Table 2-2. Notation used in this thesis, Bar-Gera’s work (1999) and Aashtiani’s work (1979) regarding
information given by the OD matrix.

Term as assigned in
this Thesis

Notation as assigned
in this Thesis by Bar-Gera by Aashtiani

route flow
ir

h

()qprh
,

[]K,'',', nnnh

rpqh ph

route flow sub-vector ih
route flow vector h h
origin-based link flow apf , apf

origin-based link flow vector pf pf

origin-based link flow matrix f f
total link flow af• •af af
total link flow vector •f •f f
Table 2-3. Notation used in this thesis, Bar-Gera’s work (1999) and Aashtiani’s work (1979), related to
the traffic flow.

 13

Term as assigned in
this Thesis

Notation as assigned
in this Thesis by Bar-Gera by Aashtiani

link cost at at at
route cost (or path cost)

ir
c sc (route segment cost)

route cost vector ic
minimum route cost iu pqC iu
minimum route cost vector u u
arc-route incidence value

iraδ

()qpra ,
δ

raδ apδ

Table 2-4. Notation used in this thesis, Bar-Gera’s work (1999) and Aashtiani’s work (1979) regarding
costs.

Term as assigned in
this Thesis

Notation as assigned
in this Thesis by Bar-Gera

restricting subnetwork pA pA
topological order ()no ()jo
maximum cost to a node nk jk
last common node nlcn jlcn
approach proportion aα aα
origin-based node flow ng jg
average approach cost aμ aμ
average cost to a node nσ jσ

approximated derivative of aμ cost with respect
to af

aν aν

approximated derivative of nσ with respect to ng nρ jρ
flow shift baz → baz → (desirable shift)
basic approach b b
set of non-basic approaches to a node nNB jNB
step size λ λ
Table 2-5. Notation used in this thesis and in Bar-Gera’s work (1999) for particular concepts not
needed in Aashtiani’s method.

Formulations
Bar-Gera and Aashtiani use formulations that are very different. But in reality, they
are equivalent, under certain assumptions, to the following formulation:

Find a vector h such that:

 14

() ()[] 0=−⋅ hh irr uch
ii

 IR ∈∀∈∀ ir ii , [2-1a]

() () 0≥− hh ir uc
i

 IR ∈∀∈∀ ir ii , [2-1b]

0
'

'
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i [2-1c]

0≥
ir

h IR ∈∀∈∀ ir ii , [2-1d]

The expressions above are simply a mathematical interpretation of Wardrop’s first
principle ([2-1a] and [2-1b]), conditions of conservation of flow [2-1c] and the need
for route flows to be non-negative [2-1d] (following the terminology used for
Beckmann’s transformation, the above formulation is simply the so-called Kuhn-
Tucker optimality conditions).This formulation does not state any assumptions
regarding the nature of the performance functions. Notice that in this formulation,
there are several optimal solutions h but just one optimal solution •f . In consequence,
the following two formulations also do not have a unique solution h but do have a
unique solution •f .

Beckman’s transformation
Bar-Gera uses the following Beckmann’s transformation as the model for his method.
Beckmann’s transformation, a mathematical programming problem with linear
constraints and a nonlinear objective function, is as follows.

Find a vector h such that

minimizes ()[] ()
()

xxtT
a

f

a

a

d
0

∑ ∫
∈∀

•

•

=
A

h

hf [2-2a]

subject to

 0=−∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i [2-2b]

 0≥
ir

h IR ∈∀∈∀ ir ii ; [2-2c]

T represents the objective function and it is directly defined in terms of total link
flows •f . But every total link flow •af is, by definition, a function of route flows

ir
h .

This formulation is an artificial optimization problem because T does not have a
physical interpretation. Nevertheless, its optimal solution h complies with the
conditions shown in [2-1] and in this way, it becomes a solution to the S-TAP-F (for a
demonstration, see Bar-Gera 1999, pp. 6-7; or Sheffi 1985, pp. 63-65). In fact,
conditions shown in [2-1] are simply the so-called Kuhn-Tucker optimality

 15

conditions. For conditions [2-1] to hold and for the optimal solution •f to be unique,
the model makes four important assumptions regarding the performance functions.
The second to last section of this chapter discusses these assumptions.

Aashtiani’s formulation
Aashtiani reframes the basic formulation shown in [2-1] by expanding the solution
vector h with the vector u. Therefore, every ui becomes a new unknown variable and
not simply a function of h. His formulation is as follows:

Find a vector =uh |

⎥
⎦

⎤
⎢
⎣

⎡
IRRR

IIII
uuuhhhhhhhhh KKKKK 21212121

22221111
such that

 ()[] 0=−⋅ irr uch
ii

h IR ∈∀∈∀ ir ii , [2-3a]

 () 0≥− ir uc
i

h IR ∈∀∈∀ ir ii , [2-3b]

 0=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i [2-3c]

 0≥
ir

h IR ∈∀∈∀ ir ii , [2-3d]

 0≥iu I∈∀i [2-3e]

Aashtiani proved that as long as the performance function ta is positive (the second to
last section of this chapter discusses these assumptions in detail), the above
formulation is a nonlinear complementarity problem.

Algorithms
Using the above formulations, Bar-Gera (1999) and Aashtiani (1979) proposed the
following algorithms. While Bar-Gera proved that his algorithm converges, Aashtiani
showed its convergence through a range of examples. Chapter 3 will show,
nevertheless, that Aashtiani’s algorithm always converged.

Bar-Gera’s Algorithm
The main characteristics of Bar-Gera’s algorithm are the following: (1) it is an
iterative algorithm, (2) it obtains a solution in terms of origin-based link flows apf ,
(3) it carries out a Newton-type search procedure, and (4) it does not manipulate the
whole network but a restricting subnetwork pA for each origin p. A restricting
subnetwork contains all the nodes n belonging to the original set N and a subset of
arcs a, enough so that a chosen origin p is connected to all the other nodes. The

 16

Appendix clearly explains this concept. In other words, Bar-Gera’s algorithm
decomposes the problem by origins.

Figure 2-1 shows a simplified version of Bar-Gera’s algorithm. Roughly, Bar-Gera’s
algorithm works as follows. It starts with an initial origin-based link flow fp for every
origin p (the sum of all these origin-based link flows is equal to the solution of the
problem, that is, the vector of total link flows ∑ ∈∀• =

qp pN
ff). Every initial fp

contains only a subset of links (with positive flow) which define a subnetwork pA .
Having now an initial fp and an initial pA for every origin p, the algorithm starts a
series of iterations. At every cycle (the most external loop), for each origin p, the
algorithm finds a new (and better) feasible solution by answering two questions: (1)
Which links should be removed or included? In other words, how to update pA ? (2)
How much flow should be assigned to the links? In other words, how to update fp? To
answer the first question, the algorithm executes a sub-algorithm that modifies the
existing restricting subnetwork pA . To answer the second question, the algorithm
executes a second sub-algorithm that shifts existing origin-based link flows among
the links of the subnetwork pA . In order to carry out this type of shifts, this second
sub-algorithm uses a Newton-type procedure that due to its particular features, Bar-
Gera denominates as boundary search. After each cycle, the algorithm evaluates
expression [2-2a] with the new solution •f and checks if it generates a satisfactory
minimum value of T. When the algorithm no longer finds a lower value of T, it
terminates. Since the algorithm does not obtain route flows

ir
h , it cannot evaluate

condition [2-2b] directly. Simply, the algorithm guarantees that its procedure does not
violate that condition [2-2b].

 17

Figure 2-1. Simplified version of Bar-Gera’s origin-based algorithm. “ob” stands for “origin-based”.

When comparing the first sub-algorithm with the second sub-algorithm, Bar-Gera
concludes that the former requires more computational time than the latter (for an
explanation of this phenomenon, see Section “Discussion on the Data Structures
Recommended for the Implementation”). Therefore, he adds a modification on the
algorithm so that it runs the second sub-algorithm m more times than the first one (for
more details on this modification, see the Appendix). For a very large value of m, say
4 or 5, the computational time could increase considerably without generating better
results (the term can be viewed as a parameter that increases the local search).
Therefore, the user needs to have a guideline. Bar-Gera’s software suggests a value
for m, but the user has to run the algorithm at least one time in order to obtain that
suggestion. Nevertheless, as shown in Chapter 3, in most of the networks tested, the
value suggested was always equal to one or to two.

p = p + 1

Update restricting subnetwork Ap

Update ob link flows fp within subnetwork Ap

1st Sub-
Algorithm

p = |No|?

Convergence is reached?

2nd Sub-
Algorithm

No

p = 1

No

p = p + 1

Initialize origin-based link flow vector fp,
subnetwork Ap. and approach proportions

p = |No|?

p = 1

Initialization

Yes

Yes

Yes

No

Cycle

 18

Aashtiani’s Algorithm
Although Aashtiani (1979) presented an algorithm for different types of TAPs, this
thesis adapts it to the S-TAP-F. In essence, this algorithm decomposes the network by
OD pairs and then linearizes every subproblem. Interestingly, every subproblem
continues being an nonlinear complementarity problem. Figure 2-2 depicts the
general framework that his algorithm follows.

Aashtiani’s algorithm starts with an initial solution h which is calculated through the
well-known “all-or-nothing” assignment (Sheffi 1985, p. 111). It then decomposes
the problem into |I| subproblems, where the solution to each of them is a sub-vector
hi. It then solves each subproblem through a linearization and iterative procedure.
Finally, the algorithm verifies whether the group of sub-vectors hi construct a final
solution h that complies with an additional set of conditions. If these final conditions
are not met, the algorithm iterates until it reaches a satisfactory h. Aashtiani refers to
these outer iterations as “cycles”.

Although the algorithm’s general framework is simple, step 8 and step 11 presented
challenges that Aashtiani solved by the introduction of “working paths” and the
execution of one-to-all shortest path algorithms by grouping the OD pairs by origins.
For more details, the reader can refer to the Appendix.

For solving the linearized subproblem at step 13, Aashtiani (1979) recommended
Lemke’s algorithm (Lemke 1965). Aashtiani (1979) also recommended Bellman’s
shortest path algorithm (Bellman 1958) which was considered the best at the time
(Golden 1975). This thesis used the L-deque algorithm (Pape 1974) instead because
according to a more recent study by by Pallottino and Scuttelà (1998) , it is the fastest
for transportation networks.

As with Bar-Gera’s algorithm, there is a parameter that controls the number of
iterations within each cycle (As mentioned in the Appendix, an increase in this
parameter, intensifies the local search). Aashtiani (1979) and Toobaie (1998) defined
it in different ways. This thesis identifies this parameter as mA and explains it in detail
in the Appendix.

 19

Figure 2-2. The basis of Aashtiani’s algorithm: decomposition (yellow boxes) and linearization (gray
boxes).

1−= cycle
i

iteration
i hh

ry?satisfacto is cycleh

No

0=cycle

()utioninitialSol =cycleh

1+= cyclecycle

0=i

1+= ii

ry?satisfacto is iteration
ih

1+= iterationiteration

0=iteration

()1LCP solve −= iteration
i

iteration
i hh

iteration
i

cycle
i hh =

?I=i

No

No

Yes

Yes

Yes

(step 1)

(step 2)

(step 3)

(step 4)

(step 5)

(step 6)

(step 7)

(step 8)

(step 10)

(step 11)

(step 12)

(step 13)

(step 14)

11 from obtain −− cyclecycle
i hh

(step 9)

 20

Discussion on the Assumptions Required by both Methods
Beckman’s transformation has a wider application than solving the S-TAP-F. In fact,
the original version of that model also solves the static TAP with variable demand.
On the other hand, Aashtiani’s formulation has even wider applications.

Now, restricting both formulations to the S-TAP-F, Beckman’s transformation still
requires stronger assumptions than Aashtiani’s. Most of these restrictions relate to the
nature of the performance functions.

To begin with, Beckman’s transformation requires the following assumptions:

1. Every performance function ta has to be a function of only the total link flow on
link a.

()[] ()[]hhf aaa ftt •• = A∈∀a [2-4a]

2. Every performance function ta has to be positive.

()[] 0>• haa ft A∈∀a [2-4b]

3. Every performance function ta has to be differentiable with respect to the total
link flow af• .

4. Every performance function ta has to be strictly increasing.

Assumptions 3 and 4 can be stated as follows:

()[]
() 0>

∂
∂

•

•

h
h

a

aa

f
ft A∈∀a [2-4c]

The first assumption is equivalent to stating that “costs are separable” or that
“performance functions are independent”. The reader can verify the need for the first
assumption by simply observing that in Beckman’s transformation, the definition of
the objective function T (as indicated in [2-2a]) explicitly states that ta is a function of
fa. The second assumption, if added to the requirement that ta should be non-
decreasing, guarantees the convexity of the objective function T and therefore the
existence of the solution h. The fourth assumption is stronger than simply requiring
the performance function ta to be non-decreasing. The fourth assumption guarantees
the uniqueness of •f as the vector that minimizes T (but as mentioned before, the
formulation does not guarantee a unique solution h). To these assumptions, Bar-
Gera’s algorithm does not add any additional restrictions.

Now, Aashtiani’s formulation and algorithm are applicable to the S-TAP-F even with
the above four assumptions. Here are the more relaxed assumptions needed by
Aashtiani’s method:

 21

1. Every performance function ta does not have to be a function of only the total link
flow on link a. A performance function ta can be a function of the whole vector
•f .

2. Every performance function ta still has to be positive. This restriction guarantees
the equivalence between the S-TAP-F and its corresponding nonlinear
complementarity problem. This restriction also guarantees the existence of at least
one solution h.

3. Every performance function ta does not have to be differentiable with respect to
the total link flow pf• . Nevertheless, every performance function ta does have to
be continuous in order to guarantee the existence of at least one solution h.

4. Every performance function ta still has to be strictly increasing in order to
guarantee a unique solution •f .

Aashtiani also mentions (1979, p. 66) that the fourth assumption is important to
guarantee a unique solution u. This observation is important in his formulation
because u is, contrary to Beckman’s transformation, part of the unknown variables
that need to be found. Aashtiani also assumes that the demand is variable, that is, it is
a function of u. In consequence, one could speculate that perhaps, for the S-TAP-F,
the assumptions regarding the performance functions could become even more
relaxed. Nevertheless, the important conclusion for this thesis is that if a performance
function complies with the restrictions for Bar-Gera’s method, then it complies with
the restrictions of Aashtiani’s method.

The reader should know that nobody has already tested the convergence of
Aashtiani’s algorithm from a theoretical point of view. Therefore, it is still pending to
know whether Aashtiani’s algorithm converges without including any additional
assumptions.

Now, as mentioned in the first section, connectors have a performance function that is
constant and that sometimes is equal to zero. Nevertheless, if the algorithms used for
obtaining the solution to [2-1] guarantee routes where connectors are only located at
the beginning or at the end of each route, then there is no need for connectors to
comply with the assumptions above. Their only requirement is that they do not have
negative performance functions.

One last assumption that both methods require is that the performance functions ta
and the solutions h should not be restricted to integer values. According to Aashtiani
(1979, p. 41), only-integer solutions as a requirement could make a S-TAP-F become
infeasible.

Discussion on the Data Structures Recommended for the Implementation
The structures used for storing the data may affect not only the memory requirements
on the machine but also the rate of convergence of an algorithm. Shortest route

 22

algorithms, for example, can reduce their speed by containing an appropriate data
structure. This section will allow the reader to have a sense of how the data structures
recommended by Bar-Gera (1999) and Toobaie (1998) may affect the memory
requirements and the performance of the algorithms used in this thesis.

Toobaie and Bar-Gera use extensively arrays for storing most of the data: travel link
costs, OD trips, etc. Nevertheless, they both recommend special data structures (1) for
the link flow solution (origin-based link solution for Bar-Gera’s algorithm and route
link solution for Aashtiani’s algorithm) and (2) for the minimum cost routes. For the
first type of information, Bar-Gera does not specify the design used for his data
structure but he does not recommend storing the origin-based link flow solution in
one array with one element for each arc and for each origin. It is very probable that
his data structure allows at the same time defining the restricting subnetworks and the
topological orders. The reader should recall that the data structures that define the
restricting subnetworks experience a major change in the last step of the first sub-
algorithm. In the case of Aashtiani’s method, Toobaie recommends a three-level
linked list: each node of the first level corresponds to a different OD pair, each node
of the second level corresponds to a different route of an OD pair, and each node of
the third level corresponds to a different arc of a route of an OD pair. This design
stores route flows at the second level.

For the minimum cost routes, Bar-Gera uses, perhaps, a tree structure while Toobaie
uses an array of link lists. Nevertheless, these special data structures, at least in
Aashtiani’s method, do not have the same important impact in the memory
requirements and computational speed as data structures used for the link flow
solutions.

Toobaie’s three-level linked list reduces the memory requirements and probably the
speed of the algorithm originally proposed by Aashtiani (1979). Nevertheless, the
factor that affects Aashtiani’s method substantially is the shortest-path algorithm that
is chosen. Aashtiani’s algorithm needs to execute a shortest-path algorithm every time
it starts solving a different subproblem i with a different origin. Aashtiani
recommended using the Bellman’s shortest path algorithm (Bellman 1958) based on
comparative results made by Golden (1975). But this thesis will use the L-deque
algorithm (Pape 1974) as recommended in a more recent study by Pallottino and
Scuttelà (1998) for transportation networks. They recommend it as the most
appropriate for transportation networks, that is, those networks characterized by
“nonnegative arc costs and structured, quasi-planar, sparse graphs”.

In conclusion, the data structures play an important role in storing the flow solutions
in both algorithms because they can reduce the memory requirements. In Bar-Gera’s
algorithm, they are also important in reducing the computational time. In Aashtiani’s
algorithm, it is the choice of the shortest path algorithm that mostly affects the
computational time.

 23

As re-stated in the following chapter, the algorithm implemented for this thesis is a
modified version of the original code used by Toobaie (1998) and therefore, uses the
same data structures explained above.

 24

CHAPTER 3: COMPARATIVE RESULTS

Using thirteen networks based on real cities, this section presents how the two
methods perform when solving the S-TAP-F. Specifically, the main objective is to
determine which algorithm reaches the optimal solution within the shortest period of
time. This chapter starts by describing the data sources and the software applications
used for carrying out the comparison. It then briefly mentions the metrics chosen for
the comparison. It then presents the performances of each method in terms of speed.
It also presents the computational memory used by each method. Finally, it analyzes
the results.

Software and Data Sources
For the implementation of Bar-Gera’s method, this thesis used the downloadable
software that appears on a website elaborated by Bar-Gera (2008). For Aashtiani’s
method, this thesis used the code that Toobaie implemented in his master’s thesis
(1998). Since Bar-Gera’s software is not open source, this thesis required adapting
Toobaie’s code in order to (1) read the input data in the same format that Bar-Gera’s
software uses, (2) calculate the performance functions in the same manner that Bar-
Gera’s software does, and (3) include the metrics that Bar-Gera’s software uses as
stopping criteria. Also, Toobaie’s code used Bellman’s shortest path algorithm
instead of the L-deque algorithm (Pape 1974) used for this thesis. The compiler used
was Visual C++ 2005. The machine used was a laptop computer with 2 GB of RAM
and an Intel Centrino Duo processor with a speed of 2 GHz.

Network Code Arcs Nodes OD pairs
Complexity
(OD pairs x

Arcs)
1 Chicago Regional CHIC_R 39,018 12,979 3,134,670 122,308,554,060
2 Philadelphia PHILAD 40,003 13,389 1,149,795 45,995,249,385
3 Berlin Center BERL_C 28,376 12,981 49,688 1,409,946,688
4 Chicago Sketch CHIC_S 2,950 933 142,512 420,410,400
5 Mitte, Prenzlauer Berg, M_P_F 2,184 974 9,505 20,758,920
6 Barcelona BARCEL 2,522 930 7,922 19,979,284
7 Winnipeg WINNIP 2,836 1,040 4,344 12,319,584
8 Anaheim ANAH 914 416 1,406 1,285,084
9 Mitte Center MIT_C 871 397 1,260 1,097,460
10 PrenzlauerBerg Center PR_C 749 352 1,406 1,053,094
11 Tiegarten Center TIEG_c 766 359 644 493,304
12 Friedrichshain Center FR_C 523 224 506 264,638
13 Sioux-Falls SIOUX 76 24 552 41,952

Table 3-1. Networks employed and key futures used for measuring their size and complexity.

While the software application used for Aashtiani’s algorithm starts with an initial
solution obtained from executing an all-or-nothing assignment, Bar-Gera’s software
does not start with that type of initial solution. Bar-Gera’s software simply assigns all

 25

the traffic flow to a path that connects an OD pair but not necessarily the shortest
path. Bar-Gera’s software and the computer program used for Aashtiani’s algorithm
required one parameter, m and mA correspondingly, that controls the number of
iterations within a cycle. After executing Bar-Gera’s software with any value of m,
this software recommends a value to be used for future executions. After running
some of the smallest networks, the software recommended a value of m equal to 2,
and therefore, this was the value adopted for the rest of the networks. For Aashtiani’s
algorithm, a value of mA equal to 10 was used which showed similar results to values
used by Toobaie (1998) but aimed at reducing the execution of shortest path
algorithms (for details on m and mA, see the Appendix, page 107 and 114).

This thesis used thirteen networks which are also downloadable at Bar-Gera’s
website. Table 3-1 shows their size as well as their complexity. As recommended in
previous literature (Jahn et al. 2005; Holmberg and Di Yuan 2003), a common
approach for measuring the complexity of a network is by multiplying the number of
arcs by the number commodities (in this case, the commodities are the same OD
pairs). Following this approach, Figure 3-1 proposes one alternative of classifying the
thirteen networks. The reader can observe in this classification that there is at least
one network for each level of complexity.

Figure 3-1. Classification of the networks used for this thesis according to their level of complexity.

All the networks use the standard form of the BPR performance function (Bureau of
Public Roads 1964) for each link a. Nevertheless, some links require the addition of a
value corresponding to the cost of the toll as well as a cost proportional to the length
of the link. Therefore, the general performance function used for this thesis is as
follows:

Networks classified
according to their Level of Complexity

0

1

2

3

4

8 7 6 5 4 3 2 1

Level of Complexity

In
st

an
ce

s

8
1012 - 1011

7
1011 - 1010

6
1010 – 109

5
109 – 108

4
108 – 107

3
107 – 106

2
106 – 105

1
105 – 104

C
H

IC
_R

PH
IL

A
D

B
ER

L_
C

C
H

IC
_S

M
_P

_F

A
N

A
H

TI
EG

_C

SI
O

U
X

B
A

R
C

EL

M
IT

_C

FR
_C

W
IN

N
IP

PR
_C

 26

()

lengthctordistanceFatollFlagtollFactor

capacity
fBmefreeFlowTift

power

a
aa

⋅+⋅+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅+⋅= 1

 [3-1]

where ta is given in units of time, freeFlowTime is given in units of time, B is
dimensionless, fa is given in units of vehicles per units of time, capacity is
given in units of vehicle per units of time, power is adimensional, tollFactor is
given in units of time per units of money, tollFlag is given in units of money,
distanceFactor is given in units of time per units of length, and length is given
in units of length.

Although the variable tollFlag has units of money, its value is always either zero or
one. Only the CHIC_R network contains values for the tollFlag different from zero.
Also, only three networks used nonzero values for the variable distanceFactor:
CHIC_R, PHILAD and CHIC_S.

Table 3-2 shows the resulting units that [3-1] generates for each of the networks and
the units of the vehicle flow fa. An extensive inquiry conducted for this thesis allows
to state that for some networks, there is no knowledge of the units used for ta and fa.
This inquiry also allows to state that some networks are the result of modifications
made in the scale of the original city grids and therefore, their units could well be
fractions of standard units such as “half of a minute”, “0.01 hours”, etc. At first
glance, the reader could find this absence of units detrimental for understanding the
orders of magnitude and the coherence in the results. Nevertheless, as shown in the
next subsection, there are ways to circumvent this lack of knowledge in the units
used.

Level of Complexity # Network Code Units for
fa

Units for ta

8 1011 to
12

1 CHIC_R veh/hour minutes
7 1010 to

11
2 PHILAD veh/day minutes

6 109 to 1010 3 BERL_C unknown unknown

5 108 to 109
4 CHIC_S veh/hour minutes
5 M_P_F unknown unknown
6 BARCEL unknown unknown

4 107 to 108
7 WINNIP unknown unknown
8 ANAH veh/hour minutes
9 MIT_C unknown unknown

3 106 to 107 10 PR_C unknown unknown
11 TIEG_C unknown unknown

2 105 to 106 12 FR_C unknown unknown
1 104 to 105 13 SIOUX veh/day minutes

Table 3-2. A caveat on the quality of the data used: for most of the networks, this thesis required
estimating the units used for the link costs.

 27

The link performance function used for the networks, as described in [3-1], complies
with the assumptions needed as mentioned in the Section “Discussion on the
Assumptions Required by Both Methods”. This section also mentions that the only
links allowed to have a different kind of performance functions are the so-called
connectors. The performance function of these links is equal to zero: () 0=aa ft .

Procedure for Comparing both Methods
The specific characteristics of the networks and of the methods, and the fact that Bar-
Gera’s software is not open source generated some challenges for trying to reach a
reliable numerical comparison between Bar-Gera’s method and Aashtiani’s method.
In the following section, the reader will observe that a simple and perhaps natural
approach of carrying out the comparison falls short in achieving the desired
reliability. After analyzing other less simple approaches, this section will end by
explaining the final approach (or procedure) that this study used.

The first (and simplest) approach considered consisted in comparing the
computational times that both algorithms required in reaching the minimum value of
Beckman’s objective function T, as defined in equation [2-2a]. For convenience to the
reader, it is rewritten below:

()[] ()
()

xxtT
a

f

a

a

d
0

∑ ∫
∈∀

•

•

=
A

h

hf [2-2a]’

Evolution of the Objective Function
(Complete Graph)

0.0E+00

5.0E+08

1.0E+09

1.5E+09

2.0E+09

0 500 1,000 1,500 2,000
Computational Time [sec]

T
 [m

in
·(v

eh
/m

in
)]

Aashtiani's A lgorithm

Bar-Gera's A lgorithm

Evolution of the Objective Funcion
(Y-axis Zoomed)

3.0E+07

3.5E+07

4.0E+07

4.5E+07

5.0E+07

5.5E+07

6.0E+07

6.5E+07

7.0E+07

0 500 1,000 1,500 2,000
Computational Time [sec]

T
 [m

in
·(v

eh
/m

in
)]

Aashtiani's A lgorithm

Bar-Gera's A lgorithm

Figure 3-2. Example of a simple graph used for comparing how, for each method, the value of the
objective function T evolves with time. The network used in this example is CHIC_R.

Figure 3-2 presents this approach using the CHIC_R network as an example. The
disadvantage of this approach is that for a certain order of magnitude (the one used on
the first graph of Figure 3-2), the algorithms seem to have reached the minimum
value of T. But for a lesser order of magnitude (as in the second graph of Figure 3-2),

Points for comparing
computational times

Points for comparing
computational times?

 28

one could conclude that the algorithms need more computational time to reach the
minimum value of T.

Since T does not have any physical interpretation, one cannot establish what a slight
decrease of T means numerically for the solution f•. Without having a clear stopping
criterion, what seems to be the slowest algorithm on a first comparison could become
the fastest algorithm on a second comparison (see for example, Figure 3-3). Also, as
shown on Figure 3-3, more computational time could mean a more satisfactory
solution f• in terms of accuracy, but the sole value of T does not say much about how
accurate the solution is.

A second approach considered is using a metric different from T that does have a
physical interpretation. One convenient metric is the average excess cost (or AEC)
which Bar-Gera’s software uses as its stopping criterion. Its mathematical definition
is as follows:

()[]
∑ ∑

∑ ∑

∈∀ ∈∀

∈∀ ∈∀

⋅−
=

I R

I R

i r
r

i r
rir

ii

i

ii

ii

h

huc
AEC [3-2]

For every OD pair, the AEC calculates the difference in time between taking any
route from the least costly route and it averages these differences using the route
flows as weights: the lower the value of the AEC, the more similar are the traveling
times between paths of a same OD pair, just as Wardrop’s first principle requires. We
can observe here that the AEC has a physical interpretation and it is expressed in
units of time. The reader can notice also that the lower the value of the AEC, the
higher the accuracy of the solution f•. There are other metrics such as the maximum
excess cost (or MEC), or the one that Aashtiani’s algorithm uses as its stopping
criterion which he dominates simply as the error. As the reader can observe from the
following mathematical definitions, the “error’ seems to have a much better
correlation with the MEC than with the AEC.

(){ }IR ∈∈−= irucMEC iiiri
,:max [3-3]

()[]{ }IR ∈∈−= irhuherror iirirAashtiani ii
,:/max [3-4]

 29

Figure 3-3. Example (PHILAD network) that shows that without a clear stopping criterion, the result
of the comparison between the two algorithms can be very different. On the left side, the targeted AEC
was 10-1 minutes. On the right side, the targeted AEC was 10-6 minutes.

Unfortunately, Bar-Gera’s software does not calculate the “error”. Therefore, the
second approach considered in this thesis consisted in (1) running the two computer

Evolution of the Objective Funcion
(Y-axis Zoomed)

3.0E+07

3.5E+07

4.0E+07

4.5E+07

5.0E+07

5.5E+07

6.0E+07

6.5E+07

7.0E+07

0 10,000 20,000 30,000 40,000
Computational Time [sec]

T
 [m

in
·(v

eh
/m

in
)]

Aashtiani's Algorithm
Bar-Gera's A lgorithm

Scatter Diagram for Total Link Flows
(units in veh /h)

R2 = 1

0

5,000

10,000

15,000

20,000

0 5,000 10,000 15,000 20,000
Total Link Flows

Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Link Costs
(units in min)

R2 = 1

0

5

10

15

20

0 5 10 15 20

Link Costs
Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ai
ni

's
 A

lg
or

ith
m

Evolution of the Objective Funcion
(Y-axis Zoomed)

3.0E+07

3.5E+07

4.0E+07

4.5E+07

5.0E+07

5.5E+07

6.0E+07

6.5E+07

7.0E+07

0 500 1,000 1,500 2,000
Computational Time [sec]

T
 [m

in
·(v

eh
/m

in
)]

Aashtiani's A lgorithm
Bar-Gera's Algorithm

Points for comparing
computational times Points for comparing

computational times

Comparison 1:
• Less computational time
• Insufficient accuracy?
• Bar-Gera’s algorithm is faster

Comparison 2:
• More computational time
• Excessive accuracy?
• Aashtiani’s algorithm is faster

Scatter Diagram for Total Link Flows
(units in veh /h)

R2 = 0.9901

0

5,000

10,000

15,000

20,000

0 5,000 10,000 15,000 20,000
Total Link Flows

Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Link Costs
(units in min)

R2 = 0.9891

0

5

10

15

20

0 5 10 15 20

Link Costs
Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ai
ni

's
 A

lg
or

ith
m

 30

programs until they reach a predefined AEC, (2) comparing the computational times,
and (3) verifying whether a similar result can be drawn from looking at the MEC
reached by each algorithm. In this thesis, a targeted AEC will refer to the AEC that
the algorithms are set to reach before rendering the final solution f•. Since the
algorithms cannot stop at the very instance they reach the targeted AEC (but after
they have ended a complete cycle), their final solution will usually have a lower AEC
than the targeted AEC. Figure 3-4 shows the results for the PHILAD network when
targeting an AEC of 10-2 minutes.

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
Targeted AEC = 1E-3 min

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000

Computational Time [sec]

MEC [min] - Bar-Gera's algorithm
MEC [min] - Aashtiani's algorithm
AEC [min] - Bar-Gera's algorithm
AEC [min] - Aashtiani's algorithm

Figure 3-4. Example of how to compare the two algorithms using the second approach: at the targeted
AEC, the difference in computational time is measured. In this example where the PHILAD network
was used, the difference was 14 minutes. The values in the MEC are used to corroborate the numerical
difference previously obtained. Here, the trend in the MEC does not contradict the superiority of Bar-
Gera’s algorithm.

Figure 3-4 shows the values of the AEC and the MEC for Aashtiani’s algorithm only
at the end of each cycle. Since Aashtiani’s algorithm decomposes the problems by
OD pairs and then solves each subproblem in sequential order, it cannot generate an
AEC before the cycle ends. For this reason, the values corresponding to Aashtiani’s
algorithm appear more scattered.

The second approach presents one difficulty. It requires knowing the units of the link
costs ta. In the example of Figure 3-4, the units are known. As a result, the AEC
would be calculated in minutes and therefore, one could state that a targeted AEC of
10-3 minutes is sufficiently small. As Table 3-2 indicates, not all the units are known
for this study. For this reason, this thesis considered a third approach.

14 minutes approx.

 31

The third (and final) approach uses the same metrics that the second one but it
proposes observing other aspects of the results. The third approach consists in a set of
six steps and therefore, the reader can view it as a simple procedure:

1. For each method, execute the algorithms targeting a very low value in the
AEC.

2. Plot (like with the first and second approaches) the evolution of T.

3. For various targeted AECs, plot one scatter diagram that compares the total
link flows fa and another scatter diagram that compares the link costs ta
between the two algorithms.

4. Use the scatter diagrams to determine the maximum targeted AEC that
guarantees a straight line (the reader can observe here that this verification is
somewhat subjective, especially when the units are unknown. The coefficient
of determination R2 is recommended for this verification but it can be heavily
influenced by outliers whose magnitudes are very large compared to the rest
of the points).

5. Plot (like with the second approach) the evolution of the AEC and the MEC
against the computational time.

6. Look for trends in the evolution of the AEC and verify those trends with the
MEC. Make sure that the values of the AEC are less than or equal to the
maximum targeted AEC that was determined on step 4.

Unlike in the second approach, one does not look for a “number” that measures the
difference in computational time between both algorithms. Instead, one looks for
“trends”. This thesis used the third approach for all the networks. The results allowed
to conclude that the most common trends relate to answering the following questions:
(1) For a very low AEC, which algorithm spends less computational time? (2) For a
very high AEC, which algorithm spends less computational time? (3) Are the answers
the same to the previous two questions? (4) The differences in computational time fall
within what range? (5) Does the difference in computational time for every value in
the AEC increase at every subsequent iteration? (6) Are the differences in
computational time significant? (7) Can one reach the same answers if looking at the
MEC instead of the AEC?

A good idea for answering the sixth question is by expressing the differences in terms
of percentages and not in terms of absolute seconds. One can quickly spot these
percentages by using a logarithmic scale for the computational time.

 32

Figure 3-5. Scatter diagrams and coefficients of determination for the BARCEL network that compare
the total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms for targeted
AECs of 10-1, 10-3, 10-4 and 10-8 cost units.

Scatter Diagram for Link Costs
when AEC = 1E-1 cost units

(units in cost units)

R2 = 0.9998

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 cost units

(units in flow units)

R2 = 0.9558

0

2,000

4,000

6,000

8,000

10,000

12,000

0 2,000 4,000 6,000 8,000 10,000 12,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Link Costs
when AEC = 1E-3 cost units

(units in cost units)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 cost units

(units in flow units)

R2 = 0.9928

0

2,000

4,000

6,000

8,000

10,000

12,000

0 2,000 4,000 6,000 8,000 10,000 12,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Link Costs
when AEC = 1E-8 min

(units in cost units)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Total Link Flows
when AEC = 1E-8 min

(units in flow units)

R2 = 1

0

2,000

4,000

6,000

8,000

10,000

12,000

0 2,000 4,000 6,000 8,000 10,000 12,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Link Costs
when AEC = 1E-4 cost units

(units in cost units)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 cost units

(units in flow units)

R2 = 0.9993

0

2,000

4,000

6,000

8,000

10,000

12,000

0 2,000 4,000 6,000 8,000 10,000 12,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

 33

As an example to the procedure explained above, one can look at the results obtained
for the BARCEL network. Figure 3-5 presents the scatter diagrams mentioned on the
first step. There, one can observe that when the targeted AEC is 10-8, the solution
seems to show enough precision, even if the units of the AEC are unknown. When the
AEC is 10-3 (or more), the solution is not so precise in terms of link flows.
Nevertheless, to argue that an AEC of 10-3 is not satisfactory would be difficult
because there is still a linear correlation and also, the straight line is still clear in the
scatter diagram of the link costs. In sum, one can conclude that the scatter diagrams
indicate that it is useful to look for trends starting at an AEC of 10-3.

Now, continuing with the fourth step, let us plot the evolution of the AEC and the
MEC as shown on Figure 3-6. The reader can observe here one of the advantages of
using a logarithmic scale for the computational time: a distance that represents a
100% difference is constant all along the abscissa. Likewise, a distance that
represents 200% difference is constant all along the abscissa. This difference
expressed as a percentage is equal to:

%100
 timecomput.smallest

 timecomp.smallest - timecomp.largest difference% ⋅= [3-5]

Figure 3-6. Example of how to recognize the trends in the AEC using the third approach: when Bar-
Gera’s algorithm is the slowest, its computational time is measured against Aashtiani’s and it is
expressed as a percentage (as defined on [3-5]). Likewise, the difference in which Aashtiani’s
algorithm is the lowest is also recorded. The values in the MEC are used to corroborate the numerical
difference previously obtained. In this example where the BARCEL network was used, the MEC
confirms the trend seen in the AEC. Horizontal green bars in this graph are presented to show how the
logarithmic scale allows to directly recognize differences as defined in [3-5].

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

1E+03
0.01 0.10 1.00 10.00 100.00

Computational Time [sec]

MEC [cost units] - Bar-Gera's algorithm
MEC [cost units] - Aashtiani's algorithm
AEC [cost units] - Bar-Gera's algorithm
AEC [cost units] - Aashtiani's algorithm

95% difference

100% difference

200% difference

160% difference

200% difference 200% difference

100% difference 100% difference

 34

After looking at Figure 3-6, one can spot the following trends. For an AEC less than
or equal to 10-3, Aashtiani’s algorithm starts by being the fastest. When the AEC is
approximately 10-3, Bar-Gera’s algorithm is slower. No algorithm is faster than the
other always; there is no strong superiority of one algorithm over the other. While
Aashtiani’s algorithm ends by being 95% slower than Bar-Gera’s, Bar-Gera’s
algorithm starts by being 160% slower. Both algorithms seem equally fast for an AEC
between 10-5 and 10-6. Overall, we can observe that Bar-Gera’s algorithm becomes
faster as one allows more computational time. The differences are fairly significant
since they represent values greater than 90%. The values of the MEC corroborate the
values of the AEC. When Aashtiani’s algorithm is slower in terms of the AEC, so it is
in terms of the MEC.

In sum, one could conclude that Aashtiani’s algorithm is the fastest algorithm for a
not very demanding accuracy while Bar-Gera is the fastest for very demanding
accuracies.

Numerical Results
For each city, we will follow the procedure explained in the previous section.
Therefore, for each city, this section will present three figures (the evolution of T, the
evolution of the AEC and the MEC, and the scatter diagrams) followed by an analysis
on the trends and additional observations. The following networks are organized in
descending order of complexity. For convenience, the main characteristics of the
networks are mentioned again at the beginning of each description.

 35

Figure 3-7a. CHIC_R network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-7b. CHIC_R network: Evolution of the average excess cost and the maximum excess cost for
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02
1E+03
1E+04

10 100 1,000 10,000 100,000

Computational Time [sec]

MEC [min] - Bar-Gera's algorithm
MEC [min] - Aashtiani's algorithm
AEC [min] - Bar-Gera's algorithm
AEC [min] - Aashtiani's algorithm

6% difference

400% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

1.0E+07

1.0E+08

1.0E+09

1.0E+10

10 100 1,000 10,000 100,000

Computational Time [sec]

T
 [m

in
·(v

eh
/h

ou
r)

]

Aashtiani's algorithm
Bar-Gera's Algorithm

 36

Figure 3-7c. CHIC_R network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-2, 10-3 and 10-4 minutes.

Scatter Diagram for Link Costs
when AEC = 1E-1 min

(units in min)

R2 = 0.99

0

5

10

15

20

25

0 5 10 15 20 25
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 min

(units in veh /hour)

R2 = 0.9903

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

0 5,000 10,000 15,000 20,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 min

(units in min)

R2 = 0.99

0

5

10

15

20

25

0 5 10 15 20 25
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 min

(units in veh /hour)

R2 = 0.9903

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

0 5,000 10,000 15,000 20,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 min

(units in min)

R2 = 1

0

5

10

15

20

0 5 10 15 20
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 min

(units in veh /hour)

R2 = 1

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

0 5,000 10,000 15,000 20,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 min

(units in min)

R2 = 0.9902

0

5

10

15

20

25

0 5 10 15 20 25
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 min

(units in veh/hour)

R2 = 0.9904

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

20,000

0 5,000 10,000 15,000 20,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

 37

Description of the results shown on Figure 3-7a to Figure 3-7c

Network: Chicago Regional
Code: CHIC_R
Number of Nodes: 12,979
Number of Zones: 1,790
Number of Arcs: 39,018
Number of OD Pairs: 3,134,670
Complexity: 122,308,554,060 arcs·OD pairs
Level of Complexity: 8 (1011 to 1012)
Total flow (total demand): 1,360,428 vehicles/hour
Units for the total link flows fa: vehicles/hour
Units for the link costs ta: minutes
Existence of tolls: Yes
Distance factor equal to zero: No

Since the units are known, one could state that a targeted AEC of 10-1 minutes will
always be sufficient to guarantee an acceptable solution, especially for a network as
big as CHIC_R. Nonetheless, the reader can also look at the scatter diagrams (Figure
3-7c) to verify that the total link flows of the two algorithms describe a very linear
trend (R2 = 0.9903). Therefore, when looking for important trends, one can consider
any values in the AEC less than or equal to 10-1 minutes.

The trend that Figure 3-7b presents is the following. For an AEC of approximately
10-3 minutes, Bar-Gera’s algorithm is almost 400% slower than Aashtiani’s. Then, as
the algorithms spend more time for obtaining more accurate solutions, Bar-Gera’s
algorithm is still the slowest but the difference gets reduced. Only at the very last
minutes, Aashtiani’s algorithm gets surpassed becoming more or less 6% slower. The
differences in time are very significant at the beginning: a 400% difference represents
in this case two hours of additional computational time. The values of the MEC
corroborate partly the trend seen on the AEC: the trend of the MEC portrays
Aashtiani’s algorithm as always being the fastest.

Due to the great size of the network, the computer time ranges from 30 minutes to 23
hours. One interesting feature to observe in Figure 3-7a is that Bar-Gera’s algorithm
spends more time calculating the initial solution at the same time that its objective
function is poorer (that is, is greater) than the value obtained by Aashtiani’s
algorithm. Nevertheless, before Aashtiani’s algorithm finishes its first cycle, the T in
Bar-Gera’s algorithm has already become lower than in Aashtiani’s algorithm.

Given the above results, one could conclude that the practitioner would prefer
Aashtiani’s algorithm in order to deliver faster results.

 38

Figure 3-8a. PHILAD network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-8b. PHILAD network: Evolution of the average excess cost and the maximum excess cost for
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02
1E+03
1E+04
1E+05

1 10 100 1,000 10,000 100,000

Computational Time [sec]

MEC [min] - Bar-Gera's algorithm
MEC [min] - Aashtiani's algorithm
AEC [min] - Bar-Gera's algorithm
AEC [min] - Aashtiani's algorithm

10% difference

110% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

1.0E+08

1.0E+09

1.0E+10

1 10 100 1,000 10,000 100,000

Computational Time [sec]

T
 [m

in
·(v

eh
/d

ay
)

]

Aashtiani's algorithm
Bar-Gera's Algorithm

 39

Figure 3-8c. PHILAD network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-2, 10-3 and 10-4 minutes.

Scatter Diagram for Link Costs
when AEC = 1E-1 min

(units in min)

R2 = 0.9911

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 min

(units in veh /day)

R2 = 0.9875

0

20,000

40,000

60,000

80,000

100,000

120,000

0 20,000 40,000 60,000 80,000 100,000 120,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 min

(units in min)

R2 = 0.9911

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 min

(units in veh /day)

R2 = 0.9875

0

20,000

40,000

60,000

80,000

100,000

120,000

0 20,000 40,000 60,000 80,000 100,000 120,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 min

(units in min)

R2 = 1

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 min

(units in veh/day)

R2 = 0.9999

0

20,000

40,000

60,000

80,000

100,000

120,000

0 20,000 40,000 60,000 80,000 100,000 120,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 min

(units in min)

R2 = 1

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 min

(units in veh /day)

R2 = 1

0

20,000

40,000

60,000

80,000

100,000

120,000

0 20,000 40,000 60,000 80,000 100,000 120,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

 40

Description of the results shown on Figure 3-8a to Figure 3-8c

Network: Philadelphia
Code: PHILAD
Number of Nodes: 13,389
Number of Zones: 1,525
Number of Arcs: 40,003
Number of OD Pairs: 1,149,795
Complexity: 45,995,249,385 arcs·OD pairs
Level of Complexity: 7 (1010 to 1011)
Total flow (total demand): 18,503,872 vehicles/day
Units for the total link flows fa: vehicles/day
Units for the link costs ta: minutes
Existence of tolls: Yes
Distance factor equal to zero: Yes

The units for this network are also known. Again, one could immediately conclude
that an AEC of approximately 10-1 minutes should render a solution that is accurate
enough. This statement is corroborated by the linear trend shown on the scatter
diagram for a targeted AEC of 10-1 minutes (R2 = 0.9875). An AEC of 10-1 minutes or
less should be useful for recognizing trends in the curve described on Figure 3-8b.

Figure 3-8b shows a more mixed result than with the CHIC_R network. Like with the
CHIC_R network, for a rather high AEC (when the AEC is close to 10-3 minutes),
Bar-Gera’s algorithm is 10% slower than Aashtiani’s. But unlike the CHIC_R,
Aashtiani’s algorithm becomes slower than Bar-Gera’s until reaching a difference of
approximately 110%. And also, unlike the CHIC_R network, Bar-Gera’s algorithm
ends by being slower by a very small margin. The differences in time are very
significant at the beginning (10% ≈ 15 minutes) and when the AEC ranges between
10-3 and 10-7 minutes (110% ≈ 2.5 hours). The values of the MEC present the same
trend shown by the values of the AEC.

Like with the CHIC_R network, Bar-Gera’s algorithm started with an initial solution
that had a larger T and at the same time slower to compute. Nevertheless, this value
quickly diminished. Also, like with the CHIC_R the computational time is very high:
from 20 minutes to 4 hours.

Since the units of the link costs are known, one could conclude that the practitioner
would prefer Aashtiani’s algorithm for delivering faster results at acceptable low
accuracies. Nevertheless, if wanting better accuracies, he or she runs the risk of
spending two more hours using Aashtiani’s algorithm than Bar-Gera’s.

 41

Figure 3-9a. BERL_C network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-9b. BERL_C network: Evolution of the average excess cost and the maximum excess cost for
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1E-10
1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02
1E+03
1E+04
1E+05
1E+06

1 10 100 1,000 10,000

Computational Time [sec]

MEC [cost units] - Bar-Gera's algorithm
MEC [cost units] - Aashtiani's algorithm
AEC [cost units] - Bar-Gera's algorithm
AEC [cost units] - Aashtiani's algorithm

600% difference

900% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1.0E+07

1.0E+08

1.0E+09

1 10 100 1,000 10,000

Computational Time [sec]

T
 [c

os
t u

ni
ts

·(f
lo

w
 u

ni
ts

)
]

Aashtiani's algorithm
Bar-Gera's Algorithm

 42

Figure 3-9c. BERL_C network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-4, 10-5 and 10-6 cost units.

Scatter Diagram for Link Costs
when AEC = 1E-1 cost units

(units in min)

R2 = 0.9995

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 cost units

(units in veh /day)

R2 = 0.9885

0

500

1,000

1,500

2,000

2,500

3,000

0 500 1,000 1,500 2,000 2,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 cost units

(units in min)

R2 = 0.9995

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 cost units

(units in veh /day)

R2 = 0.9884

0

500

1,000

1,500

2,000

2,500

3,000

0 500 1,000 1,500 2,000 2,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-5 min

(units in min)

R2 = 1

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Link Costs
Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Total Link Flows
when AEC = 1E-5 min

(units in veh /day)

R2 = 0.9999

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500

Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Link Costs
when AEC = 1E-6 min

(units in min)

R2 = 1

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Link Costs
Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Total Link Flows
when AEC = 1E-6 min

(units in veh /day)

R2 = 1

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500

Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

 43

Description of the results shown on Figure 3-9a to Figure 3-9c

Network: Berlin Center
Code: BERL_C
Number of Nodes: 12,981
Number of Zones: 865
Number of Arcs: 28,376
Number of OD Pairs: 49,688
Complexity: 1,409,946,688 arcs·OD pairs
Level of Complexity: 6 (109 to 1010)
Total flow (total demand): 168,222 flow units
Units for the total link flows fa: unknown
Units for the link costs ta: unknown
Existence of tolls: No
Distance factor equal to zero: Yes

Since the units are not known for this network, one needs to look carefully at the
scatter diagrams (Figure 3-9c) in order to determine whether an AEC of 10-1 is
enough for rendering an accurate solution. It seems that it is more difficult to argue
that 10-1 in the AEC is enough than with the previous two networks. Nevertheless, as
explained in the next paragraph, we will only need to consider values in the AEC
when the targeted AEC is close to 10-5. As shown in the corresponding scatter
diagram (Figure 3-9c, when targeted AEC = 10-5), the solutions f from both
algorithms are close.

The trends in the AEC, as shown on Figure 3-9b, are less favorable to Aashtiani’s
algorithm than in the previous networks. At a not very low AEC of almost 10-5, Bar-
Gera’s algorithm is almost 600% slower, but the trend quickly shifts: Bar-Gera
becomes the fastest algorithm when spending more computational time. At some
point, for an AEC close to 10-7, Aashtiani’s algorithm is 900% slower. These two
extremes in computational time are very significant. As with CHIC_R, Bar-Gera’s
algorithm increases its speed at every subsequent iteration. It is interesting that at
some level, when the AEC ranges between 10-4 and 10-5, both algorithms seem
equally fast. The values of the MEC corroborate the trends shown by the values in the
AEC.

Figure 3-9b presents two additional interesting features. The trends in the MEC and
in the AEC show that both algorithms struggle in finding a better solution when
trying to reach an AEC close to 10-8 in the case of Bar-Gera’s algorithm and an AEC
close 10-7 in the case of Aashtiani’s algorithm. Figure 3-9b also shows that while
Aashtiani’s algorithm has a lot of control over the MEC, Bar-Gera’s algorithm has
control over the AEC. This is observed at the increase in the AEC that Aashtiani’s
algorithm have from 10-5 to 10-4 (that is, when the computational time is between100
seconds to 350 seconds). Meanwhile, the MEC in Aashtiani’s algorithm is strictly
decreasing.

In this network, the computational time ranges from one to 25 minutes approximately.
Contrary to the previous networks, Aashtiani’s algorithm spent a little bit more time

 44

calculating the initial solution. Also, contrary to the previous networks, the value of T
for this initial solution was higher than the initial solution of Bar-Gera’s network.

Overall, Bar-Gera’s algorithm seems faster. Nevertheless, one cannot discard stating
that Aashtiani’s algorithm is faster at lower (and perhaps acceptable) levels of
accuracy.

 45

Figure 3-10a. CHIC_S network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-10b. CHIC_S network: Evolution of the average excess cost and the maximum excess cost
for Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02
1E+03
1E+04

0.1 1.0 10.0 100.0 1,000.0

Computational Time [sec]

MEC [min] - Bar-Gera's algorithm
MEC [min] - Aashtiani's algorithm
AEC [min] - Bar-Gera's algorithm
AEC [min] - Aashtiani's algorithm

105% difference

100% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

1.0E+07

1.0E+08

1.0E+09

0.1 1.0 10.0 100.0 1,000.0

Computational Time [sec]

T
 [m

in
·(v

eh
/h

ou
r)

]

Aashtiani's algorithm
Bar-Gera's Algorithm

 46

Figure 3-10c. CHIC_S network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-2, 10-3 and 10-4 minutes.

Scatter Diagram for Link Costs
when AEC = 1E-1 min

(units in min)

R2 = 0.9975

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 min

(units in veh /hour)

R2 = 0.9906

0

5,000

10,000

15,000

20,000

25,000

0 5,000 10,000 15,000 20,000 25,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 min

(units in min)

R2 = 0.9976

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 min

(units in veh /hour)

R2 = 0.9904

0

5,000

10,000

15,000

20,000

25,000

0 5,000 10,000 15,000 20,000 25,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 min

(units in min)

R2 = 0.9976

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 min

(units in veh/hour)

R2 = 0.9904

0

5,000

10,000

15,000

20,000

25,000

0 5,000 10,000 15,000 20,000 25,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 min

(units in min)

R2 = 1

0

5

10

15

20

25

30

0 5 10 15 20 25 30
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 min

(units in veh /hour)

R2 = 1

0

5,000

10,000

15,000

20,000

25,000

0 5,000 10,000 15,000 20,000 25,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

 47

Description of the results shown on Figure 3-10a to Figure 3-10c

Network: Chicago Sketch
Code: CHIC_S
Number of Nodes: 933
Number of Zones: 387
Number of Arcs: 2,950
Number of OD Pairs: 142,512
Complexity: 420,410,400 arcs·OD pairs
Level of Complexity: 5 (108 to 109)
Total flow (total demand): 1,260,907 vehicles/hour
Units for the total link flows fa: vehicles/hour
Units for the link costs ta: minutes
Existence of tolls: No
Distance factor equal to zero: Yes

The scatter diagrams confirm that a targeted AEC of 10-1 minutes is enough for
rendering a satisfactory solution. For example, the scatter diagram of link costs (when
the targeted AEC is equal to 10-1 minutes) shows a difference of three minutes
approximately in the worst case between costs ta of a same link a. The coefficient of
determination for the total link flows for a targeted AEC of 10-1 is R2 = 0.9906.
Therefore, values less than or equal to 10-1 minutes should not be discarded when
looking for trends in the AEC curve.

The trend described by Figure 3-10b in terms of AEC is as follows. For a not very
low AEC close to 10-3 minutes, Bar-Gera’s algorithm is 105% slower than
Aashtiani’s. Then, Bar-Gera’s algorithm increases its rate of convergence and quickly
surpasses Aashtiani’s. At the end, for an AEC close to 10-8 minutes, Aashtiani’s
algorithm is 100% slower than Bar-Gera’s. These differences are very significant in
terms of percentage values. The values of the MEC corroborate the trend seen on the
AEC. Nevertheless, the trend in the MEC is more favorable to Aashtiani’s algorithm
for low accuracies. This feature is due to the high control that Aashtiani’s algorithm
over the MEC.

In sum, the results in this network are very similar to the BERL_C network. But in
this case, there is more certainty when stating that the initial results have enough
accuracy.

Like with most of the previous networks, Bar-Gera’s initial solution had a higher
value in the objective function, when compared to Aashtiani’s initial solution, and it
was calculated within less time. As always, by the time Aashtiani’s algorithm
completes its first cycle, Bar-Gera’s algorithm has already generated a solution with a
very similar T.

In this network, the computational time ranges from 5 seconds to 2 minutes
approximately.

 48

Figure 3-11a. M_P_F network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-11b. M_P_F network: Evolution of the average excess cost and the maximum excess cost for
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1E-13
1E-12
1E-11
1E-10
1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02
1E+03

0.01 0.10 1.00 10.00
Computational Time [sec]

MEC [cost units] - Bar-Gera's algorithm
MEC [cost units] - Aashtiani's algorithm
AEC [cost units] - Bar-Gera's algorithm
AEC [cost units] - Aashtiani's algorithm

5% difference

105% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

2.30E+06

2.35E+06

2.40E+06

2.45E+06

2.50E+06

2.55E+06

2.60E+06

2.65E+06

0.01 0.10 1.00 10.00

Computational Time [sec]

T
 [c

os
t u

ni
ts

·(f
lo

w
 u

ni
ts

)
]

Aashtiani's algorithm
Bar-Gera's Algorithm

 49

Figure 3-11c. M_P_F network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-2, 10-3 and 10-4 cost units.

Scatter Diagram for Link Costs
when AEC = 1E-1 cost units

(units in min)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 cost units

(units in veh /day)

R2 = 0.9978

0

200

400

600

800

1,000

1,200

1,400

1,600

0 200 400 600 800 1,000 1,200 1,400 1,600
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 cost units

(units in min)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 cost units

(units in veh /day)

R2 = 0.9979

0

200

400

600

800

1,000

1,200

1,400

1,600

0 200 400 600 800 1,000 1,200 1,400 1,600
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 cost units

(units in min)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 cost units

(units in veh /day)

R2 = 0.998

0

200

400

600

800

1,000

1,200

1,400

1,600

0 200 400 600 800 1,000 1,200 1,400 1,600
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 cost units

(units in min)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 cost units

(units in veh /day)

R2 = 0.9999

0

200

400

600

800

1,000

1,200

1,400

1,600

0 200 400 600 800 1,000 1,200 1,400 1,600
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

 50

Description of the results shown on Figure 3-11a to Figure 3-11c

Network: Mitte, Prenzlauer Berg and Friedricshain
Code: M_P_F
Number of Nodes: 974
Number of Zones: 98
Number of Arcs: 2,184
Number of OD Pairs: 9,505
Complexity: 20,758,920 arcs·OD pairs
Level of Complexity: 4 (108 to 109)
Total flow (total demand): 23,648 flow units
Units for the total link flows fa: unknown
Units for the link costs ta: unknown
Existence of tolls: No
Distance factor equal to zero: Yes

Arguably, Figure 3-11c reveal that a solution of an AEC of approximately equal to
10-1 is precise enough (R2 = 0.9978). Nonetheless, we will only need to consider
values in the AEC close to 10-4. As shown in the corresponding scatter diagram
(Figure 3-9c, when targeted AEC = 10-5), the solutions are very accurate (R2 =
0.9999).

The trends in the AEC are very similar to the two previous networks (BERL_C and
CHIC_S): Aashtiani’s algorithm starts by being faster (5% difference in
computational time) and then Bar-Gera’s becomes the fastest (105% difference). The
differences are very significant. Bar-Gera’s algorithm is always faster at every
subsequent iteration confirming a trend that seen in all the previous networks except
(perhaps) PHILAD. The curve described by the MEC corroborates the trend shown
by the curve of the AEC.

According to Figure 3-11a and as with the previous networks (except BERL_C),
Aashtiani’s algorithm starts with a better initial solution but Bar-Gera’s algorithm
very quickly catches up.

In this network, the computational time ranges from one to three seconds
approximately, a big decrease from the previous network which is one upper level of
complexity.

 51

Figure 3-12a. BARCEL network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-12b. BARCEL network: Evolution of the average excess cost and the maximum excess cost
for Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02
1E+03

0.01 0.10 1.00 10.00 100.00

Computational Time [sec]

MEC [cost units] - Bar-Gera's algorithm
MEC [cost units] - Aashtiani's algorithm
AEC [cost units] - Bar-Gera's algorithm
AEC [cost units] - Aashtiani's algorithm

110% difference
90% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

8.0E+06

9.0E+06

0.01 0.10 1.00 10.00 100.00

Computational Time [sec]

T
 [c

os
t u

ni
ts

·(f
lo

w
 u

ni
ts

)
]

Aashtiani's algorithm
Bar-Gera's Algorithm

 52

Figure 3-12c. BARCEL network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-2, 10-3 and 10-4 cost units.

Scatter Diagram for Link Costs
when AEC = 1E-1 cost units

(units in min)

R2 = 0.9998

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 cost units

(units in veh /day)

R2 = 0.9558

0

2,000

4,000

6,000

8,000

10,000

12,000

0 2,000 4,000 6,000 8,000 10,000 12,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 cost units

(units in min)

R2 = 0.9998

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 cost units

(units in veh /day)

R2 = 0.9594

0

2,000

4,000

6,000

8,000

10,000

12,000

0 2,000 4,000 6,000 8,000 10,000 12,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 cost units

(units in min)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 cost units

(units in veh /day)

R2 = 0.9928

0

2,000

4,000

6,000

8,000

10,000

12,000

0 2,000 4,000 6,000 8,000 10,000 12,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Link Costs
when AEC = 1E-4 cost units

(units in min)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 cost units

(units in veh /day)

R2 = 0.9993

0

2,000

4,000

6,000

8,000

10,000

12,000

0 2,000 4,000 6,000 8,000 10,000 12,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

 53

Description of the results shown on Figure 3-12a to Figure 3-12c

Network: Barcelona
Code: BARCEL
Number of Nodes: 930
Number of Zones: 110
Number of Arcs: 2,522
Number of OD Pairs: 7,922
Complexity: 19,979,284 arcs·OD pairs
Level of Complexity: 4 (108 to 109)
Total flow (total demand): 184,679 flow units
Units for the total link flows fa: unknown
Units for the link costs ta: unknown
Existence of tolls: No
Distance factor equal to zero: Yes

The scatter diagram of the total link flows (Figure 3-12c) does not reveal with
complete assurance that an AEC of 10-1 is accurate enough. At a targeted AEC of
10-2, the accuracy improves (R2 = 0.9928). But at a targeted AEC of 10-3, the solution
is very accurate (R2 = 0.9993).

The trends that Figure 3-12b describes were already explained in the previous section
(see page 34). For convenience to the reader, that analysis is restated here verbatim:
For an AEC less than or equal to 10-3, Aashtiani’s algorithm starts by being the
fastest. When the AEC is approximately 10-3, Bar-Gera’s algorithm is slower. No
algorithm is faster than the other always; there is no strong superiority of one
algorithm over the other. While Aashtiani’s algorithm ends by being 95% slower than
Bar-Gera’s, Bar-Gera’s algorithm starts by being 160% slower. Both algorithms seem
equally fast for an AEC between 10-5 and 10-6. Overall, we can observe that Bar-
Gera’s algorithm becomes faster as one allows more computational time. The
differences are fairly significant since they represent values greater than 90%. The
values of the MEC corroborate the values of the AEC. When Aashtiani’s algorithm is
slower in terms of the AEC, so it is in terms of the MEC.

The trends seen on this network are similar to BERL_C, CHIC_R and M_P_F.
Overall, Bar-Gera’s algorithm seem to be faster. Nevertheless, one cannot discard
stating that Aashtiani’s algorithm is faster at lower (and acceptable) accuracies.

According to Figure 3-12a and as with the previous networks (except BERL_C),
Aashtiani’s algorithm starts with a better initial solution but Bar-Gera’s algorithm
very quickly catches up. Aashtiani’s initial solution is obtained within less
computational time.

In this network, the computational time ranges from one to 12 seconds
approximately: slightly different to M_P_F which had the same level of complexity.

 54

Figure 3-13a. WINNIP network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-13b. WINNIP network: Evolution of the average excess cost and the maximum excess cost
for Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02
1E+03

0.01 0.10 1.00 10.00 100.00

Computational Time [sec]

MEC [cost units] - Bar-Gera's algorithm
MEC [cost units] - Aashtiani's algorithm
AEC [cost units] - Bar-Gera's algorithm
AEC [cost units] - Aashtiani's algorithm

600% difference

5% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1.0E+05

2.1E+06

4.1E+06

6.1E+06

8.1E+06

1.0E+07

1.2E+07

0.01 0.10 1.00 10.00 100.00

Computational Time [sec]

T
 [c

os
t u

ni
ts

·(f
lo

w
 u

ni
ts

)
] Aashtiani's algorithm

Bar-Gera's Algorithm

 55

Figure 3-13c. WINNIP network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-2, 10-3 and 10-8 cost units.

Scatter Diagram for Link Costs
when AEC = 1E-2 cost units

(units in min)

R2 = 0.9982

0

2

4

6

8

10

12

0 2 4 6 8 10 12
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 cost units

(units in veh /day)

R2 = 0.9698

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 cost units

(units in min)

R2 = 1

0

2

4

6

8

10

12

0 2 4 6 8 10 12
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 cost units

(units in veh /day)

R2 = 0.9973

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 cost units

(units in min)

R2 = 1

0

2

4

6

8

10

12

0 2 4 6 8 10 12
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 cost units

(units in veh /day)

R2 = 0.9998

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-8 min

(units in min)

R2 = 1

0

2

4

6

8

10

12

0 2 4 6 8 10 12
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Total Link Flows
when AEC = 1E-8 min

(units in veh /day)

R2 = 0.9998

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

 56

Description of the results shown on Figure 3-13a to Figure 3-13c

Network: Winnipeg
Code: WINNIP
Number of Nodes: 1,040
Number of Zones: 154
Number of Arcs: 2,836
Number of OD Pairs: 4,344
Complexity: 12,319,584 arcs·OD pairs
Level of Complexity: 4 (107 to 108)
Total flow (total demand): 64,784 flow units
Units for the total link flows fa: unknown
Units for the link costs ta: unknown
Existence of tolls: No
Distance factor equal to zero: Yes

This network presents a special characteristic that the other networks do not have.
WINNIP contains links with link performance functions equal to zero. As mentioned
previously in the Section Discussion on the Assumptions Required by Both Methods,
connectors can have null performance functions. But this network presents, besides
its connectors, other links with null performance functions. This feature leads to many
solutions f. This characteristic explains why when the targeted AEC is as extremely
low as 10-8, the link flows are still not completely equal. Nevertheless, the number of
these links is very small to deter the algorithms from finding an almost equal solution.

Like with the BARCEL network, the scatter diagram of the total link flows do not
describe a well define straight line when the targeted AEC is equal to 10-1. The
straight line starts to emerge at a targeted AEC of 10-3 (R2 = 0.9973) and definitely at
a targeted AEC of 10-4 (R2 = 0.9998).

The trends described by the AECs are very similar to the PHILAD network but a little
bit more favorable to Aashtian’s algorithm: Aashtiani’s algorithm is the fastest for
high values in the AEC, then Bar-Gera’s algorithm becomes the fastest and finally, at
the end, Aashtiani’s algorithm becomes slightly better. Regarding the maximum
differences presented, for a not very low AEC of 10-3, Bar-Gera’s algorithm is 600%
slower. For a medium AEC of approximately 10-5, Aashtiani’s algorithm is around
5% slower. At other values, both algorithms have almost the same performance.
Unlike with the PHILAD network, the values of the MEC corroborate the trends seen
on the values of the AECs. Very differently from the other networks, Bar-Gera’s
algorithm does not present an increasing better performance at every subsequent
iteration. Even if at an AEC of 10-5 Bar-Gera’s algorithm surpasses the other
algorithm, Bar-Gera’s algorithm becomes the slowest again at the end.

Another similarity between the PHILAD network and this one is that for a significant
range of AECs (10-5 to 10-7), Aashtiani’s algorithm and Bar-Gera’s algorithm are
practically equally fast.

The curve of T, as shown on Figure 3-12a, is very similar to the one seen in
BARCEL: the initial solution of Aashtiani’s algorithm is faster and more rapidly

 57

calculated (but by only 0.06 seconds). Again, Bar-Gera’s algorithm quickly (within
0.9 seconds) generates a solution with a similar value of T.

In this network, the computational time for obtaining a meaningful solution ranges
from one to 40 seconds approximately: similar to BARCEL which had the same level
of complexity.

 58

Figure 3-14a. ANAH network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-14b. ANAH network: Evolution of the average excess cost and the maximum excess cost for
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

1E-10
1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02

0.01 0.10 1.00 10.00

Computational Time [sec]

MEC [min] - Bar-Gera's algorithm
MEC [min] - Aashtiani's algorithm
AEC [min] - Bar-Gera's algorithm
AEC [min] - Aashtiani's algorithm

100% difference 700% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

1.2E+06

1.3E+06

1.4E+06

1.5E+06

1.6E+06

1.7E+06

1.8E+06

0.01 0.10 1.00 10.00

Computational Time [sec]

T
 [m

in
·(v

eh
/h

ou
r)

]

Aashtiani's algorithm
Bar-Gera's Algorithm

 59

Figure 3-14c. ANAH network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-2, 10-3 and 10-4 minutes.

Scatter Diagram for Link Costs
when AEC = 1E-1 min

(units in min)

R2 = 0.9999

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 min

(units in veh /hour)

R2 = 0.9952

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 min

(units in min)

R2 = 0.9999

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 min

(units in veh /hour)

R2 = 0.997

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 min

(units in min)

R2 = 0.9999

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 min

(units in veh/hour)

R2 = 0.9972

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 min

(units in min)

R2 = 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 min

(units in veh /hour)

R2 = 0.9992

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

0 2,000 4,000 6,000 8,000 10,000 12,000 14,000 16,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

 60

Description of the results shown on Figure 3-14a to Figure 3-14c

Network: Anaheim
Code: ANAH
Number of Nodes: 416
Number of Zones: 38
Number of Arcs: 914
Number of OD Pairs: 1,406
Complexity: 1,285,084 arcs·OD pairs
Level of Complexity: 3 (107 to 108)
Total flow (total demand): 104,694 vehicles/hour
Units for the total link flows fa: vehicles/hour
Units for the link costs ta: minutes
Existence of tolls: No
Distance factor equal to zero: Yes

Knowledge of the units for this network allows to state that an AEC of 10-1 minutes
(or 10-2 minutes since this is a small network) would guarantee a solution that is
precise enough. The scatter diagram of the total link flows for a targeted AEC of 10-1
minutes supports this statement (in this case, R2 = 0.9952).

The trends described by the AECs are similar to those of BERL_C, CHIC_S,
BARCEL and M_P_F: Aashtiani’s algorithm is the fastest for high values in the AEC
and then Bar-Gera’s algorithm becomes the fastest. There is a 100% difference in
computational time when the AEC approximates 10-4 minutes and towards the end,
there is a 700% difference when the AEC approximates to 10-7 minutes. Both
differences are very significant. As with the previous networks (except for
Winnipeg), Bar-Gera’s algorithm is faster at every subsequent iteration. The results in
the MECs corroborate the trends seen in the AECs.

This is the second network, besides BERL_C, where Bar-Gera’s algorithm required
less time computing its initial solution. As with all the other networks where the value
of T is greater in the initial solution of Bar-Gera’s algorithm than in the one of
Aashtini’s, Bar-Gera’s algorithm quickly obtains a solution with a similar T.

In this network, the computational time for obtaining a meaningful solution ranges
from 0.12 seconds to 4 seconds approximately. Up to this point, computational times
seem to be proportional to the level of complexity.

 61

Figure 3-15a. MIT_C network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-15b. MIT_C network: Evolution of the average excess cost and the maximum excess cost for
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1E-13
1E-12
1E-11
1E-10
1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02

0.01 0.10 1.00

Computational Time [sec]

MEC [cost units] - Bar-Gera's algorithm
MEC [cost units] - Aashtiani's algorithm
AEC [cost units] - Bar-Gera's algorithm
AEC [cost units] - Aashtiani's algorithm

390% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

9.90E+05

1.01E+06

1.03E+06

1.05E+06

1.07E+06

1.09E+06

1.11E+06

1.13E+06

0.01 0.10 1.00

Computational Time [sec]

T
 [c

os
t u

ni
ts

·(f
lo

w
 u

ni
ts

)
]

Aashtiani's algorithm
Bar-Gera's Algorithm

 62

Figure 3-15c. MIT_C network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-2, 10-3 and 10-4 cost units.

Scatter Diagram for Link Costs
when AEC = 1E-1 cost units

(units in min)

R2 = 1

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 cost units

(units in veh /day)

R2 = 0.9995

0

200

400

600

800

1,000

1,200

0 200 400 600 800 1,000 1,200
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 cost units

(units in min)

R2 = 1

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 cost units

(units in veh /day)

R2 = 0.9997

0

200

400

600

800

1,000

1,200

0 200 400 600 800 1,000 1,200
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 cost units

(units in min)

R2 = 1

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 cost units

(units in veh /day)

R2 = 0.9997

0

200

400

600

800

1,000

1,200

0 200 400 600 800 1,000 1,200
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 cost units

(units in min)

R2 = 1

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 cost units

(units in veh /day)

R2 = 1

0

200

400

600

800

1,000

1,200

0 200 400 600 800 1,000 1,200
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

 63

Description of the results shown on Figure 3-15a to Figure 3-15c

Network: Mitte Center
Code: MIT_C
Number of Nodes: 397
Number of Zones: 36
Number of Arcs: 871
Number of OD Pairs: 1,260
Complexity: 1,097,460 arcs·OD pairs
Level of Complexity: 3 (107 to 108)
Total flow (total demand): 11,482 flow units
Units for the total link flows fa: unknown
Units for the link costs ta: unknown
Existence of tolls: No
Distance factor equal to zero: Yes

The scatter diagrams seem to indicate that for a targeted AEC of 10-1, the solutions
have enough accuracy.

Clearly in this network, Bar-Gera’s algorithm is the fastest at any level of precision.
And the differences are very significant: from a 60% difference to an almost 400%
difference. Nonetheless, in absolute units, the differences are less than a second due
to the small size of the network. The trends in the MEC corroborate the trends in the
AEC.

The trends observed with this network seem somewhat different from other networks
due to the clear superiority of Bar-Gera’s algorithm. Still, one can observe that the
speed of Bar-Gera’s algorithm increases at every subsequent iteration.

Figure 3-15a shows that Bar-Gera’s algorithm spent less time computing its initial
solution. Nevertheless, this difference in time is small compare to the total
computational time spent by both algorithms. Like in all the networks except
BERL_C, the value of T in Aashtiani’s algorithm starts by being smaller but Bar-
Gera’s algorithm quickly reaches such small values.

This is the first network where the computational time does not exceed one second. In
consequence, calculating a solution f• in this network required more carefulness:
parallel operations in the computer had the potential to affect the computational
times.

 64

Figure 3-16a. PR_C network: Evolution of the objective function value for Aashtiani’s and Bar-Gera’s
algorithms.

Figure 3-16b. PR_C network: Evolution of the average excess cost and the maximum excess cost for
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1E-11
1E-10
1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02
1E+03

0.01 0.10 1.00

Computational Time [sec]

MEC [cost units] - Bar-Gera's algorithm
MEC [cost units] - Aashtiani's algorithm
AEC [cost units] - Bar-Gera's algorithm
AEC [cost units] - Aashtiani's algorithm

200% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1.25E+06

1.30E+06

1.35E+06

1.40E+06

1.45E+06

1.50E+06

0.01 0.10 1.00

Computational Time [sec]

T
 [c

os
t u

ni
ts

·(f
lo

w
 u

ni
ts

)
]

Aashtiani's algorithm
Bar-Gera's Algorithm

 65

Figure 3-16c. PR_C network: scatter diagrams and coefficients of determination that compare the total
link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting an
AEC of 10-1, 10-2, 10-3 and 10-4 cost units.

Scatter Diagram for Link Costs
when AEC = 1E-1 cost units

(units in min)

R2 = 1

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 cost units

(units in veh /day)

R2 = 0.9997

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 cost units

(units in min)

R2 = 1

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 cost units

(units in veh /day)

R2 = 0.9997

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 cost units

(units in min)

R2 = 1

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 cost units

(units in veh /day)

R2 = 1

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 cost units

(units in min)

R2 = 1

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 cost units

(units in veh /day)

R2 = 1

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

 66

Description of the results shown on Figure 3-16a to Figure 3-16c

Network: Prenzlauer Berg Center
Code: PR_C
Number of Nodes: 749
Number of Zones: 352
Number of Arcs: 749
Number of OD Pairs: 1,406
Complexity: 1,053,094 arcs·OD pairs
Level of Complexity: 3 (106 to 107)
Total flow (total demand): 16,659 flow units
Units for the total link flows fa: unknown
Units for the link costs ta: unknown
Existence of tolls: No
Distance factor equal to zero: Yes

The results observed in this network are very similar to MIT_C. The scatter diagrams
and the trends are similar to those presented by the MIT_C network. In general, Bar-
Gera’s algorithm outperforms Aashtiani’s algorithm by a 200% difference that seems
to be constant at every value in the AEC. These differences are significant but
because the network is small, the differences are always less than one second.

Like with MIT_C, Figure 3-16a shows that the value of T in Aashtiani’s algorithm
starts by being smaller but Bar-Gera’s algorithm quickly catches up. Also, like with
MIT_C, Bar-Gera’s algorithm spent less time in calculating the initial solution.
Nonetheless, this difference in time is much less than the differences seen on Figure
3-16b.

The computational time does not exceed one second. As with MIT_C, measuring the
computational times presented challenges.

 67

Figure 3-17a. TIEG_C network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-17b. TIEG_C network: Evolution of the average excess cost and the maximum excess cost
for Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02
1E+03

0.01 0.10 1.00 10.00

Computational Time [sec]

MEC [cost units] - Bar-Gera's algorithm
MEC [cost units] - Aashtiani's algorithm
AEC [cost units] - Bar-Gera's algorithm
AEC [cost units] - Aashtiani's algorithm

5,005% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

6.80E+05

6.85E+05

6.90E+05

6.95E+05

7.00E+05

7.05E+05

7.10E+05

7.15E+05

0.01 0.10 1.00 10.00

Computational Time [sec]

T
 [c

os
t u

ni
ts

·(f
lo

w
 u

ni
ts

)
]

Aashtiani's algorithm
Bar-Gera's Algorithm

 68

Figure 3-17c. TIEG_C network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-2, 10-3 and 10-4 cost units.

Scatter Diagram for Link Costs
when AEC = 1E-1 cost units

(units in min)

R2 = 0.9996

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 cost units

(units in veh /day)

R2 = 0.9916

0

200

400

600

800

1,000

1,200

1,400

1,600

0 200 400 600 800 1,000 1,200 1,400 1,600
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 cost units

(units in min)

R2 = 0.9996

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 cost units

(units in veh /day)

R2 = 0.9916

0

200

400

600

800

1,000

1,200

1,400

1,600

0 200 400 600 800 1,000 1,200 1,400 1,600
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 cost units

(units in min)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 cost units

(units in veh /day)

R2 = 0.9998

0

200

400

600

800

1,000

1,200

1,400

1,600

0 200 400 600 800 1,000 1,200 1,400 1,600
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 cost units

(units in min)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 cost units

(units in veh /day)

R2 = 0.9998

0

200

400

600

800

1,000

1,200

1,400

1,600

0 200 400 600 800 1,000 1,200 1,400 1,600
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

 69

Description of the results shown on Figure 3-17a to Figure 3-17c

Network: Tiegarten Center
Code: TIEG_C
Number of Nodes: 359
Number of Zones: 26
Number of Arcs: 766
Number of OD Pairs: 644
Complexity: 493,304 arcs·OD pairs
Level of Complexity: 2 (106 to 107)
Total flow (total demand): 10,754 flow units
Units for the total link flows fa: unknown
Units for the link costs ta: unknown
Existence of tolls: No
Distance factor equal to zero: Yes

This network falls in the same category of MIT_C and PR_C. In general, Bar-Gera’s
algorithm outperforms Aashtiani’s algorithm by a 5,000% difference.

Like with MIT_C and PR_C, the value of T in Aashtiani’s algorithm starts by being
smaller but Bar-Gera’s algorithm quickly catches up. Also, like with MIT_C and
PR_C, Bar-Gera’s algorithm spent less time in calculating the initial solution but this
difference is much smaller than the total computational times observed in Figure 3-
17b.

The computational time does not exceed one second. As with MIT_C and PR_C,
measuring the computational times presented challenges.

 70

Figure 3-18a. FR_C network: Evolution of the objective function value for Aashtiani’s and Bar-Gera’s
algorithms.

Figure 3-18b. FR_C network: Evolution of the average excess cost and the maximum excess cost for
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

1E-13
1E-12
1E-11
1E-10
1E-09
1E-08
1E-07
1E-06
1E-05
1E-04
1E-03
1E-02
1E-01
1E+00
1E+01
1E+02

0.01 0.10 1.00

Computational Time [sec]

MEC [cost units] - Bar-Gera's algorithm
MEC [cost units] - Aashtiani's algorithm
AEC [cost units] - Bar-Gera's algorithm
AEC [cost units] - Aashtiani's algorithm

200% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 cost units)

6.15E+05

6.20E+05

6.25E+05

6.30E+05

6.35E+05

6.40E+05

6.45E+05

6.50E+05

0.01 0.10 1.00

Computational Time [sec]

T
 [c

os
t u

ni
ts

·(f
lo

w
 u

ni
ts

)
]

Aashtiani's algorithm
Bar-Gera's Algorithm

 71

Figure 3-18c. FR_C network: scatter diagrams and coefficients of determination that compare the total
link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting an
AEC of 10-1, 10-2, 10-3 and 10-4 cost units.

Scatter Diagram for Link Costs
when AEC = 1E-1 cost units

(units in min)

R2 = 0.9999

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 cost units

(units in veh /day)

R2 = 0.9985

0

200

400

600

800

1,000

1,200

1,400

0 200 400 600 800 1,000 1,200 1,400
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 cost units

(units in min)

R2 = 0.9999

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 cost units

(units in veh /day)

R2 = 0.9985

0

200

400

600

800

1,000

1,200

1,400

0 200 400 600 800 1,000 1,200 1,400
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 cost units

(units in min)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 cost units

(units in veh /day)

R2 = 0.9999

0

200

400

600

800

1,000

1,200

1,400

0 200 400 600 800 1,000 1,200 1,400
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 cost units

(units in min)

R2 = 1

0

10

20

30

40

50

60

0 10 20 30 40 50 60
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
A

as
ht

ia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 cost units

(units in veh /day)

R2 = 1

0

200

400

600

800

1,000

1,200

1,400

0 200 400 600 800 1,000 1,200 1,400
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

A
as

ht
ia

ni
's

 A
lg

or
ith

m

 72

Description of the results shown on Figure 3-18a to Figure 3-18c

Network: Friedricshain Center
Code: FR_C
Number of Nodes: 224
Number of Zones: 23
Number of Arcs: 523
Number of OD Pairs: 506
Complexity: 264,638 arcs·OD pairs
Level of Complexity: 2 (105 to 106)
Total flow (total demand): 11,205 flow units
Units for the total link flows fa: unknown
Units for the link costs ta: unknown
Existence of tolls: No
Distance factor equal to zero: Yes

This network falls in the same category of the previous three networks. Bar-Gera’s
algorithm outperforms Aashtiani’s algorithm by a difference of at least 150% always.

As shown on Figure 3-18a, the trends of the objective function are very similar to
those shown in the previous three networks.

The computational time does not exceed one second. As with the previous two
networks, measuring the computational times presented challenges.

 73

Figure 3-19a. SIOUX network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms.

Figure 3-19b. SIOUX network: Evolution of the average excess cost and the maximum excess cost for
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences).

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

1E-09

1E-08

1E-07

1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02
0.01 0.10 1.00 10.00

Computational Time [sec]

MEC [min] - Bar-Gera's algorithm
MEC [min] - Aashtiani's algorithm
AEC [min] - Bar-Gera's algorithm
AEC [min] - Aashtiani's algorithm

400% difference

Evolution of the Objective Function for Aashtiani's and Bar-Gera's algorithms
(Targeted AEC = 1E-8 min)

4.20E+06

4.25E+06

4.30E+06

4.35E+06

4.40E+06

4.45E+06

4.50E+06

4.55E+06

4.60E+06

0.01 0.10 1.00 10.00

Computational Time [sec]

T
 [m

in
·(v

eh
/d

ay
)

]

Aashtiani's algorithm
Bar-Gera's Algorithm

 74

Figure 3-19c. SIOUX network: scatter diagrams and coefficients of determination that compare the
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting
an AEC of 10-1, 10-2, 10-3 and 10-4 minutes.

Scatter Diagram for Link Costs
when AEC = 1E-1 min

(units in min)

R2 = 0.985

0

5

10

15

20

25

0 5 10 15 20 25
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 min

(units in veh /day)

R2 = 0.9938

0

5,000

10,000

15,000

20,000

25,000

0 5,000 10,000 15,000 20,000 25,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 min

(units in min)

R2 = 0.9999

0

5

10

15

20

25

0 5 10 15 20 25
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 min

(units in veh /day)

R2 = 1

0

5,000

10,000

15,000

20,000

25,000

0 5,000 10,000 15,000 20,000 25,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 min

(units in min)

R2 = 1

0

5

10

15

20

25

0 5 10 15 20 25
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 min

(units in veh /day)

R2 = 1

0

5,000

10,000

15,000

20,000

25,000

0 5,000 10,000 15,000 20,000 25,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 min

(units in min)

R2 = 1

0

5

10

15

20

25

0 5 10 15 20 25
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 min

(units in veh /day)

R2 = 1

0

5,000

10,000

15,000

20,000

25,000

0 5,000 10,000 15,000 20,000 25,000
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

 75

Description of the results shown on Figure 3-19a to Figure 3-19c

Network: Sioux-Falls
Code: SIOUX
Number of Nodes: 24
Number of Zones: 24
Number of Arcs: 76
Number of OD Pairs: 552
Complexity: 41,952 arcs·OD pairs
Level of Complexity: 1 (104 to 105)
Total flow (total demand): 360,600 flow units
Units for the total link flows fa: vehicles/day
Units for the link costs ta: minutes
Existence of tolls: No
Distance factor equal to zero: Yes

The results shown on Figure 3-19b present the same trend shown in the past four
networks: an outperformance in speed of Bar-Gera’s algorithm at every level of
accuracy. The only difference with those networks is that on Figure 3-19a, Bar-
Gera’s initial solution has a much smaller value of T than Aashtiani’s. Like with the
previous networks, Bar-Gera’s algorithm is quicker in computing the initial solution
but this difference is less than the difference that Bar-Gera’s algorithm makes in
computing the final solutions (that is, for an AEC of 10-3 minutes or less). And
finally, like in the previous networks, the time for calculating acceptable solutions
never exceeds one second in either of the two algorithms.

In terms of memory requirements, Table 3-3 presents the maximum amount of
memory used by each of the algorithms. These values, corresponding to a targeted
AEC of 10-7 (whether in minutes or other cost units), allow to easily determine that
Bar-Gera’s algorithm requires much less memory.

 76

Level of
Complexity Network

Memory required in MB to Converge to
a Solution for a targeted AEC of 10-7

Aashtiani’s Method Bar-Gera’s
Method

1 104 to 105 Sioux-Falls 26.44 0.01

2 105 to 106
Friedrichshain Center 40.85 0.05
Tiegarten Center 60.62 0.07

3 106 to 107
PrenzlauerBerg Center 140.89 0.08
Mitte Center 122.92 0.11
Anaheim 144.74 0.20

4 107 to 108

Winnipeg 642.32 2.23
Barcelona 1,090.06 1.97
Mitte, PrenzlauerBerg, and
Friedrichshain

1,200.98 0.76

5 108 to 109 Chicago Sketch 8,454.77 6.69
6 109 to 1010 Berlin Center 7,299.33 93.83
7 1010 to 1011 Philadelphia 363,540.88 344.40
8 1011 to 1012 Chicago Regional 591,268.58 111.50

Table 3-3. Memory requirements for both algorithms when targeting an AEC of 10-7 (If the network is
CHIC_R, PHILAD, CHIC_S, ANAH or SIOUX, the units of the AEC are in minutes. Otherwise, the
units are not known.).

Analysis
To begin with, we need to verify whether the classification made to the networks on
Figure 3-1 was adequate. This classification uses the definition of complexity as
recommended in previous literature (Jahn et al. 2005; Holmberg and Di Yuan 2003).

 77

Figure 3-20. SIOUX network: Evolution of the average excess cost and the maximum excess cost for
Aashtiani’s and Bar-Gera’s algorithms.

Figure 3-20 presents the time spent by each algorithm for an AEC of 10-3 and 10-7.
This figure shows that the level of complexity does correlate with the computational
time spent. Therefore, the classification used seems to be appropriate.

Now, regarding the results shown in the previous section, a careful observation allows
classifying them into four categories. The first category comprises the networks in
which Aashtiani’s algorithm is always the fastest regardless on how much accuracy
the practitioner is seeking. The second category comprises networks in which
Aashtiani’s algorithm is the fastest at a high AEC and at a very low AEC. At other
values in the AEC, Bar-Gera’s is the fastest. The third category comprises the
networks where Bar-Gera’s algorithm is always the fastest except when targeting a
high AEC. The fourth category comprises the networks where Bar-Gera’s algorithm
is the fastest independently of the AEC that the practitioner is targeting. Table 3-4
presents the four categories.

Computational Time Spent by both Algorithms
for calculating solutions with different AEC

1.0E-01

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

SIOUXFR_CTIEG_CPR_CMIT_CANAHWINNIPBARCELM_P_FCHIC_SBERLPHILADCHIC_R

Network

C
om

pu
ta

tio
na

l T
im

e
[s

ec
]

AEC=1E-8, Bar-Gera's algorithm

AEC=1E-8, Aashtiani's algorithm

AEC=1E-3, Bar-Gera's algorithm

AEC=1E-3, Aashtiani's algorithm

Level of Complexity
8

1011 - 1012
7

1010 - 1011
6

109 - 1010
5

108 - 109
4

107 – 108
3

106 - 107
2

105 - 106
1

104 - 105

 78

C
at

eg
or

y
General Description

When Bar-Gera’s
algorithm is the

slowest,

When Aashtiani’s
algorithm is the

slowest,
Network Level of

Complexity
it is this

%
slower,

at this
AEC

approx(1)

it is this
%

slower,

at this
AEC

approx(1)

1 Aashtiani’s algorithm
is always the fastest. 400%(1) 1E-3 m 6%(2) 1E-8 m CHIC_R 8 1011 - 1012

2 Aashtiani’s algorithm
is always the fastest
except for a medium
accuracy.

10%(3) 1E-3 m 110%(1) 1E-4 m PHILAD 7 1010 - 1011

600%(1) 1E-3 cu 5%(1) 1E-5 cu WINNIP 4 107 - 108

3 Bar-Gera’s algorithm
is always the fastest
except for a high (but
always satisfactory)
accuracy.

600%(1) 1E-5 cu 900%(1) 1E-7 cu BERL_C 6 109 - 1010
105%(1) 1E-3 m 100%(1) 1E-7 m CHIC_S 5 108 - 109

5%(1) 1E-4 cu 105%(1) 1E-8 cu M_P_F 4 107 - 108
110%(1) 1E-3 cu 90%(1) 1E-7 cu BARCEL 4 107 - 108
100%(1) 1E-4 m 700%(1) 1E-7 m ANAH 3 106 - 107

4 Bar-Gera’s algorithm
is always the fastest.

 390%(1) 1E-9 cu MIT_C 3 106 - 107
 200%(1) 1E-2 cu PR_C 3 106 - 107
 5,005% 1E-9 cu TIEG_C 2 105 - 106
 200%(1) 1E-2 cu FR_C 2 105 - 106
 400%(1) 1E-4 m SIOUX 1 104 - 105

(1) “cu” refers to cost units which are unknown. “m” refers to minutes.
(2) The corresponding MEC on both algorithms suggest that Aashtiani’s algorithm is faster instead of Bar-Gera’s.
(3) Although this difference is not very large, the trend shown by the MEC suggests a larger difference.

Table 3-4. Categories that summarize the performance of Aashtiani’s and Bar-Gera’s algorithms in
terms of computational speed. For every category, this table shows a general description, the networks
that it comprises and the extreme differences in computational time.

Four important findings are to be drawn from Table 3-4. First, as a network is more
complex, Aashtiani’s algorithm has a better performance in terms of computational
speed. Second, in three out of four categories, Aashtiani’s algorithm is the fastest
when the accuracy is not so high. The reader should notice that Figure 3-20 confirms
this trend. The values in the AEC that appear on Table 3-4 in which Aashtiani’s
algorithm is faster, although they are not very low, they do guarantee solutions with
sufficient accuracy according to the scatter diagrams analyzed in the previous section.

Third, in the first three categories, although one algorithm seems to outperform the
other, there are still levels of precision in which the opposite is true. For example in
the CHIC_S network, overall, Bar-Gera’s algorithm seems to be the fastest, but when
targeting an AEC of 10-3 minutes, Aashtiani’s algorithm could be much faster than
Bar-Gera’s. Therefore, although the categories reveal tendencies in the performances,
the variability in the computational time is very high.

Finally, Bar-Gera’s algorithm becomes faster than Aashtiani’s at every subsequent
iteration. The only exception was WINNIP. In other words, allocating more
computational time tends to favor always Bar-Gera’s algorithm and therefore, this
algorithm would deliver the most accurate solution.

 79

Since the above findings suggest that Aashtiani’s algorithm is faster when the
precision is not very demanding, the reader might find useful Table 3-5. On this table,
one can observe the AEC at which Aashtiani’s algorithm stops being the fastest.

C
at

eg
or

y

Network Level of
Complexity

Bar-Gera’s algorithm is the
slowest, Both algorithms

become equally
fast, at this AEC by this

percentage, at this AEC

1 CHIC_R 8 1011 - 1012 400%(1) 1.0 E-3 minutes 1.0 E-8 minutes

2 PHILAD 7 1010 - 1011 10%(2) 1.3 E-3 minutes 1.1 E-3 minutes
WINNIP 4 107 - 108 600%(1) 1.0 E-3 cost units 1.7 E-5 cost units

3

BERL_C 6 109 - 1010 600%(1) 1.2 E-5 cost units 1.2 E-5 cost units
CHIC_S 5 108 - 109 105%(1) 1.6 E-4 minutes 1.3 E-4 minutes
M_P_F 4 107 - 108 5%(1) 1.0 E-4 cost units 1.8 E-5 cost units

BARCEL 4 107 - 108 110%(1) 1.0 E-3 cost units 1.2 E-5 cost units
ANAH 3 106 - 107 100%(1) 1.1 E-4 minutes 1.3 E-3 minutes

Table 3-5. Networks for which Aashtiani’s algorithm starts being faster than Bar-Gera’s algorithm and
then, at some AEC (as indicated on the last column), both algorithms become equally fast.

It is important to clarify some aspects concerning the evolution of the objective
function T. One could state that Aashtiani’s algorithm performs better at low levels of
accuracy because in general, the initial solution that Aashtiani’s algorithm generates
has a lower T. Two arguments contradict this statement. First, as the corresponding
figures suggest (Figure 3-7a, Figure 3-8a up to Figure 3-19a), by the second or third
iteration of Bar-Gera’s algorithm, its value of T becomes as low as the one of
Aashtiani’s algorithm. Second, the computational time measured during this thesis
starts from the moment the algorithm starts generating the initial solution. Therefore,
while Bar-Gera’s initial solution has, most of the times, a higher T, it requires in some
cases less time for its calculation. On the other hand, Aashtiani’s algorithm can spend
more time in calculating its initial solution.

Finally, as expected when comparing an origin-based algorithm with a route based
algorithm, Bar-Gera’s method requires less memory. Nevertheless, an interesting
result is that Aashtiani’s algorithm, although it can consider many routes for every
OD pair (that is, the cardinality of the set of working paths w

iR can be as high as |Ri|),
the results show that the algorithm only used four routes at the most.

 80

CHAPTER 4: SUMMARY, CONCLUSIONS AND

FURTHER RESEARCH

This thesis aimed at comparing Aashtiani’s method and Bar-Gera’s method for
solving the static traffic assignment with fixed demand (S-TAP-F). The main focus of
the comparison was to determine which method requires the least computational time
when executing their corresponding algorithms. The main intention of their authors
was not to create two methods that could be comparable between themselves but two
methods that could solve two similar but not identical problems: each method has
different assumptions about the problems to solve. For this reason, this thesis looked,
in the second chapter, at their theoretical backgrounds and found out that problems, if
compliant with the following assumptions, serve as a test bed for comparing both
methods:

1. The TAP to be solved is static.

2. The TAP to be solved has a fixed demand.

3. The TAP to be solved is deterministic.

4. The solution does not need to be integer.

5. Every link performance function depends solely on the total link flow that
passes through it and not on other total link flows.

6. Every link performance function is positive, continuous and strictly
increasing.

7. The solutions are to be compared is in terms of total link flows (and not route
flows).

The second chapter also looked at the parameters required by Aashtiani’s algorithm
and Bar-Gera’s algorithm. It concluded that there are interesting parameters that
regulate the ratio of iterations versus cycles (or in other words, “local search” versus
“global search”). Nevertheless, Bar-Gera’s software suggested a value for its
parameter (that is, m = 2) and a value that presented satisfactory preliminary results
was used for Aashtiani’s algorithm (that is, mA = 10).

Two additional aspects were analyzed concerning the nature of the algorithms. To
begin with, Aashtiani (1979) suggested that his algorithm should use Bellman’s
shortest path algorithm (Bellman 1958) because it was considered the best at the time
(Golden 1975). Instead, this thesis used the L-deque algorithm (Pape 1974) because
according to a more recent study by Pallottino and Scuttelà (1998), it is the fastest for
transportation networks. Secondly, Bar-Gera’s algorithm starts with an arbitrary
feasible solution. Aashtiani’s algorithm starts with a different initial solution, that is, a
solution in which all the total route flow for each OD pair is assigned to the path with

 81

the least cost. Since the software used for Bar-Gera’s algorithm was not open source,
Aashtiani’s algorithm could not be modified accurately so that it could generate the
same initial solution that Bar-Gera’s algorithm used.

Finally, the second chapter reviewed the data structures used by Bar-Gera and the
data structures that Toobaie (1998) added to Aashtiani’s algorithm.

This thesis presented on its third chapter thirteen networks (and link performance
functions) that complied with the assumptions identified in the previous chapter. One
of these networks, WINNIP, did not comply with the assumptions thoroughly. It
contained links, other than connectors, whose performance functions were equal to
zero. Nevertheless, results showed that the number of this kind of links was
insufficient for affecting a meaningful comparison. The networks were classified
according to the product of the number of OD pairs times the number of arcs as
suggested in previous literature (Jahn et al. 2005; Holmberg and Di Yuan 2003). To
every value of complexity, this thesis assigned a number (a level) from 1 to 8, where
8 would refer to the most complex network. According to this numeration, every level
of complexity had at least one network (see Figure 3-1).

Due to (1) the absence of units in some networks, (2) the lack of a physical
interpretation for the objective function T (defined in [2-2a]), and (3) the very
different results obtained at every level of accuracy in the solution f•, the numerical
comparison required crafting a careful procedure. The procedure chosen for this
thesis was the following:

1. For each method, run the algorithms targeting a very low value in the AEC.

2. Plot (like with the first and second approaches) the evolution of T.

3. For various targeted AECs, plot one scatter diagram that compares the total
link flows fa and another scatter diagram that compares the the link costs ta
between the two algorithms.

4. Use the scatter diagrams to determine the maximum targeted AEC that
guarantees a straight line (the reader can observe here that this verification is
somewhat subjective, especially when the units are unknown. The coefficient
of determination R2 is recommended for this verification but it can be heavily
influenced by outliers whose magnitudes are very large compared to the rest
of points).

5. Plot (like with the second approach) the evolution of the AEC and the MEC
against the computational time.

6. Look for trends in the evolution of the AEC and verify those trends with the
MEC. Make sure that the values of the AEC are less than or equal to the
maximum targeted AEC that was determined on step 4.

 82

The main conclusions to be drawn from the results observed on this thesis are the
following (most of them can be drawn from Table 3-4 which, for convenience to the
reader, appears below): (1) Aashtiani’s algorithm and Bar-Gera’s algorithm showed
very similar performances not because their computational times were similar but
because on a same network, Aashtiani’s algorithm could be much faster than Bar-
Gera’s at certain level of accuracy and much slower at another level of accuracy. It
can be affirmed from here, that the variability of the results was very high. (2)
Aashtiani’s algorithm seems to be the fastest algorithm when applied to the most
complex networks. Clearly, it was faster than Bar-Gera’s algorithm for solving the
largest network. (3) In most cases, Aashtiani’s algorithm was the fastest at solving the
S-TAP-F at low but satisfactory levels of accuracy. The maximum accuracy at which
Aashtiani’s algorithm was always faster can only be stated when the units are known.
Therefore, from the four largest networks whose units were known, one can conclude
that Aashtiani’s algorithm was faster than Bar-Gera’s when the AEC was greater than
or equal to 0.11 minutes (this result is drawn from Table 3-5). (4) On the contrary,
Bar-Gera’s algorithm has an increasing computational speed. As a result, at almost
every lesser value in the AEC, Bar-Gera’s algorithm will perform faster. Even with
the largest network where Aashtiani’s algorithm was the fastest, it seems that if
requiring a greater (but unnecessary) precision, Bar-Gera’s algorithm could become
the fastest. (5) Bar-Gera’s algorithm presented a clear superiority in the five least
complex networks.

C
at

eg
or

y

General Description

When Bar-Gera’s
algorithm is the

slowest,

When Aashtiani’s
algorithm is the

slowest,
Network Level of

Complexity
it is this

%
slower,

at this
AEC

approx(1)

it is this
%

slower,

at this
AEC

approx(1)

1 Aashtiani’s algorithm
is always the fastest. 400%(1) 1E-3 m 6%(2) 1E-8 m CHIC_R 8 1011 - 1012

2 Aashtiani’s algorithm
is always the fastest
except for a medium
accuracy.

10%(3) 1E-3 m 110%(1) 1E-4 m PHILAD 7 1010 - 1011

600%(1) 1E-3 cu 5%(1) 1E-5 cu WINNIP 4 107 - 108

3 Bar-Gera’s algorithm
is always the fastest
except for a high (but
always satisfactory)
accuracy.

600%(1) 1E-5 cu 900%(1) 1E-7 cu BERL_C 6 109 - 1010
105%(1) 1E-3 m 100%(1) 1E-7 m CHIC_S 5 108 - 109

5%(1) 1E-4 cu 105%(1) 1E-8 cu M_P_F 4 107 - 108
110%(1) 1E-3 cu 90%(1) 1E-7 cu BARCEL 4 107 - 108
100%(1) 1E-4 m 700%(1) 1E-7 m ANAH 3 106 - 107

4 Bar-Gera’s algorithm
is always the fastest.

 390%(1) 1E-9 cu MIT_C 3 106 - 107
 200%(1) 1E-2 cu PR_C 3 106 - 107
 5,005% 1E-9 cu TIEG_C 2 105 - 106
 200%(1) 1E-2 cu FR_C 2 105 - 106
 400%(1) 1E-4 m SIOUX 1 104 - 105

(1) “cu” refers to cost units which are unknown. “m” refers to minutes.
(2) The corresponding MEC on both algorithms suggest that Aashtiani’s algorithm is faster instead of Bar-Gera’s.
(3) Although this difference is not very large, the trend shown by the MEC suggests a larger difference.

Table 3-4 (repeated). Categories that summarize the performance of Aashtiani’s and Bar-Gera’s
algorithms in terms of computational speed. For every category, this table shows a general description,
the networks that it comprises and the extreme differences in computational time.

 83

One lesson to be drawn from this study is that the utilization of non-open source
software carries many disadvantages. The large number of trials and actual
computations required software whose stopping criteria could not be tailored. Bar-
Gera’s software only offers the AEC as the stopping criterion. A second lesson to be
drawn from these results is that, given the speed of current desktop and laptop
computers, networks with a complexity lower than 10-7 have become non-
recommendable for comparing convergence rates among S-TAP-F solution
algorithms. Their computational times do not exceed one second.

Further study could focus on using larger networks for comparing both networks.
Also, further study could analyze the impact of using different shortest path
algorithms for Aashtiani’s algorithm. The results obtained for this thesis are the
product of using the L-deque shortest-path algorithm (Pape 1974) in Aashtiani’s
algorithm. This choice follows Pallottino and Scutella’s (1998) recommendation
which states that for networks typical of transportation models, the L-deque shortest-
path algorithm is the best choice. Therefore, there is still the possibility that
Aashtiani’s algorithm could show a better performance if using a different shortest
path algorithm.

Comparisons in the past between algorithms that solve the S-TAP have used
dimensionless metrics as stopping criteria such as the relative gap (Boyce, Ralevic-
Dekic, and Bar-Gera 2004). This dimensionless metrics offer advantages but, when
comparing algorithms with very mixed results, the practitioner might find insufficient
to conclude that an algorithm is faster on the other just by comparing the time in
reaching an ideal solution.

Previous to this study, we already knew that (1) Aashtiani’s method offered the
possibility of solving different kinds of TAPs, and that (2) Bar-Gera’s method,
although just designed for the S-TAP-F, required less computer memory (this result
was confirmed by Table 3-3). Now, this thesis shows that no algorithm is thoroughly
faster than the other. But results do suggest that (1) as networks become more
complex, Aashtiani’s algorithm becomes faster than Bar-Gera’s for low levels of
accuracy, and (2) as networks become even more complex, Aashtiani’s algorithm can
be considered the fastest overall.

 84

APPENDIX: THE TWO METHODS IN DETAIL

The following appendix describes in detail the two methods that this thesis compares.
The reader can regard it as a complement to Chapter 2. Nevertheless, this appendix is
completely self-contained. Since Bar-Gera’s (1999) and Aashtiani’s (1979) original
works are extensive, since Aashtiani conceived his method for several types of TAPs
(not just the S-TAP-F), and since both references use different notations, this
appendix becomes necessary. This appendix also allows Chapter 2 to conclude
whether both algorithms are comparable for the networks used here.

This appendix comprises three sections. The first one unifies concepts used by both
methods. The second section explains and compares the mathematical formulations.
The third section presents the algorithms.

Definitions and Notation
The heavy use of summations and the different terms used by Bar-Gera and Aashtinai
renders this section important.

Regarding the geometry of a network, this thesis uses a specific notation for nodes,
arcs, tails and heads. Letter n will refer to any kind of node, that is, any intersection,
toll booth, destination point, origin point, and so on. Letter a will represent any arc
(or link), that is, any street segment connecting two nodes (As explained at the end of
this section, there is a special kind of arcs denominated connectors.) The notation at
will refer to the tail (the beginning node) of an arc and the notation ah will refer to the
head (the ending node) of an arc. Thus, this thesis considers all arcs as directed, that
is, there is always one beginning node and one ending node. This thesis will also use
a binary notation for representing arcs, that is, [at, ah]. As defined in [A-1], N will
represent the set of all nodes and A will represent the set of all arcs (notice the use of
apostrophes instead of numeric subindices).

{ }K,'',', nnn=N [A-1a]

{ }K,'',', aaa=A [A-1b]

The OD matrix is one of the inputs needed for solving the TAP. This matrix presents
the total trips or (the demand) that users need to make. Bar-Gera’s and Aashtiani’s
methods make use of the following concepts that take into account that trip
information: zones, origin nodes, destination nodes, OD pairs, and routes. A zone
refers to any node where a trip starts or a trip ends. Therefore, a zone can be an origin
node p or a destination node q. No will represent the set of origin nodes and Nd will
represent the set of destination nodes. An OD pair is simply a pair of nodes composed
by an origin p and a destination q. For this thesis, an OD pair will always assume that
some users will indeed need to travel from that OD pair’s origin to that OD pair’s
destination (in other words, this thesis does not take into account OD pairs with zero
demand). Bar-Gera uses a binary notation for referring to an OD pair while Aashtiani

 85

finds more convenience in using a unary notation because his algorithm relies heavily
on the manipulation of OD pairs. Therefore, this thesis will use both notations, that is,
a binary notation (p, q) and a unary notation i. Letter I will represent the set of all OD
pairs given in the OD matrix. Nd(p) will represent the set of destination nodes q
whose OD pairs have the same origin p. For a route (or path), that is, any set of non-
repeated adjacent nodes, this thesis will use the notation [n, n’, n’’, …]. Letter R will
represent the set of all possible routes. Nevertheless, most of the times, this thesis will
refer to routes that connect OD pairs as defined in the given OD matrix. The notation
R(p, q) (or Ri) will represent the subset of routes that connect an origin node p with a
destination node q (or an OD pair i). This thesis will use three different notations for
referring to routes that connect OD pairs: (1) [p, n, n’, …, q], (2) r(p, q), or (3) ri. Bar-
Gera prefers using the first and second notations while Aashtiani prefers the third.
The following expressions show the definitions and the relationships existing among
the above sets.

{ }K,'',', pppo =N [A-2a]

NN ⊆o [A-2b]

{ }K,'',', qqqd =N [A-2c]

() NNN ⊆⊆ dd p [A-2d]

{ } () () () (){ }KKK ,',',,',,',,,,'',', qpqpqpqpiii ==I [A-2e]

do NNI ×⊆ [A-2f]

{ } () () () (){ }KK ,'',',,'',', ,,,, qpqpqpqpiiii rrrrrr === RR [A-2g]

{ }KKK ,'',',,'',',,,'',', 333222111 rrrrrrrrr=R [A-2h]

() () () () () () () (){ }KKKK ,',,,',,,',,,', ','','',','',',,, qpqpqpqpqpqpqpqp rrrrrrrr=R [A-2i]

()
()
UU

II

RRR
∈∀∈∀

==
qp

qp
i

i
,

, [A-2j]

di (or d(p, q)) will denote the demand corresponding to an OD pair i (or the demand of
users that start their trip on origin node p and end on destination node q). To indicate
that a link a is part of a route r(p, q), this thesis will follow Bar-Gera’s suggestion by
using the following notation: ()qpra ,⊆ .

Taking into account the concept of flow, comparing Bar-Gera and Aashtiani’s
methods requires specifying a notation for the following terms: route flow, origin-
based link flow and total link flow. The route flow

ir
h is the flow that passes along a

 86

route ir corresponding to an OD pair i. Therefore, a feasible solution to the TAP
should guarantee that the sum of all route flows

ir
h , where iir R∈ , is equal to the

demand di. This thesis has chosen the notation
ir

h instead of rpqh (as suggested by

Bar-Gera 1999) or pq
rh (as suggested by Sheffi 1985), because the latter two notations

do not consider giving a separate numeration to routes belonging to different OD
pairs. This thesis will also use, in a less frequent manner, the notation

()qprh
,

 to indicate

the origin and destination nodes, and the notation []K,'',', nnnh to indicate the nodes of a
specific route. The notations

ir
h and

()qprh
,

 also help better specify the summations
that involve route flows. The notation h represents the vector containing all route
flows. In Aashtiani’s method, it is helpful to assume that the route flows in the vector
h are grouped by OD pairs as shown in [9a]:

⎥
⎦

⎤
⎢
⎣

⎡
=

I
RRR

III
hhhhhhhhh KKKK 212121

22221111
h [A-3a]

In Aashtiani’s method, the concept of route flow sub-vector is also useful as defined
below. This definition will allow decomposing the route flow vector [A-3a] into route
flow sub-vectors.

[]
iiii

hhhi RK21=h [A-3b]

The mathematical definitions of the origin-based link flow and total link flow are the
following:

()
()

() () () ()

∑
⊆∈∀∈∀

=
qpdqpqp

qp
rapqr
rap hf

,,,

,
:,

,
NR

h [A-4]

() ()∑∑
∈∀∈∈∀∈∀

• ==
qiii

i
p

ap
rair

ra fhf
NIR

hh ,
:,

 [A-5a]

Sometimes, it is useful to use the arc-route incidence value
iraδ , a binary variable

which takes the value of one when a link belongs to a route and a value of zero
otherwise. Using this variable, [A-5a] is equivalent to [A-5b].

() ∑
∈∀∈∀

• ⋅=
IR ir

rara
ii

ii
hf

,
δh [A-5b]

The above variables allow the definition of the following vectors and matrices: the
origin-based link flow vector for origin p or pf , the origin-based link flow matrix or
f , and the total link flow vector or •f :

() () () ()[]hhhhf A,2,1, pppp fff K= [A-5c]

 87

()

() () ()
() () ()

() () ()⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

hhh

hhh
hhh

hf

ANNN

A

A

,2,1,

,22,21,2

,12,11,1

ooo
fff

fff
fff

K

KKKK

K

K

 [A-5d]

() () () ()[]hhhhf A•••• = fff K21 [A-5e]

Taking into account the concept of cost, both methods refer to the following concepts:
link cost, route cost and minimum route cost. Usually, as in this thesis, the units used
for costs are units of time. The link cost, denoted as ta, is the cost or time that it takes
for a user to pass through arc a depending on the total link flow af• or on the whole
vector of total link flows •f . The link cost is in other words, the numeric result of the
performance function. A typical performance function, where the ta depends only on

af• , is the commonly known BPR function (Bureau of Public Roads) which this
thesis uses for its results The route cost, denoted as

ir
c , is the sum of all the link costs

that involve passing through a particular route ri. Its mathematical definition is as
follows:

() ()[] ()[]{ }∑∑
∈∀

•
∈∈∀

• ⋅==
AA a

raa
raa
ar i

i

i
ttc δhfhfh

:
 [A-6]

Especially used by Aashtiani is the ui, variable to which he refers sometimes as the
accessibility variable. This variable, preferred to be named for this thesis as minimum
route cost, refers to the minimum cost found among all the routes that connect a
particular OD pair. Its mathematical definition is as follows:

() ()[]hh
i

ii
rri cu

R∈∀
= min [A-7]

For the route costs, it is useful to define a vector ic . Likewise, it is useful, especially
for Aashtiani’s method, to define a vector u for the minimum route costs:

() () () ()[]hhhhc
iiii

ccci RK21= [A-8a]

() () () ()[]hhhhu Iuuu K21= [A-8b]

The reader should be aware of the following relationship which shows how the
minimum route costs ui and the route costs ci are functions of h. This relationship is
useful in the next section for understanding whether the solution to the S-TAP-F is
unique or not.

() { }() ()[]{ }()hftchch •== iiiii uuu [A-9]

 88

Bar-Gera’s algorithm is rich in concepts that allow explaining it more succinctly.
These concepts include restricting subnetworks, topological orders, maximum costs
to a node, last common nodes, approach proportions, average approach costs,
origin-based node flows, basic approaches and nonbasic approaches among others.
They assume important roles within the algorithm and therefore, their definitions will
be introduced in the Section “Bar-Gera’s algorithm” of this appendix. Nevertheless,
there is one concept that requires important attention and which is used all along Bar-
Gera’s algorithm. This concept is the restricting subnetwork which he denotes as Ap
because it is in essence, a subset of arcs with only one node acting as the origin. More
formally, a restricting subnetwork Ap is the composition of the whole set of nodes N
and a subset of the set of arcs A such that (1) there is at least one route from a specific
node, named the root, to the rest of the nodes, and such that (2) the arcs do not form
directed cycles. This definition forces any restricting subnetwork to have only one
origin node p: the root. Although a restricting subnetwork is similar to other concepts
used in graph theory such as tree and spanning tree, Figure A-1 shows that there are
differences. The specific node from which all routes start would be called root in
graph theory but in this context, it is also an origin node p that belongs to the set oN .

The inclusion of connectors and thru nodes in a network is not specifically addressed
by either Bar-Gera or Aashtiani. Nevertheless, the data used by this thesis requires an
accurate definition of these two concepts. As it is often the case, including in the
graphs used in this thesis, a zone does not represent an actual point in the network.
Most of the times, a zone refers to a centroid, that is, an approximation to where the
real starting (or ending) point of a group of trips really is. Therefore, the arcs that
connect these zones to the rest of the network are virtual arcs, called connectors,
whose link cost ta does not depend on the level of congestion. The use of connectors
is an approximation to reality which aims to simplify the model. Connectors should
only constitute the first or the last arc of any route r(p, q). Since the cost of a connector
is fixed, algorithms tend to choose routes that include connectors not only in the first
or in the last arcs, and in consequence, algorithms choose invalid routes. For this
reason, the data used for this thesis requires indicating which nodes are thru nodes.
Thru nodes are nodes that, in a particular network, do not need to be at the beginning
or at the end of a route. All thru nodes can be zones but not all zones can be thru
nodes.

 89

Figure A-1. Examples that show the differences of a restricting subnetwork with a tree and a spanning
tree.

Formulations
Although very different, the mathematical formulations used by Bar-Gera and
Aashtiani share conditions that a solution should meet in order to solve the S-TAP-F.
These conditions include Wardrop’s first principle, conditions of conservation of flow
and nonnegativity of the route flows. Due to the existence of these common
conditions, one could lay out (as did Sheffi 1985, p. 65) the following formulation for
the S-TAP-F which serves as a starting point for understanding what Bar-Gera and
Aashtiani aim to accomplish with their formulations.

Find a vector h such that:

() ()[] 0=−⋅ hh irr uch
ii

 IR ∈∀∈∀ ir ii , [A-10a]

() () 0≥− hh ir uc
i

 IR ∈∀∈∀ ir ii , [A-10b]

0
'

'
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i [A-10c]

0≥
ir

h IR ∈∀∈∀ ir ii , [A-10d]

The expressions above describe mathematically the necessary conditions that turn a
vector h into the optimal solution of the S-TAP-F. Condition [A-10a] is perhaps the

(a) (Spanning) tree.
This is not a restricting
subnetwork because an
origin node cannot be

defined.

3 2

4

5

1

2

5

1

3

32

4

5

1

2

5

1

3

(b) (Spanning) tree
and restricting
subnetwork.

32

4

5

1

2

5

1

43

(c) Restricting
subnetwork. This is
not a tree because it

has undirected
cycles

3 2

4

5

1

2

5

1

43

(d) This is not a restricting
subnetwork due to the

presence of directed cycles
(or absence of a unique

origin). It is not a tree either

 90

most important one. It translates Wardrop’s first principle into mathematical notation.
It states that if the cost of using path ri is not equal to the minimum route cost ui, then
the flow

ir
h should be equal to zero. Alternatively, if the cost of using path ri is equal

to ui, then users as, with the shortest path, will also use path ri. Expression [A-10b]
serves as a definition of ui, since it establishes that no path should be less costly than
ui. Expression [A-10c] establishes that the sum of all the route flows should be equal
to the demand. This condition is commonly referred as a constraint of conservation of
flow.

The above formulation does not state any assumptions regarding the nature of the
performance functions.

A very important aspect to take into account in the above formulation is that there are
several optimal solutions h but just one optimal solution •f (recall how

ir
c , ui, •f and

h relate to each other as expressed in [A-6a]). Since
ir

c and ui are functions of t but
every element ta is a function of multiple route flows

ir
h , then there are several

solutions h to the S-TAP-F as formulated in [A-10]. Sheffi (1985, p. 67-68) and
Aashtiani (1979, pp. 52-53) showed through simple examples the lack of a unique
solution h to the S-TAP-F. In consequence, the following two formulations also do
not have a unique solution h but do have a unique solution •f .

Beckman’s transformation
Bar-Gera uses Beckmann’s transformation as the model for his method. Beckmann’s
transformation, a mathematical programming problem with linear constraints and a
nonlinear objective function, is as follows.

Find a vector h such that

minimizes ()[] ()
()

xxtT
a

f

a

a

d
0

∑ ∫
∈∀

•

•

=
A

h

hf [A-11a]

subject to

 0=−∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i [A-11b]

 0≥
ir

h IR ∈∀∈∀ ir ii ; [A-11c]

T represents the objective function and it is directly defined in terms of total link
flows •f . But every total link flow •af , by definition (see [A-4]), is a function of
route flows

ir
h . This formulation is an artificial optimization problem because T does

not have a physical interpretation. Nevertheless, its optimal solution h complies with
the conditions shown in [A-10] and in this way, it becomes a solution to the S-TAP-F
(for a demonstration, see Bar-Gera 1999, pp. 6-7; or Sheffi 1985, pp. 63-65). For

 91

conditions [A-10] to hold and for the optimal solution •f to be unique, the model
makes four important assumptions regarding the performance functions. The second
to last section of Chapter 2 explains these assumptions.

Aashtiani’s formulation
Aashtiani reframes the basic formulation shown in [A-10] by expanding the solution
vector h with the vector u. Therefore, every ui becomes a new unknown variable and
not simply a function of h. His formulation is as follows:

Find a vector =uh |

⎥
⎦

⎤
⎢
⎣

⎡
IRRR

IIII
uuuhhhhhhhhh KKKKK 21212121

22221111
such that

 ()[] 0=−⋅ irr uch
ii

h IR ∈∀∈∀ ir ii , [A-12a]

 () 0≥− ir uc
i

h IR ∈∀∈∀ ir ii , [A-12b]

 0=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i [A-12c]

 0≥
ir

h IR ∈∀∈∀ ir ii , [A-12d]

 0≥iu I∈∀i [A-12e]

Aashtiani proved that as long as the performance function ta is positive (the second to
last Section of Chapter 2 discusses these assumptions in detail), the formulation [A-
12] is equivalent to the following one:

 92

Find a vector =uh |

⎥
⎦

⎤
⎢
⎣

⎡
IRRR

IIII
uuuhhhhhhhhh KKKKK 21212121

22221111
such that

 ()[] 0=−⋅ irr uch
ii

h IR ∈∀∈∀ ir ii , [A-13a]

 () 0≥− ir uc
i

h IR ∈∀∈∀ ir ii , [A-13b]

 0=⎥
⎦

⎤
⎢
⎣

⎡
−⋅ ∑

∈∀
i

r
ri dhu

ii

i
R

 I∈∀i [A-13c]

 0≥−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i [A-13d]

 0≥
ir

h IR ∈∀∈∀ ir ii , [A-13e]

 0≥iu I∈∀i [A-13f]

where

()

()

()

()

T

r
r

r
r

dh

dh

uc

uc

uc

uc

i

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−

−

−

∑

∑

∈∀

∈∀

I
R

R

IR

I

R

II

I

II

I

K

K

K

K

1

1

1

11

11

11

1

h

h

h

h

is a nonlinear function of uh | .

The reader can observe that this formulation simply contains conditions [A-13c] and
[A-13d] instead of [A-12c]. Now, formulation [A-13] is a nonlinear complementarity
problem since it presents the following structure:

 93

Find a vector []nxxx K21=x such that

 () 0T =xyx [A-14a]

 () 0≥xy [A-14b]

 0≥x [A-14c]

where () () () ()[]xxxxy nyyy K21= is a nonlinear function of x.

In consequence, formulation [A-12] is a nonlinear complementarity problem.
Following the formulation shown in [A-14], and to simplify future notation, this
thesis will represent by an x, the solution of any complementarity problem, and by a
y, the vector function of x.

Algorithms
Using the above formulations, Bar-Gera (1999) and Aashtiani (1979) proposed the
following algorithms. While Bar-Gera proved that his algorithm converges, Aashtiani
showed its convergence through a range of examples. Nevertheless, as Chapter 3 will
show, Aashtiani’s algorithm always converged.

Bar-Gera’s Algorithm
The description presented in this subsection summarizes what Bar-Gera presented in
his doctoral dissertation (1999) and to a lesser extent in a following publication
(2002). The main characteristics of Bar-Gera’s algorithm are the following: (1) it is
an iterative algorithm, (2) it obtains a solution in terms of origin-based link flows

apf , (3) it carries out a Newton-type search procedure, and (4) it does not manipulate
the whole network but a restricting subnetwork pA for each origin p. In other words,
Bar-Gera’s algorithm decomposes the problem by origins.

Figure A-2 shows a simplified version of Bar-Gera’s algorithm. The complete
algorithm contains a small addition within the cycle shown later on Figure A-5. Bar-
Gera’s algorithm works as follows. It starts with an initial origin-based link flow fp
for every origin p (the sum of all these origin-based link flows is equal to the solution
of the problem, that is, the vector of total link flows ∑ ∈∀• =

qp pN
ff). Every initial fp

contains only a subset of links (with positive flow) which define a subnetwork pA .
Having now an initial fp and an initial pA for every origin p, the algorithm starts a
series of iterations. At every cycle (the most external loop), for each origin p, the
algorithm finds a new (and better) feasible solution by answering two questions: (1)
Which links should be removed or included? In other words, how to update pA ? (2)
How much flow should be assigned to the links? In other words, how to update fp? To

 94

answer the first question, the algorithm executes a sub-algorithm that modifies the
existing restricting subnetwork pA . To answer the second question, the algorithm
executes a second sub-algorithm that shifts existing origin-based link flows among
the links of the subnetwork pA . In order to carry out this type of shifts, the sub-
algorithm uses a Newton-type procedure that due to its particular features, Bar-Gera
denominates it boundary search. After each iteration, the algorithm evaluates
expression [A-11a] with the new solution •f and checks if it generates a satisfactory
minimum value of T. When the algorithm no longer finds a lower value of T, it
terminates. Since the algorithm does not obtain route flows

ir
h , it cannot evaluate

condition [A-11b] directly. Simply, the algorithm guarantees that its procedure does
not violate condition [A-11b].

Figure A-2. Simplified version of Bar-Gera’s origin-based algorithm. “ob” stands for “origin-based”.

p = p + 1

Update restricting subnetwork Ap

Update ob link flows fp within subnetwork Ap

1st Sub-
Algorithm

p = |No|?

Convergence is reached?

2nd Sub-
Algorithm

No

p = 1

No

p = p + 1

Initialize ob link flow vector fp, subnetwork Ap.
and approach proportions

p = |No|?

p = 1

Initialization

Yes

Yes

Yes

No

Cycle

 95

The initialization consists mainly in obtaining two important outputs: an initial
feasible solution pf and an initial restricting subnetwork pA for every origin node p.
In other words, every link a within each restricting subnetwork pA has a link flow
(actually, an origin based link flow apf ,) assigned to it. Bar-Gera’s algorithm does
not require any specific procedure for the initialization phase. Therefore, the well-
known “all-or-nothing assignment” (Sheffi 1985, p. 111) is one of several procedures
for obtaining the above two outputs. Another output of this phase, which will become
important for the first sub-algorithm, are the approach proportions, defined later in
[A-21].

The first sub-algorithm addresses the question of which links should contain non-zero
flow. Bar-Gera demonstrated that the optimal solution h* for the S-TAP-F is “acyclic
by origin” (2002, p. 401) meaning that if h* is the optimal solution to the S-TAP-F,
then the links that contain positive flow, as dictated by each resulting origin-based
flow vector ()*hff pp = , should not describe any directed cycles. Consequently, he
chose to solve the S-TAP-F by decomposing it by origins and for each origin p,
assign positive origin-based link flow apf , only to links that constitute a restricting
subnetwork Ap.

The use of restricting subnetworks Ap allows the definition of three useful concepts
needed in the algorithm: topological order, maximum cost to a node, and last
common node. Given a restricting subnetwork Ap, topological order refers to a label
(a number from 1 to |Ap|) that every node i receives indicating whether it precedes or
proceeds another node j if they belong to the same route ()qpr , . The topological order
of a node n is denoted by o(n). Given a restricting subnetwork Ap, the maximum cost
to node n refers to the largest cost among the routes that connect origin p with node n.
It is denoted by kn. The common nodes of a node n are all the nodes shared by all
routes () ()npnpr ,, R∈ . The last common node of node n is denoted by nlcn and it refers
to the node with the largest topological order found in the set of common nodes of n
minus n. Figure A-3 shows an example of how to calculate the topological order, the
maximum cost and the last common node of every node within a restricting
subnetwork Ap.

 96

Figure A-3. Different elements within a subnetwork pA : last common nodes (lcnn), maximum costs
(kn), and topological orders (o(n)). Origin-based link flows (fp, a), link travel costs (ta(f• a)) and
demands (d(p, q)) are also shown.

With the initial Ap obtained from the initialization, the first sub-algorithm executes
three steps: it removes the unused links (0: , =∈∀ app fa A); it calculates the
maximum costs kn and it adds every link a not in the subnetwork such that

ht aa kk ≤ .These steps guarantee the construction of a new subnetwork Ap. in which
the algorithm will start seeking a new solution apf , . Figure A-4 shows the complete
description of the first sub-algorithm. The sub-algorithm ends by calculating the new
topological orders, by calculating the new last common nodes and by updating the
data structures that the algorithm uses to store the network (for more details on these
data structures, the reader can refer to Section “Discussion on the Data Structures
Recommended for the Implementation”, Chapter 2). Bar-Gera’s algorithm does not
recommend any particular procedure for calculating the topological ordering. As
shown later, calculating the topological ordering and the last common nodes is
important for the execution of the second sub-algorithm.

p

32

5

6 7

1

4

1

2

43

65

7

8 9

d6, 0 = 200
o(6) = 7
k6 = 100

d7, 0 = 50
o(7) = 8
k7 = 60

d4, 0 = 25
o(4) = 6
k4 = 30

o(5) = 5
k5 = 75

o(3) = 3
k 3 = 40

o(2) = 4
k2 = 35

o(1) = 2
k1 = 15

o(p) = 1
ko = 0

f2, 1 = 100
t2 = 30 f2, 1 = 50

t2 = 30

f2, 1 = 100
t2 = 25

f2, 1 = 80
t2 = 10

f2, 1 = 20
t2 = 35

f2, 1 = 20
t2 = 25

f2, 1 = 80
t2 = 20

f2, 1 = 100
t2 = 15

f2, 1 = 150
t2 = 30

p

p , 1

p, 1, 2

p, 1, 3

p, 4

p, 1, 5

p, 6

p, 4, 7

Common
Nodes

12

47

p6

15

p4

13

p 1

pp

lcnnn

p

p , 1

p, 1, 2

p, 1, 3

p, 4

p, 1, 5

p, 6

p, 4, 7

Common
Nodes

12

47

p6

15

p4

13

p 1

pp

lcnnn

 97

Figure A-4. First sub-algorithm in Bar-Gera’s method.

The second sub-algorithm addresses the question of, given a restricting subnetwork
Ap, how much flow to assign to its links. Actually, since the subnetworks Ap obtained
from the initialization have already an assigned flow fp and since the algorithm should
guarantee the conservation of flow (that is, constraints [A-10c] or [A-11b] must
always hold), the question becomes “how to shift the existing flows fp, a within Ap?”
Bar-Gera addresses this question by using a Newton-type procedure denominated
boundary search. This procedure consists in finding a flow shift that leads to a new
origin-based flow vector fp (and f) such that T decreases in value. As with any other
Newton-type procedure, the flow shift is the result of first calculating the Newton step
(an initial vector fΔ that points to the new solution f). Then, contrary to regular
convex search procedures, the sub-algorithm multiplies this step by a factor []1,0∈λ
and then modifies it by taking into account boundary constraints (non-negativity
constraints). Due to the boundary constraints applied at the end, different values of λ
generate different flow shifts. Therefore, the sub-algorithm needs finding the best λ .
For this reason, the sub-algorithm is iterative by starting with a value of 1=λ and

a = a + 1

Add link a to Ap

a = |Ap|

No uat < uah?

Remove unused links from Ap

Find topological order for new Ap

Find last common nodes in Ap

Update data structures Ap

Compute maximum costs kn for all n

a = 1

Yes

Yes

No

 98

decreasing it at every iteration until the following directional derivative becomes less
than zero:

() ()fftffff Δ⋅+⋅Δ=Δ⋅+∇⋅Δ λλT [A-15]

Figure A-5. Example of a two-route, one destination subnetwork Ap where an initial flow has been
assigned to it. Variables shown in boxes refer to initial origin-based link flows values fp, a, and link
costs ta and link cost derivatives t’a evaluated with the initial flow values fp, a. The left route rp,q = 1p,q
comprises links a = 1 and a = 3. The right route r(p, q) = 2(p, q) comprises links a = 2 and a = 4.

The second sub-algorithm is straightforward but it involves many new terms.
Defining this new terminology requires the aid of figures in order to explain them.
Otherwise, the terms can seem abstract. In consequence, the reader will now be
presented with a simple example that explains some of these new terms and that will
serve as the basis for understanding the whole second sub-algorithm. Figure A-5
presents this first simple example.

Figure A-5 presents an example of a subnetwork pA with only two routes and one
destination node. Throughout this example, the origin-based link flows belonging to
other subnetworks will remain constant no matter what changes the subnetwork pA
experiences. The costs ta are the result of applying a given performance function to
the given origin-based link flows apf , shown in the figure and to the origin-based link
flows of the other subnetworks. The derivatives of the performance functions t’a are
evaluated in the same manner. The left route () ()qpqpr ,, 1= has a lower cost than the
right route () ()qpqpr ,, 2= , that is,

),(),(21 qpqp
cc < . In other words, the flow that this

subnetwork has assigned to it does not comply with Wardrop’s first principle. To

dp, q = 300

p

2

q

3

21

43

f3, p = 200
t3 = 40
t’3 = 4

f1, p = 200
t1 = 50
t’1 = 1

f2, p = 100
t2 = 80
t’2 = 2

f4, p = 100
t4 = 30
t’4 = 3

 99

make it compliant with that principle, probably the most reasonable alternative is to
shift flow, say

()qprh
,

Δ , from the most costly route ()qp,2 to the least costly route

()qp,1 so that both routes have the same travel cost
),(qprc . This alternative would

require finding the value of
()qprh

,
Δ by following these three steps: (1) defining the

costs
()qp

c
,1 and

()qp
c

,2 in terms of
()qprh

,
Δ , (2) equalizing both costs

()qp
c

,1 and
()qp

c
,2 ,

and (3) solving for
()qprh

,
Δ . Bar-Gera’s algorithm follows this alternative and it is the

basis of the second sub-algorithm. For the first step, it uses a linear approximation to
determine

()
()

qpqp rr hc
,),(

Δ as shown below:

() ()[] ()∑∑
⊆∈∀⊆∈∀

+Δ⋅≈Δ=Δ
),(

),(

),(

),(),(),(
:

00

:
'

qpp

qp

qpp

qpqpqp
raa

ara
raa

rarr thththc
AA

 [A-16a]

where

() () ()

() () ()⎪⎩

⎪
⎨
⎧

=Δ−
=Δ

=Δ route)(right 2if
route)(left 1if

,,

,,

,

,

),(
qpqpr

qpqpr
r rh

rh
h

qp

qp

qp
 [A-16b]

and 0
at and 0'at are initial values of the link cost and its derivative.

The above expressions lead to the following calculations:

()
()

() ()
501'

,,,

0
1

0
11 +Δ⋅=+Δ⋅≈Δ

qpqpqp rrr hththt [A-17a]

()
()

() ()
404'

,,,

0
3

0
33 +Δ⋅=+Δ⋅≈Δ

qpqpqp rrr hththt [A-17b]

()
()

()
()

()
802'

,,,

0
2

0
22 +Δ⋅−=+Δ−⋅≈Δ−

qpqpqp rrr hththt [A-17c]

()
()

()
()

()
303'

,,,

0
4

0
44 +Δ⋅−=+Δ−⋅≈Δ−

qpqpqp rrr hththt [A-17d]

()
()

()
()

()
()404501

,,,),(1 +Δ⋅++Δ⋅≈Δ
qpqpqpqp rrr hhhc [A-17e]

()
()

()
()

()
()303802

,,,),(2 +Δ⋅−++Δ⋅−≈Δ−
qpqpqpqp rrr hhhc [A-17f]

 100

Executing the second and third steps would be as follows:

()
()

()
()

qpqpqpqp rr hchc
,),(,),(21 Δ−≈Δ [A-18a]

()
()

()
()

()
()

()
()0

4
0
4

0
2

0
2

0
3

0
3

0
1

0
1 ,,,,

'''' thtthtthttht
qpqpqpqp rrrr +Δ⋅−++Δ⋅−≈+Δ⋅++Δ⋅ [A-18b]

()

() ()
() ()0

4
0
2

0
3

0
1

0
4

0
2

0
3

0
1

'''', tttt
tttth

qpr +++
+−+

−≈Δ [A-18c]

()
2

,
≈Δ

qprh [A-18d]

Figure A-6. Example of a three-route, one destination subnetwork Ap where an initial flow has been
assigned to it. Variables shown in boxes refer to initial link flows values fa, p, and link costs ta and link
cost derivatives t’a evaluated at the initial link flow values. On the left, there are two routes: rp,q = 1p,q =
[p, 1, 2, 5, q] and rp,q = 3p,q = [p, 1, 3, 5, q]. On the right, there is one route: rp,q = 3p,q = [p, 4, q].

The resulting formula [A-18c] follows the pattern of a Newton’s method since the
numerator is the first derivative and the denominator is the second derivative of the
objective function T. Following Newton’ method’s jargon, this thesis will refer to [A-
18c] as a Newton step. Following the same three steps, formula [A-18c] becomes
much more complicated with a simple inclusion of an additional route as shown in
Figure 28.

Contrary to the subnetwork in Figure A-5, the subnetwork in Figure A-6 does not
suggest that a simple shift of flow from one route to another would generate a flow
assignment that complies with Wardrop’s first principle. Nevertheless, if one focuses

p

32

5

q

1

4

1

2

43

7

8

dq, p = 300

f8, p = 100
t8 = 30
t’8 = 3

f7, p = 200
t7 = 20
t’7 = 1

f6, p = 140
t6 = 35
t’6 = 2

f5, p = 60
t5 = 10
t’5 = 1

f4, p = 140
t4 = 25
t’4 = 2

f3, p = 60
t3 = 20
t’3 = 2

65

f1, p = 200
t1 = 30
t’1 = 1

f2, p = 100
t2 = 80
t’2 = 2

 101

on the flow that arrives by link a = 7 with the flow that arrives by link a =8, one could
conclude that a simple shift of flow from the former link to the latter, or vice versa,
guarantees that the travel cost of arriving by both links would be equal. The challenge
is now how to define the cost that arrives by link 7. Bar-Gera proposes evaluating it
based on the percentage of flow that is currently passing by []qp ,5,2,1, and by
[]qp ,5,3,1, . Following the simple calculation made in the first simple example, the
execution of the first step would be equal except for expression [25i], where Bar-
Gera suggested an original idea (for simplicity the notation hΔ replaces the notation

()qprh
,

Δ):

() 301' 0
1

0
11 +Δ⋅=+Δ⋅≈Δ hththt [A-19a]

() () 206.03.0'3.0 0
3

0
33 +Δ⋅=+Δ⋅⋅≈Δ⋅ hththt [A-19b]

() () 103.03.0'3.0 0
5

0
55 +Δ⋅=+Δ⋅⋅≈Δ⋅ hththt [A-19c]

() 201' 0
7

0
77 +Δ⋅=+Δ⋅≈Δ hththt [A-19d]

() () 254.17.0'7.0 0
4

0
44 +Δ⋅=+Δ⋅⋅≈Δ⋅ hththt [A-19e]

() () 354.17.0'7.0 0
6

0
66 +Δ⋅=+Δ⋅⋅≈Δ⋅ hththt [A-19f]

() () 802' 0
2

0
22 +Δ⋅−=+Δ−⋅≈Δ− hththt [A-19g]

() () 303' 0
8

0
88 +Δ⋅−=+Δ−⋅≈Δ− hththt [A-19h]

[] () () () ()[]
() ()[] ()201354.1254.17.0

103.0206.03.0301,5*,,1,

+Δ⋅++Δ⋅++Δ⋅⋅+

+Δ⋅++Δ⋅⋅++Δ⋅≈Δ

hhh

hhhhc qp [A-19i]

() () ()303802
),(2 +Δ⋅−++Δ⋅−≈Δ− hhhc

qp
 [A-19j]

The expression [A-19i] represents an innovative idea of how to define the cost of
arriving by a link. As later this thesis will show, this idea is the basis of what Bar-
Gera defines as average approach cost. Following the calculations made in the first
simple example, the execution of the second and third steps would be as follows:

 102

[]() ()hchc
qpqp Δ−≈Δ

),(2,5*,,1, [A-20a]

()
() ()[]
() ()[]

() ()
()0

8
0
8

0
2

0
2

0
7

0
7

0
6

0
6

0
4

0
4

0
5

0
5

0
3

0
3

0
1

0
1

'

''

'7.0'7.07.0

'3.0'3.03.0

'

tht

thttht

thttht

thttht

tht

+Δ⋅−

++Δ⋅−≈+Δ⋅

++Δ⋅⋅++Δ⋅⋅⋅

++Δ⋅⋅++Δ⋅⋅⋅

++Δ⋅

 [A-20b]

() ()[]{ } ()
() ()[]{ } ()0

8
0
2

0
7

0
6

0
4

20
5

0
3

20
1

0
8

0
2

0
7

0
6

0
4

0
5

0
3

0
1

'''''7.0''3.0'
7.03.0

tttttttt
tttttttth
++++⋅++⋅+
+−++⋅++⋅+

−≈Δ [A-20c]

() () ()[]{ } ()
() () ()[]{ } ()0

8
0
2

0
7

0
6

0
4

20
5

0
3

20
1

0
8

0
2

0
7

0
6

0
4

0
5

0
3

0
1

'''''1'''
1

tttttttt
tttttttt

h
++++⋅−++⋅+

+−++⋅−++⋅+
−≈Δ

αα
αα

 [A-20d]

98.0≈Δh [A-20e]

As with expression [A-18c], expression [A-20d] is also a Newton step. Nevertheless,
expression [A-20d] is more complicated, especially its denominator which
corresponds to the diagonal values of a Hessian matrix. The examples in Figure A-5
and Figure A-6 show that as a subnetwork Ap has more routes, the complexity of [A-
20d] increases and so does its computation intensity. Due to this increasing
complexity and due to the necessity of replacing [A-17e], [A-17f], [A-19i] and [A-
19j] by formulas that can automatically be extracted regardless of the complexity of
the subnetworks, the second sub-algorithm recurs to three interesting ideas: approach
proportions, average approach costs and Hessian approximations.

An approach proportion, denoted by aα , is the ratio of the origin-based link flow
passing through link a to all the origin-based flow that enters to the tail of link a. It
can be easily calculated in a descending topological order by using the following
formulas:

∑
=∈∀

=
paa

app
tp

fg
:

,
A

 [A-21a]

ha

ap
a g

f ,=α pa A∈∀ [A-21b]

() ∑
=∈∀

+=
naa

apnpn
t

fdg
:

,,
A

 { }pn −∈∀ N [A-21c]

 103

Bar-Gera denominates ng as origin-based node flow. The above formulas guarantee
that the following relationships hold.

1
:

=∑
=∈∀ naa

a
hpA

α { }pn −∈∀ N [A-22a]

10 ≤≤ aα pa A∈∀ [A-22b]

Now, instead of defining average costs as in [A-17e], [A-17f], [A-19i] or [A-19j],
Bar-Gera uses the concept average cost to node n, denoted by nσ . This concept is a
function of approach proportions and average approach cost, denoted by aμ . As with
approach proportions, the average cost to every node in the restricting subnetwork
can be calculated in a topological order as follows:

0=pσ [A-23a]

ana t+= σμ pa A∈∀ [A-23b]

()∑
=∈∀

⋅=
naa

aan
tp:A

μασ { }pn −∈∀ N [A-23c]

Hessian approximations refer to two auxiliary variables (analogous to aμ and nσ),
that the algorithm uses to simplify the calculation of the denominator of the Newton
step. These two variables are aν (approximated derivative of aμ cost with respect to

af) and nρ (approximated derivative of jσ with respect to jg). The following three
expressions show how to calculate them in ascending topological order:

0=pρ [A-24a]

ana t '+= ρν pa A∈∀ [A-24b]

()∑
=∈∀

⋅=
naa

aan
tp:

2

A

ναρ { }pn −∈∀ N [A-24c]

Since the denominator of the Newton step could be equal to zero, the second sub-
algorithm uses a small value, called vε , in order to replace those possible null values
and in this way, avoid any division by zero.

 104

Figure A-7. Input and output values in the second sub-algorithm. Variables regarding the structure of
the networks are not shown.

Up to this point, this section has explained most of the variables needed to understand
the calculations involved in the second sub-algorithm. Figure A-7 summarizes the
input and output values that the second sub-algorithm uses. One of the input values is
the approach proportion aα of each link a. For the first run of the sub-algorithm, the
initialization of the whole algorithm has previously assigned an initial value to all the
approach proportions included on each subnetwork Ap. If the initialization used an
all-or-nothing assignment, then this initial value is equal to one. Also, the addition of
links to each subnetwork Ap during the first sub-algorithm generate additional
variables aα to consider, but these new inclusions have values equal to zero. Figure
A-8 summarizes how the second sub-algorithm works.

Second sub-algorithm

For all the network

Link values
f• a
ta
t’a

For each subnetwork Ap

Link values
fp, a
αa

Node values
gn
o(n)
lcnn

Other parameters

vε

For all the network

Link values
f• a
ta
t’a

For each subnetwork Ap

Link values
fp, a
αa

Node values
gn

In
pu

t v
al

ue
s

O
ut

pu
t v

al
ue

s

 105

Figure A-8. Second sub-algorithm in Bar-Gera’s method.

Compute σn, μa, ρn, νa in ascending topological order

k = k + 1

()[]∑ ∑
∈∀ ∈∀

<−⋅Δ⋅
N NBn a

baan
n

g 0μμα ?

Apply flow shifts (use new α in descending topological order)

Update total link flows and link costs

k = -1

i = |N| + 1

i = i - 1

Choose node n such that o(n) = i

For each nonbasic approach:

 Compute flow shifts: ()
nlcnba

ba
baz

ρννε
μμ

ν ⋅−+
−

=→ 2,max

Project flow shifts: ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=Δ →

n

ba
aa g

zλαα ,min 0

Modify approach proportions: aaa ααα Δ−= 0

Compute step size: λ = 2-k

For the basic approach:
Aggregate flow shifts: ∑

∈∀

Δ+=
na

abb
NB

ααα 0

i = 0?

Yes

Yes

No

No

Create a copy of the vector of approach proportions: αα =0

 106

The following description of the second sub-algorithm has many variations that Bar-
Gera leaves to the designer of the code to decide. One of the most important
variations has to do to with the order in which the sub-algorithm calculates different
variables. For example, Figure A-8 shows a first step in which the sub-algorithm
follows an ascending topological order, then within the loop, a descending
topological order and finally another descending topological order. Bar-Gera
indicates that for some of these calculations, the sub-algorithm could change from
ascending to descending calculations and vice versa, or even simultaneous
calculations. The following description corresponds to the specific sub-algorithm
shown on Figure A-8.

Given a subnetwork Ap and the input values shown on Figure A-7, the second sub-
algorithm starts by calculating, in a ascending topological order, the average costs and
the average approach costs using [A-23] and the Hessian approximations using [A-
24]. Then, the sub-algorithm starts the boundary search in which it tries several
values of λ in order to find the greatest possible that renders a directional derivative,
as defined in [A-15], less than zero. Using the new terminology, this condition
becomes as follows:

()[]∑ ∑
∈∀ ∈∀

<−⋅Δ⋅
N NBn a

baan
n

g 0μμα [A-25]

The above expression includes a link b and a set NBn. Therefore, understanding [A-
25] requires understanding the steps within the loop.

Within each loop, the sub-algorithm scans all the nodes in descending topological
order and at each node n. For each node n, the sub-algorithm scans its incoming links
(that is, naa hp =∈∀ :A) and it determines the link with the minimum average cost

aμ . This link, Bar-Gera denotes it by b and refers to it as the basic approach to n.
The other links to n, that is, the nonbasic approaches to n, define the set NBn. For
each nonbasic approach to n, the sub-algorithm calculates the flow shift baz → that
needs to be subtracted from the non-basic approach and added to the basic approach
b. The formula for baz → is analogous to expressions [A-18c] and [A-20d] but, unlike
those expressions, this formula has the advantage of not changing with the
complexity of the subnetwork Ap.

()
nlcnba

ba
baz

ρννε
μμ

ν ⋅−+
−

=→ 2,max
 [A-26]

By dividing baz → by gn, the sub-algorithm obtains the actual Newton step that Bar-
Gera’s algorithm needs. nba gz → is dimensionless. A Newton step indicates to the
sub-algorithm which direction to take so that it can find a lower value of the objective
function T. Bar-Gera proposes multiplying this step by the factorλ . For this reason,
this factor also receives the name of step size. Before assigning ()nba gz →⋅λ as the

 107

value to be subtracted from aα , the algorithm verifies that ()nba gz →⋅λ is not greater
than 0

aα as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=Δ →

n

ba
aa g

zλαα ,min 0 [A-27]

The sub-algorithm subtracts the above value from the nonbasic approaches and adds
it to the basic approach. Finally in the loop, the sub-algorithm verifies if condition [A-
25] holds.

Once the sub-algorithm finds the optimal λ , it applies flow shifts in a descending
topological order. This step consists in obtaining the new origin-based link flows and
the origin-based node flows as shown below:

∑
=∈∀

+=
naa

panpn
tp

fdg
:

,,
A

 { }pnn −∈∀ N: [A-28]

haaap gf ⋅= α, paa A∈∀ : [A-21b’]

The final step consists in updating the total link flows fa (using [A-5a]) and the link
costs ta (using the given link performance function).

When comparing the first sub-algorithm with the second sub-algorithm, Bar-Gera
concludes that the former requires more computational time than the latter (for an
explanation of this phenomenon, see Section “Discussion on the Data Structures
Recommended for the Implementation”, Chapter 2). Therefore, he adds a
modification on the algorithm shown in Figure A-2 and transforms it into the one
shown in Figure A-5, by dividing the cycle into a full sub-cycle and a quick sub-cycle.
This modification simply guarantees running the second sub-algorithm more times
than the first one. He introduces a parameter called m or number of inner iterations.
This thesis will refer to this quick sub-cycles or inner iterations simply as iterations
because they are analogous to the iterations defined in Aashtiani’s algorithm. Before
running the algorithm, if the user chooses a very large value for m, the computational
time will increase considerably. Therefore, the user needs to have a guideline for
choosing this value. Bar-Gera’s software suggests a value for m, but the user has to
run the algorithm in order to obtain that suggestion. Nevertheless, as shown in
Chapter 3, in most the networks tested, the value suggested was always equal to one
or to two.

 108

Figure A-5. Bar-Gera’s origin-based link algorithm.

m = # of inner Iterations?

Full
Sub-Cycle

p = p + 1

Update restricting subnetwork Ap

Update ob link flows fp within subnetwork Ap

1st Sub-
Algorithm

p = |No|?

m = m + 1

p = p + 1

Update ob link flows fp within subnetwork Ap

p = |No|?

Convergence is reached?

2nd Sub-
Algorithm

No

2nd Sub-
algorithm

p = 1

Quick
Sub-Cycle

Yes

No

No

p = 1

p = p + 1

p = |No|?

p = 1

Initialization

No

Yes

Yes

Yes

Yes

No

m = 1

Initialize subnetwork fp, subnetwork Ap.
and approach proportions

 109

Aashtiani’s Algorithm
Although Aashtiani (1979) presented an algorithm for different types of TAPs, this
thesis adapts it to the S-TAP-F. His algorithm starts with an initial solution h which is
calculated through the well-known “all-or-nothing” assignment (Sheffi 1985, p. 111).
It then decomposes the problem into |I| subproblems, where the solution to each of
them is a sub-vector hi. It then solves each subproblem through a linearization and
iterative procedure. Finally, the algorithm verifies whether the group of sub-vectors hi
construct a final solution h that complies with an additional set of conditions. If these
final conditions are not met, the algorithm iterates until it reaches a satisfactory h.
Aashtiani refers to these outer iterations as “cycles”. Figure A-6 depicts the general
scheme of his algorithm. The specifics of the general steps shown on Figure A-6 are
as follows.

At step 2, the algorithm executes an all-or-nothing assignment. These calculations
generate a first route flow

i
h1 for each OD pair i. Therefore, this initial solution h

contains I elements, that is, []
I111

0
21

hhhcycle K==h . This step is the first one to

require the execution of a one-to-all shortest path algorithm. Aashtiani suggested the
use of the Bellman’s shortest path algorithm (Bellman 1958) as recommended by
Golden (1975).

Analyzing the conditions needed for step 3 requires understanding first how the
algorithm decomposes the problem into I subproblems and solves them. Steps 5 to 7
simply control the scanning of every subproblem i. Step 8 is where the algorithm
extracts the sub-vector hi from the vector h. In principle, this extraction requires
taking from h all the route flows

ir
h such that iir R∈ . Executing step 8 in this manner

would be inefficient because the cardinality of iR is usually a very large number. In
order to avoid this source of inefficiency, Aashtiani conceived the idea of
constructing (and not really “extracting”) simpler sub-vectors w

ih which would only
include so-called “working paths”. This approach originates from the observation that
the optimal ih only contains a small percentage of non-zero elements (the results in
the next chapter show that this number is never greater than four). In consequence to
this approach, Aashtiani transformed the simple step 8 into a group of new substeps.
For the first cycle, (that is, when 1=cycle), he decided that the “set of working
paths” would comprise only two routes: the only nonzero-flow route, i1 that was
calculated at step 2, and a new route i2 obtained from executing once again the
shortest-path algorithm. The algorithm will then assign a zero value to the flow of this
additional route, that is, 02 =

i
h , and will include it in the sub-vector w

ih . As for the
other cycles, (that is, when K,3,2=cycle), the algorithm (1) executes a new shortest
path algorithm, (2) removes any route with zero flow from the set of working paths
(the reader will notice in the explanations below that these routes usually do not
include the route just added in the previous cycle), and (3) adds the new calculated
shortest route to the set of working paths and its corresponding route flow to the sub-

 110

vector w
ih . In conclusion, the algorithm does not directly manipulate the vector h at

every cycle. Instead, the algorithm only manipulates the sub-vectors w
ih in a

separately manner all along.

A more algorithmic description of the above sub-steps is as follows (assume that for
every OD pair i, the algorithm has previously initialized the set []iw

i 1 as R and the sub-
vector []

i
hw

i 1 as h using the shortest routes 1i calculated at step 2):

Sub-step 8.1: For a given origin p, execute a one-to-all shortest path algorithm. Refer
to every shortest route as shortest

ir .

Sub-step 8.2a: In the first cycle, (that is, when 1=cycle) and for every OD pair i,
include shortest

ir in w
iR if the following condition is true:

ε>
−

i

ii

c

cc
r

1

1 shortest

 [A-25a]

(Aashtiani included here a new condition to avoid increasing the number of working
paths unnecessarily. This condition uses a parameter ε which usually starts with a
big value such as 100 but at subsequent cycles, it decreases to values such as 10-3 or
10-7. The explanation on step 3 will revisit this parameter.) If [A-25a] is true, also add
a new element

i
h2 to the sub-vector w

ih and assign to this element a value of zero.
The algorithm will eventually assign flow to this route 2i but not at this step.

Sub-step 8.2b: In other cycles, (that is, when K,3,2=cycle) and for every OD pair i,
remove from w

ih any element
ir

h equal to zero. Also, remove the corresponding route

from w
iR . Then, calculate the shortest route among the set of working paths and refer

to it as ui. Include route shortest
ir in w

iR only if the following is true:

ε>
−

i

ri

u

cu
i
shortest

 [A-25b]

Again, if [A-25b] is true, also add a new element
ir

h to the vector w
ih and assign to

this element a value of zero.

 111

Figure A-6. The basis of Aashtiani’s method: decomposition (yellow boxes) and linearization (gray boxes).

1−= cycle
i

iteration
i hh

ry?satisfacto is cycleh

No

0=cycle

()utioninitialSol =cycleh

1+= cyclecycle

0=i

1+= ii

ry?satisfacto is iteration
ih

1+= iterationiteration

0=iteration

()1LCP solve −= iteration
i

iteration
i hh

iteration
i

cycle
i hh =

?I=i

No

No

Yes

Yes

Yes

(step 1)

(step 2)

(step 3)

(step 4)

(step 5)

(step 6)

(step 7)

(step 8)

(step 10)

(step 11)

(step 12)

(step 13)

(step 14)

11 from obtain −− cyclecycle
i hh

(step 9)

 112

Having extracted the initial sub-vector w
ih at step 8, steps 9 to 12 control the iterative

procedure that will solve the linearized version of the subproblem i. Right before
executing step 11, the algorithm faces the following subproblem i:

Find a vector [] == i
w u
i

|hx ⎥⎦
⎤

⎢⎣
⎡

iuhhh
i

ii w
iR

K21 such that

 () 0T =xyx [A-26a]

 () 0≥xy [A-26b]

 0≥x [A-26c]

where () () () ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−−= ∑

∈∀
i

r
ri

w
ii

w
ii

w
i dhucucuc

j

j
i

ii
w
i

w
i

R
R

hhhxy K21 .

Now, since function y is differentiable with respect to []iw
i u|hx = , then Aashtiani

was able to propose a linearized y as follows.

() [] () =+−≈
TTT

T
T

d
d)(xyxx

x
xyxy

() () () ()

() () () ()

() () () ()

() () () ()

()
()

()
()⎥⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−
−

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂
∂

∂
∂

∂
∂

∂
∂

∂

∂

∂

∂

∂

∂

∂

∂

+
+

+

+

++++

+

+

+

x

x

x
x

xxxx

xxxx

xxxx

xxxx

i
w
i

i
w
i

i

i

i
w
i

i
w
i

i
w
i

i
w
i

ii

ii

i
w
i

i
w
i

i
w
i

i
w
i

i

i
w
i

i

i
w
i

i
w
i

i
w
i

i
w
i

i
w
i

i

i
w
i

i

i
w
i

i
w
i

i

i
w
i

i

i

i

i

i

i
w
i

i

i
w
i

i

i

i

i

i

y

y

y
y

xx

xx

xx
xx

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x

y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

x
y

1

2

1

11

22

11

1

11

2

1

1

1

121

1

22

2

2

1

2

1

11

2

1

1

1

R

R

R
R

R
R

R

R

R

RRR

R

R

R

RRR

RR

RR

LL

L

L

LLLLL

L

L

 [A-27]

where x refers to an initial value of sub-vector x.

Differentiating y partially with respect to iu is straightforward, but differentiating y
partially with respect to w

ih requires taking into account (the definition of route cost
[A-6], and) the now simplified definition of total link flow:

() () ().
constant

∑∑
∈∀∉∀

• ⋅+⋅=
w
iRR i

ii

ii

iii
r

arr
r

arr
w

a hhf δδ
43421

h [A-28]

 113

The calculation of af• becomes simplified because the routes ()w
iiir RR −∈ have

zero flow and therefore, do not need to be part of the calculation. Also, the constant
term in [A-28] facilitates the differentiation. With these considerations on how to
linearize y, the resulting linear complementarity problem is as follows:

Find a vector [] == i
w u
i

|hx ⎥⎦
⎤

⎢⎣
⎡

iuhhh
i

ii w
iR

K21 such that

 () 0T =xyx [A-29a]

 () 0≥xy [A-29b]

 0≥x [A-29c]

where () =Txy

() () ()

() () ()

() () ()

() ()

() ()

() ()
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
∂

∂
−

∂

∂
−

∂

∂
−

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
∂

∂

∂

∂

∂

∂

−
∂

∂

∂

∂

∂

∂

−
∂

∂

∂

∂

∂

∂

∑

∑

∑

∈

∈

∈

i

r r

w

r
w

r r

w

r
w

r r

w

r
w

i

www

www

www

d
h

c
hc

h
c

hc

h
c

hc

u

h

h
h

h

c

h

c

h

c

h
c

h
c

h
c

h
c

h
c

h
c

w
ii i

i
i

w
i

ii
i

w
i

w
ii i

ii

iii

w
ii i

ii

iii

i
w
i

i

i

i
w
i

i
i

w
i

i

i
i

w
i

i

i
i

w
i

i
w
i

ii

i

ii

i

ii

i
w
i

ii

i

ii

i

ii

R

R

R

R

R

R

R

RRR

R

R

h
h

h
h

h
h

hhh

hhh

hhh

2
2

1
1

2

1

21

2

2

2

1

2

1

2

1

1

1

0111

1

1

1

L

L

L

LLLLL

L

L

,

() ()
∑
∈∀ •

•

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅⋅=
∂

∂

Aa a

aa
rara

r

w
r

f
ft

h
c

ii

i

ii

d
d

'
'

δδ
h

,

and w
i

h is the initial value of w
ih .

Now, using the linear complementarity problem as formulated above in [A-29] and
plugging the sub-vector w

i
h obtained at step 10 as the w

i
h , the algorithm solves the

subproblem i at step 13 using, as suggested by Aashtiani, Lemke’s algorithm (Lemke
1965). After executing step 13, the algorithm iterates until, as required by Wardrop’s
algorithm, the difference between the longest and the shortest route is zero. Since in
practice, solving the LCP does not render a solution with a difference exactly equal to
zero, Aashtiani’s recurs again to the use of parameter ε . Therefore, the iterations stop
when the following condition becomes true:

 114

()
() ε≤
−

∈

∈

i
i

i
i

r
r

ir
r

c

uc

w
i

w
i

R

R

max

max
 [A-30]

The reader can now see that Aashtiani uses the parameter ε for two purposes: (1) to
include new routes in the set of shortest paths and (2) to reach a satisfactory solution

w
i

h . Parameter ε is therefore how the algorithm controls the precision of the solution.

After finding a satisfactory w
i

h at step 11, the algorithm continues with the next
subproblem.

When at step 6, the algorithm recognizes that it has scanned all the subproblems i,
then, at step 3, it evaluates solution h as a whole. Two conditions render a solution h
satisfactory. The first condition is that after having scanned all the subproblems i,
there has to be a complete cycle in which the algorithm did not carry out any
linearizations. This condition is important because every linearization, although it
allows obtaining an optimal solution to a subproblem i, it may alter the solutions of
the other subproblems. The second and final condition has to do with the parameter
ε . The algorithm sets it to a high value at the beginning of the algorithm (step 3) such
as 100. Then, once a cycle complies with the first condition, the algorithm reduces the
value of parameter ε by eighty or ninety percent and uses it for the next cycles.
Finally, when the algorithm reaches the desired value of ε such as 107, 1010 or 1014,
the algorithm ends.

It is important to highlight one aspect concerning how ε is reduced. An algorithm in
which ε is reduced by 90 percent orders the next cycle to generate a solution f• with a
higher precision than an algorithm whereε is reduced by 20 percent. Therefore, it is
reasonable to suspect that the former will execute more iterations for each cycle than
the latter. This could be seen as detrimental. But the reader should remember that,
since every cycle requires the execution of a new shortest path sub-algorithm for
every origin, then choosing the former algorithm reduces the number of shortest path
sub-algorithms to execute. In Figure A-17, we are reducing ε by 90 percent since we
are dividing it by 10. If instead, we say that we are going to divide it by mA, then the
above phenomenon could be restated as follows: An increase in mA intensifies local
search while a decrease in mA intensifies the global search. Here we are following the
specific manner in which Toobaie (1998) decreased ε . Originally, Aashtiani (1979)
suggested a different but similar formula:

εδε ⋅= n
n [A-31]

where

nε is the new ε , δ could have a value of 10, and n would start with a value
of, say, one, and would increase by one at every cycle.

 115

`

Figure A-7. Aashtiani’s algorithm in detail: decomposition (yellow boxes) and linearization (gray boxes).

NULLiteration=

?107=ε

No

() ()ntngAssignmeallOrNothi ,,, 21 =www
Ihhh K

0=i

1+= ii

() () ?maxmax ε≤−
∈∈ iw

ii
iw

ii
r

r
ir

r
cuc

RR

1+= iterationiteration

0=iteration

()w
i

w
i hh LCP solve=

?I=i

No

No

Yes

Yes

Yes

(step 2)

(step 3.1)

(step 5)

(step 6)

(step 7)

(step 9)

(step 11)

(step 12)

Modify cardinality of w
ih(step 8)

010=ε

?0=iteration

(step 3.2)

(step 3.3)

(step 3.4)

(step 3.5)

(step 13)

No

Yes

10/εε =

 116

Figure A-8. Aashtiani’s algorithm: step 8 in detail. pi refers to the origin node of OD pair i

Taking into account all of the above considerations, Aashtiani’s algorithm is as
described on Figures A-7 and A-8. In Figure A-7, step 10 and step 14 became
irrelevant due to the direct manipulation of sub-vectors w

ih . The use of superindices
to indicate whether a solution belongs to a specific cycle or iteration also became
irrelevant. Steps 1 and 4 became irrelevant as well. Figure A-7 shows a specific
example where the parameter ε starts with a value of 100 and then it decreases by 10
until the algorithm achieves the value of 107.

In Figure A-8 pi refers to the origin node of OD pair i. The execution of steps 8.1 and
8.2 imply that the algorithm becomes faster if the OD pairs are already (previous to
the execution of the algorithm) grouped by origin.

() (){ } ()mthAlgorithshortestPa :shortest
, =∈ pqr dqp N

?1−= ii pp

?
shortes

ε≤
−

i

ri

u

cu t
i

Add element 0shortest =
ir

h

to sub-vector w
ih

No

Yes

Yes No

(step 8.3)

(step 8.1)

(step 8.2)

(step 8.4)

 117

BIBLIOGRAPHY

Aashtiani, Hedayat Zokaei. 1979. The multi-modal traffic assignment problem.
(Ph.D. dissertation). Massachusetts Institute of Technology, Cambridge, MA.

Asmuth, R. 1978. Traffic Network Equilibrium. Technical Report SOL-78-2, Stanford
University, Stanford, CA.

Bar-Gera, Hillel. 1999. Origin-based algorithms for transportation network
modeling. Research Triangle Park, NC, U.S.A.: National Institute of
Statistical Sciences.

---. 2002. Origin-Based Algorithm for the Traffic Assignment Problem.
Transportation Science 36, no. 4: 398-417.

---. 2008. Transportation Test Problems. http://www.bgu.ac.il/~bargera/tntp/ (last
accessed April 4th 2009).

Beckman, Martin, C. B. McGuire, and Christopher B. Winsten. 1956. Studies in the
Economics of Transportation. New Haven, CT, U.S.A.: Yale University Press.

Bellman, R. 1958. On a routing problem. Quart. Applied Math 16: 87-90.

Boyce, David, Biljana Ralevic-Dekic, and Hillel Bar-Gera. 2004. Convergence of
Traffic Assignments: How Much is Enough? Journal of Transportation
Engineering 130, no. 1 (January): 49-55.

Boyce, David E., Hani S. Mahmassani, and Anna Nagurney. 2005. A retrospective on
Beckmann, McGuire and Winsten's Studies in the Economics of
Transportation. Papers in Regional Science 84, no. 1: 85-103.

Bureau of Public Roads. 1964. Traffic Assignment Manual. US Department of
Commerce.

Dafermos, S. C. 1968. Traffic Assignment and Resource Allocation in Transportation
Networks. Johns Hopkins.

---. 1980. Traffic equilibrium and variational inequalities. Transportation Science 14,
no. 1: 42-54.

Dafermos, S. C., and F. T. Sparrow. 1969. The traffic assignment problem for a
general network. Journal of Research of the National Bureau of Standards,
Series B 73, no. 2: 91-118.

Frank, M., and P. Wolfe. 1956. An algorithm for quadratic programming. Naval
Research Logistics Quarterly 3, no. 1-2: 95-110.

 118

Golden, Bruce. 1975. Shortest-Path Algorithm: A Comparison. Operations Research
24, no. 6: 1164-1168.

Holmberg, Kaj, and Di Yuan. 2003. A Multicommodity Network-Flow Problem with
Side Constraints on Paths Solved by Column Generation. INFORMS Journal
on Computing 15, no. 1: 42.

INRO. 2008. EMME/3. http://www.inro.ca/en/products/emme/index.php (last
accessed April 4th 2009).

Jahn, Olaf, Rolf H. Möhring, Andreas S. Schulz, and Nicolás E. Stier-Moses. 2005.
System-Optimal Routing of Traffic Flows with User Constraints in Networks
with Congestion. Operations Research 53, no. 4: 600-616.

LeBlanc, L. J., E. K. Morlok, and W. P. Pierskalla. 1975. An efficient approach to
solving the road network equilibrium traffic assignment problem.
Transportation Research 9, no. 3: 308-318.

Lemke, C. E. 1965. Bimatrix equilibrium points and mathematical programming.
Management Science 11, no. 7: 681-689.

Nguyen, S. 1976. A unified approach to equilibrium methods for traffic assignment.
Traffic Equilibrium Methods, Lecture Notes in Economics and Mathematical
Systems 18: 148-182.

Nguyen, S., and L. James. 1975. TRAFFIC - An Equilibrium Traffic Assignment
Program. Report. Montréal, Canada: Centre de Recherche sur les Transports,
Université de Montréal.

Pallottino, S., and M. G. Scutella. 1998. Shortest Path Algorithms in Transportation
Models: Classical and Innovative Aspects. Equilibrium and Advanced
Transportation Modeling.

Pape, U. 1974. Implementation and efficiency of Moore-algorithms for the shortest
route problem. Mathematical Programming 7, no. 1: 212-222.

Patriksson, Michael. 1994. The Traffic Assignment Problem: Models and Methods.
Utrecht, The Netherlands.

Prager, W. 1954. Problems of traffic and transportation. In Proceedings of the
Symposium on Operations Research in Business and Industry, 105–113.
Cambridge, MA: Candlewick Press.

Ruiter, E. R. 1974. Implementation of Operational Network Equilibrium Procedures.
Transportation Research Record, no. 491: 40-51.

 119

Sender, J. G., and M. Netter. 1970. Équilibre offre-demande et tarification sur un
réseau de transport. Arcueil, France: Département Économie, Institut de
Recherche des Transports.

Sheffi, Yosef. 1985. Urban Transportation Networks: Equilibrium Analysis With
Mathematical Programming Methods. Prentice Hall.

Smith, M. J. 1979. The existence, uniqueness and stability of traffic equilibria.
Transportation Research 13, no. 3: 295-304.

Toobaie, Shahabeddin. 1998. Improvements on the Nonlinear Complementarity
Problem. Sharif University of Technology, Tehran, Iran.

Wardrop, John Glenn. 1952. Some Theoretical Aspects of Road Traffic Research. In
Proceedings of the Institute of Civil Engineers, 1:325-362. Greenford,
Middlesex, UK.

