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This thesis compares Bar-Gera’s Method and Aashtiani’s Method for solving the 
static traffic assignment problem with fixed demand. Specifically, it compares the 
computational time spent by their corresponding algorithms in thirteen networks 
based on real cities. It also verifies whether the assumptions made by both methods 
and the data used allowed such a comparison. To implement Aashtiani’s algorithm, a 
computer code was appropriately designed. To implement Bar-Gera’s algorithm, a 
non-open source application was used. Numerical results showed mixed results but 
still showed the following trends: (1) Aashtiani’s algorithm seems to be faster when 
solving complex networks, (2) Bar-Gera’s algorithm is almost always faster for very 
high levels of accuracy while Aashtiani’s algorithm is faster for lower levels of 
accuracy, and (3) Bar-Gera’s algorithm almost always increases its speed consistently 
as more accuracy is demanded. Numerical results also showed that for small networks 
(specifically, when the number of arcs times the number of links is less than 107), 
both algorithms spent practically no more than one second, rending these networks 
not recommendable for carrying out future comparisons. As expected, Bar-Gera’s 
method required less memory. This thesis also presents a unified terminology for both 
methods and adapted Aashtiani’s formulation to this specific problem. 
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CHAPTER 1: INTRODUCTION 

The traffic assignment problem (TAP) is a classical problem in the field of 
transportation. Primarily, it interests decision makers when planning changes in a 
municipal street network. There are several versions of the TAP. This thesis focuses 
on the static TAP with fixed demand (S-TAP-F). The objective of this thesis is to 
compare two methods used for solving this type of problem based on numerical 
results obtained from thirteen city networks. Each method comprises a model –a 
manner in which the problem is conceived– and an algorithm –the sequence of steps 
used to solve that model–. In the first method, Beckman, McGuire and Winsten 
conceived (1956) the model and Bar-Gera (1999) proposed the algorithm. This thesis 
will refer to this first methodology as “Bar-Gera’s method”. In the second method, 
Aashtiani (1979) conceived both the model and the algorithm. Although Toobaie 
(1998) would later enhance the algorithm by improving the original data structures, 
this thesis will simply refer to this second methodology as “Aashtiani’s method”.  

Three reasons explain why comparing both techniques is important. First, several 
authors recognize the effectiveness of Bar-Gera’s method (Boyce, Mahmassani, and 
Nagurney 2005, p. 89) but nobody has yet compared it against Aashtiani’s method. 
Second, Aashtiani’s method uses an “asymmetric model” which, like other models of 
this type, is attractive for being able to solve a wider range of versions of the TAP, 
but have not reached popularity among practitioners because, as argued by some 
authors (Patriksson 1994, p. 34), they are more difficult to calibrate in practice. 
Therefore, if this thesis shows that Aashtiani’s method generates similar results to 
Bar-Gera’s, practitioners might acquire a revived interest in shifting towards 
asymmetric models. Finally, a recent comparison among almost any type of method 
is, in general, well received by the academic community due to (1) the continuous 
developments in computer technology, (2) the advancements in collection of data, 
and (3) the increasing size of the networks solved. This thesis takes into account these 
three trends by using (1) current computer technology, (2) an extensive number of 
networks representing real cities, and (3) networks of very different sizes. 

Motivation and Background 
Decisions related to transportation tend to be a priority for public officials. Examples 
of these decisions include constructing or widening roads, charging car users with 
tolls, reallocating traffic lights, adding new bus lines or adopting a new mode of 
transportation for a city. Some decisions are related to transportation but also reach 
other aspects such as the environment and the welfare of a community. As in any 
decision process, public officials need adequate information. Most of this information 
comprises specific quantifiable data. Sheffi (1985, p. 3) refers to these data as 
“measures of interest” and classifies them into four types as shown on Table 1-1.  
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Type Measure of interest  Transportation Decisions 
Level of 
service 
measures 

Travel time and travel cost (of passing by a 
street segment) 

Constructing or widening roads 
Charging car users with tolls 
Reallocating traffic lights 
Adding new bus lines 
Adopting a new mode of 
transportation 
Providing cheaper transportation by 
reducing transit fees or giving easier 
access to some neighborhoods. 
Charging vehicle users in order to 
reduce pollution 

Operating 
characteristics 

Revenues and profits (collected from tolls 
or from a public transportation fee) 

Flow by-
products 

Exhaust emissions 
Changes in land values 

Welfare 
measures 

Accessibility measures 
Equity measures 

Table 1-1. Types of measures of interest, as suggested by Sheffi (1985), and examples of 
transportation decisions that require these measures. 

Every measure of interest serves in almost every decision process. For example, 
exhaust emissions not only allow public officials to determine tax increases on 
gasoline but also the adoption of new bus lines or the restriction in the use of some 
streets. From the time that it takes a vehicle to travel across a street to how much of a 
change in value would a new road generate, these measures of interest comprise a 
long list. But what is striking about this apparent myriad of data is that they all share a 
common feature: calculating them is only possible if the traffic flow of the network, 
that is, the number of vehicles that pass through all the streets in a period of time, is 
known beforehand. As shown in Figure 1-1, knowing the traffic flow (or just the 
flow) allows the subsequent calculation of measures of interest by feeding different 
types of problems such as environmental models, link performance functions, and 
other types of mathematical computations. 

 
Figure 1-1. How the traffic assignment problem is a pivotal step for calculating the measures of 
interest. 

Problems OutputsProblem Output / Input Inputs 

Infrastructure 

Policies 

Demand 

Traffic 
Assignment 

Problem
Traffic Flow

i.e. Link 
Performance 

Functions 
Level of service 

measures 

Operating 
characteristics 

Flow by-products

Welfare 
measures 

i.e. Cost 
Calculations 

i.e. Environmental 
Models 

i.e. Welfare 
Models 
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This thesis distinguishes three types of flow. The term total link flow will refer to the 
number of vehicles that pass through a link, that is, a street bounded by two street 
intersections (or other points of interest). The term origin-based link flow will refer to 
the number of vehicles that pass through a link but share a common origin. The term 
route flow will refer to the number vehicles that start at the same origin, pass through 
the same links and end in the same destination. Figure 1-2 shows the relationships 
between total link flows, origin-based link flows and route flows. Arrows of the same 
color indicate the links that belong to the same route. 

 
Figure 1-2. Difference between total link flow, origin-based link flow and route flow. The values 
shown below the brackets correspond to flows measured on link 34. 

The different degrees of complexity needed in the measures of interest require the 
calculation of different types of flows. For example, route flows allow more detailed 
values because they specify the flow at every route. Total link flows on the other 
hand, are aggregated values that do not allow complex calculations. Route-link flows 
offer several advantages such as allowing (1) more accurate pollution models, (2) 
more consistent models for determining fees on users and (3) flexibility in scaling 
solutions (Bar-Gera 1999, p. 11-12). Origin-link flows fall in the middle in terms of 
complexity. 

Finally, the reader can observe in Figure 1-1 that the traffic flow is the result of 
solving the traffic assignment problem (TAP). Strictly speaking, solving the TAP 
requires using many inputs regarding the infrastructure (roads, capacity of the roads, 
intersections, transit lines and interaction with other modes such as light rail and 
subways), the operating and control policies (traffic lights and traffic signs, tolls) and 
the demand (from which origin to which destination users need to travel). 
Nevertheless, this thesis will consider only four inputs and also, it will focus in the S-
TAP-F, a narrower version of the TAP. The S-TAP-F can be defined as the follows: 

Origin 
Nodes 

Destination 
Nodes 

4 veh/h 
2 veh/h 

3 veh/h 
2 veh/h 

4 veh/h 

1 

2 

3 4 

5 

6 

7 

Route flow25 =2 veh/h Route flow26 =3 veh/h Route flow27 =4 veh/hRoute flow16 =4 veh/h

Origin-based link flow 1 = 6 veh/h Origin-based link flow 2 = 9 veh/h

Total link flow = 15 veh/h

Route flow15 =2 veh/h
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Given  
 (1) a street network, 
 (2) an origin-destination matrix (or the demand), 
 (3) the link performance functions, and 
 (4) assumptions on the behavior of vehicle drivers, 
determine 
 the flow, for a specific period of time. 

The above definition does not specify whether the problem requires determining total 
link flows, origin-based link flows or route flows. Unless specified, solving the S-
TAP-F can mean obtaining any of them. The specific period of time refers to the 
hours of a particular day for which the problem needs to be solved and in which the 
flows can be assumed to be constant. Examples of typical periods of time are (1) from 
6:00 am to 8:00 am on weekdays for a city with traditional rush hour patterns, (2) 
from 6:00 am to 6:00 pm on weekdays for a small town without traffic congestion, or 
(3) from 6:00 am to 6:30 am on Mondays for a city with high levels of congestion. 
When traffic patterns change within very small periods of time or in very 
unpredictable manners, solving the S-TAP-F becomes inappropriate. In such cases, 
other types of TAPs such as the “TAP with elastic demand” or the “dynamic TAP” 
become the proper problems to solve.  

Figure 1-3 shows in more detail the four inputs required for solving the S-TAP-F. 
The graph (a mathematical concept brought from graph theory), refers to the set of 
links and nodes that represent the actual street network. The origin-destination matrix 
(or OD matrix) indicates the origins where users start their trips and it indicates their 
final destination. The OD matrix also provides the demand or trips, that is, how many 
vehicles per unit of time need to travel from an origin to a destination during the 
period of time considered. The static TAP with fixed demand is named as such due to 
the fixed values, not variables, that the OD matrix contains. The link performance 
function refers to how travel time (or travel cost) evolves on a link as this link gets 
more congested with vehicles. Finally, the fourth input corresponds to the 
assumptions regarding how vehicle drivers choose their routes. This thesis will follow 
the widely accepted assumption that (1) drivers will choose the route that minimizes 
their time (or the cost) to arrive to their destination and that (2) they have access to all 
the information needed to make that choice (this thesis does not consider so-called 
“system-optimum” models). 
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Figure 1-3. Examples of the inputs needed for solving the S-TAP-F. 

Literature Review 
Prior to the appearance of any model that could describe the TAP mathematically, 
Wardrop (1952) proposed a “principle”, that is, a condition that any traffic flow 
should satisfy in order to be considered a legitimate solution to the TAP (he actually 
proposed two principles but the second one is not within the scope of this thesis). This 
condition, widely known as Wardrop’ first principle, states that the time spent by 
travelers on their chosen routes should be equal or less than the time spent if they 
were using any other routes. This principle was later transformed by Prager (1954) 
into a mathematical model. As with the first models of the 1950s, it is an optimization 
problem composed of an objective function and a set of constraints. He derived his 
model from comparing traffic flows with electrical currents. Nevertheless, his 
assumptions (according to Patriksson 1994, p. 34) were too restrictive to be useful. 
The real breakthrough came soon after with the work of Beckmann, McGuire and 
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access to all the information 
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Winsten (1956). Their book, “Studies in Economics of Transportation”, was the first 
to translate successfully Wardrop’s first principle into a rigorous mathematical model 
widely known today as Beckmann’s transformation (Boyce, Mahmassani, and 
Nagurney 2005, p. 81; Sheffi 1985, p. 61). Originally, Beckman’s transformation was 
a model for the static TAP with elastic demand but (as mentioned by Patriksson 1994, 
p. 36) Dafermos was the first person to simplified it for the S-TAP-F (Dafermos 
1968; Dafermos and Sparrow 1969). Nevertheless, the book does mention examples 
when the demand is fixed (see Boyce, Mahmassani, and Nagurney 2005). 

A second generation of models, known as asymmetric models, appeared during the 
1970s. Contrary to the first generation, asymmetric models are not optimization 
problems in the classical sense. They are mathematical problems of other nature that 
include “complementarity problems”, “variational inequality problems” and “fixed 
point problems”. They consist in finding a (and not the best) solution that complies 
with a set of constraints. Usually this solution is unique. But these problems do not 
have an objective function. As with the previous optimization models, they are based 
solely on Wardrop’s first principle. The main advantage of these asymmetric models 
is that they have a wider application because they allow travel costs to be “non-
separable”. In other words, the travel time on each link is not a function solely of the 
link but of any subset of links. In consequence, these models allow more realistic 
scenarios. For example, links that share a common intersection have travel times that 
are interrelated. Another example is the relation of the travel time of traffic traveling 
on opposite directions within the same link. Nevertheless, these more realistic 
scenarios are more difficult to construct and to translate into adequate performance 
functions. As a result, practitioners and software companies tend not to use 
asymmetric models. The historical appearance of these models is as follows. Sender 
and Netter (1970) and Asmuth (1978) formulated the S-TAP-F as a fixed point 
model. Smith (1979) presented a formulation that later, Dafermos (1980) recognized 
as a variational inequality problem. In the same year, Aashtiani (1979) proposed his 
nonlinear complementarity problem.  

Figure 1-4 describes the classification of the five models mentioned above as well as 
their major contributors. Beckman’s transformation and Aashtiani’s nonlinear 
complementarity model are the two models of concern for this thesis since they are 
part of Bar-Gera’s and Aashtiani’s methods. Figure 1-4 also shows that the five 
models correspond to formulations of Wardrop’s first principle and do not include 
other conditions that might be also important (for a further discussion see Patriksson 
1994, p. 58-60). 
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Figure 1-4. Classification of models for formulating the TAP. 

Patriksson (1994, p. 105) suggests that although the number of algorithms used for 
solving the above models is extensive, almost all of them are based on one or on a 
combination of the following mathematical concepts: partial linearization, 
decomposition and column generation. For solving Beckman’s transformation, the 
most widely used is the Frank-Wolfe algorithm (Frank and Wolfe 1956) which uses 
partial linearization. Its original purpose was to solve quadratic optimization 
problems but then, LeBlanc, Morlok and Pierskalla (1975) and later, Nguyen (1976) 
made this algorithm popular by applying it to the TAP. The Frank-Wolfe algorithm 
became the basis for popular software such as UROAD-UTPS (Ruiter 1974), 
TRAFFIC (Nguyen and James 1975), EMME/2 and EMME/3 (INRO 2008). Its main 
drawback is its slow convergence which prompted further research in trying to 
ameliorate this characteristic (for a review of these contributions, see Patriksson 
1994, p. 102-104). 

Another way to classify the algorithms used for the TAP is according to the type of 
flows that they provide (recall Figure 1-2). Therefore, there are total link flow 
algorithms, origin-based link flow algorithms and route link algorithms. Total link 
flow algorithms require the least amount of data storage. Route flow algorithms are 
the most expensive in terms of data storage but as explained before, a route flow 
solution is more detailed and can better be used for obtaining the necessary measures 
of interest. The Frank-Wolfe algorithm is a total link flow algorithm which, with its 
slow convergence, proves that low data storage does not imply a faster algorithm. 
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Nevertheless, if the solution needed does not require to be very accurate, the Frank-
Wolfe algorithm is considered to be fast enough. Origin-based link flow algorithms 
can be seen as a trade-off between costs in data storage and great detail in its solution. 

Bar-Gera’s algorithm (1999) is, for example, an origin-based algorithm. Besides not 
requiring as much data storage as route flow algorithms, Bar-Gera’s algorithm offers 
faster convergence than the Frank-Wolfe algorithm and has received recognition from 
experts in the field of transportation (Boyce, Mahmassani, and Nagurney 2005, p. 
180). Bar-Gera’s algorithm was designed to solve the S-TAP-F using Beckman’s 
transformation. 

On the other hand, Aashtiani’s algorithm was designed to solve the nonlinear 
complementarity model and it is a route flow algorithm. Aashtiani’s algorithm uses 
techniques of partial linearization and decomposition. Aashtiani (1979) showed 
successful results not only for solving the S-TAP-F but also with elastic demand and 
more complex problems where the static TAP is combined with another classical 
problem in transportation, known as mode choice. Although a formal proof of the 
convergence of his algorithm is still pending, Toobaie continued with his work by 
challenging his algorithm against the Frank-Wolfe method (Toobaie 1998). He 
improved the data storage by using link-based data structures and showed its 
superiority over the Frank-Wolfe algorithm in terms of convergence and accuracy. As 
a result, his work raises the question on whether the algorithm proposed by Aashtiani 
and improved by Toobaie can be faster and more accurate than Bar-Gera’s origin-
based link flow algorithm. 

Looking at the second classification of the algorithms, another question arises. In 
today’s world where computers are becoming less expensive, is data storage really 
the challenge that practitioners want to overcome? In other words, do decision makers 
want a faster and more accurate solution? Or are decision makers more concerned 
with a solution that requires less data storage? Most probably, they prefer the first 
alterative. Therefore, as computers become faster, route flow models (and their 
algorithms) will become more attractive to software developers and therefore, 
transportation decision makers. 

Scope 
This thesis compares Bar-Gera’s and Aashtiani’s methods based on experimental 
results. For this purpose, this thesis compares the time spent by Bar-Gera’s algorithm 
with the time spent by Aashtiani´s algorithm in providing a solution to the S-TAP-F. 
To assure the reader that this comparison is feasible, this thesis revisits the theoretical 
underpinnings of not only the algorithms but also the formulations.  

Although Bar-Gera’s method generates origin-based link solutions and Aashtiani’s, 
route flow solutions, this thesis transforms both solutions into total link flows and, in 
this manner, compares the computational times. By solving thirteen problems based 
on real cities, the reader will obtain a sense of which method to prefer for the S-TAP-
F. Nevertheless, the reader should be aware that these problems (and their graphs) are 
just approximations of the real city grids. 
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Framing a TAP into a mathematical formulation varies greatly with the assumptions 
made. Also, the appropriateness of some algorithms depends on more assumptions 
than the ones previously considered for the formulation. Therefore, it is important to 
capture what this thesis does not intend to solve. For the convenience of the reader, 
this thesis presents here the assumptions made when referring to the S-TAP-F, the 
performance functions and the features of the networks used. 

• The S-TAP-F is, by definition, a static TAP. Contrary to the dynamic TAP, the 
demand in the static TAP does not change with the period of time considered. 

• The S-TAP-F is, by definition, a TAP with fixed demand. Contrary to the so-
called TAP with elastic demand, the demand is not dependant on the shortest time 
(or cost) between each origin and destination. It is fixed, it is constant. 

• The S-TAP-F considered in this thesis is a deterministic TAP. The problem 
assumes that users perceive precisely what the costs are of choosing any of the 
available routes. 

• The S-TAP-F considered in this thesis requires obtaining a solution in terms of 
total route flows. 

• The solution (the total link flows) does not need to be an integer solution. 
Although flow can only be measured in whole numbers of vehicles over a period 
of time (a period of time which is in some way arbitrarily), this simplification of 
the problem is a good approximation for real sized networks. 

• Every performance function considered in this thesis depends solely on the total 
link flow that passes through it and not on other total link flows. 

• Every performance function considered in this thesis is monotonically positive, 
continuous and strictly increasing. The graph in Figure 3 serves as an example. 

The reader might not be familiar with some of the terminology used in the last three 
assumptions. It is not important to understand their complete meaning for the 
moment. The Section “Discussion on the Assumptions Required by both Methods” 
revisits these assumptions. It also explains the special performance functions used for 
some types of links, the so-called connectors. 

Organization 
This thesis is organized as follows. Chapter 2 explains briefly the two methods. It 
starts by defining the concepts that both methods use and by providing a unified 
notation. It then explains each of the methods allowing a better interpretation of the 
numerical results. This chapter is also important because it adapts Aashtiani’s 
formulation to the S-TAP-F, because it discusses the importance of the assumptions 
made regarding the formulations and algorithms, and because it discusses the impact 
of the data structures used. Chapter 3 focuses on the numerical comparison between 
both methods. First, it gives information regarding the software and the data sources. 
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Second, it explains very briefly the metrics used for the comparison. Third, it presents 
the results and the corresponding analysis. Finally, Chapter 4 concludes on the 
performance of both methods by linking the numerical results to the theoretical 
aspects. It also presents lessons learned and provides suggestions for further research. 

A brief description of the two methods as presented on Chapter 2 would not allow the 
reader to really grasp how they function. Also, the reader might not obtain from this 
chapter all the theoretical elements necessary for contrasting the assumptions made 
by both methods. Therefore, this thesis contains an Appendix which presents a much 
more detailed explanation of the two methods. 
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CHAPTER 2:  DESCRIPTION OF THE TWO METHODS 

This chapter summarizes how Bar-Gera’s method and Aashtiani’s method operate. It 
starts by establishing a common notation. It then explains the two methods briefly. It 
finalizes by discussing the assumptions made by both methods and the importance of 
the data structures used for their implementation. The reader can refer to the Appendix 
in order to understand the mechanisms of the methods in more detail (the Appendix is 
completely self contained and therefore, does not require reading any other chapter or 
appendix from this thesis). 

Notation 
The notation used by Bar-Gera (1999) is not flexible for describing also Aashtiani’s 
method. Vice versa, Aashtiani’s notation (1979) is not rich enough for capturing the 
concepts that Bar-Gera’s method uses. This thesis adopted a notation that facilitates 
the comparison between both methods and that facilitates the reading of summations 
heavily used in this topic. Tables 2-1 to 2-5 present this notation allowing the reader 
to easily refer to Bar-Gera’s (1999) and Aashtiani’s (1979) original works. The reader 
can refer to the Appendix for a clear description of what the following terms mean. 
Any of the vectors mentioned on this thesis are row vectors unless they appear as 
transposed. 

Term as assigned in 
this Thesis 

Notation as assigned 
in this Thesis by Bar-Gera by Aashtiani 

node n i
j  
u  
v  

 

set of nodes N N N  
arc (or link) a a a  
set of arcs A A A  
tail ta  ta   
head ha  ha   

Table 2-1.  Notation used in this thesis, Bar-Gera’s work (1999) and Aashtiani’s work (1979) 
regarding the geometry of the networks. 
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Term as assigned in 
this Thesis 

Notation as assigned 
in this Thesis by Bar-Gera by Aashtiani 

Origin node (or origin) p p IO 
set of origin nodes oN  oN   
destination node (or destination) q q  
set of destination nodes dN  dN   
set of destinations for a given 
origin 

( )pdN  ( )pdN   

OD pair i
( )qp,  

 i  

set of OD pairs I  I  
Route (or path) ir  

( )qpr ,  
[ ]qnnp ,,',, K  

r  
[ ]nvv ,,1 K  

p  

set of routes R R  
set of routes that connect an OD 
pair 

iR  

( )qp,R  
 

pqR  iP  

demand id  

( )qpd ,  
pqd  id   (fixed demand) 

iD  (variable demand) 

Table 2-2. Notation used in this thesis, Bar-Gera’s work (1999) and Aashtiani’s work (1979) regarding 
information given by the OD matrix. 

Term as assigned in 
this Thesis 

Notation as assigned 
in this Thesis by Bar-Gera by Aashtiani 

route flow 
ir

h  

( )qprh
,

 

[ ]K,'',', nnnh  

rpqh  ph  

route flow sub-vector ih    
route flow vector h  h  
origin-based link flow apf ,  apf   

origin-based link flow vector pf  pf   

origin-based link flow matrix f f  
total link flow af•  •af  af  
total link flow vector •f  •f  f  
Table 2-3. Notation used in this thesis, Bar-Gera’s work (1999) and Aashtiani’s work (1979), related to 
the traffic flow.  
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Term as assigned in 
this Thesis 

Notation as assigned 
in this Thesis by Bar-Gera by Aashtiani 

link cost at  at  at  
route cost (or path cost) 

ir
c  sc  (route segment cost)  

route cost vector ic    
minimum route cost iu  pqC  iu  
minimum route cost vector u  u  
arc-route incidence value 

iraδ  

( )qpra ,
δ  

raδ  apδ  

Table 2-4. Notation used in this thesis, Bar-Gera’s work (1999) and Aashtiani’s work (1979) regarding 
costs.  

Term as assigned in 
this Thesis 

Notation as assigned 
in this Thesis by Bar-Gera 

restricting subnetwork pA  pA  
topological order ( )no  ( )jo  
maximum cost to a node nk  jk  
last common node nlcn  jlcn  
approach proportion aα  aα  
origin-based node flow ng  jg  
average approach cost aμ  aμ  
average cost to a node nσ  jσ  

approximated derivative of aμ  cost with respect 
to af  

aν  aν  

approximated derivative of nσ  with respect to ng  nρ  jρ  
flow shift baz →  baz → (desirable shift) 
basic approach b  b  
set of non-basic approaches to a node nNB  jNB  
step size λ  λ  
Table 2-5. Notation used in this thesis and in Bar-Gera’s work (1999) for particular concepts not 
needed in Aashtiani’s method.  

Formulations 
Bar-Gera and Aashtiani use formulations that are very different. But in reality, they 
are equivalent, under certain assumptions, to the following formulation: 

Find a vector h such that: 
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( ) ( )[ ] 0=−⋅ hh irr uch
ii

 IR ∈∀∈∀ ir ii ,  [2-1a] 

( ) ( ) 0≥− hh ir uc
i

 IR ∈∀∈∀ ir ii ,  [2-1b] 

0
'

'
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i  [2-1c] 

0≥
ir

h   IR ∈∀∈∀ ir ii ,  [2-1d] 

The expressions above are simply a mathematical interpretation of Wardrop’s first 
principle ([2-1a] and [2-1b]), conditions of conservation of flow [2-1c] and the need 
for route flows to be non-negative [2-1d] (following the terminology used for 
Beckmann’s transformation, the above formulation is simply the so-called Kuhn-
Tucker optimality conditions).This formulation does not state any assumptions 
regarding the nature of the performance functions. Notice that in this formulation, 
there are several optimal solutions h but just one optimal solution •f . In consequence, 
the following two formulations also do not have a unique solution h but do have a 
unique solution •f . 

Beckman’s transformation 
Bar-Gera uses the following Beckmann’s transformation as the model for his method. 
Beckmann’s transformation, a mathematical programming problem with linear 
constraints and a nonlinear objective function, is as follows. 

Find a vector h such that  

minimizes ( )[ ] ( )
( )

xxtT
a

f

a

a

d
0

∑ ∫
∈∀

•

•

=
A

h

hf   [2-2a] 

subject to 

 0=−∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i  [2-2b] 

 0≥
ir

h  IR ∈∀∈∀ ir ii ;  [2-2c] 

T represents the objective function and it is directly defined in terms of total link 
flows •f . But every total link flow •af  is, by definition, a function of route flows 

ir
h . 

This formulation is an artificial optimization problem because T does not have a 
physical interpretation. Nevertheless, its optimal solution h complies with the 
conditions shown in [2-1] and in this way, it becomes a solution to the S-TAP-F (for a 
demonstration, see Bar-Gera 1999, pp. 6-7; or Sheffi 1985, pp. 63-65). In fact, 
conditions shown in [2-1] are simply the so-called Kuhn-Tucker optimality 
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conditions. For conditions [2-1] to hold and for the optimal solution •f  to be unique, 
the model makes four important assumptions regarding the performance functions. 
The second to last section of this chapter discusses these assumptions. 

Aashtiani’s formulation 
Aashtiani reframes the basic formulation shown in [2-1] by expanding the solution 
vector h with the vector u. Therefore, every ui becomes a new unknown variable and 
not simply a function of h. His formulation is as follows: 

Find a vector =uh |   

⎥
⎦

⎤
⎢
⎣

⎡
IRRR

IIII
uuuhhhhhhhhh KKKKK 21212121

22221111
such that  

 ( )[ ] 0=−⋅ irr uch
ii

h  IR ∈∀∈∀ ir ii ,  [2-3a] 

 ( ) 0≥− ir uc
i

h  IR ∈∀∈∀ ir ii ,  [2-3b] 

 0=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i  [2-3c] 

 0≥
ir

h  IR ∈∀∈∀ ir ii ,  [2-3d] 

 0≥iu  I∈∀i  [2-3e] 

Aashtiani proved that as long as the performance function ta is positive (the second to 
last section of this chapter discusses these assumptions in detail), the above 
formulation is a nonlinear complementarity problem. 

Algorithms 
Using the above formulations, Bar-Gera (1999) and Aashtiani (1979) proposed the 
following algorithms. While Bar-Gera proved that his algorithm converges, Aashtiani 
showed its convergence through a range of examples. Chapter 3 will show, 
nevertheless, that Aashtiani’s algorithm always converged. 

Bar-Gera’s Algorithm 
The main characteristics of Bar-Gera’s algorithm are the following: (1) it is an 
iterative algorithm, (2) it obtains a solution in terms of origin-based link flows apf , 
(3) it carries out a Newton-type search procedure, and (4) it does not manipulate the 
whole network but a restricting subnetwork pA  for each origin p. A restricting 
subnetwork contains all the nodes n belonging to the original set N and a subset of 
arcs a, enough so that a chosen origin p is connected to all the other nodes. The 
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Appendix clearly explains this concept. In other words, Bar-Gera’s algorithm 
decomposes the problem by origins. 

Figure 2-1 shows a simplified version of Bar-Gera’s algorithm. Roughly, Bar-Gera’s 
algorithm works as follows. It starts with an initial origin-based link flow fp for every 
origin p (the sum of all these origin-based link flows is equal to the solution of the 
problem, that is, the vector of total link flows ∑ ∈∀• =

qp pN
ff ). Every initial fp 

contains only a subset of links (with positive flow) which define a subnetwork pA . 
Having now an initial fp and an initial pA  for every origin p, the algorithm starts a 
series of iterations. At every cycle (the most external loop), for each origin p, the 
algorithm finds a new (and better) feasible solution by answering two questions: (1) 
Which links should be removed or included? In other words, how to update pA ? (2) 
How much flow should be assigned to the links? In other words, how to update fp? To 
answer the first question, the algorithm executes a sub-algorithm that modifies the 
existing restricting subnetwork pA . To answer the second question, the algorithm 
executes a second sub-algorithm that shifts existing origin-based link flows among 
the links of the subnetwork pA . In order to carry out this type of shifts, this second 
sub-algorithm uses a Newton-type procedure that due to its particular features, Bar-
Gera denominates as boundary search. After each cycle, the algorithm evaluates 
expression [2-2a] with the new solution •f  and checks if it generates a satisfactory 
minimum value of T. When the algorithm no longer finds a lower value of T, it 
terminates. Since the algorithm does not obtain route flows 

ir
h , it cannot evaluate 

condition [2-2b] directly. Simply, the algorithm guarantees that its procedure does not 
violate that condition [2-2b]. 
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Figure 2-1. Simplified version of Bar-Gera’s origin-based algorithm. “ob” stands for “origin-based”. 

When comparing the first sub-algorithm with the second sub-algorithm, Bar-Gera 
concludes that the former requires more computational time than the latter (for an 
explanation of this phenomenon, see Section “Discussion on the Data Structures 
Recommended for the Implementation”). Therefore, he adds a modification on the 
algorithm so that it runs the second sub-algorithm m more times than the first one (for 
more details on this modification, see the Appendix). For a very large value of m, say 
4 or 5, the computational time could increase considerably without generating better 
results (the term can be viewed as a parameter that increases the local search). 
Therefore, the user needs to have a guideline. Bar-Gera’s software suggests a value 
for m, but the user has to run the algorithm at least one time in order to obtain that 
suggestion. Nevertheless, as shown in Chapter 3, in most of the networks tested, the 
value suggested was always equal to one or to two. 
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Aashtiani’s Algorithm 
Although Aashtiani (1979) presented an algorithm for different types of TAPs, this 
thesis adapts it to the S-TAP-F. In essence, this algorithm decomposes the network by 
OD pairs and then linearizes every subproblem. Interestingly, every subproblem 
continues being an nonlinear complementarity problem. Figure 2-2 depicts the 
general framework that his algorithm follows. 

Aashtiani’s algorithm starts with an initial solution h which is calculated through the 
well-known “all-or-nothing” assignment (Sheffi 1985, p. 111). It then decomposes 
the problem into |I| subproblems, where the solution to each of them is a sub-vector 
hi. It then solves each subproblem through a linearization and iterative procedure. 
Finally, the algorithm verifies whether the group of sub-vectors hi construct a final 
solution h that complies with an additional set of conditions. If these final conditions 
are not met, the algorithm iterates until it reaches a satisfactory h. Aashtiani refers to 
these outer iterations as “cycles”. 

Although the algorithm’s general framework is simple, step 8 and step 11 presented 
challenges that Aashtiani solved by the introduction of “working paths” and the 
execution of one-to-all shortest path algorithms by grouping the OD pairs by origins. 
For more details, the reader can refer to the Appendix. 

For solving the linearized subproblem at step 13, Aashtiani (1979) recommended 
Lemke’s algorithm (Lemke 1965). Aashtiani (1979) also recommended Bellman’s 
shortest path algorithm (Bellman 1958) which was considered the best at the time 
(Golden 1975). This thesis used the L-deque algorithm (Pape 1974) instead because 
according to a more recent study by by Pallottino and Scuttelà (1998) , it is the fastest 
for transportation networks. 

As with Bar-Gera’s algorithm, there is a parameter that controls the number of 
iterations within each cycle (As mentioned in the Appendix, an increase in this 
parameter, intensifies the local search). Aashtiani (1979) and Toobaie (1998) defined 
it in different ways. This thesis identifies this parameter as mA and explains it in detail 
in the Appendix.  
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Figure 2-2. The basis of Aashtiani’s algorithm: decomposition (yellow boxes) and linearization (gray 
boxes). 
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Discussion on the Assumptions Required by both Methods 
Beckman’s transformation has a wider application than solving the S-TAP-F. In fact, 
the original version of that model also solves the static TAP with variable demand. 
On the other hand, Aashtiani’s formulation has even wider applications. 

Now, restricting both formulations to the S-TAP-F, Beckman’s transformation still 
requires stronger assumptions than Aashtiani’s. Most of these restrictions relate to the 
nature of the performance functions. 

To begin with, Beckman’s transformation requires the following assumptions: 

1. Every performance function ta has to be a function of only the total link flow on 
link a.  

( )[ ] ( )[ ]hhf aaa ftt •• =  A∈∀a  [2-4a] 

2. Every performance function ta has to be positive. 

( )[ ] 0>• haa ft  A∈∀a  [2-4b] 

3. Every performance function ta has to be differentiable with respect to the total 
link flow af• . 

4. Every performance function ta has to be strictly increasing. 

Assumptions 3 and 4 can be stated as follows: 

( )[ ]
( ) 0>

∂
∂

•

•

h
h

a

aa

f
ft  A∈∀a  [2-4c] 

The first assumption is equivalent to stating that “costs are separable” or that 
“performance functions are independent”. The reader can verify the need for the first 
assumption by simply observing that in Beckman’s transformation, the definition of 
the objective function T (as indicated in [2-2a]) explicitly states that ta is a function of 
fa. The second assumption, if added to the requirement that ta should be non-
decreasing, guarantees the convexity of the objective function T and therefore the 
existence of the solution h. The fourth assumption is stronger than simply requiring 
the performance function ta to be non-decreasing. The fourth assumption guarantees 
the uniqueness of •f  as the vector that minimizes T (but as mentioned before, the 
formulation does not guarantee a unique solution h). To these assumptions, Bar-
Gera’s algorithm does not add any additional restrictions. 

Now, Aashtiani’s formulation and algorithm are applicable to the S-TAP-F even with 
the above four assumptions. Here are the more relaxed assumptions needed by 
Aashtiani’s method: 
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1. Every performance function ta does not have to be a function of only the total link 
flow on link a. A performance function ta can be a function of the whole vector 
•f . 

2. Every performance function ta still has to be positive. This restriction guarantees 
the equivalence between the S-TAP-F and its corresponding nonlinear 
complementarity problem. This restriction also guarantees the existence of at least 
one solution h. 

3. Every performance function ta does not have to be differentiable with respect to 
the total link flow pf• . Nevertheless, every performance function ta does have to 
be continuous in order to guarantee the existence of at least one solution h. 

4. Every performance function ta still has to be strictly increasing in order to 
guarantee a unique solution •f . 

Aashtiani also mentions (1979, p. 66) that the fourth assumption is important to 
guarantee a unique solution u. This observation is important in his formulation 
because u is, contrary to Beckman’s transformation, part of the unknown variables 
that need to be found. Aashtiani also assumes that the demand is variable, that is, it is 
a function of u. In consequence, one could speculate that perhaps, for the S-TAP-F, 
the assumptions regarding the performance functions could become even more 
relaxed. Nevertheless, the important conclusion for this thesis is that if a performance 
function complies with the restrictions for Bar-Gera’s method, then it complies with 
the restrictions of Aashtiani’s method. 

The reader should know that nobody has already tested the convergence of 
Aashtiani’s algorithm from a theoretical point of view. Therefore, it is still pending to 
know whether Aashtiani’s algorithm converges without including any additional 
assumptions. 

Now, as mentioned in the first section, connectors have a performance function that is 
constant and that sometimes is equal to zero. Nevertheless, if the algorithms used for 
obtaining the solution to [2-1] guarantee routes where connectors are only located at 
the beginning or at the end of each route, then there is no need for connectors to 
comply with the assumptions above. Their only requirement is that they do not have 
negative performance functions. 

One last assumption that both methods require is that the performance functions ta 
and the solutions h should not be restricted to integer values. According to Aashtiani 
(1979, p. 41), only-integer solutions as a requirement could make a S-TAP-F become 
infeasible. 

Discussion on the Data Structures Recommended for the Implementation 
The structures used for storing the data may affect not only the memory requirements 
on the machine but also the rate of convergence of an algorithm. Shortest route 
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algorithms, for example, can reduce their speed by containing an appropriate data 
structure. This section will allow the reader to have a sense of how the data structures 
recommended by Bar-Gera (1999) and Toobaie (1998) may affect the memory 
requirements and the performance of the algorithms used in this thesis. 

Toobaie and Bar-Gera use extensively arrays for storing most of the data: travel link 
costs, OD trips, etc. Nevertheless, they both recommend special data structures (1) for 
the link flow solution (origin-based link solution for Bar-Gera’s algorithm and route 
link solution for Aashtiani’s algorithm) and (2) for the minimum cost routes. For the 
first type of information, Bar-Gera does not specify the design used for his data 
structure but he does not recommend storing the origin-based link flow solution in 
one array with one element for each arc and for each origin. It is very probable that 
his data structure allows at the same time defining the restricting subnetworks and the 
topological orders. The reader should recall that the data structures that define the 
restricting subnetworks experience a major change in the last step of the first sub-
algorithm. In the case of Aashtiani’s method, Toobaie recommends a three-level 
linked list: each node of the first level corresponds to a different OD pair, each node 
of the second level corresponds to a different route of an OD pair, and each node of 
the third level corresponds to a different arc of a route of an OD pair. This design 
stores route flows at the second level. 

For the minimum cost routes, Bar-Gera uses, perhaps, a tree structure while Toobaie 
uses an array of link lists. Nevertheless, these special data structures, at least in 
Aashtiani’s method, do not have the same important impact in the memory 
requirements and computational speed as data structures used for the link flow 
solutions. 

Toobaie’s three-level linked list reduces the memory requirements and probably the 
speed of the algorithm originally proposed by Aashtiani (1979). Nevertheless, the 
factor that affects Aashtiani’s method substantially is the shortest-path algorithm that 
is chosen. Aashtiani’s algorithm needs to execute a shortest-path algorithm every time 
it starts solving a different subproblem i with a different origin. Aashtiani 
recommended using the Bellman’s shortest path algorithm (Bellman 1958) based on 
comparative results made by Golden (1975). But this thesis will use the L-deque 
algorithm (Pape 1974) as recommended in a more recent study by Pallottino and 
Scuttelà (1998) for transportation networks. They recommend it as the most 
appropriate for transportation networks, that is, those networks characterized by 
“nonnegative arc costs and structured, quasi-planar, sparse graphs”. 

In conclusion, the data structures play an important role in storing the flow solutions 
in both algorithms because they can reduce the memory requirements. In Bar-Gera’s 
algorithm, they are also important in reducing the computational time. In Aashtiani’s 
algorithm, it is the choice of the shortest path algorithm that mostly affects the 
computational time. 
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As re-stated in the following chapter, the algorithm implemented for this thesis is a 
modified version of the original code used by Toobaie (1998) and therefore, uses the 
same data structures explained above. 
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CHAPTER 3:  COMPARATIVE RESULTS 

Using thirteen networks based on real cities, this section presents how the two 
methods perform when solving the S-TAP-F. Specifically, the main objective is to 
determine which algorithm reaches the optimal solution within the shortest period of 
time. This chapter starts by describing the data sources and the software applications 
used for carrying out the comparison. It then briefly mentions the metrics chosen for 
the comparison. It then presents the performances of each method in terms of speed. 
It also presents the computational memory used by each method. Finally, it analyzes 
the results. 

Software and Data Sources 
For the implementation of Bar-Gera’s method, this thesis used the downloadable 
software that appears on a website elaborated by Bar-Gera (2008). For Aashtiani’s 
method, this thesis used the code that Toobaie implemented in his master’s thesis 
(1998). Since Bar-Gera’s software is not open source, this thesis required adapting 
Toobaie’s code in order to (1) read the input data in the same format that Bar-Gera’s 
software uses, (2) calculate the performance functions in the same manner that Bar-
Gera’s software does, and (3) include the metrics that Bar-Gera’s software uses as 
stopping criteria. Also, Toobaie’s code used Bellman’s shortest path algorithm 
instead of the L-deque algorithm (Pape 1974) used for this thesis. The compiler used 
was Visual C++ 2005. The machine used was a laptop computer with 2 GB of RAM 
and an Intel Centrino Duo processor with a speed of 2 GHz. 

# Network Code Arcs Nodes OD pairs 
Complexity 
(OD pairs x 

Arcs) 
1 Chicago Regional CHIC_R 39,018 12,979 3,134,670 122,308,554,060
2 Philadelphia PHILAD 40,003 13,389 1,149,795 45,995,249,385
3 Berlin Center BERL_C 28,376 12,981 49,688 1,409,946,688
4 Chicago Sketch CHIC_S 2,950 933 142,512 420,410,400
5 Mitte, Prenzlauer Berg, M_P_F 2,184 974 9,505 20,758,920
6 Barcelona BARCEL 2,522 930 7,922 19,979,284
7 Winnipeg WINNIP 2,836 1,040 4,344 12,319,584
8 Anaheim ANAH 914 416 1,406 1,285,084
9 Mitte Center MIT_C 871 397 1,260 1,097,460
10 PrenzlauerBerg Center PR_C 749 352 1,406 1,053,094
11 Tiegarten Center TIEG_c 766 359 644 493,304
12 Friedrichshain Center FR_C 523 224 506 264,638
13 Sioux-Falls SIOUX 76 24 552 41,952

Table 3-1. Networks employed and key futures used for measuring their size and complexity. 

While the software application used for Aashtiani’s algorithm starts with an initial 
solution obtained from executing an all-or-nothing assignment, Bar-Gera’s software 
does not start with that type of initial solution. Bar-Gera’s software simply assigns all 
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the traffic flow to a path that connects an OD pair but not necessarily the shortest 
path. Bar-Gera’s software and the computer program used for Aashtiani’s algorithm 
required one parameter, m and mA correspondingly, that controls the number of 
iterations within a cycle. After executing Bar-Gera’s software with any value of m, 
this software recommends a value to be used for future executions. After running 
some of the smallest networks, the software recommended a value of m equal to 2, 
and therefore, this was the value adopted for the rest of the networks. For Aashtiani’s 
algorithm, a value of mA equal to 10 was used which showed similar results to values 
used by Toobaie (1998) but aimed at reducing the execution of shortest path 
algorithms (for details on m and mA, see the Appendix, page 107 and 114). 

This thesis used thirteen networks which are also downloadable at Bar-Gera’s 
website. Table 3-1 shows their size as well as their complexity. As recommended in 
previous literature (Jahn et al. 2005; Holmberg and Di Yuan 2003), a common 
approach for measuring the complexity of a network is by multiplying the number of 
arcs by the number commodities (in this case, the commodities are the same OD 
pairs). Following this approach, Figure 3-1 proposes one alternative of classifying the 
thirteen networks. The reader can observe in this classification that there is at least 
one network for each level of complexity. 

 
Figure 3-1. Classification of the networks used for this thesis according to their level of complexity. 

All the networks use the standard form of the BPR performance function (Bureau of 
Public Roads 1964) for each link a. Nevertheless, some links require the addition of a 
value corresponding to the cost of the toll as well as a cost proportional to the length 
of the link. Therefore, the general performance function used for this thesis is as 
follows: 
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 [3-1] 

where ta is given in units of time, freeFlowTime is given in units of time, B is 
dimensionless, fa is given in units of vehicles per units of time, capacity is 
given in units of vehicle per units of time, power is adimensional, tollFactor is 
given in units of time per units of money, tollFlag is given in units of money, 
distanceFactor is given in units of time per units of length, and length is given 
in units of length. 

Although the variable tollFlag has units of money, its value is always either zero or 
one. Only the CHIC_R network contains values for the tollFlag different from zero. 
Also, only three networks used nonzero values for the variable distanceFactor: 
CHIC_R, PHILAD and CHIC_S. 

Table 3-2 shows the resulting units that [3-1] generates for each of the networks and 
the units of the vehicle flow fa. An extensive inquiry conducted for this thesis allows 
to state that for some networks, there is no knowledge of the units used for ta and fa. 
This inquiry also allows to state that some networks are the result of modifications 
made in the scale of the original city grids and therefore, their units could well be 
fractions of standard units such as “half of a minute”, “0.01 hours”, etc. At first 
glance, the reader could find this absence of units detrimental for understanding the 
orders of magnitude and the coherence in the results. Nevertheless, as shown in the 
next subsection, there are ways to circumvent this lack of knowledge in the units 
used. 

Level of Complexity # Network Code Units for 
fa 

Units for ta 

8 1011 to 
12

1 CHIC_R veh/hour minutes 
7 1010 to 

11
2 PHILAD veh/day minutes 

6 109 to 1010 3 BERL_C unknown unknown 

5 108 to 109 
4 CHIC_S veh/hour minutes 
5 M_P_F unknown unknown 
6 BARCEL unknown unknown 

4 107 to 108 
7 WINNIP unknown unknown 
8 ANAH veh/hour minutes 
9 MIT_C unknown unknown 

3 106 to 107 10 PR_C unknown unknown 
11 TIEG_C unknown unknown 

2 105 to 106 12 FR_C unknown unknown 
1 104 to 105 13 SIOUX veh/day minutes 

Table 3-2. A caveat on the quality of the data used: for most of the networks, this thesis required 
estimating the units used for the link costs. 
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The link performance function used for the networks, as described in [3-1], complies 
with the assumptions needed as mentioned in the Section “Discussion on the 
Assumptions Required by Both Methods”. This section also mentions that the only 
links allowed to have a different kind of performance functions are the so-called 
connectors. The performance function of these links is equal to zero: ( ) 0=aa ft . 

Procedure for Comparing both Methods 
The specific characteristics of the networks and of the methods, and the fact that Bar-
Gera’s software is not open source generated some challenges for trying to reach a 
reliable numerical comparison between Bar-Gera’s method and Aashtiani’s method. 
In the following section, the reader will observe that a simple and perhaps natural 
approach of carrying out the comparison falls short in achieving the desired 
reliability. After analyzing other less simple approaches, this section will end by 
explaining the final approach (or procedure) that this study used. 

The first (and simplest) approach considered consisted in comparing the 
computational times that both algorithms required in reaching the minimum value of 
Beckman’s objective function T, as defined in equation [2-2a]. For convenience to the 
reader, it is rewritten below: 

( )[ ] ( )
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Figure 3-2. Example of a simple graph used for comparing how, for each method, the value of the 
objective function T evolves with time. The network used in this example is CHIC_R. 

Figure 3-2 presents this approach using the CHIC_R network as an example. The 
disadvantage of this approach is that for a certain order of magnitude (the one used on 
the first graph of Figure 3-2), the algorithms seem to have reached the minimum 
value of T. But for a lesser order of magnitude (as in the second graph of Figure 3-2), 

Points for comparing 
computational times 

Points for comparing 
computational times? 
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one could conclude that the algorithms need more computational time to reach the 
minimum value of T.  

Since T does not have any physical interpretation, one cannot establish what a slight 
decrease of T means numerically for the solution f•. Without having a clear stopping 
criterion, what seems to be the slowest algorithm on a first comparison could become 
the fastest algorithm on a second comparison (see for example, Figure 3-3). Also, as 
shown on Figure 3-3, more computational time could mean a more satisfactory 
solution f• in terms of accuracy, but the sole value of T does not say much about how 
accurate the solution is. 

A second approach considered is using a metric different from T that does have a 
physical interpretation. One convenient metric is the average excess cost (or AEC) 
which Bar-Gera’s software uses as its stopping criterion. Its mathematical definition 
is as follows: 

( )[ ]
∑ ∑

∑ ∑

∈∀ ∈∀

∈∀ ∈∀

⋅−
=

I R

I R

i r
r

i r
rir

ii

i

ii

ii

h

huc
AEC   [3-2] 

For every OD pair, the AEC calculates the difference in time between taking any 
route from the least costly route and it averages these differences using the route 
flows as weights: the lower the value of the AEC, the more similar are the traveling 
times between paths of a same OD pair, just as Wardrop’s first principle requires. We 
can observe here that the AEC has a physical interpretation and it is expressed in 
units of time. The reader can notice also that the lower the value of the AEC, the 
higher the accuracy of the solution f•. There are other metrics such as the maximum 
excess cost (or MEC), or the one that Aashtiani’s algorithm uses as its stopping 
criterion which he dominates simply as the error. As the reader can observe from the 
following mathematical definitions, the “error’ seems to have a much better 
correlation with the MEC than with the AEC. 

( ){ }IR ∈∈−= irucMEC iiiri
,:max   [3-3] 

( )[ ]{ }IR ∈∈−= irhuherror iirirAashtiani ii
,:/max   [3-4] 
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Figure 3-3. Example (PHILAD network) that shows that without a clear stopping criterion, the result 
of the comparison between the two algorithms can be very different. On the left side, the targeted AEC 
was 10-1 minutes. On the right side, the targeted AEC was 10-6 minutes.  

Unfortunately, Bar-Gera’s software does not calculate the “error”. Therefore, the 
second approach considered in this thesis consisted in (1) running the two computer 
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programs until they reach a predefined AEC, (2) comparing the computational times, 
and (3) verifying whether a similar result can be drawn from looking at the MEC 
reached by each algorithm. In this thesis, a targeted AEC will refer to the AEC that 
the algorithms are set to reach before rendering the final solution f•. Since the 
algorithms cannot stop at the very instance they reach the targeted AEC (but after 
they have ended a complete cycle), their final solution will usually have a lower AEC 
than the targeted AEC. Figure 3-4 shows the results for the PHILAD network when 
targeting an AEC of 10-2 minutes. 

Evolution of the AEC and the MEC for Aashtiani's and Bar-Gera's  algorithms
Targeted AEC = 1E-3 min
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Figure 3-4. Example of how to compare the two algorithms using the second approach: at the targeted 
AEC, the difference in computational time is measured. In this example where the PHILAD network 
was used, the difference was 14 minutes. The values in the MEC are used to corroborate the numerical 
difference previously obtained. Here, the trend in the MEC does not contradict the superiority of Bar-
Gera’s algorithm. 

Figure 3-4 shows the values of the AEC and the MEC for Aashtiani’s algorithm only 
at the end of each cycle. Since Aashtiani’s algorithm decomposes the problems by 
OD pairs and then solves each subproblem in sequential order, it cannot generate an 
AEC before the cycle ends. For this reason, the values corresponding to Aashtiani’s 
algorithm appear more scattered. 

The second approach presents one difficulty. It requires knowing the units of the link 
costs ta. In the example of Figure 3-4, the units are known. As a result, the AEC 
would be calculated in minutes and therefore, one could state that a targeted AEC of 
10-3 minutes is sufficiently small. As Table 3-2 indicates, not all the units are known 
for this study. For this reason, this thesis considered a third approach. 

14 minutes approx. 
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The third (and final) approach uses the same metrics that the second one but it 
proposes observing other aspects of the results. The third approach consists in a set of 
six steps and therefore, the reader can view it as a simple procedure: 

1. For each method, execute the algorithms targeting a very low value in the 
AEC. 

2. Plot (like with the first and second approaches) the evolution of T. 

3. For various targeted AECs, plot one scatter diagram that compares the total 
link flows fa and another scatter diagram that compares the link costs ta 
between the two algorithms. 

4. Use the scatter diagrams to determine the maximum targeted AEC that 
guarantees a straight line (the reader can observe here that this verification is 
somewhat subjective, especially when the units are unknown. The coefficient 
of determination R2 is recommended for this verification but it can be heavily 
influenced by outliers whose magnitudes are very large compared to the rest 
of the points). 

5. Plot (like with the second approach) the evolution of the AEC and the MEC 
against the computational time. 

6. Look for trends in the evolution of the AEC and verify those trends with the 
MEC. Make sure that the values of the AEC are less than or equal to the 
maximum targeted AEC that was determined on step 4. 

Unlike in the second approach, one does not look for a “number” that measures the 
difference in computational time between both algorithms. Instead, one looks for 
“trends”. This thesis used the third approach for all the networks. The results allowed 
to conclude that the most common trends relate to answering the following questions: 
(1) For a very low AEC, which algorithm spends less computational time? (2) For a 
very high AEC, which algorithm spends less computational time? (3) Are the answers 
the same to the previous two questions? (4) The differences in computational time fall 
within what range? (5) Does the difference in computational time for every value in 
the AEC increase at every subsequent iteration? (6) Are the differences in 
computational time significant? (7) Can one reach the same answers if looking at the 
MEC instead of the AEC?  

A good idea for answering the sixth question is by expressing the differences in terms 
of percentages and not in terms of absolute seconds. One can quickly spot these 
percentages by using a logarithmic scale for the computational time. 
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Figure 3-5. Scatter diagrams and coefficients of determination for the BARCEL network that compare 
the total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms for targeted 
AECs of 10-1, 10-3, 10-4 and 10-8 cost units. 
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As an example to the procedure explained above, one can look at the results obtained 
for the BARCEL network. Figure 3-5 presents the scatter diagrams mentioned on the 
first step. There, one can observe that when the targeted AEC is 10-8, the solution 
seems to show enough precision, even if the units of the AEC are unknown. When the 
AEC is 10-3 (or more), the solution is not so precise in terms of link flows. 
Nevertheless, to argue that an AEC of 10-3 is not satisfactory would be difficult 
because there is still a linear correlation and also, the straight line is still clear in the 
scatter diagram of the link costs. In sum, one can conclude that the scatter diagrams 
indicate that it is useful to look for trends starting at an AEC of 10-3. 

Now, continuing with the fourth step, let us plot the evolution of the AEC and the 
MEC as shown on Figure 3-6. The reader can observe here one of the advantages of 
using a logarithmic scale for the computational time: a distance that represents a 
100% difference is constant all along the abscissa. Likewise, a distance that 
represents 200% difference is constant all along the abscissa. This difference 
expressed as a percentage is equal to: 

%100
 timecomput.smallest 

 timecomp.smallest - timecomp.largest difference% ⋅=  [3-5] 

Figure 3-6. Example of how to recognize the trends in the AEC using the third approach: when Bar-
Gera’s algorithm is the slowest, its computational time is measured against Aashtiani’s and it is 
expressed as a percentage (as defined on [3-5]). Likewise, the difference in which Aashtiani’s 
algorithm is the lowest is also recorded. The values in the MEC are used to corroborate the numerical 
difference previously obtained. In this example where the BARCEL network was used, the MEC 
confirms the trend seen in the AEC. Horizontal green bars in this graph are presented to show how the 
logarithmic scale allows to directly recognize differences as defined in [3-5]. 
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After looking at Figure 3-6, one can spot the following trends. For an AEC less than 
or equal to 10-3, Aashtiani’s algorithm starts by being the fastest. When the AEC is 
approximately 10-3, Bar-Gera’s algorithm is slower. No algorithm is faster than the 
other always; there is no strong superiority of one algorithm over the other. While 
Aashtiani’s algorithm ends by being 95% slower than Bar-Gera’s, Bar-Gera’s 
algorithm starts by being 160% slower. Both algorithms seem equally fast for an AEC 
between 10-5 and 10-6. Overall, we can observe that Bar-Gera’s algorithm becomes 
faster as one allows more computational time. The differences are fairly significant 
since they represent values greater than 90%. The values of the MEC corroborate the 
values of the AEC. When Aashtiani’s algorithm is slower in terms of the AEC, so it is 
in terms of the MEC.  

In sum, one could conclude that Aashtiani’s algorithm is the fastest algorithm for a 
not very demanding accuracy while Bar-Gera is the fastest for very demanding 
accuracies.  

Numerical Results 
For each city, we will follow the procedure explained in the previous section. 
Therefore, for each city, this section will present three figures (the evolution of T, the 
evolution of the AEC and the MEC, and the scatter diagrams) followed by an analysis 
on the trends and additional observations. The following networks are organized in 
descending order of complexity. For convenience, the main characteristics of the 
networks are mentioned again at the beginning of each description. 
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Figure 3-7a. CHIC_R network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-7b. CHIC_R network: Evolution of the average excess cost and the maximum excess cost for 
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-7c. CHIC_R network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-2, 10-3 and 10-4 minutes. 
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Description of the results shown on Figure 3-7a to Figure 3-7c 

Network: Chicago Regional 
Code: CHIC_R 
Number of Nodes: 12,979 
Number of Zones: 1,790 
Number of Arcs: 39,018 
Number of OD Pairs: 3,134,670 
Complexity: 122,308,554,060 arcs·OD pairs 
Level of Complexity: 8 (1011 to 1012) 
Total flow (total demand): 1,360,428 vehicles/hour 
Units for the total link flows fa: vehicles/hour 
Units for the link costs ta: minutes 
Existence of tolls: Yes 
Distance factor equal to zero: No 

Since the units are known, one could state that a targeted AEC of 10-1 minutes will 
always be sufficient to guarantee an acceptable solution, especially for a network as 
big as CHIC_R. Nonetheless, the reader can also look at the scatter diagrams (Figure 
3-7c) to verify that the total link flows of the two algorithms describe a very linear 
trend (R2 = 0.9903). Therefore, when looking for important trends, one can consider 
any values in the AEC less than or equal to 10-1 minutes. 

The trend that Figure 3-7b presents is the following. For an AEC of approximately 
10-3 minutes, Bar-Gera’s algorithm is almost 400% slower than Aashtiani’s. Then, as 
the algorithms spend more time for obtaining more accurate solutions, Bar-Gera’s 
algorithm is still the slowest but the difference gets reduced. Only at the very last 
minutes, Aashtiani’s algorithm gets surpassed becoming more or less 6% slower. The 
differences in time are very significant at the beginning: a 400% difference represents 
in this case two hours of additional computational time. The values of the MEC 
corroborate partly the trend seen on the AEC: the trend of the MEC portrays 
Aashtiani’s algorithm as always being the fastest. 

Due to the great size of the network, the computer time ranges from 30 minutes to 23 
hours. One interesting feature to observe in Figure 3-7a is that Bar-Gera’s algorithm 
spends more time calculating the initial solution at the same time that its objective 
function is poorer (that is, is greater) than the value obtained by Aashtiani’s 
algorithm. Nevertheless, before Aashtiani’s algorithm finishes its first cycle, the T in 
Bar-Gera’s algorithm has already become lower than in Aashtiani’s algorithm. 

Given the above results, one could conclude that the practitioner would prefer 
Aashtiani’s algorithm in order to deliver faster results. 
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Figure 3-8a. PHILAD network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-8b. PHILAD network: Evolution of the average excess cost and the maximum excess cost for 
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-8c. PHILAD network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-2, 10-3 and 10-4 minutes. 
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Description of the results shown on Figure 3-8a to Figure 3-8c 

Network: Philadelphia 
Code: PHILAD 
Number of Nodes: 13,389 
Number of Zones: 1,525 
Number of Arcs: 40,003 
Number of OD Pairs: 1,149,795 
Complexity: 45,995,249,385 arcs·OD pairs 
Level of Complexity: 7 (1010 to 1011) 
Total flow (total demand): 18,503,872 vehicles/day 
Units for the total link flows fa: vehicles/day 
Units for the link costs ta: minutes 
Existence of tolls: Yes 
Distance factor equal to zero: Yes 

The units for this network are also known. Again, one could immediately conclude 
that an AEC of approximately 10-1 minutes should render a solution that is accurate 
enough. This statement is corroborated by the linear trend shown on the scatter 
diagram for a targeted AEC of 10-1 minutes (R2 = 0.9875). An AEC of 10-1 minutes or 
less should be useful for recognizing trends in the curve described on Figure 3-8b. 

Figure 3-8b shows a more mixed result than with the CHIC_R network. Like with the 
CHIC_R network, for a rather high AEC (when the AEC is close to 10-3 minutes), 
Bar-Gera’s algorithm is 10% slower than Aashtiani’s. But unlike the CHIC_R, 
Aashtiani’s algorithm becomes slower than Bar-Gera’s until reaching a difference of 
approximately 110%. And also, unlike the CHIC_R network, Bar-Gera’s algorithm 
ends by being slower by a very small margin. The differences in time are very 
significant at the beginning (10% ≈  15 minutes) and when the AEC ranges between 
10-3 and 10-7 minutes (110% ≈  2.5 hours). The values of the MEC present the same 
trend shown by the values of the AEC. 

Like with the CHIC_R network, Bar-Gera’s algorithm started with an initial solution 
that had a larger T and at the same time slower to compute. Nevertheless, this value 
quickly diminished. Also, like with the CHIC_R the computational time is very high: 
from 20 minutes to 4 hours. 

Since the units of the link costs are known, one could conclude that the practitioner 
would prefer Aashtiani’s algorithm for delivering faster results at acceptable low 
accuracies. Nevertheless, if wanting better accuracies, he or she runs the risk of 
spending two more hours using Aashtiani’s algorithm than Bar-Gera’s.  
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Figure 3-9a. BERL_C network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-9b. BERL_C network: Evolution of the average excess cost and the maximum excess cost for 
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-9c. BERL_C network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-4, 10-5 and 10-6 cost units. 
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Description of the results shown on Figure 3-9a to Figure 3-9c 

Network: Berlin Center 
Code: BERL_C 
Number of Nodes: 12,981 
Number of Zones: 865 
Number of Arcs: 28,376 
Number of OD Pairs: 49,688 
Complexity: 1,409,946,688 arcs·OD pairs 
Level of Complexity: 6 (109 to 1010) 
Total flow (total demand): 168,222 flow units 
Units for the total link flows fa: unknown 
Units for the link costs ta: unknown 
Existence of tolls: No 
Distance factor equal to zero: Yes 

Since the units are not known for this network, one needs to look carefully at the 
scatter diagrams (Figure 3-9c) in order to determine whether an AEC of 10-1 is 
enough for rendering an accurate solution. It seems that it is more difficult to argue 
that 10-1 in the AEC is enough than with the previous two networks. Nevertheless, as 
explained in the next paragraph, we will only need to consider values in the AEC 
when the targeted AEC is close to 10-5. As shown in the corresponding scatter 
diagram (Figure 3-9c, when targeted AEC = 10-5), the solutions f from both 
algorithms are close. 

The trends in the AEC, as shown on Figure 3-9b, are less favorable to Aashtiani’s 
algorithm than in the previous networks. At a not very low AEC of almost 10-5, Bar-
Gera’s algorithm is almost 600% slower, but the trend quickly shifts: Bar-Gera 
becomes the fastest algorithm when spending more computational time. At some 
point, for an AEC close to 10-7, Aashtiani’s algorithm is 900% slower. These two 
extremes in computational time are very significant. As with CHIC_R, Bar-Gera’s 
algorithm increases its speed at every subsequent iteration. It is interesting that at 
some level, when the AEC ranges between 10-4 and 10-5, both algorithms seem 
equally fast. The values of the MEC corroborate the trends shown by the values in the 
AEC. 

Figure 3-9b presents two additional interesting features. The trends in the MEC and 
in the AEC show that both algorithms struggle in finding a better solution when 
trying to reach an AEC close to 10-8 in the case of Bar-Gera’s algorithm and an AEC 
close 10-7 in the case of Aashtiani’s algorithm. Figure 3-9b also shows that while 
Aashtiani’s algorithm has a lot of control over the MEC, Bar-Gera’s algorithm has 
control over the AEC. This is observed at the increase in the AEC that Aashtiani’s 
algorithm have from 10-5 to 10-4 (that is, when the computational time is between100 
seconds to 350 seconds). Meanwhile, the MEC in Aashtiani’s algorithm is strictly 
decreasing. 

In this network, the computational time ranges from one to 25 minutes approximately. 
Contrary to the previous networks, Aashtiani’s algorithm spent a little bit more time 
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calculating the initial solution. Also, contrary to the previous networks, the value of T 
for this initial solution was higher than the initial solution of Bar-Gera’s network.  

Overall, Bar-Gera’s algorithm seems faster. Nevertheless, one cannot discard stating 
that Aashtiani’s algorithm is faster at lower (and perhaps acceptable) levels of 
accuracy.  
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Figure 3-10a. CHIC_S network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-10b. CHIC_S network: Evolution of the average excess cost and the maximum excess cost 
for Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-10c. CHIC_S network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-2, 10-3 and 10-4 minutes. 
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Description of the results shown on Figure 3-10a to Figure 3-10c 

Network: Chicago Sketch 
Code: CHIC_S 
Number of Nodes: 933 
Number of Zones: 387 
Number of Arcs: 2,950 
Number of OD Pairs: 142,512 
Complexity: 420,410,400 arcs·OD pairs 
Level of Complexity: 5 (108 to 109) 
Total flow (total demand): 1,260,907 vehicles/hour 
Units for the total link flows fa: vehicles/hour 
Units for the link costs ta: minutes 
Existence of tolls: No 
Distance factor equal to zero: Yes 

The scatter diagrams confirm that a targeted AEC of 10-1 minutes is enough for 
rendering a satisfactory solution. For example, the scatter diagram of link costs (when 
the targeted AEC is equal to 10-1 minutes) shows a difference of three minutes 
approximately in the worst case between costs ta of a same link a. The coefficient of 
determination for the total link flows for a targeted AEC of 10-1 is R2 = 0.9906. 
Therefore, values less than or equal to 10-1 minutes should not be discarded when 
looking for trends in the AEC curve. 

The trend described by Figure 3-10b in terms of AEC is as follows. For a not very 
low AEC close to 10-3 minutes, Bar-Gera’s algorithm is 105% slower than 
Aashtiani’s. Then, Bar-Gera’s algorithm increases its rate of convergence and quickly 
surpasses Aashtiani’s. At the end, for an AEC close to 10-8 minutes, Aashtiani’s 
algorithm is 100% slower than Bar-Gera’s. These differences are very significant in 
terms of percentage values. The values of the MEC corroborate the trend seen on the 
AEC. Nevertheless, the trend in the MEC is more favorable to Aashtiani’s algorithm 
for low accuracies. This feature is due to the high control that Aashtiani’s algorithm 
over the MEC. 

In sum, the results in this network are very similar to the BERL_C network. But in 
this case, there is more certainty when stating that the initial results have enough 
accuracy. 

Like with most of the previous networks, Bar-Gera’s initial solution had a higher 
value in the objective function, when compared to Aashtiani’s initial solution, and it 
was calculated within less time. As always, by the time Aashtiani’s algorithm 
completes its first cycle, Bar-Gera’s algorithm has already generated a solution with a 
very similar T. 

In this network, the computational time ranges from 5 seconds to 2 minutes 
approximately. 
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Figure 3-11a. M_P_F network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-11b. M_P_F network: Evolution of the average excess cost and the maximum excess cost for 
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-11c. M_P_F network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-2, 10-3 and 10-4 cost units. 
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Description of the results shown on Figure 3-11a to Figure 3-11c 

Network: Mitte, Prenzlauer Berg and Friedricshain 
Code: M_P_F 
Number of Nodes: 974 
Number of Zones: 98 
Number of Arcs: 2,184 
Number of OD Pairs: 9,505 
Complexity: 20,758,920 arcs·OD pairs 
Level of Complexity: 4 (108 to 109) 
Total flow (total demand): 23,648 flow units 
Units for the total link flows fa: unknown 
Units for the link costs ta: unknown 
Existence of tolls: No 
Distance factor equal to zero: Yes 

Arguably, Figure 3-11c reveal that a solution of an AEC of approximately equal to 
10-1 is precise enough (R2 = 0.9978). Nonetheless, we will only need to consider 
values in the AEC close to 10-4. As shown in the corresponding scatter diagram 
(Figure 3-9c, when targeted AEC = 10-5), the solutions are very accurate (R2 = 
0.9999). 

The trends in the AEC are very similar to the two previous networks (BERL_C and 
CHIC_S): Aashtiani’s algorithm starts by being faster (5% difference in 
computational time) and then Bar-Gera’s becomes the fastest (105% difference). The 
differences are very significant. Bar-Gera’s algorithm is always faster at every 
subsequent iteration confirming a trend that seen in all the previous networks except 
(perhaps) PHILAD. The curve described by the MEC corroborates the trend shown 
by the curve of the AEC. 

According to Figure 3-11a and as with the previous networks (except BERL_C), 
Aashtiani’s algorithm starts with a better initial solution but Bar-Gera’s algorithm 
very quickly catches up. 

In this network, the computational time ranges from one to three seconds 
approximately, a big decrease from the previous network which is one upper level of 
complexity. 
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Figure 3-12a. BARCEL network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-12b. BARCEL network: Evolution of the average excess cost and the maximum excess cost 
for Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-12c. BARCEL network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-2, 10-3 and 10-4 cost units. 
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Description of the results shown on Figure 3-12a to Figure 3-12c 

Network: Barcelona 
Code: BARCEL 
Number of Nodes: 930 
Number of Zones: 110 
Number of Arcs: 2,522 
Number of OD Pairs: 7,922 
Complexity: 19,979,284 arcs·OD pairs 
Level of Complexity: 4 (108 to 109) 
Total flow (total demand): 184,679 flow units 
Units for the total link flows fa: unknown 
Units for the link costs ta: unknown 
Existence of tolls: No 
Distance factor equal to zero: Yes 

The scatter diagram of the total link flows (Figure 3-12c) does not reveal with 
complete assurance that an AEC of 10-1 is accurate enough. At a targeted AEC of   
10-2, the accuracy improves (R2 = 0.9928). But at a targeted AEC of 10-3, the solution 
is very accurate (R2 = 0.9993). 

The trends that Figure 3-12b describes were already explained in the previous section 
(see page 34). For convenience to the reader, that analysis is restated here verbatim:  
For an AEC less than or equal to 10-3, Aashtiani’s algorithm starts by being the 
fastest. When the AEC is approximately 10-3, Bar-Gera’s algorithm is slower. No 
algorithm is faster than the other always; there is no strong superiority of one 
algorithm over the other. While Aashtiani’s algorithm ends by being 95% slower than 
Bar-Gera’s, Bar-Gera’s algorithm starts by being 160% slower. Both algorithms seem 
equally fast for an AEC between 10-5 and 10-6. Overall, we can observe that Bar-
Gera’s algorithm becomes faster as one allows more computational time. The 
differences are fairly significant since they represent values greater than 90%. The 
values of the MEC corroborate the values of the AEC. When Aashtiani’s algorithm is 
slower in terms of the AEC, so it is in terms of the MEC.  

The trends seen on this network are similar to BERL_C, CHIC_R and M_P_F. 
Overall, Bar-Gera’s algorithm seem to be faster. Nevertheless, one cannot discard 
stating that Aashtiani’s algorithm is faster at lower (and acceptable) accuracies.  

According to Figure 3-12a and as with the previous networks (except BERL_C), 
Aashtiani’s algorithm starts with a better initial solution but Bar-Gera’s algorithm 
very quickly catches up. Aashtiani’s initial solution is obtained within less 
computational time. 

In this network, the computational time ranges from one to 12 seconds 
approximately: slightly different to M_P_F which had the same level of complexity. 
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Figure 3-13a. WINNIP network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-13b. WINNIP network: Evolution of the average excess cost and the maximum excess cost 
for Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-13c. WINNIP network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-2, 10-3 and 10-8 cost units. 
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Description of the results shown on Figure 3-13a to Figure 3-13c 

Network: Winnipeg 
Code: WINNIP 
Number of Nodes: 1,040 
Number of Zones: 154 
Number of Arcs: 2,836 
Number of OD Pairs: 4,344 
Complexity: 12,319,584 arcs·OD pairs 
Level of Complexity: 4 (107 to 108) 
Total flow (total demand): 64,784 flow units 
Units for the total link flows fa: unknown 
Units for the link costs ta: unknown 
Existence of tolls: No 
Distance factor equal to zero: Yes 

This network presents a special characteristic that the other networks do not have. 
WINNIP contains links with link performance functions equal to zero. As mentioned 
previously in the Section Discussion on the Assumptions Required by Both Methods, 
connectors can have null performance functions. But this network presents, besides 
its connectors, other links with null performance functions. This feature leads to many 
solutions f. This characteristic explains why when the targeted AEC is as extremely 
low as 10-8, the link flows are still not completely equal. Nevertheless, the number of 
these links is very small to deter the algorithms from finding an almost equal solution. 

Like with the BARCEL network, the scatter diagram of the total link flows do not 
describe a well define straight line when the targeted AEC is equal to 10-1. The 
straight line starts to emerge at a targeted AEC of 10-3 (R2 = 0.9973) and definitely at 
a targeted AEC of 10-4 (R2 = 0.9998). 

The trends described by the AECs are very similar to the PHILAD network but a little 
bit more favorable to Aashtian’s algorithm: Aashtiani’s algorithm is the fastest for 
high values in the AEC, then Bar-Gera’s algorithm becomes the fastest and finally, at 
the end, Aashtiani’s algorithm becomes slightly better. Regarding the maximum 
differences presented, for a not very low AEC of 10-3, Bar-Gera’s algorithm is 600% 
slower. For a medium AEC of approximately 10-5, Aashtiani’s algorithm is around 
5% slower. At other values, both algorithms have almost the same performance. 
Unlike with the PHILAD network, the values of the MEC corroborate the trends seen 
on the values of the AECs. Very differently from the other networks, Bar-Gera’s 
algorithm does not present an increasing better performance at every subsequent 
iteration. Even if at an AEC of 10-5 Bar-Gera’s algorithm surpasses the other 
algorithm, Bar-Gera’s algorithm becomes the slowest again at the end. 

Another similarity between the PHILAD network and this one is that for a significant 
range of AECs (10-5 to 10-7), Aashtiani’s algorithm and Bar-Gera’s algorithm are 
practically equally fast. 

The curve of T, as shown on Figure 3-12a, is very similar to the one seen in 
BARCEL: the initial solution of Aashtiani’s algorithm is faster and more rapidly 
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calculated (but by only 0.06 seconds). Again, Bar-Gera’s algorithm quickly (within 
0.9 seconds) generates a solution with a similar value of T. 

In this network, the computational time for obtaining a meaningful solution ranges 
from one to 40 seconds approximately: similar to BARCEL which had the same level 
of complexity. 
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Figure 3-14a. ANAH network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-14b. ANAH network: Evolution of the average excess cost and the maximum excess cost for 
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-14c. ANAH network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-2, 10-3 and 10-4 minutes. 
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Description of the results shown on Figure 3-14a to Figure 3-14c 

Network: Anaheim 
Code: ANAH 
Number of Nodes: 416 
Number of Zones: 38 
Number of Arcs: 914 
Number of OD Pairs: 1,406 
Complexity: 1,285,084 arcs·OD pairs 
Level of Complexity: 3 (107 to 108) 
Total flow (total demand): 104,694 vehicles/hour 
Units for the total link flows fa: vehicles/hour 
Units for the link costs ta: minutes 
Existence of tolls: No 
Distance factor equal to zero: Yes 

Knowledge of the units for this network allows to state that an AEC of 10-1 minutes 
(or 10-2 minutes since this is a small network) would guarantee a solution that is 
precise enough. The scatter diagram of the total link flows for a targeted AEC of 10-1 
minutes supports this statement (in this case, R2 = 0.9952). 

The trends described by the AECs are similar to those of BERL_C, CHIC_S, 
BARCEL and M_P_F: Aashtiani’s algorithm is the fastest for high values in the AEC 
and then Bar-Gera’s algorithm becomes the fastest. There is a 100% difference in 
computational time when the AEC approximates 10-4 minutes and towards the end, 
there is a 700% difference when the AEC approximates to 10-7 minutes. Both 
differences are very significant. As with the previous networks (except for 
Winnipeg), Bar-Gera’s algorithm is faster at every subsequent iteration. The results in 
the MECs corroborate the trends seen in the AECs. 

This is the second network, besides BERL_C, where Bar-Gera’s algorithm required 
less time computing its initial solution. As with all the other networks where the value 
of T is greater in the initial solution of Bar-Gera’s algorithm than in the one of 
Aashtini’s, Bar-Gera’s algorithm quickly obtains a solution with a similar T. 

In this network, the computational time for obtaining a meaningful solution ranges 
from 0.12 seconds to 4 seconds approximately. Up to this point, computational times 
seem to be proportional to the level of complexity. 
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Figure 3-15a. MIT_C network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-15b. MIT_C network: Evolution of the average excess cost and the maximum excess cost for 
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-15c. MIT_C network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-2, 10-3 and 10-4 cost units. 
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Description of the results shown on Figure 3-15a to Figure 3-15c 

Network: Mitte Center 
Code: MIT_C 
Number of Nodes: 397 
Number of Zones: 36 
Number of Arcs: 871 
Number of OD Pairs: 1,260 
Complexity: 1,097,460 arcs·OD pairs 
Level of Complexity: 3 (107 to 108) 
Total flow (total demand): 11,482 flow units 
Units for the total link flows fa: unknown 
Units for the link costs ta: unknown 
Existence of tolls: No 
Distance factor equal to zero: Yes 

The scatter diagrams seem to indicate that for a targeted AEC of 10-1, the solutions 
have enough accuracy. 

Clearly in this network, Bar-Gera’s algorithm is the fastest at any level of precision. 
And the differences are very significant: from a 60% difference to an almost 400% 
difference. Nonetheless, in absolute units, the differences are less than a second due 
to the small size of the network. The trends in the MEC corroborate the trends in the 
AEC. 

The trends observed with this network seem somewhat different from other networks 
due to the clear superiority of Bar-Gera’s algorithm. Still, one can observe that the 
speed of Bar-Gera’s algorithm increases at every subsequent iteration. 

Figure 3-15a shows that Bar-Gera’s algorithm spent less time computing its initial 
solution. Nevertheless, this difference in time is small compare to the total 
computational time spent by both algorithms. Like in all the networks except 
BERL_C, the value of T in Aashtiani’s algorithm starts by being smaller but Bar-
Gera’s algorithm quickly reaches such small values. 

This is the first network where the computational time does not exceed one second. In 
consequence, calculating a solution f• in this network required more carefulness: 
parallel operations in the computer had the potential to affect the computational 
times. 
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Figure 3-16a. PR_C network: Evolution of the objective function value for Aashtiani’s and Bar-Gera’s 
algorithms. 

 
Figure 3-16b. PR_C network: Evolution of the average excess cost and the maximum excess cost for 
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-16c. PR_C network: scatter diagrams and coefficients of determination that compare the total 
link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting an 
AEC of 10-1, 10-2, 10-3 and 10-4 cost units. 

Scatter Diagram for Link Costs
when AEC = 1E-1 cost units

(units in min )

R2 = 1

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-1 cost units

(units in veh /day )

R2 = 0.9997

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k 
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-2 cost units

(units in min )

R2 = 1

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-2 cost units

(units in veh /day )

R2 = 0.9997

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k 
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-3 cost units

(units in min )

R2 = 1

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-3 cost units

(units in veh /day )

R2 = 1

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k 
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m

Scatter Diagram for Link Costs
when AEC = 1E-4 cost units

(units in min )

R2 = 1

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40
Link Costs

Bar-Gera's Algorithm

Li
nk

 C
os

ts
Aa

sh
tia

ni
's

 A
lg

or
ith

m

Scatter Diagram for Total Link Flows
when AEC = 1E-4 cost units

(units in veh /day )

R2 = 1

0

500

1,000

1,500

2,000

2,500

0 500 1,000 1,500 2,000 2,500
Total Link Flows
Bar-Gera's Algorithm

To
ta

l L
in

k 
Fl

ow
s

Aa
sh

tia
ni

's
 A

lg
or

ith
m



 

 66 

 

Description of the results shown on Figure 3-16a to Figure 3-16c 

Network: Prenzlauer Berg Center 
Code: PR_C 
Number of Nodes: 749 
Number of Zones: 352 
Number of Arcs: 749 
Number of OD Pairs: 1,406 
Complexity: 1,053,094 arcs·OD pairs 
Level of Complexity: 3 (106 to 107) 
Total flow (total demand): 16,659 flow units 
Units for the total link flows fa: unknown 
Units for the link costs ta: unknown 
Existence of tolls: No 
Distance factor equal to zero: Yes 

The results observed in this network are very similar to MIT_C. The scatter diagrams 
and the trends are similar to those presented by the MIT_C network. In general, Bar-
Gera’s algorithm outperforms Aashtiani’s algorithm by a 200% difference that seems 
to be constant at every value in the AEC. These differences are significant but 
because the network is small, the differences are always less than one second. 

Like with MIT_C, Figure 3-16a shows that the value of T in Aashtiani’s algorithm 
starts by being smaller but Bar-Gera’s algorithm quickly catches up. Also, like with 
MIT_C, Bar-Gera’s algorithm spent less time in calculating the initial solution. 
Nonetheless, this difference in time is much less than the differences seen on Figure 
3-16b.  

The computational time does not exceed one second. As with MIT_C, measuring the 
computational times presented challenges. 
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Figure 3-17a. TIEG_C network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-17b. TIEG_C network: Evolution of the average excess cost and the maximum excess cost 
for Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-17c. TIEG_C network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-2, 10-3 and 10-4 cost units. 
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Description of the results shown on Figure 3-17a to Figure 3-17c 

Network: Tiegarten Center 
Code: TIEG_C 
Number of Nodes: 359 
Number of Zones: 26 
Number of Arcs: 766 
Number of OD Pairs: 644 
Complexity: 493,304 arcs·OD pairs 
Level of Complexity: 2 (106 to 107) 
Total flow (total demand): 10,754 flow units 
Units for the total link flows fa: unknown 
Units for the link costs ta: unknown 
Existence of tolls: No 
Distance factor equal to zero: Yes 

This network falls in the same category of MIT_C and PR_C. In general, Bar-Gera’s 
algorithm outperforms Aashtiani’s algorithm by a 5,000% difference. 

Like with MIT_C and PR_C, the value of T in Aashtiani’s algorithm starts by being 
smaller but Bar-Gera’s algorithm quickly catches up. Also, like with MIT_C and 
PR_C, Bar-Gera’s algorithm spent less time in calculating the initial solution but this 
difference is much smaller than the total computational times observed in Figure 3-
17b. 

The computational time does not exceed one second. As with MIT_C and PR_C, 
measuring the computational times presented challenges. 
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Figure 3-18a. FR_C network: Evolution of the objective function value for Aashtiani’s and Bar-Gera’s 
algorithms. 

 
Figure 3-18b. FR_C network: Evolution of the average excess cost and the maximum excess cost for 
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-18c. FR_C network: scatter diagrams and coefficients of determination that compare the total 
link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting an 
AEC of 10-1, 10-2, 10-3 and 10-4 cost units. 
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Description of the results shown on Figure 3-18a to Figure 3-18c 

Network: Friedricshain Center 
Code: FR_C 
Number of Nodes: 224 
Number of Zones: 23 
Number of Arcs: 523 
Number of OD Pairs: 506 
Complexity: 264,638 arcs·OD pairs 
Level of Complexity: 2 (105 to 106) 
Total flow (total demand): 11,205 flow units 
Units for the total link flows fa: unknown 
Units for the link costs ta: unknown 
Existence of tolls: No 
Distance factor equal to zero: Yes 

This network falls in the same category of the previous three networks. Bar-Gera’s 
algorithm outperforms Aashtiani’s algorithm by a difference of at least 150% always. 

As shown on Figure 3-18a, the trends of the objective function are very similar to 
those shown in the previous three networks.  

The computational time does not exceed one second. As with the previous two 
networks, measuring the computational times presented challenges. 
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Figure 3-19a. SIOUX network: Evolution of the objective function value for Aashtiani’s and Bar-
Gera’s algorithms. 

 
Figure 3-19b. SIOUX network: Evolution of the average excess cost and the maximum excess cost for 
Aashtiani’s and Bar-Gera’s algorithms (values in green indicate maximum differences). 
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Figure 3-19c. SIOUX network: scatter diagrams and coefficients of determination that compare the 
total link flows and the link costs calculated by Aashtiani’s and Bar-Gera’s algorithms when targeting 
an AEC of 10-1, 10-2, 10-3 and 10-4 minutes. 
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Description of the results shown on Figure 3-19a to Figure 3-19c 

Network: Sioux-Falls 
Code: SIOUX 
Number of Nodes: 24 
Number of Zones: 24 
Number of Arcs: 76 
Number of OD Pairs: 552 
Complexity: 41,952 arcs·OD pairs 
Level of Complexity: 1 (104 to 105) 
Total flow (total demand): 360,600 flow units 
Units for the total link flows fa: vehicles/day 
Units for the link costs ta: minutes 
Existence of tolls: No 
Distance factor equal to zero: Yes 

The results shown on Figure 3-19b present the same trend shown in the past four 
networks: an outperformance in speed of Bar-Gera’s algorithm at every level of 
accuracy. The only difference with those networks is that on Figure 3-19a, Bar-
Gera’s initial solution has a much smaller value of T than Aashtiani’s. Like with the 
previous networks, Bar-Gera’s algorithm is quicker in computing the initial solution 
but this difference is less than the difference that Bar-Gera’s algorithm makes in 
computing the final solutions (that is, for an AEC of 10-3 minutes or less). And 
finally, like in the previous networks, the time for calculating acceptable solutions 
never exceeds one second in either of the two algorithms. 

In terms of memory requirements, Table 3-3 presents the maximum amount of 
memory used by each of the algorithms. These values, corresponding to a targeted 
AEC of 10-7 (whether in minutes or other cost units), allow to easily determine that 
Bar-Gera’s algorithm requires much less memory. 
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Level of 
Complexity Network 

Memory required in MB to Converge to 
a Solution for a targeted AEC of  10-7 

Aashtiani’s Method Bar-Gera’s 
Method 

1 104 to 105 Sioux-Falls 26.44 0.01

2 105 to 106 
Friedrichshain Center 40.85 0.05
Tiegarten Center 60.62 0.07

3 106 to 107 
PrenzlauerBerg Center 140.89 0.08
Mitte Center 122.92 0.11
Anaheim 144.74 0.20

4 107 to 108 

Winnipeg 642.32 2.23
Barcelona 1,090.06 1.97
Mitte, PrenzlauerBerg, and 
Friedrichshain 

1,200.98 0.76

5 108 to 109 Chicago Sketch 8,454.77 6.69
6 109 to 1010 Berlin Center 7,299.33 93.83
7 1010 to 1011 Philadelphia 363,540.88 344.40
8 1011 to 1012 Chicago Regional 591,268.58 111.50

Table 3-3. Memory requirements for both algorithms when targeting an AEC of 10-7 (If the network is 
CHIC_R, PHILAD, CHIC_S, ANAH or SIOUX, the units of the AEC are in minutes. Otherwise, the 
units are not known.). 

Analysis 
To begin with, we need to verify whether the classification made to the networks on 
Figure 3-1 was adequate. This classification uses the definition of complexity as 
recommended in previous literature (Jahn et al. 2005; Holmberg and Di Yuan 2003).  
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Figure 3-20. SIOUX network: Evolution of the average excess cost and the maximum excess cost for 
Aashtiani’s and Bar-Gera’s algorithms. 

Figure 3-20 presents the time spent by each algorithm for an AEC of 10-3 and 10-7. 
This figure shows that the level of complexity does correlate with the computational 
time spent. Therefore, the classification used seems to be appropriate.  

Now, regarding the results shown in the previous section, a careful observation allows 
classifying them into four categories. The first category comprises the networks in 
which Aashtiani’s algorithm is always the fastest regardless on how much accuracy 
the practitioner is seeking. The second category comprises networks in which 
Aashtiani’s algorithm is the fastest at a high AEC and at a very low AEC. At other 
values in the AEC, Bar-Gera’s is the fastest. The third category comprises the 
networks where Bar-Gera’s algorithm is always the fastest except when targeting a 
high AEC. The fourth category comprises the networks where Bar-Gera’s algorithm 
is the fastest independently of the AEC that the practitioner is targeting. Table 3-4 
presents the four categories.  
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C
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y 
General Description 

When Bar-Gera’s 
algorithm is the 

slowest, 

When Aashtiani’s 
algorithm is the 

slowest, 
Network Level of 

Complexity  
it is this 

% 
slower, 

at this 
AEC 

approx(1) 

it is this 
% 

slower, 

at this 
AEC 

approx(1) 

1 Aashtiani’s algorithm 
is always the fastest. 400%(1) 1E-3 m 6%(2) 1E-8 m CHIC_R 8 1011 - 1012 

2 Aashtiani’s algorithm 
is always the fastest 
except for a medium 
accuracy. 

10%(3) 1E-3 m 110%(1) 1E-4 m PHILAD 7 1010 - 1011 

600%(1) 1E-3 cu 5%(1) 1E-5 cu WINNIP 4 107 - 108 

3 Bar-Gera’s algorithm 
is always the fastest 
except for a high (but 
always satisfactory) 
accuracy. 

600%(1) 1E-5 cu 900%(1) 1E-7 cu BERL_C 6 109 - 1010 
105%(1) 1E-3 m 100%(1) 1E-7 m CHIC_S 5 108 - 109 

5%(1) 1E-4 cu 105%(1) 1E-8 cu M_P_F 4 107 - 108 
110%(1) 1E-3 cu 90%(1) 1E-7 cu BARCEL 4 107 - 108 
100%(1) 1E-4 m 700%(1) 1E-7 m ANAH 3 106 - 107 

4 Bar-Gera’s algorithm 
is always the fastest. 

  390%(1) 1E-9 cu MIT_C 3 106 - 107 
  200%(1) 1E-2 cu PR_C 3 106 - 107 
  5,005% 1E-9 cu TIEG_C 2 105 - 106 
  200%(1) 1E-2 cu FR_C 2 105 - 106 
  400%(1) 1E-4 m SIOUX 1 104 - 105 

(1) “cu” refers to cost units which are unknown. “m” refers to minutes. 
(2) The corresponding MEC on both algorithms suggest that Aashtiani’s algorithm is faster instead of Bar-Gera’s. 
(3)  Although this difference is not very large, the trend shown by the MEC suggests a larger difference. 

Table 3-4. Categories that summarize the performance of Aashtiani’s and Bar-Gera’s algorithms in 
terms of computational speed. For every category, this table shows a general description, the networks 
that it comprises and the extreme differences in computational time. 

Four important findings are to be drawn from Table 3-4. First, as a network is more 
complex, Aashtiani’s algorithm has a better performance in terms of computational 
speed. Second, in three out of four categories, Aashtiani’s algorithm is the fastest 
when the accuracy is not so high. The reader should notice that Figure 3-20 confirms 
this trend. The values in the AEC that appear on Table 3-4 in which Aashtiani’s 
algorithm is faster, although they are not very low, they do guarantee solutions with 
sufficient accuracy according to the scatter diagrams analyzed in the previous section. 

Third, in the first three categories, although one algorithm seems to outperform the 
other, there are still levels of precision in which the opposite is true. For example in 
the CHIC_S network, overall, Bar-Gera’s algorithm seems to be the fastest, but when 
targeting an AEC of 10-3 minutes, Aashtiani’s algorithm could be much faster than 
Bar-Gera’s. Therefore, although the categories reveal tendencies in the performances, 
the variability in the computational time is very high. 

Finally, Bar-Gera’s algorithm becomes faster than Aashtiani’s at every subsequent 
iteration. The only exception was WINNIP. In other words, allocating more 
computational time tends to favor always Bar-Gera’s algorithm and therefore, this 
algorithm would deliver the most accurate solution.  
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Since the above findings suggest that Aashtiani’s algorithm is faster when the 
precision is not very demanding, the reader might find useful Table 3-5. On this table, 
one can observe the AEC at which Aashtiani’s algorithm stops being the fastest. 
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Network Level of 
Complexity 

Bar-Gera’s algorithm is the 
slowest, Both algorithms 

become equally 
fast, at this AEC by this 

percentage, at this AEC  

1 CHIC_R 8 1011 - 1012 400%(1) 1.0 E-3 minutes 1.0 E-8 minutes 

2 PHILAD 7 1010 - 1011 10%(2) 1.3 E-3 minutes 1.1 E-3 minutes 
WINNIP 4 107 - 108 600%(1) 1.0 E-3 cost units 1.7 E-5 cost units 

3 

BERL_C 6 109 - 1010 600%(1) 1.2 E-5 cost units 1.2 E-5 cost units 
CHIC_S 5 108 - 109 105%(1) 1.6 E-4 minutes 1.3 E-4 minutes 
M_P_F 4 107 - 108 5%(1) 1.0 E-4 cost units 1.8 E-5 cost units 

BARCEL 4 107 - 108 110%(1) 1.0 E-3 cost units 1.2 E-5 cost units 
ANAH 3 106 - 107 100%(1) 1.1 E-4 minutes 1.3 E-3 minutes 

Table 3-5. Networks for which Aashtiani’s algorithm starts being faster than Bar-Gera’s algorithm and 
then, at some AEC (as indicated on the last column), both algorithms become equally fast. 

It is important to clarify some aspects concerning the evolution of the objective 
function T. One could state that Aashtiani’s algorithm performs better at low levels of 
accuracy because in general, the initial solution that Aashtiani’s algorithm generates 
has a lower T. Two arguments contradict this statement. First, as the corresponding 
figures suggest (Figure 3-7a, Figure 3-8a up to Figure 3-19a), by the second or third 
iteration of Bar-Gera’s algorithm, its value of T becomes as low as the one of 
Aashtiani’s algorithm. Second, the computational time measured during this thesis 
starts from the moment the algorithm starts generating the initial solution. Therefore, 
while Bar-Gera’s initial solution has, most of the times, a higher T, it requires in some 
cases less time for its calculation. On the other hand, Aashtiani’s algorithm can spend 
more time in calculating its initial solution. 

Finally, as expected when comparing an origin-based algorithm with a route based 
algorithm, Bar-Gera’s method requires less memory. Nevertheless, an interesting 
result is that Aashtiani’s algorithm, although it can consider many routes for every 
OD pair (that is, the cardinality of the set of working paths w

iR  can be as high as |Ri|), 
the results show that the algorithm only used four routes at the most. 
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CHAPTER 4:  SUMMARY, CONCLUSIONS AND 

FURTHER RESEARCH 

This thesis aimed at comparing Aashtiani’s method and Bar-Gera’s method for 
solving the static traffic assignment with fixed demand (S-TAP-F). The main focus of 
the comparison was to determine which method requires the least computational time 
when executing their corresponding algorithms. The main intention of their authors 
was not to create two methods that could be comparable between themselves but two 
methods that could solve two similar but not identical problems: each method has 
different assumptions about the problems to solve. For this reason, this thesis looked, 
in the second chapter, at their theoretical backgrounds and found out that problems, if 
compliant with the following assumptions, serve as a test bed for comparing both 
methods: 

1. The TAP to be solved is static. 

2. The TAP to be solved has a fixed demand. 

3. The TAP to be solved is deterministic. 

4. The solution does not need to be integer. 

5. Every link performance function depends solely on the total link flow that 
passes through it and not on other total link flows. 

6. Every link performance function is positive, continuous and strictly 
increasing. 

7. The solutions are to be compared is in terms of total link flows (and not route 
flows). 

The second chapter also looked at the parameters required by Aashtiani’s algorithm 
and Bar-Gera’s algorithm. It concluded that there are interesting parameters that 
regulate the ratio of iterations versus cycles (or in other words, “local search” versus 
“global search”). Nevertheless, Bar-Gera’s software suggested a value for its 
parameter (that is, m = 2) and a value that presented satisfactory preliminary results 
was used for Aashtiani’s algorithm (that is, mA = 10). 

Two additional aspects were analyzed concerning the nature of the algorithms. To 
begin with, Aashtiani (1979) suggested that his algorithm should use Bellman’s 
shortest path algorithm (Bellman 1958) because it was considered the best at the time 
(Golden 1975). Instead, this thesis used the L-deque algorithm (Pape 1974) because 
according to a more recent study by Pallottino and Scuttelà (1998), it is the fastest for 
transportation networks. Secondly, Bar-Gera’s algorithm starts with an arbitrary 
feasible solution. Aashtiani’s algorithm starts with a different initial solution, that is, a 
solution in which all the total route flow for each OD pair is assigned to the path with 
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the least cost. Since the software used for Bar-Gera’s algorithm was not open source, 
Aashtiani’s algorithm could not be modified accurately so that it could generate the 
same initial solution that Bar-Gera’s algorithm used. 

Finally, the second chapter reviewed the data structures used by Bar-Gera and the 
data structures that Toobaie (1998) added to Aashtiani’s algorithm. 

This thesis presented on its third chapter thirteen networks (and link performance 
functions) that complied with the assumptions identified in the previous chapter. One 
of these networks, WINNIP, did not comply with the assumptions thoroughly. It 
contained links, other than connectors, whose performance functions were equal to 
zero. Nevertheless, results showed that the number of this kind of links was 
insufficient for affecting a meaningful comparison. The networks were classified 
according to the product of the number of OD pairs times the number of arcs as 
suggested in previous literature (Jahn et al. 2005; Holmberg and Di Yuan 2003). To 
every value of complexity, this thesis assigned a number (a level) from 1 to 8, where 
8 would refer to the most complex network. According to this numeration, every level 
of complexity had at least one network (see Figure 3-1). 

Due to (1) the absence of units in some networks, (2) the lack of a physical 
interpretation for the objective function T (defined in [2-2a]), and (3) the very 
different results obtained at every level of accuracy in the solution f•, the numerical 
comparison required crafting a careful procedure. The procedure chosen for this 
thesis was the following: 

1. For each method, run the algorithms targeting a very low value in the AEC. 

2. Plot (like with the first and second approaches) the evolution of T. 

3. For various targeted AECs, plot one scatter diagram that compares the total 
link flows fa and another scatter diagram that compares the the link costs ta 
between the two algorithms. 

4. Use the scatter diagrams to determine the maximum targeted AEC that 
guarantees a straight line (the reader can observe here that this verification is 
somewhat subjective, especially when the units are unknown. The coefficient 
of determination R2 is recommended for this verification but it can be heavily 
influenced by outliers whose magnitudes are very large compared to the rest 
of points). 

5. Plot (like with the second approach) the evolution of the AEC and the MEC 
against the computational time. 

6. Look for trends in the evolution of the AEC and verify those trends with the 
MEC. Make sure that the values of the AEC are less than or equal to the 
maximum targeted AEC that was determined on step 4. 
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The main conclusions to be drawn from the results observed on this thesis are the 
following (most of them can be drawn from Table 3-4 which, for convenience to the 
reader, appears below): (1) Aashtiani’s algorithm and Bar-Gera’s algorithm showed 
very similar performances not because their computational times were similar but 
because on a same network, Aashtiani’s algorithm could be much faster than Bar-
Gera’s at certain level of accuracy and much slower at another level of accuracy. It 
can be affirmed from here, that the variability of the results was very high. (2) 
Aashtiani’s algorithm seems to be the fastest algorithm when applied to the most 
complex networks. Clearly, it was faster than Bar-Gera’s algorithm for solving the 
largest network. (3) In most cases, Aashtiani’s algorithm was the fastest at solving the 
S-TAP-F at low but satisfactory levels of accuracy. The maximum accuracy at which 
Aashtiani’s algorithm was always faster can only be stated when the units are known. 
Therefore, from the four largest networks whose units were known, one can conclude 
that Aashtiani’s algorithm was faster than Bar-Gera’s when the AEC was greater than 
or equal to 0.11 minutes (this result is drawn from Table 3-5). (4) On the contrary, 
Bar-Gera’s algorithm has an increasing computational speed. As a result, at almost 
every lesser value in the AEC, Bar-Gera’s algorithm will perform faster. Even with 
the largest network where Aashtiani’s algorithm was the fastest, it seems that if 
requiring a greater (but unnecessary) precision, Bar-Gera’s algorithm could become 
the fastest. (5) Bar-Gera’s algorithm presented a clear superiority in the five least 
complex networks.  

C
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General Description 

When Bar-Gera’s 
algorithm is the 

slowest, 

When Aashtiani’s 
algorithm is the 

slowest, 
Network Level of 

Complexity  
it is this 

% 
slower, 

at this 
AEC 

approx(1) 

it is this 
% 

slower, 

at this 
AEC 

approx(1) 

1 Aashtiani’s algorithm 
is always the fastest. 400%(1) 1E-3 m 6%(2) 1E-8 m CHIC_R 8 1011 - 1012 

2 Aashtiani’s algorithm 
is always the fastest 
except for a medium 
accuracy. 

10%(3) 1E-3 m 110%(1) 1E-4 m PHILAD 7 1010 - 1011 

600%(1) 1E-3 cu 5%(1) 1E-5 cu WINNIP 4 107 - 108 

3 Bar-Gera’s algorithm 
is always the fastest 
except for a high (but 
always satisfactory) 
accuracy. 

600%(1) 1E-5 cu 900%(1) 1E-7 cu BERL_C 6 109 - 1010 
105%(1) 1E-3 m 100%(1) 1E-7 m CHIC_S 5 108 - 109 

5%(1) 1E-4 cu 105%(1) 1E-8 cu M_P_F 4 107 - 108 
110%(1) 1E-3 cu 90%(1) 1E-7 cu BARCEL 4 107 - 108 
100%(1) 1E-4 m 700%(1) 1E-7 m ANAH 3 106 - 107 

4 Bar-Gera’s algorithm 
is always the fastest. 

  390%(1) 1E-9 cu MIT_C 3 106 - 107 
  200%(1) 1E-2 cu PR_C 3 106 - 107 
  5,005% 1E-9 cu TIEG_C 2 105 - 106 
  200%(1) 1E-2 cu FR_C 2 105 - 106 
  400%(1) 1E-4 m SIOUX 1 104 - 105 

(1) “cu” refers to cost units which are unknown. “m” refers to minutes. 
(2) The corresponding MEC on both algorithms suggest that Aashtiani’s algorithm is faster instead of Bar-Gera’s. 
(3)  Although this difference is not very large, the trend shown by the MEC suggests a larger difference. 

Table 3-4 (repeated). Categories that summarize the performance of Aashtiani’s and Bar-Gera’s 
algorithms in terms of computational speed. For every category, this table shows a general description, 
the networks that it comprises and the extreme differences in computational time. 
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One lesson to be drawn from this study is that the utilization of non-open source 
software carries many disadvantages. The large number of trials and actual 
computations required software whose stopping criteria could not be tailored. Bar-
Gera’s software only offers the AEC as the stopping criterion. A second lesson to be 
drawn from these results is that, given the speed of current desktop and laptop 
computers, networks with a complexity lower than 10-7 have become non-
recommendable for comparing convergence rates among S-TAP-F solution 
algorithms. Their computational times do not exceed one second. 

Further study could focus on using larger networks for comparing both networks. 
Also, further study could analyze the impact of using different shortest path 
algorithms for Aashtiani’s algorithm. The results obtained for this thesis are the 
product of using the L-deque shortest-path algorithm (Pape 1974) in Aashtiani’s 
algorithm. This choice follows Pallottino and Scutella’s (1998) recommendation 
which states that for networks typical of transportation models, the L-deque shortest-
path algorithm is the best choice. Therefore, there is still the possibility that 
Aashtiani’s algorithm could show a better performance if using a different shortest 
path algorithm. 

Comparisons in the past between algorithms that solve the S-TAP have used 
dimensionless metrics as stopping criteria such as the relative gap (Boyce, Ralevic-
Dekic, and Bar-Gera 2004). This dimensionless metrics offer advantages but, when 
comparing algorithms with very mixed results, the practitioner might find insufficient 
to conclude that an algorithm is faster on the other just by comparing the time in 
reaching an ideal solution. 

Previous to this study, we already knew that (1) Aashtiani’s method offered the 
possibility of solving different kinds of TAPs, and that (2) Bar-Gera’s method, 
although just designed for the S-TAP-F, required less computer memory (this result 
was confirmed by Table 3-3). Now, this thesis shows that no algorithm is thoroughly 
faster than the other. But results do suggest that (1) as networks become more 
complex, Aashtiani’s algorithm becomes faster than Bar-Gera’s for low levels of 
accuracy, and (2) as networks become even more complex, Aashtiani’s algorithm can 
be considered the fastest overall.  
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APPENDIX: THE TWO METHODS IN DETAIL 

The following appendix describes in detail the two methods that this thesis compares. 
The reader can regard it as a complement to Chapter 2. Nevertheless, this appendix is 
completely self-contained. Since Bar-Gera’s (1999) and Aashtiani’s (1979) original 
works are extensive, since Aashtiani conceived his method for several types of TAPs 
(not just the S-TAP-F), and since both references use different notations, this 
appendix becomes necessary. This appendix also allows Chapter 2 to conclude 
whether both algorithms are comparable for the networks used here. 

This appendix comprises three sections. The first one unifies concepts used by both 
methods. The second section explains and compares the mathematical formulations. 
The third section presents the algorithms. 

Definitions and Notation 
The heavy use of summations and the different terms used by Bar-Gera and Aashtinai 
renders this section important.  

Regarding the geometry of a network, this thesis uses a specific notation for nodes, 
arcs, tails and heads. Letter n will refer to any kind of node, that is, any intersection, 
toll booth, destination point, origin point, and so on. Letter a will represent any arc 
(or link), that is, any street segment connecting two nodes (As explained at the end of 
this section, there is a special kind of arcs denominated connectors.) The notation at 
will refer to the tail (the beginning node) of an arc and the notation ah will refer to the 
head (the ending node) of an arc. Thus, this thesis considers all arcs as directed, that 
is, there is always one beginning node and one ending node. This thesis will also use 
a binary notation for representing arcs, that is, [at, ah]. As defined in [A-1], N will 
represent the set of all nodes and A will represent the set of all arcs (notice the use of 
apostrophes instead of numeric subindices). 

{ }K,'',', nnn=N   [A-1a] 

{ }K,'',', aaa=A   [A-1b] 

The OD matrix is one of the inputs needed for solving the TAP. This matrix presents 
the total trips or (the demand) that users need to make. Bar-Gera’s and Aashtiani’s 
methods make use of the following concepts that take into account that trip 
information: zones, origin nodes, destination nodes, OD pairs, and routes. A zone 
refers to any node where a trip starts or a trip ends. Therefore, a zone can be an origin 
node p or a destination node q. No will represent the set of origin nodes and Nd will 
represent the set of destination nodes. An OD pair is simply a pair of nodes composed 
by an origin p and a destination q. For this thesis, an OD pair will always assume that 
some users will indeed need to travel from that OD pair’s origin to that OD pair’s 
destination (in other words, this thesis does not take into account OD pairs with zero 
demand). Bar-Gera uses a binary notation for referring to an OD pair while Aashtiani 
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finds more convenience in using a unary notation because his algorithm relies heavily 
on the manipulation of OD pairs. Therefore, this thesis will use both notations, that is, 
a binary notation (p, q) and a unary notation i. Letter I will represent the set of all OD 
pairs given in the OD matrix. Nd(p) will represent the set of destination nodes q 
whose OD pairs have the same origin p. For a route (or path), that is, any set of non-
repeated adjacent nodes, this thesis will use the notation [n, n’, n’’, …]. Letter R will 
represent the set of all possible routes. Nevertheless, most of the times, this thesis will 
refer to routes that connect OD pairs as defined in the given OD matrix. The notation 
R(p, q) (or Ri) will represent the subset of routes that connect an origin node p with a 
destination node q (or an OD pair i). This thesis will use three different notations for 
referring to routes that connect OD pairs: (1) [p, n, n’, …, q], (2) r(p, q), or (3) ri. Bar-
Gera prefers using the first and second notations while Aashtiani prefers the third. 
The following expressions show the definitions and the relationships existing among 
the above sets. 

{ }K,'',', pppo =N   [A-2a] 

NN ⊆o    [A-2b] 

{ }K,'',', qqqd =N   [A-2c] 

( ) NNN ⊆⊆ dd p   [A-2d] 

{ } ( ) ( ) ( ) ( ){ }KKK ,',',,',,',,,,'',', qpqpqpqpiii ==I  [A-2e] 

do NNI ×⊆   [A-2f] 

{ } ( ) ( ) ( ) ( ){ }KK ,'',',,'',', ,,,, qpqpqpqpiiii rrrrrr === RR  [A-2g] 

{ }KKK ,'',',,'',',,,'',', 333222111 rrrrrrrrr=R   [A-2h] 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }KKKK ,',,,',,,',,,', ','','',','',',,, qpqpqpqpqpqpqpqp rrrrrrrr=R [A-2i] 

( )
( )
UU

II

RRR
∈∀∈∀

==
qp

qp
i

i
,

,   [A-2j] 

di (or d(p, q)) will denote the demand corresponding to an OD pair i (or the demand of 
users that start their trip on origin node p and end on destination node q). To indicate 
that a link a is part of a route r(p, q), this thesis will follow Bar-Gera’s suggestion by 
using the following notation: ( )qpra ,⊆ . 

Taking into account the concept of flow, comparing Bar-Gera and Aashtiani’s 
methods requires specifying a notation for the following terms: route flow, origin-
based link flow and total link flow. The route flow 

ir
h is the flow that passes along a 
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route ir  corresponding to an OD pair i. Therefore, a feasible solution to the TAP 
should guarantee that the sum of all route flows 

ir
h , where iir R∈ , is equal to the 

demand di. This thesis has chosen the notation 
ir

h  instead of rpqh  (as suggested by 

Bar-Gera 1999) or pq
rh  (as suggested by Sheffi 1985), because the latter two notations 

do not consider giving a separate numeration to routes belonging to different OD 
pairs. This thesis will also use, in a less frequent manner, the notation

( )qprh
,

 to indicate 

the origin and destination nodes, and the notation [ ]K,'',', nnnh  to indicate the nodes of a 
specific route. The notations 

ir
h  and 

( )qprh
,

 also help better specify the summations 
that involve route flows. The notation h represents the vector containing all route 
flows. In Aashtiani’s method, it is helpful to assume that the route flows in the vector 
h are grouped by OD pairs as shown in [9a]: 

⎥
⎦

⎤
⎢
⎣

⎡
=

I
RRR

III
hhhhhhhhh KKKK 212121

22221111
h  [A-3a] 

In Aashtiani’s method, the concept of route flow sub-vector is also useful as defined 
below. This definition will allow decomposing the route flow vector [A-3a] into route 
flow sub-vectors. 

[ ]
iiii

hhhi RK21=h   [A-3b] 

The mathematical definitions of the origin-based link flow and total link flow are the 
following: 

( )
( )

( ) ( ) ( ) ( )

∑
⊆∈∀∈∀

=
qpdqpqp

qp
rapqr
rap hf

,,,

,
:,

,
NR

h   [A-4] 

( ) ( )∑∑
∈∀∈∈∀∈∀

• ==
qiii

i
p

ap
rair

ra fhf
NIR

hh ,
:,

  [A-5a] 

Sometimes, it is useful to use the arc-route incidence value 
iraδ , a binary variable 

which takes the value of one when a link belongs to a route and a value of zero 
otherwise. Using this variable, [A-5a] is equivalent to [A-5b].  

( ) ∑
∈∀∈∀

• ⋅=
IR ir

rara
ii

ii
hf

,
δh   [A-5b] 

The above variables allow the definition of the following vectors and matrices: the 
origin-based link flow vector for origin p or pf , the origin-based link flow matrix or 
f , and the total link flow vector or •f : 

( ) ( ) ( ) ( )[ ]hhhhf A,2,1, pppp fff K=   [A-5c] 
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( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

hhh

hhh
hhh

hf

ANNN

A

A

,2,1,

,22,21,2

,12,11,1

ooo
fff

fff
fff

K

KKKK

K

K

  [A-5d] 

( ) ( ) ( ) ( )[ ]hhhhf A•••• = fff K21   [A-5e] 

Taking into account the concept of cost, both methods refer to the following concepts: 
link cost, route cost and minimum route cost. Usually, as in this thesis, the units used 
for costs are units of time. The link cost, denoted as ta, is the cost or time that it takes 
for a user to pass through arc a depending on the total link flow af•  or on the whole 
vector of total link flows •f . The link cost is in other words, the numeric result of the 
performance function. A typical performance function, where the ta depends only on 

af• , is the commonly known BPR function (Bureau of Public Roads) which this 
thesis uses for its results The route cost, denoted as 

ir
c , is the sum of all the link costs 

that involve passing through a particular route ri. Its mathematical definition is as 
follows: 

( ) ( )[ ] ( )[ ]{ }∑∑
∈∀

•
∈∈∀

• ⋅==
AA a

raa
raa
ar i

i

i
ttc δhfhfh

:
  [A-6] 

Especially used by Aashtiani is the ui, variable to which he refers sometimes as the 
accessibility variable. This variable, preferred to be named for this thesis as minimum 
route cost, refers to the minimum cost found among all the routes that connect a 
particular OD pair. Its mathematical definition is as follows: 

( ) ( )[ ]hh
i

ii
rri cu

R∈∀
= min   [A-7] 

For the route costs, it is useful to define a vector ic . Likewise, it is useful, especially 
for Aashtiani’s method, to define a vector u for the minimum route costs: 

( ) ( ) ( ) ( )[ ]hhhhc
iiii

ccci RK21=   [A-8a] 

( ) ( ) ( ) ( )[ ]hhhhu Iuuu K21=   [A-8b] 

The reader should be aware of the following relationship which shows how the 
minimum route costs ui and the route costs ci are functions of h. This relationship is 
useful in the next section for understanding whether the solution to the S-TAP-F is 
unique or not. 

( ) { }( ) ( )[ ]{ }( )hftchch •== iiiii uuu   [A-9] 
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Bar-Gera’s algorithm is rich in concepts that allow explaining it more succinctly. 
These concepts include restricting subnetworks, topological orders, maximum costs 
to a node, last common nodes, approach proportions, average approach costs, 
origin-based node flows, basic approaches and nonbasic approaches among others. 
They assume important roles within the algorithm and therefore, their definitions will 
be introduced in the Section “Bar-Gera’s algorithm” of this appendix. Nevertheless, 
there is one concept that requires important attention and which is used all along Bar-
Gera’s algorithm. This concept is the restricting subnetwork which he denotes as Ap 
because it is in essence, a subset of arcs with only one node acting as the origin. More 
formally, a restricting subnetwork Ap is the composition of the whole set of nodes N 
and a subset of the set of arcs A such that (1) there is at least one route from a specific 
node, named the root, to the rest of the nodes, and such that (2) the arcs do not form 
directed cycles. This definition forces any restricting subnetwork to have only one 
origin node p: the root. Although a restricting subnetwork is similar to other concepts 
used in graph theory such as tree and spanning tree, Figure A-1 shows that there are 
differences. The specific node from which all routes start would be called root in 
graph theory but in this context, it is also an origin node p that belongs to the set oN . 

The inclusion of connectors and thru nodes in a network is not specifically addressed 
by either Bar-Gera or Aashtiani. Nevertheless, the data used by this thesis requires an 
accurate definition of these two concepts. As it is often the case, including in the 
graphs used in this thesis, a zone does not represent an actual point in the network. 
Most of the times, a zone refers to a centroid, that is, an approximation to where the 
real starting (or ending) point of a group of trips really is. Therefore, the arcs that 
connect these zones to the rest of the network are virtual arcs, called connectors, 
whose link cost ta does not depend on the level of congestion. The use of connectors 
is an approximation to reality which aims to simplify the model. Connectors should 
only constitute the first or the last arc of any route r(p, q). Since the cost of a connector 
is fixed, algorithms tend to choose routes that include connectors not only in the first 
or in the last arcs, and in consequence, algorithms choose invalid routes. For this 
reason, the data used for this thesis requires indicating which nodes are thru nodes. 
Thru nodes are nodes that, in a particular network, do not need to be at the beginning 
or at the end of a route. All thru nodes can be zones but not all zones can be thru 
nodes. 
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Figure A-1. Examples that show the differences of a restricting subnetwork with a tree and a spanning 
tree. 

Formulations 
Although very different, the mathematical formulations used by Bar-Gera and 
Aashtiani share conditions that a solution should meet in order to solve the S-TAP-F. 
These conditions include Wardrop’s first principle, conditions of conservation of flow 
and nonnegativity of the route flows. Due to the existence of these common 
conditions, one could lay out (as did Sheffi 1985, p. 65) the following formulation for 
the S-TAP-F which serves as a starting point for understanding what Bar-Gera and 
Aashtiani aim to accomplish with their formulations. 

Find a vector h such that: 

( ) ( )[ ] 0=−⋅ hh irr uch
ii

 IR ∈∀∈∀ ir ii ,  [A-10a] 

( ) ( ) 0≥− hh ir uc
i

 IR ∈∀∈∀ ir ii ,  [A-10b] 

0
'

'
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i  [A-10c] 

0≥
ir

h   IR ∈∀∈∀ ir ii ,  [A-10d] 

The expressions above describe mathematically the necessary conditions that turn a 
vector h into the optimal solution of the S-TAP-F. Condition [A-10a] is perhaps the 

(a) (Spanning) tree. 
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origin node cannot be 
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32

4

5

1

2

5

1

43

(c) Restricting 
subnetwork. This is 
not a tree because it 

has undirected 
cycles 

3 2 

4 

5 

1 

2

5

1

43

(d) This is not a restricting 
subnetwork due to the 

presence of directed cycles 
(or absence of a unique 

origin). It is not a tree either
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most important one. It translates Wardrop’s first principle into mathematical notation. 
It states that if the cost of using path ri is not equal to the minimum route cost ui, then 
the flow

ir
h should be equal to zero. Alternatively, if the cost of using path ri is equal 

to ui, then users as, with the shortest path, will also use path ri. Expression [A-10b] 
serves as a definition of ui, since it establishes that no path should be less costly than 
ui. Expression [A-10c] establishes that the sum of all the route flows should be equal 
to the demand. This condition is commonly referred as a constraint of conservation of 
flow. 

The above formulation does not state any assumptions regarding the nature of the 
performance functions. 

A very important aspect to take into account in the above formulation is that there are 
several optimal solutions h but just one optimal solution •f (recall how 

ir
c , ui, •f  and 

h relate to each other as expressed in [A-6a]). Since 
ir

c and ui are functions of t but 
every element ta is a function of multiple route flows 

ir
h , then there are several 

solutions h to the S-TAP-F as formulated in [A-10]. Sheffi (1985, p. 67-68) and 
Aashtiani (1979, pp. 52-53) showed through simple examples the lack of a unique 
solution h to the S-TAP-F. In consequence, the following two formulations also do 
not have a unique solution h but do have a unique solution •f . 

Beckman’s transformation 
Bar-Gera uses Beckmann’s transformation as the model for his method. Beckmann’s 
transformation, a mathematical programming problem with linear constraints and a 
nonlinear objective function, is as follows. 

Find a vector h such that  

minimizes ( )[ ] ( )
( )

xxtT
a

f

a

a

d
0

∑ ∫
∈∀

•

•

=
A

h

hf   [A-11a] 

subject to 

 0=−∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i  [A-11b] 

 0≥
ir

h  IR ∈∀∈∀ ir ii ;  [A-11c] 

T represents the objective function and it is directly defined in terms of total link 
flows •f . But every total link flow •af , by definition (see [A-4]), is a function of 
route flows 

ir
h . This formulation is an artificial optimization problem because T does 

not have a physical interpretation. Nevertheless, its optimal solution h complies with 
the conditions shown in [A-10] and in this way, it becomes a solution to the S-TAP-F 
(for a demonstration, see Bar-Gera 1999, pp. 6-7; or Sheffi 1985, pp. 63-65). For 
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conditions [A-10] to hold and for the optimal solution •f  to be unique, the model 
makes four important assumptions regarding the performance functions. The second 
to last section of Chapter 2 explains these assumptions. 

Aashtiani’s formulation 
Aashtiani reframes the basic formulation shown in [A-10] by expanding the solution 
vector h with the vector u. Therefore, every ui becomes a new unknown variable and 
not simply a function of h. His formulation is as follows: 

Find a vector =uh |   

⎥
⎦

⎤
⎢
⎣

⎡
IRRR

IIII
uuuhhhhhhhhh KKKKK 21212121

22221111
such that  

 ( )[ ] 0=−⋅ irr uch
ii

h  IR ∈∀∈∀ ir ii ,  [A-12a] 

 ( ) 0≥− ir uc
i

h  IR ∈∀∈∀ ir ii ,  [A-12b] 

 0=−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i  [A-12c] 

 0≥
ir

h  IR ∈∀∈∀ ir ii ,  [A-12d] 

 0≥iu  I∈∀i  [A-12e] 

Aashtiani proved that as long as the performance function ta is positive (the second to 
last Section of Chapter 2 discusses these assumptions in detail), the formulation [A-
12] is equivalent to the following one: 
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Find a vector =uh |   

⎥
⎦

⎤
⎢
⎣

⎡
IRRR

IIII
uuuhhhhhhhhh KKKKK 21212121

22221111
such that  

 ( )[ ] 0=−⋅ irr uch
ii

h  IR ∈∀∈∀ ir ii ,  [A-13a] 

 ( ) 0≥− ir uc
i

h  IR ∈∀∈∀ ir ii ,  [A-13b] 

 0=⎥
⎦

⎤
⎢
⎣

⎡
−⋅ ∑
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ri dhu

ii

i
R

 I∈∀i  [A-13c] 

 0≥−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑
∈∀

i
r

r dh
ii

i
R

 I∈∀i  [A-13d] 

 0≥
ir

h  IR ∈∀∈∀ ir ii ,  [A-13e] 

 0≥iu  I∈∀i  [A-13f] 
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is a nonlinear function of uh | . 

The reader can observe that this formulation simply contains conditions [A-13c] and 
[A-13d] instead of [A-12c]. Now, formulation [A-13] is a nonlinear complementarity 
problem since it presents the following structure: 
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Find a vector [ ]nxxx K21=x  such that 

 ( ) 0T =xyx   [A-14a] 

 ( ) 0≥xy   [A-14b] 

 0≥x   [A-14c] 

where ( ) ( ) ( ) ( )[ ]xxxxy nyyy K21=  is a nonlinear function of x. 

In consequence, formulation [A-12] is a nonlinear complementarity problem. 
Following the formulation shown in [A-14], and to simplify future notation, this 
thesis will represent by an x, the solution of any complementarity problem, and by a 
y, the vector function of x. 

Algorithms 
Using the above formulations, Bar-Gera (1999) and Aashtiani (1979) proposed the 
following algorithms. While Bar-Gera proved that his algorithm converges, Aashtiani 
showed its convergence through a range of examples. Nevertheless, as Chapter 3 will 
show, Aashtiani’s algorithm always converged. 

Bar-Gera’s Algorithm 
The description presented in this subsection summarizes what Bar-Gera presented in 
his doctoral dissertation (1999) and to a lesser extent in a following publication 
(2002). The main characteristics of Bar-Gera’s algorithm are the following: (1) it is 
an iterative algorithm, (2) it obtains a solution in terms of origin-based link flows 

apf , (3) it carries out a Newton-type search procedure, and (4) it does not manipulate 
the whole network but a restricting subnetwork pA  for each origin p. In other words, 
Bar-Gera’s algorithm decomposes the problem by origins. 

Figure A-2 shows a simplified version of Bar-Gera’s algorithm. The complete 
algorithm contains a small addition within the cycle shown later on Figure A-5. Bar-
Gera’s algorithm works as follows. It starts with an initial origin-based link flow fp 
for every origin p (the sum of all these origin-based link flows is equal to the solution 
of the problem, that is, the vector of total link flows ∑ ∈∀• =

qp pN
ff ). Every initial fp 

contains only a subset of links (with positive flow) which define a subnetwork pA . 
Having now an initial fp and an initial pA  for every origin p, the algorithm starts a 
series of iterations. At every cycle (the most external loop), for each origin p, the 
algorithm finds a new (and better) feasible solution by answering two questions: (1) 
Which links should be removed or included? In other words, how to update pA ? (2) 
How much flow should be assigned to the links? In other words, how to update fp? To 
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answer the first question, the algorithm executes a sub-algorithm that modifies the 
existing restricting subnetwork pA . To answer the second question, the algorithm 
executes a second sub-algorithm that shifts existing origin-based link flows among 
the links of the subnetwork pA . In order to carry out this type of shifts, the sub-
algorithm uses a Newton-type procedure that due to its particular features, Bar-Gera 
denominates it boundary search. After each iteration, the algorithm evaluates 
expression [A-11a] with the new solution •f  and checks if it generates a satisfactory 
minimum value of T. When the algorithm no longer finds a lower value of T, it 
terminates. Since the algorithm does not obtain route flows 

ir
h , it cannot evaluate 

condition [A-11b] directly. Simply, the algorithm guarantees that its procedure does 
not violate condition [A-11b].  

 
Figure A-2. Simplified version of Bar-Gera’s origin-based algorithm. “ob” stands for “origin-based”. 
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The initialization consists mainly in obtaining two important outputs: an initial 
feasible solution pf  and an initial restricting subnetwork pA  for every origin node p. 
In other words, every link a within each restricting subnetwork pA  has a link flow 
(actually, an origin based link flow apf , ) assigned to it. Bar-Gera’s algorithm does 
not require any specific procedure for the initialization phase. Therefore, the well-
known “all-or-nothing assignment” (Sheffi 1985, p. 111) is one of several procedures 
for obtaining the above two outputs. Another output of this phase, which will become 
important for the first sub-algorithm, are the approach proportions, defined later in 
[A-21]. 

The first sub-algorithm addresses the question of which links should contain non-zero 
flow. Bar-Gera demonstrated that the optimal solution h* for the S-TAP-F is “acyclic 
by origin” (2002, p. 401) meaning that if h* is the optimal solution to the S-TAP-F, 
then the links that contain positive flow, as dictated by each resulting origin-based 
flow vector ( )*hff pp = , should not describe any directed cycles. Consequently, he 
chose to solve the S-TAP-F by decomposing it by origins and for each origin p, 
assign positive origin-based link flow apf ,  only to links that constitute a restricting 
subnetwork Ap. 

The use of restricting subnetworks Ap allows the definition of three useful concepts 
needed in the algorithm: topological order, maximum cost to a node, and last 
common node. Given a restricting subnetwork Ap, topological order refers to a label 
(a number from 1 to |Ap|) that every node i receives indicating whether it precedes or 
proceeds another node j if they belong to the same route ( )qpr , . The topological order 
of a node n is denoted by o(n). Given a restricting subnetwork Ap, the maximum cost 
to node n refers to the largest cost among the routes that connect origin p with node n. 
It is denoted by kn. The common nodes of a node n are all the nodes shared by all 
routes ( ) ( )npnpr ,, R∈ . The last common node of node n is denoted by nlcn  and it refers 
to the node with the largest topological order found in the set of common nodes of n 
minus n. Figure A-3 shows an example of how to calculate the topological order, the 
maximum cost and the last common node of every node within a restricting 
subnetwork Ap. 
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Figure A-3. Different elements within a subnetwork pA : last common nodes (lcnn), maximum costs 
(kn), and topological orders ( o(n) ). Origin-based link flows (fp, a), link travel costs ( ta(f• a) ) and 
demands (d(p, q)) are also shown. 

With the initial Ap obtained from the initialization, the first sub-algorithm executes 
three steps: it removes the unused links ( 0: , =∈∀ app fa A ); it calculates the 
maximum costs kn and it adds every link a not in the subnetwork such that 

ht aa kk ≤ .These steps guarantee the construction of a new subnetwork Ap. in which 
the algorithm will start seeking a new solution apf , . Figure A-4 shows the complete 
description of the first sub-algorithm. The sub-algorithm ends by calculating the new 
topological orders, by calculating the new last common nodes and by updating the 
data structures that the algorithm uses to store the network (for more details on these 
data structures, the reader can refer to Section “Discussion on the Data Structures 
Recommended for the Implementation”, Chapter 2). Bar-Gera’s algorithm does not 
recommend any particular procedure for calculating the topological ordering. As 
shown later, calculating the topological ordering and the last common nodes is 
important for the execution of the second sub-algorithm. 
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Figure A-4. First sub-algorithm in Bar-Gera’s method. 

The second sub-algorithm addresses the question of, given a restricting subnetwork 
Ap, how much flow to assign to its links. Actually, since the subnetworks Ap obtained 
from the initialization have already an assigned flow fp and since the algorithm should 
guarantee the conservation of flow (that is, constraints [A-10c] or [A-11b] must 
always hold), the question becomes “how to shift the existing flows fp, a within Ap?” 
Bar-Gera addresses this question by using a Newton-type procedure denominated 
boundary search. This procedure consists in finding a flow shift that leads to a new 
origin-based flow vector fp (and f ) such that T decreases in value. As with any other 
Newton-type procedure, the flow shift is the result of first calculating the Newton step 
(an initial vector fΔ  that points to the new solution f ). Then, contrary to regular 
convex search procedures, the sub-algorithm multiplies this step by a factor [ ]1,0∈λ  
and then modifies it by taking into account boundary constraints (non-negativity 
constraints). Due to the boundary constraints applied at the end, different values of λ  
generate different flow shifts. Therefore, the sub-algorithm needs finding the best λ . 
For this reason, the sub-algorithm is iterative by starting with a value of 1=λ  and 
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decreasing it at every iteration until the following directional derivative becomes less 
than zero: 

( ) ( )fftffff Δ⋅+⋅Δ=Δ⋅+∇⋅Δ λλT   [A-15] 

 
Figure A-5. Example of a two-route, one destination subnetwork Ap where an initial flow has been 
assigned to it. Variables shown in boxes refer to initial origin-based link flows values fp, a, and link 
costs ta and link cost derivatives t’a evaluated with the initial flow values fp, a. The left route rp,q = 1p,q 
comprises links a = 1 and a = 3. The right route r(p, q) = 2(p, q) comprises links a = 2 and a = 4. 

The second sub-algorithm is straightforward but it involves many new terms. 
Defining this new terminology requires the aid of figures in order to explain them. 
Otherwise, the terms can seem abstract. In consequence, the reader will now be 
presented with a simple example that explains some of these new terms and that will 
serve as the basis for understanding the whole second sub-algorithm. Figure A-5 
presents this first simple example. 

Figure A-5 presents an example of a subnetwork pA with only two routes and one 
destination node. Throughout this example, the origin-based link flows belonging to 
other subnetworks will remain constant no matter what changes the subnetwork pA  
experiences. The costs ta are the result of applying a given performance function to 
the given origin-based link flows apf ,  shown in the figure and to the origin-based link 
flows of the other subnetworks. The derivatives of the performance functions t’a are 
evaluated in the same manner. The left route ( ) ( )qpqpr ,, 1=  has a lower cost than the 
right route ( ) ( )qpqpr ,, 2= , that is, 

),(),( 21 qpqp
cc < . In other words, the flow that this 

subnetwork has assigned to it does not comply with Wardrop’s first principle. To 
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make it compliant with that principle, probably the most reasonable alternative is to 
shift flow, say 

( )qprh
,

Δ , from the most costly route ( )qp,2  to the least costly route 

( )qp,1 so that both routes have the same travel cost 
),( qprc . This alternative would 

require finding the value of 
( )qprh

,
Δ  by following these three steps: (1) defining the 

costs 
( )qp

c
,1  and 

( )qp
c

,2  in terms of 
( )qprh

,
Δ , (2) equalizing both costs 

( )qp
c

,1  and 
( )qp

c
,2 , 

and (3) solving for
( )qprh

,
Δ . Bar-Gera’s algorithm follows this alternative and it is the 

basis of the second sub-algorithm. For the first step, it uses a linear approximation to 
determine 

( )
( )

qpqp rr hc
,),(

Δ  as shown below: 

( ) ( )[ ] ( )∑∑
⊆∈∀⊆∈∀
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),(

),(

),(

),(),(),(
:

00

:
'

qpp

qp

qpp

qpqpqp
raa

ara
raa

rarr thththc
AA

 [A-16a] 

where 
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( ) ( ) ( )⎪⎩

⎪
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=Δ route)(right 2if
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,,

,,

,

,

),(
qpqpr

qpqpr
r rh

rh
h

qp

qp
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  [A-16b] 

and 0
at  and 0'at  are initial values of the link cost and its derivative. 

The above expressions lead to the following calculations: 
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Executing the second and third steps would be as follows: 

( )
( )

( )
( )

qpqpqpqp rr hchc
,),(,),( 21 Δ−≈Δ   [A-18a] 
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'''' thtthtthttht
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( )
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≈Δ
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Figure A-6. Example of a three-route, one destination subnetwork Ap where an initial flow has been 
assigned to it. Variables shown in boxes refer to initial link flows values fa, p, and link costs ta and link 
cost derivatives t’a evaluated at the initial link flow values. On the left, there are two routes: rp,q = 1p,q = 
[p, 1, 2, 5, q] and rp,q = 3p,q = [p, 1, 3, 5, q]. On the right, there is one route: rp,q = 3p,q = [p, 4, q]. 

The resulting formula [A-18c] follows the pattern of a Newton’s method since the 
numerator is the first derivative and the denominator is the second derivative of the 
objective function T. Following Newton’ method’s jargon, this thesis will refer to [A-
18c] as a Newton step. Following the same three steps, formula [A-18c] becomes 
much more complicated with a simple inclusion of an additional route as shown in 
Figure 28. 

Contrary to the subnetwork in Figure A-5, the subnetwork in Figure A-6 does not 
suggest that a simple shift of flow from one route to another would generate a flow 
assignment that complies with Wardrop’s first principle. Nevertheless, if one focuses 
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on the flow that arrives by link a = 7 with the flow that arrives by link a =8, one could 
conclude that a simple shift of flow from the former link to the latter, or vice versa, 
guarantees that the travel cost of arriving by both links would be equal. The challenge 
is now how to define the cost that arrives by link 7. Bar-Gera proposes evaluating it 
based on the percentage of flow that is currently passing by [ ]qp ,5,2,1,  and by 
[ ]qp ,5,3,1, . Following the simple calculation made in the first simple example, the 
execution of the first step would be equal except for expression [25i], where Bar-
Gera suggested an original idea (for simplicity the notation hΔ  replaces the notation 

( )qprh
,

Δ ):  

( ) 301' 0
1

0
11 +Δ⋅=+Δ⋅≈Δ hththt   [A-19a] 

( ) ( ) 206.03.0'3.0 0
3

0
33 +Δ⋅=+Δ⋅⋅≈Δ⋅ hththt   [A-19b] 

( ) ( ) 103.03.0'3.0 0
5

0
55 +Δ⋅=+Δ⋅⋅≈Δ⋅ hththt   [A-19c] 

( ) 201' 0
7

0
77 +Δ⋅=+Δ⋅≈Δ hththt   [A-19d] 

( ) ( ) 254.17.0'7.0 0
4

0
44 +Δ⋅=+Δ⋅⋅≈Δ⋅ hththt   [A-19e] 

( ) ( ) 354.17.0'7.0 0
6

0
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( ) ( ) 802' 0
2

0
22 +Δ⋅−=+Δ−⋅≈Δ− hththt   [A-19g] 

( ) ( ) 303' 0
8

0
88 +Δ⋅−=+Δ−⋅≈Δ− hththt   [A-19h] 

[ ] ( ) ( ) ( ) ( )[ ]
( ) ( )[ ] ( )201354.1254.17.0

103.0206.03.0301,5*,,1,

+Δ⋅++Δ⋅++Δ⋅⋅+

+Δ⋅++Δ⋅⋅++Δ⋅≈Δ

hhh

hhhhc qp  [A-19i] 

( ) ( ) ( )303802
),(2 +Δ⋅−++Δ⋅−≈Δ− hhhc

qp
  [A-19j] 

The expression [A-19i] represents an innovative idea of how to define the cost of 
arriving by a link. As later this thesis will show, this idea is the basis of what Bar-
Gera defines as average approach cost. Following the calculations made in the first 
simple example, the execution of the second and third steps would be as follows: 
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98.0≈Δh    [A-20e] 

As with expression [A-18c], expression [A-20d] is also a Newton step. Nevertheless, 
expression [A-20d] is more complicated, especially its denominator which 
corresponds to the diagonal values of a Hessian matrix. The examples in Figure A-5 
and Figure A-6 show that as a subnetwork Ap has more routes, the complexity of [A-
20d] increases and so does its computation intensity. Due to this increasing 
complexity and due to the necessity of replacing [A-17e], [A-17f], [A-19i] and [A-
19j] by formulas that can automatically be extracted regardless of the complexity of 
the subnetworks, the second sub-algorithm recurs to three interesting ideas: approach 
proportions, average approach costs and Hessian approximations. 

An approach proportion, denoted by aα , is the ratio of the origin-based link flow 
passing through link a to all the origin-based flow that enters to the tail of link a. It 
can be easily calculated in a descending topological order by using the following 
formulas: 

∑
=∈∀

=
paa

app
tp

fg
:

,
A

  [A-21a] 

ha

ap
a g

f ,=α   pa A∈∀  [A-21b] 

( ) ∑
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+=
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apnpn
t

fdg
:

,,
A

 { }pn −∈∀ N  [A-21c] 
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Bar-Gera denominates ng  as origin-based node flow. The above formulas guarantee 
that the following relationships hold. 

1
:

=∑
=∈∀ naa

a
hpA

α  { }pn −∈∀ N  [A-22a] 

10 ≤≤ aα   pa A∈∀  [A-22b] 

Now, instead of defining average costs as in [A-17e], [A-17f], [A-19i] or [A-19j], 
Bar-Gera uses the concept average cost to node n, denoted by nσ . This concept is a 
function of approach proportions and average approach cost, denoted by aμ . As with 
approach proportions, the average cost to every node in the restricting subnetwork 
can be calculated in a topological order as follows: 

0=pσ    [A-23a] 

ana t+= σμ  pa A∈∀  [A-23b] 

( )∑
=∈∀

⋅=
naa

aan
tp:A

μασ  { }pn −∈∀ N  [A-23c] 

Hessian approximations refer to two auxiliary variables (analogous to aμ  and nσ ), 
that the algorithm uses to simplify the calculation of the denominator of the Newton 
step. These two variables are aν  (approximated derivative of aμ  cost with respect to 

af ) and nρ  (approximated derivative of jσ  with respect to jg ). The following three 
expressions show how to calculate them in ascending topological order: 

0=pρ    [A-24a] 

ana t '+= ρν  pa A∈∀  [A-24b] 

( )∑
=∈∀

⋅=
naa

aan
tp:

2

A

ναρ  { }pn −∈∀ N  [A-24c] 

Since the denominator of the Newton step could be equal to zero, the second sub-
algorithm uses a small value, called vε , in order to replace those possible null values 
and in this way, avoid any division by zero. 
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Figure A-7. Input and output values in the second sub-algorithm. Variables regarding the structure of 
the networks are not shown. 

Up to this point, this section has explained most of the variables needed to understand 
the calculations involved in the second sub-algorithm. Figure A-7 summarizes the 
input and output values that the second sub-algorithm uses. One of the input values is 
the approach proportion aα  of each link a. For the first run of the sub-algorithm, the 
initialization of the whole algorithm has previously assigned an initial value to all the 
approach proportions included on each subnetwork Ap. If the initialization used an 
all-or-nothing assignment, then this initial value is equal to one. Also, the addition of 
links to each subnetwork Ap during the first sub-algorithm generate additional 
variables aα  to consider, but these new inclusions have values equal to zero. Figure 
A-8 summarizes how the second sub-algorithm works. 
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Figure A-8. Second sub-algorithm in Bar-Gera’s method. 
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The following description of the second sub-algorithm has many variations that Bar-
Gera leaves to the designer of the code to decide. One of the most important 
variations has to do to with the order in which the sub-algorithm calculates different 
variables. For example, Figure A-8 shows a first step in which the sub-algorithm 
follows an ascending topological order, then within the loop, a descending 
topological order and finally another descending topological order. Bar-Gera 
indicates that for some of these calculations, the sub-algorithm could change from 
ascending to descending calculations and vice versa, or even simultaneous 
calculations. The following description corresponds to the specific sub-algorithm 
shown on Figure A-8. 

Given a subnetwork Ap and the input values shown on Figure A-7, the second sub-
algorithm starts by calculating, in a ascending topological order, the average costs and 
the average approach costs using [A-23] and the Hessian approximations using [A-
24]. Then, the sub-algorithm starts the boundary search in which it tries several 
values of λ  in order to find the greatest possible that renders a directional derivative, 
as defined in [A-15], less than zero. Using the new terminology, this condition 
becomes as follows: 

( )[ ]∑ ∑
∈∀ ∈∀

<−⋅Δ⋅
N NBn a

baan
n

g 0μμα   [A-25]  

The above expression includes a link b and a set NBn. Therefore, understanding [A-
25] requires understanding the steps within the loop. 

Within each loop, the sub-algorithm scans all the nodes in descending topological 
order and at each node n. For each node n, the sub-algorithm scans its incoming links 
(that is, naa hp =∈∀ :A ) and it determines the link with the minimum average cost 

aμ . This link, Bar-Gera denotes it by b and refers to it as the basic approach to n. 
The other links to n, that is, the nonbasic approaches to n, define the set NBn. For 
each nonbasic approach to n, the sub-algorithm calculates the flow shift baz →  that 
needs to be subtracted from the non-basic approach and added to the basic approach 
b. The formula for baz →  is analogous to expressions [A-18c] and [A-20d] but, unlike 
those expressions, this formula has the advantage of not changing with the 
complexity of the subnetwork Ap. 

( )
nlcnba

ba
baz

ρννε
μμ

ν ⋅−+
−

=→ 2,max
  [A-26] 

By dividing baz →  by gn, the sub-algorithm obtains the actual Newton step that Bar-
Gera’s algorithm needs. nba gz → is dimensionless. A Newton step indicates to the 
sub-algorithm which direction to take so that it can find a lower value of the objective 
function T. Bar-Gera proposes multiplying this step by the factorλ . For this reason, 
this factor also receives the name of step size. Before assigning ( )nba gz →⋅λ  as the 
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value to be subtracted from aα , the algorithm verifies that ( )nba gz →⋅λ  is not greater 
than 0

aα  as follows: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=Δ →

n

ba
aa g

zλαα ,min 0   [A-27] 

The sub-algorithm subtracts the above value from the nonbasic approaches and adds 
it to the basic approach. Finally in the loop, the sub-algorithm verifies if condition [A-
25] holds.  

Once the sub-algorithm finds the optimal λ , it applies flow shifts in a descending 
topological order. This step consists in obtaining the new origin-based link flows and 
the origin-based node flows as shown below:  

∑
=∈∀

+=
naa

panpn
tp

fdg
:

,,
A

 { }pnn −∈∀ N:  [A-28] 

haaap gf ⋅= α,  paa A∈∀ :  [A-21b’] 

The final step consists in updating the total link flows fa (using [A-5a]) and the link 
costs ta (using the given link performance function).  

When comparing the first sub-algorithm with the second sub-algorithm, Bar-Gera 
concludes that the former requires more computational time than the latter (for an 
explanation of this phenomenon, see Section “Discussion on the Data Structures 
Recommended for the Implementation”, Chapter 2). Therefore, he adds a 
modification on the algorithm shown in Figure A-2 and transforms it into the one 
shown in Figure A-5, by dividing the cycle into a full sub-cycle and a quick sub-cycle. 
This modification simply guarantees running the second sub-algorithm more times 
than the first one. He introduces a parameter called m or number of inner iterations. 
This thesis will refer to this quick sub-cycles or inner iterations simply as iterations 
because they are analogous to the iterations defined in Aashtiani’s algorithm. Before 
running the algorithm, if the user chooses a very large value for m, the computational 
time will increase considerably. Therefore, the user needs to have a guideline for 
choosing this value. Bar-Gera’s software suggests a value for m, but the user has to 
run the algorithm in order to obtain that suggestion. Nevertheless, as shown in 
Chapter 3, in most the networks tested, the value suggested was always equal to one 
or to two. 
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Figure A-5. Bar-Gera’s origin-based link algorithm. 
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Aashtiani’s Algorithm 
Although Aashtiani (1979) presented an algorithm for different types of TAPs, this 
thesis adapts it to the S-TAP-F. His algorithm starts with an initial solution h which is 
calculated through the well-known “all-or-nothing” assignment (Sheffi 1985, p. 111). 
It then decomposes the problem into |I| subproblems, where the solution to each of 
them is a sub-vector hi. It then solves each subproblem through a linearization and 
iterative procedure. Finally, the algorithm verifies whether the group of sub-vectors hi 
construct a final solution h that complies with an additional set of conditions. If these 
final conditions are not met, the algorithm iterates until it reaches a satisfactory h. 
Aashtiani refers to these outer iterations as “cycles”. Figure A-6 depicts the general 
scheme of his algorithm. The specifics of the general steps shown on Figure A-6 are 
as follows. 

At step 2, the algorithm executes an all-or-nothing assignment. These calculations 
generate a first route flow 

i
h1 for each OD pair i. Therefore, this initial solution h  

contains I  elements, that is, [ ]
I111

0
21

hhhcycle K==h . This step is the first one to 

require the execution of a one-to-all shortest path algorithm. Aashtiani suggested the 
use of the Bellman’s shortest path algorithm (Bellman 1958) as recommended by 
Golden (1975). 

Analyzing the conditions needed for step 3 requires understanding first how the 
algorithm decomposes the problem into I  subproblems and solves them. Steps 5 to 7 
simply control the scanning of every subproblem i. Step 8 is where the algorithm 
extracts the sub-vector hi from the vector h. In principle, this extraction requires 
taking from h all the route flows 

ir
h  such that iir R∈ . Executing step 8 in this manner 

would be inefficient because the cardinality of iR  is usually a very large number. In 
order to avoid this source of inefficiency, Aashtiani conceived the idea of 
constructing (and not really “extracting”) simpler sub-vectors w

ih  which would only 
include so-called “working paths”. This approach originates from the observation that 
the optimal ih only contains a small percentage of non-zero elements (the results in 
the next chapter show that this number is never greater than four). In consequence to 
this approach, Aashtiani transformed the simple step 8 into a group of new substeps. 
For the first cycle, (that is, when 1=cycle ), he decided that the “set of working 
paths” would comprise only two routes: the only nonzero-flow route, i1  that was 
calculated at step 2, and a new route i2  obtained from executing once again the 
shortest-path algorithm. The algorithm will then assign a zero value to the flow of this 
additional route, that is, 02 =

i
h , and will include it in the sub-vector w

ih . As for the 
other cycles, (that is, when K,3,2=cycle ), the algorithm (1) executes a new shortest 
path algorithm, (2) removes any route with zero flow from the set of working paths 
(the reader will notice in the explanations below that these routes usually do not 
include the route just added in the previous cycle), and (3) adds the new calculated 
shortest route to the set of working paths and its corresponding route flow to the sub-
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vector w
ih . In conclusion, the algorithm does not directly manipulate the vector h  at 

every cycle. Instead, the algorithm only manipulates the sub-vectors w
ih  in a 

separately manner all along.  

A more algorithmic description of the above sub-steps is as follows (assume that for 
every OD pair i, the algorithm has previously initialized the set [ ]iw

i 1 as R and the sub-
vector [ ]

i
hw

i 1 as h  using the shortest routes 1i calculated at step 2):  

Sub-step 8.1: For a given origin p, execute a one-to-all shortest path algorithm. Refer 
to every shortest route as shortest

ir . 

Sub-step 8.2a: In the first cycle, (that is, when 1=cycle ) and for every OD pair i, 
include shortest

ir  in w
iR  if the following condition is true: 

ε>
−

i

ii

c

cc
r

1

1 shortest

  [A-25a] 

(Aashtiani included here a new condition to avoid increasing the number of working 
paths unnecessarily. This condition uses a parameter ε  which usually starts with a 
big value such as 100 but at subsequent cycles, it decreases to values such as 10-3 or 
10-7. The explanation on step 3 will revisit this parameter.) If [A-25a] is true, also add 
a new element 

i
h2  to the sub-vector w

ih  and assign to this element a value of zero. 
The algorithm will eventually assign flow to this route 2i but not at this step. 

Sub-step 8.2b: In other cycles, (that is, when K,3,2=cycle ) and for every OD pair i,  
remove from w

ih  any element 
ir

h equal to zero. Also, remove the corresponding route 

from w
iR . Then, calculate the shortest route among the set of working paths and refer 

to it as ui. Include route shortest
ir  in w

iR  only if the following is true: 

ε>
−

i

ri

u

cu
i
shortest

  [A-25b] 

Again, if [A-25b] is true, also add a new element 
ir

h  to the vector w
ih  and assign to 

this element a value of zero. 
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Figure A-6. The basis of Aashtiani’s method: decomposition (yellow boxes) and linearization (gray boxes). 
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Having extracted the initial sub-vector w
ih  at step 8, steps 9 to 12 control the iterative 

procedure that will solve the linearized version of the subproblem i. Right before 
executing step 11, the algorithm faces the following subproblem i: 

Find a vector [ ] == i
w u
i

|hx ⎥⎦
⎤

⎢⎣
⎡

iuhhh
i

ii w
iR

K21  such that 

 ( ) 0T =xyx   [A-26a] 

 ( ) 0≥xy   [A-26b] 

 0≥x   [A-26c] 

where ( ) ( ) ( ) ( )
⎥
⎥
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⎢
⎢
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i dhucucuc

j
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ii
w
i

w
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R
R

hhhxy K21 . 

Now, since function y is differentiable with respect to [ ]iw
i u|hx = , then Aashtiani 

was able to propose a linearized y as follows. 
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  [A-27] 

where x  refers to an initial value of sub-vector x. 

Differentiating y partially with respect to iu  is straightforward, but differentiating y 
partially with respect to w

ih  requires taking into account (the definition of route cost 
[A-6], and) the now simplified definition of total link flow: 

( ) ( ) ( ).
constant

∑∑
∈∀∉∀

• ⋅+⋅=
w
iRR i

ii

ii

iii
r

arr
r

arr
w

a hhf δδ
43421

h   [A-28] 
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The calculation of af•  becomes simplified because the routes ( )w
iiir RR −∈  have 

zero flow and therefore, do not need to be part of the calculation. Also, the constant 
term in [A-28] facilitates the differentiation. With these considerations on how to 
linearize y, the resulting linear complementarity problem is as follows: 

Find a vector [ ] == i
w u
i

|hx ⎥⎦
⎤

⎢⎣
⎡

iuhhh
i

ii w
iR

K21  such that 

 ( ) 0T =xyx   [A-29a] 

 ( ) 0≥xy   [A-29b] 

 0≥x   [A-29c] 
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and w
i

h  is the initial value of w
ih . 

Now, using the linear complementarity problem as formulated above in [A-29] and 
plugging the sub-vector w

i
h  obtained at step 10 as the w

i
h , the algorithm solves the 

subproblem i at step 13 using, as suggested by Aashtiani, Lemke’s algorithm (Lemke 
1965). After executing step 13, the algorithm iterates until, as required by Wardrop’s 
algorithm, the difference between the longest and the shortest route is zero. Since in 
practice, solving the LCP does not render a solution with a difference exactly equal to 
zero, Aashtiani’s recurs again to the use of parameter ε . Therefore, the iterations stop 
when the following condition becomes true: 
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( )
( ) ε≤
−

∈

∈

i
i

i
i

r
r

ir
r

c

uc

w
i

w
i

R

R

max

max
  [A-30] 

The reader can now see that Aashtiani uses the parameter ε  for two purposes: (1) to 
include new routes in the set of shortest paths and (2) to reach a satisfactory solution 

w
i

h . Parameter ε  is therefore how the algorithm controls the precision of the solution. 

After finding a satisfactory w
i

h  at step 11, the algorithm continues with the next 
subproblem. 

When at step 6, the algorithm recognizes that it has scanned all the subproblems i, 
then, at step 3, it evaluates solution h as a whole. Two conditions render a solution h 
satisfactory. The first condition is that after having scanned all the subproblems i, 
there has to be a complete cycle in which the algorithm did not carry out any 
linearizations. This condition is important because every linearization, although it 
allows obtaining an optimal solution to a subproblem i, it may alter the solutions of 
the other subproblems. The second and final condition has to do with the parameter 
ε . The algorithm sets it to a high value at the beginning of the algorithm (step 3) such 
as 100. Then, once a cycle complies with the first condition, the algorithm reduces the 
value of parameter ε  by eighty or ninety percent and uses it for the next cycles. 
Finally, when the algorithm reaches the desired value of ε  such as 107, 1010 or 1014, 
the algorithm ends. 

It is important to highlight one aspect concerning how ε  is reduced. An algorithm in 
which ε  is reduced by 90 percent orders the next cycle to generate a solution f• with a 
higher precision than an algorithm whereε  is reduced by 20 percent. Therefore, it is 
reasonable to suspect that the former will execute more iterations for each cycle than 
the latter. This could be seen as detrimental. But the reader should remember that, 
since every cycle requires the execution of a new shortest path sub-algorithm for 
every origin, then choosing the former algorithm reduces the number of shortest path 
sub-algorithms to execute. In Figure A-17, we are reducing ε  by 90 percent since we 
are dividing it by 10. If instead, we say that we are going to divide it by mA, then the 
above phenomenon could be restated as follows: An increase in mA intensifies local 
search while a decrease in mA intensifies the global search. Here we are following the 
specific manner in which Toobaie (1998) decreased ε . Originally, Aashtiani (1979) 
suggested a different but similar formula: 

εδε ⋅= n
n   [A-31] 

where 

nε  is the new ε , δ  could have a value of 10, and n would start with a value 
of, say, one, and would increase by one at every cycle. 
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`

Figure A-7. Aashtiani’s algorithm in detail: decomposition (yellow boxes) and linearization (gray boxes). 
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Figure A-8. Aashtiani’s algorithm: step 8 in detail. pi refers to the origin node of OD pair i 

Taking into account all of the above considerations, Aashtiani’s algorithm is as 
described on Figures A-7 and A-8. In Figure A-7, step 10 and step 14 became 
irrelevant due to the direct manipulation of sub-vectors w

ih . The use of superindices 
to indicate whether a solution belongs to a specific cycle or iteration also became 
irrelevant. Steps 1 and 4 became irrelevant as well. Figure A-7  shows a specific 
example where the parameter ε  starts with a value of 100 and then it decreases by 10 
until the algorithm achieves the value of 107. 

In Figure A-8 pi refers to the origin node of OD pair i. The execution of steps 8.1 and 
8.2 imply that the algorithm becomes faster if the OD pairs are already (previous to 
the execution of the algorithm) grouped by origin. 
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