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The abundance of personal health information available to healthcare professionals

can be a facilitator to better care. However, it can also be a barrier, as the relevant infor-

mation is often buried in the sheer amount of personal data, and healthcare professionals

already lack time to take care of both patients and their data. This dissertation focuses

on the role of natural language processing (NLP) in healthcare and how it can surface

information relevant to healthcare professionals by modeling the extensive collections of

documents that describe those whom they serve.

In this dissertation, the extensive natural language data about a person is modeled

as a set of documents, where the model inference is at the level of the individual, but evi-

dence supporting that inference is found in a subset of their documents. The effectiveness

of this modeling approach is demonstrated in the context of three healthcare applications.

In the first application, clinical coding, document-level attention is used to model the hi-

erarchy between a clinical encounter and its documents, jointly learning the encounter

labels and the assignment of credits to specific documents. The second application, sui-



cidality assessment using social media, further investigates how document-level attention

can surface “high-signal” posts from the document set representing a potentially at-risk

individual. Finally, the third application aims to help healthcare professionals write dis-

charge summaries using an extract-then-abstract multidocument summarization pipeline

to surface relevant information.

As in many healthcare applications, these three applications seek to assist, not re-

place, clinicians. Evaluation and model design thus centers around healthcare profession-

als’ needs. In clinical coding, document-level attention is shown to align well with pro-

fessional clinical coders’ expectations of evidence. In suicidality assessment, document-

level attention leads to better and more time-efficient assessment by surfacing document-

level evidence, shown empirically using a theoretically grounded time-aware evaluation

measure and a dataset annotated by suicidality experts. Finally, extract-then-abstract sum-

marization pipelines that assist healthcare professionals in writing discharge summaries

are evaluated by their ability to surface faithful and relevant evidence.
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Chapter 1: Introduction

With the advance of natural language processing (NLP) and machine learning, an un-

precedented amount of information from text is suddenly unlocked and made available.

This rise in information, both in quantity and quality, has led to improvements in many

automated tasks. However, the increase in quantity poses a challenge to specific tasks that

cannot, and should not, be fully automated without human intervention. NLP for health-

care applications is one such example and the focus of this dissertation. Specifically, we

discuss the technological challenges and design decisions that arise from putting patients

and healthcare professionals at the center of NLP for healthcare applications.

The relationship between patients and healthcare professionals is fundamental to

care quality (Makoul et al., 2001; Fortin et al., 2012). An established relationship fa-

cilitates efficient information exchange between patients and healthcare professionals,

contributing to improved care quality (Goold and Lipkin Jr, 1999). With information

technology introduced into the mix, the ever-evolving relationship faces new challenges

and opportunities. The collection, processing, integration, and interpretation of patient

information and healthcare professionals’ decision-making can all be influenced by the

design and effectiveness of information technology (Weiner and Biondich, 2006).

Information technology, such as NLP for healthcare applications, can be a facili-

tator or a barrier to this information exchange (Weiner and Biondich, 2006). It can be

a facilitator, in that it brings an unprecedented amount of information to both health-

care professionals and patients. This information can be indirectly related to the patients,

such as increased public access to health-related information from published research.

This dissertation will focus on information directly related to the patients, ranging from

electronic health records (EHR) to naturally occurring language (e.g., social media) ac-

cumulated in everyday life.
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The abundant information has the potential to help healthcare professionals, but it

can also be a barrier. Time, is the limiting constraint. Healthcare professionals already

lack time to manage both patients and their data (Weiner and Biondich, 2006; Sinsky et al.,

2016). The increase in quantity does not guarantee an increase in care quality if healthcare

professionals do not have time to process and interpret it, and in some cases leads to

medical errors and negatively affects the mental well-being of the healthcare professionals

(Tawfik et al., 2018; West et al., 2018). Design decisions must center around an efficient

presentation of the information, surfacing the relevant content, and providing healthcare

professionals effective means to manipulate and interpret the information. NLP has the

potential to help mitigate the problem by prioritizing the information that aligns with

healthcare professionals’ needs.

This dissertation focuses specifically on NLP for healthcare and its roles in (1) pro-

cessing patients’ information and (2) assisting healthcare professionals by surfacing rele-

vant information about the patients. In the following sections, we introduce the two main

contributions of this dissertation. The first is modeling the patient as a set of documents;

we show its application in clinical coding, suicidality assessment, and discharge summary

composition. The second is prioritizing relevant information for healthcare professionals;

we demonstrate the design of models and evaluations for surfacing relevant information

in our work in suicidality assessment and discharge summary composition.

1.1 Modeling the Patient as a Set of Documents.

Textual information about patients is often extensive and complex. NLP has already

played a role in helping healthcare professionals process mediated textual information

about patients, such as clinical notes written by healthcare professionals in electronic

health records (EHR) (Demner-Fushman et al., 2009; Wang et al., 2018, 2019). Clini-

cal coding, for example, often involves machine learning models that assist healthcare

professionals (in this case, clinical coders) in translating a clinical encounter, which is

composed of a potentially large set of clinical notes, into a set of alphanumeric clinical

codes for insurance and billing purposes (Resnik et al., 2006; Stanfill et al., 2010; Shing
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et al., 2019). The well-recognized concerns of information overload in EHR have also

lead to research and development of methods to summarize the extensive patient records,

including our work on discharge summary composition described in Chapter 6 (Demner-

Fushman and Lin, 2006; Farri et al., 2012; Pivovarov and Elhadad, 2015; Shing et al.,

2021).

On the other hand, the use of non-mediated textual information, such as the pa-

tient’s self-narrative in social media, is not as well studied. However, this non-mediated

information has the potential to offer a valuable and complementary view for assessment.

Coppersmith et al. (2017) introduce the concept of clinical whitespace in the context

of mental health assessment, advocating filling the whitespace in between the relatively

sparse clinical visits with dense language signals found in data sources such as social me-

dia. These naturally occurring language signals are not only complementary to mediated

data but also have the value of being in situ behavior data (Resnik et al., 2020). Using

NLP to triage suicidality risk based on social media data, for example, is an active area of

research (Coppersmith et al., 2014, 2018; De Choudhury et al., 2016; Shing et al., 2018,

2020; Zirikly et al., 2019; Resnik et al., 2020; MacAvaney et al., 2021). Given an individ-

ual and their social media postings, the ultimate goal is to assist healthcare professionals

in assessing, preventing, and monitoring the mental well-being of the patients.

These two complementary sources of information share some important character-

istics. The most prominent is that they are both information at the patient level, although

collected from different contexts and narrative standpoints. Another shared characteristic

is that, in the lens of NLP, we can model the patient as a set of documents. In clinical

coding, for example, a majority of clinical codes are assigned to the clinical encounter

(a set of clinical notes) rather than a single clinical note.1 For summarization systems

of EHR, relevant patient information the healthcare professionals need can also scatter

across different clinical notes (Farri et al., 2012). Relevant information thus needs to be

extracted from the clinical encounter (again, a set of clinical notes) and then be aggregated

to present it at the encounter level.

1Not all clinical coding is at the encounter-level. In outpatient radiology coding, for example, codes are typically assigned based
on individual documents.
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Similarly, suicidality assessment using social media aims to help healthcare pro-

fessionals assess the risk of suicidality of a given individual by using the sequence of

postings they made on social media. The risk is a property of the individual, not a specific

posting. Importantly, not all postings made by an at-risk individual need to be an indica-

tion of suicide. Similarly, in the context of clinical coding, to assign a code for Chronic

Obstructive Pulmonary Disease (COPD, ICD-10: J44.9), not all clinical documents need

to contain evidence for COPD. Assigning a label to a set of documents does not imply

that all documents within that set have evidence to support the assignment. In both cases,

it is common that most documents do not contain evidence for label assignment.

This creates a challenge to the machine learning model, as other irrelevant docu-

ments can dilute relevant signals. On the other hand, we can mitigate the challenge if we

know a priori which subset of the patient’s documents contains signals. The observation

that a subset of the documents suffices the inference hints at a hierarchical structure be-

tween the patient and their documents: on the higher patient level is the assignment of

that inference, and the lower document level contains the evidence to support that infer-

ence. In Chapters 3, 5, and 6, we further discuss this hierarchical structure in the context

of clinical coding, suicidality assessment, and discharge summary composition, respec-

tively. Notably, this model does not support all assessment processes. Some assessment

processes need to be global and require a holistic view to make the correct judgment, in

contrast to when a more local view suffices. Thus, this dissertation will focus on the end

of the spectrum when a locality constraint can be satisfied; correct judgments can be in-

ferred based solely on a subset. In our suicidality work, our proposed evaluation measure

makes another critical assumption – the document independence assumption. Here we

assume that a document’s relevance (defined as indicativeness of suicidal signals) is inde-

pendent of other documents’ relevance. That is, seeing a document does not change the

relevance of the other documents. This assumption is often made, implicitly or explicitly,

in most document retrieval tasks and many NLP tasks.
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1.2 Prioritizing Relevant Information for Healthcare Professionals

Another challenge to healthcare applications, which we have hinted at earlier, is that many

should not be fully automated. In clinical coding, a miss or false alarm can cost the patient

or the insurance company thousands of dollars in economic terms alone. For clinical sum-

marization, misses and false alarms (information in a summary not found in the source

documents) have the potential to lead to medical errors. In the setting of suicidality as-

sessment, the impact can potentially be worse. Thus, for many healthcare applications,

it is desirable to involve humans in the loop to review the system’s output. However, the

introduction of human assessors gives rise to a problem of resource-boundedness: the

amount of information, partly attributed to the success of machine learning, overwhelms

what can be assessed by the human assessors in a given time. This resource-boundedness

motivates a prioritization framing of the problem, surfacing the information that requires

the most attention for a human to best utilize the limited human resources available.

What information should be prioritized and how it should be prioritized is problem-

dependent. In this dissertation, we explore prioritization under two different settings.

The first setting is healthcare professionals’ assessment of suicidality using social me-

dia. In this setting, healthcare professionals are faced with an assessment of a poten-

tially large pool of individuals. Arranging these individuals in a single priority queue,

the healthcare professional can scan from top to bottom. This formulation of ranking

is a well-studied problem in information retrieval (IR), with well-established evaluation

measures like Expected Reciprocal Rank (ERR) and Normalized Discounted Cumulative

Gain (NDCG) (Chapelle et al., 2009; Järvelin and Kekäläinen, 2002). In our setting, as

argued above, the suicidality assessment of an individual follows a hierarchical structure;

a sequence of postings represents an individual. Combining the ranking of documents

with the ranking of the individuals whose documents describe, we arrive at a hierarchical

ranking problem. In the context of suicidality assessment, we rank the individuals by their

risk of suicide. Within the documents posted by an individual, we rank the documents for

evidence that signals suicidality. This hierarchical ranking enables us better to utilize the

limited resource – the assessor’s time. By ranking individuals by their risk, we prioritize
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the individuals who most need attention. By ranking documents within an individual, we

hope to shorten the time it takes to assess that individual. Human assessors are hopefully

more likely to find evidence of suicidal signals earlier.

A similar emphasis on time constraints can be found in the second setting: dis-

charge summary composition from prior clinical documents in the encounter. In this set-

ting, healthcare professionals are tasked to write a discharge summary, a semi-structured

summary of the clinical encounter written for patient discharge. NLP has the poten-

tial to surface information relevant to the summary and can potentially assist healthcare

professionals in writing discharge summaries. However, displaying the summary with-

out knowing where the information comes from can hinder healthcare professionals’

progress. If healthcare professionals suspect errors in the summary, they will need to

spend time searching for evidence in the encounter that supports the information. Since

time is the limiting resource, this potentially defeats the usefulness of the summarization

system. Instead, the system should be built with traceability in mind; the summaries

and their source should be displayed together such that we can easily trace back to the

source documents for evidence. We can again describe this using the hierarchical struc-

ture between the patient and their documents. On the lower (document) level, extractive

summarization systems can be used to extract and surface the relevant content. An ab-

stractive summarization system can then collect the extracted content from all documents

and merge them into a single summary for the higher (patient) level. Displaying the ex-

tracted content from each document together with the final summary provides a path of

traceability. Healthcare professionals can reference the extracted content when they sus-

pect errors in the summary; each extracted content item can also be traced back to their

context in the source document for further review.

1.3 Clinical Coding at the Encounter Level

In Chapter 3, we describe our work on clinical coding at the encounter level. As previ-

ously mentioned, a clinical encounter can be seen as a set of clinical documents, with the

labels assigned at the encounter level for the purpose of clinical code prediction. However,

6



the vast majority of the previous work focuses on a single representative document from

the encounter, namely, the discharge summary. This creates two problems: (1) around

17.5% of the primary diagnoses can be missing from the discharge summary (Kripalani

et al., 2007), and (2) for an outpatient encounter (where the patient is generally not ad-

mitted to the hospital), there might not even be a discharge summary, as the patient is

generally not admitted in the first place, and thus cannot be discharged.

We address these two problems by observing a hierarchical structure in the clini-

cal coding process: the code is assigned to the encounter, and at least one of the doc-

uments within the encounter will have evidence to support the code. At training time,

however, no annotations are provided about which subset of documents contains the evi-

dence. This hierarchical structure hints at a hierarchical solution: a hierarchical attention

network (HAN, Yang et al., 2016). We extend HAN to learn document attention to aggre-

gate document representations into an encounter representation and then use the encounter

representation for code prediction. To test our hypothesis that modeling document atten-

tion improves the coding performance, we show that the model with document attention

consistently outperforms a baseline without document attention.

Using a small but high-quality document-level test dataset annotated by profes-

sional clinical coders that is disjoint from the training, development, and testing datasets,

we show that the document-level attention learned aligns well with the professionals’

judgment of the source documents. This preliminary study inspires us to investigate fur-

ther the potential of using document attention to surface evidence. In Chapter 5, we show

how document-level attention can assist healthcare professionals in the context of suici-

dality assessment.

1.4 Suicidality Assessment using Social Media

In Chapter 5, we reframe suicidality assessment as a prioritization task under a time con-

straint. Similar to clinical coding, suicidality assessment using social media also follows

a hierarchical structure. The degree of suicide risk is a property of the individual. At

least one post may contain evidence of suicidal signals in the at-risk individual’s social

7



media postings, and often with no annotations available on the post level. Going beyond

our clinical coding work, however, we introduce an explicit time budget. As we argue

above, the human assessor’s time is the limiting resource. This time constraint suggests

a hierarchical ranking reformulation: ranking the individuals by their risk of suicide and

ranking the postings of an individual based on the likelihood of containing evidence.

To obtain a joint ranking of the individuals and their post rankings, we introduce

the 3HAN model, a HAN model with three levels: attending from words to represent a

sentence, attending from sentences to represent a document, and attending from docu-

ments to represent an individual. The individual’s predictive risk score is used to rank the

individual; the document attention learned without document annotations is then used to

rank documents within an individual.

To evaluate the effectiveness of the hierarchical ranking under a time-budget, we ex-

tend the Time-Biased Gain (TBG, Smucker and Clarke, 2012) evaluation measure to Hi-

erarchical Time-Biased Gain (hTBG) by extending the individual time estimation model

with the cascading user model found in Expected Reciprocal Rank (ERR, Chapelle et al.,

2009). We then show through axiomatic analysis that hTBG satisfies important charac-

teristics one would want for a measure of suicidality assessment under a time budget.

In our experimentation, we show that hTBG can indicate the performance of in-

dividual ranking and document ranking. Furthermore, it shows that document ranking

performance can have a non-negligible effect, as the time saved for assessing one individ-

ual means potential time for assessing others in need. Our 3HAN model also produces

promising results, showing that better document ranking leads to a better individual rank-

ing, leading to better hTBG scores.

Chapter 4 describes the collection of an expert-annotated dataset for suicidality

assessment from Reddit: the UMD Reddit Suicidality dataset, which we use for our work

in Chapter 5. The dataset is annotated with three levels of annotation quality, ranging

from suicidality experts, to crowdsourcers, to weak supervision – the action of posting on

Reddit’s SuicideWatch subreddit. For the subset annotated by the suicidality experts, we

asked the experts to identify the single post that is most indicative of their assessment. For

any individual we annotated, we also collected all their postings from other subreddits. A
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version of this dataset was also used for the NAACL CLPsych 2019 shared task (Zirikly

et al., 2019), and has since been shared with dozens of other researchers.

1.5 Learning to Compose a Discharge Summary from Prior Clinical Notes

Finally, we describe our work on learning to compose a discharge summary from prior

clinical notes. Chapter 6 builds on our two main contributions: (1) modeling the patient

as a set of documents, and (2) surfacing relevant information to healthcare professionals.

In our suicidality work and clinical coding work, we show that modeling the patient as

a set of documents can improve the predictive performance and surface relevant infor-

mation. In Chapter 6, instead of predicting discrete labels like clinical codes or degree

of suicidality risk, we focus on computer-assisted discharge summary composition from

prior clinical documents of the encounter.

Physicians spend almost half of their time on clinical documentation (Shanafelt

et al., 2016). This documentation burden is a significant driver to clinician burnout (Taw-

fik et al., 2018; West et al., 2018). One of the documents healthcare professionals write

is the discharge summary, which is a semi-structured summary of the patient’s clinical

encounter (a set of documents) for the patient’s discharge. This motivates our work on

building systems to help healthcare professionals write discharge summaries. It extends

our main contributions in two ways: (1) modeling the patient as a set of documents (i.e.,

multidocument summarization), similar to our clinical coding and suicidality assessment

work, and (2) summarizing the encounter is a natural way to surface relevant medical

information.

However, applications in the healthcare setting often come with important implica-

tions and should therefore involve healthcare professionals in the loop. This introduction

of healthcare professionals, however, brings new challenges to the otherwise straightfor-

ward multidocument summarization task. Here, we identify three main challenges. (1)

A clinical summarization system should support traceability: an ability to investigate the

supporting evidence for the generated summary. (2) Faithfulness to the source documents

is an important aspect of clinical summarization, and the evaluation should reflect that.
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Finally, (3) the model needs to scale to multiple, potentially very long documents, as is

sometimes the case for clinical encounters.

We address these challenges in Chapter 6. Recognizing the importance of trace-

ability of clinical summarization systems, we propose an extract-then-abstract pipeline.

We can describe the pipeline in the framework of the hierarchical structure between the

patient and their documents. An extractive model first extracts relevant content from each

document individually. An abstractive model then collects the extracted content from all

documents and merges them into the final summary at the encounter level. This pipeline

provides a path of traceability for the healthcare professionals. Healthcare professionals

can reference the extracted content for information mentioned (or missing) in the sum-

mary. The extracted content can then be easily traced back to their context in the source

document. The extract-then-abstract pipeline also helps with scalability, as extractive

models are often more scalable than abstractive models.

A clinical summary needs to be faithful to the source. That is, the summarization

system should not introduce new information not mentioned in the source documents.

Following recent work on measuring faithfulness in summarization (Maynez et al., 2020;

Zhang et al., 2020), we propose a set of faithfulness-adjusted measures based on match-

ing medical mentions in Unified Medical Language System (UMLS, Bodenreider, 2004)

Metathesaurus in Chapter 6.2 In Chapter 6, these measures are used in conjunction with

ROUGE, an informativeness measure conventionally used in summarization, to evaluate

the summaries (Lin and Hovy, 2003; Maynez et al., 2020).

We derive our dataset from the MIMIC III v1.4 database (Johnson et al., 2016):

a freely accessible critical care database consisting of a set of de-identified clinical data

of patients admitted to the Beth Israel Deaconess Medical Center’s Intensive Care Unit

(ICU). The database includes structured data such as medications and laboratory results;

and unstructured data such as clinical notes written by medical professionals. In Chap-

ter 6, we focus on unstructured data.

Discharge summaries are semi-structured and can be broken down into different

2Note that the medical mention-based measure has its limits in approximating faithfulness. As these medical mentions do not
capture negation or modifiers, they can only act as one type of measure of mention-level faithfulness. It is thus a proxy for a specific
aspect of faithfulness. We describe this in further in Chapter 6.
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sections, including past medical history, family history, chief complaints, and history of

present illness. This allows us to compose discharge summaries one section at a time

instead of composing the entire discharge summary. In Chapter 6, we test our extract-

then-abstract pipeline on seven discharge summary sections.3 Across the five models we

test, including a BERT-based extractor (Liu and Lapata, 2019b), a reinforcement learning

RNN-based extractor (Chen and Bansal, 2018), a BART abstractor (Lewis et al., 2019),

a pointer generator (See et al., 2017), and a reinforcement learning RNN-based sentence

rewriter (Chen and Bansal, 2018), we find that sentence-rewriting approaches, when sup-

ports traceability, perform consistently better on our faithfulness-adjusted measures. In-

terestingly, we observe that the BART abstractor can smooth out differences in extracted

content that results from the choice of different extractors in the extract-then-abstract

pipeline.

1.6 Contributions

Clinical Coding at the Encounter Level

• We identify an important label mismatch problem in the clinical coding hierarchy:

clinical codes are assigned on a clinical encounter (set of documents), but most prior

work focuses on prediction on a single document.

• We introduce document-level attention to learn how to aggregate the set of docu-

ment representations into an encounter representation for prediction.

• On a 3M Health Information Systems internal dataset, we show that document-level

attention leads to better encounter-level code prediction.

• On a small but professionally annotated dataset, we show that the document-level

attention learned without document-level supervision matches professional medical

coders’ expectations. This suggests a potential use case of using document-level

attentions to surface evidence.
3The full list of discharge summary sections we tested in Chapter 6 are (1) chief complaint, (2) family history, (3) social history,

(4) medications on admission, (5) past medical history, (6) history of present illness, and (7) brief hospital course. These discharge
summary sections were chosen based on their high prevalence in discharge summaries and their length diversity.
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Suicidality Assessment using Social Media

• We collected the UMD Reddit SuicideWatch dataset by asking both crowdsourcers

and suicidality experts to annotate a subset of the dataset’s individuals.

• We reframed suicidality assessment as a hierarchical ranking problem: ranking both

the individuals and their postings.

– We identify the hierarchical structure in the suicidality assessment task: the

risk of suicide is a property of an individual (set of documents), but the lan-

guage evidence we intend to study is on a subset of the documents they posted.

– Based on conversations with subject matter experts, we reframe suicidality

risk assessment as a prioritization problem with a limitation on the expert’s

time budget.

• We introduce hierarchical Time-Biased Gain (hTBG) to measure the expected num-

ber of at-risk individuals found in a given time budget. We show both empirically

and theoretically that hTBG is a desirable measure for suicidality assessment.

• We introduce 3HAN, a three-level hierarchical attention network that can jointly

rank the individuals for their risk of suicidality and rank their documents for rele-

vance to suicidality assessment, without document-level annotations.

• We show that a joint ranking model like 3HAN outperforms other plausible cascade

baselines using hTBG.

Learning to Compose Discharge Summary from Prior Clinical Notes

• We introduce the task of discharge summary generation from the set of prior docu-

ments in the encounter.

• We derive our collection from a freely available dataset (MIMIC III); the task can

potentially serve as a benchmark for clinical multidocument summarization.
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• We introduce three faithfulness-based evaluation measures that are both reference-

based and source-based: faithfulness-adjusted recall, faithfulness-adjusted preci-

sion, and incorrect hallucination rate.

• We propose an extractive-abstractive pipeline that supports the traceability of evi-

dence and scales to multiple long documents.

• Results across seven commonly found discharge summary sections and five models

show that a sentence-rewriting approach supporting traceability performs consis-

tently better on our faithfulness-adjusted measures.

1.7 Outline

In the next chapter, we describe the background and related work to put our work in

context. Chapter 3 discusses our work on clinical coding at the encounter level, the first

example of the hierarchical structure between the patient’s encounter and their clinical

documents.

In Chapter 5, we propose a prioritization framing of suicidality assessment using

social media and discuss the creation of the UMD Reddit Suicidality Dataset. Again,

in this chapter, suicidality assessment follows a hierarchical structure similar to that of

Chapter 3: the label assignment is on the at-risk individual, but the evidence is from their

social media postings. Additionally, we introduce a resource limitation – time, owing to

the importance of involving healthcare professionals in the loop.

In Chapter 6, we return to the clinical encounter. Instead of assisting clinical coders,

we aim to help healthcare professionals write discharge summaries. Building on Chap-

ters 3 and 5, we propose an extract-then-abstract pipeline: extracting relevant information

at the document level and merging them at the patient’s encounter level.

We conclude our work in Chapter 7. We also discuss limitations on the robustness

of the results, effects on key stakeholders, modeling assumptions, and the need for user

studies. We plan to explore modeling patients as a set of distributed documents and the

traceability of abstractive summarization for future work.
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Chapter 2: Background and Related Work

In this chapter, we put our work into context by describing related work. We first start

with NLP in healthcare applications – NLP applied to the clinical domain and suicidal-

ity assessment, in particular. Section 2.1 gives a review of clinical NLP, and its role

in healthcare, including clinical summarization and clinical coding. Section 2.2 gives a

comprehensive review on applying NLP for suicidality assessment.

Section 2.3 describes the attention mechanism, especially hierarchical attention,

and how it inspired our ELDAN model and our 3HAN model. In Section 2.4, we describe

Multiple-Instance Learning (MIL) to compare and contrast their problem formulation

with ours.

In Chapter 5, we propose a prioritization framing of suicidality assessment in the

form of ranking, recognizing the limiting resource – healthcare professionals’ time. Sec-

tion 2.5 thus gives a review of rank-based and time-aware evaluations by describing them

in a common framework.

2.1 Clinical NLP

NLP has the potential to unlock unstructured information in the clinical domain (Hripc-

sak et al., 1995). Most relevant to this dissertation, where we focus on a human-centric

approach, is perhaps NLP’s role in the Clinical Decision Support (CDS) systems. Hunt

et al. (1998) define CDS systems as “any software designed to directly aid in clinical

decision making in which characteristics of individual patients are matched to a comput-

erized knowledge base for the purpose of generating patient-specific assessments or rec-

ommendations that are then presented to clinicians for consideration.” While this defini-

tion focuses on presenting recommendations to clinicians, Demner-Fushman et al. (2009)
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point out that CDS has extended beyond assisting clinicians to assist other stakeholders

in healthcare. These include clinical coders, administrators (e.g., quality assessment of

radiology reports, Dreyer et al., 2005; Duszak Jr et al., 2012), patients (e.g., explanation

of medical terms to patients (Hardcastle and Hallett, 2007; Elhadad and Sutaria, 2007),

patient-friendly documentation (Åhlfeldt et al., 2006)), students, and researchers (e.g., co-

hort selection using NLP, Edinger et al., 2012; Shivade et al., 2014; Stubbs et al., 2019).

Clinical NLP systems in CDS can be roughly categorized into general-purpose

NLP architectures and specialized systems (Demner-Fushman et al., 2009). General pur-

pose architectures, including LSP (Sager et al., 1987), MedLEE (Friedman et al., 1994),

cTAKES (Savova et al., 2010), HiTEx (Zeng et al., 2006), and MediClass (Hazlehurst

et al., 2005), often include components interacting with each other. By re-configuring

these components and introducing specialized knowledge resources, these architectures

can be applied to specialized tasks. Many clinical NLP systems are also directly de-

veloped for specialized tasks (Pons et al., 2016; Wu et al., 2020). Examples include,

but are certainly not limited to, adverse event detection from clinical notes (Murff et al.,

2003; Dandala et al., 2019), using question answering to support evidence-based prac-

tice (Demner-Fushman et al., 2008), and de-identification of clinical notes (Yadav et al.,

2016; Heider et al., 2020). The clinical coding described in Chapter 3 and discharge sum-

mary composition described in Chapter 6 are also examples of these specialized systems,

and we further discuss them in detail below.

Clinical Coding. Computer-Assisted Coding, or CAC, dates back at least to 1973,

when Dinwoodie and Howell (1973) proposed a dictionary matching method based on

clinical code descriptions. Since the 1990s, a growing literature has introduced natural

language processing techniques to address the task of automatic clinical coding using un-

structured text (Resnik et al., 2006; Pestian et al., 2007; Zhang et al., 2017; Mullenbach

et al., 2018; Xie and Xing, 2018, and many others). Many of these studies, however, focus

on limited categories of codes, such as variations of pneumonia, or only analyze specific

subsets of clinical documents, such as radiology notes or discharge summaries (Stanfill

et al., 2010). Progress on this problem using state of the art techniques has also been ham-
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pered significantly by the broader research community’s limited access to large, shareable

datasets (Resnik, 2018).

Deep learning models have been applied to CAC, some exploiting attention mech-

anisms to support explainability (Shi et al., 2017; Baumel et al., 2018; Mullenbach et al.,

2018; Xie and Xing, 2018). Crucially, however, these all look solely at the discharge

summaries, which are assumed to condense information about a patient encounter. As we

argue in Chapter 3, this can be problematic: Kripalani et al. (2007), reviewing 73 pub-

lished studies investigating hospital communication and information transfer, find high

rates of information missing from discharge summaries, notably 17.5% missing the main

diagnosis. To our knowledge, our work is the first to investigate the hierarchical structure

of the encounter as a whole.

Clinical Summarization. Most literature on clinical summarization focuses on extrac-

tive summarization, due to the risk involved in a clinical application (Demner-Fushman

and Lin, 2006; Feblowitz et al., 2011; Pivovarov and Elhadad, 2015; Moen et al., 2016;

Liang et al., 2019). For abstractive summarization, summarization of radiology reports

has been a topic of interest in NLP research recently. Zhang et al. (2018) show promising

results generating the assessment section of a chest x-ray radiology report from the find-

ings and background section. MacAvaney et al. (2019) improved this model through the

incorporation of domain-specific ontologies. However, such generated reports may not be

clinically sound, and the models generate sentences inconsistent with the patient’s back-

ground. Therefore, in subsequent work, Zhang et al. (2020) add a reinforcement learning

based fact-checking mechanism to generate a clinically consistent assessment. Lee (2018)

explores the generation of the Chief Complaint of emergency department cases from age

group, gender, and discharge diagnosis code. Ive et al. (2020) follow a closely related

approach of extracting keyphrases from mental health records to generate synthetic notes.

They further evaluate the quality of generated synthetic data for downstream tasks. Work

from Lee (2018) generates clinical notes by conditioning transformer-based models on a

limited window of past patient data.

In Chapter 6, instead of focusing on purely extractive or abstractive clinical summa-
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rization, we use an extractive-abstractive pipeline as a framework for clinical multidoc-

ument summarization. The extractive-abstractive pipeline first extracts relevant snippets

from source documents and then merges them using an abstractive system. This frame-

work is commonly found in other summarization settings that involve extensive docu-

mentation. For example, Jing and McKeown (1999) suggest that humans use a similar

two-stage strategy to summarization long documents. Recent works on abstractive mul-

tidocument summarization also often include a coarse extractive model that limits the

number of paragraphs before abstraction (Liu et al., 2018; Liu and Lapata, 2019a).

2.2 NLP for Suicidality Assessment

There is an extensive clinical literature on suicidality assessment (e.g., Batterham et al.

(2015); Joiner Jr et al. (1999); Joiner et al. (2005)), but very little specifically looking

at assessment of suicidality based on social media content. This is a new topic that has

received very little study to date in the clinical literature, with prior work focusing on

non-expert rather than healthcare professionals’ judgments (Egan et al., 2013; Corbitt-

Hall et al., 2016). Griffiths et al. (2010) present a review of randomized controlled trials

involving Internet interventions for depression and anxiety disorders. Lind et al. (2017)

offer a comprehensive discussion of crowdsourcing, using CrowdFlower, as a means for

obtaining coding of latent constructs in comparison with content analysis.

Calvo et al. (2017), Guntuku et al. (2017), Resnik et al. (2020), and Harrigian et al.

(2021) present reviews of NLP research in which social media are used to identify peo-

ple with psychological issues who may require intervention, and Conway and O’Connor

(2016) provide a shorter survey focused on public health monitoring and ethical issues,

highlighting the annual Workshop on Computational Linguistics and Clinical Psychology

(CLPsych), initiated in 2014, as a forum for bridging the gap between computer science

researchers and mental health clinicians (Resnik et al., 2014). Recent CLPsych shared

tasks using data from the ReachOut peer support forums have provided opportunities for

exploration of technological approaches to risk assessment and crisis detection (Milne

et al., 2016; Milne, 2017); see also Yates et al. (2017); Losada et al. (2020); Goharian
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et al. (2021); and the 2019 CLPsych workshop (Zirikly et al., 2019) that uses the dataset

we collected in Chapter 4.

Although predictive modeling for risk assessment is a burgeoning area, a key chal-

lenge for work on mental health in social media is connecting the clinical side with avail-

able social media datasets (Ernala et al., 2019; Harrigian et al., 2021). Combining ground

truth health record data with social media data is rare, with Padrez et al. (2015) represent-

ing a promising exception; they found that nearly 40% of 5,256 Facebook and/or Twitter

users who were approached in a hospital emergency room consented to share both their

health record and social media data for research.1 Approximations of clinical truth are

more common. For example, self-report of diagnoses in social media (Coppersmith et al.,

2014), or observed user behaviors such as posting on SuicideWatch (De Choudhury et al.,

2016). Coppersmith et al. (2015, 2016) employed the Twitter data collection method of

Coppersmith et al. (2014) to discover Twitter users with self-stated reports of a previous

suicide attempt in order to identify valuable signal and support automated classification.

In work similar to Chapter 4, Vioulès et al. (2018) applied a similar data collection

approach to Coppersmith et al., searching Twitter for tweets containing key phrases based

on risk factors and warning signs identified by the American Psychiatric Association and

the American Association of Suicidology. They defined a four-category scale for distress

and 500 tweets were annotated by researchers, with a subset of 55 validated by a psychol-

ogist. They achieved 69.1% and 71.5% chance-corrected agreement using Cohen’s kappa

and weighted kappa, respectively, with Fleiss kappa of 78.3% for the 55 tweets with three

annotators; for automated classification they explored eight text classifiers and a variety

of features, with their best performing combination for four-way classification achieving

an F1 of 0.518.

2.3 Attention Mechanisms

Many of the recent advances in predictive modeling for clinical NLP and mental health

NLP are based on deep learning, an approach that allows the model to learn represen-

1Interestingly, participants agreeing to social media access were only slightly younger on average than those who declined
(29.1± 9.8 versus 31.9± 10.4 years old.
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tations and the relation between those representations. Attention mechanisms in deep

learning allow the model to focus on specific “regions” of its input data, which has

proven helpful in, among others, machine translation (Bahdanau et al., 2015), summa-

rization (Rush et al., 2017; See et al., 2017; Liu and Lapata, 2019b), and sentiment anal-

ysis (Yang et al., 2016). It is also the central component in the recent Transformer-based

architectures (Vaswani et al., 2017; Peters et al., 2018; Devlin et al., 2019; Lewis et al.,

2019). Attention, especially in the context of NLP, has two main advantages: it allows

the network to attend to meaningful parts of a sequence (either words or sentences), often

leading to improved performance, and it provides insight into which parts of the sequence

are being used to make the prediction.2

Building on Bahdanau et al. (2015), Yang et al. (2016), in the context of document

classification, proposed a hierarchical attention mechanism based on dot product atten-

tion. They observe a hierarchical structure in a document: a document can be represented

as a sequence of sentences, and a sentence can be represented as a sequence of words.

Applying the hierarchical attention mechanism on both the word level and the sentence

level, Hierarchical Attention Network (HAN) learns to pay attention to specific words in

a sentence to form a sentence representation, and at the next higher level to weigh specific

sentences in a document in forming a document representation.

Both our ELDAN model (Chapter 3, for clinical coding) and our 3HAN model

(Chapter 5, for suicidality assessment) draw inspiration from Yang et al. (2016). In con-

trast to HAN, ELDAN and 3HAN move up the representational hierarchy, learning also

to weight documents to form representations of encounter (ELDAN) and representations

of individual (3HAN). In ELDAN, instead of building the representation from the word

level, we directly use sparse document features provided by more traditional feature ex-

traction methods grounded in subject matter knowledge and resources, e.g., UMLS. This

allows us to alleviate the problem of out-of-vocabulary and uncommon abbreviation terms

often found in clinical notes, therefore requiring less training data, which is beneficial in

a setting where many codes are rare. In 3HAN, we apply three levels of hierarchical at-

2However, whether attention provides accurate explanation is debated. See discussion from Jain and Wallace (2019); Wiegreffe
and Pinter (2019); Wallace (2019)
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tention mechanisms: on the word level, on the sentence level, and, importantly, on the

document level. The added document-level attention mechanisms in ELDAN and 3HAN

allow us to represent an encounter or an individual as a set or sequence of documents,

reflecting the hierarchical structure we observed in the individual assessment process.

2.4 Multiple-Instance Learning

Besides the hierarchical attention mechanism, the hierarchical structure we observed in

the assessment process has a similar problem formulation to that of Multiple-Instance

Learning (MIL, Dietterich et al., 1997; Maron and Lozano-Pérez, 1997). In contrast to

conventional supervised machine learning matching an instance X to a target Y , the fo-

cus of MIL is to match a set of X = {X1, X2, · · · , Xn} (known as a bag of instances)

that is permutation-invariant (i.e., changing the order within the bag does not change the

result) to a target Y . Another standard assumption often made is that a single instance

of {X1, X2, · · · , Xn} in the bag being positive is enough to justify Y being positive. In

contrast, a negative Y implies all {X1, X2, · · · , Xn} in the bag are negative (Dietterich

et al., 1997; Carbonneau et al., 2018). We will call this the max-pooling assumption for

convenience.

While most of the work on MIL uses a mean-pooling operator or a max-pooling

operator to aggregate instances to a bag (Andrews et al., 2002; Settles et al., 2007; Feng

and Zhou, 2017; Pinheiro and Collobert, 2015; Zhu et al., 2017), recent work has started to

use attention-based operators to learn the different levels of contributions the instance may

have to the final prediction (Ilse et al., 2018). Interestingly, the attention-based operator is

almost identical to the dot product-based attention found in Bahdanau et al. (2015), Yang

et al. (2016), and our document attention models ELDAN and 3HAN.

Chapter 3 and Chapter 5 differ from MIL in that our interest is modeling the individ-

ual assessment process. This leads to a hierarchical ranking formulation, in contrast to the

MIL formulation of assigning a label to a set of instances. For both ELDAN and 3HAN,

we investigate quantitatively how well document-level attention matches expert expecta-

tions. In Chapter 5, we introduce hTBG, which jointly evaluates, in MIL terminology, the
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ranking of the bag and the ranking of the instances.

2.5 Ranking Evaluation

There is an extensive information retrieval literature on evaluation measures for ranked

lists (Järvelin and Kekäläinen, 2002; Chapelle et al., 2009; Smucker and Clarke, 2012;

Sakai, 2019). Many of these rank-based evaluation measures assume a user is working

down a ranked list. This simple user model (assumption of how users interact with the

system) leads to evaluation measures that generally reward placing highly relevant items

near the top of the list, and are often relatively insensitive to mistakes made near the

bottom. Carterette (2011) and Clarke et al. (2011), among others, point out that ranking

measures can often be expressed as:

1

N

∞∑
k=1

gkdk, (2.1)

where gk corresponds to the gain (i.e. value) of placing the item at rank k, and dk is a

discount factor for the position k. Normalization N enables comparison across queries.

For example, one common formulation of Discounted Cumulative Gain (DCG,

Järvelin and Kekäläinen, 2002), a well-known rank-based evaluation measure for graded

relevance (i.e., items are annotated with multiple degrees of relevance), can be expressed

as:

DCG@K =
K∑
k=1

2relk − 1

log2(k + 1)
(2.2)

where it models the gain, gk as 2relk − 1, with relevance, relk, being the relevance of the

item at position k, and its discount, dk as 1
log2(k+1)

. The parameter K indicates that the

ranked list is cut off at position K. With normalization, Normalized DCG, or NDCG can

be defined as:

NDCG@K =
DCG@K

IDCG@K
(2.3)

where the ideal DCG@K, IDCG@K, is the maximum achievable score with perfect

21



partial ranking, cutoff at position K.

Another example, Expected Reciprocal Rank (ERR, Chapelle et al., 2009) assumes

that as the user works down a ranked list, they are more likely to stop after viewing a

highly relevant item than after viewing an irrelevant one, as their information need is

more likely to have been satisfied. This results in a cascade model of user behavior:

∞∑
k=1

1

k
P (user stops at k) (2.4)

where discount at position k, dk is 1
k

and gain at position k, gk is defined as:

P (user stops at k) = Rk

k−1∏
i=1

(1−Ri) (2.5)

where Rk = f(relk) is the probability to stop at position k, as a function of the relevance

of the item at position k.

In the setting of Chapter 5, suicidality risk assessment, we care about how much

gain (number of at-risk individuals found) can be achieved for a given time budget. Time-

biased gain (TBG, Smucker and Clarke, 2012) measures this by assuming a determined

user working down a ranked list, with the discount being a function of the time it takes to

reach that position:

TBG =
∞∑
k=1

gkD (T (k)). (2.6)

where D(·) is a function of time and T (k) is the expected amount of time it takes a user

to reach position k. For a detailed description of TBG, see Section 5.3.1.

However, neither TBG nor other ranking measures, to the best of our knowledge,

can measure the hierarchical ranking found in the scenario that motivates our work in

Chapter 5: ranking items (i.e. individuals) when each item itself contains a ranked list of

potential evidence (their posts). In Chapter 5, we design a new metric, hierarchical time-

biased gain (hTBG), to measure the hierarchical ranking by incorporating the cascading

user model found in ERR into TBG.
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Chapter 3: Assigning Clinical Codes at the Encounter Level by Allocat-

ing Attention to Documents

The vast majority of research in computer-assisted clinical coding focuses on coding at

the document level, but a substantial proportion of clinical coding in the real world in-

volves coding at the level of the patient’s clinical encounters, each of which is typically

represented by a potentially large set of documents.

Recall that in Chapter 1, we describe a hierarchy between the patient and their

documents. This chapter introduces encounter-level document attention networks, which

model the encounter as a set of documents and use hierarchical attention to explicitly

take the hierarchical structure between the patient’s encounter and their documents into

account. Experimental evaluation demonstrates improvements in coding accuracy as well

as facilitation of human reviewers in their ability to identify which documents within an

encounter play a role in determining the encounter level codes.1

3.1 Computer-Assisted Coding

Clinical coding translates unstructured information about diagnoses, treatments, proce-

dures, medications and equipment into alphanumeric codes for billing purposes. Coding

is challenging and expensive, requiring high-expertise professionals, and even experi-

enced coders frequently disagree with each other (Resnik et al., 2006). Increasingly,

computer-assisted coding (CAC) is used to help address these issues by automatically

suggesting clinical codes, generally within a workflow that supports subsequent human

review to ensure that codes are correct or to make revisions.
1This chapter contains content from: Shing, Han-Chin, Guoli Wang, and Philip Resnik. "Assigning Medical Codes at the

Encounter Level by Paying Attention to Documents." In ML4H, Machine Learning for Health Workshop at NeurIPS. 2019.
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The vast majority of relevant literature focuses on automatic code assignment at the

document level, such as radiology reports (e.g., Farkas and Szarvas, 2008) or discharge

summaries (e.g., Perotte et al., 2013; Stanfill et al., 2010). However, in many settings

codes are assigned not to individual documents, but to an entire clinical encounter, such

as a patient visit to a hospital. Encounter-level documentation often involves multiple doc-

uments (O’Malley et al., 2005), and the relationship between the encounter-level codes

and the unstructured information in the documents is indirect — so the standard approach,

treating coding as a well understood kind of text classification problem (e.g., Pang et al.,

2002; Wang and Manning, 2012; Yang et al., 2016), does not map naturally to document

collections.

This can be problematic: Kripalani et al. (2007) find high rates of information miss-

ing from discharge summaries, which are the focus of most prior research (Stanfill et al.,

2010; Shi et al., 2017; Baumel et al., 2018; Mullenbach et al., 2018; Xie and Xing, 2018).

Notably, discharge summaries miss 17.5% of the main diagnosis, which would therefore

need to be identified from other documentation in the encounter. In addition, for out-

patient encounters, discharge summaries are rarely a part of the record.2 One obvious

solution, using document-level models and then merging their predictions into encounter

codes, immediately runs up against a lack of training data: clinical coders do not iden-

tify which documents are the “source” for each encounter code. In addition, merging

document-level codes involves non-trivial interactions. For example, specific codes sup-

pressing more general codes (O’Malley et al., 2005).

In this chapter, we instead focus on training an encounter-level model directly. One

straightforward approach would be to aggregate (via sum or average) all document fea-

tures into a single encounter feature set, but this would be noisy, as the signal of the tar-

geted clinical code is diluted when irrelevant documents are also included. It also fails to

address the crucial problem of interpretability: human coders reviewing auto-suggested

codes need to relate proposed encounter codes back to document-level evidence.3 We

therefore introduce a new approach to encounter-level coding, observing that its structure

2The patient is generally not admitted to the facility, and thus will not be discharged.
3Interpretability is also important from a technical perspective, to identify problems in the prediction model.
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Table 3.1: Histogram of the number of documents in an encounter.

is essentially hierarchical, progressing from textual evidence up to documents, and from

there to entire encounters. Our Encounter-Level Document Attention Network (ELDAN)

applies the key insights of hierarchical attention networks (HAN, Yang et al., 2016), en-

abling the model to identify which documents are most relevant in encounters as driven by

the encounter-level task. We obtain positive results for encounter-level labeling in com-

parison to a strong, realistic baseline, and also show that the resulting weighting helps

coders identify which documents are likely sources for a code. In Chapter 5, we further

explore how the learned importance of documents (i.e., document attention) can be used

to surface evidence to help healthcare professionals .

3.2 Datasets

We used outpatient procedure (CPT) coding production data internal to 3M Health In-

formation Systems, a leading provider of CAC solutions, sampled from multiple hospital

sites. Our dataset includes 463,866 coded encounters containing 1,390,605 documents,

with 31% of encounters containing a single document; in the remainder, there are an

average of 3.91 documents per encounter. Table 3.1 shows a histogram of encounters

that contain a specific number of documents. We generated a random 80-10-10 train-

ing/tuning/evaluation split by encounter ID. Coding exists only at the encounter level,

with no indication of which codes are associated with which document(s). To minimize
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the risk of inappropriate protected health information (PHI) transmission even internally

within 3M HIS, once documents were selected, they were immediately converted from

their original form to feature vectors. These features include UMLS CUIs (Concept

Unique Identifiers) and 3M HIS internal numeric concept identifiers, as well as words

or phrases (775,330 unique features) for all downstream machine learning development

and experimentation. No PHI contributed to the features used to represent documents.

In addition, to assess the value of document-level attention in identifying which

documents are responsible for encounter codes (for facilitating human code review) we

extracted a separate dataset from production data, consisting of 393 encounters. To elim-

inate possible leakage across experiments these do not overlap with the first set. For each

encounter, experienced clinical coders annotated document-level codes corresponding to

the encounter-level coding. Specifically, coders were instructed to read through all the

documents contained in the encounter, and assign a code from the encounter level to the

document if (and only if) it contains sufficient evidence for assigning the code. Note this

means the same code can be assigned to multiple documents within the encounter.

3.3 Model: Encounter-Level Document Attention Network

Encounter-level coding can be considered as a multi-label classification problem. We

decompose the problem into multiple one-vs-all binary classification problems, each tar-

geting one code, which adds flexibility for use cases where codes of interest could vary

across sites or even dynamically, and also facilitates comparing code-specific document

attention learned from the model to document annotations labeled by clinical coders, in

our evaluation in Section 3.4.

The overall architecture of Encounter-Level Document Attention Networks (EL-

DAN, Figure 3.1) consists of three parts: (1) a document-level encoder that turns sparse

document features into dense document features using an embedding layer followed by

two fully connected layers, (2) a document-level attention layer that draws inspiration

from Yang et al. (2016), and (3) an encounter-level encoder using a fully connected layer.

We first introduce notation and then describe the three parts in more detail. Let
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softmaxFC4

vattention

Document-Level Encoder Document-Level Attention Encounter-Level Encoder

FC1Embedding FC3FC2xi,1 ai,1

FC1Embedding FC3FC2xi,2 ai,2

FC1Embedding FC3FC2xi,m ai,m

ei

Figure 3.1: Architecture of Encounter-Level Document Attention Network (ELDAN)

the set of encounters be E = {e1, e2, · · · , en}, and their corresponding labels be Y =

{y1, y2, · · · , yn}, where yi ∈ {−1, 1} represents whether the encounter ei contains the

targeted medical code ct. Each encounter ei consists of multiple documents, and the

number of documents that an encounter contains can vary across encounters. Finally, let

xi,j and di,j be the sparse and dense feature vectors that represent document j in encounter

i, respectively.

Document-Level Encoder. The goal of the document-level encoder is to transform a

sparse document representation, xi,j , into a dense document representation, di,j . The

sparse document representation, xi,j is first passed into an embedding layer, to map the

775,330-dimensional sparse document representation into a 300-dimensional vector. It is

then followed by two fully-connected layers, FC1 and FC2, to produce a dense document

representation, di,j . Specifically,
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hi,j,0 = WEmbeddingxi,j (3.1)

hi,j,1 = tanh (WFC1hi,j,0 + bFC1) (3.2)

di,j = tanh (WFC2hi,j,1 + bFC2) (3.3)

where W represents the weight matrix, b represents a bias vector, and tanh is the hy-

perbolic tangent. hi,j,0 and hi,j,1 are hidden representations of document j in encounter

i.

Document-Level Attention. When a clinical code is assigned to an encounter, it does

not imply that all its documents contain evidence for that code. Directly summing or

averaging all the encounter’s dense document representations, {di,1, di,2, · · · , di,m}, will

typically capture irrelevant information, diluting the signal for the presence of the code.

Instead, ELDAN computes a weighted average, where more relevant documents receive

more attention. This is calculated by comparing the dense document representation, di,j ,

to a learnable attention vector, vattention, after passing through a fully connected-layer and

a non-linear layer. Specifically,

ui,j = tanh (WFC3di,j + bFC3) (3.4)

ai,j =
exp

(
u>i,jvattention

)∑m
j=1 exp

(
u>i,jvattention

) (3.5)

ei =
m∑
j=1

ai,jdi,j (3.6)

where ai,j is the normalized attention score for document j in encounter i, and ei is the

encounter representation of encounter i. As shown in Equation 3.5, the transformed doc-

ument representation ui,j is compared with the learnable attention vector vattention using

dot product, and further normalized for the weighted averaging step in Equation 3.6.
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Encounter ELDAN’s Document Attention Human Coders

enc1 [ doc1 , doc2 , doc3] [ doc1 , doc2, doc3]

enc2 [ doc4 ] [ doc4 ]

enc3 [doc5, doc6 , doc7, doc8 ] [ doc5 , doc6 , doc7, doc8]

Table 3.2: An illustration of how ELDAN’s document attention predictions are evalu-
ated using source documents labeled by human coders. Green (the shading under Hu-
man Coders) indicates the “source” documents for the encounter-level code (truth), and
Gray (the shading under Eldan’s Document Attention) indicates the documents with

high attention (prediction). The bolded documents are the true positives. In this example,
the precision is tp

tp+fp
= 3

3+2
= 3

5
. The recall is tp

tp+fn
= 3

3+1
= 3

4
. The document-level F1

score is thus 2
3
.

Encounter-Level Encoder. Once we have the encounter representation ei, we can pre-

dict whether the encounter contains the targeted medical code. Specifically,

P (ŷi) = softmax (WFC4ei + bFC4) (3.7)

Finally, we compare with the ground truth label of encounter i using negative log-likelihood

to calculate a loss −log (p(ŷi = yi)) on encounter i, where yi is the ground-truth label.

3.4 Experiments

Our first validation experiment tests ELDAN’s effectiveness for predicting encounter-

level codes. The second looks at the value of document-level attention from ELDAN as

a prediction of which documents in the encounter can be considered the “source” for the

encounter-level codes.

3.4.1 Evaluating Encounter-Level Code Prediction

We train two ELDAN models. One is a standard ELDAN model. The other, which we

refer to as ELDAN+TRANSFER, includes a simple but effective enhancement for han-

dling rare codes, since, when the code is rare, training a deep one-vs-all network can be

challenging. To address this issue, we use a naïve transfer learning technique that initial-

izes the embedding layer (WEmbedding) with that of a trained model on a more frequent
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code. See Section 3.4.3 for more details. We call this naïve, as it is clearly not optimal nor

novel, but the results demonstrate a potentially promising direction for training classifiers

for rare clinical codes in settings where a single multi-label classifier may be less desir-

able for other reasons, as discussed in Section 3.3. We measure performance in standard

fashion using the F1 score.

We regard Yang et al. (2016)’s non-attention hierarchical network (HN-AVE in

their paper) as a strong baseline since, in experiments across six document classification

datasets, they demonstrated that it substantially outperformed a range of typical base-

lines lacking hierarchy; these included, for example, bag of words, SVM, LSTM, and

CNN classifiers. Analogously, we define ELDN (encounter level document network) as

a baseline that simply averages documents rather than using attention.4

3.4.2 Relevant-Document Prediction against Human Judgments

To evaluate the extent to which document attention learned by ELDAN matches human

clinical coders’ judgments about the documents relevant for coding the encounter, we ap-

ply our trained models to our second dataset. Recall that this is a separate set of 393 en-

counters for which a team of experienced clinical coders annotated codes at the document

level. We calculate document-level F1-score by treating document attention learned from

ELDAN as the prediction of which documents are the “source”, and comparing this to

clinical coders’ ground truth — see Table 3.2 for an illustration. Note that this is different

from the encounter-level F1 scores used to evaluate encounter-level code prediction.

To determine which documents are predicted to contain targeted codes and therefore

are relevant for human code review of the encounter-level coding, we pass the annotated

dataset through the ELDAN model trained for encounter-level code prediction, with no

further tuning or training. We then use a selection strategy that takes the attention scores of

all the documents in an encounter and marks all documents that are strictly larger than half

the maximum attention score as containing the targeted code. Since a baseline to compare

with document-level attention can be non-trivial to implement, in the spirit of having a

4Note that most prior methods for clinical coding base the prediction on a single discharge summary (which is rarely present in
outpatient encounters), and are thus not applicable as baselines in our setting.
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chance-adjusted measure, we compare with a baseline obtained by randomly generating

attention scores from a uniform distribution on the documents within an encounter, then

following the same selection strategy as in ELDAN’s document attention selection. The

chance baseline is run 500 times to reduce the noise level.

3.4.3 Training Details

Our 80-10-10 dataset split results in 371,092 encounters for training, 46,387 encoun-

ters for development/tuning, and 46,387 encounters for testing. Note that no document-

level annotations are available. We train models implemented with PyTorch (Paszke

et al., 2017) on the 150 most frequent codes, using minibatch stochastic gradient de-

scent (Sutskever et al., 2013) with a minibatch size of 64, a learning rate of 0.01, and a

momentum of 0.9. Since we are in an imbalanced setting (some medical codes can be ex-

tremely rare, see Fig. 3.4), we randomly resampled the training data by assigning different

probabilities to the positive and negative classes so that the ratio of positive encounters to

negative encounters is close to 1 : 6. These hyperparameters were selected based on our

results on the development set. No resampling is done for the development set and test

set.

For naïve transfer learning, models are trained from the most frequent code to the

least frequent. The model for the most frequent code is trained from scratch just like

ELDAN. For all the other models, the weight of the (n)-th most frequent model’s em-

bedding layer (WEmbedding, see Equation 3.1) is first initialized (but not fixed) by that of

the (n− 1)-th most frequent model prior to training.

3.5 Results and Discussion

Results Evaluating Encounter-Level Code Prediction. ELDAN numerically outper-

forms the baseline for 17 of the most frequent 20 codes (Table 3.3). Comparing across

150 codes, ELDAN also outperforms ELDN.5 To show the trend across the full range of

codes we macro-average every 10 codes from most frequent to least frequent (Table 3.4).

5Statistical significant using paired t-test across 150 codes at p < 0.05

31



CPT Codes #Docs Prevalence ELDN ELDAN ELDAN
+TRANSFER

43239 3.13 4.15% 84.59 86.21 84.93
45380 2.78 3.56% 72.68 75.14 74.02
45385 2.75 2.44% 71.33 72.33 70.31
66984 2.51 1.90% 92.15 92.87 93.00
45378 2.40 1.89% 62.67 65.45 67.57
12001 2.20 1.60% 46.96 44.74 43.62
12011 2.35 1.19% 41.03 42.12 43.30
29125 2.85 1.05% 52.32 56.50 54.10
10060 2.09 1.00% 45.15 48.73 52.25
69436 3.01 0.96% 83.30 85.18 88.32
12002 2.60 0.92% 25.53 28.36 28.43
59025 1.86 0.92% 73.82 69.00 67.73
11042 3.20 0.88% 64.38 63.45 66.86
47562 4.36 0.80% 70.74 76.25 77.67
62323 2.10 0.79% 61.17 57.07 64.25

Average 2.62 58.02 60.40 61.26

Table 3.3: Encounter-level F1-scores of the 20 most frequent CPT codes. #Docs is the
average number of documents found in the encounters that contain the code; prevalence
is the percentage of all encounters that contain that code.

ELDAN with or without naïve transfer learning consistently outperforms ELDN, even

for extremely rare codes (< 0.1%). As codes become rarer, ELDAN+TRANSFER tends

toward outperforming ELDAN more substantially; see increasing trend for ∆ELDAN.

This improvement can be explained by viewing the embedding layer as a vector space

model that maps sparse features that are extracted from the document (such as medical

concepts, UMLS CUIs) to a dense representation, which can be effective for bootstrap-

ping the training of rare codes.

Results Evaluating Relevant-Document Prediction against Human Judgments. Ta-

ble 3.5 shows document-level F1-scores for the most frequent 20 encounter-level codes,

with surprisingly strong results: 100% F1-score on 7 out of 19 available codes.6 However,

even chance performance could be good if the number of possible documents to assign

credit to is very small. As an extreme case, performance for code 51072 is evaluated on

two encounters, each of which contains only a single document (Table 3.5), though this

is atypical. Therefore we compare to the chance baseline. ELDAN is consistently better

6Note that as the dataset is smaller and disjoint from the training dataset, codes can be missing (such as code 59025).
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Average Prevalence ELDN ELDAN ELDAN
+TRANSFER

∆ELDAN

1st to 10th 1.97% 65.22 66.93 67.14 0.22
11st to 20th 0.78% 50.82 53.87 55.38 1.50
21st to 30th 0.51% 55.93 63.07 62.23 -0.85
31st to 40th 0.40% 44.93 51.92 55.24 3.32
41st to 50th 0.30% 32.08 38.61 39.35 0.74
51st to 60th 0.26% 33.83 38.80 39.10 0.30
61st to 70th 0.23% 28.37 35.05 36.62 1.56
71st to 80th 0.21% 25.66 30.62 32.93 2.31
81st to 90th 0.18% 34.92 42.03 43.26 1.23

91st to 100th 0.16% 24.54 29.06 31.32 2.25
101st to 110th 0.14% 25.15 33.17 34.57 1.40
111st to 120th 0.12% 24.87 31.74 32.84 1.09
121st to 130th 0.11% 18.14 24.10 28.09 3.99
131st to 140th 0.10% 20.39 28.53 32.21 3.68
141st to 150th 0.08% 26.93 33.13 40.94 7.82

Table 3.4: Macro average of encounter-level F1 scores for every 10 codes (from most to
least frequent). ∆ELDAN = ELDAN+TRANSFER − ELDAN.

except for one code, usually by a large margin.7 These results support the conclusion that

ELDAN’s document attention is effective in identifying signal from “source” documents

for the targeted code — crucially, without training on document-level annotations.

3.6 Effectiveness of Document-level Attention

In this chapter, we have introduced a new approach to encounter-level coding that explic-

itly takes the hierarchical structure of the patient’s encounter and their documents into

account. Experimental validation of the model shows that document-level attention im-

proves coding accuracy against a strong baseline. It also supports the conclusion that the

assignment of document-level attention would provide value in helping human coders to

identify document-level evidence for encounter-level codes during review.

These results inspired us to further investigate document-level attention. We ex-

plore this further in the context of suicidality risk assessment. In Chapter 4, we first

collect a dataset for risk assessment of suicidality via online postings. Chapter 5 investi-

gate how document-level attention, learned jointly with an individual’s risk of suicidality,

can be used to re-rank documents, ultimately saving healthcare professionals’ assessment

7Improvement is significant at p < .05 using a one-sample t-test comparing the population mean of average F1 over the 500
chance baseline runs against the document-level F1 obtained using the document attention model.
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CPT Codes #enc #doc #source Attention Chance Diff

43239 8 19 9 88.89 59.22 29.67
45380 5 11 5 90.91 56.47 34.44
45385 6 13 8 85.71 67.52 18.20
66984 7 13 7 100.00 68.65 31.35
45378 10 20 11 90.91 67.44 23.47
12001 1 3 1 100.00 45.63 54.37
12011 3 8 3 57.14 54.30 2.85
29125 2 9 4 72.73 50.91 21.81
10060 4 9 6 100.00 71.65 28.35
69436 7 18 8 87.50 60.54 26.96
12002 4 13 6 92.31 56.02 36.29
59025 0 0 0 - - -
11042 5 23 16 58.06 64.89 -6.82
47562 1 5 3 100.00 57.62 42.38
62323 5 11 7 87.50 69.85 17.65
64483 3 8 4 100.00 58.07 41.93
43235 6 18 6 83.33 45.19 38.15
20610 5 9 5 100.00 72.25 27.75
49083 10 27 13 85.71 60.21 25.50
51702 2 2 2 100.00 100.00 0.00

Table 3.5: Document-level F1-score calculated by comparing document attention from
ELDAN and human coders on 20 CPT codes. #enc is the number of encounters that
contain the code. #doc is the number of documents within those encounters. #source is
the number of documents being labeled by human coders as the source documents for the
code. Attention (from ELDAN) and Chance both report document-level F1-score, and
Diff is the difference between them.

time. Using a new evaluation measure, hTBG, we show that document-level attention can

potentially lead to faster and better suicidality assessment.
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Chapter 4: Expert, Crowdsourced, and Machine Assessment of Suicide

Risk via Online Postings

Chapter 3 introduces a hierarchical structure between patients and their encounter docu-

ments in the context of clinical coding. Results suggest that document attention can po-

tentially facilitate human review by surfacing relevant documents. We further investigate

this hierarchical structure and how document-level evidence can be surfaced in another

setting: assessing suicide risk via online postings.

This chapter describes the creation of the University of Maryland Reddit Suici-

dality Dataset, which will later be used for our experimentation of document attention

in Chapter 5. In this setting, the risk of suicide is a property of the individual, but the

evidence is found in the documents posted on their social media. The resulting dataset

contains three sets of disjoint individuals with an increasing level of annotation quality:

rule-based weak supervision, crowdsource workers, and suicidality assessment experts.

For the dataset with expert annotations, we additionally obtain information on which

document most supports their judgment. Evaluation of risk-level annotations by experts

yields what is, to our knowledge, the first demonstration of reliability in risk assessment

by healthcare professionals based on social media postings.1

4.1 Suicidality Assessment via Online Postings

The majority of assessment for suicide risk takes place via in-person interactions with

clinicians, using ratings scales and structured clinical interviews (Batterham et al., 2015;

Joiner Jr et al., 1999; Joiner et al., 2005). However, such interactions can take place

1This chapter contains content from: Shing, Han-Chin, Suraj Nair, Ayah Zirikly, Meir Friedenberg, Hal Daumé III, and Philip
Resnik. "Expert, crowdsourced, and machine assessment of suicide risk via online postings." Proceedings of the Fifth Workshop on
Computational Linguistics and Clinical Psychology: From Keyboard to Clinic. 2018.
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only after patient-clinician contact has been made, and only when access to a clinician is

available. This is no small challenge in many places — in the U.S., for example, nearly

122 million people live in federally designated mental health provider shortage areas in

2020, where access to a provider can be difficult even when the person (or someone close

to them) knows that clinical help is needed (Bureau of Health Workforce, 2020).

At the same time, people are spending an increasing amount of their time online,

and online discussions related to mental health are providing new opportunities for people

dealing with mental health issues to find support and a sense of connection: examples

include Koko, ReachOut, 7cups, SuicideWatch on Reddit, and others.2 Although many

such discussions are peer-to-peer, site moderators often play a crucial role, identifying

users who post material indicating imminent risk and the need for intervention.

An emerging subset of the artificial intelligence and language technology commu-

nities has been making progress toward automated methods that analyze online postings

to flag mental health conditions, with the goal of being able to screen or monitor for sui-

cide risk and other conditions (Calvo et al., 2017; Resnik et al., 2014; Milne et al., 2016;

Milne, 2017; Losada et al., 2020; Goharian et al., 2021). Some sites have been taking ad-

vantage of these methods to add automation to their moderation, in the form of a pipeline

from algorithmic risk assessment to human moderator review to preventive action.

With all of these technology-driven developments taking place so quickly, it is easy

to forget that a healthcare professional’s assessment of suicidality from online writing is

a new and largely unstudied problem. To what extent is level of suicide risk discernible

from online postings? How are traditional training and experience in assessment brought

to bear in the absence of interaction with the person being assessed? And as online writing

can often be extensive and thus time-consuming to assess, how can technology make

healthcare professionals’ assessment more efficient?

To investigate how healthcare professionals assess online writing, we collect a

dataset of risk assessment for online postings using data from Reddit (reddit.com), an

online site for anonymous discussion on a wide variety of topics. We focus specifically

on users who have posted to a discussion forum called SuicideWatch, which, as its name

2koko.ai, au.reachout.com, 7cups.com, reddit.com/r/SuicideWatch, respectively.
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suggests, is dense in postings by people who are considering taking their own lives.3 We

leave the discussion on how technology can make a healthcare professional’ assessment

more efficient, as well as a hierarchical ranking of the problem formulation, to Chapter 5.

4.2 The UMD Reddit Suicidality Dataset

We describe the creation of a dataset consisting of individuals who posted on Suicide-

Watch, that, by virtue of posting to the forum, were by definition considered potentially

at risk. This is, however, very noisy since posting on SuicideWatch does not necessarily

imply suicidal ideation.4 A subset of individuals was thus assessed independently by four

healthcare professionals who specialize in suicidality assessment. Together with their as-

sessment of the individual’s suicidality risk, these experts also provide annotations for

which document of the individual most supports their judgments. In addition to experts,

crowdsource workers assessed a larger set of individuals based on the same instructions.

In the following sections, we describe a rule-based collection strategy and the an-

notation instructions for experts and crowdsourcers.

4.2.1 Data Collection by Weak Supervision

Our approach to data collection, which we term WEAK SUPERVISION, is inspired by

Coppersmith et al. (2014), who introduced an innovative way to solve for the absence of

clinical ground truth when studying mental health in social media. Their approach is to

use heuristic rules, or weak superivisions (Ratner et al., 2016), to identify individuals who

have produced an overt signal in social media, indicating they might be a positive instance

of the relevant condition, and then manually assessing the signal to filter out candidates

for which the signal does not appear genuine. Coppersmith et al. (2014) applied this on

Twitter by seeking variations of the statement I have been diagnosed with X, (where X is

depression, PTSD, or other conditions), and then manually filtering out tweets for which

the statement was in jest or otherwise not a true indication. For example, The Red Sox lost

3Titled forums on Reddit are called subreddits, but for clarity and generality we sometimes adopt the more common term
discussion forum.

4For example, seeking help for a friend or offering support could not be evidence of suicidal ideation.
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their third game in a row. I’ve just been diagnosed with depression. They also collected

controls who had not made such statements.

The Coppersmith et al. approach does not yield clinical ground truth, since there

is no way to verify an actual diagnosis, nor any way to determine that a control instance

might not actually be positive for the condition. However, obtaining clinical data presents

extremely challenging procedural burdens5, and shared datasets for healthcare and mental

health are thus typically orders of magnitude smaller than datasets supporting research in

other domains (Spasic and Nenadic, 2020; Harrigian et al., 2021).

The WEAK SUPERVISION “signal” we use for an individual’s candidate positive

status with respect to suicidality is their having posted in the /r/SuicideWatch sub-

reddit, a forum providing “peer support for anyone struggling with suicidal thoughts, or

worried about someone who may be at risk”.6 We began with a snapshot of every publicly

available Reddit posting from January 1, 2008 through August 31, 2015, with partial data

from 2006-2007, comprising approximately 42G of compressed data.7 Eliminating indi-

viduals who had fewer than ten total posts across all of Reddit, we had 11,360 individuals

who had posted in SuicideWatch for a total of 1,556,194 posts. For these individuals we

extracted not only their SuicideWatch posts, but all their Reddit posts available in the

snapshot. Through random sampling, we further selected 1,097 individuals, of which 934

ultimately were included for further human annotation. These huamn annotated individ-

uals are then excluded from the WEAK SUPERVISION dataset to prevent data leakage,

leaving a final number of 10,263 potential at-risk individuals. We also aggregated the

data from an equal number of control individuals who had not posted in any of the men-

tal health subreddits identified by Pavalanathan and De Choudhury (2015), nor in the

/r/schizophrenia subreddit.8

5Access to healthcare data in the U.S. is governed by the Healthcare Insurance Portability and Accountability Act, or HIPAA.
6https://www.reddit.com/r/SuicideWatch/
7The corpus: https://www.reddit.com/r/datasets/comments/3mg812/full_reddit_submission_corpus_now_available_2006/. See

Gaffney and Matias (2018) for caveats. Note that more recent data is available, see https://files.pushshift.io/reddit/
8Our full set: addiction, alcoholism, Anger, bipolarreddit, BPD (Bederline Personality Disorder), depression, DPDR (deper-

sonalization, derealization), EatingDisorders, feelgood, getting_over_it , hardshipmates, mentalhealth, MMFB (MakeMeFeelBetter),
panicparty, psychoticreddit, ptsd, rapecounseling, schizophrenia, socialanxiety, StopSelfHarm, SuicideWatch, survivorsofabuse, trau-
matoolbox.
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4.2.2 Annotation Instructions

Having posted on SuicideWatch does not necessarily imply the individual has suicidal

ideation. In this section, we describe the instructions for our annotators – experts and

crowdsourcers. It is infeasible to ask annotators to read through all of an individual’s

postings, where the number can be in the thousands. For purposes of annotation, we limit

postings to those on SuicideWatch for each of the 934 individuals, although at training

and test time, we use all postings. This challenge of annotation mirrors the challenge of

assessment. However, in a setting where a healthcare professional is assessing a poten-

tially at-risk individual using social media postings, they may not have weak supervision

signals to help limit the individual’s postings to be assessed. In Chapter 5, we revisit this

challenge by using document attention to surface postings that are more likely to contain

signals of suicidality.

To facilitate crowdsourced as well as expert annotation, we divided sequences of

more than five SuicideWatch posts for a single individual into multiple annotation units

containing up to five posts each, yielding a total of 982 annotation units. For example,

an individual with 12 SuicideWatch posts would yield three annotation units of their first

5 posts, next 5 posts, final 2 posts. In order to determine individual-level risk, we consider

an individual to have the highest risk associated with any of their annotation units.

We defined a four-way categorization of risk, adapting Corbitt-Hall et al. (2016)

(who provided lay definitions based on risk categories in Joiner Jr et al. (1999)): (a) No

Risk (or “None”): I don’t see evidence that this person is at risk for suicide; (b) Low

Risk: There may be some factors here that could suggest risk, but I don’t really think

this person is at much of a risk of suicide; (c) Moderate Risk: I see indications that

there could be a genuine risk of this person making a suicide attempt; (d) Severe Risk: I

believe this person is at high risk of attempting suicide in the near future.9

We then defined two sets of annotator instructions. The short instructions, intended

only for a subset of experts, simply presented the above categorization and asked them

to follow their training in assessing patients with suicide risk. A long set of instructions

9These correspond roughly to the green, amber, red, and crisis categories defined by Milne et al. in CLPsych ReachOut shared
tasks (Milne et al., 2016; Milne, 2017).

39



was similar in intent to those of Corbitt-Hall et al. (2016), but whereas their instructions

focused on three risk factors (thoughts of suicide, planning, and preparation), we iden-

tified four families of risk factors: thoughts includes not only explicit ideation but also,

for example, feeling they are a burden to others or having a “fuck it” (screw it, game

over, farewell) thought pattern; feelings includes, for example, a lack of hope for things

to get better, or a sense of agitation or impulsivity (mixed depressive state, Popovic et al.,

2015); logistics includes, for example, talking about methods of attempting suicide (even

if not planning), or having access to lethal means like firearms; and context includes,

for example, previous attempts, a significant life change, or isolation from friends and

family.10

In both sets of instructions, expert annotators were additionally asked to label the

post that most strongly supports the judgment, and they were told that choices should

never be downgraded: if an earlier post suggests a person is at severe risk (“I’m going to

kill myself”), and a later post suggests the risk has decreased (“I’ve decided not to kill

myself”), the higher risk should be chosen, and the severe-risk post should be identified

as the basis for the judgment.

4.2.3 Expert Annotation

We selected 242 individuals at random to create a set of 245 annotation units that were

labeled independently by four volunteer experts in assessment of suicide risk.11 These in-

cluded a suicide prevention coordinator for the Veteran’s Administration; a member of the

National Suicide Prevention Lifeline’s Standards, Training and Practices Sub-Committee;

a doctoral student with expert training in suicide assessment and treatment whose re-

search is focused on suicidality among minority youth; and a clinician in the Department

of Emergency Psychiatry at Boston Children’s Hospital. Two of these experts received

the detailed long instructions, and the other two were given the short instructions.

Table 4.1 shows Krippendorff’s α (Krippendorff, 2004) pairwise among the experts,

10See Appendix A.2 for the long instruction.
11Random selection was from the set of crowdsource-annotated individuals obtained in Section 4.2.4, ensuring that all expert

annotations would be accompanied by crowdsourced annotations. Recall that an individual’s label is the highest-risk label assigned
for any of that individual’s annotation units, if there are more than one. The original EXPERT dataset had 245 individuals; we exclude
three owing to errors in processing.

40



Krippendorff α exp_L1 exp_L2 exp_S1 exp_S2

exp_L1 1 0.837 0.804 0.823
exp_L2 - 1 0.808 0.831
exp_S1 - - 1 0.768
exp_S2 - - - 1

Table 4.1: Krippendorff’s α pairwise among experts. exp_L1 represents the first expert
who follows the long instruction.

indicating the set of instructions they used as (S)hort or (L)ong. The average of 0.812

satisfies the conventional reliability cutoff for chance-corrected agreement (> 0.8, Krip-

pendorff (2004)), which is to our knowledge the first result demonstrating inter-rater re-

liability by experts for suicide risk based on social media postings. Inter-rater reliability

for the pair receiving short instructions was substantially lower (0.768), demonstrating

the value of our detailed rubric based on explicitly identified risk factors.

We generated consensus individual-level labels based on the expert annotations

using Dawid-Skene (Dawid and Skene, 1979; Passonneau and Carpenter, 2014, imple-

mented with Stan12), a well known model for inferring consensus labels from multiple

noisy annotations. Using Dawid-Skene, we generate consensus for the pairs receiving

long instructions (Long Experts), short instructions (Short Experts), and consensus among

all four experts. This results in an EXPERT dataset consisting of 242 individuals.

4.2.4 Crowdsourced Annotation

For the CROWDSOURCE dataset, we created a task on CrowdFlower (formerly crowd-

flower.com, now appen.com) using the long instructions. We restricted participation to

high performance annotators (as determined by the CrowdFlower platform) and who also

agreed with our annotations on seven clear test examples. Although we began with 1,097

individuals to annotate, crowdsourcer participation tailed off at 934.13 After discarding

any annotation unit labeled by fewer than three annotators, our data consists of 865 indi-

viduals and 905 annotation units. We used CrowdFlower’s built-in consensus label as the
12https://mc-stan.org/docs/2_27/stan-users-guide/data-coding-and-diagnostic-accuracy-models.html
13We conjecture that, with fewer jobs left available, annotators were less inclined to go through the detailed instructions and test

because there was less for them to get paid for.
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# Posts 10-20 20-40 40-60 60-100 100-200 200-500 500-1,000 ≥ 1,000

W
S Control 4,674 3,023 1,140 965 620 257 57 13

Positive 2,390 2,362 1,328 1,465 1,396 935 236 61
C

ro
w

ds
ou

rc
e No Risk 31 42 25 27 18 12 4 0

Low Risk 19 22 5 11 2 4 0 0
Moderate Risk 46 45 19 14 9 7 1 0
Severe Risk 80 79 37 19 28 12 3 0

E
xp

er
t

No Risk 3 7 2 5 7 8 3 0
Low Risk 6 11 5 11 8 7 1 1
Moderate Risk 23 19 12 26 13 14 5 3
Severe Risk 7 2 5 9 10 4 4 1

Table 4.2: Number of individuals with the number (range) of posts (in all of Reddit, not
just SuicideWatch), by dataset and risk category. WS stands for WEAK SUPERVISION.

crowdsourced label for each unit.14 Krippendorff’s α for inter-annotator agreement of the

crowdsourcers for individual labels is 0.554.

To prevent data leakage, we further exclude individuals in the CROWDSOURCE

dataset who have also been annotated by experts, reducing the 934 individuals to a final

number of 621 individuals. However, these annotations are not wasted. These overlap-

ping individuals between CROWDSOURCE and EXPERT are used to calculate annotation

disagreement in Section 4.3.

4.2.5 Dataset Statistics

The final dataset contains three subsets with disjoint individuals. The first, WEAK SU-

PERVISION dataset, includes 10,263 potential at-risk individuals and 10,759 control indi-

viduals; they are respectively considered to be indirectly positively and negatively labeled.

The second set is the CROWDSOURCE dataset, including 621 individuals annotated by

crowdsourcers with four risk levels: No Risk, Low Risk, Moderate Risk, and Severe Risk.

The last is the EXPERT dataset, including 242 individuals with the same four risk levels,

by four suicide risk assessment experts. Along with the level of risk for each individual,

the annotators for EXPERT dataset also designated the single post that most strongly sup-

ported each of their low, moderate, or severe risk labels. An at-risk individual’s number of

14See Confidence Score https://success.appen.com/hc/en-us/articles/202703305-Getting-Started-Glossary-of-Terms
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Long Experts Short Experts Crowdsourcers

All Experts 0.8367 0.7173 0.5047

Table 4.3: Macro F1 scores for consensus human predictions on the 242 individuals la-
beled by both experts and crowdsourcers, using all-experts consensus as ground truth.

posts can range from 10 to 1,326. See Table 4.2 for a detailed breakdown of the number

of posts per individual across datasets and risk categories.

4.3 Annotation Disagreements

To investigate the quality of annotation across and within groups of crowdsourcers and

experts, we begin by treating annotation as a prediction task performed by humans. Ta-

ble 4.3 shows the macro F1 score using all-experts consensus labels as ground truth, with

different human consensus values as the prediction. These pattern as one would expect,

decreasing from experts with long instructions, to experts with short instructions rely-

ing on (varied) training, and we hypothesize that the much lower performance of crowd-

sourcers arises both because they have less training than experts, and because they are less

mission-driven in their motivations and therefore are likely to feel a lower commitment to

the task.

Nonetheless, it is worth noting that there is clear value in the crowdsourced anno-

tations. Table 4.4 shows a confusion matrix measuring crowdsourcers’ consensus against

the all-experts consensus, and it appears that most of the disagreements involve crowd-

sourcers erring on the side of caution, misclassifying more than half of the low-risk in-

dividuals as having higher risk, and misclassifying a large number of moderate risk in-

dividuals (no imminent threat of a suicide attempt) as having severe (imminent) risk. In

settings where the goal is to flag individuals for more careful review and possible inter-

vention, false positives seem likely to be the preferred kind of error.15

Table 4.5 shows the confusion matrix for experts receiving short versus long in-

structions, which may be illuminating for scenarios in which trained healthcare profes-

15Performance differences between experts and non-experts require more study. For example, Homan et al. (2014) found that two
novice annotators were more likely to assign their expert’s “low distress” tweets to the “no distress” category. Conversely, on a related
but coarser-grained categorization task, Liu et al. (2017) find “some evidence that multiple crowdsourcing workers, when they reach
high inter-annotator agreement, can provide reliable quality of annotations”.
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Crowdsourcers

None Low Moderate Severe

A
ll

E
xp

er
ts

None 29 1 1 5
Low 11 13 20 6
Moderate 6 11 47 51
Severe 1 1 8 34

Table 4.4: Counts of agreement and disagreement cases between experts’ consensus (All
Experts) and crowdsourcers’ consensus (Crowdsourcers).

Short Experts

None Low Moderate Severe

L
on

g
E

xp
er

ts

None 36 1 1 0
Low 5 16 34 3
Moderate 1 0 56 14
Severe 0 0 17 61

Table 4.5: Counts of agreement and disagreement cases between experts using long in-
struction (Long Experts) and short instruction (Short Experts).

sionals perform assessment using social media posts but do not take the time to apply the

long-instructions rubric or do not do so consistently. We observe the same trend toward

erring in the direction of false positives, and it is notable that no severe-risk individuals

(based on the long-instruction consensus) are assigned to no risk or even low risk by the

short-instructions consensus.

4.4 Privacy and Anonymization

Our research involving the University of Maryland Reddit Suicidality Dataset has under-

gone review by the University of Maryland Institutional Review Board with a determina-

tion of Category 4 Exempt status under U.S. federal regulations. For this dataset, (a) the

original data are publicly available, and (b) the originating site (Reddit) is intended for

anonymous posting.

Individual accounts on Reddit are fundamentally anonymous: when creating a Red-

dit account, only a username and password need to be supplied, with e-mail address

optional (Reddit, 2018). Since individuals might have chosen to include potentially iden-
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tifying information in their usernames, we go a step further and replace usernames with

unique numeric identifiers.16

In addition, the dataset used in this chapter has undergone automatic de-identification

using named entity recognition to aggressively identify and mask out potential personally

identifiable information, such as person names and organizations, in order to create an

additional layer of protection (Zirikly et al., 2019). In an assessment of de-identification

quality, Zirikly et al. (2019) manually reviewed a sample of 200 randomly selected posts

(100 from the SuicideWatch subreddit and 100 from other subreddits), revealing zero

instances of personally identifiable information.

Following Benton et al. (2017), we treat the data (even though de-identified) as sen-

sitive and restrict access to it, we use obfuscated and minimal examples in the dissertation

and presentations, and we do not engage in linkage with other datasets.

4.5 From Classification to Prioritization

This chapter has created a dataset for research on risk assessment for suicidality based on

social media, which includes expert ratings for 242 individuals and crowdsourced ratings

for 621 individuals. We found that inter-rater agreement among experts is very good, with

consistency particularly encouraged using detailed instructions specifying classification

criteria. We also looked at differences in consistency when ratings are provided by experts

using their own experience and judgment rather than following detailed instructions.

Since the creation of this dataset in 2018, this dataset since has been shared, through

a collaboration with the American Association of Suicidology (AAS), with more than

35 teams internationally.17 The dataset has also been used in a shared task in the 2019

Computational Linguistics and Clinical Psychology Workshop (CLPsych 2019) held at

the 2019 Conference of the North American Chapter of the Association for Computational

Linguistics (NAACL) (Zirikly et al., 2019).

Most of the teams approach the dataset in a classification framework. That is, the

16For example, a hypothetical individual could choose the username maryjanesmith1973.collegepark, identifying
name, birth year, and location.

17See dataset availability and governance plan: http://users.umiacs.umd.edu/~resnik/umd_reddit_suicidality_dataset.html
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predictive system attempts to predict the category of suicidality risk by taking the se-

quence of postings as inputs. The predicted risk is then compared with the expert assess-

ment to calculate micro or macro F1 scores. While these approaches make sense, they

do not directly address the scarcity of mental health assessment resources – healthcare

professionals’ time, in particular. For healthcare professionals to assess an individual

consisting of a potentially large number of documents takes time; assessing many indi-

viduals take even more time. Recognizing this challenge, we introduce a reformulation

of the problem from classification to prioritization in the next chapter. Instead of evalu-

ating the categorical agreement, we evaluate the ranking of the individuals based on their

suicidality risk. Furthermore, we also investigate document attention’s ability to surface

documents likely containing signals of suicidality to save healthcare professionals’ time.

46



Chapter 5: A Prioritization Model for Suicidality Risk Assessment

Chapter 4 describes the creation of a dataset for assessing suicidality risk using social

media, which follows a similar structure to the clinical coding problem in Chapter 3: the

level of inference is at the individual level, but the evidence is found in a subset of the

individual’s documents. In this chapter, recognizing healthcare professionals’s time con-

straint, we introduce a reformulation of the problem from classification to prioritization.

Recall that in Chapter 1, we argue that many applications in a healthcare setting

should not be automated without healthcare professionals’ intervention. The need to in-

volve healthcare professionals introduces a resource limitation.1 Time, is the limiting

resource. In this chapter, we reframe suicide risk assessment from social media as a rank-

ing problem whose goal is maximizing detection of severely at-risk individuals given the

time available. Building on measures developed for resource-bounded document retrieval,

we introduce a well-founded evaluation paradigm. Using the expert-annotated test collec-

tion in Chapter 4, we demonstrate that meaningful improvements over plausible cascade

model baselines can be achieved using a document attention-based approach (similar to

ELDAN in Chapter 3) that jointly ranks individuals and their social media posts.2

5.1 The Need to Prioritize

Mental illness is one of the most significant problems in healthcare: in economic terms

alone, by 2030 mental illness worldwide is projected to cost more than cardiovascular dis-

ease, and more than cancer, chronic respiratory diseases, and diabetes combined (Bloom

et al., 2012). Suicide takes a terrible toll: in 2016 it became the second leading cause of

1In this setting, healthcare professionals may refer to suicide prevention specialists, mental health clinicians, or psychiatrists.
2This chapter contains content from: Shing, Han-Chin, Philip Resnik, and Douglas W. Oard. "A prioritization model for

suicidality risk assessment." Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020.
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death in the U.S. among those aged 10-34 and fourth among those aged 35-54. Overall

rates are nearly twice as high for most rural areas (where access to help is more likely

to be a challenge) than most urban areas (Hedegaard et al., 2018). Prevalence statistics

suggest that roughly 409 of the 7,711 authors who submitted to the 58th annual meeting

of the Association for Computational Linguistics (ACL) in 2020 have since had serious

thoughts of suicide, 116 have made a plan, and 46 have actually made attempts.3

The good news is that NLP and machine learning are showing strong promise for

impact in mental health. Traditional methods for predicting suicidal thoughts and be-

haviors have failed to make progress for fifty years (Franklin et al., 2017), but with the

advent of machine learning approaches (Linthicum et al., 2019), including text analysis

methods for psychology (Chung and Pennebaker, 2007) and the rise of research on mental

health using social media (Choudhury, 2013), algorithmic classification has reached the

point where it can now dramatically outstrip performance of prior, more traditional pre-

diction methods (Linthicum et al., 2019; Coppersmith et al., 2018). Further progress is on

the way, as the community shows increasing awareness and enthusiasm in this problem

space (e.g., Milne et al., 2016; Losada et al., 2020; Zirikly et al., 2019; Goharian et al.,

2021).

The bad news is that moving these methods from the lab into practice will create

a major new challenge: identifying larger numbers of people who may require clinical

assessment and intervention will increase stress on a severely resource-limited mental

health ecosystem that cannot easily scale up.4 This motivates a reformulation of the tech-

nological problem from classification to prioritization of individuals who might be at risk,

for clinicians or other suitably trained staff as downstream users.

Perhaps the most basic way to do prioritization is with a single priority queue that

the user scans from top to bottom. This “ranked retrieval” paradigm is common for In-

formation Retrieval (IR) tasks such as document retrieval. The same approach has been

applied to ranking people based on their expertise (Balog et al., 2012), or more generally

to ranking entities based on their characteristics (Balog, 2018). Rather than evaluating

3Approximately: ACL is international, but these figures use prevalence statistics for U.S. adults in 2019 (Elinore F. McCance-
Katz, SAMHSA, 2020): 5.3% had serious thoughts, 1.5% made a plan, 0.6% made attempts.

4122 million Americans live in areas with mental healthcare provider shortages (Bureau of Health Workforce, 2020). That
number reflects an increase of about 9 million people between September 30, 2019 and December 31, 2020.
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categorical accuracy, ranked retrieval systems are typically evaluated by some measure of

search quality that rewards placing desired items closer to the top (Voorhees, 2001). Most

such measures use only item position, but we find it important to also model the time it

takes to recognize desired items, since in our setting the time of qualified users is the most

limited resource.

In this chapter, we do so by building on Time-Biased Gain (TBG, Smucker and

Clarke, 2012), an IR evaluation measure that models the expected number of relevant

items a user can find in a ranked list given a time budget. We observe that in many

risk assessment settings (e.g., Yates et al., 2017; Coppersmith et al., 2018; Zirikly et al.,

2019), the available information consists of a (possibly large and/or longitudinal) set of

documents, e.g., social media posts, associated with each individual, of which possibly

only a small number contain a relevant signal.5 This hierarchical structure, which is

similar to that of Chapter 3, combined with prioritization, gives rise to a formulation of

our scenario as a nested, or hierarchical, ranking problem. In this hierarchical ranking,

individuals are ordered by priority, but each individual’s documents must also be ranked.

Accordingly, we introduce hierarchical Time-Biased Gain (hTBG), a variant of TBG in

which individuals are the top level ranked items, and expected reading time is modeled

for the ranked list of documents that provides evidence for each individual’s assessment.

In addition, we introduce a prioritization model that jointly optimizes the nested

ranking task using a three-level hierarchical attention network (Yang et al., 2016); this

model also addresses the fact that in our scenario, as in many other healthcare-related

scenarios, relevance obtains at the level of individuals rather than individual documents

(see Chapter 3). Using a test collection of Reddit-posting individuals who have been

assessed for suicide risk by healthcare professionals based on their posts (Chapter 4), we

demonstrate, using hTBG, that our joint model substantially outperforms cascade model

baselines in which the nested rankings are produced independently.

5Our dataset, for example, has one severe risk individual with 1,326 postings, of which only two are "signal" posts identified by
experts. See Table 4.2 for detailed statistics.
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5.2 Prediction Model

We began by motivating risk assessment via social media as a person-centered, time-

limited prioritization problem, in which the technological goal is to support downstream

healthcare professionals or other assessors in identifying as many people at risk as possi-

ble. This led to the conclusion that systems should not only rank individuals but, for each

individual, rank their posts.

Next, we need a system that can produce such nested rankings of individuals and

their posts. Ideally such a system should be able to train on only individual-level, not

document-level, labels, since suicide risk is a property of individuals, not documents, and

document labels are more difficult to obtain. In addition, such a system should ideally

produce additional information to help the downstream healthcare professional — if not

justification of its output, then at least highlighting potentially useful information.

The ELDAN model in Chapter 3 fits this need. It handles a similar hierarchical

structure and supports training on the individual level (encounter level in Chapter 3) with-

out document-level annotations. The document-attention of ELDAN has also been shown

to match professional medical coders’ expectations. We thus introduce 3HAN, a hierar-

chical attention network (Yang et al., 2016) that extends up to the level of individuals, who

are represented as sequences of documents. This architecture is similar to the ELDAN

we proposed in Chapter 3 for coding clinical encounters; it obtained good predictive per-

formance and we also showed that, despite concerns about the interpretation of network

attention (Jain and Wallace, 2019), hierarchical document-level attention succeeded in

identifying documents containing relevant evidence. 3HAN differs from ELDAN in that

it builds representations hierarchically from the word level, as opposed to pre-extracted

conceptual features such as those used in ELDAN, and it takes document ordering into

account using a bi-directional GRU (Bahdanau et al., 2015).

Specifically, our model has five layers (Figure 5.1). The first is a word-embedding

layer that turns a one-hot word vector into a dense vector. The second to fourth layers

are three Seq2Vec layers with attention that learn to aggregate, respectively, a sequence

of word vectors into a sentence vector, a sequence of sentence vectors into a document
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Figure 5.1: An illustration of the three-level Hierarchical Attention Network (3HAN)
model

vector, and a sequence of document vectors into an individual vector (hence 3HAN). The

final layer is a fully connected layer followed by softmax.

We detail our Seq2Vec layer in the context of aggregating a sequence of document

vectors to an individual’s vector, though the three Seq2Vec layers are the same. See

Figure 5.2 for an illustration. Document vectors {di,j}mj=1 are first passed through a bi-

directional GRU layer. The outputs, after passing through a fully-connected layer and a

non-linear layer, are then compared to a learnable attention vector, vattention. Specifically,

gi,j = Bi-GRU(di,j) (5.1)

ri,j = tanh (Wgi,j + b) (5.2)

ai,j =
er

>
i,jvattention∑m

j′=1 e
r>
i,j′vattention

(5.3)

ui =
∑m

j=1
ai,jgi,j (5.4)

where ai,j is the normalized document attention score for the j-th vector, and ui is the
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Figure 5.2: Seq2Vec with Attention used in the 3HAN model

final aggregated individual vector. As shown in Equation 5.3, the transformed vector ri,j

is compared with the learnable attention vector vattention using a dot product, and further

normalized for the weighted averaging step in Equation 5.4. The Seq2Vec layer that uses

document attention to aggregate a sequence of documents into an individual vector is

directly parallel to the document-level attention layer of ELDAN from Chapter 3. The

main difference between the two is that 3HAN’s document attention additionally models

sequential information by using a bi-directional GRU.

Once we have the individual vector ui, we can predict the risk label of the individual

by passing it through a fully-connected layer and a softmax. Specifically,

P (ŷi) = softmax (WFCui + bFC) (5.5)

Finally, we compare with the ground truth label yi of individual i using negative log-

likelihood to calculate a loss:

lossi = −log (P (ŷi = yi)) . (5.6)
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5.3 A Measure for Risk Prioritization

Section 5.1 argues for formulating risk assessment as a prioritization process where the

assessor has a limited time budget. This motivates the need for a hierarchical ranking that

jointly ranks individuals and their documents – thus the 3HAN model in Section 5.2. The

need to evaluate that hierarchical ranking under a limited time constraint leads to four

desired properties in an evaluation measure:6

• Risk-based: Individuals with high risk should be ranked above others.

• Head-weighted: Ranking quality near the top of the list, where assessors are more

likely to look, should matter more than near the bottom.

• Speed-biased: For equally at-risk individuals, the measure should reward ranking

the one who can be assessed more quickly closer to the top, so that more people at

risk can be identified within a given time budget.

• Interpretable: The evaluation score assigned to a system should be meaningful to

assessors.

Among many rank-based measures that satisfy the risk-based and head-weighted criteria,

TBG directly accounts for assessment time in a way that also satisfies the speed-biased

criterion (see Theorem 5.3.1). Furthermore, the numeric value of TBG is a lower bound

on the expected number of relevant items — in our case, high-risk individuals — found

in a given time budget (Smucker and Clarke, 2012), making it interpretable. After in-

troducing TBG, in Section 5.3.2 we develop hierarchical Time-Biased Gain (hTBG), an

extension of TBG, to account for specific properties of risk assessment using social media

posts.7
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Figure 5.3: User model for Time-Biased Gain (TBG)

5.3.1 Time-Biased Gain

TBG was originally developed in IR for the case of a user seeking to find a relevant

document, but here we frame it in the context of risk assessment (Figure 5.3). TBG

assumes a determined user (say a healthcare professional) examining a ranked list of

individuals in the order presented by the system. For each individual, the healthcare

professional first examines a summary and then decides whether to check relevance via

more detailed examination, or to move on. Checking requires more time to make an

assessment of whether the individual is indeed at-risk. TBG is a weighted sum of gain,

gk, and discount, D(·), a function of time:

TBG =
∞∑
k=1

gkD (T (k)). (5.7)

6Throughout, assessor or user signify a healthcare professional or other human assessor, and individual is someone being
assessed.

7TBG and hTBG code: https://github.com/sidenver/hTBG
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T (k) is the expected amount of time it takes a user to reach position k:

T (k) =
k−1∑
i=1

t (i) (5.8)

t(i) = Ts + Pcheck (reli)Ei (5.9)

where t(i) is expected time spent at position i. Breaking down t(i), Ts is the time it takes

to read a summary and decide whether to check the individual; if yes (with probability

Pcheck(reli)), Ei is expected time for detailed assessment, calculated as a function of the

individual’s total word count Wi:

Ei = TαWi + Tβ (5.10)

where Tα and Tβ scale words to time. The discount function D(t) decays exponentially

with half-life h:

D(t) = 2−
t
h (5.11)

where h is the time at which half of the healthcare professionals will stop, on average.

The expected stop time (or mean-life) is h
ln(2)

. Finally, the gain, gk is:

gk = Pcheck(relk)Pflag(relk)1[relk=1] (5.12)

where Pcheck(relk) is the probability of checking the individual after reading the summary

at position k, and Pflag(relk) is the probability of flagging that individual as high risk. Gain

thus accrues only if a healthcare professional actually finds a high-risk individual, making

TBG (and thus the following hTBG) a measure for binary relevance judgment.

The decay function in Equation 5.11 monotonically decreases with increasing time

(and thus rank), so TBG satisfies the head-weighted criterion. Table 5.1 shows the param-

eters used in Smucker and Clarke (2012), which were estimated from user studies using

data from TREC 2005 Robust track.

Particularly of interest in a time-limited assessment, we can prove that TBG (and

thus hTBG) is speed-biased:
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Parameter Description Value

Pcheck(reli)
Prob. to check, given the
relevance of summary

0.64, if reli = 1
0.39, if reli = 0

Pflag(reli)
Prob. to flag, given the
relevance of individual

0.77, if reli = 1
0.27, if reli = 0

Ts Seconds to evaluate a summary 4.4

TαW + Tβ Seconds to judge W words 0.018W + 7.8

Table 5.1: Parameters used for TBG and hierarchical TBG.

Theorem 5.3.1 (TGB satisfies the speed-biased criterion). Swapping an at-risk individ-

ual of longer assessment time ranked at k with an equally at-risk individual of shorter

assessment time ranked at k + r, where r > 0, always increases TBG.

Proof. See Appendix B.2.1

5.3.2 Hierarchical Time-Biased Gain

TBG assumes that detailed assessment involves looking at all available evidence (Equa-

tion 5.10). However, in our setting, an individual may have a large or even overwhelming

number of social media posts. One severe risk individual in the UMD Reddit Suicidality

dataset (Chapter 4), for example, has 1,326 posts in Reddit, the vast majority of which

would provide the assessor with no useful information. Therefore, we need to prioritize

the documents to be read and a way of estimating when the user will have read enough to

make a decision.

In general, healthcare professionals engage in a sensemaking process as they ex-

amine evidence, and modeling the full complexity of that process would be difficult. We

therefore make two simplifying assumptions: (1) that there is a high-signal document that

suffices, once read, to support a positive relevance judgment, and (2) that the healthcare

professional will not read more than some maximum number of documents. These as-

sumptions align well with those of Expected Reciprocal Rank (ERR), whose cascading

user model assumes that as the user works down a ranked list (in our case, the ranked doc-

uments posted by a single individual), and that they are more likely to stop after viewing a
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Figure 5.4: hTBG’s model for calculating expected assessment time for an individual,
replacing shaded box in Figure 5.3.

highly relevant document than after viewing an irrelevant one, as their information need is

more likely to have been satisfied Chapelle et al. (2009). This results in a cascade model of

user behavior: ERR =
∑∞

k=1
1
k
P (stop at k), in which P (stop at k) = Rk

∏k−1
i=1 (1−Ri),

whereRk = f(relk) is the probability of stopping at position k as a function of relevance.

This suggests replacing Equation 5.10 with the following expected time estimate

for detailed assessment of an individual:

Ei = Tα

L∑
l=1

(
Wi,l

l−1∏
m=1

(1−Ri,m)

)
+ Tβ (5.13)

whereRi,l is the probability of stopping at the l-th document for individual i, andWi,l > 0

is the cost (in our case, word count) of reading the l-th document for individual i. Note

that for the special case that no relevant document exists, ∀i, l ∈ N,Ri,l = 0), hTBG

reduces to TBG. See Figure 5.4 for an illustration of Ei for hTBG. For the derivation of

Equation 5.13 from ERR’s cascading user model, see Appendix B.2.3.

5.3.3 Optimal Values for TBG and hTBG

Calculation of the optimal value for a measure is often important for normalization,

though not always easy; in some cases it can be NP-hard (Agrawal et al., 2009). An-

other popular approach is to normalize by calculating the metric with an ideal collection.

For example, Smucker and Clarke (2012) calculate the normalization factor of TBG by
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assuming a collection with an infinite number of relevant documents, each of which lack

any content. In our case, however, we are actually interested in an optimal value achiev-

able for a given test collection: the optimal values of TBG and hTBG are properties of

the bottleneck that occurs due to the user’s limited time-budget. We find that:

Theorem 5.3.2 (Optimal TBG). The optimal value of TBG under binary relevance is

obtained if and only if (1) all at-risk individuals are ranked above not-at-risk individuals,

and (2) within the at-risk individuals, they are sorted based on time spent in ascending

order.

Proof. See Appendix B.2.1

Theorem 5.3.2 makes sense, as any time spent on assessing a not-at-risk individual is

time not spent on assessing other potentially at-risk individuals. Preference in assessing

individuals with shorter assessment time also increased the chance of assessing more

individuals in the given time budget.

Minimum Individual Assessment Time. To calculate optimal hTBG, we need to min-

imize individual assessment time. A natural question to ask, then, is whether a result sim-

ilar to Theorem 5.3.2 holds for the individual assessment time of hTBG in Equation 5.13.

By swapping paired documents, we can use proof by contradiction to show that:

Theorem 5.3.3. Minimum individual assessment time is obtained if the documents are

sorted in descending order by Ri,l

Wi,l
.

Proof. See Appendix B.2.2

Theorem 5.3.3 shows a surprisingly intuitive trade-off between how relevant a document

might be, and how much time (proportional to word counts) the expert needs to take to

read it: highly relevant documents with short reading time are preferred.

Observe that Theorem 5.3.1 (speed-biased criterion) and Theorem 5.3.2 both apply

to hTBG, as the two theorems only concern the ranking of individuals, not documents,

and hTBG is an extension of TBG to measure the effects of document ranking. Using
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Theorem 5.3.3 and Theorem 5.3.2, calculation of optimal TBG and hTBG values is sim-

ply a matter of sorting. For TBG, time complexity is O(n log(n)), where n ≤ K is

the number of at-risk individuals in the test collection. For hTBG, worst-case time com-

plexity is O(n log(n) + nm log(m)), where m ≤ L is the maximum number of relevant

documents per individual.

5.4 Experimentation

As we have shown in Section 5.3.2, hTBG provides a natural way to measure 3HAN:

3HAN’s prediction can rank individuals, and within each individual we can use 3HAN’s

document attention to rank their social media posting. However, hTBG is not limited to

just measuring 3HAN. Given an individual-level ranker and a document-level ranker, we

can calculate hTBG scores by comparing it with a test collection that has both individual-

level and document-level annotations.

In this section, we reintroduce the UMD Reddit Suicidality dataset from Chapter 4

as our test collection. We then show how we can evaluate 3HAN and different combina-

tions of individual-level rankers and document-level rankers on the test collection using

hTBG. Training details for all models can be found in Appendix B.3.

5.4.1 Test Collection

In our experimentation, we use the University of Maryland Reddit Suicidality Dataset

described in Chapter 4 as our test collection.8 The test collection consists of individuals

represented by a (potentially long) sequence of social media postings, where the risk

of suicidality is assigned to the individual. However, the annotation is done using their

postings. For a detailed description, please refer to Chapter 4. Here we give a summary

of the test collection.

Recall from Chapter 4 that the full dataset has three subsets with disjoint individ-

uals, annotated with increasing level of annotation quality. The first, which we term

the WEAK SUPERVISION dataset, annotated using heuristic rules, includes 10,263 po-

8See Appendix B.1 for IRB and ethical considerations.
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tential positive individuals and 10,759 potential control individuals. The second set is the

CROWDSOURCE dataset, including 621 individuals annotated by crowdsourcers with four

risk levels: No Risk, Low Risk, Moderate Risk, and Severe Risk. The last is the EXPERT

dataset, including 242 individuals with the same four-level annotation, by four suicide

risk assessment experts. In addition to the level of risk for each individual, the expert

annotators also designated the single post that most strongly supported each of their low,

moderate, or severe risk labels.

5.4.2 Evaluating with TBG and hTBG

As TBG and hTBG are measures designed for binary relevance judgements, we map the

Severe Risk category to at-risk, and everything else to not-at-risk.9 For word counts,

we directly use the token counts in documents. We use the parameters that Smucker

and Clarke (2012) estimated for TBG in user studies (Table 5.1). As discussed in Sec-

tion 5.3.2, we assume there exists a maximum number of documents the healthcare pro-

fessional can read for each individual. We set that number to 50 for the calculation of

hTBG; if no relevant document exists in the top 50 documents, we consider that individ-

ual a miss and set the gain to zero.10

To rank individuals using our classification models, we use a standard conversion

method to convert four-class probability to a single score:

R∑
reli

P (ŷi = reli) scorereli (5.14)

where R is {No,Low,Moderate,Severe}, and scorereli is the real number that maps to the

risk-level of the individual i. We use {No = 0,Low = 1,Moderate = 2,Severe = 4} as

our mapping — No Risk can plausibly be treated the same as a post with no annotation

(e.g. a control individual), and exponential scaling reflects our emphasis on finding high

risk individuals.

The hTBG metric also requires a stopping probability for each document, Ri,l.

9Since the label definitions distinguish severe from moderate by focusing on the risk of an attempt in the near future, this
binary distinction is aligned with recent work in suicidology that focuses specifically on characterizing “the acute mental state that is
associated with near-term suicidal behavior" (Schuck et al., 2019).

10All parameters were frozen prior to testing.

60



Assuming that the more severe the risk associated with a document is, the more likely

the assessor is to stop and flag the individual, on the EXPERT dataset where we have

document-level annotations, we can estimate the expected stopping probability as:

Ri,l = 1−
C∏
c=1

(
1−

scorereli,l,c

scoremax

)
(5.15)

whereC annotators annotated the post as most strongly supporting their judgment. Scorereli,l,c

is a mapping from the document-level risk by annotator c to a real number, with the same

mapping used in Equation 5.14. Scoremax = 4 is the maximum in that mapping.

To reflect different time budgets, we report results with the half-life parameter rang-

ing from 1 to 6 hours, which correspond to expected time budgets from 1.4 to 8.7 hours.11

5.4.3 Models for Ranking Individuals

hTBG allows us to measure the hierarchical ranking (individual and their documents) pro-

duced by 3HAN. To compare 3HAN with other baselines using hTBG, we first describe

three individual-level rankers that rank individuals based on their suicidality risk. In the

next section, we will describe the document-level rankers. All models are pretrained on

the WEAK SUPERVISION dataset, fine-tuned on the CROWDSOURCE dataset, and test on

the EXPERT dataset.

3HAN. 3HAN is first pretrained on the binary WEAK SUPERVISION dataset. The model

is then further tuned on the four-class CROWDSOURCE dataset by transferring the weights

(except for the last fully-connected prediction layer) over. We initialized and fixed the

word embedding using the 200-dimensional Glove embedding pretrained on Twitter (Pen-

nington et al., 2014).12

3HAN_Av. 3HAN Average is trained the same way as 3HAN, except that the last

Seq2Vec layer (the layer that aggregates a sequence of document vectors to an individual

11The expected stop time (or mean-life) is h
ln(2)

12We experimented with trainable Glove embedding as well as BERT, but saw little to no improvement in performance using
cross-validation.
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vector) is averaged instead of using attention, which can be achieved by fixing ai,j = 1
m

in Equation 5.3. This is similar to the HN-AVE baseline in Yang et al. (2016). Note that

3HAN_AV cannot rank documents, as it lacks document attention.

LR. A logistic regression model is trained on the CROWDSOURCE dataset. The feature

vector for an individual is computed by converting documents into document-level fea-

ture vectors, and then averaging them to obtain an individual-level feature vector. For

each document, we concatenate four feature sets: (1) bag-of-words for vocabulary counts

larger than three, (2) Glove embedding summing over words, (3) 194 features represent-

ing emotional topics from Empath (Fast et al., 2016), and (4) seven scores measuring

document readability.13 This model is included as a conventional baseline from suicide

risk assessment, where the features used are similar to some systems found in the NAACL

CLPsych 2019 shared task (Zirikly et al., 2019).

5.4.4 Models for Ranking Documents

Recall from the previous section, comparing 3HAN with baseline using hTBG requires

individual-level rankers and document-level rankers. However, ranking documents in a

setting where document-level annotations are missing, as is our case here, is challenging.

Here we describe three document-level rankers that do not need document-level annota-

tions.

3HAN_Att. Document attention learned jointly with 3HAN. As a side effect to train-

ing our 3HAN model, we learn document attention scores, see Equation 5.3. This score

can then be used to rank documents in terms of their relevance to the judgement. This

availability of document ranking, despite a lack of document-level annotations, is a sig-

nificant advantage of hierarchical attention networks, since fine-grained document-level

annotations are difficult to obtain on a large scale. Sentence- and word-level attention are

a further advantage, in terms of potentially facilitating user review (see Figure 5.5).

13Flesch-Kincaid Grade Level, Flesch Reading Ease, Dale Chall Readability, Automated Readability Index (ARI), Coleman Liau
Index, Gunning Fog Index, and Linsear Write.
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Individual Document Half-life h
Ranker Ranker 1 hr 3 hrs 6 hrs

LR FORWARD 7.51 10.05 10.89
3HAN_AV FORWARD 7.76 10.15 10.94
3HAN FORWARD 7.40 9.98 10.84

LR BACKWARD 8.75 11.70 12.68
3HAN_AV BACKWARD 9.65 12.09 12.89
3HAN BACKWARD 9.73 12.17 12.95

LR 3HAN_ATT 9.44 12.05 12.88
3HAN_AV 3HAN_ATT 10.16 12.35 13.04
3HAN 3HAN_ATT 10.39 12.49 13.12

Optimal hTBG 19.78 20.39 20.54

Table 5.2: hTBG scores with three different time budgets, all combinations of individual
and document rankers.

Forward and Backward. Ranking an individual’s documents in either chronological

order (FORWARD) or reverse chronological order (BACKWARD) is an obvious default

in the absence of a trained model for document ranking, important baselines for testing

whether a document ranking model actually adds value.

5.5 Results and Discussion

Our model, 3HAN+3HAN_ATT (the only joint model) achieves the best performance

on hTBG compared to all other combinations of individual rankers and document rankers

across three different time budgets (Table 5.2). The diffference in hTBG is statisti-

cally significant except when compared to 3HAN_AV+3HAN_ATT.14 However, using

3HAN_ATT to rank documents implies that you have already trained 3HAN. Therefore,

a more reasonable combination to compare with is 3HAN_AV+BACKWARD, which we

outperform by a significant margin.

Overall, the effect of document ranking is larger than the effect of individual rank-

ing. Notably, the FORWARD document ranker always yields the worst performance.

BACKWARD, on the other hand, is surprisingly competitive. We hypothesize that this

may be an indication that suicidal ideation worsens over time, or perhaps of the unfortu-

14Paired bootstrap resampling test, repeated 1000 times, p < 0.05.
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Figure 5.5: Illustration of an assessment framework in which individuals are ranked by
predicted suicide risk based on social media posts, posts are ranked by expected useful-
ness for downstream review by a healthcare professional, and word-attention highlighting
helps foreground important information for risk assessment. Real Reddit posts, obfus-
cated and altered for privacy. Note that we are only showing the top-three documents
from the three highest-risk individuals, but in reality there can be thousands of documents
and thousands of at-risk individuals.

nate event of suicide attempts following posting a Severe Risk document. This motivates

the importance of prioritizing the reading order of documents: being able to find evidence

early in suicide assessment leaves more time for other individuals, and will reduce the

probability of misses.

Document ranking alone does not decide everything, as 3HAN+BACKWARD out-

performs LR+3HAN_ATT. It is the combination of 3HAN and its document attention

that produces our best model. This makes sense, as 3HAN, while learning to predict the

level of risk, also learns which documents are important to the prediction.

Figure 5.5 shows the top 3 documents in a summary-style view for each of the

highest ranked 3 individuals, with word-level attention shown using shading. Words

with lower attention scores are obfuscated; others are altered to preserve privacy. The

top-ranked individuals are annotated as Severe Risk, Moderate Risk, and Moderate Risk,

respectively. For the two individuals annotated as Moderate Risk, one out of the four

experts annotated them as Severe Risk. We suspect this is partially due to training on

the CROWDSOURCE dataset, where crowdsourcers tend to err on the side of cautions and

assign a higher risk category (see Section 4.3). In fact, crowdsourcers annotated the sec-

ond highest rank individual as Severe Risk. Also, recall that we do not fine-tune on the
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Ranker hTBG TBG NDCG@20

3HAN+3HAN ATT. 12.49 11.46 70.90
3HAN AV.+BACKWARD 12.09 11.40 68.28
LR+BACKWARD 11.70 10.98 69.44

Optimal 20.39 19.75 100.00

Table 5.3: TBG and NDCG@20 listed to compare with hTBG. Both hTBG’s and TBG’s
half lives are set at 3 hrs, and maximum document cutoff is set at 50.

EXPERT dataset, since in a realistic scenario, expensive annotations from experts usually

are not available for training.

Most top-3 ranked posts mention plans or past experiences of suicide. Some of the

highest-ranked postings from these individuals are not posted on SuicideWatch, but on

other mental health-related forums. For example, an individual describes having long-

term depression and isolation and a single pregnant mother with a history of depression

and anxiety.

Previously Existing Measures. For previously existing measures (e.g., TBG, NDCG,

Järvelin and Kekäläinen, 2002), document ranking has no effect, and thus these are not

suitable measures in our scenario. However, we include results here for reference (Ta-

ble 5.3). Since 3HAN_AV and LR cannot rank documents, it is impossible to calculate

hTBG, so we report results on the chronologically backward ranking strategy. NDCG@20

is NDCG score cut off at 20 (see related work in Section 2.5), chosen based on the optimal

hTBG value.

5.6 Summary

In this chapter, we extend our findings from Chapter 3 and demonstrate the effectiveness

of document-level attention in the context of suicidality assessment. Using the UMD

Reddit Suicidality dataset we collected in Chapter 4 and hTBG, we show that document-

level attention leads to improved individual-level ranking and reduces the assessment time

by surfacing documents that are likely to contain suicidal signals.

As mentioned in Chapter 1, Chapters 3 and 5 give rise to two important charac-
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teristics: (1) modeling the individual (or an individual’s clinical encounter) as a set of

documents, and (2) surfacing relevant information from that set of documents. In Chap-

ter 6, we return to the clinical encounter of Chapter 3. However, instead of assisting

clinical coders with clinical coding, our aim is now to assist healthcare professionals with

writing discharge summaries from prior clinical documents. We explore these two char-

acteristics in this new task by surfacing content relevant to the discharge summary from

the (potentially large) set of documents in the clinical encounter.
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Chapter 6: Learning to Compose Discharge Summaries from Prior Clin-

ical Notes

The records of patients can be extensive and complex, thus placing a premium on tools

that can help healthcare professionals efficiently identify key facts about a patients. Clin-

ical coding and suicidality risk assessments assisted by computer discussed in Chapters 3

and 5 are examples of such tools. They infer discrete labels about the patients and pro-

vide evidence for those inferred labels. Two shared characteristics emerge: (1) the patient

is modeled as a set of documents, and (2) evidence supporting the model inference is

surfaced from the extensive documents about the patient. These source of information

include naturally occurring language written by the patient, like social media postings,

and electronic health records (EHR) written by clinical practitioners.

In this chapter, we focus on the problem of computer-assisted discharge summary

composition from a clinical encounter. This problem shares a similar characteristic to the

previous chapters. We can model a patient’s clinical encounter as a set of documents; we

can then model the writing of the discharge summary, which is a summary of the clinical

encounter typically written at the time of discharge, as a task of surfacing and composing

relevant information from the encounter. In contrast to the previous chapters, we focus

on producing natural language text (the discharge summary) instead of discrete labels.

Conceptually, this leads us to model the problem as a multidocument summarization task.

Summaries in this setting need to be faithful, traceable, and scalable to multi-

ple long documents, motivating the use of extract-then-abstract summarization cascades.

We introduce two new measures, faithfulness and hallucination rate, for evaluation in

this task, which complement existing measures for fluency and informativeness. Results

across seven commonly found sections of the discharge summary and five models show
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Figure 6.1: A clinical encounter is an interaction between a patient and a healthcare
provider, which may contains hundreds of clinical notes.

that a summarization architecture that supports traceability yields promising results, and

that a sentence-rewriting approach performs consistently better than more complex sum-

marization models on the measure used for faithfulness (faithfulness-adjusted F3) over a

diverse range of generated sections.1

6.1 Discharge Summary in A Clinical Encounter

Clinical notes in the EHR are used to document the patient’s progress and interactions

with healthcare professionals for other healthcare professionals further downstream. These

notes contain rich and diverse information, including but not limited to admission notes,

nursing notes, radiology notes, and physician notes (Figure 6.1). The information down-

stream healthcare professionals need, however, is often buried in the sheer quantity of

text. Finding the information can be time-consuming; time that is already in short supply

for the healthcare professionals to attend to the patients (Weiner and Biondich, 2006; Sin-

sky et al., 2016), which can contribute to the worsening physician burnout crisis (Tawfik

et al., 2018; West et al., 2018).

In this chapter, we focus on a specific type of clinical note: the discharge summary.

The discharge summary is meant to summarize the clinical encounter, typically written

at the time of patient discharge. Recall from Chapter 3, a clinical encounter (Figure 6.1)

1This chapter contains content from: Shing, Han-Chin, Chaitanya Shivade, Nima Pourdamghani, Feng Nan, Philip Resnik,
Douglas Oard, and Parminder Bhatia. "Towards Clinical Encounter Summarization: Learning to Compose Discharge Summaries
from Prior Notes." In arXiv 2021.
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Figure 6.2: An extractive-abstractive summarization pipeline is shown with healthcare
professionals in the loop. The recall-oriented extractor extracts relevant sentences from
clinical documents; the abstractor smooths out irrelevant or duplicated information.
Healthcare professionals can review and modify extracted content and abstracted sum-
mary, and each summary stage can be traced to its source.

documents an interaction between a patient and a healthcare provider (e.g., a visit to the

hospital). In some cases, it contains hundreds of clinical notes written by healthcare pro-

fessionals. Discharge summaries are also semi-structured; each section in the discharge

summary (e.g., past medical history, brief hospital course, medications on admission)

represents a different aspect of the encounter.

Writing a discharge summary for the encounter is, therefore, no small task. Tools

that can assist healthcare professionals in writing them are placed at a premium since they

hold the potential to expedite the healthcare professionals’ workflow and reduce human

labor. It is well-documented that healthcare professionals write some sections (e.g., past

medical history, family history) by manually searching for and copying relevant content

from prior clinical notes, and then rewrite the copied content to remove redundancy and

into the format of the discharge summary section (Hirschtick, 2006; Pivovarov and El-

hadad, 2015). Natural language processing can potentially expedite this process already

in use by healthcare professionals. Manual selection of relevant content can be assisted

by using a content selection module, extracting information related to the specific dis-

charge summary selection. Rewriting and removing duplicated extracted information can

be framed as an abstractive summarization task.

However, it is essential to note that this process should not be fully automated with-
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out human intervention, especially in a clinical setting. The content extracted should be

displayed together with their context in the source documents so that healthcare profes-

sionals can further review and modify the content by deleting irrelevant content or adding

missing content. The abstractive summary generated from the selected extracted content

should also only act as a starting point to be further modified by healthcare professionals.

Figure 6.2 demonstrates an example of the interaction between these systems and humans.

By building a system to extract and compose discharge summary sections from prior clin-

ical notes (i.e., notes written before the discharge summary) in the same encounter, we

can display the information in a format healthcare professionals can further review and

modify. This is in part similar to the computer-assisted coding process we describe in

Chapter 3 and the use of speech recognition to assist medical transcription (David et al.,

2009), where technologies are not meant to replace humans, only to assist them.

Training and evaluating these systems with a human in the loop, however, is dif-

ficult. In this chapter, we choose to evaluate these systems by focusing on the special

case where humans do not review or correct the systems’ output. This allows us to model

the problem of discharge summary composition as an extract-then-abstract task. In Sec-

tion 6.10, we discuss the limitations of this modeling choice.

Under the extract-then-abstract framework, we identify three main challenges of

discharge summary composition: (1) the traceability of the system that allows healthcare

professionals to trace the summary to their source, (2) the faithfulness of the summary

to the source documents, and (3) the scalability of the system to the extensive clinical

encounter. All three challenges need to be properly addressed before a discussion about

deployment can happen. Thus, this chapter focuses on measuring and understanding

how existing state-of-the-art summarization systems perform on these challenges. Addi-

tionally, we propose an extractive-abstractive summarization pipeline that addresses the

traceability challenge and the scalability challenge. For the third challenge, faithfulness,

we introduce a faithfulness-adjusted evaluation measure that is based on matching med-

ical mentions such as those specified in the Unified Medical Language System (UMLS,

Bodenreider, 2004), inspired by recent work on faithfulness in summarization (Maynez

et al., 2020; Zhang et al., 2020; Nan et al., 2021).
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6.2 Traceability, Faithfulness, and Scalability

In this section, we identify three main challenges in the discharge summary composi-

tion problem under the context of the eventual goal to create a tool to help healthcare

professionals create discharge summaries more efficiently.

Traceability. A summary should be displayed with a mean for the healthcare profes-

sionals reviewing the summary to inspect and understand where the information comes

from. In this respect, extractive summarization has a clear advantage over abstractive

summarization, as the source of the extracted content can be easily traced and displayed

in context. However, abstractive summarization does benefit from more fluent generation

and thus the potential to function as a writing aid to alleviate the clinicians’ documenta-

tion burden. The challenge lies in how to design the system such that the summary can

be traced to its source documents.

Faithfulness. Like any model supporting clinical decision making, measuring and un-

derstanding the faithfulness of the model output is important. In the context of clinical

summarization, we follow the definition of Maynez et al. (2020), and define a faithful

summary as a summary without any information not found in the source documents. For

abstractive summarization systems, since they are trained and evaluated to generate fluent

output, faithfulness can be a challenge to these models. Addressing this problem is an

active area of research (Maynez et al., 2020; Zhang et al., 2020).

A faithful summary might not be useful, however. Any snippets extracted from

the source documents are by definition faithful but might not be relevant to healthcare

professionals’ needs. In Section 6.4, we discuss how to combine faithfulness and infor-

mativeness in our faithfulness-adjusted measures.

Scalability. Summarizing an encounter (modeled as a set of documents), the quantity of

text available can easily exceed the memory limit of the model. This memory limitation is

especially challenging for modern transformer-based architectures that typically require

large GPU-memory. Parts of the text that do not fit in memory can contain relevant clinical
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information for summarization. Attempting to train an abstractive model to generate a

summary without the source information available can encourage the model to generate

content that is unfaithful to the input document; this is a dangerous outcome in the context

of clinical summarization.

6.3 Extract and then Abstract

These challenges are common in summarization. In particular, one of the main chal-

lenges in multi-document abstractive summarization is to summarize a large number of

documents. While significant progress has been made to scale abstractive models (Belt-

agy et al., 2020; Zaheer et al., 2020), recent work still involves first using an extractive

model (e.g., tf-idf based cosine similarity (Liu et al., 2018), logistic regression (Liu and

Lapata, 2019a)) to limit the number of paragraphs before abstraction.

Here we propose a similar extractive-abstractive summarization pipeline. However,

in a clinical context, we wish to place more weight on the extractor rather than rely on

the abstractor to summarize a large quantity of text. This decision is motivated by the

fact that extractive models are inherently better at being faithful to the source, as they

do not introduce explicit novel information.2 Furthermore, by definition, an extractive

summary can be traced back to the source, making them ideal candidates for clinical

summarization (Pivovarov and Elhadad, 2015).

Our extractor-abstractor pipeline involves two stages (Figure 6.2). The first stage

functions as a recall-oriented extractive summarization system to extract relevant sen-

tences from prior documents. The extracted sentences are then passed through post-

processing steps that remove duplicated sentences and arrange them to form an extractive

summary. The second stage is an abstractive summarization system that aims to take the

extractive summary from the previous step and smooths out irrelevant or duplicated in-

formation. We describe the details of implementations and how to scale this pipeline to

very long text in Section 6.8.

Another advantage of this pipeline is that it provides a clear path of traceable fall-

2Implicit hallucination can still happen. For example, the two extracted sentences: “I gave prof a gift” and “I passed the test” put
together without the original context can incorrectly imply causation.
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Figure 6.3: Relationship between source documents, reference summary, and system-
generated summary.

back (Figure 6.2). Healthcare professionals can reference the extractive summary if they

find the abstractive summary problematic or if the abstractor model has low confidence.

The extractive summary can also be further traced back, as the extracted sentences came

from the source documents. We can thus display the extracted sentences in context or use

the extractor as a highlighter.

6.4 Measuring Faithfulness

Following prior work, we report ROUGE-n (n = {1, 2}) to measure token n-gram over-

lap as a proxy for informativeness, and ROUGE -L (longest common subsequence, with

possible gaps) as a proxy for fluency (Lin and Hovy, 2003; Maynez et al., 2020). How-

ever, as Schluter (2017) and Cohan and Goharian (2016) have argued, ROUGE alone is

insufficient and possibly misleading for measuring informativeness, specifically when it

comes to faithfulness and factualness.

In a summarization setting, a faithful summary refers to a summary that does not

contain information from outside of the source, as we have defined in Section 6.2. On

the other hand, a factual summary allows information not presented in the source, as long

as the information is factually correct. In the setting of clinical summarization, we argue

that faithfulness is far more important. Novel information appearing in a summary that
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has no support from the source, whether factual or not, can affect the transparency of the

model.

A downside of this definition of faithfulness, however, is that it does not take ref-

erence summaries into account. Any extracted sentences (e.g., the first three sentences)

from the source are always faithful by definition. Such extraction, however, might not be

a summary relevant to this task. Figure 6.3 helps us illustrate the relationship between

source documents, reference summary, and system-generated summary using a Venn di-

agram.3

A desirable summary, especially in a clinical setting, is faithful to the source and

relevant as measured by the reference summary. In Figure 6.3, this region corresponds to

B +C, the ideal set of information a clinical summarization system should target. Based

on this observation, we define Faithfulness-adjusted Precision as C
System

and Faithfulness-

adjusted Recall as C
B+C

. Intuitively, faithfulness-adjusted precision measures how much

information in the system-generated summary is both relevant and faithful. Similarly,

faithfulness-adjusted recall measures the ratio of faithful and relevant information that

has been included by the system. In a clinical setting, recall is often more important than

precision; it is better to over-extract and have healthcare professionals ignore or remove

the irrelevant content than have missing content. While our extractive-abstractive pipeline

provides a series of fallbacks that allows healthcare professionals to inspect what could

be missing by looking at the context of the extracted sentences, under-extraction can still

happen. We therefore report a recall-oriented measure to combine the two above mea-

sures: Faithfulness-adjusted Fβ , where we set β = 3. In this setting, faithfulness-adjusted

recall is three times more important than faithfulness-adjusted precision (Van Rijsbergen,

1979).4

Hallucination is perhaps the leading concern when applying abstractive summa-

rization system in a clinical setting. If one defines hallucination as a system generating

content that is not faithful to the source, we can identify hallucination as the region F+G.

G, the information that is present in neither the source nor the reference, is particularly

3Here we are showing a single reference summary, but in reality, the reference summary available is just one possible manifesta-
tion of all possible, potentially equally valid summaries (Nenkova and Passonneau, 2004). Our discussion can be extended to multiple
reference summaries by treating each one independently in the calculations and averaging them to report the final scores.

4We plan to explore the values of β in consultation with healthcare professionals in future work.
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Reference Summary
past medical history : # hypertension # hyperlipidemia # gerd # ckd with baseline cr 1.3 #
stable angina on long acting nitrate

System Summary
# hypertension # hyperlipidemia # gerd # ckd with baseline cr 1.3 nc occupation : changes
to medical and family history :

Source Documents

borderline prolonged p-r interval . intraventricular conduction delay . prior anteroseptal
myocardial infarction with ongoing anterolateral and lateral myocardial ischemia .
compared to tracing # 2 there is no significant change . tracing # 3 sinus rhythm .
prolonged a-v conduction . left axis deviation . intraventricular conduction delay .
[......continue with 55763 more words and 1448 more unique medical mentions]

Table 6.1: A example calculation of faithfulness-adjusted measures. # is a symbol clin-
icians used to indicate an item in a list. Highlighted words are medical mentions iden-
tified by scispaCy. To calculate faithfulness-adjusted recall and precision, we need to
identify the region B+C, indicated here by blue – medical mentions in the reference sum-
mary that is also found in the source documents. Orange indicates a medical mention
in the reference summary that is not found in the source documents. We can then com-
pare the medical mentions in the system summary to the blue mentions to calculate C,
the faithfulness-adjusted true positive, indicated by green. Red indicates faithfulness-
adjusted false positive. Thus, faithfulness-adjusted precision = C

System
= 5

8
; faithfulness-

adjusted recall = C
B+C

= 5
7
. In this case, all false positive mentions can be found in the

source, so incorrect hallucination rate = G
System

= 0
8
.

problematic. We therefore measure Incorrect Hallucination Rate as G
System

.

UMLS-based Medical Mentions as a Proxy to Information Overlap. However, an

important underlying assumption of these measures is that the regions in Figure 6.3 are

quantifiable. While there are many possible proxies one can use for these regions, as a

starting point, we use a medical mention recognition system in scispaCy, a competitive

model compared to state-of-the-art models across nine datasets (Neumann et al., 2019).

The scispaCy model is trained on the MedMentions dataset (Murty et al., 2018) to match

text span (medical mention) that can be linked to a medical concept in the Unified Medical

Language System (UMLS, Bodenreider, 2004) Metathesaurus, an integrated biomedical

terminology database. These medical mentions cover a wide range of vocabulary, in-

cluding but not limited to Current Procedural Terminology; Chemical Biology and Drug

Development Vocabulary; and International Classification of Diseases. After transform-

ing the clinical text into a set of medical mentions, the cardinalities of the sets and their

overlaps can then be used to calculate the above measures. See Table 6.1 for an example

of using medical mentions to calculate faithfulness-adjusted measures.
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6.5 Related Work

Recall from Section 2.1, we discuss related work on clinical summarization. Here we

discuss related work on summarization faithfulness.

Faithfulness in Summarization. Recognizing the limitations of the existing measures

and the danger of hallucination in summarization systems, faithfulness in summarization

has gained attention recently (Kryscinski et al., 2020; Cao et al., 2017). Recent work

on faithfulness evaluation in summarization involves using textual entailment (Maynez

et al., 2020) or question answer generation (Arumae and Liu, 2019; Wang et al., 2020).

For radiology summarization, Zhang et al. (2020) proposed using a radiology information

extraction system to extract a pre-defined set of 14 types of medical information tailored

to radiology reports.

In this chapter, we use the overlap of UMLS-based medical mentions as a proxy

to a key aspect of information overlap. We argue that the domain of clinical encounter

summarization is very different from the domains of most textual entailment tasks or

question answer generation tasks. The domain is often much more specific, allowing us to

use UMLS-based medical mentions as a proxy. However, it is not as specific as radiology

summarization (Zhang et al., 2020), where a set of 14 pre-defined types of information

(e.g., airspace opacity, pneumonia, cardiomegaly) can be succinctly identified.

6.6 Dataset

We derive our dataset from the MIMIC III database v1.4 (Johnson et al., 2016): a freely

accessible, English-language, critical care database consisting of a set of de-identified

clinical data of patients admitted to the Beth Israel Deaconess Medical Center’s Intensive

Care Unit (ICU). The database includes structured data such as medications and labora-

tory results and unstructured data such as clinical notes written by medical professionals.

For this chapter, we focus on the unstructured data.

The challenge for adapting the MIMIC III database for our purpose, however, is that

MIMIC III is incomplete. Due to the way that MIMIC III was collected, not all clinical
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Dataset Input Ouput Sample Size

Gigaword 101 101 106

CNN/DailyMail 102–103 101 105

WikiSum 102–106 101–103 106

Our Dataset 104–105 100–103 103

Table 6.2: Size comparison of summarization datasets. For detailed stats of the output
sections of our dataset, see Table 6.4.

notes are available; only notes from ICU, radiology, echocardiogram, electrocardiogram

(ECG), and discharge summary (Johnson and Shivade, 2020) are guaranteed to be avail-

able. It is important to note that the incompleteness is not a property of the problem we

are trying to address; it is a property of MIMIC III. We mitigate the incompleteness issue

by focusing on the subset of encounters that contain at least one admission note (a clinical

note written at the time of admission) as a proxy for completeness. This leaves us about

10% of the total encounters, or around 6,000 encounters.

We identify seven discharge summary sections as our targets for summarization: (1)

chief complaint, (2) family history, (3) social history, (4) medications on admission, (5)

past medical history, (6) history of present illness, and (7) brief hospital course. These

medical sections were chosen based on their high prevalence in discharge summaries and

their length diversity (see Table 6.4).

Discharge Summary Section Extraction. To extract the seven discharge summary sec-

tions from the discharge summary, we first use a regular expression-based approach to

identify the discharge summary section headers’ variants from the training set. We then

use a rule-based extraction approach to collection the discharge summary section: col-

lecting the content from the target discharge summary section header and stop right before

the next section header in the discharge summary. About one hundred randomly selected

extracted discharge summary sections are manually examined to ensure no missing con-

tent or over-extraction. For each of these discharge summary sections, we then collect all

prior clinical notes (according to the chart date timestamp in MIMIC III) as their source

documents. On average, the source documents consist of 64 documents and 36,357 words.

Table 6.2 shows a comparison with other datasets.
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After the rule-based extraction, we split the encounters training, validation, and test

sets (80/10/10) based on the patient’s subject id to prevent data leakage. If the rule-based

extraction returns nothing, the encounter is excluded. See Table 6.4 for the statistics of

sample size.

6.7 Ethical Considerations

Deidentification. Our dataset is derived from the publicly available database MIMIC III

v1.4 (Johnson et al., 2016). Johnson et al. (2016) deidentified the database in accordance

with the Health Insurance Portability and Accountability Act (HIPAA) standard. This

standard requires removing all eighteen identifying data elements, including patient name,

telephone number, address, and dates. These fields are replaced with placeholders. A

constant (but different per patient) offset is applied to shift the dates. Patients over 89

years old were mapped to over 300, in compliance with HIPAA.

Although under U.S. federal guidelines, secondary use of fully deidentified, pub-

licly available data is exempt from institutional review board (IRB) review (45 CFR

§ 46.104, “Exempt research”), we still consider the dataset sensitive. We are careful

to treat it as such. During training and error analysis, we of course do not attempt to

identify individuals, and when qualitative analysis is shown, we double-check to avoid

showing potentially identifiable information.

Population. In MIMIC III, out of the 38,161 patients, 71.34% are White, 7.69% Black,

2.38% other, 2.37% Asian, and the rest unknown. Most of the patients in MIMIC III were

older adults, with the most common age group being 71–80, followed by the 61–70 age

group. (Dai et al., 2020).

6.8 Models and Experiments

As explained in Section 6.3, our proposed pipeline involves an extractive summarization

component and an abstractive summarization component. This section identifies a set

of existing extractors and abstractors across a diverse range of different approaches to
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understand what models are suitable for discharge summary composition. To understand

the robustness of these approaches, we train and test these models across seven discharge

summary sections with a diverse range of length and content.

Extractors. Since our goal is to summarize an encounter conditioned on a target dis-

charge summary section, we focus our attention on supervised extractors. Supervised

extractive summarization is framed as a sentence extraction problem. Each sentence is

encoded into a representation used to determine whether the sentence should be included

in the extracted summary. RNN or transformer-based attention are often used to encode

the surrounding sentences as context.

RNN+RLext: Chen and Bansal (2018) proposed a method to use reinforcement

learning to fine-tune a pretrained RNN sentence extractor. By modeling the next sen-

tence to extract (including the extra “end-of-extraction” sentence) as the action space,

the current extracted sentences as the state space, and by using ROUGE between the ref-

erence summary sentence and the rewritten extracted sentence (rewritten by a separate

pretrained abstractor) as the reward, the authors re-purpose the sentence extractor to ex-

tract sentences from the source documents and reorder them as they might appear in the

summary.

PRESUMMext: Liu and Lapata (2019b) proposed Presumm, a family of summariza-

tion models. Here we are especially interested in the extractive summarization variant

that uses a modified pretrained BERT model (Devlin et al., 2019) to encode sentences

to determine whether the sentence should be included in the extracted summary. While

the model has been shown to achieve competitive results, applying a BERT encoder to

very long text can be challenging in terms of memory limitations. Thus, we apply a

split-map-reduce framework, where the long text is split into smaller units during training

and inference. After inference, each smaller unit’s extracted sentences are then concate-

nated back together in the same order as appeared in the original source. Since the model

only assigns scores to sentences, we select the score cutoff threshold on the validation set

using ROUGE-L scores, and apply that cutoff on the test set. Additionally, we select an-

other recall-oriented score cutoff using ROUGE-L F3 scores (calculated by placing more

79



weights on ROUGE-L recall). This version of the summary is termed PRESUMMext-F3 ,

which is used inside the extractor-abstractor pipeline. In contrast, PRESUMMext (cutoff

selected with ROUGE-L) can be examined as a standalone extractive summarization sys-

tem.

Abstractors. In our extractive-abstractive pipeline, abstractors play a role in rewriting

the extracted sentences to the reference summary. Here we include two abstractor vari-

ants:5

RNN+RLabs: This is similar to RNN+RLext. However, after each sentence is

extracted, it is immediately rewritten by passing through a pretrained sentence-level ab-

stractor. The goal is to rewrite each extracted sentence to the format of what might appear

in the reference summary. This sentence-rewriting approach has the disadvantage of only

having a local view when rewriting (thus no merging of information). However, the ad-

vantage is that the memory limitation of sentence-level rewriting does not grow with the

number of sentences, so it can be applied to longer summaries.

BART: Lewis et al. (2019) propose BART as a transformer variant that uses a bidi-

rectional encoder similar to BERT and an autoregressive (left to right) decoder similar to

GPT (Radford et al., 2019). The model has competitive performance for summariza-

tion, and thus is our choice for transformer-based abstractor. In contrast to the sentence-

rewriting approach of RNN+RLabs, we train BART to rewrite all extracted sentences

together to the summary.

Baselines. Since discharge summary composition is a new task, there are no baselines

from prior work. Following prior work on summarization (See et al., 2017; Liu and

Lapata, 2019b), we include two extractive baselines: (1) ORACLEext: Extraction by using

the reference summary; for each sentence in the reference summary, greedily select the

source sentence in the source document that yields the maximum ROUGE-L score. (2)

RULE-BASEDext: apply the same rule-based section extraction method in Section 6.6 that

was used to construct the dataset. Instead of applying it to the discharge summary, we

5We also experimented with a pointer-generator (See et al., 2017), but we found that BART consistently outperforms pointer-
generator, so we leave the pointer-generator results in Appendix C.1.
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Figure 6.4: ROUGE-L of extractors vs. average word lengths (in log scale) of the dis-
charge summary sections. Sections (dotted vertical lines) from short to long: (A) Chief
complaint, (B) Family history, (C) Social history, (D) Medications on admission, (E) Past
medical history, (F) History of present illness, and (G) Brief hospital course.

apply the same extraction method to the prior clinical documents.

Evaluating the extractor-abstractor pipeline. For the extractors, we report ROUGE

scores as well as our proposed faithfulness-adjusted {precision/recall/F3} scores across

the seven discharge summary sections. These extractors include RNN+RLext, PRESUMMext,

and PRESUMMext-F3 , as well as the two extraction baselines.

For the abstractors, we additionally measure incorrect hallucination rate as defined

in Section 6.4. We measure the abstractive models in combination with the extractive

models in our proposed pipeline. This implies measuring the performance of three models

combinations: RNN+RLabs (uses RNN+RLext as the extractor), RNN+RLext + BART, and

PRESUMMext-F3 + BART.

6.9 Results and Discussion

Extractive summarization and abstractive summarization are often applied in different

settings and should thus be compared separately. For results on ROUGE, see Table 6.3.

For results on faithfulness-adjusted measures, see Table 6.4. Here we highlight the main

findings.
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Figure 6.5: ROUGE-L of abstractors vs. average word lengths (in log scale) of the dis-
charge summary sections. Sections order is the same as Figure 6.4. Note that PRE-
SUMMext-F3 + BART and RNN+RLext + BART almost overlap completely.

Chief Complaint Family History Social History
Medications on
Admission

Past medical
History

History of
Present Illness

Brief Hospital
Course

train / val / test 4,757/559/625 4,686/555/614 4,677/552/618 4,689/557/616 4,746/558/623 4,754/559/625 4,758/558/625
Output # words 7.25 17.03 44.90 69.58 75.36 274.88 491.97
Output # sents 2.04 2.63 4.93 4.67 5.99 16.62 35.39

ORACLEext 73.0/59.0/72.9 55.7/40.5/55.3 62.0/48.2/61.0 61.5/47.7/60.6 75.1/67.0/74.1 77.4/66.8/75.8 45.7/22.3/41.8

RULE-BASEDext 59.8/44.5/59.8 43.9/31.8/43.9 18.6/12.1/18.6 26.1/22.2/26.1 20.6/16.3/20.6 08.3/07.3/08.3 09.2/08.5/09.2
RNN+RLext 45.1/33.1/45.0 40.2/28.6/40.0 37.6/27.2/36.6 43.4/35.6/42.1 47.9/40.2/46.3 34.8/28.3/33.4 21.3/6.7/18.6
PRESUMMext 12.3/06.9/11.9 33.2/24.0/32.9 36.3/27.5/35.4 47.2/40.7/46.2 50.8/41.9/49.7 53.2/45.4/51.8 29.6/10.6/26.1
PRESUMMext-F3 11.7/06.2/11.3 32.4/23.6/32.1 28.4/20.4/27.3 38.2/32.0/37.2 48.6/40.3/47.4 48.2/40.6/46.7 26.9/8.9/23.4

RNN+RLext + BART 53.5/37.5/53.1 48.9/38.6/48.6 50.3/38.0/49.4 58.2/51.9/57.0 66.9/58.5/65.2 61.1/51.3/59.1 28.2/10.6/25.7
PRESUMMext-F3 + BART 49.9/33.0/49.6 47.4/37.5/47.2 49.6/38.3/48.8 57.8/50.9/56.7 66.0/58.3/64.7 61.0/52.4/59.2 28.0/12.4/25.5
RNN+RLabs 61.2/47.5/60.9 61.6/50.5/61.3 45.9/33.7/44.8 49.9/42.2/48.2 57.5/47.9/55.3 47.6/38.4/45.4 32.1/10.4/28.0

Table 6.3: Dataset statistics and ROUGE-{1/2/L} scores. Bold score indicates statistical
significance within the same extractor/abstractor group by paired t-test at p ≤ 0.05.

The extractor’s performance is modulated by the length of the output section. In

Figure 6.4, we highlight the ROUGE-L scores (ROUGE-1 and ROUGE-2 have a similar

pattern) of the two extractive summarization systems compared to the oracle and rule-

based extractive summary. An interesting observation is the effect of length, defined as

the average word count of the reference discharge summary section. RNN+RLext out-

performs PRESUMMext on shorter sections, and vice-versa for the longer sections. This

difference can be partially attributed to the way cutoff is being done at the extractors. For

RNN+RLext, an RL agent is trained to decide when to stop extracting sentences. For the

shorter sections, the RL agent learns to stop at just a few sentences (e.g., a typical chief

complaint has two sentences, family history has on average 2.6 sentences). On longer sec-
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tions, however, we find that the RL agent has difficulty stopping, causing over-extraction.

In contrast, for PRESUMMext, a score cutoff threshold is tuned on the development set us-

ing the ROUGE-L score. This approach has a more balanced performance, but suffers at

shorter sections. Another factor contributing to the lead of PRESUMMext in the longer sec-

tions is our split-map-reduce framework, which enables the extractive model to conduct

inference over all the clinical documents.

Interestingly, the baseline RULE-BASEDext performs surprisingly well on ROUGE-

L for the two shortest sections. Upon inspection, most of the extraction is just the sec-

tion’s title, without any content. This observation is backed up by the lower faithfulness-

adjusted recall of this baseline.

BART smooths out difference in extractors. We highlight the ROUGE-L of the three

abstractors in Figure 6.5. Interestingly, after being abstracted by BART, both RNN+RLext

and PRESUMMext-F3 converged to roughly the same ROUGE-L scores. This suggests that

in our extractor-abstractor pipeline, BART is effective in taking different extracted content

and smoothing them into the format and content expected for the discharge summary

sections. On the other hand, RNN+RLabs outperforms BART at the shorter sections, and

even ORACLEext on the family history section. Note that ORACLEext is not necessarily

an upper-bound for the abstractive summarization models; abstractors allow rewriting

content in prior notes into the format of discharge summary. Sentence segmentation (the

basic unit of extraction) can also be noisy in clinical notes. On the other hand, the curve

for RNN+RLabs is almost identical to RNN+RLext in Figure 6.4, with a constant increase.

This can largely be attributed to the sentence-level rewriting of the abstractor that allows

RNN+RLabs to keep the benefit of its extractor counterpart, while rewriting the content

to reduce over-extracted sentences.

RNN+RLext,abs is more faithful and traceable Table 6.4 shows our faithfulness ad-

justed measures. For the extractors, RNN+RLext outperforms almost all other extractors

on faithfulness-adjusted F3.6 RNN+RLext even outperforms ORACLEext in the brief hos-

6A notable exception is PRESUMMext-F3 on the two longest sections. Recall that PRESUMMext-F3 directly tunes for ROUGE-L
F3.
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Chief Complaint Family History Social History
Medications on
Admission

Past medical
History

History of
Present Illness

Brief Hospital
Course

ORACLEext 71.1/85.2/83.6 52.8/75.4/72.3 63.4/73.3/72.2 69.7/66.5/66.8 74.2/80.8/80.1 76.6/83.9/83.1 44.7/51.5/50.7

RULE-BASEDext 97.4/49.7/52.2 87.6/47.3/49.6 94.7/23.1/25.0 97.2/32.8/35.2 94.9/16.9/18.4 70.8/08.6/09.5 00.3/00.9/00.7
RNN+RLext 44.2/72.8/68.4 54.5/70.6/68.6 43.2/71.0/66.7 45.7/67.2/64.2 43.6/81.7/75.1 27.6/88.8/72.7 15.3/69.7/51.4
PRESUMMext 10.8/24.1/21.4 30.7/63.1/57.1 42.6/40.6/40.8 48.7/52.0/51.7 51.2/66.6/64.7 54.4/74.5/71.9 26.5/47.7/44.2
PRESUMMext-F3 10.2/25.7/22.3 29.5/64.8/57.9 25.6/48.0/44.1 34.1/57.3/53.6 47.7/71.0/67.7 47.0/78.7/73.7 19.5/67.9/54.4

RNN+RLext + BART 48.6/70.4/67.4 44.7/74.2/69.6 61.2/66.7/66.1 67.0/80.2/78.7 70.0/74.6/74.2 67.4/64.7/64.9 34.1/23.6/24.4
PRESUMMext-F3 + BART 45.5/63.6/61.2 46.1/70.2/66.7 60.0/66.0/65.3 67.1/77.7/76.5 69.7/73.3/72.9 68.0/64.5/64.8 37.4/26.8/27.6
RNN+RLabs 67.8/69.1/69.0 75.8/73.0/73.3 60.1/68.2/67.3 70.9/69.0/69.2 64.7/68.8/68.3 40.8/82.2/74.6 20.4/52.9/45.6

Table 6.4: Faithfulness-adjusted {Precision/Recall/F3} scores based on medical mentions.
Bold F3 score indicates statistical significance within the same extractor/abstractor group
by paired t-test at p ≤ 0.05.

Figure 6.6: Medical mention-based incorrect hallucination rate of abstractive models vs.
average word lengths (in log scale). Extractors do not hallucinate. Sections order is the
same as Figure 6.4. Note that, again, PRESUMMext-F3 + BART and RNN+RLext + BART
almost overlap completely.

pital course section. This is possible because ORACLEext is selected using ROUGE-L,

not faithfulness-adjusted F3. For the abstractors, a similarly good performance is found

for RNN+RLabs, where its precision consistently increases compared to RNN+RLext.

The good performance of RNN+RLext,abs can largely be attributed to the high recall that

has hurt their ROUGE-L performance in Figure 6.4 and Figure 6.5. Interestingly, the

two BART models again perform roughly the same, with recall of RNN+RLext + BART

higher than PRESUMMext-F3 + BART. For the longest section, generation for BART proves

to be difficult, as indicated by the large drop of recall, whereas the sentence-wise rewriting

strategy of RNN+RLabs has scaled better to longer sections.
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Higher incorrect hallucination rate for shorter length sections. The overall incor-

rect hallucination rate shown in Figure 6.6 is relatively low, with the notable exception

of the family history section. Inspection of the generated summaries shows that the most

common hallucination of both BART systems is the phrase “no family history”. Interest-

ingly, the ground truths corresponding to these hallucinations are mostly variations of the

term “non-contributory”; there are often no family history information in the extracted

summaries nor the source documents. Further inspection shows that the two phrases “no

family history” and “non-contributory” are used interchangeably when no information

about the family history is available in the source documents, which potentially explain

the hallucination. That being said, there are still cases of hallucinations where “no family

history” is followed by a condition (e.g., arrhythmia, cardiomyopathies) that is not men-

tioned in the source. Again, indicating the importance of summarization faithfulness and

the need to involve healthcare professionals in the loop.

6.9.1 Qualitative Analysis

Summary

Reference Summary
past medical history : # hypertension # hyperlipidemia # gerd # ckd with baseline cr 1.3 #
stable angina on long acting nitrate

PRESUMMext-F3

# hypertension # hyperlipidemia # gerd # ckd with baseline cr 1.3 nc occupation : changes
to medical and family history :

RNN+RLext

# simvastatin 20 mg once a day # isosorbide mononitrate 40 mg once a day # furosemide 40
mg once a day # pantoprazole 40 mg once a day # diltiazem xr 180 mg once a day # tylenol
for gum pain # proair hfa 90 mcg/actuation aerosol inhaler [ hospital1 ] prn # prednisone
per pt ’s son 2 weeks ago # antibiotic for pneumonia per pt ’s son 2 weeks ago past
medical history : # hypertension # hyperlipidemia # gerd # ckd with baseline cr 1.3 nc
occupation : sinus rhythm .

PRESUMMext-F3 + BART past medical history : # hypertension # hyperlipidemia # gerd # ckd with baseline cr 1.3

RNN+RLext + BART past medical history : # hypertension # hyperlipidemia # gerd # ckd with baseline cr 1.3

RNN+RLabs past medical history : # hypertension # hyperlipidemia # gerd # ckd with baseline cr 1.5 . .

Table 6.5: A randomly selected example showing summaries of the past medical history
section. # is a symbol clinicians used to indicate an item in a list. Highlighted words
are used to calculate faithfulness-adjusted measures. Blue indicates a medical mention
in the reference summary that is also found in the source documents. Orange indicates
a medical mention in the reference summary that is not found in the source documents.
Green indicates a medical mention in the system summary that is found in the summary
and found in the source. Red indicates a medical mention in the system summary that is
not found in the summary or not found in the source. See Section 6.9.1 for the analysis.
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Summary

Reference Summary
family history : non-contributory . no family history of early mi , arrhythmia ,
cardiomyopathies , or sudden cardiac death ; otherwise non-contributory .

PRESUMMext-F3

folate thiamine lisinopril carvedilol lipitor asa prevacid changes to medical and family
history : changes to medical and family history : ssi folate thiamine mvi atorvastatin asa
prevacid changes to medical and family history :

RNN+RLext family history :

PRESUMMext-F3 + BART family history : no family history of premature coronary artery disease or sudden death .

RNN+RLext + BART
family history : no family history of early mi , arrhythmia , cardiomyopathies , or sudden
cardiac death .

RNN+RLabs family history :

Table 6.6: A randomly selected example showing summaries of the family history section.
Same color coding as Table 6.5. See Section 6.9.1 for the analysis.

Summary

Reference Summary
social history : non-smoker . denies etoh or drug use . patient is on disability . lives
by himself in an apartment in [ location ( un ) 86 ] .

PRESUMMext-F3

adhesive tape / ibuprofen social history : denies tobacco , etoh abuse . lives by himself
in an apartment in [ location ( un ) 168 ] . 98 , 101/75 , 149 , 19 , 100 % 2lnc gen :
denies lives in a special apartment for disabled elderly . resp were unlabored , no
accessory muscle use .

RNN+RLext

social history : denies lives in a special apartment for disabled elderly . lives by
himself in an apartment in [ location ( un ) 168 ] . denies tobacco , etoh abuse . denies
-illicit drugs : adhesive tape / ibuprofen social history : -tobacco history : denies
-etoh :

PRESUMMext-F3 + BART
social history : denies tobacco , etoh abuse . lives by himself in an apartment in [
location ( un ) 86 ] .

RNN+RLext + BART
social history : lives in a special apartment for disabled elderly . -tobacco history :
denies -etoh : denies -illicit drugs : denies

RNN+RLabs
social history : denies . lives by himself in an apartment in [ location ( un ) 86 ] .
denies tobacco , etoh abuse . denies -illicit drugs : -tobacco history : denies -etoh :

Table 6.7: A randomly selected example showing summaries of the social history section.
Same color coding as Table 6.5. See Section 6.9.1 for the analysis.

Table 6.5 shows a randomly chosen summary of a past medical history section. In

this case, RNN+RLext over-extracted content from the previous sections (indicated by

the red medical mentions). However, after passing through BART, BART successfully

smooths out the noise and generates the same output as PRESUMMext-F3 + BART. In this

case, RNN+RLabs happens to be hallucinating (mapping cr 1.3 to cr 1.5), although our

medication mentions do not capture that. All summarization systems missed “# stable

angina on long acting nitrate”; mention of “stable angina” is actually not present in the

source documents. Thus, we do not count “stable angina” as missing in our faithfulness-
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adjusted measures.

Table 6.6 shows an example of the family history section. Note that many medical

mentions in the reference summary cannot be found in the source documents (indicated

by orange). Most of these mentions are variations of the word “non-contributory”. This

example helps illustrate our discussion from the previous section, where we mention that

a significant source of incorrect hallucinations was caused by the interchangeable usage

between “non-contributory” and “no family history”. However, most of the mentions

here, such as “sudden cardiac death”, were hallucinated, as they are not present in the

extracted summaries. RNN+RLext + BART, for example, produces results that are al-

most verbatim to the reference summary (i.e., factual), while the extractor it relies on,

RNN+RLext, contains only a single word – family history. This showcases the impor-

tance of a faithfulness-adjusted measure. In a setting where being faithful is more im-

portant than being factual, we should not encourage summarization systems to generate

information that is only found in the reference summary but not in the source documents.

While all summaries capture correctly that the patient denies alcohol (e.g., etoh),

tobacco, and drug use, we can see that the medical mention model we used struggles to

capture the terms correctly. Specifically, the medical mention model is not aware that

“non-smoker” is the same as “denies tobacco” and “denies etoh” is the same as “denies

... etoh abuse”. Notably, RNN+RLext + BART hallucinated, saying “that the patient

lives in a special apartment for disabled elderly”, which the patient specifically denied.

RNN+RLabs, on the other hand, contains repetitive information. The short sentence “de-

nies .” also runs the risk of potentially confusing healthcare professionals. Our medical

mention-based measure fails to capture these mistakes. This is a limitation to our ap-

proach of using mention overlap as a proxy to a specific aspect of information overlap.

These issues can potentially be addressed by modeling negation and performing entity

linking (Wu et al., 2014; Aronson, 2001; Bhatia et al., 2019).
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6.10 Towards A Faithful and Traceable Clinical Summary

By extracting and composing the discharge summary from the vast number of clinical

notes into a format healthcare professionals are already required to produce, our work has

the potential to reduce the time healthcare professionals spend on writing the discharge

summary, allowing them to allocate more time to the patients.

Clinical applications have the genuine potential to affect people’s lives. As we have

emphasized in Section 6.1, this chapter is not about a discussion for deployment, but

rather a first step in understanding how summarization models perform as a starting point

for further development. Importantly, we need to understand the failure modes of these

systems and how to address these failures.

Our emphasis on faithfulness and traceability of summarization reflects those prior-

ities. Our results show that the design of an extractive-abstractive summarization pipeline

is a promising framework to address the challenges. RNN+RLext,abs in particular demon-

strates consistent performance on the faithfulness-adjusted measures. The nature of sentence-

level rewriting in RNN+RLabs also gives it the advantage to produce a traceable summary

on a per-sentence level, as each abstracted sentence has a direct mapping to an extracted

sentence.

One limitation of this chapter is our choice to evaluate our system without explic-

itly considering human behavior. While we design our extract-then-abstract framework

to allow healthcare professionals to review and modify (by deleting irrelevant content or

adding new content) both the extracted content and the abstracted summary, there can still

be error modes introduced by a human in the loop. The trade-off between the time saved

and potential errors need to be further studied. For example, in machine translation, users

place trust more based on fluency rather than the faithfulness of the translation (Martin-

dale et al., 2019). More research is needed to judge if the fluent output of the abstractors

can potentially mislead healthcare professionals to overlook faithfulness. Conversely,

when hallucinations do happen, how does that affect the healthcare professionals’ trust

in using these systems? Another limitation to our approach is that if there is novel in-

formation available only when writing the discharge summary, there will be no way of
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summarizing it. It is also important to note that since we are using MIMIC III for training

and evaluation, the results shown are biased toward the dataset. MIMIC III is an English-

language collection from the ICU of a single hospital, not necessarily applicable to other

clinical settings.

However, the three challenges we identify and the extract-then-abstract framework

can serve as the first of many future steps to alleviate the documentation burden of clini-

cians and ultimately result in better quality of care for patients.
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Chapter 7: Conclusions and Future Work

Information exchange between healthcare professionals and patients, and between differ-

ent healthcare professionals, is critical to better patient care (Weiner and Biondich, 2006).

With the wide adoption of EHR and growing health-related information, however, han-

dling both patients and their data has proven to be laborious, as healthcare professionals

simply do not have enough time. NLP holds the potential to make this process in health-

care more efficient. By modeling the extensive unstructured data in patients’ records,

NLP can assist assessment, allocating more time for healthcare professionals to take care

of patients (Demner-Fushman et al., 2009).

In this dissertation, we examine NLP’s role in assisting healthcare professionals

using three examples – computer-assisted coding (Chapter 3), suicidality risk assessment

using social media postings (Chapters 4 and 5), and discharge summary composition

from prior clinical notes (Chapter 6). Throughout these examples, we ask (1) how to

better model the extensive patient data and (2) how to design systems to surface relevant

information to support healthcare professionals.

Modeling the Patient as a Set of Documents. Modeling patient data is challenging

as structured and unstructured data about the patient are extensive and complex. In the

lens of NLP for healthcare applications, we show that modeling the patient as a set of

documents, the unstructured information about the patient, is a useful abstraction. This

abstraction allows us to represent information at the patient or encounter level while con-

necting to the lower document level. For example, in our clinical coding work, we repre-

sent information at the patient’s encounter level as a set of clinical notes after identifying

an important label mismatch problem: clinical codes are assigned to the patient’s en-

counter, but most prior work focuses on code prediction for a single document. In our
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discharge summary composition work, we again represent information at the patient’s en-

counter level as a set of clinical notes. Instead of inferring clinical codes, we extract and

rewrite the information in the encounter into discharge summary sections. In suicidality

risk assessment, we represent the individual-level information as a sequence of social me-

dia postings. The risk of suicide is a property of an individual, but the language evidence

we intend to study is on a subset of the documents they posted.

Modeling the entire document set, however, is a challenge to NLP in healthcare

settings. Information relevant to the task is often buried in the extensive document col-

lection. For example, in suicidality assessment, high signal postings are often diluted by

a large number of postings not directly related to suicidal intent. Similarly, in clinical

coding, not all documents contain evidence supporting the medical codes. In Chapters 3

and 5, we introduce document-level attention and show how it provides a mechanism for

the model to jointly learn which documents are important for prediction and what the

model should predict. We show that by introducing a mechanism to narrow the model’s

focus on the subset of documents with information relevant to the prediction, the model’s

predictive performance consistently improves over the baselines that use averaging.

On the practical side, the extensiveness of patient data also presents a challenge

to current deep learning methods. This is especially true in Chapter 6, where the focus

is to summarize the encounter into a discharge summary. Averaging 36K words and 64

documents, the entire clinical encounter simply does not fit into memory. To address this

challenge, we observe that, similar to Chapters 3 and 5, not all content in the encounter

is relevant to the summary. The key, then, is to extract these relevant snippets in the

documents and then merge them at the encounter level. We thus apply an extractive sum-

marization system to individual documents separately to extract relevant snippets. The

extracted snippets collected from all documents are then merged either using a duplica-

tion removal process or an abstractive summarization system.

Prioritizing Relevant Information for Assessment. The extensive data of a patient

are a challenge to the models and a challenge to the healthcare professionals. While

healthcare professionals already lack time, many tasks in NLP for healthcare applications
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cannot and should not be fully automated without healthcare professionals’ involvement.

Thus, the NLP system must be evaluated not just by its ability to make inferences correctly

but also by its ability to provide evidence for that inference.

The time saved by surfacing evidence in the assessment can potentially give health-

care professionals a chance to address more patients. That being said, models are often

not evaluated by their ability to save time. In Chapter 5, we reframe suicidality assess-

ment from a classification problem to a hierarchical ranking problem: ranking both the

individuals and their postings. To measure the potential time we can save for healthcare

professionals, we introduce a theoretically grounded measure, hTBG. Using that together

with the expert-annotated UMD Reddit Suicidality dataset, we demonstrate that we can

potentially reduce human assessment time by using document attention to surface docu-

ments with high suicidal signals. In Chapter 6, our focus on traceability again reflects a

similar emphasis on surfacing evidence. For clinical summarization systems that aim to

help healthcare professionals write discharge summaries, there should also be a mecha-

nism that allows the summary to be traced back to the source, providing a form of evi-

dence to the healthcare professionals. Our extractive-abstractive pipeline design allows

healthcare professionals to trace the source of the abstractive summary to the extractive

summary and the source of the extractive summary to the source documents.

Throughout the three examples in this dissertation, we have demonstrated how ex-

tensive patient data could challenge both models and healthcare professionals. We address

the modeling challenge by allowing the system to have a mechanism to attend to a smaller

subset of the patient data. Interestingly, the same mechanism can assist the healthcare pro-

fessionals by surfacing relevant information for their tasks. This duality between what is

useful for modeling patients and what is useful for healthcare professionals is exemplified

throughout this dissertation. Chapter 3 shows that document attention leads to improved

clinical code prediction, and the attention learned aligns with professional coders’ expec-

tations. In Chapter 5, we again show that document attention leads to better suicidality

risk prediction, and the attention can be used to rank document, potentially saving health-

care professionals’ time. Finally, in Chapter 6, our extractive-abstractive pipeline design

helps us scale abstractive summarization systems to the extensive patient’s data while still
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maintaining the ability to be traced back to the extractive content and the source docu-

ments. This duality between humans and machines sheds light on a promising direction

that will hopefully lead to building more human-centric NLP systems for healthcare.

7.1 Limitations

Robustness of the Results. Availability and access to test collections for NLP for

healthcare and mental health research are often limited and sometimes nonexistent. As a

result, testing the robustness of our conclusions can be difficult. In this dissertation, we

aim for a robust result whenever possible. Effectiveness of document attention is tested

in Chapter 3 using 3M Health Information Systems datasets and again in Chapter 5 using

the UMD Reddit Suicidality dataset we collected in Chapter 4. For clinical coding, we

test the document attention on a held-out test set where the patients are from different hos-

pitals. We tested our extractive and abstractive models across seven different discharge

summary sections of varying lengths and properties for the robustness of discharge sum-

mary composition.

However, further studies are needed to see if the results can transfer across different

domains. We demonstrate the potential of using document attention to surface documents

on the UMD Reddit Suicidality dataset. The same dataset was also used for a shared

task in CLPsych 2019 (Zirikly et al., 2019) and has since been shared with more than

35 teams internationally. However, whether the same results will hold needs to be tested

for social media settings other than Reddit; in particular, evidence suggests that users

show different behaviors when posting anonymously, with both positive and negative

implications (Christopherson, 2007; De Choudhury and De, 2014). It is also important

to note that, similar to many mental health-related datasets (Harrigian et al., 2021), the

annotations are proxy diagnostic (in our case, expert judgments), not clinical ground truth.

Thus the external clinical validity needs to be further tested (Ernala et al., 2019). We

derive our data for discharge summary composition from MIMIC III, a database collected

from a single hospital ICU unit. While it is freely available, it is limited in size and

domain. Like the many other studies that rely on MIMIC III, the transferability of our
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results to other healthcare settings needs further study.

Transferability across different times and cultures can also be an issue. Clinical

codes are updated annually to account for new diagnoses and new procedures. Further-

more, the ICD code set goes through significant structural changes roughly every ten

years. Major health events can also lead to significant changes. For example, six new

diagnosis codes were added to ICD-10-CM due to COVID-19. Clinical notes in the ICU

and social media postings indicating the risk of suicide can also look very different before

and after COVID-19. Our studies are primarily US-based and involve the English lan-

guage. In a different culture, the conclusions and even framing of the problem may need

to be adjusted. For example, suicidality assessment in a community where suicide is stig-

matized may need to be approached differently. Clinical coders in different countries, be-

sides potentially speaking different languages, face different challenges (McKenzie et al.,

2004). Canada, for example, has different coding standards for medical procedures for

each province and territory (Welch et al., 1993; Hu, 2021).

Effects on Key Stakeholders. Healthcare applications have the genuine potential to af-

fect people’s lives. Therefore, understanding how our system can affect key stakeholders

– in this case, the patients, the healthcare professionals, and the sometimes overlooked

researchers – is important. In this dissertation, we focus on providing a mechanism to

surface relevant information to healthcare professionals. However, advances in NLP for

healthcare may affect patients. Potential bias to different patient demographics in the

problem formulation and dataset needs to be further studied. Ethical and privacy con-

cerns in collecting patients’ data are also critical discussions that need to happen.

Benton et al. (2017) and Chancellor et al. (2019) discuss some of these issues in-

depth in the context of health and mental health research using social media. There is

a tension between the potential benefits and risk of harm. Potential benefits may in-

clude early detection of depression (Losada et al., 2019), alternative source of evidence

for suicidality assessment (Resnik et al., 2020, also Chapter 5), and design of new in-

tervention techniques for schizophrenia and suicide (Mitchell et al., 2015; de Andrade

et al., 2018). On the other hand, incorrect and hard-to-decipher prediction of the systems
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may cause harm to the individuals involved. Malintentioned actors can take advantage of

these systems to harass and stalk individuals at risk even when the systems themselves

were built with good intention (Barrie, 2014). Intentional and unintentional bias in how

and where the dataset is collected can amplify the already uneven distribution of health

resources (Olteanu et al., 2019; Blodgett et al., 2020).

Addressing this tension is an ongoing discussion that should involve healthcare pro-

fessionals, researchers, and individuals who are the object of these predictions (Chancel-

lor et al., 2019). Among these participants, opinions from the individuals were probably

the most neglected. Mikal et al. (2016) and Fiesler and Proferes (2018) conducted focus

group and survey studies with Twitter users that reveal a range of opinions on social me-

dia research. For example, while users, in general, understand that Twitter data is public,

most users are not aware that their data can be used for large-scale health research. Ob-

taining informed consent, or “opt-in”, is thus a practice researchers should follow when-

ever possible. Sensitive information should also be protected with appropriate measures

and de-identified when it is not needed for analysis (Benton et al., 2017). Another con-

versation, perhaps equally important, is the mechanism and design of these NLP systems

for healthcare (Abebe and Goldner, 2018; Green, 2019). Understanding where, how, and

even if these NLP systems should be deployed is critical if we want to realize the potential

benefits and not end up harming the individuals these systems are designed to help.

In Chapter 5, we reframe suicidality assessment as a prioritization problem. By

ranking the at-risk individuals jointly with their documents, we show that our system has

the potential to support a more efficient assessment process, allowing healthcare profes-

sionals to assess more at-risk individuals in a given time budget. However, similar to other

ranking applications, ranking can lead to potential biases, amplifying the un-fairness be-

tween groups and individuals (Yang and Stoyanovich, 2017; Singh and Joachims, 2018;

Biega et al., 2018). In the setting of suicidality assessment, a careful study of the fair-

ness of ranking is needed. Additionally, our desire to maximize the number of at-risk

individuals that can be assessed in a given time budget leads to the speed-biased criterion

(see Section 5.3). That is, for equally at-risk individuals, the measure rewards ranking the

individual who can be assessed more quickly closer to the top. This implies that our eval-
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uation measure has a bias for individuals who write shorter and more explicit documents.

While this is a direct consequence of our criterion, one can argue that this behavior is not

ideal. New criteria that address these concerns might be needed. However, these criteria

are fundamentally normative statements about the role of NLP in the suicidality assess-

ment process. Thus, the discussion should involve the research community and the groups

and individuals who will be affected the most – patients and healthcare professionals.

Modeling Assumptions and Need for User Studies. George Box said, “All models are

wrong, but some are useful.” (Box, 1979) Throughout this dissertation, we made many

assumptions and approximations to our evaluation measure and our task formulation. To

better understand whether the conclusions hold, user studies are needed. Here we list our

key assumptions.

A contribution of this dissertation is modeling the patient or the individual as a

set of documents. However, the data of these patients and individuals are often much

more complex. A patient’s clinical encounter, for example, contains structured and un-

structured data. In Chapter 3 and Chapter 6, we do not take structured data, such as the

laboratory results, medications, and transfer data from different hospital units, into ac-

count. Metadata about the documents can also be important. For example, the timestamp

of the document and the time between consecutive documents can be a valuable signal

for suicidality assessment. Data about the patient can also be incomplete. In Chapter 6,

MIMIC III can have missing clinical notes due to the method of construction, which we

have to mitigate by limiting the encounters to those with admission notes. Ground truth

can also be challenging to obtain. In Chapter 5, we annotate the risk of suicidality using

experts’ and crowdsourcers’ consensus. However, it is important to know that this is just

a proxy to the actual risk and not a clinical ground truth.

Another contribution of this dissertation is surfacing relevant information for as-

sessment. What information should be surfaced and how it should be surfaced depends

on how the task is formulated. Our evaluation measures that evaluate how well this infor-

mation is surfaced, as we mentioned, is a model of the task. For example, hTBG, the eval-

uation measure used in our suicidality work, has many assumptions about how healthcare
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professionals use the system. One of them is the document independence assumption,

where we assume that a single isolated document that contains signals of suicide risk is

enough to identify an at-risk individual. Our faithfulness-adjusted measures in Chapter 6

use the overlap of the UMLS medical mentions as a proxy to measure information over-

lap. However, it is well understood that errors in generation can come in many forms.

The modifiers (e.g., negation, degree) used on the UMLS medical mentions can carry

important information. Context can also matter. For example, whether the information is

meant to describe the patient or their family member can have very different implications.

Thus, our approach of using the UMLS medical mentions only measures a specific aspect

of the information overlap. How well these assumptions hold in the real world needs to

be tested with user studies.

7.2 Future Work

Many limitations in the previous section have the potential to be pursued in future work.

Here we focus on two directions.

Patient as a set of distributed documents. Our work demonstrates how a patient can be

modeled as a set of documents. In some cases, these patient data contain an extensive set

of documents, creating a challenge to fit the documents into the model. One possibility

to address this challenge is explored in Chapter 6, where we apply extractive models to a

subset of the patient records individually and then combine them to form the final sum-

mary. This framework is similar to distributed computing, specifically, the MapReduce

framework (Dean and Ghemawat, 2008; Wickham et al., 2011). Under this framework,

we first map a document-level model to individual documents, possibly in a distributed

setting. Another reduce model can then be used to aggregate the results.

An interesting possibility on top of this is to explore how the gradient may flow

through this framework. Using 3HAN as an example, we can apply 2HAN to individual

documents to obtain document-level representation. The document-level representations

collected from all individual documents can then be aggregated by document attention

before making the final inference. To enable distribution of the models and allow the
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gradient to flow through the process, we can build on existing work such as model paral-

lelism (Kim et al., 2020) and asynchronous models training (Guu et al., 2020).

Traceability of abstractive summarization. The ability to trace back to the source of

the summary is important in a healthcare setting. In extractive summarization, a clear

default is to trace back to where the summary snippets are extracted. In abstractive sum-

marization, however, there are many potential candidate approaches. One possible ap-

proach is to use heuristics. These include lexical-based approaches that greedily select

the source snippets by maximizing ROUGE scores between the generated summary and

the potential source snippets, or attention-based approaches that use attention (if avail-

able) in the abstractive model to locate possible snippets. Abstractive models can also

encourage traceability by design. Chen and Bansal (2018), mentioned in Chapter 6, use

an extractor to extract relevant sentences. Each extracted sentence is then independently

mapped to an abstractive sentence. It thus provides a natural way to trace each summary

sentence back to the source sentence.

The discussion of traceability extends beyond the healthcare setting, as it strongly

relates to the faithfulness of a summary. We can view traceability as a complementary

approach to summarization faithfulness. A traceable summary snippet indicates that it

is faithful; a non-traceable summary snippet may alert a potential hallucination. In con-

trast to faithfulness measures, which only generate a single score indicating whether a

summary is faithful to the source, traceability aims to provide evidence of the summary

snippets by pointing back to the source documents.

It is unclear, however, which of these methods are the most effective in terms of

traceability. We thus break down this future direction into two sub-questions. (1) How

do we design a user interface that supports the traceability of the summary? (2) Under

this user interface, how do we evaluate the effectiveness of the traceability of different

approaches?
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7.3 Implications

In Plato’s Phaedrus, Pharaoh Thamus said about writing: “If men learn this, it will im-

plant forgetfulness in their souls: They will cease to exercise memory because they rely

on that which is written.” (Plato, 370 BCE, trans. 1972) This is far from just an argu-

ment against writing; it is pointing out that the implications and social impacts of new

technologies are always difficult to foresee. This dissertation focuses on building NLP

systems for healthcare applications and making them center around humans – the patients

and the healthcare professionals. It is difficult to foresee the potential positive impact

and negative impact of these NLP systems. There are still many limitations to our work.

Many more iterations of research about ethics, bias, and privacy also need to happen be-

fore discussions on deployment can take place. This work can be viewed as the first step

of, hopefully, many future steps that will lead to technologies that can positively impact

society. We hope that by designing NLP systems around healthcare professionals’ needs

and by placing patients at the center of modeling, our work can contribute to a more

efficient workflow for healthcare professionals and ultimately better care for patients.
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Appendix A: Expert, Crowdsourced, and Machine Assessment of Sui-

cide Risk via Online Postings

A.1 Dataset Availability and Ethical Considerations

The research we report was approved by the University of Maryland’s Institutional Re-

view Board (IRB). As Benton et al. (2017) discuss, human subjects research using previ-

ously existing data falls into a category exempted from the requirement of full IRB review

as long as the data are either from publicly available sources or they do not provide a way

to recover the identity of the subjects. In our case, the data are publicly available and from

a site where users are anonymous. As an extra precaution we replace Reddit usernames

with numeric identifiers.

Benton et al. (2017) point out that even exempt research needs to be reviewed by

an IRB to make an exemption determination. In addition, they discuss the importance of

taking particular care with sensitive data. In order to share the data with other researchers

while ensuring appropriate standards are met, the dataset has been made available through

a collaborative process with the American Association of Suicidology (AAS), an orga-

nization whose mission is to promote the understanding and prevention of suicide and

support those who have been affected by it.1 AAS helped develop, and participates in,

governance in which researchers submit requests for access, with panel review ensuring,

for example, that proper IRB procedures have been followed, that the researchers will

provide appropriate protections for sensitive data, and that there will be no linkage of the

dataset to other sites that could jeopardize user anonymity. As of this writing the dataset

has been shared with more than 35 research teams internationally.

As discussed by Chancellor et al. (2019), there is another ethical point to be con-
1http://www.suicidology.org/about-aas/mission
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sidered: protection not of subjects but of annotators and researchers. Reading postings

like the ones that appear on SuicideWatch is hard, and it is difficult to know how the ex-

perience might affect non-experts and even experts. With that in mind, our instructions

to annotators warned explicitly that the materials might be upsetting, and we encouraged

people to err on the side of caution and stop doing the annotation task if it was affecting

them in a personal way. We also provided contact information for the National Suicide

Prevention Hotline, Crisis Text Line, National Suicide Prevention Lifeline, and a link to

the SuicideWatch hotlines page.

A.2 Annotation Instructions

The following is the long instruction used for the annotation of the UMD Reddit Sui-

cidality dataset. We include the instruction here for reference and completeness. Some

examples of this instruction contain snippets from real Reddit posts. While they were

fine to include for the annotators, we obfuscate them here for privacy. The credit of this

instruction goes to Philip Resnik and the co-authors of Shing et al. (2018).2

Identifying Risk Of Suicide In Social Media Posts
This task will help with a project where the ultimate goal is finding new ways to

help prevent suicides. But before you go any further, please recognize that some of the

things you will see here are from people in real distress, and they can be difficult or

upsetting to read. If you believe that you might be affected personally in a negative way

by doing this task, please err on the side of caution and stop here; do NOT do the task. If

you start the task and you find that it’s upsetting, please stop. If you’re feeling like you

(or someone you know) could use some support or assistance, please take advantage of

one of the following resources:

• National Suicide Prevention Lifeline: 1-800-273-8255 (TALK).

– Veterans please press 1 to reach specialized support.
2Contact Philip Resnik for the full instruction.
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• Spanish: 1-800-SUICIDA

• Crisis Text Line: Text "START" to 741-741

• Online chat: http://www.suicidepreventionlifeline.org/gethelp/lifelinechat.aspx

• https://www.reddit.com/r/SuicideWatch/wiki/hotlines - This page provides infor-

mation about phone and chat hotlines and online resources in the U.S. and world-

wide.

Please note that all the posts you’re looking at are anonymous – not even the researchers

know who these people are, and the posts were made over a period of years. Although

it’s tragic that there is no direct way for us to help the people who have written these

posts who may be at risk of suicide, you are contributing to an effort aimed at better

understanding the factors connected with suicide attempts, using that information to do

a better job assessing risk, and hopefully contributing to more effective ways of getting

people help.

Instructions
You’ll be looking at posts written by users in an online discussion forum. We are trying

to answer this question: What is the risk of this person attempting suicide?

Identifying risk of suicide accurately can’t be done perfectly, but here are factors

that are often taken into account when judging risk. Note that some of them may not be

obvious – for example, research shows that someone who is showing signs of agitation can

be at higher risk than someone who just seems down or depressed. Here are other factors

that could bump the assessment of risk from a lower level to a higher level, grouped

roughly into thoughts, feelings, logistics, and context.

• Thoughts

– Thinking about suicide, having suicide on their mind

– Having told friends or family they are thinking about suicide

– Feeling that they are a burden to others
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– Endorsement of suicidal beliefs, even without the word suicide (e.g., I deserve

to die, I can never be forgiven for the mistakes I made)

• Feelings

– Expressing lack of hope for things to get better

– A sense of agitation, not being able to “stand still” physically or mentally

– Indications of being impulsive; risky behavior (e.g. reckless driving, promis-

cuity)

• Logistics

– Talking about plans that involve suicide

– Talking about methods of attempting suicide, even if not planning

– Preparation, actually taking actions to prepare for an attempt

– Having access to lethal means (a way to take their own life), especially firearms

– Having enough privacy or isolation to make an attempt

• Context

– Previous attempts

– An event or life change that is leading them think about suicide

– Isolation from friends and family

Here are the ways you can label a user:

• No Risk:

– I don’t see evidence that this person is at risk for suicide. (If this person

were my friend, the idea of them possibly making a suicide attempt might

not even occur to me.)

– Example: [obfuscated for privacy]
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* This person is talking about someone else who may be at risk. There is

no evidence they are themselves at risk.

– Example: [obfuscated for privacy]

* This person may be having some feelings of isolation, but there is no

evidence that they are at risk for suicide.

• Low Risk:

– There may be some factors here that could suggest risk, but I don’t really

think this person is at much of a risk of suicide. (If this person were my

friend, the possibility of them making a suicide attempt is not something

I would feel worried about.)

– Example: [obfuscated for privacy]

* This person suffers from depression, but otherwise there are no suicidal

thoughts, feelings (e.g. lack of hope, impulsivity), logistics/planning, or

context that would suggest the possibility of a suicide attempt.

– Example: [obfuscated for privacy]

* This person is talking mainly about someone else, which is similar to

the first “no risk” example above. However, the context is a tragic life

event that just took place, and the person is also talking about their own

feelings of confusion and loss. Although it’s a borderline example, those

factors are enough to err on the side of saying “low risk” according to the

description above, rather than “no risk”.

• Moderate Risk:

– I see indications that there could be a genuine risk of this person making a

suicide attempt. (If this person were my friend, the possibility of a suicide

attempt is something I would be feeling worried about.)

– Example: [obfuscated for privacy]
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* This person has expressed suicidal beliefs or wishes (“make me wish I

wasn’t around”). However, what they are saying does not yet indicate

that these thoughts and feelings are moving in the direction of action.

– Example: [obfuscated for privacy]

* This person has expressed suicidal thinking (“is there even a point to keep

trying at life”) and hopelessness, and described a specific event or change

(knowing that they are going to flunk out). However, what they are saying

does not yet provide an indication that these thoughts are moving in the

direction of action.

• Severe Risk:

– I believe this person is at high risk of attempting suicide in the near future.

(If this person were my friend, I would be feeling really urgently worried.)

– Example: [obfuscated for privacy]

* [obfuscated for privacy] [overdose] (previous attempt, discussing meth-

ods).

* [obfuscated for privacy] (suicidal thinking)

* [obfuscated for privacy] (farewell, feeling like a burden, sense of a plan

to take action)

* [obfuscated for privacy] (discussing methods)

* [obfuscated for privacy] (concerns about lack of control or impulsivity)

* [obfuscated for privacy] (overt reference to suicidal thoughts)

* [obfuscated for privacy] (“game over” thinking)

* [obfuscated for privacy] (suicidal wishes)

– Example: [obfuscated for privacy]

* [obfuscated for privacy] (farewell, hopelessness)

* [obfuscated for privacy] (specific plan/method)

* [obfuscated for privacy] (feeling like a burden, clear intent and determi-

nation)
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* [obfuscated for privacy] (clear intent and determination)

* [obfuscated for privacy] (“game over”, farewell)

As another example, consider the following user:

User 8579374590

• Post 1. [obfuscated for privacy]

• Post 2. [obfuscated for privacy]

• Post 3. [obfuscated for privacy]

• Post 4. [obfuscated for privacy]

• Post 5. [obfuscated for privacy]

To what extent would you judge this person as being at risk of making a suicide

attempt in the near future?

• a [ ] I don’t see evidence that this person is at risk for suicide. (If this person were

my friend, the idea of them possibly making a suicide attempt might not even occur

to me.)

• b [ ] Low risk: There may be some factors here that could suggest risk, but I don’t

really think this person is at much of a risk of suicide. (If this person were my

friend, the possibility of them making a suicide attempt is not something I would

feel worried about.)

• c [x] Moderate risk: I see indications that there could be a genuine risk of this

person making a suicide attempt. (If this person were my friend, the possibility of

a suicide attempt is something I would be feeling worried about.)

• d [ ] I believe this person is at high risk of attempting suicide in the near future. (If

this person were my friend, I would be feeling really urgently worried.)

106



If you chose (b), (c), or (d), which post most strongly supports your conclusion?

[ ]1 [ ]2 [ ]3 [x]4 [ ]5

In this case, Post 1 suggests that the person is down and feeling isolated, with a long-term

history of negative thinking. In this case it would make sense to upgrade your choice from

“no risk” (a) to “low risk” (b), since these are factors that could suggest risk, although

depression by itself does not necessarily trigger concern about suicidality.

Post 2 uses the phrase "kill myself", but the person is likely to be joking or using the

phrase in an informal way, so it doesn’t indicate risk, even in the context of the previous

post.

Post 3 says explicitly that this person suffers from depression, and subjectively one

might also say it contains a hint of despair. However, it does not suggest a cause for worry

that would lead to upgrading risk beyond (b).

Post 4 has a clear indication that this person has suicide on their mind, even if they

wrote "I would never kill myself". There are clear references to thinking about suicide.

Based on this post, you would upgrade your response to (c), “moderate risk”.

Post 5 mentions a negative event but does not provide any additional sense of ur-

gency or suggest that a suicide attempt is more likely in the near future, which is the

distinction between (c) and (d).

You should never downgrade your choice. If an earlier post suggests a person is at se-

vere risk ("I’m going to kill myself"), and you read a later post suggesting the risk has

decreased ("I’ve decided not to kill myself"), please stick with the higher risk in your

answer, and list the severe-risk post as the basis for your judgment.

Again, please note that if you’re having trouble with the difficult content in some of

these postings, you can decline to do the task or you can stop at any time, and there are

resources listed at the top of these instructions if you feel like you or someone you know

could use some support or assistance. Thank you for your help.
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Rater info

Before we get started, please fill in the following:

Name

Email

Brief description of training/experience. Please provide a few sentences describing any

relevant training and/or background you have pertaining to assessment of suicidality.

Thanks!
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Appendix B: A Prioritization Model for Suicidality Risk Assessment

B.1 Appendix: Ethical Considerations

Our research involving the University of Maryland Reddit Suicide Dataset has undergone

review by the University of Maryland Institutional Review Board with a determination of

Category 4 Exempt status under U.S. federal regulations. For this dataset, (a) the original

data are publicly available, and (b) the originating site (Reddit) is intended for anonymous

posting. In addition, since Reddit is officially anonymous, but that is not enforced on the

site, the dataset has undergone automatic de-identification using named entity recogni-

tion aggressively to identify and mask out potential personally identifiable information

such as personal names and organizations, in order to create an additional layer of pro-

tection (Zirikly et al., 2019). In an assessment of de-identification quality, we manually

reviewed a sample of 200 randomly selected posts (100 from the SuicideWatch subreddit

and 100 from other subreddits), revealing zero instances of personally identifiable infor-

mation.

Following Benton et al. (2017), we treat the data (even though de-identified) as sen-

sitive and restrict access to it, we use obfuscated and minimal examples in the dissertation

and presentations, and we do not engage in linkage with other datasets.

The dataset is available to other researchers via an application process put in place

with the American Association of Suicidology that requires IRB or equivalent ethical re-

view, a commitment to appropriate data management, and, since ethical research practice

is not just a matter of publicly available data or even IRB approval (Zimmer, 2010; Ben-

ton et al., 2017; Chancellor et al., 2019), a commitment to following additional ethical

guidelines. Interested researchers can find information at http://umiacs.umd.edu/~resnik/

umd_reddit_suicidality_dataset.html.
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B.2 Appendix: Proofs for TBG and hTBG

B.2.1 Time-Biased Gain

In order to prove that TBG statisfies the speed-biased criterion, consider two individuals

ranked at consecutive positions k and k + 1; if we swap the two individual, the change in

TBG score is:

∆TBG = (gk+1 − gk)D(T (k))

+ gkD (T (k) + t(k + 1))

− gk+1D (T (k) + t(k))

(B.1)

This leads to Lemma B.2.1-B.2.3:

Lemma B.2.1. Swapping a not-at-risk individual ranked at k with an at-risk individual

ranked at k + 1 always increases TBG.

Proof. Let gk = 0 and gk+1 > 0. Equation B.1 simplifies to

∆TBG = gk+1 (D(T (k))−D(T (k) + t(k))) (B.2)

which is always positive because the decay function monotonically decreases, and each

assessment of an individual requires at least Ts seconds.

Lemma B.2.2 (Risk-based Criterion). The optimal value of TBG under binary relevance

is obtained only if all not-at-risk individuals are ranked below all at-risk individuals.

Proof. Let π be a ranking of individuals that yields the optimal value of TBG. Assume

that in π there exist not-at-risk individuals ranked before at-risk individuals. Let the k-

position be the lowest ranked not-at-risk individual that is at least in front of one at-risk

individual, we can then apply Lemma B.2.1 to increase TBG. This leads to a contradic-

tion.
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Lemma B.2.3. Swapping an at-risk individual of longer assessment time ranked at k of

with an at-risk individual of shorter assessment time ranked at k + n, where k + n is the

closest at-risk individual ranked lower than k, always increases TBG.

Proof. Let gk = gk+n > 0, and ∀i ∈ {i|k < i < k + n}, gi = 0. We have

∆TBG = gk(D(T (k + n) + t(k + n)− t(k))

−D(T (k + n)))
(B.3)

which is always positive because the decay function monotonically decreases, and t(k +

n) < t(k) from the assumption that the individual at k + n has shorter assessment time.

Lemma B.2.3 naturally leads to a proof for the speed-biased property of TBG:

Proof for Theorem 5.3.1. Applying Lemma B.2.3, we know that swapping k and k + r

leads to a positive gain between the two. Now, consider all at-risk individuals ranked

between k and k + r: ∀u, s.t. k < u < k + r, the difference is:

gu(D(T (u) + t(k + r)− t(k))−D(T (u))) (B.4)

which is always greater than or equal to zero due to the fact that the decay function

monotonically decrease, and t(k + r) < t(k). Thus, the net difference is always larger

than zero, thus satisfying the speed-biased criterion.

Finally, combing previous results, we can easily show:

Proof for Theorem 5.3.2. A direct consequence of Theorem 5.3.1 is that if the at-risk

individuals are sorted by assessment time in ascending order, no swapping between any

two individuals can increase TBG. This, combined with Lemma B.2.2, that all at-risk

individuals are on top of not-at-risk individuals, leads to the necessary condition. Because

any swapping within the not-at-risk individuals does not change TBG when no at-risk

individuals are ranked lower, this implies that ranking according to Theorem 5.3.2 gives
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us a unique and optimal value, which satisfies the sufficient condition of Theorem 5.3.2.

B.2.2 Hierarchical Time-Biased Gain

The assessment time of an individual ranked at k, t(k), is monotonic with Ei, thus show-

ing minimal value of Ei suffices. Recall that Ei is calculated as:

Ei = Tα

L∑
l=1

(
Wi,l

l−1∏
m=1

(1−Ri,m)

)
+ Tβ (B.5)

Consider, again, swapping a document at rank l with a document at rank l + 1 belonging

to the same individual i. The change in Ei is:

∆Ei = κi,l (Wi,l+1Ri,l −Wi,lRi,l+1) (B.6)

where κi,l = Tα
∏l−1

j=1 (1−Ri,j) ≥ 0 is a fixed term that is not affected by the swap.

Equation B.6 also points to an important observation:

Lemma B.2.4. If Wi,l+1Ri,l −Wi,lRi,l+1 < 0 and Ri,j < 1 for all j < l, then swapping

document l with document l + 1 will decrease Ei.

Proof. This follows directly from Equation B.6.

Lemma B.2.5. If Ri,j < 1 for all j, then minimum individual assessment time is obtained

if and only if the documents are sorted in descending order by

Ri,l

Wi,l

. (B.7)

Proof. Let τ be a document ranking that yields the minimum individual assessment time,

and for the sake of contradiction, not a ranking that can be obtained by ranking according

to Ri,l

Wi,l
. We can, thus, find two neighboring documents, without loss of generality, l and

l + 1, such that:
Ri,l

Wi,l

<
Ri,l+1

Wi,l+1

(B.8)
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this leads to:

Ri,lWi,l+1 −Ri,l+1Wi,l < 0 (B.9)

since all W > 0. Lemma B.2.4 together with the prerequisite that Ri,j < 1 for all j

then suggest that swapping the two leads to a decrease of Ei. This contradicts with the

assumption that τ is an optimal ranking. This proves that to achieve minimum individual

assessment time, it is necessary to sort by Ri,l

Wi,l
. The sufficient condition follows by the fact

that swapping tied documents does not lead to change inEi, as shown in Equation B.6

Proof for Theorem 5.3.3. Let τ be a document ranking according to Ri,l

Wi,l
. Let m be the

document such that Ri,m = 1 and is ranked closer to the top then any other document

with Ri,: = 1 (i.e. with the shortest Wi,:). Now, consider using m to cut the documents

into two partitions: the first partition of documents are ones ranked before m. Applying

Lemma B.2.5, this partition of documents are already in optimal sorted order, since there’s

no Ri,: = 1. The second partition, documents ranked lower than m, the ranking simply

does not matter, as Equation B.5 shows, the (1 − Ri,m) term will make everything zero

afterwards.

Now, let’s consider moving a document from the second partition to the first par-

tition. Since any documents in the second partition has a Ri,j

Wi,j
that is smaller than any

documents in the first partition, after you move the document, the optimal ranking for the

first partition will put the document at the bottom, right next to m. And since Ri,m

Wi,m
≥ Ri,j

Wi,j

due to the original ordering, we can apply Lemma B.2.4, which can swap the document

back below m. Next, consider moving the lowest ranked document of the first partition

(the one ranked at m− 1) to the second partition. This will always increase Ei, as shown

from Lemma B.2.4. Moving any other document in the first partition will also increase

Ei as least as much as before, since the process is equivalent to swapping with (and thus

potentially increase Ei) any intermediate documents in between.

Combine these two together, we show that Ei is at a minimum value when sorted

in descending order according to Ri,l

Wi,l
.
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B.2.3 Relationship between ERR and hTBG

Here we show the derivation from the cascading user model in ERR to the individual

assessment time estimation (Ei) in hTBG. ERR assumes a stopping probability (written

in hTBG terms):

P (stop at l) = Ri,l

l−1∏
j=1

(1−Ri,j) (B.10)

The expected words read, can then be calculated as:

L∑
l=1

(
P (stop at l)

l∑
d=1

Wi,l

)

=
L∑
l=1

(
Ri,l

l−1∏
j=1

(1−Ri,j)

(
l∑

d=1

Wi,l

)) (B.11)

This can be rearranged to the formula we used in hTBG:

L∑
l=1

(
Wi,l

l−1∏
m=1

(1−Ri,m)

)
(B.12)

by letting Ri,L = 1 (the user has to stop reading at the last document). To show this,

observe that Wi,1 appears in all L terms of the summation, thus the coefficient for Wi,1

is simply
∑L

l=1(Ri,l

∏l−1
j=1(1 − Ri,j)) = 1, from both simple manipulation and the fact

that we are summing over probability. Similarly, Wi,2 appears in all L terms except with

l = 1, thus (1 − Ri,1). For Wi,3 it is (1 − Ri,1) − Ri,2(1 − Ri,1) =
∏2

j=1(1 − Ri,j). The

rest follows.

B.3 Appendix: Training Details

All models are built using AllenNLP (Gardner et al., 2018). Tokenization and sentence

splitting are done using spaCy (Honnibal and Johnson, 2015).

The CROWDSOURCE dataset is split into a training set (80%) and a validation set

(20%) during model development. We did not test on the EXPERT dataset until all param-
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eters of the models were fixed. Cross validation on the training set is used for hyperparam-

eter tuning. For 3HAN, we used ADAM with learning rate 0.003, trained for 100 epochs

with early stopping on the validation dataset, with patience set to 30. For 3HAN_AV, the

same hyperparameters are used. For LR, we used SGD with learning rate 0.003, trained

for 100 epochs with early stopping on the validation dataset, with patience set to 30.

Both 3HAN and 3HAN_AV’s Seq2Vec layers use bi-directional GRU with atten-

tion. The word-to-sentence layer has input dimension of 200, hidden dimension of 50, and

output dimension of 100, since the GRU is bi-directional. The sentence-to-document and

document-to-individual layer, similarly, has input dimension of 100, hidden dimension of

50, and output dimension of 100. Hyperparameters were selected using cross validation

on the training set split of the CROWDSOURCE dataset.
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Appendix C: Learning to Compose Discharge Summaries from Prior Notes

C.1 Appendix: Full Results

See Table C.1 and Table C.2 for the full scores for all models on all seven sections.

Chief Complaint Family History Social History
Medications on
Admission

Past medical
History

History of
Present Illness

Brief Hospital
Course

Oracleext 73.0/59.0/72.9 55.7/40.5/55.3 62.0/48.2/61.0 61.5/47.7/60.6 75.1/67.0/74.1 77.4/66.8/75.8 45.7/22.3/41.8

Rule-basedext 59.8/44.5/59.8 43.9/31.8/43.9 18.6/12.1/18.6 26.1/22.2/26.1 20.6/16.3/20.6 8.3/7.3/8.3 9.2/8.5/9.2
RNN+RLext 45.1/33.1/45.0 40.2/28.6/40.0 37.6/27.2/36.6 43.4/35.6/42.1 47.9/40.2/46.3 34.8/28.3/33.4 21.3/6.7/18.6
Presummext 12.3/6.9/11.9 33.2/24.0/32.9 36.3/27.5/35.4 47.2/40.7/46.2 50.8/41.9/49.7 53.2/45.4/51.8 29.6/10.6/26.1
Presummext-F3 11.7/6.2/11.3 32.4/23.6/32.1 28.4/20.4/27.3 38.2/32.0/37.2 48.6/40.3/47.4 48.2/40.6/46.7 26.9/8.9/23.4

RNN+RLext + PointGen 21.2/13.2/21.1 29.8/22.0/29.5 36.7/26.3/36.2 49.2/41.7/48.1 46.3/38.6/45.0 38.8/28.3/37.4 20.6/8.6/19.2
Presummext-F3 + PointGen 19.8/11.6/19.7 30.6/23.5/30.5 42.5/31.1/41.4 50.0/43.0/49.0 52.4/45.0/51.2 43.0/35.2/41.6 20.9/9.6/19.4
RNN+RLext + BART 53.5/37.5/53.1 48.9/38.6/48.6 50.3/38.0/49.4 58.2/51.9/57.0 66.9/58.5/65.2 61.1/51.3/59.1 28.2/10.6/25.7
Presummext-F3 + BART 49.9/33.0/49.6 47.4/37.5/47.2 49.6/38.3/48.8 57.8/50.9/56.7 66.0/58.3/64.7 61.0/52.4/59.2 28.0/12.4/25.5
RNN+RLabs 61.2/47.5/60.9 61.6/50.5/61.3 45.9/33.7/44.8 49.9/42.2/48.2 57.5/47.9/55.3 47.6/38.4/45.4 32.1/10.4/28.0

# words 7.25037 17.026 44.9034 69.5803 75.3616 274.881 491.971
# sents 2.04183 2.63082 4.92901 4.67285 5.99115 16.6193 35.389

Table C.1: ROUGE-{1/2/L} scores, across different models and sections

Chief Complaint Family History Social History
Medications on
Admission

Past medical
History

History of
Present Illness

Brief Hospital
Course

ORACLEext 71.1/85.2/83.6 52.8/75.4/72.3 63.4/73.3/72.2 69.7/66.5/66.8 74.2/80.8/80.1 76.6/83.9/83.1 44.7/51.5/50.7

RULE-BASEDext 97.4/49.7/52.2 87.6/47.3/49.6 94.7/23.1/25.0 97.2/32.8/35.2 94.9/16.9/18.4 70.8/08.6/09.5 00.3/00.9/00.7
PRESUMMext 10.8/24.1/21.4 30.7/63.1/57.1 42.6/40.6/40.8 48.7/52.0/51.7 51.2/66.6/64.7 54.4/74.5/71.9 26.5/47.7/44.2
PRESUMMext-F3 10.2/25.7/22.3 29.5/64.8/57.9 25.6/48.0/44.1 34.1/57.3/53.6 47.7/71.0/67.7 47.0/78.7/73.7 19.5/67.9/54.4
RNN+RLext 44.2/72.8/68.4 54.5/70.6/68.6 43.2/71.0/66.7 45.7/67.2/64.2 43.6/81.7/75.1 27.6/88.8/72.7 15.3/69.7/51.4

PRESUMMext-F3 + POINTGEN 31.3/62.6/56.9 37.0/72.3/66.0 54.7/61.9/61.1 65.1/73.7/72.8 64.0/62.6/62.7 69.8/42.4/44.1 42.2/17.9/19.0
RNN+RLext + POINTGEN 40.6/70.2/65.4 38.2/73.9/67.6 59.9/58.7/58.8 66.4/72.7/72.0 65.6/59.0/59.6 69.1/37.1/38.9 39.8/15.2/16.2
PRESUMMext-F3 + BART 45.5/63.6/61.2 46.1/70.2/66.7 60.0/66.0/65.3 67.1/77.7/76.5 69.7/73.3/72.9 68.0/64.5/64.8 37.4/26.8/27.6
RNN+RLext + BART 48.6/70.4/67.4 44.7/74.2/69.6 61.2/66.7/66.1 67.0/80.2/78.7 70.0/74.6/74.2 67.4/64.7/64.9 34.1/23.6/24.4
RNN+RLabs 67.8/69.1/69.0 75.8/73.0/73.3 60.1/68.2/67.3 70.9/69.0/69.2 64.7/68.8/68.3 40.8/82.2/74.6 20.4/52.9/45.6

Table C.2: Faithfulness-adjusted {Precision/Recall/F3} scores based on UMLS medi-
cal mentions.

C.2 Appendix: Reproducibility

Here we describe the training details of the models for reproducibility.
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RNN+NLext and RNN+NLabs. Both models are trained following the original recipe

from Chen and Bansal (2018). The training setup involves the following steps: (1) use

gensim to train a word2vec embedding from scratch from the training set of the source

documents, (2) construct pseudo pairs of sentences (source sentence, summary sentence):

for each summary sentence, greedily finds the one-best source sentence using ROUGE-L

recall, (3) use the pseudo pairs to train an RNN extractor, (4) use the pseudo pairs to train

a pointer-generator that rewrites the sentences, and (5) train an RL agent that fine-tunes

the RNN extractor with the sentence-rewriting pointer-generator. Model is trained on one

V100 GPU, with an Adam optimizer of learning rate 1e-3. Here we use the same set of

hyperparameters as Chen and Bansal (2018). For more details, please refer to the original

paper.

For each of the seven medical sections, we follow the training recipe, and repeat

it five times. The reported models are chosen based on the validation set. We found

that the RL fine-tuning step can potentially be very unstable. For longer sections (e.g.,

brief hospital course and history of present illness), the RL fine-tuning can even fail to

converge.

PRESUMMext. We use the original implementation released with PRESUMM (Liu and

Lapata, 2019b). Learning rate is set to 2e-3 and extractor dropout rate is set to 0.1, follow-

ing the original paper. bert-base-uncased is used as the pretrained BERT model.

We made three important changes: (1) increase the maximum tokens the encoder can

consume to 1024 tokens, (2) in the data preprocessing step, we construct pseudo pairs of

sentences that will be later used to train the extractor: for each summary sentence, greed-

ily finds the one-best source sentence using ROUGE-L recall, and (3) before the training

begin, we split the source documents and their labels into segments smaller than 1024

tokens. After inference finishes, we concatenate the segments (together with a extraction

score for each sentence) back together in the original order.

For each of the seven medical sections, we train the model on 4 V100 GPUs, with

150,000 training steps and model checkpointing every 2,000 steps. We report the model

with the lowest model loss on the validation set. Since the model only assigns scores to
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sentences, we sweep the threshold of score cutoff on the validation set using ROUGE-L

score, and apply that cutoff on the test set.

POINTGEN. We use an open implementation of pointer-generator (See et al., 2017),

implemented with PyTorch and AllenNlp.1 Our model follows the original paper and has

256-dimensional hidden states and 128-dimensional word embeddings. The vocabulary

size is set to 50k words for both source and target. The model is optimized using Adagrad

with learning rate 0.15 and an initial accumulator value of 0.1, and trained on one v100

GPU for 50 epochs with early stopping on the validation set.

BART. We use the Fairseq (Ott et al., 2019) implementation of BART-large (Lewis

et al., 2019) as it is shown to achieve the state-of-the-art ROUGE scores for abstractive

summarization. We fine-tune the BART-large model with the standard learning rate of

3 × 10−5. We utilize a machine with 8 GPUs and batch size of 2048 input tokens per

GPU. We train for a maximum of 10 epochs with early stopping to select the checkpoint

with the smallest loss on the validation set. During decoding, we use beam search with

beam size of 6. We restrict the generation length to be between 10 to 300 tokens.

1https://github.com/kukrishna/pointer-generator-pytorch-allennlp
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