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While wireless communication is progressively replacing wired technology, 

methods for the implementation of Wireless Ad-Hoc Networks are currently under 

development. As these methods do not require centralized coordination, they are 

particularly adapted to environments such as disaster recovery and military 

communication and are, therefore, of great interest. Despite the potential advantages, 

no reliable methodologies for the design of Wireless Ad-Hoc Networks have been 

proposed.  This condition is largely due to the complexity of analysis of a wireless 

channel in comparison to that of a wired channel. In this thesis, we discuss the 

implementation of a tool for wireless network design. Taking a set of nodes and the 

corresponding characteristics, this tool computes the routes between each source–

destination pair. The tool then computes the throughput for each connection and, 

finally, proposes a method for the optimization of throughput based on probabilistic 

routing via sensitivity analysis. 
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Chapter 1 : Introduction 

 

1.1 Network design 

The recent progress in wireless technologies has introduced many new 

problems. While most of the communication systems of the past were hierarchical, it 

has been shown that the use of wireless ad-hoc networks has many advantages. In 

fact, using such configurations reduces the impact of central node bottlenecks in the 

network; provides more flexibility as the failure of a node is far less critical than in 

hierarchical networks, and offers adaptability to the network architecture over time 

(due to either mobility of the nodes, or failures). Wireless ad-hoc networks are 

particularly recommended in environments such as disaster recovery and military 

communications. On the other hand, this inherent flexibility makes modeling and 

prediction of throughput in ad-hoc networks much more difficult. Complexity arises 

from attempting to predict the performance of wireless links, as they are dependent on 

the activity of other wireless media in the vicinity. The efficiency of wired networks 

can be easily predicted as the link capacities are fixed.  In wireless networks these 

capacities can vary with many factors such as interference caused by neighboring 

nodes or transmission power. The dependence of wireless networks on environmental 

factors mandates the adoption of a cross-layer approach to the design of wireless 

networks.  Our model couples the physical, MAC, and routing layers to compute the 

optimal throughput of the different connections in a network using probabilistic 

routing to achieve optimization. While packet level simulation tools enable the 
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analysis of the physical and medium access control layer, it is often considered too 

complex to use such tools. The time taken to run such simulations makes it unrealistic 

to apply them to wireless network design. A similar analytical tool would be of use in 

emergency situations and military operations as it requires much less time for those 

numerical computations than a network simulator. In order to design an efficient 

network operating under a given set of constraints, it is necessary to tune multiple 

parameters at the physical layer (such as power or modulation scheme) as well as to 

tune parameters at the MAC layer (such as number of back-off stages or minimum 

contention window size). This tuning can be accomplished by local search algorithms 

or, more efficiently, through the use of automatic differentiation in order to achieve 

sensitivity analysis. This model would allow the prediction of the performance of a 

given network as well as the identification of the nodes that will act as bottlenecks 

before implementation. 

The approach taken here for implementation of the model is based on the 

fixed point method and loss network modeling for performance evaluation, design, 

and optimization of wireless or wired networks. Initially used for evaluation of the 

blocking probabilities in circuit switched networks [1], loss networks were further 

developed for representation and design of complex ATM networks [3]-[5]. More 

specifically, Liu et al. [5] presented a way to analyze complicated ATM networks 

with elaborated and adaptive routing and multi-service multi-rate traffic by reduced 

load approximations. 

Baras et al. [2] implemented a model evaluating the packet losses as well as 

the throughput in a wireless network. The loss factors of wireless links were 
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considered to be a function of (i) the parameters of the particular link and (ii) the 

neighboring link traffic rates. These choices result, in most cases, in the incoming 

traffic rate of a link being larger than the outgoing traffic rate. It was shown that, for a 

given set of paths for each connection in the network, the network’s throughput can 

be approximated by using two sets of equations. The first computes the incoming and 

outgoing traffic rate of each link in the network as a function of the loss parameters. 

The second calculates the opposite, approximating the loss parameters as a function 

of the incoming traffic rates of the link based on Bianchi’s work [15]. By running this 

set of equations iteratively on a fixed point, it was possible to compute a solution for 

the two parameters and to obtain the throughput for the network.  

A continuation of this work includes the incorporation of recent work by 

Tobagi et al. [16-17] in which the transmission failure probability of each node and 

the different components of the time spent by a packet in each node are approximated 

in order to compute the throughput of a single connection in a multi-hop 

communication. The fundamental restriction of that work [16-17] is that it does not 

allow the computation of the throughput of different flows sharing common nodes. 

The work presented below and illustrated in Figure 1-1 expands this model to allow 

the computation of the throughput of diverse connections using multiple paths, some 

of them sharing common nodes, in order to allow for optimization via probabilistic 

routing among these proposed paths. 

A wireless network is designed through computation of multiple paths for 

each connection in order to achieve routing [20]. An iterative fixed point method [3], 

[4], [5] is then used with a set of equations computing the traffic rates and losses in 
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the network. A fixed point approach is used to solve the set of equations and to 

compute the throughput of each active connection in the network. Using Automatic 

Differentiation, the derivatives of the total throughput in the network with respect to 

the path routing probabilities are evaluated. Finally, the optimized throughput that can 

be achieved in the network is calculated using probabilistic routing with the set of 

probabilities we computed based on the optimization algorithm. 

 

 

 
 

Figure 1-1: Structure of the model 
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1.2 Thesis Organization 

Chapter 2 of this thesis presents the basics of 802.11 physical layer as well as 

the medium access control layer and provides justification of our implementation. 

The 802.11 packet structure is described and several papers on wireless network 

analysis are discussed to provide the basis for the work described here.  Finally, 

network design is described as an optimization problem, based on the work by Chiang 

et al. [19]. Chapter 3 briefly explains the implementation of neighborhood discovery 

and routing in the model. Chapter 4 introduces the employed fixed point algorithm 

beginning with an explanation of the basics of the fixed point method followed by a 

presentation of the set of equations to be used as well as their implementation. 

Finally, the model is validated by setting up experimental networks in OPNET 12.0 

and comparing the results between the simulation platform and the new model. 

Particular attention is given to capture of the starvation phenomenon in wireless 

networks. Chapter 5 exposes the optimization component of the new tool. Automatic 

differentiation is presented and the basics of the program adopted for automatic 

differentiation are explained [6]. The Gradient Projection method used in the model 

for optimization of the throughput based on the path probabilities is introduced.  The 

chapter concludes with experimental results proving the benefits of optimization in 

wireless network design. Chapter 6 summarizes the thesis and describes the future of 

this project. 

 5 
 



 

Chapter 2 : Literature review 

 

2.1 Presentation of 802.11 Physical Layer 

There are several different techniques used to physically transmit packets in 

802.11. Each of them allows transmission at different speeds and uses a different 

technology. This section describes them to provide justification of the selection of a 

single technique for implementation of our simulation platform in OPNET 12.0 [7] 

and compares the results with the program developed for this project. 

The Frequency Hopping Spread Spectrum (FHSS) [8] scheme uses seventy 

nine 1-MHz wide channels in the 2.4GHz frequency band. In order to determine the 

order in which this scheme will hop on the selected frequencies, a pseudo-random 

number generator is used. This means that the only condition needed for the stations 

to be able to communicate with each other is for each of them to use the same seed 

for the pseudo-random number generator and that all the stations remain 

synchronized in time. The dwell time, which is the amount of time spent in each 

frequency band, is a parameter that can be set, but must be less than 400 ms to 

prevent FHSS to behave like a narrow-band system. There are several advantages to 

the use of FHSS rather than a fixed-frequency transmission: 

• Frequency hopping provides a resistance to narrow-band interference, as the 

frequency used is constantly changing over time. This provides resistance to 

radio interference and is the primary reason for its use in building to building 

communications. 
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• FHSS prevents casual eavesdropping due to the need for information on both 

the hopping sequence and the dwell time. 

• FHSS provides resistance to multi-path fading. 

The low bandwidth it provides is a major obstacle to the implementation of 

FHSS.  This scheme restricts the speed to 1-2 Mbps resulting in a bottleneck for 

today’s more rapid communication speeds. 

Direct Sequence Spread Spectrum (DSSS) [9] is used in 802.11b, and allows 

speeds up to 11 Mbps. DSSS transmission is accomplished through multiplying the 

data by a pseudo-random sequence of 1 and -1 values referred to as a “noise signal” 

or PN (for Positive Negative) sequence. The result of this multiplexing provides a 

signal which appears similar to white noise. The receiver deciphers the message 

through multiplying the received signal by the generated noise signal used by the 

sender. This is the same as a convolution and deconvolution sequence in 

mathematics. Similarly to FHSS, DSSS stations must be synchronized in order for 

this scheme to work. An interesting note is the potential for using the frequency at 

which the receiver must make synchronizations for determining the relative timing 

between sender and receiver.  This can in turn be used to compute the position of the 

receiving node. Similar methods are used in several satellite navigation systems [9]. 

DSSS addresses interference as in Code Division Multiple Access (CDMA).  Each 

station is given a chip sequence to transmit a 1-bit or a 0-bit. This chip sequence is 

unique for each station, thus its size in bits will depend on the number of users we 

want to be able to handle simultaneously in the system. Each chip sequence is 

orthogonal which means that multiplying the chip sequence of station A with the chip 
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sequence of station B will give a result of 0. Every station can send a 1-bit using the 

chip sequence it has been assigned and a 0-bit by sending the complement of its chip 

sequence. It is assumed that all stations are sending at the same time so that the 

resulting signal sent is seen as the linear addition of these 1 or -1 bits sent. For 

instance, take 3 stations transmitting simultaneously, A, B and C. If A and B send a 1-

bit and C sends a 0-bit, an output of 1+1-1 = 1 will be observed. 

Interference is easily dealt with because of the orthogonality property of these 

chip sequences: Take A, B, and C to be the chip sequence of stations A, B, and C 

respectively. Then, if A and C send a 1-bit and B sends a 0-bit, the overall signal is 

S=(A+B+C) . In order to decipher the signal sent by C, the received signal S is 

multiplied by the chip sequence of C (C). Owing to the orthogonality property and 

noting S•  the normalized inner product of S and C, we get [C 10]: 

S•C=(A+B+C)•C=A•C+B•C+C•C=0+0+1=1 

The primary advantages of DSSS are: 

• Strong resistance to intentional or unintentional jamming, as shown above 

• Potential for sharing of a single channel amongst multiple users 

• Potential for determining the geographic position of the nodes through the 

synchronization scheme. 

The main disadvantage of DSSS is its cost which is much higher than that of FHSS. 

 Orthogonal Frequency Division Multiplexing (OFDM) is used with 802.11a 

and 802.11g to achieve higher data rates (up to 54 Mbps). Here, 52 frequencies are 

used for data transmission and synchronization purposes. This feature enables OFDM 

to be significantly more resistant to narrow-band interference [8].  OFDM is resistant 
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to multi-path fading, provides improved tolerance to time synchronization errors over 

DSSS, and provides a high spectral efficiency. OFDM is sensitive to frequency 

synchronization problems and the Doppler Effect. In addition, there is a high 

implementation cost associated with OFDM [11]. As Bianchi [15], Medepalli [16] 

and Hira [17] based their studies on 802.11 networks using CDMA, which is not used 

in ODFM, DSSS is selected throughout this work. 

2.2 Presentation of 802.11 MAC Layer 

Unlike with Ethernet, synchronizing the transmission of wireless stations is a 

complex problem. There are several cases in which a wireless transmission offers 

very different problems to those of a wired communication.  

The hidden station problem occurs when two nodes can communicate with a 

“central” node but cannot detect the presence of each other, as seen in Figure 2-1 

below: 

 
 

Figure 2-1: Example of hidden terminals 
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The exposed node problem is somewhat the inverse of the hidden station problem as 

shown in Figure 2-2. It occurs when sender 1 (S1) and sender 2 (S2) are within 

hearing range of each other, but S2 cannot transmit to the receiving station of 

communication 1 (D1). Similarly, S1 cannot communicate with D2, the destination of 

communication 2. If S1 is transmitting to D1, S2 will falsely conclude it cannot start a 

transmission with D2, while in reality there would be no interference in a 

simultaneous communication of both sender nodes. 

 

 

Figure 2-2: Example of an exposed node scenario 

 
In order to address both problems, two modes of operation of 802.11 were 

developed: Distributed Coordinated Function (DCF) and Point Control Function 

(PCF). In PCF, a base station is used to control the activity in its cell while DCF has 

no centralized control system. Of interest here are ad-hoc networks; the focus of this 

work will be networks in the DCF mode. 

Using DCF, 802.11 employs CSMA/CA (Carrier Sense Multiple Access with 

Collision Avoidance) to transmit data. CSMA/CA can in turn be used in two modes: 
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Basic Access and RTS/CTS (Request-To-Send/Clear-To-Send). Basic Access is a 

two-way handshake, in which only a positive acknowledgment is transmitted by the 

destination upon reception of a successfully received packet. The primary concern 

with basic access is that it does not provide a method for addressing the presence of 

hidden terminals as shown in Figure 2-1. In order to accommodate this eventuality, 

RTS/CTS was developed. This is a four-way handshake technique in which a node 

needing to send data first sends a RTS frame. If the destination node is available at 

that time, it sends back a CTS frame to the source node. Any node within hearing 

range of the sending and/or receiving node will be able to receive this RTS or CTS 

frame respectively. The other nodes will be aware of the future communication 

scheduled to take place and will refrain from sending data during the time given both 

in the RTS and CTS frame. On the other hand, when such a node can hear the RTS 

frame but does not receive the CTS frame associated with it, it does not interfere with 

the existing communication and is thus authorized to transmit data. This can be 

observed in the case of the exposed node problem depicted in Figure 2-2 above, with 

S2 receiving the RTS of S1, but not hearing the CTS of D1. It is important to note the 

main assumption for RTS/CTS’s scheme: All nodes are assumed to have identical 

transmission/receiving ranges. 

Tanenbaum provides an example of RTS/CTS [12]. The problem addresses a 

network containing 4 stations. Station A wants to transmit to station B. Station C is 

within hearing range of station A (whether B and C are within hearing range of each 

other is of no importance in this case). Station D is within hearing range of station B 

but cannot hear station A. When A decides to send to B, it sends an RTS to B to ask 
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for permission to send. If B is available for receiving data, it sends a CTS back. Once 

A gets the CTS frame back, it transmits the data to B. Following the correct reception 

of that information, B sends an acknowledgement (ACK) back to A. From the point of 

view of nodes C and D, different things happen: As C is within hearing range of A, it 

receives the RTS frame and, therefore, does not send for the period of time in which it 

assumes the communication will take place. C computes that time based on the 

information contained in the RTS packet and, in order to prevent itself from 

transmitting, it uses a NAV (Network Allocating Vector) which can be seen as a 

“virtual” busy channel. As D cannot receive data from A, it will only create its NAV 

upon reception of the CTS frame sent by B as can be seen in Figure 2-3 below [13]. 

 

 

Figure 2-3: Example of a communication using RTS/CTS method [13] 

 
 PCF and DCF can be applied in the same cell. In order to achieve this, several 

inter-frame time intervals have been defined. After a frame has been sent over the 

network, each station in the cell has to wait a given amount of time before attempting 

transmission. There are four such intervals as shown in Figure 2-4 below [14]. The 

smallest interval is called SIFS (Short InterFrame Spacing). SIFS are used in a single 

dialog between two stations, for example station A and B above. Before B transmits a 
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CTS frame back, it will wait for a SIFS interval to transmit. An identical property 

applies to A upon receipt of a CTS frame, and so on. 

If a station fails to transmit after a SIFS elapses, the base station in PCF 

transmits instructions to other stations in the cell following a PCF InterFrame Spacing 

(PIFS) interval. This technique guarantees that, once a communication between two 

nodes is completed, the base station has priority over other stations in the cell so that 

it can facilitate synchronization of the communications between different users. PIFS 

is not used in DCF mode. 

Upon the elapse of a DCF InterFrame Spacing interval (DIFS), any station in 

the network may seek the use of the channel for transmission. If a collision occurs 

between two contenders, the usual exponential back-off rule applies.  Finally, the 

Extended InterFrame Spacing (EIFS) is applied when a station receives a corrupted or 

unknown frame. Once an EIFS time has elapsed, a bad frame recovery is attempted. 

 

 

 

Figure 2-4: Inter-frame Spacing in 802.11 [14] 
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2.3 802.11 Packet Structure 

 Another subject of central importance for the accurate modeling of 802.11 is 

the format of an 802.11 packet. At the MAC level, the packet can be described as 

shown in Figure 2-5 below. There are three different classes of frame: data, control, 

and management. Here, attention will be focused on the data frame as this is most 

appropriate to the majority of packets sent within the network. 

 

 

 

Figure 2-5: Data Frame of an 802.11 packet 

 
The data frame can be decomposed in several fields, the first one being the 

Frame Control field. This field itself is divided into 11 subfields. The first subfield, 

the Protocol version, states which version of the protocol is used in the packet and 

allows the simultaneous use of two versions of the protocol within the same cell. 

Secondly, the Type subfield states whether the packet received is a data, control, or 

management frame. The Subtype field provides more details about the packets (for 

instance, if it is a RTS or a CTS frame). The To DS and From DS fields state whether 

the frame is going to or coming from the inter-cell distribution system. The MF bit 
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indicates that more fragments are to be expected. The Retry bit specifies whether or 

not the frame is a retransmission. The Power management bit is only used in PCF and 

enables the base station to ask another wireless node to shift to or from sleep state. 

The More bit signifies that the sender has additional frames to transmit to the 

receiver, while the W bit indicates the encryption of the packet using WEP. The O bit 

tells the receiver of the packet that every frame in that sequence having the O bit set 

to 1 must absolutely be treated in order. The second field of the data frame, the 

Duration field, indicates how long this frame and the associated acknowledgement 

will occupy the channel. This field, also present in the control frames, is the field used 

by neighboring stations to compute their NAV. There are also four addresses in the 

MAC header. While two of them are reserved for the source and destination of the 

packet, the other two are used for the source and destination base station in case of 

inter-cell traffic. The Sequence field permits the numbering of fragments, while the 

Data field contains the payload of the frame, followed by a checksum in the 

Checksum field. 

Overall, a packet is organized as illustrated in Figure 2-6. Here, the IP header 

and the TCP header have been added to more clearly show the encapsulation of the 

packet. 

 

 

Figure 2-6: Packet encapsulation 
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2.4 Performance analysis of 802.11 

2.4.1 Computation of the saturated throughput in a single cell 

network 

Bianchi et al. [15] first exposed a new way of analyzing the overall saturation 

throughput in a single cell wireless network for both the basic access method and the 

RTS/CTS mechanism. While most previous work depended primarily on simulations 

or limited analytical models to study the performance of 802.11, Bianchi’s method 

takes into account the details of the back-off protocol using Markov chain analysis. 

The approximation in the model is the assumption that the collision probability of a 

packet transmitted by either station in the network is constant and independent of 

other collisions and of the number of previous retransmissions of that packet. The 

primary factor evaluated throughout this work is the saturation throughput. It is 

known that 802.11 shows some instability upon saturation. For instance, if we 

increase the offered load in a given network over time, the network throughput will 

rise and maintain the ideal load up to a threshold value after which it will begin to 

decrease, eventually converging asymptotically to a value lower than the maximum 

throughput of the network. This throughput value is defined by Bianchi as the 

saturation throughput [15]. Assuming a single cell network (meaning there are no 

hidden nodes) and ideal channel condition (i.e. the channel losses are null and every 

node has the same data rate) this model takes a network with a fixed, given number of 

saturated stations. In other words, each station in the network has a packet to send at 

each time step. The analytical model is then broken down in two different steps. First, 
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the probability τ for a single station to transmit a packet in a random slot time is 

computed via a Markov model. It is of importance to notice that τ is independent of 

the DCF mechanism used (either basic access or RTS/CTS). Second, the possible 

events in a random time slot are carefully studied in order to compute the saturation 

throughput in both the RTS/CTS mode and Basic Access as a function of the 

previously estimated τ. The probability that a station transmits in a randomly chosen 

slot time is given by [15]: 

2(1 2 )
(1 2 )( 1) (1 (2 ) )m

p
p W pW p

τ −
=

− + + −
 

where m represents maximum number of back-off stages, p is the conditional 

collision probability and W is the minimum congestion window, . In other 

words, . This result is applied by Tobagi et al. [

minCW

min max2m CW CW= 16-17] and will be 

of use in the analytical model presented in Chapter 4. Finally, note that Bianchi [15] 

defines the throughput as a ratio of the expected value of the payload information sent 

in a slot time to the expected duration of a slot time: 

[payload information sent in a slot time]
[length of a slot time]

EThroughput
E

=  

This means, in that case, that the throughput is measured in bits/s. Here the 

representation of the throughput is similar to that used by Tobagi et al., however, the 

definition used in this thesis will be slightly different in that it will represent a 

percentage: the ratio of the expected value of the amount of data received by the 

destination node to the expected value of the amount of data injected in the network 

by the source node. 
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2.4.2 Performance modeling of a path in 802.11 multi-hop 

networks 

Tobagi and Medepalli propose a study of wireless networks allowing the 

computation of several properties of an 802.11 network such as throughput, delay, 

and fairness [16]. They demonstrate that the exponential back-off is not as useful as 

intended to prevent flow starvation problems. In fact, a careful choice of the 

minimum contention window provides better control of these problems. Here, the 

intention is to compute the throughput of a flow in a non-saturated regime using a set 

of probabilities correlated with each other by a set of fixed point equations. The 

shortcoming of Bianchi’s work [15] occurs as a result of the assumption that there are 

no hidden nodes within the network. Networks containing hidden nodes are quite 

common and display properties different from those of single cell networks. The 

notion of synchronization between the different stations in the network is lost and it 

can no longer be assumed that all nodes will sense a busy channel and stop/resume 

their back-off counter simultaneously when a transmission starts/ends. Every node 

will have a different perception of the channel according to its position relative to the 

other nodes in the network. Another assumption of Bianchi’s work [15] that has been 

removed from the work of Tobagi et al. is the non-emptiness of the queue of each 

node in the network. The probability that a node has a packet in its queue and wishes 

to use the channel is included in their model [16]. This probabilistic design is based 

on two observations. Consider node S to be the source of the communication and 

node D to be the destination. If node S senses the channel to be idle, there is a single 

possibility for node D to sense it busy. This occurs if node D physically or virtually 
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(through a NAV) senses node J transmitting at that instant while S cannot because it 

is out of range of the communication taking place between J and another node.  Note 

that this case is symmetric between D and S. The second observation concerns the 

case in which D experiences a collision. There are two possibilities: either at least one 

node within hearing range of both D and S transmits in the same back-off slot as S or 

at least one node within hearing range of D but hidden from S transmits during the 

vulnerable period (the vulnerable period is defined to be the period during which the 

neighbors of D are not aware of the transmission between S and D and may cause a 

collision by transmitting). It is interesting to remark that this model considers only the 

set of nodes having some activity in the network (i.e. either sending traffic or 

receiving traffic) and can, therefore, easily deal with nodes transmitting at different 

frequencies. Nodes transmitting in a frequency f2 will not be included in the set of 

nodes transmitting in f1 and will have no influence on the computation of the fixed 

point for these nodes. The methodology of this work is to first compute the collision 

probabilities in the network and, secondly, to compute the expected transmission time 

for the two-node communication. The methodology is expanded to compute the 

collision probability for each node in the path considered [17]. The average 

transmission time of each node in the path is then estimated. It is shown that this 

model exhibits very good performance in identifying starvation problems and 

bottlenecks in the network [16]. Tobagi et al. expanded that work [17] by computing 

the throughput of a path in a wireless communication. As opposed to previous work 

in the area [18], this model takes into account the fact that some links in the path of 

interest may not be saturated, even if the source of the link is. This model can be 
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extended to compute the throughput of multiple paths along the network under the 

restraining condition than no two paths can share a common node. In other words, 

this model takes into account inter-path interferences when more than one connection 

is active in the network. Under the assumption that each source of a connection is 

saturated, this paper computes the throughput along each path by computing the 

average service time for a packet at each intermediate node i, E[Ti]. Once this value 

has been computed for each node, the node having the highest service time is used 

(i.e. the bottleneck in the path), bn, and the throughput is computed with the 

following equation, where P represents the packet size: 

[ ]bn

PThroughput
E T

=  

The work presented here expands the model of Tobagi et al. in order to be 

able to compute the throughput of different flows. Here, several paths can have one or 

more nodes in common. These nodes can either be the source and destination for the 

computation of the throughput of a connection using multiple paths or the same 

intermediate nodes if two different connections are going through the same node in 

their respective path(s). 
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2.5 Optimization in networking 

2.5.1 Introduction 

 Optimization tools are widely used in engineering applications. When 

designing a new component, it is critical to ensure that it will be used its maximum 

capacity. Networking is not an exception to this rule. Whether the discussion is of 

wired, wireless, or even space networks, the question is always an optimization 

problem. Wang et al. [19] expose the methods for characterization of a network 

design problem as an optimization problem and the techniques for dividing it into 

different “sub problems” to provide tools for competitive design, i.e. a design that 

gives satisfactory performance from the components of interest. 

 The most famous networking model is the layered OSI reference model. This 

model consists of decomposing the major tasks of networking in different layers in 

order to achieve competitive and reliable communication. Each layer can be seen as a 

separate optimization problem with various constraints and different variables to 

optimize depending on the task allocated to that layer. At this point, the interfaces 

between the OSI layers can be interpreted as functions of the different optimization 

variables of each layer. This allows for coordination of the different optimization sub 

problems in order to provide a satisfactory overall solution, i.e. a solution that 

consists of a trade-off between the different layers to obtain the best compromise and 

achieve an overall optimal reference model. An example of this decomposition can be 

seen in Figure 2-7 below. 
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Figure 2-7: Decomposition of an optimization problem [19] 

 
 

2.5.2 Optimization in Congestion Control, Routing and 

Scheduling 

It is often challenging to make architectural decisions in networking. For 

instance, rate allocation between different users presents a problem. It can be 

addressed in several different ways: one can propose end-to-end congestion control, 

local scheduling, routing based on end-to-end or per-hop actions, and so on. Thus far, 

a theoretical model complete enough to enable the design of an overall optimal 

solution for networking problems has not been outlined. This is the basis for 

introduction of layered architectures in networking. They allow a distributed 

approach to network coordination when dealing with network design. Every layer in 

network architecture can be seen as a control over a specific subset of decision 

variables in the network. Each layer is aware of only a part of all the parameters and 

variables present in other layers below or above itself. Each layer conceals the layer 

below itself with respect to the one above and provides a service to the later. In 

network design, there are two possible decompositions: horizontal decompositions 
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and vertical decompositions. Horizontal decomposition consists of taking one 

functionality module and processing it using different computing units, possibly 

geographically distant; this is the concept of distributed computing. Vertical 

decomposition deals with applying a Network Utility Maximization (NUM) over 

different layers of the network. Each of these decompositions can be seen as a 

different layer of the subnet and the Lagrangian functions, or their duals can be 

interpreted as being the interfaces between two consecutive layers.  

As an example, let us present a case-study [19]. The equilibrium of TCP-

AQM (Active Queue Management) is considered. Assume that TCP-AQM is stable, 

performs faster than the time needed for routing updates and that only single-path 

connections are considered. The equilibrium can be presented as the solution of a 

NUM and its dual, which is clearly an optimization problem. 

Noting R(t), the routing at time t, x(t)=x(R(t)) and λ(t)= λ(R(t)) to denote 

respectively the equilibrium rate and the price generated by TCP-AQM during the 

time period t, we find that x(t) is the primal solution while λ(t) is its dual: 

0

0

( ) arg max ( ) s.t. ( )                       (1)

( ) arg min max ( ) ( ) )

s sx s

s s ls l
s l

x t U x R t c

t U x R t
λ l l

l
cλ λ λ

≥

≥

= ≤

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
+

∑

∑ ∑ ∑
 

with λl(t) representing the cost to use link l at time t, Us being the utility function of 

xs, c being the overall capacity, cl the capacity of link l and s being a source in the 

network. When a source computes a new route at time step t+1, it finds the route 

rs(t+1) in the set of all available routes Hs such that ( ) s
l l

l
t rλ∑  is minimized. 

( 1) arg min ( )
s s

s s
l l

r H l
r t t rλ

∈
+ = ∑  
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Using the formula above with optimization techniques, it can now be 

determined whether or not TCP/IP has reached equilibrium. Consider the following 

generalized NUM: 

0
(2)max max ( )                                        

s.t 

n
s sR R x s

U x

Rx c

∈ ≥

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
≤

∑  

The Lagrangian function of this problem is: 

0 0
(3)min max ( ) min

s s
s

s s s ls l l lx rs l
U x x R c

λ
λ λ

≥ ≥ ∈Η

⎡ ⎤⎛ ⎞
− +⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑ ∑

l
∑

ls

 

With rs denoting the sth column of R and s
lr R= . The main difference between 

equation (1) and (2) is that (1) maximizes utility over source rates while (2) 

maximizes both utility over source rates and the utility over the routes taken. This 

function suggests that TCP/IP might actually be an algorithm that maximizes utility 

over a properly defined set of link costs. An important point to take into consideration 

is that, if in (1), there are no duality gaps, (2) will actually display some due to the 

fact that R is discrete which makes (2) non-convex. A theorem states that, in order to 

prove the existence of equilibrium in TCP/IP, it is needed to show that there are no 

duality gaps between (2) and its Lagrangian dual function. If there were none, then 

the equilibrium would be the solution to this problem and its dual, (R*, x*, λ*). 

Taking this into consideration, it can be assumed that the layering of TCP and IP 

addresses the division of the NUM problem in two specific sub problems: the source 

rates problem and the routes problem. The duality gap could be thought of as “the 

penalty for not splitting”. 
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Chapter 3 : Neighborhood discovery and Implementation of 

multi path Routing 

 

3.1 Neighborhood discovery 

The very first operation executed by the program is neighborhood discovery. 

The program is given an input file used for computing the available routes between 

two nodes, the throughput for each connection, and finally the optimal throughput. 

The content of the file is the following: 

First, it states which time instant is described and how many nodes are in the 

network at that time. Then, a description of each node is given containing the 

following information: 

• Identity of the node. Identifies the node in the program. 

• Position of the node. Given in the Cartesian referential. 

• Power. Represents the transmitting power of this node. 

• Г, the noise threshold for that node. 

• NumConn displays the number of connections for which this node will be the 

source. If NumConn is non nil, then following this field is a description of 

each of these connections in the following way: 

Destination: ToS: Data rate: Numpaths 

Here, Destination represents which node will be the destination for this 

connection while ToS is the type of service demanded for this connection (i.e. 

video, data, or voice) and Data Rate the amount of bandwidth demanded by 
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the source for this connection. Finally, Numpaths is the number of paths 

desired to carry on this connection. If enough paths between the source and 

destination are available, then the desired number of paths is going to be used 

to carry data in the connection, otherwise the maximum number of paths 

found between the source and the destination is used. 

• Finally, the description of the node ends with the characterization of its link 

with each one of the other nodes in the network. Note that this is merely a 

description of the link condition; this does not mean that every node can 

transmit data directly to any other node in the network. Using these 

parameters, the neighborhood discovery scheme will find out whether or not 

these links can be used afterwards. The description of a link is as follows: 

First, the destination of the link is stated then the probability of loss due to 

buffer overflow for that link is defined and called ε. Then comes p, the packet 

error rate for that link, the cost of using that hop (which will be used in the 

route discovery algorithm) and the Noise on that link. Finally, α defines the 

attenuation coefficient for this link and is set to 2 by default. 

 Using this information, a neighborhood matrix is computed for each node in 

the network. Take node i and j in the network; the Signal to Noise Ratio (SNR) of the 

link i-j is: 

(Distance b/w  and )Power i jSNR
Noise

α−

=  

Then, the SNR is compared to Г. If the SN , i and j  are defined as neighbors. 

However, if , i and j will not share a direct connection. 

R ≥ Γ

SNR ≤ Γ
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At that point, the program reads a matrix of links between all the nodes of the 

network. Each link is assigned a weight of one which can later be changed to other 

weights based on the distance, bandwidth, interference, or other performance related 

criteria. Since the routing algorithm outputs the K-shortest paths having the lowest 

overall cost using this parameter, the paths fitting best specific requirements can be 

selected later on. The routing program is called for each source-destination pair which 

allows the number of paths desired for each pair individually to be set. The program 

then outputs the paths found, the cost associated with each one of them, and the 

number of paths found (as in some cases, there might not be as many loop free paths 

as the user requested).  The main advantage of using the Dreyfus algorithm in this 

project is that, in many cases, the optimal path might not be the one which contains 

the least number of intermediate hops for instance. Moreover, the ultimate goal is to 

create a probability distribution which will define the proportion in which the traffic 

should be sent over the set of paths computed by the routing algorithm. 

Ultimately, once the paths needed for each of the source-destination pairs 

defined in the network have been found, the probabilities are initialized in order to 

use the computed paths for each pair to a uniform distribution. Then, the optimization 

algorithm is launched which will maximize the throughput of the network using 

automatic differentiation to optimize the routing probabilities associated with each 

connection existing in the network at each time slot. Note that a source node might 

have more than one connection (with different throughputs) to a given destination. 

Running the optimization scheme on total network throughput ensures that the 
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probability distribution found by this scheme is going to optimize the overall network 

performance. 

 

3.2 Presentation of the routing algorithm 

Routing is implemented using Lawler’s adaptation of the Dreyfus algorithm. 

The particularity of Dreyfus algorithm is that it computes more than the shortest path 

between a source and a destination. This algorithm allows the user to compute the K-

shortest paths to a given source-destination pair. The advantage of this scheme is that 

it is particularly adapted to the needs of this project, in which several paths can be 

used for each connection and in which a specific set of constraints must be satisfied 

for each path used. There are mainly two versions of the Dreyfus algorithm: the first 

one computes the K-shortest paths of a source-destination pair and can return paths 

containing the same node (including the source node) multiple times. The second 

version does not allow loops in the paths it computes. Though computationally harder 

(the length of computation is on the order of O(K.n3), where K represents the number 

of paths computed, and n is the total number of nodes in the network), the second 

scheme was implemented as only loop free paths are relevant in the design of ad-hoc 

wireless networks. 

3.3 Lawler’s algorithm for k-Shortest paths with no repeated 

nodes 

 In this section, the algorithm used to compute K loop-free shortest paths is 

presented step-by-step based on the work of Lawler [20]. Here, 1 defines the source 
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node and d the destination node. The arcs here are the existing connections between 

the nodes and their neighbors, i.e. if node a and node b are within hearing range of 

each other then there exists an arc between them. Note that in this model, the 

transmitting power and the noise threshold of each node in the network can be set, 

thus it is possible in some cases to have directive arcs (for instance, if a can transmit 

to b but b cannot transmit to a due to a lower transmission power). However, in all 

the networks tested, the assumption that identical nodes were used in the network was 

taken, so there will not be any directive arc in this work. 

1. Provided all arc lengths are superior or equal to zero, compute the shortest 

path from 1 to d using Dijkstra’s algorithm. Add this path to the list of paths, 

LIST, and set k=1. 

2. If LIST is empty, then stop the algorithm: This means there are no more paths 

to be found between 1 and d. If LIST is non empty, then output the shortest 

path in the list and label it Pk. If k=K, exit, as the desired number of paths 

have been computed. Otherwise, go to step 3. 

3. Assume in this step that Pk contains arcs (1, 2), (2,3), …, (q-1, q), (q, d). 

Suppose as well that Pk is the shortest available path between 1 and d amongst 

all the paths forced to include arcs (1, 2), (2,3), …, (p-1, p), where p q≤ and 

some edges of p are excluded from the set of candidate edges (this condition is 

stored in LIST alongside the entry Pk as will be seen below). 

a. If p q= , apply Dijkstra’s algorithm to find the shortest path between 1 

and d with the following conditions: 

i. Arcs (1, 2), (2,3), …, (p-1, p) are included in the path. 
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ii. Arc (p, d) can not be used in this path, in addition to the edges 

of p that are excluded as stated above. 

If such a path can be computed, put it in LIST, along with the 

description of the conditions with which it was computed (which edges 

were excluded, etc.) 

b) If p q> , apply Dijkstra’s method to compute the shortest path 

between 1 and d as well, but with this set of conditions instead: 

i) Arcs (1, 2), (2,3), …, (p-1, p) are included in the path, but 

arc (p, p+1) is excluded, alongside with the set of excluded 

paths stored next to the entry Pk in LIST. 

ii) Arcs (1, 2), (2,3), …, (p, p+1) are included in the path, but 

arc (p+1, p+2) is excluded. 

iii) … 

q-p-2) Arcs (1, 2), (2,3), …, (q-2, q-1) are included in the path, but 

arc (q-1, q) is excluded. 

q-p-1) Arcs (1, 2), (2,3), …, (q-1, q) are included in the path, but 

arc (q, d) is excluded. 

Dispose each shortest path found by following one of the conditions 

stated above in LIST, along with a description of the condition 

followed to find this path. Set 1k k= +  and go back to step 2. 
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Chapter 4 : Fixed point modeling 

 

4.1 Introduction 

 In his first analysis of IEEE 802.11 [15], the analytical model Bianchi 

proposed computed the saturated throughput of a wireless network and assumed to 

have ideal channel conditions and a finite number of users. It also made the 

assumption of a single cell network (i.e. every node in the network is within hearing 

range of every other node in the network). While these estimations trigger very 

accurate results in most cases, it has the problem that it does not illustrate starvation 

problems in which some connections consume the bandwidth of others due to their 

respective geographical locations. An example of this is the “Flow in the Middle” 

case where a source can hear the activity of two other sources that cannot sense each 

other. This results in very low throughput for the first source and almost 100% 

throughput for the other two sources. In the work by Medepalli [16], Wang [21] and 

Garetto [22], analyses have been carried out in order to compute the throughput of 

individual nodes (as opposed to Bianchi’s total network throughput computation) in 

networks containing hidden nodes. Finally Tobagi and al. extended their model to 

compute the throughput of individual nodes belonging to multi-hop connections [17]. 

This model allows computing the throughput for multiple paths as long as these paths 

do not share a common node. In the model presented in this thesis, that work is 

extended to enable the computation of throughput for multiple paths having one or 

several common nodes. 
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4.2 Methodology 

In order to solve the set of equations defined in this chapter, the fixed-point 

method is used. This algorithm consists of iterating the functions in the following 

manner [23]: 

1 ( ), 0,1,2,...n nx f x n+ = ∀ =  

When the fixed point iteration converges, a stable point satisfying all of the equations 

in the set has been reached. This means that the point found is a solution of the set of 

equations. The fixed point iteration is shown below in Figure 4-1 [24]. 

 

 

Figure 4-1: Example of a fixed point iteration on the cosine function [24].  

 
 

In the set of equations, each equation represents the mapping of one variable 

according to one or several others. Then, the equations are solved sequentially to 
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apply all the mappings and insure convergence to a fixed point satisfying all 

equations in the set. 

4.3 Presentation of the model 

4.3.1 Notation 

The model considered consists of N nodes and P paths. Notice that the number 

of paths in the model is the addition of all the paths used by each source-destination 

pair of the network. In this model, the unit of time used is the length of a time slot in 

IEEE 802.11, which is 50μs. The following notation is used throughout this chapter: 

• Pi represents the set of paths containing node i (either as the source, 

destination, or a simple intermediary node). 

• Ci is the set of transmitting neighbors of node i. 

• Ci
+ refers to the set Ci  plus node i itself. 

• Ci
- refers to the set outside carrier sense range of node i. Thus, if Ω denotes 

the set containing all transmitting nodes in the network, . i iC C− +∪ = Ω

• hi,p denotes the node coming after node i in path p. 

• li,j characterizes the physical layer transmission failure between node i and 

node j. As of now, li,j’s have to be given to the program as an input parameter. 

To retrieve these values, a network similar to the network evaluated by the 

analytical model is set up on a network simulator platform (OPNET 12.0 [7]). 

Using the results obtained by OPNET, the Bit Error Rate (BER) of each 

connection of interest in the network is retrieved. Using this information, the 

packet error rate li,j is computed using the following formula: 
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( )
, ,1 (1 ) packet size bits

i j i jl BER= − −  

Take Ti,p to be the service time measured between the selection of a packet for 

transmission along path p by the node i scheduler and the arrival of this packet at its 

destination. 

4.3.2 Scheduler coefficient and serving rate 

The average number of packets that are served at source node i and will go 

through path p in a time slot is denoted by ki,p and is given by the following 

relationship: 
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Where λi,p denotes the arrival rate of packets at node i going through path p: 
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and βi,p is the probability of transmission failure in either the physical or MAC layer. 

Here, m represents the maximum number of retries (set to 6 throughout these 

experiments), and Pconn,p characterizes the probability of using path p in connection 

conn. The formula is justified by the fact that a packet will have to be transmitted on 

average ,1/(1 )m
i pβ− times, at a rate of λi,p. There exist two different situations when 

scheduling packets: Either the utilization of node i is less than 1 and all incoming 

packets can be served (as is described in the first line of the computation of ki,p) or the 
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scheduler coefficients have to be normalized by the utilization of the node as can be 

seen in the second line of the equation. 

When the scheduler coefficients are obtained, the fraction of time that a node i 

is serving a packet going through a path p can be computed:  

, , ,[ ]i p i p i pk E Tρ =  

4.3.3 Computing the transmission failure probability 

To obtain the transmission failure probability, the probability "
,i pα  of a node 

accessing the channel, assuming that this node is scheduled to serve a packet on the 

path p, needs to be characterized. Note W and M to be respectively the minimum and 

maximum window size. Here, W = 16 and M = 1024 in order to fit 802.11 

specifications. Then L, the number of back-off stages can be computed as 

2log ML
W

= , and the following formula for "
,i pα  is obtained [16]: 
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Using this result, the probability that a node j in the neighborhood of a 

transmitting node i expects a transmission of this node through a path p, , ,i p jα , can be 

computed. This can happen if i has scheduled a transmission on path p and no 

neighbors of node i hidden from j are actually transmitting. Noting ,i jθ  the probability 

that a neighbor of node i hidden from node j is transmitting: 
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 To compute ,i jθ , the average time spent transmitting in the path p for a node i, 

, needs to be determined. There are two possibilities when node i is transmitting: 

it is either carrying a successful transmission or spending time in a failed 

transmission. Define  and 

,i pv

,i pd ,i pf  as the time spent in successful transmission and 

failed transmission, respectively. Then,  is the average transmission time, which is 

the time spent in successful transmission times the probability that no retransmission 

is needed plus the average time spent in failed transmission (

,i pv

,i pf ) times the 

probability that we had to retransmit the packets, namely: 
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Details on the computation of  and ,i pd ,i pf will be given in the next subsection. 

This enables the computation of ,i jθ : 
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Now, the transmission failure probability ,i pβ can be characterized. The probability 

for a transmission originating from node i and going through path p to be successful 

is given by the probability that there is no link failure, no neighbors hi,p hidden from i 

are transmitting, no new transmission of neighbors of hi,p (including hi,p itself) that are 
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neighbors of i as well will occur, and finally the probability that no transmission of 

neighbors of hi,p hidden from i, and hi,p itself will occur during the vulnerable period 

Vi,p (period during which these neighbors are not aware of the transmission between i 

and hi,p and might cause a collision by transmitting themselves). This gives: 

,

, , , ,

, ,

, , , , ', , ',
' '

1 (1 )(1 ) (1 ) (1 ) i p

i p i p i p i p
j ji ih hi p i p

V

i p i h h i j p h j p h
p P p Pj C C j C C

lβ θ α
+ + −∈ ∈∈ ∩ ∈ ∩

= − − − − − α∑ ∑∏ ∏  

, ( , )i p RTSV T i p SIFS= +  

4.3.4 Computation of the different components of the average 

time spent in the network 

 Finally, the different times spent in the network need to be computed to obtain 

the throughput of each active connection in the network. Ti,p is the total time spent by 

a packet scheduled to go trough path p after it was scheduled for transmission at node 

i. This total time spent can be divided in five components: 

1. di,p: Time consumed in successful transmission by node i for packets sent in 

path p. 

2. fi,p: Time consumed in failed transmission by node i for packets sent in path p. 

3. bi,p: Average back-off time of node i for a packet going through path p. 

4. ui,p: Average time consumed by successful transmission of neighbors of node i 

during Ti,p. 

5. ci,p: Average time consumed in failed transmission during Ti,p. 
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The average service time is: 

, , , , , ,[ ] (1 )m
i p i p i p i p i p i pE T d u b cβ= − + + +  

and here, denoting TRTS(i,p), TCTS(i,p), TP(i,p), and TACK(i,p) to be respectively the 

time taken to transmit a RTS, CTS, data, or acknowledgment packet between node i 

and the next node in the path p, hi,p: 

, ,( , ) ( , ) ( , ) ( , )i p RTS CTS i p P ACK i pd T i p SIFS T h p SIFS T i p SIFS T h p= + + + + + + ,  

The time spent in failed transmission, ,i pf , is characterized by the average time 

spent in packet transmission failure plus the average time consumed by failures due to 

RTS/CTS. Define ,i pε  to be the probability of transmission at the physical layer when 

packets and acknowledgments are being sent in the network (called stage 2 of 802.11 

transmission, stage 1 being the moment where RTS/CTS frames are sent in the 

network): 

, ,
,

, ,

(1 )i p i p
i p P H

i p i p

f
ε ε

τ τ
β β

= + −  

,

( , )

( , ) ( , ) ( , )

H RTS

P RTS CTS i p P

T i p SIFS

T i p SIFS T h p SIFS T i p SIFS

τ

τ

= +

= + + + + +
 

where Hτ  is the time taken by the transmission of an RTS frame, and Pτ  represents 

the time spent for the transmission of a packet. 

The average time spent in back-off stages is 

, ,
0 2

m
nn

i p i p
n

CWb β
=

= ∑  

Where CWn/2 is the average back-off time at the nth retransmission trial and m is the 

maximum number of retrial attempts.  
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The computation of ui,p, the average time taken by successful transmission of 

neighbors of node i, is somewhat more involved. Several other probabilities need to 

be computed beforehand. First, the probability of successful transmission by node i 

when it is scheduled to transmit a packet through path p, qi,p, is given by: 

"
, , ,(1 )i p i p i pq α β= −  

Now, assuming the events of unsuccessful transmission of neighbors of node i are 

independent, the probability of having a successful transmission in the neighborhood 

of a node i can be written as: 

, , , ' , '
'

1 (1 ) 1 (1 )
ji

i p i p j p j p j i
p Pj C

r q q ρ θ
∈∈

⎛ ⎞⎛ ⎞
= − − − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑∏ ,  

The probability that the next successful transmission will come from node i, knowing 

that there is a successful transmission originating from the neighborhood of i, can be 

expressed as: 

,
,

,

i p
i p

i p

q
r

γ =  

Calling Qi,p the number of successful transmissions by neighbors of i during the time 

Ti,p: 

,
,

,

1
[ ] i p

i p
i p

E Q
γ

γ
−

=  

Now, the time taken by each successful transmission by neighbors of node i 

needs to be computed to get ui,p. Define tk,i as the time taken by the kth successful 

transmission of node i neighbors. To compute tk,i, the probability gi,j,p that a successful 

transmission in the neighborhood of i belongs to a neighbor j, given that this 

successful transmission is not carried out by i itself, needs to be characterized: 
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Now, calling dj the average time taken by a successful transmission by node j, for all 

the paths using j: 
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And: 

, , , ,[ ]
i

k i p j i p j
j C

E t g
∈

= d∑  

Finally, assuming the time taken by the kth transmission of a neighbor of i is 

independent of the number of successful transmission in the neighborhood of i:  

, ,[ ] [i p i p k i pu E Q E t , , ]=  

 To conclude, ci,p, the average time spent in unsuccessful transmission due to 

collision at a node i while transmitting using path p needs to be expressed. 

The computation of ci,p is somewhat similar to the evaluation of ui,p. Firstly, the 

average number of failed transmissions for node i while sending packets using the 

path p will be computed. Secondly, the time spent in each failed transmission will be 

expressed. 

The average number of failed transmissions due to collisions during the time 

Ti,p is the ratio of the probability of having a successful transmission by node i, given 

that at least one transmission has taken place in its neighborhood (called xi,p), and the 

probability that a failure will happen in the neighborhood of i, given that at least one 

transmission has happened in this neighborhood (yi,p). 
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Since the probability that at least one transmission has taken place in the 

neighborhood of i is given by : " "
, , , ' , '

'
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Now, the average time spent in a failed transmission for a node i given that it is 

scheduled to serve path p, wi,p, is given by : 

"
, ' , ' , ' , , '
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And finally, the average time spent in failed transmission for node i when it is 

scheduled to serve path p is given by: 

,
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4.3.5 Computation of the throughput 

Lastly, the throughput in the network needs to be expressed. The throughput 

for each active connection in the network is computed as follows: For each 

connection, the ratio of the sum of the arrival rates of each path used in that 

connection to the input rate given at each path p used in the given connection is 

computed. Note that as the probabilistic weighting given to each path in this part of 

the computation is uniform, the input rate of each path is going to be exactly the 

same. However, when optimizations are performed on the throughput of each 

connection, the probability distribution will change as will the input rate of each path. 

Define Thc to be the throughput of a connection c having i as the source node. 

Then: 

,

,

c

c

last p
p P

c
first p

p P

Th
λ

λ
∈

∈

=
∑
∑

 

where first and last denote the source and destination nodes in connection c, 

respectively, and Pc  designates the set of paths p used to carry out the communication 

demanded for the connection c. 

4.3.6 Modus operandi for the computation of the fixed point 

In order to insure better chances of convergence for the fixed point algorithm, 

several choices have been made during design: 

• Initialization: The values of the parameters are initialized assuming the 

communication is perfect for every connection, i.e.: the input rate of the 

connection is propagated throughout every path of the connection. This means 
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that assuming perfect communication, there will be no congestion in 

intermediary nodes in the path. The time Ti,p is assumed  to consist only of the 

time taken by successful transmission plus the back-off time needed for the 

first trial (it is assumed no retransmission is needed). Namely, 

, , ,
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, , ,
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, ,
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Moreover, as the transmission conditions are considered perfect, every probability 

of failure is set to zero which means: 

"
, , , , , ,

, , ,
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0,
i p i p i p i p i p i p
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β α
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Because of this assumption, the other parameters are set as follows: 

vi,p, the average transmission time of node i for a transmission on path p contains 

only the average transmission time taken for successful transmissions, and 

,i p i pk ,λ=  since node i can serve all incoming packets: 

, ,i p i pv d=  

and 

, , ,[ ]i p i p i pE Tρ λ=  

• Fixed point iteration model: Here, an iteration is defined to be the 

computation of all parameters of each node contained in each path of each 

active connection in the network. After an iteration, all parameters in the 

network have been updated. To insure symmetry in the computations in the 

 43 
 



 

model, it is necessary to make sure all computations are consistent. That 

means for each iteration, the new values of each hop in each path of each 

connection are computed using the values computed in the previous iteration, 

instead of updating the values as they are computed. This prevents 

dissymmetry in the computations. For instance, if the computed values were 

updated as an iteration progresses, the values of the parameters of the source 

node of a path would be updated and used to compute the new parameters of 

the second node in the path, and so on. That would mean the information 

available when the parameters of each node are computed as the nodes of a 

path and the paths of each connection are subsequently explored, will not be 

the same for each node: the computation of the parameters of the first node of 

the first path studied will be based on parameters that will be completely out 

of date when the last node of the last path considered is reached. By making 

sure the final values computed after the last iteration in the fixed point are 

used, this inequality is corrected. 

• Use of memory in the fixed point: To insure convergence of the fixed point, 

the concept of memory needs to be introduced when updating the results in 

the algorithm. This guarantees that there will be no oscillation between two 

values when the fixed point is iterated. To introduce memory, the following 

method is adopted: in order to compute the new value of the parameter, two 

results are used. First, the value of the parameter that was saved in the 

previous iteration, which will be called old and, second, the value outputted 
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by the result of the equation computing the new parameter, called 

new_equation. The new value is then defined as follows: 

   + (1- ) _ ,  0 1new value old new equationη η η= ≤ ≤  

where η here allows some control over the importance given to the old value 

when computing the new one.  

• Convergence condition: The fixed point is only exited when the expectation 

of the service time, E[Ti,p], converges for all nodes in all paths considered 

during the same iteration. Note that the same node can have different values of 

E[Ti,p] as a given node might be involved in communications taking place in 

different paths. A convergence happens if and only if all the expectation times 

of all nodes involved in an active connection in the network have converged. 

The expectation of the service time is selected to be the variable through 

which to control the convergence of our fixed point as this variable depends 

on all the other parameters in the set of equations. 

To summarize, the architecture of the fixed point algorithm is given in Figure 4-2 

below: 
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Figure 4-2: Architecture of the fixed point algorithm 
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4.4 Model Validation: Starvation models 

4.4.1 Description of 802.11 options adopted in OPNET and the 

C code 

 In order to validate the fixed point model, different specific architectures are 

set in OPNET 12.0 [7] and their results are compared to the results obtained with the 

C program. A number of parameters in OPNET should be adjusted in order to provide 

comparable results between OPNET and the C code (which will be referred to as 

WND in this work) from networks with identical settings. 

 Simulation durations are 20 minutes to guarantee that the behavior of wireless 

communication is recorded for normal use. The packet payload size in OPNET is set 

to 1024 bytes. Due to the MAC, IP, and TCP/UDP header along with the size of the 

checksum, the total size of packet is 1124 bytes. To adapt the simulations with the 

program, the packet size is set to constant. The traffic is set to send at a constant data 

rate which will vary according to the experiments made. RTS/CTS mode is used for 

communication between the wireless nodes while the capacity of the wireless channel 

is set to 1Mbps. Direct-Sequence Spread Spectrum (DSSS) modulation technique is 

adopted at the physical layer as it is the most widely installed in mobile wireless 

nodes currently. Finally, the transport protocol used is UDP as the input rate needs to 

be fixed in OPNET models to parallel the C program. TCP will automatically adjust 

its rate in case of packet drop, therefore, it would not be adapted for such a 

comparison. 
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4.4.2 Flow-in-the-Middle 

One of the most famous starvation problems appearing in 802.11 has been 

identified by Wang [21] and Garetto [22]. The network is composed of 6 nodes and 3 

links, as depicted in Figure 4-3.  

In this model, node 0 can hear that node 2 is transmitting but is not within 

hearing range of node 4. Symmetrically, node 4 can sense whether or not node 2 is 

sending data but is not able to detect transmission by node 0. On the other hand, node 

2 can sense both node 0 and node 4 when they are transmitting on the channel. If all 

connections are backlogged, the middle flow will have a negligible throughput while 

the two other flows will have an almost perfect throughput.  This problem is called 

the Flow-in-the-Middle (FIM) model. 

 

Figure 4-3: Flow in the Middle scenario 
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The issue behind this problem is that as the middle flow can hear either of the 

two other flows, its transmitting opportunities will be much lower: In fact, since node 

0 and node 4 can not hear each other, they are not synchronized. Thus, their 

transmission will overlap randomly, and node 2 will sense both of them. This means 

that node 2 will sense the channel busy for its own transmissions most of the time as 

it needs both node 0 and node 4 to be in their back-off stage simultaneously to be able 

to start sending packets to node 3. To validate the model, a simulation test-bed 

representing such a topology is created in OPNET 12.0 and in WND to compare the 

results of both methods. As can be seen in Figure 4-4, the code illustrates this 

problem very accurately. 

 

 

Figure 4-4: Throughput for the different flows in the FIM model 
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4.4.3 Information Asymmetry 

 Another starvation problem comes from asymmetry between two flows in a 

wireless network. This model, called Information Asymmetry, can be seen in Figure 

4-5 below.  

 

 

Figure 4-5: Example of Information Asymmetry 

 
In this case the sources of the two flows are not within hearing range of each 

other. The main issue considered here is that, while S2 is aware of the presence of 

another flow in his neighborhood (it can sense the activity of D1), S1 has no 

knowledge of the fact that a communication affecting his transmission is happening 

simultaneously in the vicinity. This means that flow 1 will not be able to fairly 

compete with flow 2 (S2 will hear the CTS or ACK packets sent by D1) and will 

adapt by setting an accurate NAV. This provides needed information on when to 
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contend for the channel for its own transmission. As S1 can not sense any activity on 

flow 2, it will have to request access to the channel in totally random manner. 

Obviously, S1 will experience many unsuccessful attempts as D1 will not be able to 

correctly receive packets from S1 because of transmission from S2. This will force S1 

timeouts and will double its contention window. As a result, the packet loss 

probability for flow 1 will be very large sometimes even approaching 100%. 

Ultimately, this will result in flow 1 having a much lower throughput than flow 2. As 

can be seen in Figure 4-6 below, WND accurately models this unfairness and is very 

close to the simulation results obtained with OPNET 12.0. 

 

Figure 4-6: Throughput comparison for Flow 1 and Flow 2 in the Information Asymmetry 
example 
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4.5 One Connection using one path 

4.5.1 Preliminary results: Variation of the throughput according 

to the number of intermediate nodes 

In order to test further the validity of the model, a simple network is set up. In 

the first setting, the source node and the destination node are the only two nodes in 

the network. Then, an intermediate node (in line with these two nodes) is inserted to 

serve as a hop between the source and the destination and the throughput is obtained. 

Then one more intermediate node is added in each new measurement until there are 3 

intermediate nodes in the network. This creates a connection of 5 hops in total. In 

theory, the results should be as follows: 

For a network of two nodes, a perfect throughput should be obtained as there are no 

other transmitting nodes and the destination can be reached directly by the source. 

When the connection contains three nodes, the maximum achievable throughput will 

decrease to 50% because when the source is transmitting to the intermediate node, the 

intermediate node can not transmit to the destination node; the source and the 

intermediate nodes will both transmit data half of the time. Finally, for a connection 

of 4 or more nodes, the maximum throughput will drop to 33% for the same reasons. 

In order to get the maximum achievable throughput for these different configurations, 

the load of the connection is defined to be the value of the capacity of our wireless 

channel, namely 1Mbps. The results of the experiments are shown in Figure 4-7. Note 

that both OPNET and the C code results do not yield exactly the numbers predicted 

by theory. This is due to the normal losses in wireless channels. 
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Figure 4-7: Throughput’s variation according to the number of intermediate nodes 

 

4.5.2 Evolution of the throughput according to the load for a 5 

hops connection 

The next experiment compares the variation of the throughput computed by 

the code according to the desired load in the network with the same metric estimated 

by OPNET. The network used to evaluate the validity of the code is shown in Figure 

4-8. In this figure, the blue nodes represent the wireless stations; the black links the 

possible wireless connections between the nodes; and the pointed red links the path 

used in the connection between the source node 3 and the destination node 7. The 

routing algorithm finds the shortest path between 3 and 7, which is 3 – 0 – 1 – 5 – 7. 

Using this path, the set of fixed point equations is used to compute the throughput of 
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this connection according to the desired load. As can be seen in Figure 4-9 below, 

WND output fits OPNET predictions. The maximum variation between the two 

results is 2.3 points (which represents a 3.3% variation between the two numbers). 

The average difference is 0.35 points (0.69% of variation between the two 

computation methods). 

 

Figure 4-8: Network Topology 1 

 

Figure 4-9: Throughput of a connection with a single path vs. traffic load 
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4.6 Two Connections using one path each 

The second experiment consists in verifying the validity of the model for two 

connections sharing a common node. The network is set up as shown in Figure 4-10. 

Flow 1 goes from 1 to 3 while Flow 2 goes from 4 to 5, both of them using 2 as an 

intermediate node. 

 

Figure 4-10: Network Topology 2 

 
To insure the model captures the interference caused by the activity of one 

connection to the other, the throughputs achieved by the two connections for two 

different input loads are computed. The results given by WND are then compared to 

the simulation results obtained with OPNET 12.0. To highlight the role played by 

interference in wireless connections, the throughput that would be achieved by each 

connection if it were the only transmitting connection in the network is displayed as 

well. 
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Figure 4-11: Flow throughput for Topology 2 with an input load of 300 kbps 

 

 
Figure 4-12: Flow throughput for Topology 2 with an input load of 400 kbps 
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As expected, the simultaneous presence of two active connections has a great 

influence on the throughput, as can be seen in Figure 4-11. Due to the relatively low 

input load (300 kbps when compared to the 1Mbps capacity of our wireless link in 

this topology) every flow achieves perfect throughput when left alone in the network. 

Figure 4-12 highlights the fact that the effects of interference on neighbor connections 

are increasing with the load in the network as the throughput achieved by both 

connections goes down from approximately 60% for a 300 kbps load to nearly 45% 

for an input load of 400 kbps. 

 

4.7  Evolution of the throughput for a network containing three 

active connections using one path each 

 
The network topology presented in Figure 4-13 is also considered. The 

network contains three active connections. Connection 1 is from 3 to 5 and goes 

through the network vertically. Connection 2 goes from 16 to 1 and Connection 3 

from 17 to 22 crossing the network horizontally. In this topology, several nodes are 

included in different connections simultaneously. Nodes 11 and 15 are both involved 

in Connection 2 and 3, while Connection 1 and 3 share the use of nodes 8 and 22. 
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Figure 4-13: Network Topology 3 

 

Figure 4-14 shows the evolution of the throughput of each connection 

according to the input load in the network. In this experiment, the load of each 

connection is updated simultaneously meaning that, during each computation, the 

connections will always have the same input load. It can be noticed that the results of 

WND are similar to OPNET predictions; however, the model often gives an upper 

bound of the throughput achieved. This can be explained by the fact that in OPNET 

simulations, routing packets are injected in the network throughout the simulation. 

These packets constitute an overhead and will trigger the computation of a lower 

throughput as compared to WND. Another explanation for the discrepancy in the 

results comes from the way the packet error rate is computed in WND. It only takes 

into account the BER of the receiving node of the link so that the packet error rate of 

each link going to that specific receiving node will be similar. These links may not 
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have the same physical properties, however, so the packet error rate should also vary. 

For instance, links from 15 to 8 and from 0 to 8 are different in the sense that they do 

not come from the same connection of the network and they could possibly have 

different packet error rates. This may explain the differences between OPNET and 

WND. 

 

 

Figure 4-14: Throughput of 3 connections with single path vs. traffic load 
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Chapter 5 : Throughput optimization via Probabilistic Routing 

 

5.1 Automatic Differentiation 

5.1.1 Introduction 

There are many different ways to achieve differentiation of an expression 

[25]. One method is to derivate symbolically an expression. The major drawback 

with this method is that when used in a computer program, it is often very complex if 

not impossible to resume the program to a single expression that can be derived 

symbolically. Combined with the overall low speed of that method, this problem 

makes symbolical derivation a non-suitable candidate for derivative computation in 

computer programming. Another option would be the divided difference approach. In 

this method, the following approximation is used: 

( ) ( ) ( )i

i i

f x f x x f x
x x

∂ + Δ −
≈

∂ Δ
 

The problem with this method comes with how ixΔ  is chosen. If ixΔ  is a 

small step then the approximation is going to be somewhat accurate, but if that step is 

bigger, this formula does not provide a satisfactory estimate of the derivative of the 

program. Moreover, that formula requires many computations for the evaluations of 

higher derivatives of a function. Combined with the fact that it is impossible to 

guarantee the accuracy of this method, a different scheme needs to be chosen to 

compute these derivatives. 
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The last option is to use automatic differentiation. Automatic differentiation is 

a numerical method to compute the derivatives of a computer program. Using the fact 

that a computer program is in fact a sequence of primary operations, automatic 

differentiation records the relationships between them and, using the chain rule, is 

able to output very precise derivatives of a function in a short amount of time. 

5.1.2 The chain rule 

As stated above, automatic differentiation is based on decomposing a complex 

computer program into basic operations, and then derives the whole program by using 

the chain rule: 

( ( ))y f g x
y f g
x g x

=
∂ ∂ ∂

=
∂ ∂ ∂

 

Automatic differentiation can function in two different modes: Forward Mode 

or Reverse Mode. 

In Forward Mode, the chain rule is traversed from left to right. Take for 

instance the following expression for which the derivative according to x1 needs to be 

computed: 

1
1 2 2

2

( , ) exp( )xf x x x
x

= +  

This function is decomposed into different sub functions, as shown in Figure 

5-1 below: 
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Figure 5-1: Example of Forward Mode 

 
Note that during the computation in automatic differentiation, only the values 

of these operations are stored, there are no symbols involved in the process. In order 

to get the second gradient of f with respect to x2, the seed has to be changed to w1=0 

and w2=1. Forward Mode is thus most efficient for functions as 

only one sweep of the function will be necessary, as opposed to m sweeps for Reverse 

Mode. 

: ,mf m→ 1

In Reverse Mode, the opposite is done: the chain rule is traversed from left to 

right. The same example as above is used to illustrate the Reverse Mode. This method 

is shown in Figure 5-2 below: 
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Figure 5-2: Example of Backward Mode 

 
In this case, as the function is real-valued, one single sweep is needed to 

compute both gradients of f. Thus, Reverse Mode is more efficient than forward mode 

when dealing with functions . One drawback of Reverse Mode is 

that it might need some memory, as it needs to store the values of intermediate 

variables such as the w’s in the previous example. 

: ,mf m→ 1
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5.2 ADOL-C 

There are several different programs available for automatic differentiation. In 

the work by Baras [2], ADIC was used to perform automatic differentiation. In order 

to employ ADIC the source code needs to be modified to fit ANSI-C standard. It is 

then used by ADIC to generate another source code in which operations enabling the 

computation of the derivatives are going to be interleaved with the original set of 

instructions in the code. If this method generally gives better results in terms of 

computing time, it generally requires a thorough change of the source code in order to 

adapt it to ADIC specifications. In this case, as the code is written in C++ and the 

new fixed point algorithm is a very complex implementation, such a solution is not 

applicable for compatibility reasons. Consequently, automatic differentiation by 

Operator Overloading in C++ was implemented using ADOL-C (Automatic 

Differentiation by OverLoading in C++) [6]. 

Operator Overloading refers to the approach taken to compute the derivatives 

in a program. It consists of changing the type of the variables involved in the 

computation to a proprietary type given by the automatic differentiation tool. This 

allows the tool to work on the source code and derive it based on its linked libraries. 

It is then necessary to mark the section of the code which deals with the function of 

interest to allow ADOL-C to record the sequence of operations taking place in this 

section so that the derivatives of interest can be computed. ADOL-C then produces a 

tape of this section. This is an internal representation of the marked section used to 

compute the derivatives. The main concern here is the memory used. One can predict 

that, if a marked section is requiring many iterations to compute the output, the 
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associated tape will record several operations and use a significant amount of 

memory. The advantage of ADOL-C is that it enables the choice of Forward or 

Reverse Mode and provides appropriate drivers specially adapted to optimization 

problems, differential equations, or the computation of Hessians and Jacobians. This 

method is compatible with C++ and permits implementation with little change to the 

program, but it is slower than source code transformation tool due to its inefficiency 

in code optimization. 

5.3 Methodology: Gradient Projection 

Here, the method employed to optimize the overall throughput in the network 

by changing the path probability distribution of each connection on the network is 

presented. Note Pc the set of paths used in connection c and C the set of all active 

connections in the network. Then the total throughput T is: 
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Here, αc’s are used as weights to control the optimization of the overall 

network throughput. By default, these coefficients are set to 1 for each active data 

connection in the network, 2 for voice connections and 3 for video connections so as 

to permit the most critical communications to be optimized primarily. Assuming there 

are m = C  active connections in the network, nc paths used in the connection c and 

noting πi,c the probability associated with using path i in connection c, the total 

throughput is a function of these input probabilities, namely: 
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Thus, the optimization problem can be written in the following way: 
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To solve this optimization problem, the gradient projection method will be 

applied. This tool is commonly used in engineering design problems. This solution is 

particularly adapted to the problem here because there is a need to compute the 

gradients of the throughput according to the input routing probabilities in order to be 

able to maximize it. In addition, those gradients need to be projected on the constraint 

space to obtain results fulfilling the given constraints. Naming c∇ the average 

gradient obtained for connection c, that value needs to be subtracted from each of the 

gradients obtained for the paths in Pc to make sure the constraint
c

,
i

1i c
P

π
∈

=∑  is met. 

In other words, at each iteration the set of routing probabilities will be updated 

using the following formula: 
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In this formula, β is a parameter used to control the size of the steps taken 

during the update process of each iteration. If β is too big, it will not be possible to 

find the overall maximum of the function. The program will oscillate around it 

because of the inappropriate size of the update step. Whenever WND detects that the 

optimization algorithm in fact provided a result smaller than the one computed during 
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the previous iteration, β is updated using the following scheme: 

min if 
2
ββ β β← ≥ where βmin represents the smallest step accepted in the program. 

This βmin has been introduced to insure a fast convergence of the algorithm. In the 

case of many oscillations, a very fast decrease in β can be experienced leading to a 

very slow update process and a long convergence time for the program. This iteration 

is continued for each connection until every path having a non-nil probability of 

being used has the same gradient as the other non-nil paths for the same connection. 

Namely, the iteration stops when: 
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Once this algorithm has converged, a new set of results for the network 

configuration can be displayed, containing: 

1. The optimized throughput of each active connection in the network. 

2. The set of routing probabilities for each connection needed in order to 

achieve such throughput. 
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5.4 Experimental Results 

5.4.1 One connection using multiple paths 

The first experiment in this chapter studies the impact of optimization on the 

first network topology presented in Figure 4-8. The goal of this experiment is to see 

how the optimization algorithm behaves according to the number of paths selected for 

one specific connection. To this extent, at first three paths are enabled in the 

connection between node 3 and node 7 and secondly, five paths are used in the same 

connection (see Figure 5-3 below). 

      

Figure 5-3: Topology 1 with 3 and 5 paths 

 
These experiments are then conducted in order to see the evolution of the 

throughput according to the input load in the network. Five different scenarios are 

compared. In the first one, the experiment is conducted using only one path for the 

connection while in the second and third scenario 3 and 5 paths are used using a 

uniform distribution for the path routing probabilities in each case. Finally, in the 
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fourth and fifth scenario, the optimization algorithm is used with respectively 3 and 5 

paths. The throughput obtained according to the load in the network is computed. The 

results are displayed in Figure 5-4. 

 
Figure 5-4: Network throughput for 1 connection using 1, 3 or 5 paths 

 

It can be seen that the optimization algorithm works at its best when it is given 

a maximum number of paths for the sensitivity analysis; the optimal throughput given 

when using a set of 5 paths is far superior to that obtained using 3 paths for the active 

connection. Note that interestingly enough, when using a uniform distribution for the 

routing probabilities, the optimal choice is to use 3 paths instead of 5. This might be 

counterintuitive at first but can be explained by the fact that the model takes into 

account inter-path interferences. As can be seen in Figure 5-3, using 5 paths in such a 

small network forces the use of many neighbor links simultaneously, leading to a 

significant level of interference and to a sub-optimal performance. 
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 To better illustrate the impact of the number of available paths on optimizing 

the throughput, another representation is given in Figure 5-5. In this figure, the 

throughput achieved by the single connection of Topology 1 is plotted for an input 

load of 1Mbps according to the number of paths used for the connection. For each 

number of paths, three scenarios are compared: The first one represents the 

throughput achieved when using a single path in the connection; the second scenario 

depicts the throughput achieved by using a uniform distribution for the routing 

probabilities; and the third scenario gives the throughput achieved while using the 

optimal set of routing probabilities. 

 

Figure 5-5: Network throughput for different routing policies according to the number 
of available paths, for an input load of 1Mbps 
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5.4.2 Three connections using multiple paths 

The second topology considered is shown in Figure 5-6. This network 

contains three active connections. The first one is from node 3 to node 5, going 

through the network vertically. The second crosses the network horizontally as the 

source node for this connection is 16 and its destination node 21. The third 

connection goes from node 17 to node 22. To simplify the figure, only one path for 

each connection is shown in Figure 5-6.  

 

Figure 5-6: Network Topology 4 

 
Figure 5-7, Figure 5-8, Figure 5-9, and Figure 5-10 show the variation of the 

network throughput according to the number of available paths for each of the 

connection for a load of 500 kbps for connection 1, 2, and 3 and for the overall 
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network. It can be seen that, in order to accomplish the biggest throughput overall, 

some connections might suffer a loss of throughput to reach the best compromise. 

 

Figure 5-7: Network Throughput for connection 1 according to the number 
of available paths for an input load of 500 kbps 

 

Figure 5-8: Network Throughput for connection 2 according to the 
number of available paths for an input load of 500 kbps. 

 

 72 
 



 

The most flagrant example is seen between connection 1 and 2 in Figure 5-7 and 

Figure 5-8. While connection 2 is suffering of starvation when given only one or two paths 

to transmit its data, it clearly benefits of the fact that every connection receives three paths. 

Paths probabilities are set in such a way that it avoids early contact of two connections 

whenever possible. For instance, connection 1 will be forbidden to use node 14 as an 

intermediate node and will have to go through node 13. This flow will meet the flow of 

connection 2 at the end of the path for one of these connections. Similarly, connection 2 is 

asked to use node 18 in its data transmission as little as possible. For both connection 2 and 

3, the link 18 – 11 is strictly forbidden as it would be shared by the two connections at the 

beginning of the path and trigger bigger losses and lower overall throughput. 

 

 

Figure 5-9: Network Throughput for connection 3 according to the number of 
available paths for an input load of 500 kbps. 

 73 
 



 

 

Figure 5-10: Total Network Throughput according to the number of available 
paths for an input load of 500 kbps. 
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Chapter 6 :  Conclusions and Future Work 

 

6.1 Conclusion 

This work presented a new method for performance analysis of 802.11 

wireless networks. The tool enables end-to-end network design. Given a network 

description, it outputs a set of paths for each active connection. It then computes the 

throughput of multiple connections in a network by using a fixed point algorithm. The 

main contribution of this work for performance modeling of 802.11 is that it allows 

paths to share common nodes. To compute the best trade-off for network design, the 

tool also performs sensitivity analysis using automatic differentiation. In this thesis, 

an example of the efficiency of that method was shown by computing the derivatives 

of the total throughput according to the path routing probabilities of each connection. 

Gradient projection has been chosen to optimize the path routing distribution so as to 

achieve the highest network throughput. Network topologies have been set up for 

different purposes. The validity of the fixed point algorithm was first demonstrated by 

running parallel experiments both on WND and on a discrete event simulator, 

OPNET 12.0. The main advantage of the tool over discrete events simulation 

platforms such as OPNET is clearly the computation time. While WND converges on 

the order of seconds, OPNET often requires several minutes to compute the 

throughput in a network. This makes the model more adapted to compute 

approximations of throughput in emergency situations. Table 6-1 compares the time 
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needed by the model and by OPNET as a function of the number of active 

connections in the network: 

 

Number of connections 1 3 5 7 9 

C code 0.51 2.86 4.37 5.90 10.38 

OPNET 190 309 352 466 476 

Table 6-1: Comparison of the computation time (in seconds) between OPNET and the 
fixed point algorithm 

 

Finally, the efficiency of the optimization algorithm was tested by enabling 

multiple paths in the topologies and comparing the results given by WND when using 

a single path, uniformly distributed probabilities for multiple paths and, ultimately, 

the set of optimized path routing probabilities. 

 

6.2 Future Work 

The set of equations presented in this work permits the approximation of 

several metrics such as the scheduler coefficients, the serving rates, the transmission 

failure probabilities, and the average transmission times. While this data has been 

used throughout this thesis to compute the throughput in the network, this work can 

be expanded by using these results to compute other metrics of interest for network 

design such as the end-to-end delay for each connection or the probability of packet 

drop due to buffer overflows. As of now, no automatic differentiation tools requiring 

source code modification provide full support of the fixed point algorithm. This is due 

to its complexity and the programming language with which it has been implemented 
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(C++). Further studies of automatic differentiation tools could lead to better 

performance of the model. Automatic differentiation by operator overloading does 

not optimize the code and exhibits a longer response time than tools requiring source 

code transformation. Finally, another interesting extension to this work would be to 

include the computation of the physical layer error rate within the model. This would 

avoid requesting previously computed values. 
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