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Abstract

In this paper we develop a representation of a class of feedforward neural networks in
terms of discrete affine wavelet transforms. It is shown that by appropriate grouping of
terms, feedforward neural networks with sigmoidal activation functions can be viewed as ar-
chitectures which implement affine wavelet decompositions of mappings. This result follows
simply from the observation that standard feedforward network architectures possess an
inherent translation-dilation structure and every node implements the same activation func-
tion. It is shown that the wavelet transform formalism provides a mathematical framework
within which it is possible to perform both analysis and synthesis of feedforward networks.
For the purposes of analysis, the wavelet formulation characterizes a class (L*(IR) ) of
mappings which can be implemented by feedforward networks as well as reveals the exact
implementation of a given mapping in this class. Spatio-spectral localization properties of
wavelets can be exploited in synthesizing a feedforward network to perform a given approx-
imation task. Synthesis procedures based on spatio-spectral localization result in reducing
the training problem to one of convezr optimization. We outline two such synthesis schemes.
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Program: NSFD CDR 8803012, the Air Force Office of Scientific Research under contract AFOSR-88-0204 and
by the Naval Research Laboratory.
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in choosing the particular set of ‘basis’ functions which are used to implement the transform. In
the case of discrete affine wavelet transforms, which we discuss in Section 3, the ‘basis’ functions
are generated by translating and dilating a single function.

In Section 4 we demonstrate that affine wavelet decompositions of functions can be imple-
mented within the standard architecture of feedforward neural networks. Sigmoidal functions
have traditionally been used as ‘activation’ functions of nodes in a neural network. Section 4.1
is concerned with constructing a wavelet ‘basis’ using combinations of sigmoids. For simplicity,
we restrict discussion to networks designed to learn one-dimensional maps. One of the main
results of this paper is Theorem 4.1. In Section 4.2 we briefly describe extensions of these results
to higher dimensions.

In Section 5 we outline two schemes in which spatio-spectral localization properties of
wavelets are used to formulate synthesis procedures for feedforward neural networks. It is
shown that such synthesis procedures can result in systematic definition of network topology
and simplified network ‘training’ problems. Most of the weights in the network are determined
via the synthesis process and the remaining weights may be obtained as a solution to a convez
optimization problem. Since the resulting optimization problem is one of least squares ap-
proximation, the remaining weights can also be determined by solving the associated ‘normal
equations’.

A few simple numerical simulations of the methods of this paper are provided in Section
54.

2  Functional Approximation and Neural Networks

This section provides a brief introduction to the application of feedforward neural networks to
functional approximation problems.

Let © be a set containing pairs of sampled inputs and the corresponding outputs generated
by an unknown map, f : R™ — R", m,n < oo, i.e. © = {(z%, ) : v = f(2%); ' € R™, ' €
R",i=1,...,K, K < oo}. We call © the training set. Note that the samples in © need not
be uniformly distributed. In this context, the task of functional approximation is to use the
data provided in © to ‘learn’ (approximate) the map f. Many existing schemes to perform
this task are based on parametrically fitting a particular functional form to the given data.
Simple examples of such schemes are those which attempt to fit linear models or polynomials of
fixed degree to the data in ©. More recently, nonlinear feedforward neural networks have been
applied to the task of ‘learning’ the map f. In the interest of keeping this papaer self-contained,
an overview of the neural network approach is given below.

2.1 Feedforward Neural Networks

The basic component in a feedforward neural network is the single ‘neuron’ model depicted in
Figure 2(a). Where uy,...,u, are the inputs to the neuron, k1, ..., k, are multiplicative weights
applied to the inputs, I is a biasing input, ¢ : R — R, and y is the output of the neuron. Thus
¥ = g(3_i; kiui+I). The ‘neuron’ of Figure 2(a) is often depicted as shown in Figure 2(b) where
the input weights, bias, summation, and function g are implicit. Traditionally, the activation

function ¢ has been chosen to be the sigmoidal nonlinearity shown in Figure 3. This choice of g
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Figure 2: (a)Single neuron model. (b) Simplified schematic of single neuron

was initially based upon the observed firing rate response of biological neurons. A feedforward
neural network is constructed by interconnecting a number of neurons (such as the one shown
in Figure 2) so as to form a network in which all connections are made in the forward direction
(from input to output without feedback loops) as in Figure 4. Neural networks of this form are
usually comprised of an input layer, a number of hidden layers, and an output layer. The input
layer consists of neurons which accept external inputs to the network. Inputs and outputs of
the hidden layers are internal to the network, and hence the term ‘hidden’. Outputs of neurons
in the output layer are the external outputs of the network. Once the structure of a feedforward
network has been decided, i.e the number of hidden layers and the number of nodes in each
hidden layer has been set, a mapping is ‘learned’ by varying the connection weights, w;;’s and
the biases, I;’s so as to obtain the desired input-output response for the network®.

One method often used to vary the weights and biases is known as the backpropagation
algorithm in which the weights and biases are modified so as to minimize a cost functional of
the form,

E= Y 0~y 1)
(l". 7‘!/‘)6@
where O is the output vector (at the output layer) of the network when z' is applied at the
input. Backpropagation employs gradient descent to minimize E. That is, the weights and
biases are varied in accordance with the rules,
£ OF
dwi; oI’

Feedforward neural networks are known to have empirically demonstrated ability to ap-

proximate complicated maps very well using the technique just described. However, to date

Aw;; = —¢

and AIj = —¢

'We will use wij to denote the weight applied to the output O; of the 5*" neuron when connecting it to the
input of the " neuron. I, is the bias input to the j*" neuron.
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Figure 3: Sigmoidal nonlinearity.

there does not exist a satisfactory theoretical foundation for such an approach. We feel that
a satisfactory theoretical foundation should provide more than just a proof that feedforward
networks can indeed approximate certain classes of maps arbitrarily well. Some of the problems
that one should be able to address within a good theoretical setting are the following:

(1) Development of a well-founded systematic approach to choosing the number of hidden
layers and the number of nodes in each hidden layer required to achieve a given level of
performance in a given application.

(2) Learning algorithms often ignore much of the information contained in the training data,
and thereby overlook potential simplification of the weight setting problem. As we will
show later, preprocessing of training data results in convexity of the training problem.

(3) Aninability to adequately explain empirically observed phenomena. For example, the cost
functional F may possess many local minima due to the nonlinearities in the network. A
gradient descent scheme such as backpropagation is bound to settle to such local minima.
However, in many cases, it has been observed that settling to a local minimum of F does
not adversely affect overall performance of the network. Observations such as this demand
a suitable explanatory theoretical framework.

The methods of this paper offer a framework within which it is possible to address at least
the first two issues above.

3 Time-Frequency Localization and Discrete Affine Wavelet Trans-
forms

In this section we review some basic properties of frames and discrete affine wavelet transforms.
We also introduce some definitions to formalize the concept of time-frequency localization. To
avoid confusion, we point out that throughout this paper we will refer to the domain of the
map to be approximated as time or space interchangably.

Given a separable Hilbert space H, we know that it is possible to find an orthonormal

basis {k,} such that for any f € H we can write the Fourier expansion f = ) anh, where
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Figure 4: Feedforward neural network.

an, =< f,h, >. For example, the trignometric system {72—”ej2""t} is an orthonormal basis

for the Hilbert space L2[—m,n]. The Fourier expansion of a signal with respect to the trigno-
metric system is useful in frequency analysis of the signal since each basis element J—%—;eﬂwm
is localized in frequency at w = n. Hence the distribution of coefficients appearing in the
Fourier expansion provides information about the frequency composition of the original signal.
In many applications it is desirable to be able to obtain a representation of a signal which is
localized to a large extent in both time and frequency. The utility of joint time-frequency local-
ization is easily illustrated by noting that the coefficients in the Fourier expansion of the signal
shown in Figure 5 do not readily reveal the fact that the signal is mostly flat and that high

Figure 5: Signal for which time-frequency localized representations are useful

frequency components are localized to a short time interval. Examples of applications where
time-frequency localization is desirable can be found for instance in image processing [17] [16]
[7] [23], and analysis of sound patterns [12]. One method of obtaining such localization is the



windowed Fourier transform . This involves taking the Fourier transform of a signal in small
time windows which are defined by a window function. Hence the windowed Fourier transform
provides information about the frequency content of a signal over a relatively short interval of
time. Doubly ‘localized’ (well concentrated in both time and frequency) representation is one
of the primary benefits of wavelet decompositions. However, in obtaining such a localized rep-
resentation using ‘nice’ ‘basis’ functions, it is sometimes necessary to sacrifice the convenience
of decomposing signals with respect to an orthonormal basis. Instead it becomes necessary to
consider generalizations of orthonormal bases which are called frames.

3.1 Frames in Hilbert Spaces

Frames, which were first introduced by Duffin and Schaeffer in (8], are natural generalizations
of orthonormal bases for Hilbert spaces.

Definition 3.1 Given a Hilbert space H and a sequence of vectors {h, }oo_ o CH, {h,}32_o
is called a frame if there exist constants A > 0 and B < co such that

AFIP €Y1 < fiba > 2 < BISIP, (2)
for every f € H. A and B are called the frame bounds.

Remarks:
(a} A frame {h,} with frame bounds A = B is called a tight frame.
(b) Every orthonormal basis is a tight frame with A = B = 1.

(c) A tight frame of unit-norm vectors for which A = B =1 is an orthonormal basis.

Given a frame {h,,} in the Hilbert space H, with frame bounds A and B, we can define the
frame operator, S : H — 'H as follows. For any f € H,

Sf=) < fihn > hn (3)
n
The following theorem lists some properties of the frame operator which we shall find useful.
Proofs of these and other related properties of frames can be found in [9] or [6].
Theorem 3.1
(1) S is a bounded linear operator with AI < S < BI, where I is the identity operator in H.
(2) S is an invertible operator with B~11 < §71 < A™'].
(3) Since AI < S < BI implies that |1 — 425 S| <1, S™' can be computed via the Neumann

sertes,
. 00 k
5 ( A+ A+ B ) 7 )




({) The sequence {S™'h,} is also a frame, called the dual frame, with frame bounds B~! and
AL,

(5) Given any f € H, f can be decomposed in terms of the frame (or dual frame) elements as

F=) <[85ha>hn=) < fihy >S5 ", (5)

(6) Given f € H, if there exists another sequence of coefficients {a,} (other than the sequence
{< f,57th, >}) such that f =3 ayh,, then the a,’s are related to the coefficients given
in (5) by the formula,

Yolanlf =3 1< 8 ha > P+ 1< £,5 ha > —anf’ (6)

3.1.1 Definitions Pertaining to Time-Frequency Localization

In this paper we shall restrict discussion to the Hilbert space L2(IR) which is the space of all
finite energy signals on the real line i.e f € L2(R) if and only if

J r@Pds <o

If f,g € L}(R) then the inner product < f,g > is defined by
<fg>= [ f@5E
R )

where g denotes the complex conjugate of g, and the norm || - || on L%*(IR) is defined by

12 =< f,f >

The following definitions are useful in formalizing the concept of time-frequency localization.
Definition 3.2 Given a function f € LE(R) , f : R — R, with Fourier transform f,

(1) the center of concentration, z.(f), of f, is defined as

P /]R olf (@) .

(2) the center of concentration, wc(|ﬂ2), of Iflz, (or center frequency of f) is defined as

zo(f) =

12y = -—————1 wlf(w)Pdw
) = s . eWFerrae.

Note that w(|f]?) is defined so as to account for the evenness of If|? for real-valued f; so
we(|f1?) is the positive center frequency of |f|?.



Remark:

The center of concentration z,(f) can be thought of as the location parameter (in the sense of
statistics) of the density |f|®/||f]|* on R.

Definition 3.3
The support of a function f, denoted supp(f) is the closure of the set {x : f(z) > 0}.

Definition 3.4 Given f € L2(R), f : R — R, with Fourier transform f, and centers of
concentration z.(f) and w.(|f]?),

P(fie) = {[wo, 1] |2.(f) = zo| = |zc(f) — 71 and |f(2)Pdz < €“f||2} :
z€R\[zo,21]

and,

~

P59 = {lowil: wo=max(0,3), ke(f1?) - Tal = e (IF?) — el

and / i T < ﬂ!fllz} -

(1) The epsilon support (or time concentration) of f, denoted e-supp(f, ) is the set
[2o(f),z1(f)] € P(f;€) such that,

pzo(f)y2zi(N) = inf p([zo, 21]).

[zo,z1]€

(2) The epsilon support oflf|2 (or frequency concentration of f) denoted e-supp([fP,E) is the
set {wo(f),w1(f)] € P(f;€) such that

lwi(f) —wo(f)l = inf _jw; —wel.
[wo,w1]eP

Remark:

The e-support of f is the smallest (symmetric about z.(f)) interval containing (1 — €)x the
total signal energy. We further note that the notion of e-support introduced here is used later
in Section 5 to formulate a synthesis procedure for feedforward neural networks. In particular,
the e-support affects the number of hidden layer nodes needed to acheive a given quality of
function approximation.

3.2 Discrete Affine Wavelet Transforms

Given a function g € L%(R) , consider the sequence of functions {g,,,} generated by dilating
and translating g in the following manner,

Gmn(@) = a™2g(a"c — mb), (7)

where, @ > 0 and b > 0 and m and n are integers. Let us assume that ¢ € L?(R) is real-valued,
concentrated at zero with sufficient decay away from zero, and that e-supp(g,€) = [~L, L],
where € is small and chosen such that the energy contribution of g outside [—L, L] is negligible.

9



In addition, suppose that the Fourier transform g of g is compactly supported, with supp(g) =

[~w1, —wo] U [wo,w1] and concentrated at w.(|g|?), 0 < wo < wc(|F]?) < wy < 0o. Recalling the
dilation property of the Fourier transform,

flaz) L a1 f(a"w),

we see that supp(Gmn) = [a"wo, €"w1] U [—a"wy, a"wp), we(|Gmnl?) = ¢"w (|]?), and that g, is
concentrated about the point ¢™"mb with e-supp(g,nn) = [@™"(—L +mb), a™™(L + mb)]. Hence
if we could write an expansion of any f € L?(R) as

then each coefficient ¢,,, (f) provides information about the frequency content of f in the fre-
quency rangew € [a"wy, a"w1]U[—a"wy, —a"wp] during the time interval [a™"(— L+mb),a " (L+
mb)] about z.(f).

Discrete affine wavelet transforms provide a framework within which it is possible to under-
stand expansions of the form given in (8). In a general setting, discrete affine wavelet transforms
are based upon the fact that it is possible to construct frames for L2(IR) using translates and
dilates of a single function. That is, for certain functions g it is possible to determine a dilation
stepsize a and a translation stepsize b such that the sequence {g,} as defined by (7) is a frame?
for LZ(R) . In this case (8) is referred to as the wavelet expansion of f. To form an affine frame
the mother wavelet 3 g must satisfy an admissibility condition,

o

For a function g with adequate decay at infinity, (9) is equivalent to the requirement
J g(z)dz = 0 (see [6]). Since §(0) = [ g(z)dz, admissbility (for functions with adequate decay)
is equivalent to requiring that g(0) = 0. Furthermore ¢ € LZ(IR) together with admissibility
implies the g must have certain approximate ‘bandpass’ characteristics.

dw < oo. 9)

Remarks

e The term discrete affine wavelet transform, is derived from the fact that the functions
mn are generated via sampling of the continuous orbit of the left regular representation
of the affine (az + b) group associated to the function g. A review of the implications of
group representation theory in wavelet transforms is given in [9].

e Windowed Fourier transforms (of which the Gabor transform [7] [23] is a special case) are
obtained via a representation of the group of translations and complex modulations (the
Weyl-Heisenberg group) on L?(R) . An essential difference between windowed Fourier
transforms and affine wavelet transforms arises due to the particular group action in-
volved. For windowed Fourier transforms, the window size remains constant as higher
frequencies are analyzed using complex modulations. In affine wavelet transforms the
higher frequencies are analyzed over narrower windows due to the dilations, thereby pro-
viding a mechanism for ‘zooming’ in on fine details of a signal.

?In this case we say that the triplet (g, a,b) generates an affine frame for L*(R) .
% Also referred to as the fiducial vector or analyzing waveform.

10



4 Dilations and Translations in SISO Neural Networks

In this section we shall demonstrate how affine wavelet decompositions* of L2(IR) can be imple-
mented within the architecture of SISO feedforward neural networks. Consider the single-input-
single-output (SISO) feedforward neural network shown in Figure 6. Input and output layers of
this network each consist of a single node, whose activation function is linear with unity gain.

~—— weights WO'JS

‘ -~ bhiases IJ 'S

- ‘Nelghts WJN‘I‘S

Y
Figure 6: SISO feedforward neural network

In addition, the network has a single hidden layer with IV nodes, each with activation function
g(-). Hence the output of this network is given by

N
v=f(z)=)_ wjnpg(woz—I;), (10)

j=1

where we have labeled the input node 0 and the output node N + 1. It is clear that (10) is of
the form in (8) with two key differences: (i) The summation in (10) is finite, and (ii) Even if
we permit infinitely many hidden layer nodes, and let g; = g(wo ;x — I;), the infinite sequence
{gn} will not necessarily be a frame. Since it is our intent to stay within the general framework
of feedforward neural networks, let us first consider the sigmoidal function, s(z) = (1 +e7*)~!
shown in Figure 3 as a possible mother wavelet candidate. Since s ¢ L2(IR) , it is impossible to
construct a frame for L?(IR) using individual translated and dilated sigmoids as frame elements.
However, we note that the difference of two translated sigmoids is in L2(IR) for finite translations

*Throughout the rest of this paper we will use the term wavelet transform to mean discrete affine wavelet
transform unless otherwise indicated

11



and that in general if we let

M M
o(2) = D Santa (%) = D Sondn (2) (11)

where M < oo and s,;(z) = s(az — b), a,b < oo then ¢ € L?(R) . With this observation, we
show that it is possible to construct frames using combinations of sigmoids as in (11).

4.1 Frames From Sigmoids

Let s(z) = (1 + e7%%)"!, where ¢ > 0 is a constant which controls the ‘slope’ of the sigmoid .
To obtain a function in L%(R) , we combine two sigmoids as in (11). Let

o(z) =s(z+d)—s(z—-d), 0<d< o0 (12)

So, ¢(+) (see Figure 7) is an even function which decays exponentially away from the origin.

0.8 : . . Aump 7-.':1::"on
0.6 -
Q.4 B
¢.3{ 3
Q
-4 -3 -2 -1 ] 1 2 3 4
time (meconds)
4 - ‘!ﬂlgn_ituda af "'nTurLar Sranafora
ar ~
T -
ir .
o : .
9 0.1 0.2 0.3 g.4 0.5 0.6 0.7 0.8

EFraquancy (Hz)
Figure 7: ¢(z) - Sum of two sigmoids, and the magnitude of its Fourter transform

Now, let
¥(z) = ¢(z +p) — ¢(z - p). (13)

¥(-) (Figure 8) is an odd function, with [(z)dz = 0, which is dominated by a decaying
exponential, and it can be shown that ¢ satisfies the admissibility condition (9). The Fourier
transform of ¢ is given by

_ 27 sin(wd)
g sinh(Z2)

Plw) = [ el@)ewds (14)

12
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Figure 8: ¥(z) - Mother Wavelet candidate constructed from sigmoids and magnitude of Fourier
Transform of ¢

which is shown in Figure 7. Therefore the Fourier transform of % is,

bw) = ePPw) - PG(w)

= —j2sin(p)Pw)
47 sin(pw) sin(dw
_ A sin(pu) sind) (15)
g  sinh(%#)
which is shown in Figure 8. Note that the function % is reasonably well localized in both the
time and frequency domains. For the moment, we will concentrate on the specific case where
p=1, d =1, and ¢ = 2 (which is the case used for the plots shown in Figures 7-8). Table 1
lists some relevant parameters describing the (numerically determined) localization properties
of . For this choice of (p,d,q) (and in general whenever p = d) ¥ is a linear combination of
three sigmoids, ¥(z) = s(z + 2) — 2s(z) + s(z — 2). Figure 9 shows the implmentation of ¥ in
a feedforward network.

[« | 2 [2(¥) [weIB’) | esupp(¥,€) [ esupp(#]%e) |
[0.1]01] 0.0 | 09420 [[-2.15,2.15] | [0.2920, 1.5920] |

Table 1: Time-frequency localization properties of ¥ for (p,d,q) = (1,1,2)

It is our goal to construct a frame for L2(IR) using 4 as the mother wavelet. That is, we
wish to find, if possible, a dilation stepsize a and a translation stepsize b such that the triplet

13



Figure 9: Feedforward network implementation of 9

(¥,a,b) generates an affine frame for L2(IR) . Recall that, we say (1,a,b) generates an affine
frame for L2(IR) if the sequence {%,,,} is a frame for LZ(R) where, %, = a"/Zz/J(a”x — mb).
For the mother wavelet ¢ constructed from sigmoids as above, it is possible to determine values
of @ and b for which (¢, a,b) generates a frame for L2(IR) (See Appendix A).

It follows that we have constructively proved the following analysis result.

Theorem 4.1 Feedforward neural networks with sigmoidal activation functions and a single
hidden layer can represent any function f € L*(R) . Moreover, given f € L2(R) , all weights
wn the network are determined by the wavelet expansion of f,

F@) = (£S5 mn) Yma(2)-

Remarks:

(a) In this section we have concentrated on wavelets constructed from sigmoids. We would
however, like to point out that nonsigmoidal activation functions are also of considerable
interest and we refer the reader to [24]. The techniques of wavelet theory should be
applicable to such activation functions also.

(b) Among other activation functions used in neural networks, is the discontinucus sigmoid
(step) function. Note that using such a step function together with the methods of this
section results in a mother wavelet 1 which is the Haar wavelet. Dilates and translates of
the Haar function generate an orthonormal basis for LZ(IR) . The Haar transform is the
earliest known example of an affine wavelet transform.

4.2 Wavelets For LZ(IR") Constructed From Sigmoids

Although we shall primarily restrict attention to the one-dimensional setting (L?(IR) ), wavelets
for higher dimensional domains (L2(IR™) ) can also be constructed within the standard feed-

14



forward network setting with sigmoidal activation functions. In applications such as image
processing it is desirable to use wavelets which exhibit orientation selectivity as well as spatio-
spectral selectivity. In the setting of Multiresolution Analysis [17] for example, wavelet bases
for L2(R?) are constructed using tensor products of wavelets for LZ(IR) and the corresponding
‘smoothing’ functions. This method results in three mother wavelets for L2(R?) each with a
particular orientation selectivity. However neural network applications do not necessarily re-
quire such orientation selective wavelets. In this case, it is possible to use translates and dilates
of a single ‘isotropic’ function to generate wavelet bases or frames for L2(R"™) (c.f. [16]). Fig-
ure 4.2 shows both an isotropic mother wavelet and an orientation selective mother wavelet for
L?(R?) which are implemented in a standard feedforward neural network architecture with sig-
moidal activation functions. The wavelets of Figure 4.2 are implemented by taking differences
of ‘bump’ functions which are generated using a construction given by Cybenko in [1].
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Figure 10: Two-Dimensional wavelets constructed from sigmoids: (a)lsotropic wavelet,

(b)Orientation selective wavelet.

5 Synthesis of Feedforward Neural Networks Using Wavelets

In the last section, it was shown that it is possible to construct an affine frame for L?(IR) using
a function ¥ which is a linear combination of three sigmoidal functions. In this section, we
shall examine some implications of the wavelet formalism for functional approximation based
on sigmoids, in the synthesis of feedforward neural networks. As was described in Section 2.1,
sigmoidal functions have served as the basis for functional approximation by feedforward neural
networks. However, in the absence of an adequate theoretical framework, topological definitions
of feedforward neural networks have for the most part been trial-and-error constructions. We
will demonstrate, by means of the simple network discussed in Section 4, how, it is possible
to incorporate the joint time and frequency domain characteristics of any given approximation
problem into the initial network configuration.

Let f € L2(IR) be the function which we are trying to approximate. In other words, we are
provided a set © of sample input-output pairs under the mapping f,

0 ={("y") : v = f(z*); o',y € R},

15



and we would like to obtain a good approximation of f. To perform the approximation using
a neural network, the first step is to decide on a network configuration. For this problem, it
is clear that the input and output layers must each consist of a single node. The remaining
questions are how many hidden layers should we use and how many nodes should there be in
each hidden layer. These questions can be addressed using the wavelet formulation of the last
section. We consider a network of the form in Figure 6, i.e. with a single hidden layer. At this
point, a traditional approach would entail fixing the number of nodes N, in the hidden layer
and then applying a learning algorithm such as backpropagation (described in Section 2.1) to
adjust the three sets of weights, input weights {wo,j}le, output weights {wj, N+1 }?7:1, and the
biases {I;}. We would like to use information contained in the training set © to, (1) decide on
the number of nodes in the hidden layer, and (2) reduce the number of weights that need to be
adjusted by the learning algorithm.

Here we describe two possible schemes for use of the wavelet transform formulation in the
synthesis of feedforward networks. The first scheme captures the essence of how time-frequency
localization can be utilized in the synthesis procedure. However, this scheme is difficlut to
implement when considering high dimensional mappings and in most cases will result in a
network that is far larger than necessary. We also outline a second method which further
utilizes the time-frequency localization offered by wavelets to reduce the size of the network.
This second method is conceivably a more viable option in the case of higher dimensional
mappings.

5.1 Network Synthesis: Method I

Assume f, the function which we are trying to approximate, is such that e—supp(lﬂQ,a =
[Wimin) Wmax] Where wmin > 0 °. Also assume that there exists a finite interval [Zmin, Zmax] in
which we wish to approximate f. Our network synthesis procedure is described in algorithmic
form below.

Synthesis Algorithm:

Step I Our first step is to perform a frequency analysis of the training data. In this step we
wish to obtain an estimate of the ‘bandwidth’ e-supp(] ﬂz,a of f based on the samples of f
provided in ©. A number of techniques can be considered for performing this estimate. We
will not elaborate on such techniques here. Let &, be our estimate of wy;,, and &y, be our
estimate of wpax.

Step II We now use the knowledge of @in, Gmaxy Tmin, and Tmay to choose the particular
frame elements to be used in the approximation. The main idea in this step is to choose only

those elements of the frame {v,,,} which ‘cover’ the region Q 5 of the time-frequency plane
defined by

Qf(eyg) - [zmim zmax] X ([amim amax] U [—&maxy _amin])'
which represents the concentration of f in time and frequency as determined from the data

O. Recall that e-supp(l{b\lz,?) = [wo(%),w1(¥)] and e-supp(e, €) = [zo(¥), z1(¢¥)] (see Table 1).

5Since f is real-valued, we need only consider positive frequencies
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Thus the concentration of the mother wavelet ¢ in the time-frequency plane is in the region
[zo(¥), 21 (¥)] X [wo(¥), w1 ()]. Hence the concentration of %,,,, in the time-frequency plane is

Qmn (€ €) = [a7" (20(¥) +mb), a™" (21 () +mb)] x ([a"wo (), a"w1 (¥)]U[-a"wi (), —a"wo (4))),

which is centered at (€o(¥mn)we(|$mnl?) = (zc(¥) + a~"mb, aw.(|%[?). Figure 11 shows
the location of Qy, and the Q,,,’s together with the time-frequency concentration centers
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Figure 11: Time-frequency concentrations Qs and Q,,,’s together with time-frequency concen-
tration centers (2.(Ymn),we(|¥mnl|?) of the frame elements.

(2 (Ymn), wc(hzmnlz) of the frame elements. Therefore to ‘cover’ Q;(¢, €) we need to determine
the index set 7 of pairs (m,n) of integer translation and dilation indices such that,

Qmn N Qs # 0, for (m,n) € .

Daubechies in [6] discusses the existence of a bounding box B, surrounding the time-frequency
concentration Q¢ of f such that the f can be approximated to any desired precision ¢ by
including in the approximation, all frame elements with concentration centers in B,.

Step III Given Z, it is now possible to configure the network. From the manner in which
7 is defined, we expect to be able to obtain an approximation to f of the form

f@) = D cnnthmalz) = f(2). (16)
{mn)el

for £ € [@min, Tmax]- The approximation error in (16) can be made arbitrarily small by allowing
€ and € to go to zero in the computation of the various e-supports used to define the sets Qf
and Q,,,. This is because we know that {¢,,,} is a frame and therefore it is possible to write
fas ‘

f(l‘) = Z Cmn(f)'lpmn (17)

m,nEZ
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for some coefficients {¢,,,(f)}. Returning to the single-hidden layer feedforward network shown
in Figure 6, choose the number of nodes in the hidden layer to be equal to the number of elements
in Z,i.e. N = #(Z) where the activation function of each node is taken to be® 9. Now if we
set the weights form the input node to the hidden layer and the biases on each hidden layer
node to the dilation and translation coefficients indexed by (m,n) €Z, then the output of the
network can be written as
y= Z CmnPmn () (18)
(mn)el

where z is the input of the network and c,,,’s are the weights form the hidden layer to the
output node. We have therefore obtained a network configuration which defines an output
function (18) that is exactly of the form required to approximate the function f (Equation
(16)).

It remains to determine the coefficients ¢,,,,’s in (18) that will result in the desired approx-
imation.

5.2 Network Synthesis: Method II

The synthesis algorithm described above in Section 5.1 uses identification of an ‘important’
region Q; of the time-frequency plane. Critical to identification of this region is the ‘bandwidth’
estimate made in Step I. There are two significant drawbacks of making such a bandwidth
estimate:

(1) Estimation of spectral concentration of signals in high dimensions is computationally
expensive.

(2) Any estimate of spectral concentration which relies on Fourier techniques is going to
generate a generalized rectangle in joint time-frequency space. For many functions such a
rectangular concentration in time-frequency is simply an artifact of the spatial nonlocality
of the Fourier basis. For example, an estimate of the frequency concentration of the
signal in Figure 5 will generate a rectangle in time-frequency as the concentration of the
signal. If we then use this rectangle to choose which elements of a wavelet basis to use
to approximate the signal, the time-frequency rectangle will dictate that large dilations
(corresponding to high frequencies) of the wavelets be used over the entire time interval.
However, since each wavelet is also localized in time, and high frequency components of
the signal are localized as well, this is clearly an excessive number of wavelets. Large
dilations can be used locally where needed.

Spatio-spectral localization properties of wavelets can be further exploited to reduce the number
of network nodes (wavelets) used in the approximation. The basic idea is that since wavelets
are well-suited to identify spatially local regions of fine scale (high frequency) features in a
signal, locations and values local maxima of the wavelet approximation coefficients at one scale
(dilation) indicate whether or not it is necessary to locally refine the approximation by the use
of wavelets at finer scales (c.f. [18]). A network synthesis algorithm using this idea would be
an adaptive procedure of the following form.

SRecall that  is a linear combination of three sigmoids.
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(1) Construct and train a network to approximate the mapping at some scale a™ over the
entire spatial region of interest.

(2) Identify local maxima of the wavelet coefficients and locally refine the approximation by
adding new dilations (nodes) to the network where needed.

(3) Repeat (2) until some stopping crterion has been satisfied.

Using a scheme such as this would result in approximations being performed over regions of
time-frequency of the form shown in Figure 5.2. Some aspects of this scheme are discussed in

208000 000 e

bt L
....\\\N\.....

Figure 12: Form of time-frequency coverage from approzimation scheme of Section 5.2

[22].

5.3 Computation of Coeflicients

In the case of an infinite expansion via frame elements, there exists (at least in theory) a method
of determining the expansion coefficients in terms of the inverse of the frame operator S defined
in (3). From (5), we see that given the frame {%,,,}, the coefficients in (17) are given by,

Cmn =< f) S—ll‘/)mn > . (19)

From Theorem 3.1, we see that in principle S~14,,, can be computed from the series expansion
given in (4). However rate of convergence of this series is governed by how close the frame is
to being a tight frame i.e by how close the ratio B/A is to 1. So for ‘loose’ frames explicit
computation of wavelet expansion coefficients may prove overly demanding of computational
resources.

Considering now the case of a finite approximation to f as in (16), let Span{h,} denote
the closed linear span of the vectors {h,}. It is clear that f can be represented exactly by the
expansion in (16) if and only if f € Span{¥ymn, (m,n) € I}. If f & Span{¢mn, (m,n) € I}
then the ‘best’” approximation to f in terms of the finite subset of frame elements with indices
in Z is the projection of f onto Span{®;,,, (m,n) € Z}. In this case, we would like to' compute
the coefficients of expansion of the projection of f onto Span{¥,,,, (m,n) € Z}.

"With respect to the L?(IR) norm.
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5.3.1 Variational computation of wavelet coeflicients based on training data

Although the problem of determining the wavelet coefficients in a finite approximation can be
well formulated, we know of no analytic solution to the problem of explicitly computing the
coefficients, given only (possibly irregularly spaced) samples of the function. We can however
formulate the coeflicient computation problem as a variational principle in a fashion analogous
to learning algorithms such as backpropagation. We define our cost functional to be

E= Y 0 -¢1P= Y | Y cuntmale) - o'l (20)

(«*,y')€0 (' )€® (mm)el

where O is the output of the network when z* is the input as in Section 2.1. We choose the
wavelet coeflicients as those which minimize E. As a result of the wavelet formulation, the
weights to be determined appear linearly in the output equation of the network. Thus F is a
convez function of the coefficients {c,,,,} and therefore any minimizer ¢* = {¢},,.} (mm)e o E
is a global minimizer. Simple iterative optimization algorithms such as gradient descent can be
used to minimize E.

5.3.2 Normal Equations

There exists however an alternative formulation of the above optimization problem which pro-
vides a non-iterative solution. Minimization of E as defined in (20) defines a ‘least squares’problem.
Therefore solutions can be determined by solving the system of linear equations constructed
via the first order optimality condition (which is both necessary and sufficient in this case)
3%?". = 0, (k,j) € T at any minimizer ¢*. By choosing an ordering of the wavelet terms

kj
{Ymn, (m,n) € T} the normal equations can be written as
PC =W (21)

where, P is the #(Z) x #(Z) matrix defined by,

P=[Pyl=[ Y U(e')¥ (=), (22)

(*,v*)€0

and _
W =] LAYCHIIVRRE S Y N (23)
(zi,y')€O (= y*)e®

and C is the coefficient vector which needs to be solved for. Typically solutions of (21) will
not be unique and stabilizing methods such as use of the generalized inverse, Pt = (P*P)~1P*
must be applied.

Remark

Given a frame {,,,}, and f € L*(R) let ¢(f) be the vector in [?defined by the wavelet
expansion coeflicients {< f.87 e, .. >} of f. From Theorem 3.1 (6), it is clear that if the
wavelet expansion of f € LZ(IR) is not unique, then all sequences a(f) in [?(Z*) of wavelet
expansion coefficients of f must be such that ||a(f)||? = |[e(F)|I*+le(f) —a(f)||*. Therefore c(f)
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is an optimal sequence of expansion coefficients in the sense of being minimum (/?) norm. It
can easily be shown that any finite number of vectors form a frame for their span (c.f. [22]). It
is also well known that use of the generalized inverse, PT, of P results in the minimum /2 norm
solution. Thus the generalized inverse P! is a sensible choice for use in solving (21).

5.4 Simulations

As a test of the neural network synthesis procedure described above, we simulated a few simple
examples. As a first test we chose the bandlimited function comprised of two sinusoids at
different frequencies, specifically f(z) = sin(275z) + sin(2r10z) which is shown in Figure 13.
Taking zmin = 0.0 and T, = 0.3, 50 randomly spaced samples of the function were included
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Figure 13: Original bandlimited function f(z) = sin(275z) + sin(2710z) and finite wavelet
approzimation (dashed line).

in the training set ©. A single dilation of the mother wavelet was chosen (n = 6) which
covered the frequency range adequately (see Figure 14). Translations® of this dilation of %
which contributed significantly in the interval [Ziin, Trmax] Were used, tesulting in 40 hidden
units. Applying a simple gradient descent scheme to minimize E, an approximation to f was
obtained. The resulting approximation is shown in Figure 13 along with the original function.

A second, slightly more complicated, example was simulated by first generating a random
spectrum (Figure 15) which is concentrated in frequency and then sampling the corresponding
function in the time domain. The result of this simulation using again just one dilation of the
mother wavelet is shown in Figure 16.

8These translations were integer multiples of the translation stepsize b.

21



Waymlam gplel s ta = 2o

>

‘
~ o
1 Ty T
JUUNUIDN (UNNGY DN U S

[

«4.5 0.4 -0.3 -0.2 =0.1 Q ¢.1 9.2 0.3 3.3 a.

(V.3

tize (secands)

Moo dmnd, g f Tapmlam mmagme £a——

-4 -3 -2 -1 o

)
N

Lag fregquency (Hzx)
Figure 14: Wavelet at dilation n = 6 and magnitude of Fourier transform.

6 Conclusions and Discussion

We have demonstrated that it is possible to construct a theoretical description of feedforward
neural networks in terms of wavelet decompositions. This description follows naturally from
the inherent transiation and dilation structure of such networks. The wavelet description of
feedforward networks easily characterizes the class of mappings which can be implemented in
such architectures. Although such characterizations have been previously provided in a number
of different forms [2, 1, 10], to our knowledge, no previous characterization using sigmoidal
activation functions is capable of defining the exact network implementation of a given function.
What is distinctly different about the wavelet viewpoint is that it provides an extremely flexible
(not necessarily orthogonal) transform formalism. This flexibility has been utilized in this paper
to construct a transform based upon combinations of sigmoids. We would like to point out that
in general there is nothing special about sigmoidal functions and that a variety of different
activation functions, including e.g. orthogonal wavelets can be of significant interest. Sigmoidal
functions however hold one attraction; such functions can be easily implemented in analog
integrated circuitry (see e.g.[19]). Aside from this, we have chosen to work with sigmoidal
functions only to demonstrate the general methodology that can be applied in the context of
feedforward neural networks.

In addition to providing a theoretical framework within which to perform analysis of feed-
forward networks, the wavelet formalism supplies a tool which can be used to incorporate
spatio-spectral information contained in the training data in structuring of the network. Two
possible schemes to perform this task were described in Section 5. Minimality in terms of the
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number of nodes in the network cannot be guaranteed using these methods®. However, it is
possible to estimate the approximation error ([6]) in terms of the signal energy lying outside
the chosen spatio-spectral region.

In this paper, attention has been primarily restricted to approximating functions in L2(RR) .
Most applications where neural networks are particularly useful involve mappings in higher
dimensional domains (e.g. in vision, robot motion control, etc). Although extensions of the
methods of this paper to higher dimensions are possible (as described in Section 4.2), such
extensions have the potential to be computationally expensive. We are currently studying the
formulation of more computationally viable synthesis techniques for approximation of higher
dimensional mappings using feedforward neural networks.

Using the wavelet formalism to synthesize networks results in a greatly simplified training
problem. Unlike the situation in traditional feedforward neural network constructions, the cost
functional is convex and thereby admits global minimizing solutions only. Convexity of the
cost functional is a result of fixing the weights in the arguments of the nonlinearities so as to
provide the required dilations and translations. Simple iterative solutions to this problem such
as gradient descent are thus justifiable and are not in danger of being trapped in local minima.

°This problem of large networks is particularly limiting when considering mappings in higher dimensions
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Appendix

A Determining Translation and Dilation Stepsizes

Given an admissible mother wavelet g € L?(R) , the following theorem by Daubechies [6] can

be used to numerically determine values of the parameters @ and b for which (g, a,b) generates
an affine frame for L*(R) .

Theorem A.1 (Daubechies[6]) Let g € L2(R) and a > 1 be such that:

(1)

m(g;a) = ess lléxg a}Z]g a"w)|* >0 (24)
(2)
M(g;a) =ess sup Zlgaw| < (25)
lwl€ll,a]
(3)
. - 1/2 1/2
,1)1_1%2§ﬂ(k/b) B(—k/b)? =0, (26)
where

Bo) =ess sup S [G(a" - )

Then there ezists B, > 0 such that (g, a,b) generates an affine frame for each 0 < b < B,.
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Proof of the following corollary, can also be found in [6].
Corollary A.1 If g€ L2(R) and a > 1 satisfy the hypotheses of Theorem A.1 then,
B, > b, = inf{8| m(g;a) — 2> B(k/b)"/*B(~k/b)"/* < 0} (27)
k=1

and for 0 < b < b,, the frame bounds A and B can be estimated as,

A > b-‘(m(g;a)—2iﬁ(k/b>1/2ﬂ(—k/b)1/2)
k=1

B < N (M(g;a)+2  B(k/b)/2B(~k/B)'/?) (28)
k=1 .

A.1 Dilation and Translation Stepsizes for the Wavelet ) Constructed From
Sigmoids
For the task of constructing an affine frame based on the mother wavelet candidate 4 of Section

4.1 with dilation stepsize a = 2, we can check conditions (24) and (25) numerically. Figure
17 shows a plot of the sum in (24) using the mother wavelet candidate 9 with dilation step
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Figure 17: Plot of 5, |§(a™w)|? forw € [1,a] =(1,2]

size a=2. From the plot in Figure 17 the minimum value of the sum in (24) is approximately
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m(g;2) =7.88, and the maximum value is M (g;2) =8.01. Figure 18 is a plot showing the value
of 23 440 B(k/b)/?B(~k/b)*/?, for various values of b. From this, we see that for a = 2 and
0 < b < 0.57, (,a,b) generates an affine frame for L*(R) .

Remark

The conditions in Theorem A.1 and subsequently those in Corollary A.1, are in general very
conservative since the theorem relies on the Cauchy-Schwartz inequality to establish bounds.
Therefore although it may be possible to determine values of a and b for which (g, ¢, b) generates
an affine frame, for a given mother wavelet g, it is almost certain that these are not the ‘best’
possible values of a and b which can be used with g to obtain a frame. For very small values
of a and b, a large number of frame elements will be required to ‘cover’ any given time interval
and frequency band. Thus it is desirable to use the largest values of a and b for which (g, a, b)
generates a frame. That is, we would like the frame elements to be as sparsely distributed in
joint time-frequency space as possible.
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