
 

ABSTRACT 
 
Title of dissertation: METHODS OF SINGLE-MOLECULE 

ENERGY LANDSCAPE RECONSTRUCTION 
WITH OPTICAL TRAPS    

  
 Michel de Messières, Ph.D., 2012 
  
Directed by: Assistant Professor Arthur La Porta 

Department of Physics 
 

Optical traps facilitate measurement of force and position as single molecules 

of DNA, RNA, or protein are unfolded and refolded.  The effective energy landscape 

of a biomolecule can be reconstructed from the force and position data, providing 

insight into its structure and regulatory functions.  We have developed new 

experimental and analytical methods to reconstruct energy landscapes by taking 

advantage of the harmonic constraint of an optical trap.  We demonstrate the 

effectiveness of these methods using a model DNA hairpin and then apply these 

methods to study problems of practical biophysical interest.  CCR5 mRNA has been 

demonstrated to stimulate -1 programmed ribosomal frameshifting and we measure 

its structural properties.  We measure the binding energy of a GA/AG tandem 

mismatch, one of many mismatches with unusual properties.  We use our single-

molecule methods to reproduce bulk measurements of the nearest-neighbor DNA 

base-pair free energy parameters and we consider possible refinements to the model.  

We also study an alternative method of measuring energy landscapes, Dynamic Force 

Spectroscopy (DFS), and conduct experiments on DNA quadruplexes to demonstrate 

the effectiveness of DFS with optical traps.  Finally, we develop theory to elucidate 

the role of noise in optical trap measurements of energy landscapes. 
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Chapter 1: Introduction to Energy Landscapes and 
Optical Traps 

Introduction  

This thesis details single-molecule experiments conducted using optical traps 

to reconstruct the effective free energy landscapes of biomolecules.  The 

measurement of energy landscapes at the molecular scale has broad implications, 

providing insight into kinetics and regulatory function.  In this chapter, the basic 

principles of energy landscapes and optical traps are reviewed.  Chapter 2 details a 

measurement and analysis technique which is the foundation of this thesis.  The 

following chapters summarize research projects which used an optical trap to measure 

and interpret energy landscapes of various biomolecular systems.  These research 

projects build upon each other and are presented in an order which highlights this 

progressive development and cohesiveness. 

Energy Landscapes and Applied Force 

The effective free energy landscape of a biomolecule can be represented as a 

function of energy (y-axis) relative to a reaction coordinate or end-to-end opening 

distance (x-axis).  Figure 1.1 shows an example energy landscape (blue) where the 

opening distance (x) as a function of time can be modeled as a particle which 

thermally diffuses along this energy landscape, occupying each position with 

probability given by the Boltzmann distribution1.  In this example, the molecule (Fig. 

1.1 green) usually remains in the lower-energy folded conformation.  However, the 

application of external force tilts the energy landscape by an amount xF−  (Fig. 1.1 

red), where F is the applied force and x is the distance along the reaction coordinate.  
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This tilted energy landscape lowers the energy barrier and increases the probability 

that the molecule visits the open conformation.  

Energy Landscapes Under Force

e
n

e
rg

y

opening distance

force = 0
force > 0

 

Figure 1.1   Effect of applied force on an energy landscape.  A molecule (green) prefers the folded 

conformation (small opening distance).  Applied force lowers the energy barrier from blue to 

red, which increases the probability that a transition to the unfolded conformation will occur. 

The assumption of a one-dimensional reaction coordinate is not true in general 

but will be demonstrated to be a highly effective approximation for the systems we 

study here.  Some bonds and biomolecules can be approximated as two-state systems, 

adopting either the closed or open conformation.  For much of this research, we will 

be considering systems which are more complicated than simple two-state systems.  

Therefore, we will be interested in accurately measuring not only the initial and final 

conformation, but also all intermediate conformations the biomolecule may visit.  To 
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access all of the available conformations, we can apply force to a biomolecule using a 

device called an optical trap. 

Principles of Optical Trapping 

The optical trap, first developed by Ashkin2-4, allows for the precise 

measurement of force and opening distance on a target molecule. Typical units for 

these measurements are piconewtons (pN) and nanometers (nm).  An optical trap is 

created with a high numerical aperture lens and a laser.  If the laser is sufficiently 

focused, dielectric microspheres (and many other particles with dielectric properties 

such as bacteria and viruses5) can be stably trapped at the trap center which is 

approximately located at the focal point of the laser.  Figure 1.2 shows a typical 

experimental setup for this research.  A target molecule of interest is attached to the 

surface and the microsphere by double-stranded DNA handles with biotin or 

digoxigenin labels.  Other setups are possible6,7 including double-beam traps which 

have advantages of stability8, though here we focus solely on single-beam optical trap 

experiments.  Force on the molecule may be controlled either by moving the stage on 

which the glass coverslip is attached, or by changing the power of the laser.   
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Figure 1.2 Typical experimental setup for this research where relatively short double-stranded 

DNA handles (black) are used to attach the target molecule (blue) between a microsphere (bead) 

and the glass coverslip surface.  The optical trap allows us to track the applied force and the 

position of the microsphere. 

In principle, an optical trap is a simple device requiring only an objective lens 

and a laser.  However, accurately measuring the state of the microsphere (position 

and force) is more complex.  The focused laser beam applies a force to the 

microsphere, drawing it towards the trap center. Momentum conservation demands 

that the laser beam be deflected in the opposite direction of the applied momentum 

and this deflection can be measured on a photodiode detector which collects the laser 

light emerging from the sample chamber.  The vertical direction along the laser-beam 

axis can also be used since conservation of momentum causes the beam to be focused 

or broadened if the microsphere is respectively pulled toward or away from the laser 

source.  Figure 1.3 illustrates lateral and axial conservation of momentum, where the 

momentum imparted to the microsphere (red) is always equal to the change in 

momentum of the laser beam (blue). 
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laser momentum change = - microsphere momentum change

Conservation of momentum

 

Figure 1.3 Conservation of momentum demands that momentum imparted to the microsphere 

(red) is matched by equal and opposite momentum change of the laser beam (blue).  Lateral and 

axial momentum changes can both be monitored using a photodiode which collects light 

emerging from the sample chamber. 

Mechanical Design 

Construction of the optical trap (schematic in Fig. 1.4 and photo in Fig. 1.5) 

was a major component of this research. The trap is constructed on a gas-suspended 

table for stability.  A polarized 1064 nm infrared Nd:YAG laser is sent through an 

acousto-optic modulator (AOM) which splits the beam and allows us to control the 

power of the primary beam through rapid feedback.  The beam is then coupled into a 

single-mode polarization preserving optical fiber.  The fiber purifies the beam 

polarization and minimizes the effects from laser-pointing drift.  The beam is 

collimated and 10% is diverged to a photodiode detector which allows us to monitor 

the absolute power of the laser for feedback control.  The primary beam is aligned on 

the back of a numerical aperture (NA) 1.49 oil immersion 100x objective which 

focuses it on the sample.  Sample chambers were mounted on a nanometer-resolution 

digital piezo stage.  Light exiting the sample chamber was collected by a condenser 



6 
 
 

and then clipped by an iris9.  The clipping gives us sensitivity to axial motion of the 

microsphere, which broadens or narrows the beam as shown in Fig. 1.3.  The beam is 

then projected onto a dual-axis position-sensitive photodiode which monitors total 

intensity (z calibration) and deflection of the beam in the lateral directions (x and y 

calibration).  A camera provides an image by which we can visually monitor the 

position of the microspheres.   

periscope

λ/2 input

lamp

condenser

iris
detector

nano stage
macro stage

camera

λ/2

isolator

fiber

λ/2

1064 nm laser

λ/2
AOM

objective

slide
block

block
block

BS

fiber coupling

BS

BS

 

Figure 1.4 Schematic of the optical trap used for this research.  A 1064 nm infrared laser passes 

through an acousto-optic modulator (AOM) which can be used to control the laser power.  The 

laser is then coupled into an optical fiber before being sent to the primary setup, which is 

mounted on a single backboard for stability.  After passing through the sample chamber, the 

emerging laser is collected on photodiode detectors allowing determination of force and position 

on the microsphere.  λ/2 indicates half-wave plates which rotate the linear polarization of the 

laser.   Polarizing beam splitters (BS) split the beam into two linearly polarized components.  The 

beam dumps are indicated by block.   
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Figure 1.5 Image of the optical trap used for all the experiments in this thesis.  The boxed region 

of Fig. 1.4 corresponds to the layout shown in this photo.   The optics are mounted on a vertical 

backboard. 

Principles of Calibration 

Calibration is the method by which we convert voltage changes on the 

photodiode due to momentum conservation (Fig. 1.3) into position of the microsphere 

relative to the trap center and force applied to the microsphere.  The voltages 

measured are the total intensity of the beam before entering the objective (Vinput), the x 

and y signals (Vx and Vy) on the final detector which are proportional to the deflected 

momentum of the beam in the x and y directions, and the total laser intensity on the 
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final detector (Vsum).  We define the normalized x, y, and z signals as xs ≡ Vx/Vsum, ys ≡ 

Vy/Vsum and zs ≡ Vsum/Vinput. 

Calibrating the position may be done by several methods10.  For this research, 

position was calibrated by creating slides with microspheres in 100 mM KCl, 10 mM 

sodium acetate (pH~4.5), which causes the microspheres to be firmly stuck to the 

surface.  A single microsphere is moved relative to the trap by controlling the 

nanometer-accurate digital piezo stage.  Position of the stage and voltages on the 

photodiodes are recorded providing a mapping from voltage to position.  Several 

beads may be scanned and averaged to reduce error from bead variance.  Figure 1.6 

shows one example of the x and z calibrations though these were frequently updated.  

The data points are fit to a 5th-order polynomial which defines the position 

calibration.  Note that the position calibration is approximately linear for small 

displacements from the trap center.  
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Figure 1.6 Calibration scans for the x direction (a) and z direction (b).  The relationship between 

position and signal defines the position calibration. 

Calibrating force is more complex and this standard method illustrates 

important physics related to the optical trap so we will outline it here10.  We consider 
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the x direction with identical results following for the y direction.  Subtleties for the 

scattering force, which acts primarily in the z direction, will be discussed in great 

detail in chapter 8.  To first order, the trap behaves as a harmonic spring and the force 

may be written xFx α−= .  Since the energy of a harmonic spring has the quadratic 

form 2

2

1
xEx α= , we may relate RMS fluctuations in x to the trap stiffness with the 

equipartition theorem, giving: 

Tkx B2

1

2

1 2 =α
 1.1

Equation 1.1 illustrates that the stiffness can be determined independently of the 

Stokes drag, which would have significant error due to hydrodynamic effects given 

the microsphere’s proximity to the surface for these experiments.  Implementation of 

Eq. 1.1 is achieved by fitting the x fluctuations in frequency space.  We begin by 

defining the Langevin equation for position of the bead in the x direction x(t), where 

FT(t) represents the Brownian thermal noise,  α is the trap stiffness to be determined, 

and β is the drag on the bead. 

0)()()( =−− txtxtFT βα  1.2

Applying a Fourier transform gives: 

0)()()( =−− ωωβωαω xixFT  1.3

Now we can calculate the power spectrum of x fluctuations as: 

222

2
2 |)(|
|)(|

βωα
ωω

+
= TF

x
 1.4
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It is more natural to contemplate frequency space so we convert using fπω 2= .  

The thermal noise is approximately constant across frequency space (white noise) so 

we define a constant parameter A giving: 

22

2
2|)(|

ff

A
fx

o +
=

  πβ
α

2
=of

 
1.5

We now integrate to determine the RMS of fluctuations in x and relate this to the 

equipartition theorem using Eq. 1.1. 

α
π Tk

f

A
dffxx B

o

=== 
∞

2
|)(|

2

0

22

 
1.6

We now have expressions for both A and fo: 

πβ
α

2
=of

  βπ 2
2 Tk

A B=
 1.7

Beads are captured in the trap and the x, y, and z fluctuations are measured, Fourier 

transformed, and then fit to determine A and fo for each axis.  Using Eq. 1.7 we can 

determine the drag β and stiffness α.  Since the force is proportional to change in 

voltage ∆V, we may write VsF Δ−= α , where the sensitivity s, in units of μm/Volts, 

is determined by the relationship between position and voltage shown in Fig. 1.6.  

During a calibration scan where we collect the RMS fluctuation data, the microsphere 

has relatively small displacements (~10 nm) and the linear approximation is valid.  

We may subsequently apply the force calibration for larger displacements under the 

assumption that force will be proportional to change in voltage. 
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Chapter 2: Energy Landscape of a Harmonically 
Constrained Biopolymera 

Introduction 

In this chapter we will introduce a new method of measuring energy 

landscapes.  We first show that the technique works using simulations.  Then we 

demonstrate the technique experimentally, using a model DNA hairpin system with 

well-understood properties.  We will demonstrate that under many circumstances, 

conducting experiments using our method is highly advantageous and provides better 

resolution of the energy landscape.  This method forms the foundation for many of 

the experiments that will be discussed in subsequent chapters of this thesis. 

Background 

Pioneering studies have shown that the probability distribution of opening 

length for a DNA hairpin, recorded under constant force using an optical trap, can be 

used to reconstruct the energy landscape of the transition11,12.  However, 

measurements made under constant force are subject to some limitations.  Under 

constant force a system with a sufficiently high energy barrier spends most of its time 

in the closed or open conformation, with relatively few statistics collected in the 

transition state region.  We describe a measurement scheme in which the system is 

driven progressively through the transition by an optical trap and an algorithm is used 

to extract the energy landscape of the transition from the fluctuations recorded during 

this process.  We illustrate this technique in simulations and demonstrate its 

                                                 
aAdapted from de Messieres, M., Brawn-Cinani, B. & La Porta, A. Measuring the folding landscape of 
a harmonically constrained biopolymer. Biophys. J. 100, 2736-2744 (2011).  
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effectiveness in experiments on a DNA hairpin. We find that the combination of this 

technique with the use of short DNA handles facilitates a high resolution 

measurement of the folding landscape of the hairpin with a very short measurement 

time. 

The concept of a transition state, or activation complex, which limits the rate 

at which chemical reactions proceed, dates to the late 19th and early 20th century13-15. 

Later work by Kramers1 provided an explicit model for chemical reaction kinetics in 

terms of thermally driven diffusion on an effective energy landscape. The one-

dimensional domain in which the diffusion is assumed to occur is the reaction 

coordinate, a variable with dimension of length that parameterizes the physical 

rearrangement necessary for the reaction to occur. The height of the landscape is the 

effective free energy of the system as a function of the reaction coordinate. In this 

formalism, transition states are peaks in the energy landscape that impede diffusion 

between the initial and final states along the reaction coordinate. 

Kramers was motivated by simple chemical reactions that could be assumed 

to occur by a well-defined pathway. However, this model has been extremely 

successful in describing the chemical kinetics of biological macromolecules, which 

often undergo complex conformational dynamics in the process of folding into their 

active conformation or catalyzing a chemical reaction. Although the system typically 

explores a high-dimensional phase space in the course of the transition, it is often 

possible to characterize it in terms of a well-defined effective path that connects the 

initial and final conformation16-19. 
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The development of single-molecule manipulation techniques (based on 

optical trapping, magnetic force, atomic force microscopy, and fluorescence) has 

made it possible to monitor progression of a folding/unfolding transition of a 

biomolecule, opening a new window into Kramer’s model10,20. One widely used 

technique employs optical tweezers. The molecule in question is localized and tagged 

with a microsphere that is held in an optical trap. If the conformational change 

required to complete the reaction pulls the microsphere away from the center of the 

trap, the molecule will have to perform an additional portion of work to complete the 

reaction. Furthermore, the progress of the reaction can be monitored by observing the 

motion of the microsphere with respect to the trap center. If the optical trap is 

configured to produce constant force oF , opposing the motion, and a displacement ∆x 

occurs in the course of the reaction, a term xFoΔ−  is added to the free energy of the 

system. The effect is to uniformly tilt the energy landscape and modify the transition 

state and final state energy by a well-defined amount21. Large forces can also result in 

an alteration of the precise location of the transition state along the reaction 

coordinate, depending on the shape of the barrier22. 

There are two methods by which measurements made under an external force 

have typically been used to characterize kinetics of a folding/unfolding transition. The 

first is referred to as dynamic force spectroscopy (DFS).  In DFS, the height of the 

barrier and its effective distance from the initial state are determined from the 

dependence of reaction rate on the applied force, or the dependence of disruption 

force on the rate at which force is increased (the loading rate). A particularly 

powerful implementation of this technique is to fit the distribution of disruption 
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forces as a function of loading rate to the predicted functional form21-25. The results of 

this analysis, however, are difficult to interpret unless it can be assumed that the 

reaction rate is limited by a single barrier. Furthermore, the parameters obtained will 

depend on the assumed shape of the barrier. 

Another technique, which is especially useful in studying the 

folding/unfolding dynamics of biopolymers, is to apply a constant external force F1/2 

that is sufficient to bring the initial and final conformation of the system to a state of 

equal occupancy.  In this case, the system makes repeated transitions between the two 

conformations26 and a histogram of the reaction coordinate — which is defined as the 

end-to-end extension of the polymer itself — is compiled and used to calculate the 

probability density function (PDF) defined as p(x)11,12.  The energy as a function of 

the reaction coordinate x is then obtained using 

( ))(ln)( B xpTkxE −=  2.1

Although the transition rate at zero force is often the quantity most relevant to 

the biological function of a molecule, it has been argued that the detailed energy 

landscape is more useful in estimating this rate than a measurement of the transition 

rate itself as a function of force27.  This is because the transition rate depends not only 

on the characteristics of the energy landscape, but also on the effective diffusion 

constant for evolution of the reaction coordinate.  The attachment of handles to the 

structure, normally necessary for single-molecule manipulation studies, can impede 

movement of the structure in solution and reduce this diffusion constant.  As a result, 

an extrapolation of measured transition rate to zero force can dramatically 

underestimate the native zero-force transition rate27.  An experimental measurement 
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of the energy landscape combined with an estimate of the diffusion constant obtained 

through numerical simulations has been suggested as a method of obtaining an 

accurate estimate of the native zero-force transition rate27. 

Harmonic Constraint Technique 

The question remains as to the most effective method of measuring the energy 

landscape of a folding transition.  Measurement at constant force is illustrated in Figs. 

2.1a and 2.1b.  In Figs. 2.1d and 2.1e the energy landscape for folding of a nucleic 

acid hairpin structure is represented at zero force, and for the force F1/2.  The expected 

PDF of the reaction coordinate is shown in Figs. 2.1g and 2.1h.  For illustrative 

purposes, it has been assumed that disruption of the structure requires constant energy 

per base-pair (bp) except for a weak base-pair in the stem close to the loop 

(corresponding to a mismatch) as illustrated in Figs. 2.1a and 2.1b, creating a 

recognizable feature in the energy landscape near the transition state.  For sufficiently 

high transition state energy the hairpin at F1/2 is expected to exhibit infrequent 

transitions between the open and closed conformation.  As a result the time required 

for the system to reach equilibrium between the open and closed conformation may 

become impractically long, and the hairpin will spend a very small fraction of its time 

in the vicinity of the transition state.  
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Figure 2.1 (a, b, c) Schematics for experimental configurations in which the hairpin evolves with 

no external force, for a constant external force F1/2 such that the system has equal probability of 

occupying the open and closed conformations, and subject to a harmonic constraint 

characterized by stiffness α and origin xo which tends to constrain the system along the reaction 

coordinate x. (d, e, f)  Model energy landscapes constructed under the assumption that the 

energy of the hairpin decreases a constant amount for each base-pair hybridized, except for one 

base-pair (depicted in green) which hybridizes with no change in energy.  Landscapes are shown 

(d) for zero force, (e) for force F1/2 and (f) under harmonic constraint for six different choices of 

the constraint origin.  (g, h, i)  Probability density function of position for the corresponding 

energy landscapes.  



17 
 
 

However, the energy landscape for a folding transition can also be accurately 

constructed by taking data with the system subject to force which depends linearly on 

the end-to-end extension of the molecule, so that when the extension increases the 

tension decreases, and vice versa.  Such a harmonic restoring force can be created by 

taking advantage of the linear-force regime of the optical trap itself, and this 

experimental configuration has been employed in previous experiments to measure 

transition rates of hairpins at different constraint positions28,29.  The harmonic 

constraint manifests itself as a parabolic term superimposed on the native energy 

landscape of the polymer structure and tends to confine the system to a well-defined 

region along the reaction coordinate.  The native energy landscape in this region can 

be obtained from the constrained data by correcting for the effect of the imposed 

constraint.  The effect is similar to the umbrella sampling technique which is 

frequently used in molecular dynamics simulations to enhance statistical sampling of 

rarely visited conformations30.   

Although harmonic constraint tends to restrict the system to a limited range of 

the reaction coordinate, the full landscape can be constructed by taking a series of 

runs with different origins, confining the system to a set of overlapping regions along 

the reaction pathway.  The effective energy landscapes for six such constraint origins 

are shown in Fig. 2.1f.  A key feature of this configuration is that if the constraint is 

sufficiently strong, the large energy barrier which separates the open and closed 

conformations is no longer the dominant feature of the effective landscape.  The 

predicted PDFs are shown in Fig. 2.1i, and reflect the parabolic shape of the 

constraining potential superimposed on the hairpin’s native energy landscape.  In 
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contrast to the constant-force measurement, every region of the energy landscape is 

visited with high probability for at least one value of the constraint center, resulting in 

a much more uniform convergence of statistics.  This is in contrast to the PDF 

obtained from the constant-force landscape, Fig. 2.1h.   

The advantage of harmonic constraint relative to constant force is apparent in 

Langevin dynamics simulations (Fig. 2.2) based on the energy landscapes in Fig. 2.1e 

and 2.1f.  A single simulation was run at constant force for a time equal to the 

combined time of six individual harmonic constraint simulations.  In Fig. 2.2a the 

effective energy landscape at constant force F1/2 is contrasted with the landscape for 

one of the constrained runs restricting the system to remain near the center of the 

transition.  Fig. 2.2b shows simulated dynamics governed by the two potentials in 

Fig. 2.2a.  The trajectory at constant force, which is dominated by the large barrier 

between the open and closed conformations, shows only one transition across the 

barrier.  This time interval deliberately selects the one observed transition from the 

full run of 1200 time units.  The trajectory taken from the constrained system shows 

rapid fluctuations within the region favored by the constraint potential.  The energy 

barrier that dominates the dynamics at constant force has two distinct disadvantages 

compared with the constrained landscape.  The first is that the position PDF 

calculated from the simulation at F1/2 (Fig. 2.2b black curve) will show poor 

convergence in the transition region because the probability of occupying this region 

is extremely low.  The second difficulty is that a system starting in the closed 

conformation will take a relatively long time to traverse the barrier and sample the 

open conformation (and vice versa), despite the fact that thermodynamically, the open 
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and closed conformations should be equally populated.  Aside from non-uniform 

sampling of the reaction coordinate, the system at constant force requires a long time 

to manifest thermal equilibrium.  Even if the system can be sampled at an extremely 

high rate, it is necessary to wait for the system to equilibrate.  The constrained 

system, in contrast, equilibrates more quickly, facilitating measurement in a short 

time interval. 
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Figure 2.2 (a) Comparison of the native energy under constant force (black) and for a 

harmonically-constrained force (cyan) that constrains the system to remain between the open 

and closed conformations.  (b) Simulated trajectory of the hairpin held with constant external 

force and under the constraining force, corresponding to the two potentials in (a). The constant-

force trace is selected from a run of 1200 time units and the constrained trace is selected from a 

run of 200 time units. (c) Simulated trajectories of the hairpin subject to the harmonic constraint 

for six positions of the constraint origin.  (d) Probability density functions calculated from each 

trajectory in (c) and displayed in matching color.  (e) dEhp/dx constructed from the data in (d).  

The black curve is the combined dEhp/dx curve calculated from Eq 2.1. (f) Energy landscape 

calculated from constant-force data (blue squares) and harmonic constraint (red circles) 

compared with the effective energy (black line), evaluated at F1/2. 
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Although the individual runs taken with the harmonic constraint converge 

quickly, no single run samples the full transition.  Figure 2.2c-f demonstrates the 

construction of the full energy landscape from a series of runs whose combined 

domains of convergence span the entire transition.   The array of origins used to 

create the effective landscapes in Fig. 2.1f is chosen so that the corresponding PDFs 

show good convergence in overlapping domains of the reaction coordinate, such that 

every position on the reaction coordinate is well-converged in at least one of the 

PDFs.  If we were to apply Eq. 2.1 to each of these curves we would obtain the total 

energy, including the contribution of the harmonic constraint.  However, if the 

strength of the constraint αc and the origin xc are sufficiently well known, the effect of 

the constraint can be subtracted to obtain the underlying energy landscape, 

( ) ( ) c
2

c
c

Bhp 2
)(ln)( AxxxpTkxE +−−−= α

 
2.2

where Ehp is the energy of the hairpin we intend to measure and Ac is an arbitrary 

constant.  However, for each value of the constraint position xc this equation will give 

Ehp(x) which is well converged only within the narrow domain visited by the system.  

Combining these constrained energy landscapes to form the global energy landscape 

would require us to choose the constants Ac to form a continuous energy landscape 

spanning the individual runs.  Although this can be done using standard techniques31 

the difficulty of determining the constants Ac is circumvented by calculating the rate 

of change of Ehp with respect to the reaction coordinate, 

( ) ( )ccB
hp )(ln)( xxxp

dx

d
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Since the constants Ac have been eliminated, the global dEhp/dx can be obtained by 

averaging the individual curves, giving each term statistical weight inversely 

proportional to the square of the standard deviation of the term32. This is 

accomplished by evaluating 
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2.4

where ix  is the point at which dEhp/dx is being calculated, jx  is the origin of the 

harmonic constraint for run j, and )( ix xp
j

 is the probability the system is observed at 

ix  when the constraint origin is jx .  Fig. 2.2d shows the probability distributions 

)( ix xp
j

 and Fig. 2.2e shows dEhp/dx calculated for individual constraint origins 

(symbols with error bars) based on the trajectories in Fig. 2.2c. as well as the 

combined dEhp/dx (black curve).  Note that the individual dEhp/dx curves have large 

error bars at the margins of their range, but the combined curve is constructed with 

high resolution throughout, because every part of the reaction coordinate is well 

converged in at least one of the runs.  The function dEhp/dx is a useful way to 

characterize the transition, and can be integrated along x to obtain the energy itself. 

Figure 2.2f shows the energy landscape (plotted at F1/2) obtained from the 

simulated constant-force measurements and from integration of dEhp/dx for the 

constrained measurements, compared with the landscape used as the input to the two 

simulations.  The same total amount of measurement time is simulated for both 

experiments, but the constrained measurement is well converged over the entire 

landscape, while the constant-force data shows poor convergence in the critical 



22 
 
 

transition region.  Equally good results can, in principle, be obtained from the 

constant-force configuration, although a ~100 fold longer measurement time is 

required. 

Implications 

One might be tempted to conclude from the comparison of the two 

measurement methods that the constant-force measurement can be made to equal the 

constrained version as long as the measurement time is extended sufficiently.  

Although this is true in the idealized conditions of these simulations, in real 

experiments the constrained method has advantages that cannot generally be 

duplicated by extending the measurement period of a constant-force data set.  One 

example would be a system which undergoes an irreversible transition.  In such a 

system the constrained measurement could be used to probe the energy landscape in 

the neighborhood of the irreversible transition, adjusting the constraint to prevent the 

system from committing to the transition. 

More generally, the ability to make measurements in a shorter time interval 

allows a wider latitude in choosing the measurement technology.  The long 

measurement times necessary to reach equilibrium in constant-force measurements 

have motivated researchers to shun single-beam optical trapping assays in favor of a 

dual-beam assay8,11,33.  This configuration, in which the construct is stretched 

between two particles held in two optical traps originating from the same laser, offers 

unequalled long-range stability, making it possible to record trajectories for many 

minutes without suffering significant drift.  However, the trap centers must be 

maintained at a distance comparable to the optical wavelength to prevent the two 
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traps from effectively merging into a single trap.  The double-stranded DNA handles 

used to attach the structure are typically chosen to have a total length of ~1700 base-

pairs or more to accommodate this geometry11.  Thermally driven fluctuations in the 

extension of these handles is a source of uncertainty in the measurement of the 

conformation of the system.   

Taking advantage of the fact that the constrained measurements can be 

completed in a short time interval, we have adopted a single-beam surface-based 

axial-pulling configuration in which the construct is stretched between a surface 

attachment and the bead.  The vertical-pulling geometry allows us to use short 

handles to couple the nucleic acid construct to the surface and bead, with total length 

of 428 base-pairs.  This results in a tighter coupling between the structure being 

studied and the bead, and less uncertainty in the measurement of the system 

conformation.  This is expected to result in higher resolution in the determination of 

the energy landscape, compared with measurements made with longer handles.   

Ultimately the choice of handle length will have to take into account other effects, 

such as the increase in viscous drag that occurs when a bead closely approaches a 

fixed surface or another bead, or interactions between the bead and the structure being 

studied.  Recently, optical trapping experiments have made use of handles as short as 

29 base-pairs, offering the possibility that even higher resolution could be 

achieved34,35. 
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Materials and Methods 

Sample Preparation 

Two double-stranded DNA handles were generated by PCR using biotin and 

digoxigenin labeled primers (Invitrogen, Gaithersburg, MD) for attachment to the 

surface and bead respectively. Handles were digested with BstXI or BtgI (New 

England Biolabs, Ipswich, MA) and gel extracted, with final lengths of 234 base-pairs 

and 194 base-pairs, excluding the 4 base-pair overhang resulting from the digestion.  

Two different hairpins were synthesized (Invitrogen, Gaithersburg, MD) with 

a flanking sequence of TTTT on each end for improved ligation efficiency, and 4 

base overhangs of cgtg and cgat corresponding to the BtgI  and BstXI enzymes 

respectively. We will refer to the hairpins as Short 

(cgtgttttgagtcaacgtctggatcctgttttcaggatccagacgttgactcttttcgat) and Long 

(cgtgttttccgcgcatctgagtcgaggcagtagccgtcgtctgcgattttttttcgcagacgacggctactgcctcgactcag

atgcgcggttttcgat). (The short hairpin was previously studied11.) The handles were 

ligated to the hairpins, gel extracted, and diluted to approximately 50 pM in the final 

experimental buffer (50 mM sodium phosphate buffer pH 7.0, 50 mM NaCl, 10 mM 

EDTA, and 0.02% Tween 2036).  

The sample chamber cover slips were scrubbed with Windex, rinsed, and 

dried. Polyclonal anti-digoxigenin (Roche Molecular Biochemicals, Indianapolis, IN) 

was diluted to 20 μg/ml in a phosphate buffer solution (137 mM NaCl, 8.1 mM 

Na2HPO4, 1.8 mM KH2PO4, 2.7 mM KCl) and incubated in the chamber for 20 

minutes. To prevent bead and DNA interactions with the slide, a blotting buffer was 

incubated in the slide for 3 cycles of 20 minutes each, containing 1 mg/ml blotting-
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grade blocker (Bio-Rad, Hercules, CA) in popping buffer. The ligated hairpin 

constructs were then incubated in the sample chamber for 45 minutes for attachment 

of the DNA dig label to the anti-digoxigenin on the surface. Carboxyl microspheres 

(Bangs Laboratories, Inc., Fishers, IN) with radius 410 nm were streptavidin coated 

with a PolyLink Protein Coupling Kit (Polysciences, Inc), diluted to 0.1 g/ml in 

popping buffer, and incubated for 20 minutes for attachment to the biotin labels on 

the DNA. A final flow through left the sample in the final experimental buffer (50 

mM sodium phosphate buffer pH 7.0, 50 mM NaCl, 10 mM EDTA, and 0.02% 

Tween 2036) and oxygen-scavenging solution (721 ug/ml glucose oxidase (Sigma, St. 

Louis, MO), 144 ug/ml catalase (Sigma), and 3.9 mg/ml glucose)37. We found that the 

oxygen scavenger was essential for working at the high laser powers used. 

Instrumentation 

Data was collected on a single-beam optical trap using the experimental 

configuration shown in the Fig. 2.4a insert. A 1064 nm laser (BL-106C, Spectra-

Physics, Santa Clara, CA) was coupled to a single-mode, polarization-preserving 

optical fiber (Thorlabs, Newton, NJ). The trap was constructed with a NA 1.49 oil 

immersion objective (CFI Apo TIRF 100x, Nikon Instruments, Lewisville, TX). Light 

was collected with a NA 1.4 oil immersion condenser (Nikon Instruments, Lewisville, 

TX) on a dual-axis position-sensitive diode (DL100-7PCBA3, Pacific Silicon Sensor, 

Westlake Village, CA). A fraction of the beam incident on the objective lens was also 

measured to monitor optical power. An acousto-optic modulator (Isomet, Springfield, 

VA) was used to either stabilize the power of the beam or maintain constant force 

using software feedback. Data was collected at 60 kHz on a 16-bit digital acquisition 
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board (National Instruments, Austin, TX).  The analog signal was filtered using an 8-

pole Bessel filter at 30 kHz (Krohn-Hite, Brockton, MA), and filtered offline at 20 

kHz. An iris after the condenser clipped the beam to provide signal dependent on the 

bead height9. 

Calibration 

The double-stranded DNA handles were modeled as a WLC (worm-like 

chain)38 with total contour length 160 nm determined by assuming 0.338 nm/bp39 

with an additional 15 nm added to estimate the size of the biotin and dig labels, 

stretch modulus of 1205 pN, and persistence length 43.1 nm40. Single-stranded DNA 

was modeled as a WLC using average values from Woodside et al. of persistence 

length 1.25 nm, contour length per base of 0.625 nm, and neglecting enthalpic 

contributions11.  The measured force-extension curves are fit to the worm-like chain 

theory so our results are relatively insensitive to the precise values, except for the 

contour length per base of single-stranded DNA, which determines the conversion of 

opening distance (nanometers) to number of bases released.  This is accounted for by 

fitting a scaling correction to the opening distance (~2%) which is discussed in the 

results. 

The optical trap was calibrated using standard techniques based on the Fourier 

spectrum of Brownian fluctuations and scans using a bead rigidly attached to the 

surface of the sample chamber41.  The position calibrations were adjusted to 

reproduce the previously reported opening distance of the short hairpin11.  The 

vertical trap stiffness was measured to be 249 ± 3 pN/μm (standard deviation of the 

mean) with 860 mW of power on the back of the overfilled objective.  
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Experimental Setup 

We studied hairpins in either force-clamp configuration or harmonically-

constrained configuration. For the force clamp, a software feedback loop controlled 

the power of the trap through the acousto-optic modulator to maintain a constant 

force on the hairpin as it fluctuated between the open and closed conformations. For 

the constrained configuration, we lowered the stage at a constant rate to sweep across 

the hairpin from the closed conformation to the opened conformation. During 

constrained scans, the feedback loop controlling the acousto-optic modulator held the 

trap power constant. A normalized z signal was calculated as the intensity measured 

at the detector divided by the intensity incident on the objective9. We recorded the 

normalized z signal, trap power, and stage position for the analysis. 

Theoretical Model 

We compared our results to a simple theoretical model for the free energy of 

the hairpin, based on Mfold v.3.2, (using a monovalent salt correction42 of 140 mM at 

24°C) which gives the energy released by sequential hybridization of the base-

pairs43,44.  For a given extension of the structure, the number of base-pairs hybridized 

is determined, taking into account the extension of the single-stranded DNA released 

at the average observed force.  The energy is the combination of the hybridization 

energy specified by Mfold and the elastic energy of the single-stranded DNA 

released. There is some uncertainty in the increase in extension when the hairpin loop 

opens. We adjusted this parameter to reproduce the observed well depth for the fully 

open hairpin. To approximate the blurring effect due to fluctuations of the single-

stranded DNA, we followed previous research12 and applied a pseudo-convolution, in 
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which the width of the Gaussian kernel varies across the landscape by ασ /kT= . 

The varying stiffness α  was calculated using the worm-like chain model for the 

single-stranded DNA released from the hairpin at the average measured force for each 

bin.  This specifies the intrinsic energy landscape of the hairpin.  This procedure is an 

approximation and refinements to this method based on first principles are discussed 

in chapter 4. 

To account for fluctuations in the apparent extension of the structure arising 

from thermal fluctuations of the double-stranded DNA handles and trapped bead, we 

convolved the probability distribution derived from the energy landscape model with 

a Gaussian of uncertainty 1.1 nm, determined by fitting to the closed well of the 

hairpin.  The model is similar to that employed by Woodside et al, except we account 

for different parts of the landscape being measured at different average force for 

constrained measurement. An example of the original model with single-stranded 

elasticity applied, the convolved model, and experimental data are shown in Fig. 2.4e 

and 2.4f. 

Results & Discussion 

Harmonic Constraint Data Analysis 

To implement the harmonic-constraint method, we lowered the stage at a 

constant rate averaging 20 nm/s.  The resulting records of opening distance vs. time 

were divided into six equally spaced time intervals where each interval is 

approximated to represent a constant position.  Using a greater number of intervals 

makes this approximation more exact but does not significantly change our final 

results.  Fig. 2.4a shows the resulting data for one scan of the long hairpin (structure 
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shown in Fig. 2.3).  The position of the trap (defined as the point where force on the 

bead is zero) and the location of the surface define the relationship between the 

harmonic constraint and the hairpin.  For each interval, the double-stranded DNA 

handles were approximated as a linear spring using the WLC stiffness at the average 

force for that interval. The stiffness of the trap was assumed to be constant for all 

measurements. The trap and the DNA were treated as two linear springs in series with 

a combined stiffness 1)/1/1( −+= TrapDNAc ααα , where cα  represents the effective 

stiffness of the harmonic constraint.  The energy of the system including the 

constraint follows Eq. 2.3, where Ehp includes the energy for stretching the single-

stranded DNA after it is liberated from the hairpin.  A scaling correction (which 

averaged 2%) was applied to each data set so that the total base-pairs released 

matched the expected value. A set of probability distributions of the measured 

opening distance was accumulated in equally spaced 1.0 nm bins (Fig. 2.4b). 

A discrete version of Eq. 4 gives us a measurement of dEhp/dx for each 

interval. As in the simulation, each interval only provides accurate results for one 

region of the landscape. In Fig. 2.4c we have shown two of these intervals (blue and 

yellow) for clarity. Blue provides good statistics in the middle region of the landscape 

while yellow provides good statistics for the regime when the hairpin is mostly open. 

The energy landscape for this hairpin is more irregular than that assumed in the 

simulation, so the regions of good statistical convergence are more widely distributed 

in the experimental data.  The combined graph of dEhp/dx was calculated using Eq. 

2.4 and in Fig. 2.4c red we show the combined result of the 6 intervals from the first 

scan. In Fig. 2.4d we show the combined results (red) for 3 scans on the same sample 
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in comparison with the predictions of the convolved model (black). We integrated the 

curve in Fig. 2.4d (red) to produce the complete landscape shown in Fig. 2.4e. For 

better comparison of the features in the landscape, we apply an effective force F1/2 to 

tilt the landscapes so that the open and closed wells are occupied with equal 

probabilities. The value of F1/2 for data and the model deviated by 0.34 pN which is 

within the experimental uncertainty of the force calibration. 
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Figure 2.3 Structure of the long hairpin used for the experimental results shown in Figs. 2.4-2.6.  

Generated using Mfold44. 
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Figure 2.4 Harmonic constraint applied to a single long DNA hairpin. The trap position was 

moved for 3 scans of duration 2 s. (a) Opening distance for the first scan divided into 6 intervals. 

Inset shows the experimental configuration, with force applied in the vertical direction.  Double-

stranded DNA handles with total length 428 base-pairs were used to attach the hairpin between 

the surface and the trapped bead using digoxigenin and biotin labels respectively. (b) Probability 

distribution with 1 nm bins for the 6 intervals of the scan shown in (a). (c) Change in energy per 

nm shown for two of the intervals (blue and yellow) along with the combined result for the 6 

intervals shown in a (red). (d) Change in energy per nm for the combined result of the 3 scans 

(red) compared to the predictions of the convolved model (black). (e) The model after accounting 

for single-stranded elasticity (gray), the convolved model (black), and experimental results (red). 

(f)  The same data shown in (e), except plotted at F1/2. 
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Force Clamp Data Analysis 

To compare with the harmonically-constrained data analysis, we held the 

same hairpin sample in force-clamp mode and measured data for a time period equal 

to the total time of the constrained data sweep. The opening distance is plotted over 6 

s (Fig. 2.5a) giving the probability distribution (Fig. 2.5b).  At F1/2 (~15 pN) the mean 

time between transitions is much larger than the proscribed measurement time.  In 

order to obtain at least one transition during a measurement period we began with the 

system in the open conformation and reduced the force to 14.2 pN, which increases 

the rate of transitions to the closed conformation.  The system remained in the open 

conformation for 14 seconds before making a transition to the closed conformation 

and we selected a 6 s interval centered on the transition for analysis.  The probability 

distribution can be compared with the harmonic-constraint result (Fig. 2.4b). We also 

show the log of the probability with uncertainties (Fig. 2.5c).  The final landscape 

was reconstructed directly from Eq. 2.5, correcting for the energy for stretching the 

single-stranded DNA. (Fig. 2.5d)  Since the system made only one transition, the 

fraction of time spent in the open and closed conformations is arbitrary and the 

statistical convergence of the transition state is extremely poor.  The shape of the 

energy landscape in the neighborhood of the open and closed conformations is 

statistically converged and well defined, but the relative energy of the open and 

closed conformations and the shape of the transition state landscape are not 

determined by this data.   
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Figure 2.5 Force-clamp data for the same hairpin sample measured in Fig. 2.4. (a) Opening 

distance measured as the hairpin makes one transition during 6 s (Compare to Fig. 2.4a). Inset: 

Shows the same data over a longer time frame and the portion selected for analysis. (b) 

Probability distribution of the opening distance with 1 nm bins shown in a (Compare to Fig. 

2.4b). (c) Log of the probability distribution with uncertainties. (d) Reconstructed energy 

landscape (blue), the model (gray), and convolved model (black) (Compare to Fig. 2.4f). 

Combined Samples 

In Fig. 2.6 we show the combined results for 5 unique hairpin molecules, all 

measured on the same slide. Each hairpin contributed one scan of 6 intervals with a 

bin spacing of 1 nm. These intervals were combined with appropriate weights by the 

same method we used to combine intervals for the single hairpin sample in Fig. 2.4.  

Some of our long hairpin samples deviated from the model with an initial 

opening force significantly below forces required to open the remainder of the 
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hairpin. These features were reproducible on subsequent scans and we attributed them 

to mutations in the original synthesis of the 99 base-pair hairpin, contamination or 

deterioration of the sample, or optical damage. We assumed that any defects would 

lower rather than increase the hybridization energy and therefore implemented a 

simple scoring system to delete hairpins which had anomalously low total opening 

energy. We scored each sample as the highest force measured before it opened 

beyond 5 base-pairs. The top 40% of samples were found to be self-consistent and we 

combined them to produce the average landscape shown in Fig. 2.6. 

In Fig. 2.6 we find good agreement between the measured landscape and the 

model which includes the expected blurring resulting from of the double-stranded 

DNA handles.  The loss of resolution compared to the intrinsic landscape of the 

hairpin is 1.1 nm, which corresponds to approximately one base-pair opening of the 

hairpin. 
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Figure 2.6 Energy landscape (red) produced by combining scans of 5 different data samples, the 

model (gray), and convolved model (black). Data analyzed with bin spacing 1.0 nm and 6 

intervals for each scan. 
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Discussion 

The principal benefit of collecting data under a harmonic constraint rather 

than constant force occurs in cases where the system has a large energy barrier 

between the open and closed conformation.  Provided the constraint can be made 

strong enough, the effective barrier will be smaller for the constrained system and it 

will equilibrate much more quickly under the harmonic constraint than under constant 

force.  Since the occupancy of the transition state is proportional to exp(−Et/kBT), 

where Et is the transition state energy, a dramatic decrease in the transition time can 

be achieved from even a modest reduction in the transition state energy.  In such 

cases the harmonic-constraint method allows the landscape to be reconstructed from 

an ensemble of constrained measurements with good statistical convergence and high 

resolution using a much smaller total measurement time than would be necessary for 

a constant-force measurement  (Compare Figs. 2.4d and 2.5d or see Fig. 2.6).   

The ability to complete the measurement in a short time reduces the sensitivity 

to drift, and allows us to use a simplified experimental configuration in which the 

structure is attached to the trapped bead using a relatively short pair of double-

stranded DNA handles.  Fluctuations in the length of the handle are a significant 

source of uncertainty in the instantaneous state of the system and cause blurring of the 

measured energy landscape.  Comparison of our measured landscape with the Mfold-

based model suggests that fluctuations of the handle introduce blurring equivalent to 

convolution of the true landscape with a Gaussian function of standard deviation 1.1 

nm.  Neglecting end effects, thermal fluctuations in the length of the handles are 

expected to scale as the square root of the length.  Since our handles are a factor of 4 
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shorter than those used in double-beam experiments by Woodside et. al11, this implies 

that our resolution should be better by a factor of 2.  Woodside employed 

deconvolution to compensate for handle effects.  However, the landscapes reported 

by Woodside in the absence of deconvolution show a level of blurring consistent with 

this estimate.  We expect that further reduction in the handle length, either in the 

vertical-pulling optical trap assay or in other single-molecule assays, will further 

increase the resolution of the measurement of the energy landscape.  

Conclusion 

The method we have presented demonstrates that quantitatively accurate 

energy landscapes can be obtained from data taken with strong harmonic constraint 

by removing the effect of the constraint and combining data taken at different 

constraint positions.  We have demonstrated this technique in a single-beam optical 

trapping experiment but we anticipate that it can be applied to measurements made 

using other technologies, including magnetic tweezers, or atomic force microscopy, 

provided that the harmonic constraint can be implemented with sufficient stiffness 

and the measurement resolution is adequate.  The harmonic constraint can facilitate 

more rapid measurement and may also be preferred in situations where the system is 

near an effectively irreversible transition.  As a result, this technique may broaden the 

scope of energy landscape reconstruction to systems which currently can only be 

studied by DFS techniques.   
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Figure 2.7 Data from multiple samples of the long hairpin analyzed relative to a new model which will 

be developed in Chapter 4. 

In this chapter we used the calculation of dE/dx as an intermediate step to 

determine the energy landscape of the molecule.  The results have been presented as 

in our original publication.  However, in Chapter 3 we will develop an analysis of 

mRNA structure based solely on the dE/dx values and discuss advantages of this 

viewpoint.  In Chapter 4 we will discuss an improved model which accounts for 

discrepancies between the data and the original model. As an example, Fig. 2.7 shows 

data from this chapter for four different molecules analyzed relative to the new 

model.  
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Chapter 3: CCR5 mRNA Unfolding Pathwaysb 

Introduction 

In the previous chapter we developed a new method of reconstructing energy 

landscapes.  As an intermediate step, we calculated dE/dx, or the slope of the energy 

landscape.  We now consider experiments to determine RNA structure and find that 

looking at the dE/dx values as a final result rather than an intermediate step is an 

exceptionally useful way to classify the multiple conformations we observe.  

Therefore there are two important results we will describe in this chapter.  The first is 

biological and illuminates the structure of CCR5 mRNA.  The second is technical and 

demonstrates that calculating dE/dx is a useful general technique for interpretation of 

single-molecule results. 

Background 

The ribosome translates messenger RNA (mRNA) into protein by moving 

along the mRNA molecule and adding an amino acid to the nascent protein chain for 

every three-base codon it encounters45,46.  Secondary or tertiary structure in the 

mRNA during translation can create a physical barrier, requiring the ribosome to 

generate additional force in order to translocate47-51.  The presence of such a barrier 

can dramatically increase the probability that the ribosome will backslide and shift 

into an alternate reading frame, in which a different set of codons is recognized52.  

The detailed mechanism by which frameshifting is induced remains unknown.  Here 

we employ optical trapping techniques to show that CCR5 mRNA, which encodes the 
                                                 
bAdapted from de Messieres, M., Chang, J.-C., Belew, A. T., Meskauskas, A., Dinman, J. D. & La 
Porta, A. Single-molecule measurements of the CCR5 mRNA unfolding pathways. In preparation  
(2012) 
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co-receptor for HIV-153, manifests several distinct unfolding pathways when subject 

to end-to-end force, one of which is consistent with a proposed pseudoknot 

conformation54-57, and another of which we have identified as a folding intermediate.  

We find that the introduction of micro RNA (miRNA) molecules58, that have been 

found to increase CCR5 frameshifting in vivo57, changes the relative occupancy of 

these conformations, raising the possibility that miRNAs regulate frameshifting by 

binding to the mRNA molecule and driving it towards specific conformations.  Our 

study illuminates the relationship between mRNA structure and frameshifting by 

measuring the amount of mechanical energy the ribosome must expend to disrupt the 

downstream mRNA.  CCR5 mRNA is the first identified human programmed -1 

ribosomal frameshift (−1 PRF) of non-viral origin57, but frameshift signals are also 

common in viral genomes59-63, so developments in this field may have broad impact 

in the treatment of human disease.   

 Extensive research has demonstrated that two important features of the 

mRNA, a slippery site and a downstream pseudoknot structure, can promote efficient 

-1 PRF55,64.  First we define these concepts followed by discussion of computationally 

predicted structures for the mRNA.  Then we discuss our optical trap studies where 

we repeatedly stretched individual molecules of CCR5 mRNA.  The single-molecule 

experiments are an approximation of the unfolding kinetics the mRNA would exhibit 

while being pulled into the ribosome’s active site.  We compare our measurements to 

the computationally predicted structures and draw conclusions regarding a 

pseudoknot, an intermediate conformation, other low-force conformations, and the 

influence of miRNA-1224 on the occupancy of the multiple conformations observed. 
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Pseudoknot Structures and Slippery Sites  

  Pseudoknots occur when single-stranded nucleotides in loops of mRNA 

structure base pair with nucleotides outside that loop55.  Figure 3.1 shows a 

pseudoknot which has formed downstream of a ribosome positioned at a slippery site.  

The slippery site is identified as a heptamer of form N NNW WWH which increases 

the probability that the ribosome will frameshift55.  The notation is IUPAC (N = any 

base, W = any 3 identical weak bases (A or T), H = A, C, or U).  Figure 3.1 depicts 

the ribosome’s reading frame before and after a -1 PRF, where the -1 PRF event 

causes the ribosome to be translocated in the 5’ direction of the mRNA.  The reading 

frame (shown in green) indicates the alignment of the ribosome with each mRNA 

triplet (codon).  Each codon specifies an amino acid and the -1 PRF changes the 

definition of all subsequent codons. The presence of a pseudoknot structure 

approximately 6-8 nucleotides downstream of the 3’ end of the slippery site can 

significantly enhance the efficiency of -1 PRF55.   



41 
 
 

 

Figure 3.1 A -1 Programmed Ribosomal Frameshift (-1 PRF) occurs when the ribosome is 

positioned over a slippery site heptamer of form N NNW WWH (IUPAC notation).  The 

ribosome translocates one nucleotide in the 5’ direction of the mRNA, resulting in a -1 PRF.  The 

presence of a downstream pseudoknot can significantly increase the probability of a -1 PRF 

occurring.    

Theoretical mRNA Structures 

We now consider theoretically proposed structures for the CCR5 mRNA.  

Using the Predicted Ribosomal Frameshift Databasec (PRFdb)57,65 and Mfold44 we 

obtained a set of possible conformations for the CCR5 mRNA.  Fig. 3.2a represents a 

pseudoknot with two primary stems (black and orange) which correspond to two 

possible hairpins (Fig. 3.2b or Fig. 3.2c respectively).  Two alternate pseudoknot 

conformations are also shown (Fig. 3.2d and Fig. 3.2e).  We designed our optical 

trapping experiment to study the 97 bases of single-stranded RNA immediately 

                                                 
c http://prfdb.umd.edu/detail.html?accession=NM_000579&slipstart=473 
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following the UUUAAAA slippery site, as indicated in Fig. 3.2.  The single-stranded 

RNA for our experiments is: 

GCCAGGACGGUCACCUUUGGGGUGGUGACAAGUGUGAUCACUUGGGUGG

UGGCUGUGUUUGCGUCUCUCCCAGGAAUCAUCUUUACCAGAUCUCAAA 

Details of this construction are given in the methods section.  This choice of sequence 

allows for all of the structures in Fig. 3.2 to potentially form in the single-stranded 

RNA regime.   

(a) Pseudoknot

(b) Hairpin 1

(d)

(e)

GCCAGGACGGUCACCUUUGGGGUGGUGACAAGUGUGAUCACUUGGGUGGUGGCUGUGUUUGCGUCUCUCCCAGGAAUCAUCUUUACCAGAUCUCAAAUUUAAAA

GCCAGGACGGUCACCUUUGGGGUGGUGACAAGUGUGAUCACUUGGGUGGUGGCUGUGUUUGCGUCUCUCCCAGGAAUCAUCUUUACCAGAUCUCAAAUUUAAAA

GCCAGGACGGUCACCUUUGGGGUGGUGACAAGUGUGAUCACUUGGGUGGUGGCUGUGUUUGCGUCUCUCCCAGGAAUCAUCUUUACCAGAUCUCAAAUUUAAAA

slippery site

GCCAGGACGGUCACCUUUGGGGUGGUGACAAGUGUGAUCACUUGGGUGGUGGCUGUGUUUGCGUCUCUCCCAGGAAUCAUCUUUACCAGAUCUCAAAUUUAAAA

97 bases of RNA used in theseexperiments

(c) Hairpin 2

GCCAGGACGGUCACCUUUGGGGUGGUGACAAGUGUGAUCACUUGGGUGGUGGCUGUGUUUGCGUCUCUCCCAGGAAUCAUCUUUACCAGAUCUCAAAUUUAAAA

 

Figure 3.2 Structures from the Predicted Ribosomal Frameshift Database57,65 and Mfold44 for 

CCR5 mRNA.  (a) Predicted pseudoknot structure. (b, c) Hairpin structures which correspond 

to the two stems for the pseudoknot shown in (a).  (d, e)  Two alternate pseudoknot structures. 
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Disruption Pathways 

Examples of force-extension plots are shown in Fig. 3.3 where four colors 

(blue, green, yellow, and red) are used to identify four distinct disruption pathways 

observed.  In principle, these might represent different disruption pathways of a 

common structure, or disruption pathways for different initial structures.  Black lines 

represent the worm-like chain model38 for the handles without the CCR5 mRNA and 

with the full 97 bases of mRNA released26,29.  Alongside each force-extension curve 

is the corresponding plot of rate of change in energy of the structure per extension 

(dE/dx), determined by reconstructing the energy landscapes from the force-extension 

data using the method discussed in chapter 2.  The dE/dx curve indicates the 

steepness of the effective energy landscape as the structure is progressively disrupted 

and allows us to distinguish pathways that generate similar disruption forces, but at 

different points along the disruption pathway.  This additional information is 

potentially important because frameshifting has been demonstrated to be more 

efficient when the ribosome’s active site is aligned with the slippery site55,66.  The 

single-stranded regime of the mRNA measured in our optical trapping experiments 

begins directly after the slippery site so high dE/dx values which occur for small 

opening distance (such as in Fig 3.3a) represent high mechanical stability when the 

slippery site would be approximately aligned with the active site of the ribosome.  

Precisely correlating opening distance with the expected alignment of the active site 

is complicated by the fact that the mRNA has an inherent structural width which is 

not determined until the specific conformation is known.   
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We have overlaid the individual dE/dx curves corresponding to each trace 

(colors) on top of a log density plot (grayscale) showing all dE/dx data taken for the 

CCR5 mRNA under the same conditions.  Darker regions on the grayscale plot 

represent disruption paths that occurred more frequently.  By overlaying an individual 

dE/dx trace on the complete data set, we can put individual disruptions in a context 

reflecting all of the data (Fig. 3.3).  Each trace is identified with a color type, 

determined by the regions of the dE/dx graph that the trace visits (Fig. 3.4). 
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Fig 3.3 Continued next page 
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Figure 3.3  Black lines: Worm-like chain theory38 for hybrid DNA/RNA handles with and 

without 97 additional bases of extended single-stranded mRNA.  Change in energy per opening 

distance (dE/dx) calculated as described previously in chapter 2.  Gray scale density plot: The 

accumulated dE/dx probability density from all scans plotted on a log scale.  Colored squares: 

The result from the single scan shown in the force-extension curve. 
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Figure 3.4 Conformation type for individual scans was determined by testing whether dE/dx 

values visited one of the three specified boxes.  The remaining set was assigned to be the red (low 

force) conformation.  The choice of box location was optimized by inspecting the distribution of 

substeps, discussed later for Fig. 3.7a.  Samples which visit more than one box were assigned in 

the following priority: Blue, Yellow, then Green.  In particular, yellow conformations often 

visited the green region.  Any sample which did not visit one of the boxes was defined as Red. 

Before proceeding with quantitative analysis, we consider some general 

observations for the individual disruption pathways observed.  Duplex RNA or DNA 

hairpins are generally observed to disrupt around 13-14 pN12,26.  The red 

conformation has the lowest measured force and dE/dx levels, generally well below 

13 pN and consistent with a conformation in which the mRNA has formed a hairpin 
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with some mismatches, such as the hairpins shown in Fig. 3.2b or Fig. 3.2c.  A 

somewhat similar dE/dx signature is observed under reverse scans when the molecule 

is allowed to fold slowly, consistent with the fact that all of the substeps for the red 

pathway were observed to be semi-reversible (Fig. 3.5).  In contrast to the red 

conformation, the blue pathway has significantly higher dE/dx values than would be 

expected for duplex RNA, suggesting the presence of tertiary structure.   
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Figure 3.5 (a) Increasing force scan (red) reproduced from Fig. 3.3d. (b) Decreasing force scan 

(orange). The dE/dx log density plot for (b) shows the accumulation of several measured folding 

paths which are similar though not identical to the unfolding pathway for red shown in (a).  

Folding pathways (b) never exhibit the high dE/dx values measured during unfolding (a).  
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All conformations were dependent on the presence of Mg2+ (Fig. 3.6), 

consistent with the association of these conformations with higher-order tertiary 

structure.  Pseudoknot dependency on Mg2+ has been previously demonstrated for a 

different RNA sequence67. 
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Figure 3.6 The relative distribution of the conformations is dependent on Mg2+ levels. (a) 0 mM 

Mg2+ (b) 5 mM Mg2+ (c) 20 mM Mg2+.  All data taken with 20 mM Tris pH 8.0 and 50 mM NaCl.   

Substeps in the Disruption Pathways 

To connect the disruption pathways with possible mRNA structures, we have 

plotted the distribution of disruption substeps in Fig. 3.7.  Each disruption of an 

mRNA molecule is typically observed as a series of sub-disruptions which release 

portions of the mRNA (see Fig. 3.3c for example).  Each sub-disruption is 

represented as a point on the scatter plot, where the x-axis is the amount of mRNA 

already released when the disruption starts and the y-axis is the amount of additional 

mRNA released.  Blue disruptions, for example, show a single step of ~90 bases 

resulting in a single point, or show a brief substep resulting in 2 points (example 

shown in Fig. 3.8).  An alternative representation in Fig. 3.7b illustrates the average 

disruption pathway observed for the four conformation types, where double-ended 
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arrows indicate reversible steps and thinner arrows represent transitions that occurred 

less frequently.  It is hypothetically possible for a single structure to manifest multiple 

pathways in Fig. 3.7b if different parts of the structure disrupted in a different order.  

In such a case arrows appearing in Fig. 3.7b would be of similar length but appear in 

a different sequence.  This does not seem to be the case in our data, leading us to 

conclude that the distinct disruption pathways are associated with distinct folding 

conformations of the mRNA. 
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Figure 3.7 (a) An alternate view of the dE/dx data in Fig. 3.3. Each disruption path is composed 

of one or more substeps, plotted where x is the initial opened bases and y is the change in bases 

for that substep.  Legend shows the percentage of 429 total scans for each conformation type.  (b) 

Wide arrows indicate the mean behavior of the disruptions plotted in (a).  Numbers indicate how 

many bases were released for the given substep on average.  Double-ended arrows indicate 

substeps which were observed to be reversible.  Thinner arrows indicate substeps observed with 

lower frequency. 
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Figure 3.8 Opened bases plotted over time at 20 kHz for the blue conformation shown in Fig. 

3.3a.  In some cases this substep could not be resolved or was measured as a single data point. 

The accumulated average of these disruptions was used to generate the location of the blue 

substep shown in Fig. 3.7 

Blocking First and Last 20 Bases of mRNA with DNA Oligos 

 
The largest dE/dx values are observed for the blue conformation and occur 

before a substantial amount of mRNA has been released (Fig. 3.3a), indicating that 

most of the 97 bases of RNA participate in the structure.  The apparent initial opening 

distance does not necessarily reflect released mRNA because the structure will have 

an inherent structural distance between the 5’ and 3’ ends.  To test whether the blue 

conformation depends on the full mRNA sequence, we introduced 20 base DNA 

oligos complementary to either end of the mRNA sequence.  The results (Fig. 3.9) 

demonstrate that blocking either end of the mRNA depletes the blue pathway, 

consistent with a computationally predicted pseudoknot structure (Fig. 3.2a) which 
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incorporates the full mRNA sequence.  The high-force green conformation was 

suppressed when blocking the first 20 bases (5’ end) but not when blocking the last 

20 bases (3’ end).  This implies green represents a structure which does not include 

the last 20 bases, such as the pseudoknot shown in Fig. 3.2d or Fig. 3.2e.  The pattern 

of substeps for the low-force red conformation changed when blocking the first 20 

bases but not the last 20 bases.  This indicates red is more consistent with Hairpin 1 

(Fig. 3.2b) which does not depend on the last 20 bases, than Hairpin 2 (Fig. 3.2c) 

which does depend on the last 20 bases.  This is also expected since Hairpin 1 (-29.0 

kcal/mol) is predicted to be more stable than Hairpin 2 (-25.6 kcal/mol), determined 

by Mfold44. 
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Figure 3.9 Inclusion of 1 nM 20-base DNA oligos which were complementary to either the first 

20 bases (5’ end) or last 20 bases (3’ end) of the CCR5 mRNA.  The 5’ end of our single-stranded 

RNA begins immediately after the slippery site heptamer.  (a) Control with no bases blocked. (b) 

Blocking the first 20 bases on the 5’ end of the CCR5 sequence. (c) Blocking the last 20 bases on 

the 3’ end.  



54 
 
 

Identification of the Pseudoknot Conformation 

One of two hairpins (Fig. 3.2b and Fig. 3.2c) may represent the final 

disruption pathway of the mRNA, regardless of whether a pseudoknot initially 

formed.  Figure 3.10 shows the energy required to disrupt the hairpins (determined by 

Mfold44).  Only the final disruption path is shown, representing hypothetical 

disruption pathways after ~55 bases of RNA have been released. 
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Figure 3.10 We compare the two hairpins from Fig. 3.2b and Fig. 3.2c and plot the free energy 

for disruption given by Mfold44.  The blue and red dashed vertical lines correspond to the last 

transition points observed for the blue and red conformation described in Fig. 3.7.   

 
We expect the observed blue conformation substep at 67 bases (Fig. 3.7) to 

correspond to a local energy minimum in Fig. 3.10.  Comparison shows that the blue 

substep coincides with a local minimum for Hairpin 2, but is not compatible with 

Hairpin 1 where a local maximum occurs. The reversible transition at 76 bases 
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(which appears for the red, green and yellow pathways in Fig. 3.7) lines up with a 

broad energy minimum for Hairpin 1.  Therefore the reversible transition exhibited 

by the other pathways is more compatible with Hairpin 1, which is represented by 

Fig. 3.2b.  Blue has high dE/dx values consistent with tertiary structure (Fig. 3.3a), 

depends on the full mRNA sequence (Figs. 3.7 and 3.9), and completes its disruption 

along a path more consistent with Hairpin 2 than Hairpin 1 (Fig. 3.10).  These three 

features make the blue conformation consistent with the pseudoknot structure in Fig. 

3.2a where the 1st stem corresponding to Hairpin 1 (Fig. 3.2b) disrupts before the 2nd 

stem corresponding to Hairpin 2 (Fig. 3.2c).     

Folding Times and Intermediate States 

Between scans the force was reduced to zero as quickly as possible by raising 

the stage.  The force was then held at zero for 7.5 seconds, allowing the mRNA time 

to refold.  The occupancy of the various conformations of the molecule is expected to 

depend on both the rate at which the force is decreased and the amount of time spent 

at zero force68.  The occupancies are strongly dependent on refolding time, which 

provides further evidence that the different disruption pathways reflect different 

initial conformations, rather than different disruption pathways of the same initial 

conformation (Fig. 3.11).  Blue initially has low occupancy, which increases over a 

measured refolding time of approximately 30 seconds.  Green initially has high 

occupancy, which decreases at approximately the same rate that blue increases, 

suggesting green is a folding intermediate of blue.  The red and yellow pathways vary 

slowly with refolding time, which may indicate that they are long-lived alternate 

conformations.   
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Figure 3.11 The CCR5 mRNA structure was relaxed at 0 force for the specified time and the 

distribution of the four conformations shown in Fig. 3.3 was measured.  Data was fit with 

exponential decay functions as a visual guide. 

Role of miRNA-1224 

To investigate how miRNA may regulate the mRNA structure, we took data 

with and without miRNA-1224 (5’-GUGAGGACUCGGGAGGUGG-3’), which has 

been observed to increase −1 PRF efficiency in vivo57.  Overall the dE/dx graph with 

miRNA is less well defined, consistent with transient binding of the miRNA to the 

mRNA as it unfolds (Fig. 3.12). 
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Figure 3.12 Results for different levels of miRNA-1224 (5’-GUGAGGACUCGGGAGGUGG-3’). 

(a) Individual molecules were scanned repeatedly with 7.5 second refolding time and all 

molecules with at least 8 scans were represented as a bar distribution, indicating the percentage 

of each unfolding conformation observed for that individual molecule.  The x-axis indicates the 

number of scans resulting for an individual molecule. The data in (a) shows 8 molecules without 

miRNA-1224 (left), 5 molecules with 1 nM miRNA (middle), and 9 molecules with 50 nM miRNA 

(right).  Consistency between different molecules indicates that the different conformations were 

not a result of contamination or damaged mRNA.  There is no correlation between the 

disruption pathways observed in successive pulls.  (b) dE/dx density plot and distribution of 

substeps for data taken without miRNA, (c) with 1 nM miRNA, (d) with 50 nM miRNA.  Adding 

miRNA caused the blue and green states to be suppressed. 
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The high-force conformations (blue and green) were significantly diminished 

in the presence of miRNA (Fig. 3.12) leaving a predominance of the low-force 

conformations (red and yellow).  This demonstrates that the miRNA interacts directly 

with the mRNA structure and can alter its conformational ensemble when the mRNA 

folds in the presence of the miRNA.  The miRNA has been demonstrated to promote -

1 PRF57 which suggests a correlation between the low-force conformations (red and 

yellow) and -1 PRF.  This contrasts with previous research which has demonstrated a 

direct correlation between disruption force and -1 PRF51,69.  However, hairpin loop 

structure70, complete blockage of translation by pseudoknots with high mechanical 

stability71, and geometric factors such as stem lengths72 are all potentially important 

factors which can influence -1 PRF efficiency.  An additional consideration is that the 

single-molecule experiments pull on both the 5’ and 3’ ends of the mRNA 

simultaneously while a translocating ribosome only directly interacts with the 5’ end 

of the mRNA.  Also, the miRNA experiments were performed after relaxing the 

molecule for only 7.5 seconds while in vivo experiments for frameshifting would 

effectively represent much longer equilibration time. 

Methods 

Double-stranded DNA handles were generated by PCR, purified using a DNA 

purification kit (Qiagen), and then digested with BtgI and BstXI enzymes 

respectively. The handles were then run on a 2% agarose gel, excised, and gel 

purified (Qiagen) to extract 194 base-pair and 234 base-pair handles with 4-base 

sticky ends resulting from the digestion. The handles were then ligated (T4 Ligase 

New England Biolabs) to single-stranded DNA overlaps of length 51 bases and 85 
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bases respectively (synthesized by Invitrogen) using a 10:1 ratio of overlap to handle. 

This was subsequently gel purified as before.  The resulting handles with ligated 

single-stranded DNA overlaps were typically measured to be about 40 ng/μl, though 

it was difficult to differentiate the 194 base-pair handle from the ligated construct 

with the extra 51 base overlap.  

The RNA was transcribed by Belew57 using an Ambion Megascript kit, 

DNase digested, phenol extracted, passed through a sephadex G-25 column, and 

ethanol precipitated.  In its native context, this sequence directly follows the 

UUUAAAA slippery site heptamer.  The RNA included overlap regions on either end 

which matched the DNA single-stranded overlaps ligated to the handles. The central 

segment of the RNA is the CCR5 mRNA. The full RNA sequence is given below 

where red and blue indicate overlaps regions that will form hybrid DNA/RNA and 

black indicates the CCR5 mRNA sequence with total length 97 bases. 

GGGAAAAUAUAUCAAAUCGUUCGUUGAGCGAGUUCUCAAAAAUGAACAAAUGUCGACUGU  
CGUCCAUGCUGUGUUUGCUUUAAAAGCCAGGACGGUCACCUUUGGGGUGGUGACAAGUG 
UGAUCACUUGGGUGGUGGCUGUGUUUGCGUCUCUCCCAGGAAUCAUCUUUACCAGAUCU 
CAAAAAGAAGGUCUUCAUUACACCUGCAGCUCUCAUUUUCCAUACAGUCAGUAUC 

The annealing procedure was as follows. 33% formamide, 1 mM EDTA, 20 

mM TRIS pH 8.0, 533 mM NaCl, 50 ng/μl mRNA, 1/300 dilution RNasin®  Plus 

RNase Inhibitor (2500u) (Promega), 1.3 ng/μl Handle 1 and Handle 2 with overlaps. 

The mixture was briefly vortexed and then annealed using the following protocol51: 

10 minutes 85 ºC, 90 minutes 62ºC, 90 minutes 52ºC, then cool to 4ºC at a rate of 

4ºC/minute. 

GODCAT37 oxygen scavenger was prepared by mixing 20 mg glucose 

oxidase (Sigma) and 4 mg catalase (Sigma) with 200 μl of Tris buffer (10 mM Tris 
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pH 7.5, 1 mM EDTA, and 50 mM NaCl). The resulting mixture was vortexed and 

aliquoted for later use, stored at -20ºC. 

For sample chamber construction, cover slips were scrubbed with Windex, 

rinsed, and dried with an air hose. Polyclonal anti-digoxigenin (Roche) was diluted to 

20 μg/ml in phosphate buffered saline and incubated in the chamber for 30 minutes. 

Blotting buffer (1 mg/ml blotting-grade blocker from Bio-Rad) in sodium phosphate 

buffer (50 mM sodium phosphate buffer pH 7.0, 50 mM NaCl, 10 mM EDTA, and 

0.02% Tween 20)36 was flowed into the chamber for 3 cycles of 20 minutes each, in 

order to prevent the beads from sticking to the surface. A mixture of 20 μl buffer (50 

mM sodium phosphate buffer pH 7.0, 50 mM NaCl), 4 ul of the annealed RNA 

sample, and 1 μl of 1/10 dilution RNasin® (2500u) (Promega) diluted in 50 mM Tris 

pH 7.5 was flowed into the chamber for 45 minutes. 820 nm diameter polystyrene 

beads (Bangs Labs PC03N) were washed, coated with streptavidin, and diluted by 

1/10 from the original concentration in sodium phosphate buffer (50 mM sodium 

phosphate buffer pH 7.0, 50 mM NaCl, 10 mM EDTA, and 0.02% Tween 20)36. 20 μl 

of diluted beads were mixed with 1 μl of 1/10 dilution RNasin® and flowed into the 

chamber for 20 minutes. For the final buffer conditions, Tris-Mg buffer (20 mM 

TRIS pH 8.0, 50 mM NaCl, 20 mM MgCl2 (except Fig. 3.6 which varied Mg), 0.02% 

Tween-20) was combined with GODCAT37 oxygen scavenger described above for a 

final concentration of 721 μg/ml glucose oxidase, 144 μg/ml catalase, and 3.9 mg/ml 

glucose. We prepared 550 μl of the final buffer which was then syringe filtered 

(VWR 0.2 μm polyethersulfone membrane). The filtering results in approximately 

400 μl of solution, to which we added 2 μl of 1/10 dilution RNasin® and then 
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vortexed briefly.  The final solution was flowed into the chamber to replace all prior 

buffer.  The chamber was subsequently sealed with nail polish. 

The experimental apparatus has been described in Chapter 273.  Standard 

methods were used to calibrate the optical trap41. The sample was repeatedly 

stretched by lowering the stage at ~77 nm/s and then relaxing the sample at zero force 

for 7.5 seconds between each scan (except Fig. 3.11 in which the relaxation time was 

varied). Data was collected at 60 kHz and filtered to 20 kHz for analysis.   

Details of Worm-Like Chain Theory 

Worm-like chain theory38 was used to model the properties of the double-stranded 

DNA, hybrid DNA/RNA, and single-stranded mRNA. 

Double-stranded DNA properties: contour length of 0.338 nm per base39, stretch 

modulus 1205 pN, persistence length 43.1 nm, 15 nm contour length added to 

estimate the length of the attachments40, 436 total bases of double-stranded DNA in 

handles. 

Hybrid DNA/RNA properties: contour length of 0.26 nm per base, persistence 

length 12 nm, enthalpic contributions neglected29, 136 total bases of hybrid 

DNA/RNA in handles. 

Single-stranded mRNA properties: contour length of 0.59 nm per base, persistence 

length 1 nm26, neglected enthalpic contributions26, 97 total bases of single-stranded 

mRNA when the structure is unfolded. 
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Conclusion 

The conclusion of our study is that the CCR5 mRNA occupies an ensemble of 

relatively stable conformations and the conformation (blue) with the highest 

disruption force is consistent with a predicted pseudoknot structure.  Upon refolding 

the mRNA can become trapped in an intermediate conformation (green) for a time of 

order 30 seconds but the high-force conformation (blue) dominates after long 

equilibration time.  We have also found that miRNA-1224, which enhances −1 PRF 

in vivo57, decreases occupancy of the high-force conformations (blue and green) and 

increases occupancy of the low-force conformations (red and yellow).  This suggests 

that the low-force conformations play a role in -1 PRF or that the mechanism of −1 

PRF enhancement by miRNA-1224 involves a specific interaction between the 

ribosome and the mRNA/miRNA complex, rather than simple steric hinderance. 
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Chapter 4: Theoretical Modeling of Energy 
Landscapesd 

Introduction 

Discrepancies between the model and the data for results shown in chapter 2 

motivated development of an improved theory by La Portad, and confirmed by 

experiments in our lab.  This new model became a foundation for some of the work 

that follows and opened up many new research possibilities.  The model calculates 

the theoretical energy of a biopolymer as a function of end-to-end extension.  It also 

includes corrections which are dependent on the hydrogen bond energy. 

Methods 

As an example, we will consider a DNA hairpin, though the principles 

described here would apply equally to RNA or any other biopolymer where the 

possible folding conformations are well-defined.  The example sequence (Fig. 4.1) is 

taken from one of the samples to be discussed further in Chapter 5.  As a first step, we 

obtain the binding energy for each base-pair in the hairpin duplex stack from a 

structure prediction program called Mfold44 which is freely available online.  Details 

of the parameters used are indicated in chapter 2.  The resulting energy as a function 

of number of base-pairs released is plotted in Fig. 4.2. 

                                                 
dAdapted from La Porta, A. & de Messieres, M. Calculation of the energy of a biopolymer as a 
function of end-to-end extension. In preparation (2012). 
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Figure 4.1 Hairpin structure used to demonstrate the calculations for the model in this chapter.  

Structure was generated  from Mfold44.  
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Figure 4.2  Mfold44 base-pair energies were calculated from the Mfold DNA folding server for 

24ºC and 140 mM NaCl.  The structure is shown in Fig. 4.1. 

Each point in Fig. 4.2 represents one of the possible conformations for the 

DNA hairpin.  The final point represents the hairpin after the loop has been released 

and all DNA is single-stranded.  We now consider the energy as a function of 

extension for each conformation individually, using the same worm-like chain 

parameters as in chapter 2.  Reaching each conformation requires overcoming an 
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energy barrier for the number of base-pairs released, as shown in Fig. 4.2.  However, 

a conformation with more bases released can be stretched to a longer distance more 

easily.  The balance between the base-pair free energies and the stretching energy of 

the released single-stranded DNA determines which conformations will be present for 

each opening distance.  The resulting plots of energy as a function of opening 

distance for each conformation are shown in Fig. 4.3.  Each stretch curve, except for 

the final curve when all DNA is single-stranded, includes 1.85 nm of contour length 

to account for the helix width along with a correction distance (free fitting parameter) 

to account for curvature of single-stranded DNA extending from the helix12. 
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Figure 4.3 Energy of each possible conformation corresponding to Fig. 4.2 as a function of 

opening distance x. 
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We may now calculate the total energy as a function of opening distance.  For 

each opening distance x, we take the weighted sum of all conformations according to 

the Boltzmann distribution (Eq. 4.1).  In general, the conformation with the lowest 

energy for each opening distance dominates.  Note that some conformations dominate 

over a larger range of opening than others, while some conformations are never the 

lowest energy for any opening size.  The final model for the DNA hairpin is shown in 

Fig. 4.4.  Other details such as the convolution from attachment to DNA handles have 

been described previously in chapter 2. 
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Figure 4.4 Energy for the DNA hairpin as a function of end-to-end distance, generated by 

weighting the energies of all conformations shown in Fig. 4.3 with the Boltzmann distribution for 

each opening size (Eq. 4.1). 
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Hydrogen Bond Correction 

Here we consider a subtle correction which translates the energy parameters 

extracted from a program such as Mfold44 into the proper format to describe 

disruption with the optical trap.  Mfold uses a nearest-neighbor model34,43,74 for base-

pair binding where each possible block of 2x2 bases (GA/CT for example) is defined 

by a single energy parameter.  Note that under the assumptions of the model, 

rotational symmetry gives GA/CT = TC/AG, but the directionality of DNA 5’ to 3’ 

ordering means TA/AT ≠ AT/TA. There are 10 independent parameters which we 

measure in chapter 6 along with further discussion.   

As described previously75, each parameter only includes ½ of the relevant 

base-pair binding energies so that the sum of all the energies is correct.  Consider as 

an example the sequence GAC/CTG which has two blocks, GA/CT followed by 

AC/TG. The binding energy for the middle base-pair A/T is divided evenly for the 

two energy parameters representing those two blocks.  However, during an optical 

trap experiment, the bases are disrupted as pairs, not 2x2 blocks.  G/C pairs have 3 

hydrogen bonds and A/T pairs have 2 hydrogen bonds.  The nearest-neighbor model 

effectively smooths out the influence of the hydrogen bond whenever a 2-bond pair is 

followed by a 3-bond pair or vice versa.  As a first approximation, we may add this 

correction by simply adding or subtracting ½ the hydrogen bond energy where 

appropriate.  For example, Mfold gives us the energy for the block GA/CT which 

includes ½ of a G/C pair equivalent to 3/2 = 1.5 hydrogen bonds and ½ of an A/T pair 

equivalent to 2/2 = 1 hydrogen bonds.  The total for the block is 2.5 hydrogen bonds. 

However, from the optical trap measurement, we should consider disruption of the 
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G/C bond to be a full 3 hydrogen bonds and therefore add a correction of ½ of a 

hydrogen bond.  Likewise, other blocks may require subtraction of ½ of a hydrogen 

bond.  Some blocks, TA/AT for example, require no correction. Previous studies 

considered the effect of duplex RNA terminal A-U base-pairs and the energy of a 

single hydrogen bond was determined to be approximately 0.9 kcal/mol in bulk 

experiments75.    

Figure 4.5 shows the new model with and without a hydrogen bond 

correction, plotted as a function of dE/dx which highlights the subtle differences.  

Also shown are data for three different molecules compared to a model with 

hydrogen correction set to 1.3 kcal/mol (black) and no hydrogen bond correction 

(gray).  Individual molecules were found to fit between 0.4 kcal/mol and 1.7 

kcal/mol.  A single molecule type is insufficient to establish whether the hydrogen 

bond correction is justified, but the general trend for this sequence and others 

indicates it may be a valuable addition.  The hydrogen bond correction will be 

explored further in chapter 6. 
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Figure 4.5 The theoretical model for the TA/AT control hairpin (Fig. 4.1) with a hydrogen bond 

correction of 1.3 kcal/mol (black) and no hydrogen bond correction (gray).  Data collected for 

the TA/AT hairpin (red, blue, green) fits better with a hydrogen bond correction in the range of 

0.4 to 1.7 kcal/mol.    

Loop Initiation 

The one free parameter of the model is a correction to the total contour length 

of the released DNA which results from the curvature of the single-stranded DNA 

extending from the duplex helix of the hairpin.  When the loop is released, the DNA 

becomes completely single-stranded and then the curvature correction becomes 0.  

The effective free energy of initiation for folding of the loop is extremely sensitive to 

this correction distance.  Since the correction is a free fitting parameter, it is therefore 
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difficult to accurately determine the free energy of loop initiation in a single-molecule 

stretching experiment. 

Conclusion 

The new model is derived from first-principles and resolves some 

discrepancies between a previously used model11,12,73 and our experimental data.  We 

will demonstrate in subsequent chapters that the combination of this model with the 

measurement techniques developed in chapter 2 results in precise agreement between 

data and theory.   We will apply these methods to a system of biological interest, the 

GA/AG mismatch, and also conduct single-molecule measurements to determine the 

10 nearest-neighbor energy parameters for duplex DNA. 
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Chapter 5: Tandem GA Mismatch Energye 

Introduction 

In chapter 2 we developed a new method to precisely measure the energy 

landscape of a biomolecule.  In chapter 3 we studied CCR5 mRNA structure and 

developed the idea that looking at dE/dx rather than the energy landscape itself was a 

useful way to characterize single-molecule data.  In chapter 4 we considered a new 

model which provides precise agreement between data and theory.  Here we will 

combine all three of these developments to study a system of biological interest, the 

GA/AG mismatch. 

Background 

The DNA mismatch repair system (MMR) is a critical pathway by which cells 

maintain the integrity of the genome76. Dysfunction in the MMR mechanisms can 

induce cancer, so increased understanding of the MMR may provide drug targets for 

treatment of disease.  G-A mismatches are of particular interest because they are often 

not efficiently recognized by the MMR77,78.   

We apply our single-molecule experimental and analysis methods73 to directly 

measure a GA/AG79 tandem mismatch.  We find significantly higher binding energy 

than would be expected for non-interacting bases, but less than Watson-Crick base-

pairing as might be expected.  Bulk melting experiments80 often use data from 

multiple sequences to extract DNA binding energies.  In contrast, our approach is 

direct and requires only a single sequence.  By measuring the GA/AG mismatch 

                                                 
eAdapted from de Messieres, M., Chang, J.-C. & La Porta, A. Direct single-molecule measurement of 
GA mismatch energy. In preparation (2012). 
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energy, we demonstrate a practical application of our broadly applicable energy 

landscape reconstruction method73. 

Methods 

A hairpin sequence containing a GA/AG mismatch (Fig. 5.1a) was attached 

through double-stranded DNA handles to both the cover slip surface and a 

microsphere held by a single-beam optical trap. The hairpin was unfolded by moving 

the cover slip away from the optical trap while force and opening distance were 

recorded. We also took three control measurements where the GA/AG mismatch was 

replaced by TA/AT, GA/CT, or GC/CG.  
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Figure 5.1 (a) Four hairpins varied only in two base-pairs, where GA/AG was replaced by 

TA/AT, GA/CT, and GC/CG for control measurements.  (b) dE/dx plot shows data points 

(symbols) and theory (solid lines) for GA/AG treated as an unpaired loop (black), TA/AT (blue), 

GA/CT (green), and GC/CG (red). The discrepancy between the theory for the GA/AG 

mismatch (black line) and data points (black squares) is not unexpected since Mfold treats the 

GA/AG mismatch as an open non-interacting loop.  Gray line: Resulting fit for GA/AG. The fits 

for the three controls are not shown.  Inset: The Mfold prediction and measured values for the 

sum of energy parameter indices 18, 19, and 20 in the hairpin sequence.  Uncertainties are the 

standard deviation of the mean from fits to single scans. 
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Analysis 

The change in energy per opening distance (dE/dx) is calculated using 

techniques developed previously73 and compared to a theoretical model described in 

chapter 4. dE/dx represents the force required to open the molecule an additional unit 

of distance. The weighted-mean dE/dx plots from multiple molecules for each hairpin 

type are shown in Fig. 5.1.  The three control sequences without mismatches give 

good agreement with theoretical models (red, green, and blue solid lines) derived 

from Mfold parameters44.  The GC/CG control (red) showed some deviation from the 

theoretical prediction and further study may lead to new models to account for these 

discrepancies.  In comparison to theory which treats the GA/AG mismatch as an open 

loop (black line), we measured significantly higher binding energy (black squares),  

consistent with previous bulk experiments78.   

To quantify the dE/dx plots, we used a simplex method to fit the three energy 

parameters which are dependent on the two base-pairs we modified (indices 18, 19, 

20) and compare the sum to Mfold (Fig. 5.1b inset).  From symmetry, indices 18 and 

20 are equal, except for the GA/CT control. The determination of individual energy 

parameters is limited by the ~1.1 nm uncertainty in position measurements.  

However, the data establishes sensitivity to single base-pair changes in the sequence, 

as demonstrated by the progression between the three control hairpins in Fig. 5.1.   

Conclusion 

Direct measurement using single-molecule techniques demonstrates that the 

GA/AG mismatch is significantly more stable than would be expected from a model 

where the bases are assumed to be non-interacting.  Extensions of this work can 
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consider subtle effects such as nearest-neighbor assumptions in currently used 

models80 or salt and pH dependency.  Bulk experiments cannot differentiate 

variations in a sample and may average in other sources of error.  In contrast, the 

single-molecule techniques presented here provide direct and less ambiguous access 

to the relevant energies.  
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Chapter 6:  Nearest-Neighbor Free Energy Parameters 
for Duplex DNAf 

Introduction 

In chapter 4 we discussed a new model which allows us to precisely predict 

the theoretically expected energy landscape for an optical trap experiment.  The 

model depends on 10 nearest-neighbor free energy values42,43 which we obtained 

from the structure prediction program Mfold44.  We will now invert the process and 

fit our data to determine those parameters based on a data set for hairpin sequences 

designed to cover all possible configurations.  This single-molecule technique can 

explore subtle features of base-pair binding which cannot be measured in bulk 

experiments.  This research is currently in progress. 

Background 

Secondary-structure prediction software packages can predict the folding 

conformation for DNA and RNA sequences and provide a suite of useful analysis 

tools.  The popular Mfold44 program is one example, with thousands of citations 

across a range of disciplines.  These programs require a library of binding energies 

for the different possible combinations of base-pairs.  Based on the nearest-neighbor 

(NN) model43,74,81,82, the library contains all possible blocks of 2x2 base-pairs.  For 

Watson-Crick base-pairing of DNA we have 10 possible combinations: GC/CG, 

CG/GC, GG/CC, CA/GT, GT/CA, GA/CT, CT/GA, AA/TT, AT/TA, and TA/AT43.  

These numbers have previously been established using bulk methods43 and also 

                                                 
fAdapted from de Messieres, M., Chang, J.-C. & La Porta, A. Single-molecule measurement of 10 
nearest-neighbor energy parameters for duplex DNA. In preparation (2012). 
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measured by unzipping long duplex DNA of length 2.2kb to 6.8kb34.  Here we 

demonstrate that single-molecule methods can directly measure these energy 

parameters with sufficient resolution to distinguish single-base mutations and other 

sources of error.   

Methods 

The optical trap setup and general methods of data collection and analysis 

have been described previously in chapter 2 and chapter 4.   We used a random search 

algorithm to generate sequences of 66 bases which contain exactly one of each of the 

64 possible triplets of DNA.  For example, a 4-base sequence GCCA contains two 

triplets, GCC and CCA.  The purpose of this method is to obtain DNA hairpins with 

even exposure to all possible sequence patterns.  Of many possibilities, we chose a 

sequence that had a fairly even energy landscape profile as predicted by Mfold44.  

Excessively sharp peaks and valleys in the energy landscape would create regions of 

low and high statistical convergence respectively.  This is not necessarily problematic 

but would result in some regions of the landscape having more weight in the final fit 

than others.  We split the selected sequence into two parts and inserted each into a 

hairpin with flanking bases that we expected would give the hairpin a well-defined 

stem base and loop structure.  Splitting the sequence was necessary due to the 

approximately 100-base limit for synthesis (Invitrogen), with PAGE purification. We 

will refer to the two sequences as Sequence A and Sequence B, which are shown in 

Fig. 6.1.  We found that ~11% of Sequence A and ~14% of Sequence B appear self 

consistent and also have the highest measured dE/dx values. Other samples show 

sharp drops in dE/dx, consistent with the assumption that they represent mutations. 
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Figure 6.1 Structures for the two hairpins used in this study, generated by Mfold44. 

Sequence A: 
CCGCGAGTTGATTCGCCATACACCTGCTAATCCCGGTCGCTTTTGCGACCGGGATTAGCAGGTG
TATGGCGAATCAACTCGCGG  
 
Sequence B: 
CCGGGTGTAGGACTCTTTATGGCAACGTCAGAAAGCGCGCTTTTGCGCGCTTTCTGACGTTGCC
ATAAAGAGTCCTACACCCGG 
 

Reversibility 

 

Figure 6.2  Example forward and reverse scan for a single molecule of type Sequence A.   
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To explore the possibility that our results were dependent on irreversible 

effects, we analyzed data from both unfolding and folding pathways.  An example of 

unfolding followed by folding for one molecule of Sequence A is shown in Fig. 6.2.  

We plot dE/dx results for Sequence A (Fig. 6.3a) along with the corresponding energy 

plot (Fig. 6.3b) for two different molecules in the unfolding (stage speed 23 nm/s) and 

refolding (16 nm/s) directions, along with a 3rd set of data for unfolding at twice the 

speed (42 nm/s).  We fit the stiffness calibration for different molecules to match the 

model for comparison.  A high degree of precision is apparent from the consistency 

between unfolding and refolding, between different molecules, and between different 

trap movement rates.  This sequence is also in excellent agreement with a theoretical 

model, shown in black.  We also tested Sequence B and plot dE/dx (Fig. 6.3c) and the 

energy plots (Fig. 6.3d) for unfolding, refolding, and unfolding of a different set of 

molecules at 3x the original speed (76 nm/s).  We have dropped the error bars for 

clarity. 
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Figure 6.3  (a,b) dE/dx results and the corresponding landscape for one molecule of Sequence A 

for the unfolding (~23 nm/s) and refolding (~16 nm/s) directions (red and blue), a 2nd molecule at 

the same speeds for unfolding and refolding (green and yellow), and a 3rd data set (gray) from 

several molecules unfolded at approximately twice the speed (42 nm/s).  (c,d)  dE/dx results and 

the corresponding landscape for one molecule of Sequence B for the unfolding (23 nm/s) and 

refolding (16 nm/s) directions (red and blue) and a 2nd data set (gray) from several different 

molecules unfolded at approximately three times the speed (76 nm/s).  Error bars not shown for 

clarity. 
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Fitting Method and Results 

We found that fitting only one of the two sequences gave ambiguous results.  

However, if we fit one trace of Sequence A simultaneously with one trace of 

Sequence B, we obtained good agreement with the Mfold library.  This is expected 

since neither sequence was designed to have full coverage of the possible 

combinations.  To determine statistical uncertainty, we used the first three traces from 

each of three molecules giving 9 total traces for each of the two sequence types.  We 

then ran our fit for all possible pair combinations (9x9=81 combinations) of Sequence 

A (unfolding speed 42 nm/s) and Sequence B (unfolding speed 76 nm/s), and reported 

the standard deviation between different fits as shown in Fig. 6.4 red.  We also tested 

a different molecule for each type at slower unfolding speed (23 nm/s) and slower 

refolding speed (16 nm/s) shown as blue and black respectively. Fits for the hydrogen 

bond are reasonable and similar to a previously reported value of 0.9 kcal/mol for 

RNA melting due to Xia75.  For comparison, the TA control described in chapter 4 

gave fits for the hydrogen bond correction in the range of 0.4-1.7 kcal/mol.  The Xia 

value was obtained as a correction to terminal RNA A-U pairs so it is not directly 

comparable to internal DNA hydrogen bonds.  However, the magnitude of the 

hydrogen bond is compelling and further experiments across a wider range of 

sequences may determine the validity of this model more precisely. 
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Figure 6.4 Green shows Mfold NN free energy parameters obtained at 24°C and 140 mM Na+.  

Each fit (gray) represents a global fit for one scan of Sequence A and one scan of Sequence B.  

There were 3 scans for each of 3 molecules for both types, giving 9x9 = 81 combinations.  Red 

indicates the mean and standard deviation for these fits.  We also tested one molecule of each 

type at slower speed in the unfolding (blue) and unfolding (black) directions.  

In general we found excellent agreement between the Mfold values (Fig. 6.4 

green) and our measured fit values (Fig. 6.4 red, blue, or black).  A global error in 

trap calibration stiffness likely accounts for some of the differences.  The loop 

parameter is not expected to be precise for reasons discussed in chapter 4.  We have 
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also found that the Mfold values do not correctly predict all sequences suggesting that 

in some instances, a more detailed model is necessary.  For example, Sequence B has 

a consistent error at approximately 30 nm which is apparently not measurement error.  

Other sequences we have studied (see the control GC/CG in chapter 5) also show 

consistent deviation from the Mfold model.  These may be caused by effects beyond 

the nearest-neighbor assumption which are not accounted for by the current model.  

This illustrates a crucial advantage of the single-molecule techniques, because these 

discrepancies would potentially pass unnoticed for bulk experiments. 

Conclusion 

 
In conclusion, we have demonstrated that single-molecule techniques can 

precisely measure the 10 NN parameters.  We find that the hydrogen bond is a 

potentially valuable addition to the NN model, as previously suggested from bulk 

experiments75.  These are the first single-molecule measurements with near base 

resolution of this parameter set.  This research is currently in progress and will 

explore other models, such as a 16 NN parameter model (with all 16 possible 2x2 

blocks) and a 14 NN model (where TT/AA = AA/TT and GG/CC = CC/GG).  The 

single-molecule techniques presented here provide access to subtleties which are 

potentially lost when using bulk techniques. 
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Chapter 7:  G-Quadruplex Dynamic Force 
Spectroscopyg 

Introduction 

We now consider an alternative method of reconstructing energy landscapes 

through Dynamic Force Spectroscopy (DFS).  For some molecules, especially those 

with short barrier distances, it may not be possible to reconstruct the landscape using 

the method described in chapter 2.  DFS allows us to measure the barrier distance and 

the barrier height, though we obtain only coarse-grained results.  We used our optical 

trap to disrupt single molecules of single-stranded DNA G4-quadruplex and analyzed 

the results using DFS to infer the nature of the transition state barrier for unfolding of 

the structure.   

Background 

Guanine-rich sequences in nucleic acids can fold into G-quadruplexes, in 

which four guanines on a single strand combine to form G-tetrad planes stabilized by 

metallic ions.  G-quadruplex conformations exist throughout the genome, often in 

pre-transcribed regions of genes83-88.  Recent research provides evidence that G-

quadruplex forms in vivo89, has important regulatory functions90, and could serve as a 

drug target91.  G-quadruplex formation in the human telomeric repeat sequence is of 

particular interest because it can inhibit telomerase, over expression of which is 

associated with cancers92.  G-quadruplex occurs in different forms including RNA, 

single-stranded DNA, and double-stranded DNA accompanied by the corresponding 

                                                 
gAdapted from de Messieres, M., Brawn-Cinani, B., Chang, J.-C. & La Porta, A. Single-molecule 
study of G-quadruplex disruption using dynamic force spectroscopy. Under Review  (2012). 
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C-rich i-motif structure93,94.  In contrast to more typical stem-loop structures which 

can be disrupted progressively, G-quadruplex structures disrupt irreversibly when 

subject to a sufficiently large external force95.   

We used optical tweezers to study a single-stranded DNA G4-quadruplex 

from the insulin-linked polymorphism region (ILPR), which is located upstream of 

the insulin gene’s promoter.  Many variants have been identified in this region but the 

GGGG segments tend to be conserved, suggesting quadruplex formation plays an 

important regulatory role for the insulin gene96.  G4-quadruplex molecules were 

subject to a force which increased linearly in time until disruption was observed.  

Dynamic force spectroscopy (DFS) was used to characterize the transition state 

energy barrier between the folded and unfolded conformation in terms of the 

distribution of disruption forces measured.  Two populations of disruptions were 

resolved in the data, which have been identified in prior work as corresponding to 

parallel and antiparallel conformations95.  The distance and height of the principal 

energy barriers were extracted for the two conformations and the energy barrier was 

found to be close to the folded conformation, resulting in a high disruption force due 

to the steepness of the barrier, despite the fact that the barrier is relatively low. 

Theoretical Models 

Several theoretical models have been put forward to predict the distribution of 

rupture forces that would be observed when a system with a single transition state 

barrier is subject to a force that increases linearly with time.  A model proposed by 

Evans23,24 has two free parameters, the barrier distance d and the zero-force unfolding 

rate ko.  More general models which include the zero-force transition state barrier 
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energy G97,98 were subsequently refined by Dudko et al99.  In the latter model the 

probability p(F) that the structure ruptures at force F is given by 
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7.1

where kB is the Boltzmann constant, T is the temperature, r is the rate at which the 

force is increased, and ν is a dimensionless constant which parameterizes the shape of 

the energy barrier.  Fig. 7.1 represents the relationship between the assumed shape of 

the energy barrier and the value of the parameter ν.  In the limit ν → 1, Eq. 1 reduces 

to the Evans model23.  The Dudko model has several advantages over the Evans 

model.  It takes into account the variation of the transition state distance with applied 

force and it determines the transition state energy G.  However, the presence of an 

additional fitting parameter can make the analysis more sensitive to statistical 

fluctuations or measurement errors. 
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Figure 7.1 The Dudko models for ν = 2/3 (green) and ν = 1/2 (yellow) using parameters for d and 

G from fitting results in Table 7.1 for the parallel configuration.  Dashed gray line indicates the 

undetermined region of the full energy landscape.  DFS determines the primary barrier (yellow 

or green) but also constrains the rest of the barrier to have a slope less than that of the primary 

barrier.   Red shows the total free energy to unfold the parallel conformation, determined by 

Yu95 (14.5 kcal/mol from CD melting or 14 kcal/mol using the Jarzynski equality100).  For the 

antiparallel conformation, fit values in Table 7.1 are similar for the Dudko models with final free 

energy of 28 kcal/mol (CD melting) or 23 kcal/mol (Jarzynski). 

Methods 

In prior work95 the G4-quadruplex was studied at a single loading rate of 5.5 

pN/s and it was determined that the force distribution contains components from 

parallel and antiparallel forms of the structure.  We took data at three loading rates 

(2.1 pN/s, 7 pN/s, and 23.9 pN/s) for analysis using DFS. 
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Double-stranded DNA handles were generated by PCR with digoxigenin and 

biotin labeled primers and digested with BtgI or BstXI enzymes to produce 4-base 

sticky ends.  Data was taken using two different handle configurations with total 

lengths 3716 or 2432 base-pairs.  A control hairpin studied previously12 was 

synthesized as cgtgttttgagtcaacgtctggatcctgttttcaggatccagacgttgactcttttcgat, where 

bold indicates sticky ends to be used for ligation.  The quadruplex was synthesized 

with sequence cgtg(acaggggtgtgggg)2acacgat, identical to that used in previously 

reported results95,101.  The quadruplex and control hairpin were ligated between the 

handles and then gel purified.  The surface of the sample chamber was coated with 

blotting buffer to prevent interactions with the surface.  Samples were attached to the 

surface through the digoxigenin label and attached to 0.82 μm diameter beads using 

the biotin label as shown in Fig. 7.2.  Final buffer conditions were 100 mM KCl, 2 

mM EDTA, 10 mM Tris buffer (pH 8.0), 0.02% Tween 20, and oxygen-scavenging 

solution37 (721 μg/ml glucose oxidase, 144 μg/ml catalase, and 3.9 mg/ml glucose) 

which increased the lifetime of the samples under exposure to the trapping beam.  

Data was collected on a single-beam optical trap at 10 kHz using an 8-pole 5 kHz 

Bessel filter.  Standard methods were used to calibrate the position and force 

measurements41.  The apparatus has been described elsewhere73.  
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Figure 7.2 Experimental setup. The quadruplex is ligated between double-stranded DNA handles 

and attached to the surface and bead by digoxigenin and biotin labels respectively. Force is 

applied along the direction of the tether. 

To provide a reliable force loading rate, feedback to the stage position was 

used to maintain the bead at a fixed position relative to the optical trap as the optical 

power was increased at a constant rate using an acousto-optic modulator.  For each 

individual scan the initial force, the maximum accessible force, and the force of the 

observed disruption, if any, were recorded. To maintain accurate length and force 

calibration throughout a scan, the range of forces was restricted to lie below 50 pN. 

Each sample was scanned repeatedly until the tether broke or the sample 

stopped showing any further disruptions.  Between scans the sample was brought to a 

relaxed state at zero force for 5 seconds to allow the quadruplex time to refold.  In 

order to ensure that the disruptions in our statistical sample came from quadruplexes 

that had formed under identical circumstances, we discarded the first disruption from 

each molecule.    
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In order to verify the force and displacement calibration of our measurements 

and confirm slide-to-slide consistency, each sample chamber was prepared so that 

roughly half of the tethers had the G4-quadruplex molecule and the remainder had the 

control hairpin.  The type of molecule linked to any given tether is easily determined 

from the nature of the disruptions observed.  Measurements of the control hairpin 

yielded opening size 17.5 nm with standard deviation 1.7 nm, and disruption force of 

approximately 13 pN, in agreement with previously reported values12.  Typical scans 

of the control hairpin and quadruplex are shown in Fig. 7.3. 

 

Figure 7.3  Raw data scans at 24 pN/s for quadruplex (red) and control hairpin (blue) overlaid 

on a worm-like chain model with persistence length 41 nm, stretch modulus 1277 pN40, and 

contour length per base of 0.338 nm39.  Each scan was preceded by a relaxation period at zero 

force for 5 s. 



91 
 
 

Analysis 

We expect the 25-mer G4-quadruplex to release about 21 bases after 

accounting for the width of the quadruplex structure95.  Opening distances were 

converted to the number of single-stranded bases using a worm-like chain model38 for 

the single-stranded DNA with persistence length 1.25 nm, contour length of 0.625 

nm/base, and neglecting enthalpic contributions12.  We measured an opening size of 

20.3 bases, standard deviation 2.5 bases, shown in Fig. 7.4.  To assure that each tether 

analyzed had a single-molecule attachment we excluded tethers that failed to produce 

the expected low-force stretch curve or that exhibited asymmetry for x and y 

stretching.  To exclude improperly folded molecules from the sample we excluded 

disruptions for which the number of bases released was more than 2 standard 

deviations from the mean value or for which multiple disruptions were observed on a 

single scan. 

 

Figure 7.4 Opening distance for the G4-quadruplex with mean 20.3 single-stranded bases 

released and standard deviation 2.5 bases.  The data was filtered two standard deviations from 

the mean (green boundaries). 
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We fit our results to the Evans model (ν = 1) and Dudko models (ν = 1/2 and 

ν = 2/3) using maximum likelihood (Lm).  Models using these values of ν can be 

solved analytically and are described in more detail by Dudko et al99.  Since our 

disruptions exhibited the two peaks that have been identified as originating from 

parallel and antiparallel conformations, we based our analysis on a dual-component 

distribution.  The likelihood L that an ensemble of measurements would be observed 

is defined as: 

[ ]),;,,|()1(),;,,|( νν iaaaiiipppii
i

N

rkGdFPwrkGdFwPL −+∏=
 7.2

where the product is indexed over all scans and Pi is the theoretical probability 

density of observing a disruption event at force Fi and loading rate ri for one of the 

two populations.  The weight w indicates the fraction of the molecules in the parallel 

conformation (subscript p), while the fraction in the antiparallel conformation 

(subscript a) is 1–w.  Using one weight or separate weights for the three loading rates 

gives essentially the same results.  The theoretical probability density function was 

normalized for each scan based on the range of forces actually measured.  The best fit 

was determined by maximizing the natural log of L based on the dual population 

model defined by Eq. 7.2.   
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ν ln(Lm)/L0 w dp(Å) da(Å) log  kp(s
-1) log ka(s

-1) 
Gp  

(kcal/mol) 
Ga  

(kcal/mol) 
1 0 0.33 ± 0.05 6.8 ± 0.9 6.1 ± 0.9 -1.7 ± 0.2 -2.7 ± 0.3 - - 

2/3 +2.2 ± 1.0 0.29 ± 0.05 13 ± 3 10 ± 2 -2.4 ± 0.3 -3.3 ± 0.5 5.3 ± 0.4 5.1 ± 1.2 
1/2 +2.3 ± 0.9 0.31 ± 0.09 16 ± 3 14 ± 4 -2.7 ± 0.3 -4.0 ± 0.8 5.5 ± 0.5 7 ± 2 

Table 7.1 Summary of global maximum-likelihood fits for different values of ν.  ln(Lm)/L0 

indicates the log of the maximum-likelihood score relative to the result for ν = 1, normalized by 

L0 = ln(N)/2 where N = 1014 data points.  Uncertainties were determined by bootstrapping.  

Weight (w) indicates the percentage allocated to the parallel conformation (subscript p) while the 

antiparallel conformation (subscript a) is allocated percentage (1–w). 

The best fit parameters for the three models as well as the corresponding 

likelihoods are summarized in Table 7.1, based on a total of N = 1014 disruptions.  

The model which gives the largest value of the likelihood is preferred.  However, 

when comparing models which do not have the same number of parameters we 

expect an increase in the log likelihood as additional parameters are introduced.   The 

Bayesian information criterion specifies that an increase of ln(N)/2 is required to 

justify each additional parameter102,103.  The Dudko models have two additional 

parameters, G1 and G2, and result in likelihoods which marginally satisfy this 

criterion. 

Fitting the distributions of disruption force in detail, rather than simply 

analyzing the most likely or mean disruption force as a function of loading rate, gives 

a more exhaustive comparison of data with theory, and allows the overlapping 

distributions associated with the parallel and anti-parallel conformations to be 

identified.  In Fig. 7.5, histograms of disruptions at three different loading rates are 

compared to the global fit obtained for ν = 2/3 (Table I).  Blue and red represent the 
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contribution from the parallel and antiparallel conformations respectively and green 

represents the sum of the two conformations.  

 

Figure 7.5 Global fit of G4-quadruplex data at three loading rates (2, 7, and 24 pN/s) for ν = 2/3.  

Blue and red show the theoretical distribution for the parallel and antiparallel conformations 

respectively.   Green represents the sum of the two conformations.  The binned results provide a 

visual representation of the data and the best fits from Table 7.1.  However, the maximum 

likelihood analysis used to generate the fits in Table 7.1 does not require binning of the data. 
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Interpretation 

We now consider interpretation of the results reported in Table 7.1.  The 

physical parameters obtained are relatively insensitive to the choice of ν, allowing us 

to conclude that the G4-quadruplex energy barrier distance is approximately 10-16 Å, 

for both parallel and antiparallel conformations.  The release of a nucleotide of single-

stranded DNA will increase the tether length by approximately 5 Å, so this indicates 

that the transition state is reached after 2-3 bases have been pulled out of the 

structure.  The transition state distance is a small fraction of the total amount of DNA 

released, and indicates that the transition state is much closer to the fully folded state 

than to the unfolded state.    

A schematic model for disruption of the antiparallel conformation is shown in 

Fig. 7.6.  The model illustrates hypothetical symmetrical and nonsymmetrical 

disruption pathways for the antiparallel conformation, in which the first two base-

pairs are released from the same side or opposite sides of the structure, respectively.  

(Analogous models can be formulated for the parallel case.)  Formation of the 

quadruplex appears to be highly cooperative, in that a relatively small perturbation to 

the structure is required to reach the transition state and progress to complete 

dissociation.  
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Figure 7.6 A possible model of G4-quadruplex disruption.  (a) Original antiparallel 

conformation. Applied force causes two bases to be released from the G4-quadruplex, either 

antisymmetrically (b) or symmetrically (c). (d) Upon release of the 3rd base, the entire structure 

disrupts. 

The Dudko models indicate that the height of the energy barrier is 

approximately 10 kBT.  An applied force will tilt the energy landscape, adding a term 

−Fx to the effective energy as a function of the opening distance x, and disruption 

typically occurs when the force cancels the slope of the native landscape.  The 

quadruplex has a high disruption force because of the short distance and steep slope 

to the principal barrier, despite its modest height.  However, DFS measurements will 

not be sensitive to a secondary barrier beyond d with a more shallow energy slope104.  

In Fig. 7.1, we consider a model which includes our measured primary barrier 

followed by a more shallow energy barrier slope.  The final barrier height is 



97 
 
 

determined from previous measurements95 using CD melting or Jarzynski’s 

equality100.  The rate of passing the principal barrier is koff ≈ A exp(−G/kBT)1, where A 

is a coefficient which depends on the effective diffusion coefficient and the shape of 

the barrier.  It has been demonstrated that quadruplex structures can hinder molecular 

motors105.  Processive enzymes which are potentially stalled by the high mechanical 

stability of the principal barrier may be assisted by thermal fluctuations and then 

progress more easily along the shallower regime of the energy barrier. 

Alternative methods of measuring G-quadruplex kinetics include 

nanopores106, CD95, FRET87, and AFM25.  The results of Table 7.1 are comparable 

with those reported in a prior AFM study of a bi-molecular form of another G4-

quadruplex sequence, though the previous study assumed a single unknown 

conformation type25.  Although experiments based on optical traps cannot duplicate 

the very high loading rates achieved in AFM studies, the high precision with which 

disruption force can be measured results in very accurate measurement of the 

distribution of rupture forces.  In contrast to Lynch, this has allowed us to resolve the 

parallel and antiparallel conformations of the molecule, and to determine the 

transition state distances of each conformation with sub-nanometer precision.   
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Conclusion 

In conclusion, we have measured the disruption force and opening distance of 

a G4-quadruplex at three loading rates, resolving two force distributions which have 

previously been shown to originate in two distinct quadruplex conformations95.  The 

high mechanical stability previously demonstrated originates from the short steep 

barrier we measured for both forms of the quadruplex.  These parameters have 

implications for regulatory processes.  The high-force resistance associated with the 

short barrier distance would make G-quadruplex difficult for a processive enzyme to 

disrupt.  However, thermal fluctuations may assist an enzyme beyond the principal 

barrier where disruption can progress more easily.   
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Chapter 8:  Noise Associated With Nonconservative 
Forces in Optical Trapsh 

Introduction 

An important component of our model for energy landscapes is a convolution 

parameter which accounts for uncertainty in our measurements due to fluctuations of 

the DNA handles as well as general sources of noise.  It is therefore essential to fully 

understand the mechanisms of noise in the optical trap.  This research is theoretical 

and investigates the effect of noise due to the nonconservative scattering force from 

the laser.  The results are fundamentally dependent on derivations of Eq. 8.4 and 8.5 

by our collaborator, Natalia Denesyuk107. 

Background 

It is known that for a particle held in an optical trap, the interaction of thermal 

fluctuations with a nonconservative scattering force can cause a persistent 

nonequilibrium probability flux in the particle position.  We investigate position 

fluctuations associated with this nonequilibrium flux analytically and through 

simulation. We introduce a model which reproduces the nonequilibrium effects, and 

in which the magnitude of additional position fluctuations can be calculated in closed 

form. The ratio of additional nonconservative fluctuations to direct thermal 

fluctuations scales inversely with the square root of trap power, and is small for 

typical experimental parameters.  In a simulated biophysical experiment the 

                                                 
hAdapted from de Messieres, M., Denesyuk, N. A. & La Porta, A. Noise associated with 
nonconservative forces in optical traps. Physical Review E 84, 031108 (2011). 
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nonconservative scattering force does not significantly increase the observed 

fluctuations in the length of a double-stranded DNA tether. 

In a single-beam optical trap2,4, a dielectric particle is confined to the focal 

volume by a force gF


 proportional to the optical intensity gradient.  The force exerted 

on the particle and the resulting displacement can be measured by detecting the 

deflection of the trapping beam9,108,109. Using this technique, the movement of a 

biological macromolecule attached to a trapped particle can be measured with near-

ångström precision110.  However, the trapped particle is also subject to a scattering 

force sF


, first noted by Ashkin111, which cannot be expressed as the gradient of any 

function.  Assuming the geometrical center of the trapping beam is defined as the 

origin of coordinates, with beam propagation in the positive z direction, the scattering 

force acts mainly in the +z direction and causes the effective trap center to lie at 

positive z, typically within a wavelength of the geometrical trap center.  In the limit of 

a small particle, the scattering force is proportional to the local intensity and 

decreases with distance from the beam axis. For particles that are large compared 

with the wavelength, the scattering force can be estimated using ray tracing, and 

increases with small displacement from a diffraction-limited trap center111 (although 

it must ultimately decrease for large displacements). For small displacements both 

curves, illustrated in Fig. 8.1a, have a roughly quadratic dependence on distance from 

the beam axis.  
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Figure 8.1 (a) Scattering force profiles for a small particle (blue dash line) and large particle 

(solid black line).  The small particle curve is a Gaussian with standard deviation σ = 0.32 μm 

and the large particle curve is based on the ray tracing result with a particle of radius 1 μm. (b)  

Circulation is defined as the area swept out in the ρ-z plane, where clockwise motion is 

considered positive by convention. (c) Circulation obtained from the nonconservative system 

(solid black) and reference system (short dash) driven by identical thermal force fluctuations. 

The difference is shown in the long dashed line.  Physical parameters: T = 298 K, 

αx = αy = 2.0 pN/μm, αz = 0.4 pN/μm, time step dt = 0.0001 s, particle radius rp = 0.25 μm and 

nominal scattering force given by the Gaussian function in panel (a) with F0 = 0.04 pN on the 

beam axis.  (d) Same but using the large particle form of the scattering force with rp = 1.0 μm 

and F0 = 0.04 pN on the beam axis. 
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Simplified Model 

Our goal is to define a model system which reproduces the behavior of the 

nonconservative system with as simple a force field as possible.  We model the 

gradient force as a harmonic restoring force and assume that the scattering force is 

axial, 

zFzzyyxxrF szyx


)(ˆˆˆ)( ρααα +−−−=

 8.1

where iα is the stiffness of the harmonic force along the i axis and Fs(ρ) is the 

magnitude of the scattering force as a function of 22 yx +=ρ .  We will expand the 

scattering force as 2
20)( ρρ SSFs += , where the second-order term is 

nonconservative because it cannot be derived from a scalar potential and does net 

work on a particle that moves on a closed path.  For the small particle, assuming a 

scattering term of the form )2/exp( 22
0 σρ−F , we have 2

02 2/ σFS −= , where σ is 

the standard deviation of the scattering force profile, which depends on both the beam 

profile and particle radius.  For the large particle, Taylor expansion of the Ashkin 

form around the effective trap center gives 2
02 /8.0 prFS = , where rp is the particle 

radius111.  We will show that this model reproduces the circulation effect observed in 

previous studies while permitting important simplifications in the simulations and 

analytical analysis.  We will also show that the analytical solution reproduces the 

fluctuations observed, not only in a simulation of the simplified system, but in a 

realistic simulation which takes into account the 3-dimensional nature of the intensity 

gradient and scattering force fields. 
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The nonequilibrium probability flux in the particle position r


 that results 

from the nonconservative component of the scattering force was characterized by 

Roichman et al. in terms of the circulation Ω, as illustrated in Fig. 8.1b112.  Each 

discrete measurement of r


 contributes a differential circulation of 

A
d newold

2

ξξ


×
=Ω

 
8.2

where ξ


 is a 2-dimensional vector defined by { }z,ρξ =


. The characteristic area A 

defines a unit of circulation, and the cross product defines the sign of circulation to be 

positive for clockwise motion in the ρ−z plane.  

Previous work has shown that circulation is dominated by the Brownian 

motion of the particle, requiring very long simulation times to achieve statistical 

convergence113. However, the contribution of the nonconservative force to the 

circulation can be efficiently calculated by comparing results of the nonconservative 

system with a conservative reference system, in which the particle is subject to 

identical Brownian force fluctuations, but in which the nonconservative scattering 

force is replaced by a constant force.  By looking at the difference in circulation 

between the original system and the reference system, circulation fluctuations arising 

directly from thermal forcing cancel out, isolating the circulation arising from the 

nonconservative force. 

We use a Langevin equation of the form 0)()(T =−+ rrFtF 
β  to simulate the 

model optical trap, where β is the Stokes drag, )(rF


 is obtained from Eq. 8.1, and 

)(T tF


 is a delta function-correlated stochastic noise term whose components have 
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spectral density βω TkF B

2

T 2)(
~ = . We define two primary nonconservative systems 

using the two scattering curves in Fig. 8.1a and compare them with conservative 

reference systems which are driven by identical thermal force fluctuations.  The 

results are shown in Fig. 8.1c and 8.1d.  Thermal diffusion dominates for short times, 

causing large fluctuations in circulation, while the nonconservative contribution 

manifests itself as a linear increase in net circulation over longer times, with opposite 

signs for large and small particles as expected.  There is a large degree of cancellation 

of the circulation fluctuations when the primary and reference system are subtracted, 

revealing the excess circulation arising from the nonconservative term.  The excess 

circulation obtained from subtraction of the reference system from the primary 

system is exactly the same as the value obtained over long time scales using a single 

simulation, but comparison with a matched reference system gives us additional 

insight into the generation of circulation, since it reveals that even over short time 

intervals the excess circulation accumulates at a nearly constant rate.  This supports 

the view that the effect of the nonconservative force is a continuous biasing of 

fluctuations.  More importantly, Figs. 8.1c and 8.1d confirm that our simplified 

system reproduces the nonequilibrium flux which is the essential feature of the 

nonconservative scattering force.  

Calculation of Excess Fluctuations 

We now consider whether the nonconservative force results in additional 

fluctuations in the particle position.  In the harmonic approximation, and assuming 

that the scattering force acts only in the positive z direction (Eq. 8.1), the x-y 
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components of the total force acting on the particle do not depend on the z coordinate.  

As a result, the evolution of the x-y coordinates is independent of the z motion, and is 

unaffected by the axial scattering force.  

The independence of the transverse dynamics from the axial motion allows us 

to calculate the excess position fluctuations in the nonconservative system. For a 

simple harmonic trap, Brownian fluctuations in z are described by a thermal force FT 

acting in a strongly-damped equation of motion 0)( =−− zztF zT βα .  Using the 

known spectral density of the thermal force term, this gives rise to fluctuations in the 

z coordinate with Fourier spectral density 

222
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=

zz
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z  8.3

where similar results apply to x and y.  However, in the nonconservative system the z 

coordinate has an additional source of noise since the scattering force depends on ρ2 

and fluctuates in time as the distance between the particle and the beam axis varies, 

despite the fact that the scattering force itself has no explicit time dependence.  This 

gives an additional fluctuating driving term for the z motion which originates entirely 

in the x-y dynamics of the particle.  Since the x-y dynamics are independent of the z 

motion, this additional term, which is formally a function of ρ, is effectively a 

stochastic function of time, a pseudo-thermal forcing term which is uncorrelated with 

the thermal force fluctuations FT(t) driving the z thermal motion.  In contrast to FT(t), 

the scattering force fluctuations manifest finite time autocorrelations determined by 

the continuous x-y motion, or equivalently, have a spectral density which is related to 

the spectral density of fluctuations in ρ2.  An extensive calculation which is detailed 
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in the supplemental material indicates that the nonconservative driving term arising 

from x fluctuations has Fourier spectral density107 
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where similar results are obtained for y fluctuations.  The equation of z motion is 

linear, so the solution can be decomposed into components arising from the thermal 

driving term (Eq. 8.3) and the nonconservative driving term.  The spectral density of z 

fluctuations resulting from the nonconservative force is  
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where we set yx αα =  for clarity.  

The Fourier spectra of the thermal and nonconservative forces are shown for 

the case of a large particle in Fig. 8.2a and for a small particle in Fig. 8.3a (using both 

the full scattering form and its second-order expansion).  The Fourier spectra of the 

fluctuations in z driven by the thermal and nonconservative forces are shown in Figs. 

8.2b and 8.3b.  Precise agreement is found between the analytical spectra, indicated 

by solid curves, and the simulations.  It is clear from these spectra that the 

characteristic time scale of nonconservative fluctuations is determined by the x-y 

dynamics of the particle, rather than by the circulation time inferred from data in 

Fig. 8.1c and 8.1d.  The uncertainty in a measurement of the particle position is found 

by integrating the spectral density over the bandwidth of the measurement.  However, 

the total root mean square (RMS) fluctuations of the thermal and nonconservative 
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components of the displacement, zT and znc (integrated over all frequencies) are a 

useful practical measure of noise in experiments where the localization of the particle 

is of primary importance.  We find that the standard deviation for thermal fluctuations 

is 
2

1

T 







=

z

BTk

α
σ , and for nonconservative fluctuations is 

2
2

nc
11

10

x

BTkS

α
σ =  (where we 

set zyx ααα 5== ). These are plotted as a function of x stiffness in the Fig. 8.2b and 

3b inserts, with the assumption that the scattering force and trap stiffness both scale 

linearly with the trap optical power P.  The ratio of the standard deviations of 

nonconservative and thermal fluctuations scales as P-½, indicating that the importance 

of the nonconservative effect decreases as the trap becomes stiffer.  Using the 

physical parameters chosen for the spectra in Fig. 8.2, the RMS fluctuations arising 

from the direct thermal fluctuations are approximately 1000 times larger than those 

arising from the scattering force.  Since the thermal and nonconservative noise 

sources are uncorrelated and add in quadrature, the augmentation of the amplitude of 

total fluctuations is less than 1 part in 106. 
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Figure 8.2  (a) Fourier spectral density of the thermal driving force (triangles) and the 

nonconservative z scattering force using the large-particle profile of Ashkin (circles) and its 

second-order Taylor expansion (squares) for dynamics obtained from numerical simulation of a 

Langevin equation based on Eq. 8.1 with the same parameters as Fig. 1.  Black line: The 

analytical prediction for scattering force fluctuations (Eq. 8.4).  (b) Fourier spectral density of 

the z motion driven by thermal forcing (triangles) and by the nonconservative scattering force 

(circles). Black lines: Analytical predictions for z fluctuations driven by thermal forcing (Eq.  

8.3) and the scattering force (Eq. 8.5).  Inset: RMS z fluctuations arising from the thermal 

forcing and from the scattering force as a function of αx, assuming αz and F0 are linearly related 

to αx. 
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Figure 8.3 Similar to Fig. 2, except the particle is assumed to be small compared with the 

wavelength, and the scattering profile is assumed to have a Gaussian form which corresponds to 

the intensity profile of the trapping beam at the trap center.  Physical parameters are identical to 

those used in the small particle simulation in Fig. 1.   

Application to a Realistic Force Field 

In the section above, we have shown that the simplified system, consisting of 

a harmonic trapping force and an axial scattering force which depends only on ρ, 

reproduces the nonequilibrium probability flux which is the main feature of the 

nonconservative scattering force.  The simplifications facilitated an analytical 

calculation of the level of excess noise introduced by the nonconservative force.  In 
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this section we consider a realistic system, in which the gradient (trapping) and 

scattering forces are derived from the 3-dimensional Gaussian optical mode.  

Although this realistic system contains nonlinearities, crosstalk between axial and 

transverse dynamics, and a scattering force which is no longer purely axial, we will 

show that the analytic calculations derived from the simplified model accurately 

predict scattering force fluctuations observed in simulations of the realistic system.    

In the realistic simulation we take the gradient force to be proportional to the 

gradient of the optical intensity and the scattering force to be proportional to the local 

Poynting vector, which is proportional to the intensity itself and acts along the phase 

gradient direction114.  This form is appropriate for a small particle, but can also be 

used as a highly accurate parameterization of the measured force on a finite-size 

particle as a function of displacement in experiments. The 3-dimensional, nonlinear 

force functions introduce new effects not present in the linearized system.  

Differential stiffness decreases with distance from the geometrical center of the trap.  

In addition, the optical mode spreads as it propagates past the trap center, and as a 

result there is a decrease in the transverse restoring force with increasing z in the 

neighborhood of the effective trap center.  The spreading of the optical mode also 

causes the scattering force to weaken with increasing z as well as with increasing ρ.  

The z dependence of the intensity gradient and scattering forces will cause transverse 

force fluctuations to arise from axial position fluctuations, which was not included in 

the simpler model introduced above.  The question arises whether these additional 

effects result in an increase in fluctuations of the particle position. 
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To address this issue we run the simulation of a particle subject to the 

scattering force vector and gradient force based on the 3-dimensional Gaussian 

mode114.  However, in this case the scattering force includes a conservative 

contribution which can be represented as the gradient of a potential, as we explain 

below.  In the neighborhood of the effective trap center the z component of the 

scattering force decreases with increasing z.  This predominantly linear dependence of 

the axial scattering force on z serves as an enhancement of the axial restoring force 

experienced by the particle – the particle is more strongly trapped in the presence of 

the z-dependent scattering force than it would be if the scattering force were 

independent of z.  The z dependence of the axial scattering force can therefore be 

represented by a potential, and does not contribute to the nonequilibrium effects that 

result from nonconservative forces.  We therefore decompose the scattering force into 

conservative and nonconservative components and calculate the power spectra of the 

two components separately.  The decomposition is done as follows. The magnitude of 

the full scattering force is of the form  
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where Ŝ  is a unit vector in the direction of the Poynting vector (which corresponds to 

the phase gradient direction), ω0 is the Gaussian spot size and z0 is the Rayleigh 

distance, 
λ

πω n
z

2
0

0 = .  We wish to calculate the potential whose gradient most 

closely matches the total scattering force in the region visited by the particle.  The 

difference between the actual scattering force and this conservative approximation 
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would represent the nonconservative component of the scattering force.  Since the 

particle is confined to a small volume centered on the beam axis, it is sufficient to 

choose the conservative component of the scattering force to duplicate the z 

dependence of the z component of the scattering force on the beam axis, 

),0,0()( zFzF ssc


= , where the lack of x and y dependence is determined by the criteria 

that )(zFsc


 is conservative.  The nonconservative component is obtained by 

subtracting the conservative component from the full scattering force, 

)(),,(),,( zFzyxFzyxF scssnc


−= .   Making use of this decomposition of the scattering 

force, the effective conservative force acting on the particle is the combination of the 

intensity gradient force and the conservative component of the scattering force.  The 

remainder of the scattering force, ),,( zyxFsnc


, contains the transverse dependence of 

the scattering force and is the driving term for nonconservative effects. 

Fig. 8.4 shows the fluctuations in the scattering force in a simulation using the 

3-dimensional restoring and scattering forces.  The decomposition into conservative 

and nonconservative components only applies to the calculation of the power spectra 

of the scattering force, the particle dynamics are generated from the full scattering 

force.  The system parameters are comparable to those used to produce Fig. 8.3, 

although the effective trap power has been increased by a factor of approximately 5% 

to maintain the same effective trap stiffness at the equilibrium point in the nonlinear 

simulation.  The scattering profile, adopting the small-particle limit, is strictly defined 

by the 3-dimensional optical mode, resulting in a Gaussian profile with standard 

deviation 2/)(zωσ =  where )1()( 222
oo zzz += ωω .  The value of ωo, has been set 



113 
 
 

to 0.411 μm in order to obtain the nominal 5:1 ratio between axial and transverse 

stiffness that we use to evaluate our analytical theory.  The resulting scattering profile 

is narrower than the one that was used in the previous simulations and results in 

somewhat stronger scattering fluctuations in Fig. 8.4.    

 

Figure 8.4  Power spectra of force components acting on a small particle assuming the gradient 

force and scattering force are proportional to the intensity gradient and Poynting vector, 

respectively, of the 3-dimensional Gaussian optical mode.  Fourier spectral density of the 

thermal driving force (circles), axial gradient force (squares), conservative axial component of 

the scattering force (triangles), nonconservative axial component of the scattering force (inverted 

triangles) and the x component of the scattering force (diamonds).  The solid line represents the 

analytical calculation of the nonconservative scattering force contribution predicted by Eq. 8.4.  

The time step is 5 μs, and the physical parameters are αx = αy = 2.01 pN/μm, and 

αz = 0.360 pN/μm and F0 = 0.04pN (evaluated at the effective trap center) using the point particle 

approximation with ω0 = 0.411μm.  The effective z stiffness contains a contribution of 

0.026 pN/μm from the conservative component of the scattering force. 
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Fig. 8.4 has several interesting features.  The thermal force spectrum 
2

T )(
~ ωF  

and the intensity gradient force spectrum 
2

g )(
~ ωF  correspond closely at low 

frequency.  Comparison of the phase of the two spectra (not shown) indicates they are 

anti-coherent.  This is consistent with the fact that low frequency wandering of the 

particle is largely suppressed by the optical trap, which implies that the gradient force 

neutralizes the thermal force at low frequency.  Above the characteristic frequency 

πβα 20 zf =  of axial fluctuations, the spectrum of the gradient force falls below that 

of the thermal forcing, consistent with the fact that high frequency jiggling of the 

particle is relatively unaffected by the trapping potential.  The spectrum of the 

conservative component of the scattering force 
2

sc )(
~ ωF  is similar to that of the 

gradient force, but at lower amplitude.  These spectra are phase coherent and confirm 

a slight enhancement of the restoring force by the conservative component of the 

scattering force.  The spectrum of the z component of the nonconservative scattering 

force component 
2

snc )(
~ ωF  represents the driving force for nonconservative 

fluctuations.  Unlike 
2

sc )(
~ ωF , it is generated by x-y motion of the particle and its 

dependence on the z coordinate has been subtracted off.  It therefore acts as a 

generator of independent axial fluctuations, rather than as a component of the 

restoring force. The solid line shows the prediction of Eq. 4 for 
2

snc )(
~ ωF , using the 

effective stiffness (including contributions from the gradient and conservative 

scattering forces) and the on-axis scattering force F0, both evaluated at the effective 
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trap center.  There is good agreement between the analytical calculation based on the 

linearized system and the dynamics found in the fully nonlinear system. The level of 

fluctuations in the simulation is slightly in excess of the analytical prediction, 

apparently because the trap is barely stable for these parameters and the particle 

transiently wanders from the effective trap center to regions where the effective 

stiffness is smaller than the nominal value.  This small discrepancy vanishes if the 

trap power is increased by a factor of 2 or more.  The spectrum of force fluctuations 

associated with the nonconservative component of the scattering force is nearly four 

orders of magnitude below the direct thermal forcing.  Fig. 8.4 also shows the 

spectrum of fluctuations in the x (tangential) component of the scattering force, which 

is smaller than both the conservative and nonconservative components of the axial 

scattering force, and is therefore not a significant source of additional fluctuations.   

The decomposition of position fluctuations into components arising from 

distinct forcing terms that was performed in the linear system is no longer possible in 

the nonlinear system.  However, the relative strengths of forcing from conservative 

and nonconservative forces have been calculated with high precision, and there is no 

reason to believe that the nonlinear effects or cross-terms in the realistic model would 

preferentially amplify force fluctuations originating from nonconservative relative to 

those originating from thermal fluctuations.  Therefore the increase in position 

fluctuations in the presence of nonconservative effects should be in proportion to the 

increase in force fluctuations.  No significant excess fluctuations were detected in the 

spectra of x, x2 and z when comparing the simulation of the nonlinear system to one 

based on an equivalent linear system (data not shown), confirming that the additional 
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dynamic processes present in the nonlinear model (nonlinearities and cross-terms in 

the equations of motion) do not change the character or amount of fluctuations 

introduced by the nonconservative force term. 

Additional Fluctuations When Stretching a DNA Tether 

The results above apply to the case where there is no external force on the 

trapped particle and it remains in the neighborhood of the effective trap center.  In 

single-molecule biophysics experiments, the optical trap is typically used to apply a 

substantial force to a biological macromolecule, and the equilibrium position, taking 

into account the external force, will no longer lie on the beam axis.  In this regime the 

scattering force will no longer be an even function of the displacement x or y from the 

equilibrium position and may have a substantial non-axial component.  As in the 

previous section, the nonlinearity of the system prevents us from decomposing the 

motion into components arising from distinct forcing terms, we can gain insight into 

the level of nonequilibrium fluctuations by measuring fluctuations of the scattering 

force itself in a realistic simulation. 

We model an experiment in which the optical trap is used to measure 

variations in the length of a DNA tether.  We assume the DNA is anchored to a cover 

slip, the tether making a 45º angle with the beam axis.  As in Fig. 8.4, we assume that 

the scattering force and gradient force are proportional to the local Poynting vector 

and intensity gradient vector, respectively, of the 3-dimensional Gaussian mode of the 

trapping beam114.   The attachment point is chosen so that the force exerted on the 

tether is 3/4 of the maximum force that the optical trap can produce at 45º, well past 

the regime of a linear restoring force.  Unlike the simulation illustrated in Fig. 8.4, the 
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particle is sufficiently far from the trap center that cross terms, such as the 

dependence of non-axial force on axial position, and vice versa, are substantial.  The 

force vs. extension curve of the DNA tether is calculated using the Marko-Siggia 

worm-like chain model with contour length of 2.0 μm38. 

Force fluctuations in the simulation of a tether experiment are shown in Fig. 

8.5.  The curves shown in Fig. 8.5b correspond to those shown in Fig. 8.4, except that 

the effective potential experienced by the particle includes the tension in the DNA 

tether.  As in Fig. 8.4, the spectrum of the combined restoring force (including the 

gradient force and the tether force) cancels the thermal force at low frequency.  The 

conservative part of the scattering force opposes the gradient force (since the particle 

is pulled to negative z by the DNA tether) but is small compared to the gradient and 

tether forces.  The spectra of the non-conservative components of the scattering force 

(axial and non-axial) are again far below the level of the thermal force spectrum.  
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Figure 8.5  Simulation of a particle tethered by a DNA molecule at 45°, in which the tether 

attachment point is displaced from the trap center in the x-z plane such that the tension in the 

DNA is 3/4 of the maximum force the trap can exert at 45°.  (a) Schematic illustrates the effective 

conservative force characteristics for the particle.  The combined gradient force, conservative 

component of the scattering force and tether force were linearized around the equilibrium point. 

The principal axes of the resulting elasticity tensor are illustrated by arrows which are 

superimposed on the probability density function of particle position obtained in the simulation.  

(b)  Fourier spectral density of the thermal driving force (circles), combined gradient and tether 

force (squares), conservative axial component of the scattering force (triangles), nonconservative 

axial component of the scattering force (inverted triangles), and the x component of the 

scattering force (diamonds).  The solid curve represents the analytical calculation of the 

nonconservative scattering force contribution, as described in the text.  Simulations performed at 

tension 1.2 pN with rp = 0.250 μm, Gaussian spot size ω = 0.411 μm and F0 = 0.4 pN.   The 

effective stiffnesses are au = 21.7 pN/μm and av = 6.4 pN/μm with φ = −10°.    
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The theoretical framework defined above can be used to calculate the 

nonconservative nonaxial scattering force fluctuations.  In the present case, assuming 

the attachment pulls the particle away from the beam axis along the x direction, the 

expansion of the axial scattering force about equilibrium position will have a nonzero 

first-order term, ( )zxSSFs ˆ10 +=


.  To first order in the displacement x, the spectrum of 

scattering force fluctuations can be obtained by simply multiplying the spectrum of x 

fluctuations by S1.  However, the spectrum of x fluctuations is more complex for a 

trapped particle which is tethered to the surface than for an otherwise unconstrained 

particle.  For a free particle trapped on the beam axis the motion is easily resolved 

into axial and transverse components, which have different effective stiffnesses.  The 

tethered particle experiences a more complex force field which is the combination of 

the optical trap and DNA elasticity.  By combining the effective potential energy 

arising from the optical trap, the tether elasticity and the conservative portion of the 

scattering force we can define the total potential energy of the particle as a function of 

position, U(x,y,z).  To first order the force arising from a small displacement in an 

arbitrary direction is found by multiplying the displacement vector by the Hessian 

matrix of U(x,y,z).  However, the Hessian evaluated at the equilibrium position is not 

diagonal, meaning a displacement along the x, y or z coordinate axis results in a force 

which is generally not parallel to the displacement. The eigenvectors of the Hessian 

matrix, however, define a coordinate system in which the Hessian matrix is diagonal, 

and in which its diagonal elements are the stiffnesses for displacement along the 

corresponding eigenvectors.  The dynamics along the three eigenvectors are 

independent and governed by the corresponding stiffness. (This procedure is not 
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necessary for the particle trapped on the beam axis because the axial and transverse 

directions themselves are eigenvectors.)  The result of this analysis is illustrated in 

Fig. 8.5a.  Two eigenvectors lying in the x-z plane are superimposed on a probability 

density function of the particle position in the simulation.  The axis of maximum 

stiffness, labeled u, makes an angle φ = −10º with the positive x axis while the 

stiffness along the eigenvector v is a factor of 3 smaller (see Fig. 8.5 caption for 

values).  As expected, the maximum observed particle fluctuations are along the axis 

of smallest stiffness.   

The spectrum of nonconservative axial force fluctuations is predicted as 

follows.  The power spectrum of position fluctuations along each of the principal axes 

is calculated from Eq. 8.3, using the corresponding values of α.  The projections of 

these fluctuations on the x direction are calculated, and since the dynamics 

corresponding to different principal axes are independent, the projected power spectra 

are additive.  The resulting combined spectrum is multiplied by S1 to obtain the 

spectrum of nonconservative axial force fluctuations.   The dashed line shows this 

calculated spectra, which agrees precisely with the measured fluctuation spectrum of 

the nonconservative component of the axial scattering force.   

The same considerations applying to Fig. 8.4 apply here.  Due to the nonlinear 

nature of the equation of motion fluctuations of particle position cannot be 

decomposed into components arising from conservative and nonconservative forcing 

terms.  However the additional force fluctuations introduced by the ρ dependence of 

the axial and non-axial components of the scattering are very small compared with 

the other fluctuating forces.  Since there is no reason to assume that nonconservative 
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fluctuations will be amplified disproportionately compared to fluctuations arising 

from conservative forces, the nonconservative forces are not expected to cause an 

appreciable degradation in a measurement of the tether length. 

Our general conclusion is that the method of calculating additional 

fluctuations associated with the nonconservative scattering force that we developed in 

the context of the simplified model can be applied to this experimental configuration, 

provided the system is linearized about the equilibrium point and that transverse 

dependence of the scattering force is represented by a Taylor expansion.  As in the 

case of the simplified model, the additional fluctuations associated with the 

nonconservative force are small. The main effect of the scattering force is a slight 

reduction in the effective stiffness of the optical trap in the neighborhood of the 

equilibrium point. 

Conclusion 

In conclusion, we have introduced a simplified model of trapping with a 

nonconservative scattering force which fully reproduces the nonequilibrium flux 

reported previously, and which allows us to identify a distinct noise mechanism 

associated with the nonequilibrium flux.  The model correctly predicts fluctuations in 

simulations of the simplified system, of the fully nonlinear system, and of a system 

including a DNA tether, provided that the transverse dependence of the scattering 

force is represented as a Taylor series in ρ and the effective potential experienced by 

the particle is linearized about the effective equilibrium point.  The additional 

fluctuations are extremely broadband, in contrast to the extremely long time period 

that characterizes the net circulation rate.  Although the effect is small for typical 



122 
 
 

configurations, the formulae obtained establish the dependence of this additional 

noise on the system parameters and can be used to guide the design of an experiment 

that would maximize or minimize the effect.  A realistic simulation of an experiment 

in which the length of a DNA molecule is measured indicates that the additional RMS 

fluctuations associated with the scattering force in a typical experimental 

configuration do not significantly increase the experimental uncertainty in this 

common type of measurement.  The most significant effect of the scattering force in 

such experiments is modification of the effective stiffness of the trap.  
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