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 Economists have long been concerned with the externalities generated by 

automobiles, such as traffic congestion and air pollution.  Since many of these 

externalities are closely bound up with the number of miles being driven, economists 

have been much interested in the behavior of what is known as vehicle miles traveled 

(VMT).  Planners believe that land use can be manipulated to serve congestion 

management, air quality or related transport planning goals.  The underlying idea is 

that household location may have a big impact on its transportation demand, 

including car ownership.  In this context, I focus on distance to work (DTW) as the 

measure of household location.  I chose a continuous measure of household location 

instead of a discrete one because, besides being easily measured, it matches better the 

data available for this study and it has a very straightforward interpretation—it allows 

me to calculate the contribution of commuting miles to total miles driven.   



  

Despite the clear conceptual connection between DTW and VMT, and the 

constraining nature of household location, little is known about their joint behavior. 

City and household level attributes that may lead households to live close or far from 

their work may also lead them to drive few or many miles for non-commuting 

purposes. This effect must be accounted for when measuring the behavior of VMT 

conditional on DTW.  I develop two models to analyze: (i) the role of city 

characteristics in explaining households’ distance to work, (ii) the effect of distance 

to work on VMT and car ownership, (iii) the effect of city level attributes on VMT, 

conditional on DTW, (iv) the unobserved taste for driving, (v) differences between 

workers and non-workers.  I find that: (i) City characteristics expected to affect 

commutes have a small effect on households’ DTW, (ii) DTW provides an important 

effect on car ownership levels and VMT, (iii) City characteristics expected to 

influence non-commute miles have a small impact on VMT, (iv) taste for driving has 

a small but significant effect on VMT, and (v) non-workers are much less responsive 

to gas prices than workers. 
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1  Introduction 

 Economists have long been concerned with the externalities generated by 

automobiles.  The externalities are exceptionally varied and are well detailed in the 

literature (Parry et al, 2007). Among these one can find environmental externalities 

(local and global air pollution, noise, indirect water pollution, and improper disposal 

of vehicles and parts), and non-environmental externalities such as traffic congestion, 

traffic accidents, highway maintenance costs, parking subsidies and urban sprawl. 

The wide variety of these externalities makes automobiles prime candidates for 

regulation and for analysis. Many of these externalities are closely bound up with the 

number of miles being driven, and economists have therefore been much interested in 

the behavior of what is known as vehicle miles traveled (VMT).  VMT have also been 

fertile ground for study because household-level VMT are relatively easily observed, 

more so than most of the specific externality-causing activities.  

Planners believe that there is a potential of reducing traffic and congestion 

problems (and indirectly air pollution) in modern cities by altering land use.  In this 

context, theories such as “smart growth” and “livable communities” have been 

developed in order to reduce urban sprawl by promoting growth in city centers. Smart 

Growth also promotes transit oriented, bicycle friendly communities, including 

mixed-use development. Similar movements such as “New Urbanism” are also built 

on the idea that land use can be manipulated to serve congestion management, air 

quality or related transport planning goals. New Urbanist designs feature higher 

neighborhood densities, a mix of commercial and residential uses and street patterns 

along a grid. This has given rise to a great deal of literature dealing with how urban 
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shape affects vehicle ownership and travel demand. Steiner (1994), Wilson (1998), 

and, Badoe and Miller (2000) present recent surveys of the literature on the 

interaction between land use and transportation.  

 

1.1 Objective of the dissertation 

In this context, this dissertation examines one particular aspect of 

transportation and land use interaction—it focuses on the interaction between vehicle 

miles traveled and household location. In particular, I use distance to work (DTW) as 

my measure of household location.  I chose a continuous measure of household 

location instead of a discrete one because, besides being easily measured, it has a very 

straightforward interpretation—it allows me to calculate both the contribution of 

commuting miles to total miles driven and a measure of taste for driving. 

Despite the clear conceptual connection between DTW and VMT, and the 

constraining nature of household location, little is known about their joint behavior.  

City- and household-level attributes that may lead households to live close or far from 

their work may also lead them to drive few or many miles for non-commuting 

purposes. This effect must be accounted for when measuring the behavior of VMT 

conditional on DTW.  Previous literature has largely ignored the role of household 

location on car ownership and VMT.   

Some recent papers such as Bento et al (2005, from now on BCMV) have 

highlighted the issue of endogeneity of location and addressed it by constructing city-

wide measures of urban form, which are then taken to be  exogenous to the 

household. They use variables such as density at the city level and other measures of 
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urban form (jobs-housing balance, population centrality, city shape, land area and 

supply of rail and bus transit) to analyze the impact of urban form and transit supply 

on commute mode and vehicle miles traveled.  

One case in which household location and car ownership/VMT were modeled 

simultaneously is that of Sermons and Seredich (2001). These authors estimate their 

model sequentially: First, a discrete model of household location (households choose 

between six clusters representing San Francisco) and car ownership is fitted using a 

conditional logit approach; and second, the VMT model is estimated including a 

regressor representing the predicted number of cars owned from the first part of the 

model. by the householdthe predicted number of cars owned are obtained from the 

multinomial logit model and is included in the VMT equation as a regressor. A third 

paper addressing the issue of endogeneity of household location is that by Schimek 

(1996)—the author includes population density at the neighborhood level and uses an 

instrumental variable approach to deal with the endogenous nature of this variable. 

The author uses a serried of dummy variables for city size to instrument for density. 

 Finally, in this dissertation I address the following issues: (i) the role of city 

characteristics in explaining distance to work, (ii) the effect of distance to work on 

VMT, (iii) the taste for driving, (iv) the effect of city characteristics on VMT 

conditional on DTW, and (v) the differences in VMT between workers and non 

workers. 

 

1.2 Contribution to the literature on transportation and land use 

 The first contribution of this dissertation is that it expands the literature on 
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household location and the literature on travel demand.  In particular, in Chapters 4 

and 5 of the dissertation present two models of the relationship between vehicle miles 

traveled and distance to work. There are two main differences between the work of 

BCMV and this dissertation: First, I develop a model where distance to work and 

vehicle miles traveled are estimated simultaneously (Chapter 4). While BCMV 

address the issue of endogeneity of household location by building exogenous 

measures of land use, I deal with this issue by explicitly modeling the location 

decision. Second, I analyze the effects of different measures of city characteristics on 

VMT conditional on DTW. This dissertation differs from Sermons and Seredich 

(2001) in that I use a continuous measure for household location and therefore a 

different approach to estimate the household location/VMT system.  

 Additionally, I reach the following general conclusions:   

(i)  City characteristics that might be expected to affect commutes have 

remarkably little effect on households’ distance to work.  Only my measure of 

congestion (median speed at the city level) has a substantial effect on DTW.  The 

elasticity of DTW with respect to median speed is 0.083.  Variables like city shape, 

city area, population density, or the joint jobs-housing distribution have little apparent 

effect on city-average distance to work. Section 4.5.1 expands on this issue.  

(ii)  Distance to work has an important effect on overall household vehicle 

miles traveled.  A one percent increase in distance to work implies a 0.18 percent 

increase in overall VMT. This elasticity is comparable in magnitude to both the 

income elasticity of VMT and the gas price elasticity of VMT (see table 4.8). This 

elasticity is best understood in terms of marginal effects: one additional mile of DTW 
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leads to an additional 0.33 VMT.  This number is considerably less than one, which 

implies that as DTW increases, total VMT increase, but non-commute miles decrease. 

It is easiest to think of this last result as a strong degree of task-sharing. 

When VMT is estimated conditional on DTW and car ownership (see section 

5.4.4), the implied marginal effect of DTW on VMT increases from 0.33 to 0.42. This 

in turn suggests a lower amount of task sharing.  By allowing car ownership to be a 

choice variable in the model in chapter 5, households respond to changes in DTW by 

altering the number of cars they own. This decision translates into a change in the 

households’ overall miles (and in general, a decrease in their non-commute miles 

when DTW increases).  

(iii)  By treating distance to work as endogenous, I am able to estimate a 

parameter that I interpret as a “taste for driving”.1 This dissertation presents, to my 

knowledge, one of the first attempts at estimating this unobservable characteristic.  I 

show that when we do not take taste for driving into account, we overestimate the 

effect of DTW on VMT (the coefficient changes from 0.33 to 0.36 when taste for 

driving is not included).  The estimate of taste for driving is positive, as expected, but 

quite small. Either this taste is unimportant or it is adequately captured by other, 

included variables. 

(iv)  City characteristics that were expected to influence non-commute miles 

have a small impact on VMT, conditional on DTW. Variables such as city-level 

population density, which represents the density of friends and other non-commuting 

destinations, has a statistically significant but extremely small negative coefficient. 

                                                 
1 This parameter is the correlation between the equations representing distance to work and vehicle 
miles traveled (equations 2 and 3 in section 4.3.2). 
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These results hold for both models developed in chapters 4 and 5. 

(v)  Finally, I explore the travel behavior of workers vs. non-workers. The 

most striking difference between these two groups is on the coefficient on gas price—

non-workers are much less responsive to gas price changes than workers. This result 

suggests that workers have a higher degree of task-sharing, an option may contribute 

the higher gas price elasticity for workers. 

 

1.3 Description of subsequent chapters 

This dissertation consists of a literature review and 2 models of the interaction 

between VMT and DTW. Chapter 2 reviews the literature on transportation and land 

use. Chapter 3 describes the data available for the study. In chapter 4 I develop a 

simultaneous model of DTW and VMT, conditional on the work status of the 

household. In chapter 5, I estimate a continuous discrete model of car ownership and 

VMT, conditional on DTW. Finally, chapter 6 presents concluding comments and 

directions for future research. 
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2 Literature review 

Existing land use and transportation interaction models draw from three 

modeling traditions, namely urban economics, spatial interaction or gravity models, 

and discrete choice based on random utility theory (Eliasson and Mattsson, 2000). 

These three modeling traditions were developed based on the type of question they 

wanted to answer. Urban economics explains the functioning of a city from an 

analytical point of view. This branch of microeconomic theory accounts for spatial 

relationships between individuals and organizations in order to understand the 

economic reasons behind the formation, functioning and development of cities 

(O’Sullivan, 2006). While urban economic models were developed with great 

mathematical rigor, they initially led to virtually no operational models. On the other 

hand, spatial interaction models of the Lowry type (or gravity models), were 

developed to allow planners to make rough forecasts of flows between different 

locations. Spatial interaction models are used to study are the flow of goods (e.g. 

trade patterns, freight distribution), workers (e.g. journey to work, migration), and 

transmission of information or capital, among others. Spatial interaction models were 

typically applied models, placing little importance theoretical content.  Finally, 

discrete choice models based on random utility theory were first introduced to the 

field of travel demand by McFadden (1974) and Domencich and McFadden (1975). 

Early applications dealt with transport problems such as mode choice and destination 

choice. Discrete choice models typically divide the decisions involved in a trip into 
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four steps: whether to travel, destination choice, mode choice, and route choice 

(Eliasson and Mattsson, 2000).  

More recently, and following the work of Mannering and Winston (1985) and 

Train (1986), continuous/discrete models were applied to the simultaneously analysis 

of car ownership and travel demand. This type of analysis was possible thanks to the 

work done by Heckman (1979) and Dubin and McFadden (1984), who developed 

methods for specifying and estimating models that describe continuous/discrete 

situations. Recent examples of papers following these methods are Schimek (1996), 

Kockelman (1997) and Bento et al (2005). This framework allowed researchers 

analyze the effects of different policy variables on car ownership and travel demand. 

Recent advances in GIS allowed researchers to model the effect of different measures 

of urban form on travel demand.  

As described in Chapter 1, the central question of this dissertation is to study 

the effect that household location (proxied by distance to work) has on automobile 

ownership and travel demand. This dissertation uses a variation of the existing 

models of transportation and land use interactions described below (Section 2.2). In 

particular, in Chapter 4 I estimate a model in which household location and travel 

demand are chosen simultaneously. Chapter 4 presents an extension to the existing 

literature in that household location is typically assumed exogenous. It is a first 

attempt at bringing together the models described in section 2.1 and 2.2. Finally, 

Chapter 5 extends models described in section 2.3 by explicitly modeling the effect of 

household location on travel demand and car ownership.  
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The remainder of the chapter is organized as follows: the next section 

describes the basics of the theory of residential location, starting with the monocentric 

model of household location (Section 2.1.1) and continuing with discrete choice 

models (Section 2.1.2). Spatial interaction models are not analyzed separately 

because, as Anas (1983) and Mattsson (1984) suggest, the entropy and the logit 

approaches are identical for practical purposes. Section 2.2 reviews the literature that 

analyses the interaction between transportation and land use. Models used to study 

this interaction typically assume that household location is exogenous and focus 

mainly on the effects of different measures of urban form on vehicle ownership and 

demand for miles 

 

2.1 The theory of residential location 

There are two basic approaches when dealing with the theory of residential 

location. The first deals with inter-urban location and the second with intra-urban 

moves. The question of why households locate in a particular city is out of the reach 

of this dissertation, though one of the main reasons households move between cities is 

a change in employment opportunities (Sjaastad (1962), Greenwood and Hunt 

(1989)). See the literature on household mobility for the basics of inter-urban 

location. On the other hand, intra-urban relocation occurs not only because of changes 

in employment, but also because of changes in supplies and demands for residential 

site characteristics (Linneman and Graves (1983), Clark and van Lierop (2000)). 
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2.1.1 The monocentric model of household location  

The theory of household location is based on the monocentric model of 

household location.  Its origins can be traced back to the early-19th century with the 

work of von Thunen (1826).  In his model of joint determination of land use and land 

rent, Von Thunen assumes manufacture was concentrated in the central city, and 

agriculture is grown in the surrounding countryside.  The main result from this model 

is a series of concentric rings of cultivation, each with a different product. 

Von Thunen’s model was later extended and formalized into an urban context 

by Alonso (1964) and Muth (1969).  This model assumes that most commercial 

activity occurs in the central part of the city, usually called the Central Business 

District (CBD).  All city residents are located around the CBD and commute towards 

the city center.  Households choose housing and non-housing consumption as well as 

residence location to maximize utility subject to a budget constraint.  The basic result 

of the standard monocentric model of urban land use is that wage gradient will be 

negative (Muth (1969)).2  This model is based on the tradeoff between housing costs 

and commuting costs (Herrin and Kern (1992)). Households are willing to move 

further away from their job location and accept longer commutes (i.e. higher costs in 

term of money and time) as long as they get better houses. 

Several generalizations and extensions of this model exist. The first obvious 

one is to allow for firms to locate outside the CBD (Muth (1969), Henderson (1985), 

White (1988)).  While most of the general results of the monocentric model hold 

when firms locate outside the CBD, in some cases these results fall apart. White 

                                                 
2 See also Fujita (1989), chapter 1 for a history of the development of urban economic theory, and 
chapter 2 for a detailed description of the monocentric model of household location. 
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(1988) argues that positive wage gradient may result because of out-commuting.  If 

workers are capable of finding a job outside the CBD and they live in the CBD, 

employees will be forced to pay a higher salary to get these people to commute to the 

outside of the CBD. 

A second extension is to allow for workers to be employed locally, this is, 

outside the CBD (DeSalvo (1977), Turnbull (1992)).  Turnbull (1992) shows the 

Muth’s basic results do not hold under local employment.  Heckman (1980) extended 

Muth’s and Wheaton’s analysis from a one-person household to a two-person 

household where the connection between husband’s and wife’s income is made.  

Once again conditions similar to those from Muth’s original model are obtained.  

Finally, DeSalvo (1985) included a time constraint and treated leisure explicitly.  He 

proves that the results of the basic model still hold under these conditions.  Most of 

these extensions are exhaustively analyzed theoretically, but not much has been done 

empirically.  The main explanation offered is the lack of available data. 

Empirical support for the monocentric model includes Eberts (1980), Eberts 

and Gronberg (1982), Gabriel and Rosenthal (1982), Madden (1985), McMillen and 

Singel (1991) and Ihlandfelt (1992). Ihandfelt (1992) presents some evidence on the 

existence, shape, and slope of intraurban wage gradient.  He uses the 1980 PUMS 

data for Philadelphia, Detroit and Boston.  He divides each area into 4 parts: central 

city and inner, middle and outer rings.  He uses an indicator called “import ratio”, 

defined as the number of jobs in a particular area divided by the total number of 

workers in that area.  If this ratio is greater than 1, then there are more jobs than 

workers in the area and it is called a net importer of workers. 
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But the monocentric model is losing validity.  Some cities have several 

business district centers (granted, that the monocentric model has been extended to 

include several centers and commuting costs).  This has changed land-value 

configurations. Income and density profiles have also been changing in some cities 

with some of the higher income household moving to particular inner city areas 

(Beaudet, 1988). 

 

2.1.2 Models of individual choice 

Models of individual choice are typically based on the random utility model.  

In this type of models, households or individuals select a location among a discrete 

number of (mutually exhaustible) choices that will maximize their utility subject to an 

income constraint.  In this dissertation, I use the household as the basis for analysis.  

The utility to a household selecting an alternative is assumed to be a linear function of 

the characteristics of the household and the attributes of the alternative plus an error 

term. The probability that a certain household will choose a particular location is 

given by the probability that the utility of that location to the household is greater 

than the utility to that household of any other alternative. 

When the error term is assumed to be independently and identically 

distributed as log Weibull distribution, the model is known as a multinomial logit if 

only individual or household specific characteristics are considered or a conditional 

logit if the attributes of the characteristics are included in the estimation. The 

disadvantage of these types of logit models is that they suffer from the “independence 

of irrelevant alternatives” property. This property states the odds ratio for any pair of 
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choices is the same irrespective of the total number of choices considered. This odds 

ratio does not change even if the choice set is expanded. 

These models can be traced to the work of McFadden (1978). There are 

numerous applications of both the multinomial and the conditional logit. Recent 

examples applied to household location include Gabriel and Rosenthal (1989), 

Waddell (1996) and Sermons and Koppelman (1998). Waddell analyses the 

interactions within single and dual-worker households between workplace location, 

residential mobility, housing tenure, and location choice. The basic hypothesis tested 

is that the presence of a second worker adds constraints on household choices that 

should lead to a combination of lower mobility rates and longer commutes. 

Residential mobility is defined as the decision to move, and once this choice is made, 

households choose a residential location and tenure. 

Sermons and Koppelman (1998) use a factor analytic approach to incorporate 

systematic taste variations into models of residential location choice. They argue that 

when calibrating models of household selection, planners must select relevant 

variables from a large set of potentially useful variables. But the problem is that all 

these variables are very likely to be highly correlated, therefore making estimation 

not fully efficient. They use factor analysis to select a representative set of variables 

in a household location model for Portland using 1994 data.  

Table 1 in the annex contains a list of the most commonly used regressors in 

discrete models of household location. 
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2.2 Land use and transportation interaction 

Steiner (1994), Wilson (1998), and, Badoe and Miller (2000) present recent 

surveys of the literature on the interaction between land use and transportation.  

Empirical studies on the interaction between transportation (i.e. travel and 

automobile demand) and land use usually include a model of the number of cars 

owned by a household and a model of the demand for miles (VMT).  Different 

measures of land use are typically included as explanatory variables in these models. 

These equations are interrelated, and usually appear in a nested form.  Estimation is 

done following methods for continuous/discrete models.3  In this general framework, 

households first select how many cars to own. Second, conditional on vehicle 

ownership, the household decides how much to use each car. This framework is 

commonly used in studies on travel behavior (BCMV, Train 1986; Kockelman, 

1997), car ownership (de Jong et al, 2005), and gasoline demand (Berkowitz et al, 

1990; Kayser, 2000).  Several extensions to this structure exist. For instance, the 

choice of the mode of transportation or the type of vehicle chosen may be embedded 

as intermediate steps (Mannering and Winston, 1985; Train, 1986; Kockelman, 

1997). 

The number of cars a household owns is explained by the household’s income 

and number of workers, the costs of owning an automobile, and the availability of 

public transit (Train, 1986). Table 2-2 summarizes the main variables used in car 

ownership models do date.  

                                                 
3 See Train (1986), chapter 5, for a detailed description of continuous/discrete models. 
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With respect to VMT, two variables that have been consistently included as 

explanatory variables in this type of models are income and a measure of operating 

costs (gas cost per mile, price of gasoline) Population density at the neighborhood 

level is also commonly included in the previous equations as a measure of land use. 

Table 2-3 includes a list of variables commonly used in VMT models.  

Analysts have observed that people tend to use less private cars as population 

density increases. Schimek (1996) offers three explanations why this relation may 

exist: First, potential destinations are contained in a smaller area as density increases. 

Second, the availability of transit increases as density increases because of economies 

of scale. And third, auto use becomes more complicated because of congestion or 

parking problems as density increases.   

In studies on the demand for transportation, VMT is usually modeled as a 

function of demographic characteristics (household size, income, number of workers 

or drivers in the household, among others), car characteristics (cost per mile or price 

of gasoline) and land use measures (population density, jobs-housing balance, 

residential density, accessibility, and dummies for city size).  Two land use variables 

have been consistently used in transportation models to proxy for household location 

are density (either neighborhood or at the subregional level—i.e. county) and access 

to transit. The issue of endogeneity of density and access to transit is tackled by 

Schimek (1996) and Bento et al (2005). While Schimek uses dummy variables to 

instrument for neighborhood density, Bento et al (2005) create measures of urban 

form that are truly exogenous to the household. The latter authors use measures at the 
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city level and take advantage of the intercity variation to measure the effects of the 

variables of interest on travel demand and vehicle ownership.  

While many studies support the hypothesis that there exists an inverse 

relationship between density and private transport, a branch of the literature has 

shown that there is no statistical evidence of a negative relationship between density 

and VMT. Support for a strong negative impact of density is provided Newman and 

Kenworthy (1988, 1989), Dunphy and Fisher (1993), Holtzclaw (1991, 1994), 

Cervero (1989), and Smith (1984), among others described in the subsequent 

paragraphs. 

Dunphy and Fisher (1996) used the 1991 Federal Highway Administration 

(FHWA) Statistics and found an inverse relationship between VMT and local 

population density. They also found evidence of a positive relationship between 

transit use and density and between income and miles traveled per household. The 

problems with this study are that, first, they derive their results from simple cross-

tabulations without attempting multivariate regressions, and second, they use average 

density values for large regions. 

Handy (1993) studied the relationship between shopping trips and land use, 

controlling for accessibility. She found that high levels of accessibility were 

associated with shorter shopping distances. Also, non-work travel was found 

significantly lower in areas with high levels of accessibility. Trip frequency was not 

affected by accessibility measures. These results were obtained by finding 

correlations between every pair of variables in question, and no other factors were 

controlled for simultaneously.  
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But at the same time, there is also a branch of literature that finds no statistical 

evidence of a negative relationship between density and VMT. Levinson and Kumar 

(1993) study commuting time, speed and distance to work by mode of travel. Even 

though they find out an inverse relationship density and both speed and distance, 

density’s effect on travel time is ambiguous as speed and distance have offsetting 

effects on time. They reached the conclusion that density and urban design did not 

explain transit usage or distance traveled. Kockelman (1997), using the 1990 San 

Francisco Bay Area Travel Survey, she found that density had a negligible effect on 

travel behavior once accessibility of an area (based on the gravity model) was 

accounted for. The measures of land use balance (measured using an entropy index) 

and accessibility (a measure proportional to the “attactiveness”—i.e. number of 

opportunities—of the zone and inversely proportional to travel time between zones) 

proved to be more relevant for explaining travel behavior than other commonly used 

demographic variables.  

Giuliano and Small (1993) argue that altering the job-housing balance will 

have a very small effect on vehicle use and commute times. They measure the job-

housing balance in terms of the number workers per job in the same area or in terms 

of the required commute time (“excess” commuting).  They show that its effect on 

commute time is statistically significant but very small. They also argue that journey 

to work plays only a limited role in residential location choice. Some possible 

explanations for this last result are that (i) most commuting times are relatively short, 

(ii) job heterogeneity may prevent two worker households to simultaneously locate 

close to both work places, and (iii) the increasing importance of non-work trips. 
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Finally, Schimek (1996) found evidence of an inverse relationship between 

households located in high-density areas and VMT but this relationship is not very 

large. In other words, increasing density will not reduce VMT very much. He 

addresses the fact that neighborhood density is a household choice variable by using 

an instrumental variables approach. He instruments for neighborhood density by 

using different dummies for city size.  He used the 1990 NPTS. Even though he does 

not explain the method of estimation, it seems that he used OLS to estimate the 

vehicle ownership model (the dependent variable is a count variable).  

Additionally, in a study on travel characteristics across people from different 

ethnicities, Giuliano (2003) finds that residence within a central city is not associated 

with less VMT (not only commute VMT).  

 

2.3 Mixed models of travel demand, car ownership and land use  

A separate strand of the literature of transportation and land use has taken into 

consideration the household’s location choice. This strand is reviewed in this section.  

The papers described below present different approximations at analyzing the effect 

of household location on transportation. As such, they represent the attempts to bring 

together the literature of residential location and the literature on the interaction 

between transportation and land use. This is important because even though some 

papers (Waddell, 1996) acknowledge the importance of distance to work as a 

determinant of household location, the effect that household location may have on 

vehicle ownership levels or travel demand has not been explored before in the 

literature. There is one key difference between this dissertation and the papers 
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described in this section:  the methods used to estimate the models in chapters 4 and 5 

are different than those described in this section.  The difference stems from the fact 

that I use a continuous variable, distance to work, to model household location, while 

the papers in this section are use a discrete set of alternatives where the household can 

locate.  

Lerman (1976) estimated a model where households select a joint mobility 

bundle. Mobility bundles are a combination of housing type, automobile ownership 

levels, and mode to work choices. A household has a choice of two modes (car and 

transit), three automobile ownership levels (0, 1, and 2 or more), four housing types 

(own house and three types of rental types). There are a total of 20 possible options 

the household can choose from. He estimates a multinomial logit. The variables that 

affect the choice of mobility bundle are divided into several categories: transportation 

level of service to work, automobile ownership attributes, locational attributes, 

housing attributes, spatial opportunities and socioeconomic characteristics. 

Sermons and Seredich (2001) model the joint choice of household location 

and car ownership. Household location is modeled by defining 5 clusters based on 

San Francisco’s traffic analysis zones (TAZ). Cluster analysis was performed on 

variables such as residential and employment densities, travel time to urban core, 

median home value, percent land developed, and average rooms per housing unit in 

order to reduce the number of TAZ to a more manageable number of alternatives. In 

addition, the authors model travel demand taking into consideration the joint location 

and car ownership decision.  The model developed can be used to predict the 

potential impacts on household vehicle availability and trip-making of policies that 
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make higher density residential locations more attractive.  They make a simulation to 

show the impact of a change in residential attributes on vehicle availability and trip-

making.   

The main difference between the work of Sermons and Seredich (2001) and 

this dissertation is they model household location by using a discrete choice approach 

while I use the continuous variable distance-to-work. The rationale for choosing a 

continuous variable over a discrete one to represent household location was discussed 

in the introduction. This difference in choice variables implies that the method of 

estimation will be different. In principle, both their model and my model can be used 

to determine the effects on changes in city characteristics on car ownership and 

vehicle miles traveled. By construction, the effect of changes in city characteristics on 

VMT will come through changes in location and car ownership in Sermons and 

Seredich’s model. I allow some of the city characteristics to have both direct and 

indirect effects on VMT (for example area of MSA and population density). A second 

difference between my research and Sermons and Seredich (2001) is that I use 

country level data and they use city level data (San Francisco). Additionally, their 

VMT data is estimated from a 2-day diary, while the data from NPTS was collected 

using odometer readings over a specified time period (usually around 4 weeks 

between readings). Finally, a third difference between my research and theirs is that 

in Chapter 4 I take into consideration both working and non-working households. 

This is important because working and non-working households have very different 

travel patterns.  
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Anas (1981) uses aggregated data from Chicago to estimate a multinomial 

logit of joint location and travel mode choice. In it, households simultaneously select 

a location to live and the mode they will use to get to work in the urban core. 

Explanatory variables include zone specific attributes such as mean housing price and 

rent, distance measures of a zone location, average housing attributes of the zone, and 

travel time and travel cost to the CBD. Rouwendal and Meijer (2001) report stated 

preference of Dutch workers for combinations of housing, employment, and 

commuting. Individuals participating in the experiment were given hypothetical 

groups of housing characteristics and mode choice to choose from. Housing 

characteristics include type of location, number of rooms, type of dwelling, and mode 

choice to work. They find that even though households dislike commuting, some are 

willing to accept longer commutes if the dwelling characteristics are strong enough. 

Also, the value of commuting time implied by the model is high compared to wage 

rates. 

As a summary, this dissertation follows the spirit of the papers mentioned 

above. It analyzes the link between location choice and its interaction with car 

ownership levels and demand for miles but the approach is different. The main 

difference between Sermons and Seredich and my research is that I use a continuous 

measure to model household location. This measure allows me to calculate the 

contribution of commute miles to total miles driven and estimate the direct and 

indirect effects of changes in city characteristics on VMT, conditional on DTW. 

Finally, this dissertation is also different from Anas (1983) and Lerman (1976) in the 

sense that it models household location and transportation as different but related 
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choices. These two papers assume that households will choose among different 

combinations of location and travel options.  
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2.4 Tables for Chapter 2 

Table 2-1. Household Location Models 
Category Explanatory variable used Study 

1. Travel time to 
work 

Distance to CBD 
- Distance to work 
- Distance to the urban core 

 

Anas (1981) 
- Waddell (1996) 
- Sermons and Seredich (2001) 

 Total time to work 
 
 

- Total in-vehicle time 
- Out-of-vehicle travel time 

Ben Akiva et al. (1980) 
Anas (1981), Rowendal and 
Meijer (2001) 

- Lerner (1977) 
- Lerner (1977) 

 Mode of commute Anas (1981) 
 Cost of travel Anas (1981) 

2. Accessibility “Generalized shopping price” by transit Lerner (1977) 
 “Generalized shopping price” by car Lerner (1977) 

3. Location 
attributes 

Percent non-white households in location Lerner (1977) 
Anas (1981) 

 Residential density  
  -  Location in center/suburb or 
large/small city 

Lerner (1977) 
- Rowendal and Meijer (2001) 

 School 
- per pupil school expenditures 

 
- Lerner (1977) 

 Square of difference between household 
income and average annual tract income 

Lerner (1977) 

 Crime rates Ben Akiva et al. (1980) 
 Proximity of industrial land Ben Akiva et al. (1980) 
 Property taxes Ben Akiva et al. (1980) 
 Rent costs Anas (1981) 
 Percent renter’s in area Anas (1981) 
 Characteristics of the dwelling Rowendal and Meijer (2001) 

4. Household 
characteristics 

Income 
 
 
 

- Income after expenses (taxes, 
housing commuting, and car costs) 

Ben-Akiva et al. (1980), Anas 
(1981), Gabriel and Rosenthal 
(1989), Rowendal and Meijer 
(2001) 
- Lerner (1977) 

 Number cars owned Anas (1981) 
 Life cycle dummies Gabriel-Rosenthal (1989), 

Pollakowski and Eduards (1986) 
 Marital status Gabriel-Rosenthal (1989) 
 Household head 

- Sex 
- Education 
- Race 

 
- Gabriel-Rosenthal (1989) 
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Table 2-2.  Car ownership models 
Category Explanatory variable used Study 

1. Location attributes   Density  
   
 
 
  -  

Schimek (1996) 
Zhao and Kockelman (2000) 
Cropper et al. (2002) 
Kockelman (1997) 
- Sermons and Seredich (2001) 

   - Population centrality Cropper et al. (2002) 
 Job-housing imbalance Cropper et al. (2002) 
 City shape Cropper et al. (2002) 
 Transit Availability 

- stop <3 blocks away 
- distance to nearest transit stop 

 
- Schimek (1996) 
- Cropper et al. (2002) 

 Annual rainfall/snowfall Cropper et al. (2002) 
 Accessibility Kockelman (1997) 
 Entropy index Kockelman (1997) 
 General Mix Kockelman (1997) 

2. Household 
characteristics 

- Household size Schimek (1996) 
Zhao and Kockelman (2000) 
Kockelman (1997) 
Train (1986) 

 Income 
- Income per hh member 
 
- Adjusted for fixed costs of owning a 
car 

Schimek (1996) 
Train (1986) 
- Zhao and Kockelman (2000) 
Kockelman (1997) 
- Cropper et al. (2002) 

 Number of workers in household Schimek (1996) 
Cropper et al. (2002) 
Train (1986) 

 Age of head Schimek (1996) 
 Number of Children Cropper et al. (2002) 
 Race of household head Cropper et al. (2002) 
 Level of Education Cropper et al. (2002) 

3. Transit availability Road density Cropper et al. (2002) 
 Presence and supply of transit Cropper et al. (2002) 
 Distance to nearest Transit stop Cropper et al. (2002) 
 Annual transit trips per capita in 

household’s area of residence 
Train (1986) 

4. Vehicle Attributes Gas cost per mile Cropper et al. (2002) 
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Table 2-3. Travel demand models  

Category Explanatory variable used Study 

1. household characteristics Life cycle Dieleman et al (2002) 
 Income Dieleman et al (2002) 

Cropper et al. (2002) 
Kockelman (1997) 
Schimek (1996) 
Train (1986) 

 Education Dieleman et al (2002) 
Cropper et al. (2002) 

 Number of cars owned Dieleman et al (2002) 
Kockelman (1997) 

 Age Levinson and Kumar (1997) 
Schimek (1996) 

 Sex Levinson and Kumar (1997) 
 # of workers Cropper et al. (2002) 

Schimek (1996) 
Train (1986) 

 Race Cropper et al. (2002) 
 HH size Kockelman (1997) 

Schimek (1996) 
Train (1986) 

2. location attributes Dummy for size of city 
- city larger/less than 1M people 

Dieleman et al (2002) 
- Train (1986) 

 Population Density  Cropper et al. (2002) 
Levinson and Kumar (1997) 
Schimek (1996) 

 Household in central city of 
MSA 

Schimek (1996) 

 Population centrality Cropper et al. (2002) 
 Job-housing imbalance Cropper et al. (2002) 
 City shape Cropper et al. (2002) 
 # of suburban activity centers Levinson and Kumar (1997) 
 Annual rainfall/snowfall Cropper et al. (2002) 
 Population growth rate Levinson and Kumar (1997) 
 Road density Cropper et al. (2002) 
 Urbanized area residential 

density 
Levinson and Kumar (1997) 

 Local land use patterns  
   -  Accessibility Kockelman (1997) 
   -  Mean entropy Kockelman (1997) 
   -  General mix Kockelman (1997) 
 US region Train (1986) 

3. Cost of driving Gas cost per mile 
 
-Price of gasoline 

Cropper et al. (2002) 
Train (1986) 
-  

4. Transit availability Presence and supply of transit 
- stop <3 blocks away 

Cropper et al. (2002) 
- Schimek (1996) 

 Distance to nearest Transit stop Cropper et al. (2002) 
 Transit trips per capita in 

household’s area of residence 
Train (1986) 
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3 Data  

The data for the dissertation were obtained from four sources: the core body 

of data comes from the 1995 Nationwide Personal Transportation Survey (NPTS), 

which was complemented with measures on land use (estimated by BCMV), gasoline 

prices (from the Department of Energy’s Energy Information Administration) and 

city level data on infrastructure, area, and population obtained from the Census. 

 

3.1 The 1995 NPTS 

The NPTS is a survey carried out by the Bureau of Transportation Statistics 

between May 1995 and July 1996, with the objective of collecting data on travel and 

transportation patterns in the US.  The NPTS serves as the nation’s inventory of daily 

personal travel.  National data are collected on daily trips including, among others, 

purpose of trips, means of transportation, travel time, vehicle occupancy, and vehicle 

attributes.  The 1995 NPTS updates similar information gathered in studies carried 

out in 1969, 1977, 1983, and 1990.  

The NPTS is a stratified sample.  The sample was stratified by geography 

(census region), MSA size, subway /elevated rail presence, and two levels of phone 

number density.  42,015 completed household interviews were collected in total.  

Data for the 1995 NPTS was collected in three phases using Computer Assisted 

Telephone Interview (CATI) technology.  First, a household interview takes place.  

After this interview, the travel diaries and odometer forms are mailed to participating 

households.  Second, a “person interview” is done, and data on the travel day (from 
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travel diaries) and other personal data are collected.  Finally, odometer readings are 

collected through a final phone call.  

NPTS data was complemented with Census Tract characteristics for the year 

1995 obtained from CLARITAS, Inc.  These additional data were imputed from the 

1990 census data.  These include household descriptors such as the median household 

income, the median housing unit value, the current population, population density, 

and the percent of population of different races, among others.  

  I analyze households that live in the 134 largest metropolitan statistical areas 

(MSA).  I restrict the data to MSAs because several of the explanatory variables are 

applicable only for urban areas.  I further restricted analysis to MSAs that had at least 

20 observations.  These 134 MSAs constitute 85 percent of the original sample.   

  Regarding income data, the NPTS solicited income by asking for an estimate 

of total household income in the past 12 months.  Answers were solicited in 

categories of $5,000 (for medium scale incomes) or $10,000 (for the smallest and 

largest incomes).  Because these are relatively narrow intervals (most are $5,000 

increments), I use the middle of each category as the household’s income.   

 When there is at least one worker in the household (see below), the NPTS 

asks, “What is the one-way distance from (your) home to (your) workplace?”  When 

there is more than one worker, this question is posed for each worker.  Answers were 

given in either miles or blocks; I converted blocks into miles at the rate of 8 blocks 

per mile.  Less than 4 percent of workers reported their distance-to-work in blocks.   

  There are two situations in which answers to the distance-to-work question are 

coded as missing:  (a) The worker works at or out of the home; or (b) the worker does 
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not have a fixed workplace.  Examples of the latter category are a construction 

worker who travels directly to varying job sites or a cab driver.  Conditional on there 

being at least one worker in the household and on the distance-to-work response not 

being missing, distance-to-work should be positive.  There are, however, a small 

number of individuals that report having a fixed workplace not at home but who 

report a distance-to-work of 0.  When all individuals in a household have missing 

distance-to-work or work outside the home but report zero distance-to-work, the 

household is dropped from my sample.   

 For households that own or lease at least one car, the survey estimates the 

miles driven for all cars during a one year period based on odometer readings 

recorded at varying intervals.  See Pickrell and Schimek (1999) for a discussion of 

this vehicle-based estimate of VMT.  A very small number of households (28 in total) 

report owning at least one car but have zero VMT.   

 

3.2 Other sources of data 

 I also use data from several other sources.  Gasoline price data are state-level 

data from the Energy Information Administration.  Unemployment data are from the 

Department of Labor.   

 I use the Gini coefficient of the jobs-housing distribution (GINIJOBS) to 

examine the balance between jobs and housing across a city.  The Gini coefficient 

was constructed using the procedure described in BCMV, which in turn followed 

Massey and Denton (1988).  I obtained the number of jobs at the zip code level (Zip 

Code Business Patterns, 1995) and arranged them from smallest to the largest.  I then 
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plotted the cumulative percent of jobs (y-axis) against the cumulative percent of 

population (x-axis; these data were in the NPTS) to form a Lorenz curve.  I then 

defined the variable GINIJOBS as the area between the Lorenz curve and the 45-

degree line, expressed as a proportion of the 45 degree line.  A higher value means 

that jobs and houses are more spatially disparate; a lower value means that jobs and 

houses are more closely matched in space.   

 Because of my interest in the effects of city characteristics, and to make 

results comparable to other studies, I also include a measure of city shape. This 

measure, developed by BCMV, was calculated as follows:  First, each city in the data 

set was circumscribed with an ellipse equal in area to the urbanized area of the city.  

Second, both the minor and major axis of this ellipse were obtained.  Finally, the 

measure of city shape was defined as the ratio of the minor to the major axis.  This 

measure ranges between 0 and 1, with 1 indicating a circular city. The idea behind 

this measure is that trip distances should be shorter in circular cities with radial road 

networks than in long, narrow cities.  City shape data are available for 109 MSAs.  

These measures were obtained from BCMV and use MSAs as defined in 1990.  Since 

the choice of distance to work represents a medium to long term decision, the choice 

or city characteristics prior to 1995 (the DTW data year) are apt for my analysis. 

 Data on area and population density for each MSA are from the 1990 U.S. 

Census, http://www.census.gov/population/censusdata/90den_ma.txt, using MSAs as 

defined on June 30, 1990. 
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 Table 3-1 presents a summary of the main city level variables. Data on annual 

VMT and DTW is also presented in this table for comparison purposes. Results are 

sorted by city area (in square miles). 

 Table 3-2 contains information on the average distance to work and annual 

vehicle miles traveled per household. Note for instance, that individuals with an 

income of less than $20,000 own on average 1.45 cars, live an average of 3,130 

(annualized) miles from work and drive approximately 10,540 miles per year. This 

implies that, on average, their commute miles should correspond to roughly one third 

of their total miles. This ratio needs to be interpreted with care, as these are sample 

averages. It does not take into consideration important variables such as mode of 

commute to work and occupancy rates of vehicles used for commute. Nonetheless, 

the table below shows that the ratio of the average distance to work to the average 

vmt by income category varies between 30 and 50 percent. This ratio is higher than 

expected. Table 3-2 also shows that as income increases, car ownership increases, 

going from 1.45 cars for the poorest segments of society to 2.41 cars for the richest 

members. 

 Table 3-3 shows average HHDTW, VMT and car ownership levels by number 

of workers in the household. As number of workers in the household increase, car 

ownership, distance to work, and VMT increase, though at a decreasing rate. The 

ratio of the average HHDTW and VMT ranges between 0.35 and 0.65 

 Finally, Table 3-4 shows HHDTW and VMT by car ownership levels. 

Households that own 1, 2, and 3 or more vehicles drive an average of 10, 20, and 28 

thousand miles per year, while they live on average 3,950, 9560, and 12,970 
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(annualized) miles per year. The ratio of average HHDTW to average VMT varies 

between 0.39 and 0.47, which is higher than expected.   
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3.3 Tables for Chapter 3 

 
Table 3-1. Descriptive statistics by MSA 

 Metropolitan Area 
Area 

(sq-mi) 

Pop. 
Density 
(per sq-

mi) 

Jobs-
housing 

imbalance 

Median 
speed in 

city 
(mph) 

City 
shape 

Highway 
density 

(lanes per 
sq-mi) 

Price of 
Gas 

(dollars) 

Access 
to transit 

Annual 
VMT 

(thousand 
miles) 

Average 
DTW 

(thousand 
miles) 

1 Riverside-San Bernardino CA 27.27 0.09 0.41 38.51 0.55 1.09 1.16 0.50 19.30 7.53 

2 Phoenix-Mesa AZ 9.20 0.23 0.40 30.00 0.45 0.48 1.21 0.37 17.54 3.88 

3 Tucson AZ 9.19 0.07 0.07 30.00 0.80 0.48 1.21 0.30 13.60 2.62 

4 Las Vegas NV 7.91 0.09 0.45 28.00 0.73 0.42 1.17 0.58 18.02 3.24 

5 Fresno CA 5.96 0.11 0.33 26.77 0.93 1.09 1.16 0.57 20.07 3.10 

6 St Louis MO 5.33 0.46 0.33 32.33  1.98 1.09 0.57 17.76 4.71 

7 Houston TX 5.32 0.62 0.27 33.17 0.80 1.13 1.16 0.42 21.39 6.21 

8 Atlanta GA 5.12 0.55 0.42 32.11 0.26 1.92 0.98 0.44 21.86 5.61 

9 Sacramento-Yolo CA 5.09 0.29 0.37 33.00 0.55 1.09 1.16 0.37 20.35 5.61 

10 Minneapolis-St Paul MN 5.05 0.49 0.40 31.67 0.84 1.65 1.18 0.64 19.56 4.84 

11 Tulsa OK 5.01 0.14 0.38 32.70 0.81 1.64 1.04 0.46 19.93 4.33 

12 Kansas City KS 4.99 0.31 0.31 34.50  1.72 1.05 0.37 19.61 5.38 

13 Eugene-Springfield OR 4.55 0.06 0.08 24.86  0.87 1.29 0.76 13.95 2.90 

14 Dallas TX 4.47 0.57 0.36 30.67 0.52 1.13 1.16 0.58 20.57 5.74 

15 Detroit MI 4.47 0.98 0.40 32.81 0.80 2.07 1.06 0.47 21.84 5.56 

16 Portland-Salem OR 4.37 0.34 0.37 25.71 0.87 0.90 1.29 0.62 17.46 4.13 

17 Oklahoma City OK 4.25 0.23 0.41 33.00 0.81 1.64 1.04 0.40 19.64 4.48 

18 Seattle-Bellevue-Everett WA 4.22 0.47 0.45 28.66 0.35 1.20 1.26 0.61 18.52 5.21 

19 San Diego CA 4.20 0.59 0.41 33.62 0.36 1.09 1.16 0.62 18.23 5.05 

20 Nashville TN 4.07 0.24 0.30 33.00 0.83 2.08 1.13 0.19 21.00 5.05 

21 Los Angeles-Long Beach CA 4.06 2.18 0.42 28.00 0.55 1.09 1.16 0.68 18.51 5.58 

22 Birmingham AL 3.98 0.23 0.25 34.00 0.62 1.84 1.12 0.58 23.95 5.54 



 

 33 
 

Table 3-1. Descriptive statistics by MSA 

 Metropolitan Area 
Area 

(sq-mi) 

Pop. 
Density 
(per sq-

mi) 

Jobs-
housing 

imbalance 

Median 
speed in 

city 
(mph) 

City 
shape 

Highway 
density 

(lanes per 
sq-mi) 

Price of 
Gas 

(dollars) 

Access 
to transit 

Annual 
VMT 

(thousand 
miles) 

Average 
DTW 

(thousand 
miles) 

23 Washington DC 3.97 0.99 0.43 26.40 0.82 4.54 1.24 0.61 18.68 5.92 

24 Denver CO 3.76 0.43 0.36 30.00 0.82 0.81 1.22 0.61 19.37 5.29 

25 Columbus OH 3.58 0.38 0.35 32.00 0.80 2.80 1.16 0.47 17.88 5.74 

26 Philadelphia PA 3.52 1.38 0.43 25.71 0.85 3.18 1.20 0.52 16.66 4.76 

27 Greensboro-Winston Salem-High Point NC 3.45 0.27 0.30 37.33  1.99 1.11 0.40 17.93 4.89 

28 Pittsburgh PA 3.40 0.60 0.30 28.00 0.61 2.65 1.21 0.53 15.57 3.88 

29 Charlotte-Gastonia-Rock Hill NC 3.38 0.34 0.23 29.29 0.79 2.01 1.10 0.36 19.73 3.97 

30 Albany-Schenectady-Troy NY 3.25 0.27 0.39 30.00 0.62 2.38 1.20 0.52 18.72 4.17 

31 Indianapolis IN 3.07 0.41 0.27 30.00 0.76 2.59 1.07 0.57 17.99 4.13 

32 Wichita KS 2.97 0.16 0.25 34.50 0.96 1.63 1.07 0.60 19.74 3.94 

33 Richmond-Petersburg VA 2.94 0.29 0.34 35.67 0.82 1.75 1.14 0.28 18.78 5.78 

34 Rochester NY 2.93 0.34 0.38 30.00 0.77 2.38 1.20 0.46 17.81 4.18 

35 Cleveland-Lorain-Elyria OH 2.91 0.95 0.41 27.00 0.56 2.80 1.16 0.60 18.82 4.45 

36 Little Rock-North Little Rock AR 2.91 0.18 0.35 35.50 0.49 1.48 1.09 0.35 18.87 4.30 

37 Johnson City-Kingsport-Bristol TN 2.87 0.15 0.20 34.71  2.01 1.13 0.00 22.13 7.40 

38 Scranton-Wilkes-Barre-Hazelton PA 2.84 0.26 0.58 30.00 0.30 2.65 1.21 0.63 21.71 4.94 

39 Mobile AL 2.83 0.17 0.23 36.25 0.05 1.84 1.12 0.20 27.29 6.41 

40 Austin-San Marcos TX 2.79 0.28 0.23 30.00 0.71 1.13 1.16 0.65 18.21 5.38 

41 Knoxville TN 2.77 0.22 0.28 34.07 0.67 2.08 1.13 0.33 18.80 4.58 

42 Santa Barbara-Santa Maria-Lompoc CA 2.74 0.14 0.47 27.27  1.09 1.16 0.75 14.74 2.41 

43 Jacksonville FL 2.64 0.34 0.09 25.00 0.76 2.11 1.07 0.53 16.83 3.95 

44 Utica-Rome NY 2.62 0.12 0.36 30.50 0.34 2.38 1.20 0.58 18.84 3.95 

45 Baltimore MD 2.61 0.91 0.34 29.20 0.75 3.04 1.31 0.51 22.11 6.09 

46 Charleston-North Charleston SC 2.59 0.20 0.38 32.20 0.44 2.14 1.05 0.53 19.55 3.75 

47 Tampa-St Petersburg-clearwater FL 2.55 0.81 0.36 30.00 0.99 2.11 1.07 0.44 18.75 4.06 

48 Orlando FL 2.54 0.42 0.26 28.00 0.74 2.11 1.07 0.37 19.85 4.59 

49 San Antonio TX 2.52 0.52 0.18 30.00 0.80 1.13 1.16 0.76 20.74 4.80 
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Table 3-1. Descriptive statistics by MSA 

 Metropolitan Area 
Area 

(sq-mi) 

Pop. 
Density 
(per sq-

mi) 

Jobs-
housing 

imbalance 

Median 
speed in 

city 
(mph) 

City 
shape 

Highway 
density 

(lanes per 
sq-mi) 

Price of 
Gas 

(dollars) 

Access 
to transit 

Annual 
VMT 

(thousand 
miles) 

Average 
DTW 

(thousand 
miles) 

50 Fort Worth-Arlington TX 2.50 0.53 0.43 35.14  1.13 1.16 0.50 23.92 5.40 

51 Syracuse NY 2.39 0.28 0.36 32.00 0.65 2.38 1.20 0.58 18.77 4.70 

52 Jackson MS 2.36 0.17 0.22 37.00 0.77 1.56 1.11 0.67 22.13 5.33 

53 New Orleans LA 2.31 0.54 0.68 24.43 0.68 1.38 1.17 0.62 20.15 3.89 

54 Memphis TN 2.30 0.43 0.34 31.25 0.84 1.99 1.13 0.64 21.93 5.02 

55 Louisville KY 2.27 0.42 0.35 30.00 0.87 2.04 1.13 0.66 16.06 4.10 

56 Huntington-Ashland WV 2.16 0.14 0.33 30.00  2.01 1.19 0.63 16.72 2.57 

57 Colorado Springs CO 2.13 0.19 0.25 28.80 0.60 0.81 1.22 0.58 15.36 4.48 

58 Cincinnatti OH 2.13 0.68 0.41 26.67 0.71 2.62 1.15 0.49 18.25 4.70 

59 Greenville-Spartanburg SC 2.10 0.31 0.32 31.20 0.93 2.14 1.05 0.38 15.98 2.97 

60 Chattanooga TN 2.09 0.21 0.22 32.20 0.69 2.01 1.07 0.00 22.30 3.21 

61 West Palm Beach-Boca Raton FL 2.03 0.42 0.27 34.14 0.28 2.11 1.07 0.36 16.69 5.39 

62 Raleigh-Durham-chapel Hill NC 2.02 0.36 0.25 36.00 0.90 1.99 1.11 0.39 22.41 6.03 

63 Harrisburg-Lebanon-Carlisle PA 1.99 0.30 0.58 32.00 0.52 2.65 1.21 0.56 20.66 5.15 

64 Augusta-Aiken GA 1.95 0.20 0.46 31.00 0.45 1.99 1.00 0.12 22.68 4.27 

65 Miami FL 1.94 1.00 0.17 25.20 0.04 2.11 1.07 0.62 19.48 4.64 

66 Salem OR 1.93 0.14 0.53 28.00  0.87 1.29 0.63 18.89 4.91 

67 Omaha NE 1.92 0.32 0.17 28.25 0.75 1.33 1.14 0.62 19.06 2.77 

68 Chicago IL 1.88 3.22 0.46 26.00 0.48 2.47 1.19 0.72 17.78 5.39 

69 Lakeland-Winter Haven FL 1.87 0.22 0.14 32.70  2.11 1.07 0.50 10.95 3.33 

70 Ventura CA 1.85 0.36 0.26 41.65 0.24 1.09 1.16 0.36 20.41 8.05 

71 Peoria-Pekin IL 1.80 0.19 3.06 34.00 0.76 2.47 1.19 0.54 20.61 4.77 

72 Saginaw-Bay City-Midland MI 1.77 0.23 0.26 31.75  2.07 1.06 0.55 23.04 3.16 

73 Spokane WA 1.76 0.20 0.26 24.86 0.69 1.20 1.26 0.70 15.47 2.99 

74 Boston MA 1.76 1.63 0.41 30.60 0.82 3.89 1.28 0.49 20.98 5.89 

75 Des Moines IA 1.73 0.23 0.27 28.00 0.91 2.02 1.09 0.67 15.36 2.83 

76 Davenport-Moline-Rock Island IA 1.71 0.21 0.19 24.00 0.69 2.35 1.16 0.80 19.46 2.87 
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Table 3-1. Descriptive statistics by MSA 

 Metropolitan Area 
Area 

(sq-mi) 

Pop. 
Density 
(per sq-

mi) 

Jobs-
housing 

imbalance 

Median 
speed in 

city 
(mph) 

City 
shape 

Highway 
density 

(lanes per 
sq-mi) 

Price of 
Gas 

(dollars) 

Access 
to transit 

Annual 
VMT 

(thousand 
miles) 

Average 
DTW 

(thousand 
miles) 

77 Lansing-East Lansing MI 1.71 0.25 0.10 30.00 0.63 2.07 1.06 0.74 22.88 4.48 

78 Glens Falls NY 1.71 0.07 0.39 33.50  2.38 1.20 0.47 19.17 5.09 

79 Norfolk-Virginia Beach-Newport News VA 1.69 0.83 0.02 31.67 0.51 1.75 1.14 0.51 20.42 4.60 

80 Dayton-Springfield OH 1.68 0.57 0.25 32.00 0.78 2.80 1.16 0.51 20.31 4.34 

81 Pensacola FL 1.68 0.21 0.45 21.73 0.77 2.11 1.07 0.56 17.56 4.89 

82 Tacoma WA 1.68 0.35 0.31 30.00 0.79 1.20 1.26 0.64 18.34 4.72 

83 Salt Lake City-Ogden UT 1.62 0.66 0.16 29.10 0.46 0.50 1.16 0.73 18.71 5.08 

84 Baton Rouge LA 1.59 0.33 0.42 31.20 0.60 1.38 1.17 0.42 19.74 4.86 

85 Vallejo-Fairfield-NAPA CA 1.58 0.29 2.07 31.43  1.09 1.16 0.65 16.42 5.65 

86 Santa Rosa CA 1.58 0.25 0.24 31.00 0.59 1.09 1.16 0.50 23.44 4.09 

87 Modesto CA 1.49 0.25 0.13 31.00 0.52 1.09 1.16 0.47 23.43 5.82 

88 Allentown-Bethlehem-Easton PA 1.46 0.47 0.24 30.00 0.37 2.65 1.21 0.46 19.34 4.59 

89 Milwaukee-Waukesha WI 1.46 0.98 0.45 32.00 0.59 2.05 1.20 0.82 18.60 5.00 

90 Oakland CA 1.46 1.43 0.50 28.71  1.09 1.16 0.71 17.71 5.88 

91 Columbia SC 1.46 0.31 1.68 31.50 0.71 2.14 1.05 0.40 18.67 3.94 

92 Grand Rapids-Muskegon-Holland MI 1.42 0.48 0.31 33.00 0.69 2.07 1.06 0.60 19.28 3.71 

93 Stockton-Lodi CA 1.40 0.34 0.23 40.00 0.67 1.09 1.16 0.46 19.53 5.44 

94 Appleton-Oshkosh-Neenah WI 1.40 0.23 0.34 33.00  2.05 1.20 0.82 18.97 3.99 

95 Toledo OH 1.36 0.45 0.37 28.48 0.81 2.80 1.16 0.44 15.86 4.38 

96 Fort Wayne IN 1.36 0.27 0.16 36.02 0.69 2.59 1.07 0.64 20.42 6.06 

97 San Jose CA 1.29 1.16 1.15 26.40 0.46 1.09 1.16 0.61 18.36 4.12 

98 Binghampton NY 1.23 0.22 0.27 30.00  2.38 1.20 0.54 17.24 3.55 

99 Newark NJ 1.22 1.50 0.49 26.10  4.81 1.16 0.57 17.12 4.63 

100 Fort Lauderdale FL 1.21 1.04 0.18 27.07 0.62 2.11 1.07 0.58 17.07 4.29 

101 Madison WI 1.20 0.31 0.28 27.50 0.86 2.05 1.20 0.82 20.18 3.16 

102 Nassau-Suffolk NY 1.20 2.18 0.46 27.40  2.38 1.20 0.49 18.90 6.43 

103 Hickory-Morgantown-Lenoir NC 1.17 0.19 0.29 31.00  1.99 1.11 0.25 13.73 2.29 
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Table 3-1. Descriptive statistics by MSA 

 Metropolitan Area 
Area 

(sq-mi) 

Pop. 
Density 
(per sq-

mi) 

Jobs-
housing 

imbalance 

Median 
speed in 

city 
(mph) 

City 
shape 

Highway 
density 

(lanes per 
sq-mi) 

Price of 
Gas 

(dollars) 

Access 
to transit 

Annual 
VMT 

(thousand 
miles) 

Average 
DTW 

(thousand 
miles) 

104 Albuquerque NM 1.17 0.41 0.24 28.36 0.73 0.51 1.19 0.59 19.07 3.24 

105 Wilmington-Newark DE 1.11 0.52 0.26 27.25 0.44 2.90 1.27 0.48 17.43 4.47 

106 Monmouth-Ocean NJ 1.11 0.89 0.43 33.60  4.81 1.16 0.37 22.67 6.30 

107 Daytona Beach FL 1.11 0.34 0.47 39.00 0.24 2.11 1.07 0.41 22.04 6.23 

108 Hartford CT 1.07 0.71 0.26 30.00 0.56 4.23 1.39 0.34 18.81 4.00 

109 Jamestown NY 1.06 0.13 0.31 28.35  2.38 1.20 0.59 17.70 3.87 

110 Middlesex-Somerset-Hunterdon NJ 1.05 0.98 0.19 30.00  4.81 1.16 0.32 17.42 6.69 

111 Buffalo-Niagara Falls NY 1.04 0.93 0.32 28.00 0.54 2.38 1.20 0.51 15.44 3.51 

112 Youngstown-Warren OH 1.03 0.48 0.36 30.00 0.44 2.80 1.16 0.20 15.82 3.37 

113 San Francisco CA 1.02 1.58 0.25 26.33 0.74 1.09 1.16 0.72 16.35 5.35 

114 El Paso YX 1.01 0.58 0.16 36.50 0.45 1.13 1.16 0.79 14.97 5.26 

115 Canton-Masillon OH 0.97 0.41 0.34 34.57 0.67 2.80 1.16 0.33 19.93 5.45 

116 Lancaster PA 0.95 0.45 0.22 22.00  2.65 1.21 0.35 13.62 3.49 

117 Gary IN 0.92 0.66 0.31 32.64  2.59 1.07 0.67 19.42 5.96 

118 Akron OH 0.91 0.73 0.19 23.00 0.70 2.80 1.16 0.63 18.48 3.19 

119 Orange County NY 0.82 0.38 0.18 30.00  1.09 1.16 0.57 20.26 6.95 

120 Dutchess County NY 0.80 0.32 0.41 33.82  2.38 1.20 0.29 21.06 6.61 

121 Rockford IL 0.80 0.36 0.17 30.00 0.71 2.47 1.19 0.50 18.46 3.35 

122 Ann Arbor MI 0.71 0.40 0.26 36.00  2.07 1.06 0.83 24.14 6.60 

123 Asheville NC 0.66 0.27 0.06 27.75  1.99 1.11 0.63 12.00 2.56 

124 Flint MI 0.64 0.67 0.21 35.25 0.87 2.07 1.06 0.73 19.76 5.38 

125 Providence-Fall River-Warwick RI 0.61 1.07 0.30 36.00 0.55 5.63 1.31 0.38 19.34 5.99 

126 Honolulu HI 0.60 1.39 0.58 24.50  0.64 1.44 0.82 14.53 3.80 

127 Springfield MA 0.59 0.89 0.57 30.00 0.55 3.92 1.28 0.45 18.94 4.42 

128 Sarasota-Brandenton FL 0.57 0.49 0.16 24.00 0.22 2.11 1.07 0.42 13.29 1.71 

129 Kalamazoo-Battle Creek MI 0.56 0.40 0.24 35.00  2.07 1.06 0.45 21.19 4.82 

130 New Haven-Meriden CT 0.43 1.23 0.30 30.33 0.51 4.23 1.39 0.56 15.92 4.84 
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Table 3-1. Descriptive statistics by MSA 

 Metropolitan Area 
Area 

(sq-mi) 

Pop. 
Density 
(per sq-

mi) 

Jobs-
housing 

imbalance 

Median 
speed in 

city 
(mph) 

City 
shape 

Highway 
density 

(lanes per 
sq-mi) 

Price of 
Gas 

(dollars) 

Access 
to transit 

Annual 
VMT 

(thousand 
miles) 

Average 
DTW 

(thousand 
miles) 

131 Bergen-Passaic NJ 0.42 3.05 0.37 24.76  4.81 1.16 0.56 18.02 5.61 

132 Elmira NY 0.41 0.23 0.43 28.50  2.38 1.20 0.54 15.58 3.02 

133 Bremerton WA 0.40 0.48 0.01 31.00  1.20 1.26 0.54 15.54 4.82 

134 Pittsfield MA 0.23 0.35 0.42 28.00  3.92 1.28 0.47 16.46 3.74 
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Table 3-2. Distance to work and VMT by income category 

Income 
(dollars) 

 

Household 
distance to 

work 
(thousand 

miles) 

VMT 
(thousand 

miles) 

Number of 
cars 

Ratio of 
HHDTW 
to VMT 
(columns 
3 and 4) 

$0 to $20k  3.13 10.55 1.45 0.30 
$20k to $30k  5.57 14.53 1.70 0.38 
$30k to $45k  8.20 18.31 1.95 0.45 
$45k to $60k  10.85 21.96 2.17 0.49 
$60k to $80k  12.76 23.90 2.28 0.53 
More than $80k  13.39 25.72 2.41 0.52 

Total  8.67 19.11 2.00 0.45 
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Table 3-3. Distance to work and VMT by number of workers  

Number of workers in 
the household 

Household 
distance to 

work 
(thousand 

miles) 

VMT 
(thousand 

miles) 

Number of 
cars 

Ratio of 
HHDTW to 

VMT 
(columns 2 

and 3) 

No workers 0.00 10.34 1.48 0 
1 worker 5.67 16.16 1.68 0.35 
2 workers 12.33 22.58 2.19 0.54 
3 workers 16.07 27.42 2.93 0.58 
4 workers 21.44 32.54 3.53 0.65 

Total 8.67 19.11 2.00 0.45 
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Table 3-4. HHDTW and VMT by car ownership 

Number of cars 
owned 

Household 
distance to 

work 
(thousand 

miles) 

VMT 
(thousand 

miles) 

Ratio of 
HHDTW to 

VMT 
(columns 2 

and 3) 

1 3.95 10.13 0.39 
2 9.56 20.51 0.47 
3 or more 12.97 27.97 0.46 

Total 8.67 19.11 0.45 
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4 The case of Distance to Work 

4.1 Introduction 

 Economists have long been concerned with the externalities generated by 

automobiles.  The externalities are exceptionally varied (see Parry et al, 2007 for a 

detailed description); they include when and where a car is driven (i.e., congestion); 

air, noise, and indirect water pollution; and greenhouse gas emissions.  There are non-

environmental externalities such as accidents and road depreciation, and 

environmental externalities from the road network itself, such as habitat 

fragmentation.  There are frequently externalities from parking, since parking in 

many cases is an open access resource, often at capacity or with inefficient search 

costs.  The wide variety and presumed size of these externalities make automobiles 

prime candidates for regulation and for analysis. 

 Many of these externalities are closely bound up with the number of miles 

being driven, and economists have therefore been much interested in the behavior of 

what is known as vehicle miles traveled (VMT).  VMT have also been fertile ground 

for study because household-level VMT are relatively easily observed, more so than 

most of the specific externality-causing activities.    

 Much of the research on VMT has focused on the effect of car ownership on 

VMT (Bento et al., hereafter BCMV, 2005; Mannering and Winston, 1985; Train, 

1986).  In this paper, I focus instead on the effect of the household’s location (within 

a city) on its VMT.  In particular, I examine households’ distance-to-work (DTW).   



 

 42 
 

 The key motivation for my focus is that household location provides a much 

more substantial constraint on VMT than does cars-owned.  Individuals can change 

the number and types of cars they own in as little as a day, with a modest investment 

in time.  By contrast, a change in distance-to-work involves much more time and 

potentially substantial transaction costs; the non-monetary psychic costs of changing 

jobs or neighborhoods are also large.  In sum, location is much more costly to change 

than car ownership in both monetary and non-monetary terms.   

 Thus, the short-to-medium-term constraints imposed by household location 

are likely to be more important economically and for policy than the automobile 

stock.  Accounting for household location should then give a much clearer picture of 

factors that influence VMT in all but the very-long-run.  This is the main purpose of 

this research. 

 Such an approach requires, of course, that I treat household location as 

endogenous.  City- and household-level attributes that may lead households to live 

close or far from their work may also lead them to drive few or many miles for non-

commuting purposes, and this effect must be accounted for when measuring the 

behavior of VMT conditional on DTW.  I adopt several strategies for identifying the 

household location (DTW) effect.   

 I chose a continuous measure of household location over a discrete measure 

for several reasons. First, my sample is representative at the national level, not the 

local level. I feel that the level of detail needed to characterize discrete choice models 

works better at the local. This argument is supported in the literature, as all discrete 

choice models are estimated for a particular city. Second, estimating a 
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continuous/discrete model following the work of Train (1986) would require 

estimating a VMT equation for each household location available. In order to make 

this type of model tractable, one would have to aggregate the date into a few choice 

possibilities such as urban core, urban, and suburban areas. Since aggregation of the 

location choices would be done somewhat arbitrarily, estimation of the effects of the 

choice variables in the discrete model (for instance, population density) is not very 

easily carried over to the VMT model. Third, interpretation of the effect of DTW on 

VMT is very straightforward when using a continuous variable for household 

location, particularly from a policymaker point of view—this relationship allows me 

to calculate the contribution of commute miles to total miles driven. 

 Despite the clear conceptual connection between distance-to-work and vehicle 

miles traveled, and the constraining nature of household location, little is known 

about their joint behavior.  To the extent that the VMT literature considers a role for 

household location, it has focused on variables such as the neighborhood density 

(Boarnet and Crane, 2001; Chatman, 2002; Sermons and Seredich, 2001) or access to 

public transportation (Kayser, 2000), with none of these being treated as an 

endogenous choice.  As discussed in section 1.1, Sermons and Seredich (2001) is one 

of the few papers addressing discrete household location and VMT. The authors use 

data from San Francisco to jointly estimate a model household location (they divide 

San Francisco into 5 clusters); a car ownership model (they include the predicted 

utility of residing in each of the 5 clusters in the estimation); and two equations for 

vehicle use, defined as number of trips and VMT. In both these last equations they 

include the predicted number of vehicles the household owns—this is an approach 



 

 44 
 

different than that outlined in Train (1986). 

 As explained above, I believe that DTW is a more relevant and interesting 

measure of household location than those based on discrete choice or using household 

density.  The literature to explain DTW has focused on neighborhood and household 

characteristics (e.g., Khattak and Amerlynck, 1999) rather than city-level attributes.  

The one exception is Levinson and Kumar (1997), who argued that DTW is higher in 

larger population cities, although without rigorous statistical analysis. 

 The VMT literature is voluminous, but it has only recently begun to look at 

the role of city attributes; a presumed large role for these attributes is one of the 

motivations behind the Smart Growth movement.  BCMV is an important recent 

contribution to this literature.  I discuss this paper’s contributions below.  Our paper 

builds on this line of inquiry with attention to how city “layout” affects both DTW 

and VMT conditional on DTW.  Note that different city characteristics may be 

important for DTW and VMT decisions.  I discuss and estimate the separate roles for 

these characteristics. 

  I reach two broad conclusions.  First, those city characteristics that might be 

expected to affect commutes (other than the city’s physical size) have remarkably 

little effect on households’ distance-to-work.4  Variables like city shape and area, 

commuting speed, or the joint jobs-housing distribution have little apparent effect on 

city-average distance-to-work.   

 Second, I conclude that distance-to-work provides an important effect on 

overall household vehicle miles traveled.  A one percent increase in distance-to-work 

leads to a 0.18 percent increase in overall VMT.  This elasticity is comparable in 

                                                 
4Following the literature, I analyze metropolitan statistical areas (MSAs) but refer to them as cities. 
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magnitude both to the income elasticity of VMT and the gas price elasticity of BMT. 

This effect is easier understood in terms of marginal effects rather than as an 

elasticity—in level terms, a one mile increase in one-way distance-to-work for one 

worker, which translates into roughly 480 additional commuting miles per year, leads 

to an annual increase of about 158 vehicle miles.   

 There are two other results that I find noteworthy and that I feel have received 

insufficient attention from the literature.  First, I find that conditional on distance-to-

work, people do not drive (much) more in physically larger cities.  This result may 

not be surprising, since non-commuting “chores” can mostly be done locally, 

regardless of a city’s size, but the size and nature of this conclusion has not been 

estimated to my knowledge.  Previous research has either not examined the city area 

effect (despite, I feel, its seemingly obvious role) or, in the few cases where it has 

been included, has not emphasized it (BCMV).  One implication of my finding is that 

household migration – mostly from physically small to large cities – will likely have 

small effects on nationwide VMT.  This effect has not been much remarked on. 

 I also find that non-working households have a considerably smaller VMT-

gas-price elasticity.  Previous literature has not focused on the work decision, despite 

the fact that non-working households drive approximately 10,000 miles less per year 

than working households and constitute roughly 12 percent of the population (based 

on the NPTS).  I estimate separate VMT equations for workers and non-workers (i.e., 

no workers in the household.)  This distinction also entails my recognizing that the 

work decision is endogenous. This approach is different than that found in the 

literature, where VMT models typically include the number of workers as a right 
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hand side regressor. 

  

4.2 Data 

 As described in Chapter 3, I use the 1995 Nationwide Personal Transportation 

Survey sponsored by the U.S. Department of Transportation.  The survey provides 

data on the amount and nature of personal travel in the U.S., by all modes.  The unit 

of analysis is the household.   

 I analyze households that live in the 134 largest metropolitan statistical areas 

(MSA).  I restrict myself to MSAs because several of my explanatory variables are 

applicable only for urban areas.  I further restricted analysis to MSAs that had at least 

20 observations.  These 134 MSAs constitute 85 percent of the original sample.   

 I further restrict my sample to households with income data.  This restriction 

is necessary because of the importance of income as an explanatory variable. This 

restriction loses an additional 11.7 percent of the original sample. 

 I also restrict attention to households with at least one car.  This restriction loses 

just an additional 4.5 percent of households.  The reason for my restriction is that I 

work with a reduced form model in which car ownership in endogenous.  The 

required reduced form demand for VMT would be much more complex if it had to 

apply to both zero- and nonzero-car households.    

 Finally, I eliminate from the final sample 1,735 observations with missing 

VMT data. 

 Table 4-1 shows my final sample.  The largest chunks of attrition are due to 

missing VMT or income data.  This attrition is both severe and unlikely to be random.  
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This fact does not appear to have been much remarked on in the VMT literature and I 

similarly do not deal with it here.  Future research on the consequences of missing 

income and VMT data is clearly warranted. 

 

4.3 Econometric Model 

4.3.1 Dependent variables 

I examine three choice variables: whether anyone in the household works, 

distance-to-work, and household vehicle miles traveled.   

WORK is a dummy variable with WORK = 1 if any adult in the household 

works, either full or part-time, and 0 otherwise.  This variable is defined for me by the 

NPTS.  The NPTS asks whether the individual interviewed or any other of the 

household members work for pay or for profit at the time of the interview.  There 

may be no workers in a household if all adults are either unemployed or retired.  

Distance-to-work is recorded only for households for which WORK = 1. 

For distance-to-work, I transform the NPTS’s measure in two ways.  First, I 

must take into account multiple workers in a household.  I construct the average 

distance-to-work over all workers in the household.  An alternative would be to use 

the household sum, but this variable is not right for me because it is unduly 

influenced by the household’s labor force participation decisions.  The average 

distance-to-work over all workers in the household reflects the household’s decision 

about where to live to accommodate all of its workers and is unaffected by their 

number.  On the other hand, the sum of distances to work is strongly affected by the 
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number of workers.  I use average distance to focus on household location rather than 

labor force participation.  

The second transformation is scale.  I want to make my distance-to-work 

variable commensurate with vehicle miles traveled, which are measured on a yearly 

basis.  Therefore I multiply the reported distance-to-work by 480, which is 2 trips per 

day for 240 work days per year.  This operation merely changes the reported one-way 

distance-to-work to a convenient scale and is not meant to reflect the true number of 

workdays.5  DTW is the household-average yearly distance-to-work. 

In my analysis of VMT I account for the number of workers, for obvious 

reasons. I use the variable HHDTW to represent the sum of the yearly distance-to-

work over all working members in the household.6  HHDTW is more comparable to 

VMT than DTW, and it allows me to calculate the contribution of commute miles to 

total miles. Note that the coefficient relating HHDTW to VMT (see equation (4) 

below) has a straightforward interpretation—if this coefficient equals 1, then an 

increase in distance-to-work is directly translated into annual vehicle miles traveled.  

I expect this coefficient to be less than one because of task sharing.  

For households that own or lease at least one car, the NPTS estimates total 

miles driven during a one year period.  I sum these miles over all cars in the 

household to construct my dependent variable, the household’s vehicle miles traveled, 

VMT.  It is also common to find in the literature VMT models where the left hand 

side variable is VMT per vehicle.   

 

                                                 
5I attempted to construct a household specific count of workdays, but dropped this approach due to 
missing occupation data and occupations whose workdays were difficult to assess. 
6 Note that HHDTW = DTW x (Number of workers)  
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4.3.2 Model and Discussion 

Our general model is shown in equations (1)-(4).  This is an endogenous 

switching regression in which one of the branches is a system of equations.   

  WORK = 1 if 01 >+ uX α ; else WORK = 0   (1) 

If WORK = 1:   εβ += 2)ln( XDTW     (2) 

    νδγ +⋅+= HHDTWXVMT 3   (3) 

If WORK = 0:   ωθ += 4XVMT     (4) 

 

where Xi is a vector of exogenous variables.  In the notation below, I separate Xi into 

two components, Z (city-specific variables) and X (household-level variables). 

Each of these equations has specific considerations that led me to adopt a 

particular form.   

Distance-to-work.  Because distance-to-work has not been studied much, I 

devote some attention to the specification of this equation and the distribution of the 

error term.   

I adopt a conditional log-normal specification, which is both tractable and 

consistent with the data.  Although it would be desirable to derive the appropriate 

distribution of DTW from more fundamental assumptions about each city’s size, 

shape, and job-housing distribution, such constructions are intractable.  The implied 

distribution of DTW would also be dependent on assumptions about the distribution 

of household tastes.  Suppose that jobs and households are independently and 

uniformly distributed over a square with side K.  The distance between a randomly 

chosen household and job is then a random variable, albeit without a closed-form 
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solution for the distribution.  It can be shown, however, that under these assumptions 

the mean and variance will be increasing and linear in K and K2, respectively, a result 

I believe is instructive.  The assumption of independence would, in this context, be an 

assumption about tastes; for example, jobs and houses could be uniformly distributed 

but DTW could still range from being everywhere zero to being everywhere large, 

depending on households’ choices to live near or far from their workplace. 

Let DTWij represent the yearly distance-to-work for household i in city j.  

Then household i’s location within city j is given by: 

iijij XZDTW εβφ ++=)ln(   

where Zj is a vector of city characteristics and Xi a vector of household characteristics.   

Vehicle Miles Traveled.  The specification for the VMT equations is based on 

the need for both tractability and economically useful parameters.  Unlike previous 

studies, I do not model number of cars owned.  Instead, I implicitly use a reduced 

form in which number of cars owned is endogenous.    

I estimate separate VMT equations for households based on WORK ((3) and 

(4)) because it seems likely that travel patterns will differ greatly based on whether 

someone in the household works.   

Error structure.  Equations (2) and (3) form the heart of my analysis.  An 

important element of both equations, however, is the unobservable “taste for driving.”  

Thus, I adopt an error structure that allows correlation between ε and ν.  Any attempt 

to measure the effect of household location on VMT must take this taste into account.   

I also allow correlation between the WORK and VMT errors, denoted σWV.  

Such correlation is likely due to unobserved personal characteristics such as health; a 
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better health status leads households to be both more likely to work and more likely 

to undertake activities outside of the house.  I do not expect health status (or other 

propensity-to-work variables) to affect the distance-to-work.    

To accommodate the possibility that DTW is more dispersed in larger cities, I 

assume within-city heteroskedasticity of the form: 
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Estimation.  I estimated the model using a combination of FIML and LIML, 

but as a whole is estimated as LIML.  The model is a variation of a sample selection 

model where one of the branches is distributed bivariate normal.  The estimation 

procedure consists of 3 steps: 

Step 1:  Run probit regression for the household’s labor force participation, 

yielding estimates α̂ .  Construct the inverse mills ratio, )ˆ(/)ˆ( ααφλ XX Φ= .  

Step 2: Estimate equations (2) and (3) (i.e. when WORK=1) under the 

assumption that the error terms in these equations are distributed bivariate normal.  

The inverse mills ratio estimated in step 1 is included as a regressor in the VMT 

equation.  Estimation of these two equations is then done using Full Information 

Maximum Likelihood.  I assume heteroskedasticity as described in section 4.3. 

Step 3:  Estimate equation (4).  The inverse mills ratio from step 1 is included 

in this equation.  
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Identification.  There are two conditions that should be met when dealing with 

identification in a system of equations: the rank condition and the order condition. 

The order condition with exclusion restrictions is a necessary but not sufficient 

condition for identification. The order condition states that “the number of excluded 

exogenous variables from the equation must be at least as large as the number of 

included right hand side endogenous variables in the equation”. 7 Note that the order 

condition is met by all equations in the system. It is clear that the order condition 

holds for equations (1), (2), and (4), as there are no right hand side endogenous 

variables. The only equation where I have an endogenous variable in the right hand 

side is equation (3), therefore at least one exogenous variable that is not included in 

equation (3) is needed for it to be identified. Since the variables representing the“Job-

housing Gini Coefficient”, the “Median speed in city”, and the “relative income” are 

not included in equation (3), I can conclude that this equation meets the order 

condition (the equation is overidentified).  

With regards to the rank condition, once again the equation of interest is 

equation (3) as it is the one with the endogenous variable in the right hand side. 

Temporarily rewrite, for ease of exposition, equations (2) and (3) as follows: 

ln (DTW) = β21 GINIJOBS + β22 MEDSPEED + β23 HHSIZE + X* β2i + ε (2’) 

VMT = δ HHDTW + γ31 GASPRICE + γ32 HWYDENS + γ33 NUMDRVR  

+ γ34 NUMADLT + γ35 MILLSRATIO + X* γ3i + v   (3’) 

where β2i and γ3i are vectors of dimension (1 x 8). The exogenous variables 

represented by X* are the same in both equations. Note that the exogenous variables 

explicitly included in equation (2’) are those not included in equation (3’) and vice 

                                                 
7 Taken from Wooldridge (2002), page 215, Theorem 9.1. 
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versa. The system contains two endogenous variables: VMT and DTW. Define the 

vectors of coefficients for these two equations as: 

 β2 = (β21, β22, β23, γ21, γ22, γ23, γ24, γ25, β2i) 

 β3 = (β31, β32, β33, γ31, γ32, γ33, γ34, γ35, γ3i) 

where β31= β32= β33= γ21= γ22= γ23= γ24= γ25=0. Vectors β2 and β3 can be rewritten 

as:  
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Define the exclusion restriction for β3 as: 
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Therefore, the rank condition is given by: 
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The rank of matrix R3B is 1, and given that there are two endogenous 

variables in equation (3), we can conclude that the system is identified. 

 

4.3.3 Explanatory variables 

4.3.3.1 Work equation. 

I follow the existing literature in modeling the work decision, including 

household characteristics such as the age of the respondent (AGE and AGE-SQ), 

gender, his or her education, and the household’s size and life cycle.  I cannot directly 
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account for the age of the spouse (or second adult) because not all households contain 

a spouse.  Instead, I construct a dummy variable for whether the respondent has a 

spouse, and then interact it with the spouse’s age and gender.  Our data do not include 

a separate measure of non-work income.  

I also include two locality-specific variables: the unemployment rate in the 

MSA and the percent of the population that is retired in the household’s census tract.  

 

4.3.3.2 Distance-to-work equation.   

Analysis of distance-to-work should capture both (i) the DTW choice of 

household i within city j and (ii) the mean and variance of DTW across households 

for a city with characteristics Zj.  In essence, I am treating distance-to-work as a 

“demand” and thus examine analogs to its price (which is common to all households 

within an MSA) and income and taste (which are household specific).   

Note that it is conceptually possible for the distance-to-work to be zero for all 

households regardless of city size – imagine even a very large city in which everyone 

lives right next to his or her work.  There is a subtle reason why I must temper this 

claim:  The definition of the MSA is itself endogenous and dependent on the work 

decisions of thousands of households.  For example, while it is conceptually possible 

for everyone to have a close-to-zero distance-to-work, it seems likely that this 

outcome would then lead to this area being divided into multiple smaller MSAs.  That 

is, MSA boundaries are effectively implied by there being enough high DTWs in an 

area.  I do not speculate further here on the endogenous-MSA problem.  My claim 

that small DTWs could occur under any size MSA provides useful intuition; any 

further exploration of this problem requires much more sophisticated modeling of the 
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distribution of DTWs within an MSA.  Thus, the key to understanding the distribution 

of DTW is to understand those factors that affect all households and lead them, in 

general, to live close to or far from their jobs.   

City-specific variables.  I follow Bento et al (2005) in the choice of city 

specific variables, though I complement their measures with other measures I 

constructed based on the data available.  This allows me to use variables like 

commuting speed, which has To capture the “price” of living close to work, I 

measured the congestion of each city by calculating for all households i in city j the 

ratio of DTWij to the reported Time to Work (TTWij), which is elicited by the survey 

in a manner similar to DTW.  The ratio DTWij/TTWij is a measure of the commuting 

speed experienced by household i.8  I then calculated the median commuting speed in 

city j over all sampled households, labeled MEDSPEEDj.  The higher is 

MEDSPEEDj, the quicker people get to work in city j for a given DTW.  This speed 

lowers the cost of living farther from work.   

A second desirable measure of the price of DTW is each city’s housing price-

distance gradient: a measure of how quickly housing (rental) prices fall as one moves 

away from major job centers.  A steeper price-distance gradient would mean that it is 

relatively more expensive to live close to a job center; thus, households would, on 

average, choose to live farther away.  

Note, however, that the price-distance gradient’s effects should be captured by 

the variables I am able to include, MEDSPEED and GINIJOBS.  The reason is that 

housing prices are endogenous and therefore how quickly they fall off as one moves 

                                                 
8 The measure of commuting speed is calculated at the individual level. The NPTS collects information 
on each individual’s TTW and each individual’s DTW. I build the ration and then obtain the average 
commuting speed at the city level. 
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away from the center city should reflect a combination of the supply of close-in 

housing, which GINIJOBS should capture, and the difficulty of commuting, which 

MEDSPEED should capture.9  Therefore, I do not include a separate measure of the 

housing price-distance gradient. 

I also consider two variables that capture city characteristics but without an 

explicit connection to jobs or housing.  These are AREA and CITYSHAPE.    

BCMV argue that cities that are closer to circles (CITYSHAPE closer to 1) 

should have lower VMT.  I believe this intuition is especially relevant for the 

distance-to-work, since households have fewer options for jobs-housing connections 

and are therefore more constrained by the city network.  This claim is complex.  It is 

perhaps easiest to see for a University professor.  For a given residence a household 

has a choice of n places to work where n is the number of universities in town.  The 

same household will have a larger choice of shopping or entertainment destinations.  

This reasoning holds as long as the individual is more restricted in terms of his 

occupation than in terms of his non-commuting destinations.  Shifting the perspective 

to the number of houses available from a given workplace does not alter this 

conclusion: there will almost always be more flexibility for non-commuting miles 

than commuting miles.  Therefore, I include CITYSHAPE as an explanatory variable 

in the DTW equation but not the VMT equations. 

I also include population density as measured at the city (MSA) level.  I 

discuss its interpretation below.  The relationship between VMT and residential 

neighborhood density has been studied extensively in the literature (Steiner, 1994; 

                                                 
9
Despite this assessment, I think it would be worthwhile to examine the role of city-specific housing 

price-distance gradients.  I leave this for future research, since the construction of such a measure is 
complex, and the housing price-distance gradient would be worthy of analysis on its own.  
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Schimek, 1997; Wilson, 1998; Badoe and Miller, 2000).  Neighborhood density 

represents too limited a measure of the community in which a most of the 

household’s vehicle travel takes place, however.  I focus instead on city-level density, 

which provides a better measure of the density of the area in which household VMT 

occurs.   

 Finally, for households that have at least one worker in the household, access 

to transit becomes an important variable to consider. I therefore create a variable 

called Access to Transit (TRANSIT) defined as the percentage of people in a given 

city that live within a 0.5 mile radius of a transit stop. A transit stop is defined as any 

source of public transport, and includes buses, metro, light rail, streetcar, or 

commuter train. This variable is constant within a particular city, but differs between 

cities. I do not make a distinction between rail and bus transit. Though data on each 

household’s distance to a transit stop is available, I build a city wide measure that is 

truly exogenous to the household. 

Household characteristics.  For household characteristics I use a typical set of 

measures commonly found in the literature (see Table 2.3).  In considering the role of 

income, I expect (negative) DTW to be a normal good; that is, people prefer to live 

closer rather than farther to work, ceteris paribus,.  Thus, a higher household income 

should be associated with a shorter DTW.  Because of differences in housing costs 

across MSAs, I measure household income relative to the city’s median income.  For 

consistency in income measures, I use the median income of NPTS respondents.  

Relative income is then calculated as RELINCOMEij = Incomeij/ Median-Incomej.  

To my knowledge, this approach has not been used before in the literature. The main 
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reason being, in my opinion, that residential location models typically focus on a 

household’s choice within a single city (Bayoh et al., 2006) therefore there is no need 

to correct for the relative income between MSAs. 

 

4.3.3.3 Vehicle Miles Traveled equation 

The VMT equation is a reduced form equation that reflects factors that affect 

both the number of cars owned and the number of miles driven conditional on that set 

of cars.  Thus, I include variables that may enter into either of these choices. 

Income is a key variable in explaining vehicle ownership and thus widely used 

in explaining VMT (see Table 2.3 and Train (1986)).  For the VMT regressions I use 

absolute, not relative, income since most of the purposes of non-commute VMT 

involve purchase of items that are tradable across cities, unlike houses.  The costs of 

VMT (maintenance, insurance, and operating costs) are also more likely to involve 

nominal (rather than relative) prices.   

The VMT literature typically focuses on the “driving price” per mile, which is 

the state-level gas price adjusted for the miles-per-gallon of the household’s cars.  I 

focus instead on the truly-exogenous state-level gas prices.    

Other important household-level variables are the number of drivers, number 

of children, and the household’s life cycle.   

 

4.3.4 Taste for driving   

I cannot observe individuals’ taste for driving.  But this taste, if unaccounted 

for, could seriously affect my estimates and inferences.  The reason is that people 
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with an affinity for driving will choose to live relatively far from work and drive 

more than a low-taste-for-driving household that lives that same distance from work.  

This taste manifests itself as a correlation between the error terms in equations (2) and 

(3), this is σευ.  Failure to take this correlation into account would then lead me to 

overestimate the effects of DTW on VMT.   

Note that in the estimation procedure described in section 4.2 and in the 

appendix to the dissertation, we are able to recover the parameters σε and, συ and ρ, 

where σευ = ρ σε συ. 

 

4.4 Research Questions and Hypotheses 

Our main questions concern (i) the role of city characteristics in explaining 

DTW; (ii) the effect of DTW on VMT; (iii) the taste for driving; (iv) the behavior of 

VMT conditional on DTW and the implied taste for driving, with special attention to 

the role of city characteristics; and (v) differences in VMT between workers and non-

workers.  I do not focus on the results of the WORK equation in this paper.   

 

4.5 Results 

I focus on the specification shown in (1)-(4).  Table 4-2 shows the summary 

statistics for the samples used.  Our main regression is labeled Regression #1 in 

Tables 4, 5 and 6.  Regressions #2 to #6 are further variations on my sample or model 

and are discussed in further detail in Section 4.6. Finally, in section 4.6 I also include 
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regression results for a different subset of the data. I estimate the model in chapter 4.3 

only for households in which every member commutes by car.  

To gauge the economic significance of the estimated coefficients, I calculate 

the implied elasticities for a representative household in six cities (MSAs), the 

approach adopted by BCMV.10  Since I exclude New York City from my sample, I 

substitute Phoenix, one of the fastest growing MSAs.  These calculations are shown 

in Table 4-7. 

 

4.5.1 Distance-To-Work equation  

City characteristics.  For DTW, I use five variables to characterize cities.  

These are AREA, CITYSHAPE, GINIJOBS, MEDSPEED, and POPDENSITY. 

There are three related findings (see Table 4-7):  (i) MEDSPEED has the 

largest effect on DTW of all variables used to characterize cities.  This effect is 

positive, as expected: a higher commuting speed lowers the cost of living farther from 

work and therefore induces greater DTW.  For the other four effects the implied 

elasticities are quite small, except for POPDENSITY in Chicago. 

Our measure of congestion (MEDSPEED) suggests that people will locate 

around 8.8 percent further from their work when commute speed increases by 10 

percent.  These percentages imply that if commute speed were to increase from a 

national average of 29.5 mph to 32.5 mph, I expect people to live on average 1.24 

                                                 
10Elasticities are estimated for each equation separately.  In the DTW equation, the elasticity is εXi = 
[∂lnDTW/∂Xi]·Xi = βi · Xi.  In the VMT equation, the elasticity is εlnX1 = [∂VMT/∂lnX1]·[1/VMT] = γ1 
· [1/VMT] or εX2 = [∂VMT/∂X2]·[X2/VMT] = γ2 · [X2/VMT].  Elasticities are calculated at the mean 
value of the variable for that city.   
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miles further their jobs than they do now.  That is, the mean one-way distance-to-

work would increase from 9.7 to 10.9 miles.   

An alternative explanation of the MEDSPEED result is that it reflects the 

distribution of the housing stock rather than the cost-of-commuting.  This effect could 

occur if a more dispersed housing stock is an important component of lower 

commuting speeds (a claim that I do not verify here).  Under such a circumstance, 

households could be relatively unconcerned about commuting speeds and instead 

simply selecting among a wider array of housing choices.  This claim is related to my 

previous one:  A greater housing stock does not imply greater DTW.  This 

explanation would be consistent with my overall interpretation of HHDTW behavior; 

see below. 

(ii)Two variables related to city size but not necessarily to commuting (AREA 

and POPDENSITY) have larger estimated elasticities than the two variables most 

directly related to potential commuting patterns (GINIJOBS and CITYSHAPE).  

(iii)  POPDENSITY has a positive effect on DTW, an unexpected result.  The 

likely explanation is straightforward, however:  A higher population density, 

conditional on MSA area, indicates a higher population.  A higher population 

indicates a greater stock of housing, roughly speaking.  This in turn means a greater 

variety of available household locations. One way to test this explanation is to run 

regression #1 including POPDENSITY and excluding AREA. After running this 

regression, I find that the coefficient on POPDENSITY is still positive. Therefore a 

more likely explanation is that the data is merely reflecting the fact that larger more 
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denser cities have, on average, greater DTW (recall that our measure of 

POPDENSITY is at the city level).   

There is a simple and compelling explanation for this pattern of results.  In the 

U.S., the range of jobs-houses-commute combinations in any given city is large.  

Even very small cities or ones with unusual shapes or a high jobs-housing imbalance 

offer a wide range of available housing and commuting patterns. Therefore, 

GINIJOBS or CITYSHAPE put little structure on the choice set.  Commuting speed 

may matter because it reflects the distribution of the housing stock.   

In other words, the general picture of city-level variables is that in cities with 

more housing options, people tend to live farther from work.  Other city 

characteristics just do not matter much.  People appear to spread themselves out based 

on a social or economic dynamic that is simply not much affected by the city’s 

“smart-growth” attributes.   

Household characteristics.  Households with higher relative income live 

farther from their work.  This is an unexpected result but it again likely reflects a 

housing stock effect rather than a pure income effect.  The reason is that newer and 

larger houses tend to be in less dense suburbs, requiring greater distances to work on 

average. 

More established households, as measured by respondent’s age, tend to locate 

closer to their work.  They were there first, so to speak.   
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4.5.2 Vehicle miles traveled equation 

4.5.2.1 The effect of DTW on Vehicle Miles Traveled 

The regression of VMT on HHDTW (Table 4-5) allows me to calculate the 

contribution of commuting miles to total miles driven.  Recall that HHDTW equals 

DTW times the number of workers in the household. Note that the term “commuting 

mile” is an accounting construct used for expository purposes.  I do not claim that 

DTW or HHDTW are measures of actual annual commuting miles.  

Since VMT and HHDTW are measured in the same units, It is easiest to see 

the effect of DTW in terms of a marginal effect rather than as an elasticity.  I estimate 

that one additional mile of HHDTW for one worker leads only to 0.33 additional 

VMT; that is, substantially less than one.  It is easiest to think of this as a strong 

degree of task-sharing, although I cannot confirm this claim here.   

Consider a household with 2 workers, each of whom would normally drive 

15,000 miles, of which 5,000 are commute miles and 10,000 are non-commute miles.  

VMT is 30,000 and the one-way distance-to-work is 10.4 miles for each of the 

workers.  Increasing the commute miles by 2,400 per worker, or 5 one-way miles 

each, would increase overall miles only by 1,584 miles (using δHHDTW = 0.33)11, to 

31,584 miles.  Non-commute miles would actually decrease by 3,220, from 20,000 to 

16,784.   

 

                                                 
11The expected contribution of commuting miles to VMT prior to the change is 0.33 × 5,000 = 1650 
miles.  The expected contribution after the change is 0.33 × (5000 + 4800) = 3234.  The change in 
commute miles is 3234 – 1650 =  1584 miles  
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4.5.2.2 Behavior of VMT conditional on distance to work 

City characteristics.  In regression #3 in Table 4-5, I adopt a specification that 

focuses on the role of what I perceive ex ante to be “non-commuting” city 

characteristics.  I include population density because it represents, roughly speaking, 

the density of friends and (in most cases) other non-commuting destinations.  I expect 

that this characteristic is the key determinant of non-work miles.  The higher is the 

density, the lower should be VMT.   

I exclude access to transit, city area, city shape, the jobs-housing balance, and 

commuting speed because these variables are expected to be more relevant to 

commuting and HHDTW.  Because non-commuting driving would seem to have 

greater flexibility than driving for commuting, it seems more likely that VMT would 

reflect a demand for driving that would be unaffected by city size, for example.   

POPDENSITY has a statistically significant, negative (as expected), but 

extremely small coefficient.  A one percent increase in population density leads to 

around a 0.2 percent decrease in VMT.  

In regression #1, I examine roles for AREA and CITYSHAPE in explaining 

VMT, acknowledging that the underlying reasons for any effects (and therefore the 

interpretation of any results) are less compelling than for they are for the DTW 

equation.  The calculated elasticities for AREA and CITYSHAPE are, -0.01 and 0.05, 

respectively; in other words, quite small, as hypothesized.  Access to transit does have 

a higher effect on VMT: the calculated elasticity is -0.11. In other words, increasing 

the percent of the population located within a half mile of a transit stop by 10 percent 

decreases VMT by 1.1 percent. This effect is important from a policy perspective, as 
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it indicates that a higher population living close to transit stops will reduce travel 

demand, presumably through mode change.  

Price and income effects.  I expect households to increase their VMT as their 

income increases.  I estimate the income elasticity to be around 0.18.  This is a short-

run elasticity conditioned on HHDTW.   

Our estimate of income elasticity is at the low end of estimates in the literature 

(see Tables 4-8 and 4-9).  Though in principle this result could be due to failure of 

other studies to condition on distance-to-work, this does not seem to be the case. I 

estimated the model without including HHDTW in the VMT equation. In this case I 

obtained an income demand elasticity for VMT equal to 0.21—this is, 20% larger 

than originally estimated but still in the lower end of estimated elasticities.  Note that 

many other studies, not included in the table, calculate an income elasticity of VMT 

per vehicle.  Since vehicles-owned is strongly influenced by income, these estimates 

are not directly comparable to ours and would be far below the income elasticity of 

total household VMT.   

With respect to gas price elasticity of VMT, table 4-9b presents a summary of 

the elasticities found in the literature. Several authors have provided reviews of the 

price elasticity of vehicle miles traveled, including Litman (2007), Goodwin et al 

(2003), and de Jong and Gunn (2001). Estimates of gas price elasticity of VMT in the 

literature are estimated around -0.1 in the short run and -0.3 in the long run. I estimate 

the gas price elasticity of VMT to be around -0.15.  Again, this is a short run estimate 

as we are conditioning my VMT equation on distance to work. Our estimates of gas 

price elasticity range from -0.10 (in regression #6) to -0.41 (in regression #5).  When 
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I run the same model without conditioning on HHDTW, my estimated parameter for 

gas price is not significantly different than zero.  

Selection effects.  The coefficient on λ, βλ, captures the unobserved correlation 

between VMT and WORK.  I expect workers to be likely to drive more because on 

average they are healthier (physically or mentally), even conditional on DTW and 

income.  Therefore I expect βλ > 0.   

The coefficient on λ is statistically significant and negative, which implies that 

unobserved influences on the decision to work are inversely correlated with 

unobserved components of VMT.  I hypothesized that health status would be an 

important component of both equations, with a positive effect in each case; that is, a 

healthier individual would be more likely to work and also likely to drive more.  

Therefore, this result is unexpected.  One possibility is that the main component of 

the error in WORK is wealth, since a higher wealth would lead a household to be less 

likely to work but to drive more.  [What if income is endogenous?  Would that have 

an effect?] 

Other household characteristics.  Other household characteristics will also 

influence VMT.  The greatest effect comes from the number of drivers, as would be 

expected.  Adding one new driver to the household will increase annual VMT by 21 

percent on average.  This is a substantial increase of roughly 4,750 miles, but still 

below the national average VMT per driver.   
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4.5.2.3 Behavior of Workers vs. Non-workers  

Differences in the mileage of workers and non-workers have not been much 

explored.  To the extent that any such differences are due solely to differences in 

household composition, life cycle, or income then the coefficients in (3) and (4) 

should be similar.  Of course, some relevant variables, such as hours worked or 

wealth, are unobserved. 

The most striking difference is the coefficient on gas price, which suggests 

that non-workers are much less responsive to gas price changes than workers.  The 

computed gas price elasticity for non-workers is -0.07, which may be compared with 

-0.15 for workers (see Table 4-8.)  Our VMT results for workers suggested that 

workers have a high degree of task-sharing; that is, they appear to combine work and 

non-work trips.  This option may contribute to the higher gas price elasticity for 

workers.   

Note that except for the gas price results, non-workers behave similar to 

workers except that they drive less.  The difference in the amount driven between 

these two groups can be explained based on the difference in the variable means (the 

Xs) and the estimated coefficients (the βs). My model predicts a difference between 

workers and non-workers of 13.9 thousand miles per year. This difference can be 

attributed roughly 73% to differences in the Xs and 27% due to differences in the 

βs.12 

 

                                                 
12 The difference in VMT between workers (w) and non-workers (nw) is given by  
 ∆VMT  = VMTw – VMTnw = Xwβw – Xnwβnw 
  = (Xw-Xnw) βw + (βw- βnw) Xnw  = ∆X βw + ∆β Xnw 
  = 10.15 + 3.74 = 13.9 (thousand miles) 
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4.5.3 Taste for driving 

I interpret the ε-ν correlation as the unobserved taste for driving after other 

observed taste effects (through household demographic variables) have been 

accounted for.  I estimate a value for taste for driving equal to 0.32. The estimated 

effect is relatively large, which means that this taste important and needs to be taken 

into account in the estimation of process. 

 To see the effects of this correlation, consider the estimated parameters of 

VMT when I do not account for this correlation.  This is shown as Regression 2 in 

Table 4-5.  I am most interested in the change in the DTW coefficient, which changes 

from 0.33 to 0.36.   That is, if I ignored the so-called taste for driving, I would 

overestimate the effect of DTW as hypothesized. Furthermore, the parameter on 

DTW is overestimated, in this particular case, by approximately 10%. 

 

4.5.4 Predicted DTW and VMT for 6 cities  

In this section, I conduct an exercise similar to BCMV to analyze the effects 

of city characteristics on DTW and VMT.  The main idea is to predict the net effect 

on DTW and VMT of moving a young household from each of my six representative 

cities to each of the others.   

To model a young household, I first selected households whose reference 

person is under 30 years old to obtain an “average young household” for each city.  I 

then predicted its DTW and VMT for each of the six cities, using Regression 4.  The 

difference between the predicted VMT in the home city and the other 5 cities is thus 

the predicted net effect of moving this household across the U.S.  Table 4-10 contains 
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descriptive statistics of the “average young household” in each city.  The predicted 

net effects on DTW and VMT are shown in Table 4-11.   

Note that this is a slightly different interpretation for an exercise that is very 

similar to BCMV.  BCMV compared predicted VMT in different cities and described 

the results as showing the effect of the differences in city characteristics.  In other 

words, they implicitly pose the question as: What if Houston became more like 

Boston?   

I frame the question differently.  Because there is a fair bit of household 

mobility across cities in the U.S. and because city characteristics (as I have 

characterized them) are so slow to change, the greatest effect on VMTs will likely 

come from changes in where people live across the U.S.  Thus, I frame the question 

as: What happens when a household moves from city A to city B?  The fact that such 

moves are a common feature in the U.S. economy may make such a prediction 

particularly informative.  

The results of this exercise can be seen in Table 4-11.  Consider the first line 

of the table. It tells me how much closer or further a representative household that 

moves from Atlanta to each of the other cities will likely locate from its workplace, 

measured in yearly distance to work (DTW).  Note that a movement to newer cities 

like Phoenix or Houston will result in a substantially longer commute.  Movement to 

older cities such as Chicago or Boston will result in a shorter commute.   

I then predict this household’s VMT.  Note that the preceding results (Section 

4.5.4) suggest that commuting miles have relatively important marginal effects on 

VMT.  Thus I find that a young household moving from Atlanta to Boston, Chicago, 
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or San Diego will drive 792, 2163, and 675 miles less per year, respectively (Table 4-

11).  It is interesting to note that even though a household that moves from Atlanta to 

Boston or Chicago is expected to increase its DTW, its annual VMT are expected to 

decrease.  

Our results for the VMT equation differ from those obtained by BCMV.  

Going from a city like Atlanta to another like Boston implies a reduction in VMT of 

about 792 miles per year.  BCMV found that going from Atlanta to Boston would 

reduce miles by a larger amount, approximately 4,100 miles per year.  Boston is 

about one-third the area of Atlanta, but its average VMT is just 7 percent less.  Boston 

is approximately 3 times denser than Atlanta. These two forces basically offset each 

other, making the difference in VMT not as large in my model.   

The predictions in Table 4-11 must be interpreted carefully, of course.  

Households that move between cities are not a random sample of households, not 

even of young households.  Predicted DTW reflects average effects and does not 

necessarily capture the marginal DTW of a new household in a particular city, even if 

I were able to predict the characteristics of the marginal (i.e., moving) household.  

 

4.6 Robustness of Estimated Effects 

I next analyze how robust my results are to different subsets of the data and to 

a different functional form specification.  Results are shown in Tables 4-4 to 4-6 and 

are numbered regressions #3-#6.  In regression #3, the only variable describing city 

form included as an explanatory variable for DTW is POPDENSITY. The variables 

TRANSIT, CITYSHAPE, GINIJOBS, and HWYDENS are excluded.  Sample size 
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increases because I have data on CITYSHAPE for only 110 MSAs.  In regressions #4 

and #5 I include all explanatory variables describing city form except CITYSHAPE.  

In #6 I exclude the 25 metropolitan areas that have rail transit.13 

The results obtained in regression #1 are highly robust. Coefficients and 

calculated elasticities are nearly identical between regressions 1, 3, 4, 5, and 6.     

In regression 6, I estimate a log-log specification for VMT using the sample of 

cities in regression 1.  Because coefficients are not directly comparable across 

regressions 1 and 6, I report the calculated elasticities in Table 4-8.  The results, 

except for gas price and number of drivers, are not much affected by this change in 

functional form.  Therefore, I did not pursue further the question of functional form.   

Finally, I also estimate the model using a sample of households that commute 

by car.  A household that commutes by car is defined as that where all its working 

members commute by private vehicle. With this restriction I lose 7 percent of the 

sample. The NPTS data shows that over 90 percent of the households in the U.S. 

commute by private vehicle. The results are shown in tables 4-12 to 4-14. I included 

in these results those obtained for regression #4 in tables 4-4 and 4-5 in order to 

compare how the estimated parameters differ.  

The general result for distance to work is that elasticities for individuals that 

commute by private vehicle are higher than when transit commuters are included in 

the sample.  In particular, note that the effect of MEDSPEED on DTW has increased 

fivefold (Table 4.14a).  The elasticity of DTW relative to MEDSPEED is 9.3, which 

                                                 
13Atlanta, Baltimore, Boston, Buffalo-Niagara Falls, Chattanooga, Chicago, Cleveland, Denver, 
Detroit, Hartford, Jacksonville, Los Angeles-Long Beach, Memphis, Miami, New Orleans, New York, 
Philadelphia, Pittsburgh, Sacramento, San Diego, San Francisco, San Jose, Seattle, Tampa-St 
Petersburg, Washington, DC. 
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implies that a 1 percent increase in commute speed will increase distance to work by 

9.8 percent.  Using the average speed in section 4.5.1, I find that increasing commute 

speed from 29.5 mph to 32.4 mph, implies that the average household one-way 

distance to work will increase from 9.7 to 19.2 miles.  This increase means that 

households that commute by private vehicle are far more sensitive to changes in 

urban form—this may be a result of the greater mobility households gain from 

owning a vehicle.  An increase in median speed or income allows households to 

locate further from work. 

Finally, with respect to the VMT equation, only the gas price elasticity of 

vehicle miles traveled changes when only private vehicle commuters are included in 

the estimation (Table 4-14b). The higher gas price elasticity (in absolute terms) 

implies that households will be more affected by a price increase, and therefore will 

reduce their demand for miles more than when transit commuters are included in the 

sample. 

 

4.7 Concluding Comments 

Summary and interpretation of results.  I find, contrary to my expectations, 

that city characteristics related to jobs, housing, and commuting – attributes that 

might seem key to household location decisions – have little effect on households’ 

distances-to-work. 

The reason, I believe, is that in U.S. cities, households have plenty of choices 

of where to work and where to live.  This array of choices reflects the economic 

diversity and dynamism of these cities.  Given this dynamism and array of choices, 
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the layout of the city has little additional influence on household location choice.   

The value provided by this wide range of housing choices appears to outweigh many 

of the city characteristics that might more directly affect households’ commutes.   

This result suggests that while it may be possible for governments to influence 

distance-to-work through subsidies or policies explicitly targeting distance-to-work, it 

will likely not be possible to influence it through changes in city design.  Our results 

suggest that cities may already be just too complex and varied.   

The consequences of this conclusion, however, are weakened by my 

conclusions about VMT.  Our main finding, put bluntly, is that distance-to-work does 

not constrain VMT very much.  In retrospect, this conclusion too should have been 

anticipated.  The economic and social dynamism that underlie the distance-to-work 

results similarly make it possible for households to widely adjust VMT, regardless of 

distance-to-work.  The fact that commuting miles are a relatively minor part of a 

household’s VMT also contributes to the small effect of distance-to-work.  Based on 

these findings, policies to reduce commuting should not be expected to have much 

influence on VMT.   

Directions for future research.  I propose two directions for future research, 

one following and building on the existing literature.  A natural extension is to model 

vehicle ownership (see Chapter 5) or commute mode.  Another extension would be to 

use actual days-worked to compute HHDTW.    I also feel that sample attrition due to 

missing income and VMT data has received insufficient attention in this literature. 

A second direction is to tackle a different set of questions.  Two such 

questions in particular are suggested by my research.  First, I wonder how these 



 

 74 
 

conclusions would change if I characterized household location using Time-to-Work 

(TTW) rather than DTW.  TTW may be a more accurate measure of the costs of 

living far from one’s work than is DTW.  It has two potential drawbacks, however: (i) 

its role in contributing to externalities is weaker, and (ii) it cannot be naturally 

measured on the same scale as VMT and DTW allow. 

Second, the high degree of household mobility in the U.S. suggests a future 

research agenda that explicitly studies the DTW or TTW decisions of movers and the 

implications of such mobility for VMT.    
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4.8 Tables for Chapter 4 

 

Table 4-1. Number of observations (households) 

Description 
Number of 
observations 

Initial sample (total observations in 1995 NPTS) 42,033 
Observations dropped 23,910 

 Not in MSA or MSA with less than 20 observations 10,629 
 Households with no vehicles 1,887 
 No income data 4,938 

 No VMT data 1,735 
 Missing values in other explanatory variables 4,721 

Total usable observations (134 MSAs) 18,123 
 No workers in household (WORK = 0) 3,189 

 At least one retired individual in household 2,331 
 

 No retired individuals in household 858 
 At least one worker in household (WORK = 1) 14,934 
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Table 4-2. Variable means 

Variables 
No workers 

in HH  
At least one 

worker in HH 
Entire 
sample 

Dependent variables    

WORK 0.00 1.00 0.79 
DTW - 5.93 4.66 
VMT 8.17 19.61 17.16 
    

Independent variables    

 City (MSA) level variables    
Area  2.61 2.65 2.64 
Pop. Density  1.42 1.34 1.36 
Jobs-Housing Gini 0.40 0.40 0.40 
Median commute speed  29.33 29.62 29.56 
City Shape 0.69 0.69 0.69 
Unemployment rate 0.05 0.05 0.05 
Percent population over 65 15.15 12.72 13.24 
Log of gas price (state-level) 0.17 0.17 0.17 

 Household level variables    
Log of relative income -0.78 0.06 -0.12 
Log of income 2.87 3.74 3.55 
Household size 1.80 2.87 2.64 
Number of children <6 0.03 0.10 0.08 
Number of children 6-18  0.12 0.51 0.43 
Number of adults over 65 0.89 0.10 0.27 
Number of drivers 1.19 1.95 1.79 
Number of workers 0.00 1.75 1.39 
Age of reference person 63.66 43.16 47.55 
Age of spouse (Spouse 
dummy × Spouse age) 

26.40 28.43 27.99 

Sex of spouse (Spouse dummy 
× Spouse = Female) 

0.34 0.55 0.50 

Household is adults only  0.21 0.45 0.40 

Number of observations 3,189 14,934 18,123 
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Table 4-3. Probit regression for WORK=1 

Variable 
#1 

Coeff. 
(Std. err.) 

Age of reference person 0.08** 
(0.01) 

Age of reference person squared -0.001** 
(0.00) 

Household size 0.43** 
(0.06) 

Life cycle - adults, no children 1.69** 
(0.06) 

Life cycle - adults with children 0.69** 
(0.11) 

Life cycle – retired 1.53** 
(0.17) 

Unemployment rate -2.07 
(1.53) 

Percent population over 65 -0.01** 
(0.00) 

Age of spouse 0.01** 
(0.005) 

Age of spouse squared 1.6x10-4** 
(6.7x10

-5
) 

Sex of spouse 0.03 
(0.07) 

Constant -2.03** 
(0.3) 

Number of observations 20,242 

Standard errors in parenthesis.  **Significant at 5% level  
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Table 4-4. DTW Results for WORK=1.  (Dependent variable: Ln of DTW) 

Dependent variable 
#1 

Coeff. 
(s.e.) 

( a)
 

#2 
Coeff. 
(s.e.) 

#3 
Coeff. 
(s.e.) 

#4 
Coeff. 
(s.e.) 

#5 
Coeff. 
(s.e.) 

#6 
Coeff. 
(s.e.) 

Area of MSA (1000 square miles) 0.06 0.02 0.06 0.08 0.09 0.08 

 (0.012) (0.004) (0.012) (0.014) (0.020) (0.014) 

Pop. Density in MSA  0.13 0.13 0.13 0.26 0.29 0.26 

 (0.020) (0.015) (0.020) (0.016) (0.023) (0.016) 

Jobs-Housing Gini 0.18 0.03 0.18 - -0.05 -0.04 

 (0.058) (0.065) (0.058)  (0.095) (0.074) 

Median speed in city (miles per hour) 0.03 0.02 0.03 0.06 0.06 0.06 

 (0.005) (0.004) (0.005) (0.005) (0.006) (0.005) 

Cityshape 0.21 0.05 0.20 - - - 

 (0.081) (0.058) (0.081)    

Log of relative income 0.38 0.33 0.38 0.35 0.35 0.35 

 (0.017) (0.017) (0.017) (0.017) (0.021) (0.017) 

Household size 0.03 0.05 0.03 0.10 0.11 0.10 

 (0.012) (0.011) (0.012) (0.011) (0.014) (0.011) 

Number of children <6 -0.12 0.01 -0.12 -0.19 -0.20 -0.19 

 (0.037) (0.035) (0.037) (0.035) (0.044) (0.035) 

Number of children 6-18  -0.07 -0.08 -0.07 -0.17 -0.18 -0.17 

 (0.016) (0.015) (0.016) (0.015) (0.019) (0.015) 

Age of reference person -0.01 -0.01 -0.01 0.00 0.00 0.00 

 (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

Constant 7.24 7.62 7.24 5.98 5.86 6.00 

 (0.156) (0.145) (0.156) (0.150) (0.195) (0.154) 

Number of observations 12,239 12,239 12,239 14,934 9,524 14,934 

MSAs 109 109 109 134 (b) 110 (c) 
134 (b) 

Notes: 
(a) Standard errors in parenthesis; (b) Includes MSAs w/o CITY SHAPE data); (c) Excludes cities for which have rail transit 
 
Each regression in Table 4-4 was estimated simultaneously with its corresponding regression in Table 4-5. For 
instance, in order to understand why coefficients differ between regressions #1 and #2 in Table 4-4, one must also 
look at regressions #1 and #2 in Table 4-5 in order to see which regressors were included. 

 
 



 

 79 
 

 
 

Table 4-5. VMT Results for WORK=1. 
Dependent variable: VMT 

Independent variables 
#1 

Coeff. 
(s.e.) 

( a)
 

#2 
Coeff. 
(s.e.) 

#3 
Coeff. 
(s.e.) 

#4 
Coeff. 
(s.e.) 

#5 
Coeff. 
(s.e.) 

#6 
Coeff. 
(s.e.) 

Log of income 4.09 4.02 4.07 4.09 4.25 0.39 

 (0.206) (0.206) (0.207) (0.185) (0.224) (0.013) 

Log of gas price -3.16 -3.22 -4.38 -3.45 -9.17 -0.10 

 (1.876) (1.877) (1.655) (1.714) (2.211) (0.125) 

Population density ( -0.23 -0.26 -0.46 -0.51 -1.66 -0.04 

 (0.205) (0.205) (0.187) (0.170) (0.285) (0.002) 

Access to transit -4.91 -4.86 - -3.78 -0.47 -0.29 

 (1.302) (1.303)  (1.080) (1.282) (0.079) 

Area of MSA (1000 square miles) -0.05 -0.06 - 0.01 -0.03 0.00 

 (0.046) (0.046)  (0.043) (0.047) (0.003) 

Cityshape 1.50 1.46 - - - - 

 (0.714) (0.714)     

Highway density -0.12 -0.12 - -0.03 -0.05 -0.02 

 (0.104) (0.104)  (0.095) (0.187) (0.007) 

Number of drivers 4.61 4.53 4.63 (4.47 4.30 0.24 

 (0.180) (0.178) (0.180) (0.161) (0.202) (0.012) 

Number of children < 6 0.51 0.54 0.52 0.24 -0.06 0.04 

 (0.385) (0.386) (0.386) (0.344) (0.425) (0.025) 

Number of children 6-18  -0.20 -0.19 -0.20 -0.11 -0.06 -0.02 

 (0.139) (0.139) (0.140) (0.125) (0.154) (0.009) 

Number of adults over 65 -1.09 -1.09 -1.10 -1.06 -1.26 -0.05 

 (0.415) (0.416) (0.416) (0.371) (0.468) (0.027) 

DTW x Number of workers 0.33 0.36 0.33 0.33 0.33 0.01 

 (0.015) (0.013) (0.015) (0.012) (0.015) (0.001) 

Inverse mills ratio -0.01 0.07 -0.01 0.15 0.65 -0.03 

 (0.628) (0.628) (0.629) (0.558) (0.689) (0.041) 

Constant -4.36 -4.19 -5.86 -4.04 -4.66 0.88 

 (1.199) (1.199) (0.798) (0.924) (1.151) (0.067) 

rho 0.04 - 0.04 0.03 0.03 0.05 

 (0.011)  (0.011) (0.009) (0.011) (0.009) 

Number of observations 12,239 12,239 14,934 14,934 9,524 14,934 

MSAs 109 109 134 (b) 134 (b) 110 (c) 134 (b) 

Notes: 
(a) Standard errors in parenthesis; (b) Includes MSAs w/o CITY SHAPE data); (c) Excludes cities which have rail transit; 
(d) Dependent variable for equation #6 is ln(VMT) 
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Table 4-6.   VMT Results for WORK=0.   

Dependent variable: VMT 

Independent variables 
#1 

Coeff. 
(s.e.) 

( a)
 

#2 
Coeff. 
(s.e.) 

#3 
Coeff. 
(s.e.) 

#4 
Coeff. 
(s.e.) 

#5 
Coeff. 
(s.e.) 

#6 
Coeff. 
(s.e.) 

Log of income 2.75 2.75 2.71 2.72 2.75 0.40 

 (0.244) (0.244) (0.218) (0.218) (0.274) (0.031) 

Log of gas price -0.81 -0.81 0.00 -1.40 -1.64 -0.11 

 (2.770) (2.770) (2.216) (2.494) (3.133) (0.352) 

Population density -0.72 -0.72 -0.53 -0.62 -1.34 -0.10 

 (0.316) (0.316) (0.242) (0.259) (0.459) (0.037) 

Access to transit 2.08 2.08 - 0.63 2.28 -0.06 

 (1.861) (1.861)   (1.588) (1.892) (0.224) 

Area of MSA (1000 square miles) -0.04 -0.04 - 0.00 0.03 -0.01 

 (0.062) (0.062)  (0.058) (0.064) (0.008) 

Cityshape 0.64 0.64 - - - - 

 (1.016) (1.016)     

Highway density 0.12 0.12 - 0.19 0.67 0.05 

 (0.171) (0.171)  (0.155) (0.279) (0.022) 

Number of drivers 4.58 4.58 4.49 4.50 4.74 0.53 

 (0.363) (0.363) (0.326) (0.326) (0.407) (0.046) 

Number of children < 6 2.82 2.82 2.29 2.24 2.88 0.07 

 (1.198) (1.198) (1.067) (1.069) (1.324) (0.151) 

Number of children 6-18  0.28 0.28 -0.26 -0.25 -0.27 -0.08 

 (0.466) (0.466) (0.412) (0.413) (0.525) (0.058) 

Number of adults over 65 -0.63 -0.63 -0.52 -0.53 -0.48 -0.05 

 (0.306) (0.306) (0.271) (0.271) (0.340) (0.038) 

Inverse mills ratio -1.92 -1.92 (-2.04 -2.03 -1.88 -0.15 

 (0.347) (0.347) (0.312) (0.312) (0.391) (0.044) 

Constant -5.95 -5.95 -4.58 -5.09 -7.16 -0.15 

 (1.545) (1.545) (0.792) (1.158) (1.492) (0.163) 

Number of observations 12,239 12,239 14,934 14,934 9,524 14,934 

MSAs 109 109 134 (b) 134 (b) 110 (c) 134 (b) 

Notes: 
(a) Standard errors in parenthesis; (b) Includes MSAs w/o CITY SHAPE data); (c) Excludes cities which have rail transit; 
(d) Dependent variable for equation #6 is ln(VMT) 
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Table 4-7.   Calculated DTW elasticities (from regression 1) 
 

Variable Atlanta Boston Chicago Houston Phoenix San Diego 
Entire 
Sample 

City Area 0.30 0.10 0.11 0.31 0.54 0.24 0.13 

Pop. Density 0.07 0.21 0.42 0.08 0.03 0.08 0.22 

Job-Housing Gini 0.08 0.08 0.08 0.05 0.07 0.08 0.08 

Median commute speed  0.88 0.84 0.71 0.91 0.82 0.92 0.83 

City shape 0.06 0.17 0.10 0.17 0.09 0.08 0.15 

Relative income 0.38 0.38 0.38 0.38 0.38 0.38 0.38 

Age of reference person -0.33 -0.35 -0.35 -0.34 -0.35 -0.34 -0.35 
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Table 4-8.   Estimated VMT elasticities  
 

Variable Atlanta Boston Chicago Houston Phoenix San Diego 
Entire 
Sample 

Log of income 0.18 0.18 0.22 0.18 0.20 0.19 0.18 

Log of gas price -0.14 -0.14 -0.17 -0.14 -0.15 -0.15 -0.15 

Population density -0.01 -0.02 -0.04 -0.01 0.00 -0.01 -0.02 

Access to transit -0.09 -0.11 -0.19 -0.09 -0.09 -0.14 -0.11 

Area of MSA  -0.01 0.00 -0.01 -0.01 -0.02 -0.01 -0.01 

Cityshape 0.02 0.05 0.04 0.05 0.03 0.03 0.05 

Highway density 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Distance to work 0.16 0.18 0.20 0.17 0.14 0.19 0.18 
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Table 4-9.   Review of elasticities of VMT with respect to income and fuel 
prices 

Part (a) – Elasticities with respect to income 
Authors / study Estimated Elasticity 
Dahl (Survey of literature) 0.23 to 0.60 
Schimek 1.2 to 1.4 
Goodwin, Dargay and Hanly (U.K) 0.2 
Kayser 0.48 to 0.26 

 

Part (b) – Elasticities with respect to fuel price 
Authors / study Travel type Short 

Run 
Long   
Run 

Elasticity with respect to gas price 
Agras and Chapman Total travel -0.15 -0.32 

Goodwin, Dargay and Hanly Total travel -0.10 -0.29 
 Total travel (per vehicle) -0.10 -0.30 

Johansson and Schipper Total travel  -0.3 
 Total travel (per vehicle)  -0.20 

Puller and Greening Total travel  -0.7 

Schimek Total travel -0.26  

De Jong and Gunn (Europe) Commuting only -0.12 -0.23 
 Total travel -0.16 -.026 

INFRAS (Europe) Total travel -0.1 to  
-0.2 

-0.25 to  
-0.5 

Mayeres (Europe) Essential trips -0.16 -0.43 
 Optional trips -0.43 -0.36 

Luk and Hepburn (Australia) Total travel -0.10  

Elasticity with respect to travel cost 
Parry and Small (Cost) Total travel -0.22  

Small and Winston One vehicle households -0.228 -0.279 
 Two-vehicle households -0.059 -0.099 
Source: Based on Littman (2007) 
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Table 4-10.   Mean city-level and young-household variables for six 
cities 

 

Variable Atlanta Boston Chicago Houston Phoenix 
San 
Diego 

City Characteristics 

Area  5.12 1.76 1.88 5.32 9.20 4.20 

Pop. Density 0.55 1.63 3.22 0.62 0.23 0.59 

Jobs-Housing Gini  0.42 0.41 0.46 0.27 0.40 0.41 

Median commute speed 32.11 30.60 26.00 33.17 30.00 33.62 

City shape 0.26 0.82 0.48 0.80 0.45 0.36 

Ln(Gas Price) -0.02 0.25 0.17 0.15 0.19 0.15 
 

Mean young-household characteristics 

Household size 2.22 2.47 2.47 2.57 2.82 2.85 

Number of children < 6 0.00 0.08 0.09 0.14 0.18 0.23 

Age of reference person 25.30 26.06 25.79 25.86 27.18 24.23 

Ln(Income) 3.66 3.63 3.73 3.58 3.62 3.03 

Number of drivers 1.93 1.88 1.81 1.81 1.91 1.85 

Number of adults > 65 0.00 0.00 0.00 0.00 0.00 0.00 

Number of workers 1.67 1.81 1.84 1.71 1.55 1.85 

DTW 6.05 7.01 8.48 7.19 5.45 8.60 
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Table 4-11.   Predicted effect on DTW and VMT of moving a mean 
young-household from its city of origin to six other cities. 

Part (a) – Yearly Distance-to-work 
… to each of the following cities will locate X miles closer to 
work than in their city of origin.  (Based on regression 1) 

A household that 
moves from the city 
below: Atlanta Boston Chicago Houston Phoenix San 

Diego 

Atlanta 0 81 206 770 1037 61 

Boston -76 0 118 652 905 -19 

Chicago -193 -117 0 531 783 -136 

Houston -540 -485 -398 0 191 -498 

Phoenix -739 -683 -596 -194 0 -697 

San Diego -49 16 117 575 792 0 

 

Part (b) – VMT  
… to each of the following cities will drive X miles more than in 
their city of origin.  (Based on regression 1) 

A household that 
moves from the city 
below: Atlanta Boston Chicago Houston Phoenix San 

Diego 

Atlanta 0 -792 -2163 62 510 -675 

Boston 863 0 -1489 930 1420 127 

Chicago 2846 1870 0 2896 3462 1920 

Houston -37 -763 -2107 0 427 -726 

Phoenix -440 -1119 -2331 -405 0 -1084 

San Diego 762 -41 -1511 803 1277 0 
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Table 4-12.   Distance to work, only households that commute by Car 

Variable 
#4 (b) 

Coeff. 
(s.e.) 

( a)
 

#7 
Coeff. 

(s.e.)  

#8 (c) 

Coeff. 
(s.e.) 

#9 
Coeff. 

(s.e.) 
Area of MSA (1000 square miles) 0.08 0.12 0.07 0.12 
 (0.014) (0.066) (0.018) (0.066) 

Pop. Density in MSA 0.26 1.02 1.00 1.02 
 (0.016) (0.079) (0.069) (0.079) 

Median speed in city 0.06 0.30 0.20 0.30 
 (0.005) (0.024) (0.019) (0.024) 

Log of relative income 0.35 0.98 1.09 0.98 
 (0.017) (0.082) (0.077) (0.082) 

Household size 0.10 0.18 0.14 0.18 
 (0.011) (0.052) (0.049) (0.052) 

Number of children <6 -0.19 -0.52 0.06 -0.52 
 (0.035) (0.167) (0.159) (0.167) 

Number of children 6-18  -0.17 -0.43 -0.34 -0.43 
 (0.015) (0.072) (0.069) (0.072) 

Age of reference person 0.00 0.00 -0.03 0.00 
 (0.001) (0.004) (0.004) (0.004) 

Constant 5.98 -4.57 -0.10 -4.55 
 (0.150) (0.717) (0.634) (0.717) 

Number of observations 14,934 13,967 13,967 13,967 
Notes: 
(a) Standard errors in parenthesis; (b)  Regression #4 from table 4-4; (c) Assumes no correlation 
between DTW and VMT equations 
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Table 4-13.   VMT regression, only households that commute by car 

Variable 
#4 (b) 

Coeff. 
(s.e.) 

( a)
 

#7 
Coeff. 

(s.e.) 
( a)

 

#8 
Coeff. 

(s.e.) 

#9 
Coeff. 

(s.e.) 
Log of income 4.09 4.28 4.25 4.29 
 (0.185) (0.196) (0.195) (0.196) 

Log of gas price -3.45 -4.36 -4.39 -5.05 
 (1.714) (1.793) (1.794) (1.553) 

Population density -0.51 -0.29 -0.31 -0.44 
 (0.170) (0.180) (0.179) (0.165) 

Transit -3.78 -3.62 -3.59 - 
 (1.080) (1.128) (1.129)  

Area of MSA (1000 square miles) 0.01 0.00 -0.01 - 
 (0.043) (0.045) (0.045)  

Highway density -0.03 -0.02 -0.02 - 
 (0.095) (0.112) (0.112)  

Number of drivers (4.47 4.55 4.48 4.55 
 (0.161) (0.170) (0.166) (0.170) 

Number of children < 6 0.24 0.44 0.46 0.45 
 (0.344) (0.355) (0.355) (0.355) 

Number of children 6-18  -0.11 -0.09 -0.08 -0.09 
 (0.125) (0.129) (0.129) (0.129) 

Number of adults over 65 -1.06 -0.97 -0.96 -0.96 
 (0.371) (0.394) (0.394) (0.394) 

DTW x Number of workers 0.33 0.34 0.35 0.34 
 (0.012) (0.014) (0.011) (0.014) 

Inverse mills ratio 0.15 0.56 0.61 0.57 
 (0.558) (0.598) (0.598) (0.599) 

Constant -4.04 -4.84 -4.78 -6.53 
 (0.924) (0.976) (0.976) (0.758) 

rho 0.03 0.02 - 0.02 
 (0.009) (0.011)  (0.011) 

Number of observations 14,934 13,967 13,967 13,967 
Notes: 
(a) Standard errors in parenthesis; (b)  Regression #4 from table 4-4; (c) Assumes no correlation 
between DTW and VMT equations 
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Table 4-14.   Calculated DTW and VMT elasticities, only households 

that commute by car 
Part (a) – Elasticities for DTW equation 

Elasticities 
Variable 

Variable 
means 

Reg.  
#4 

Reg.  
#7 

Reg.  
#8 

Reg.  
#9 

City Area 2.79 0.22 0.33 0.20 0.33 

Pop. Density 0.81 0.21 0.82 0.81 0.82 

Median commute speed  30.50 1.83 9.30 6.19 9.29 

Relative income 0.10 0.35 0.98 1.09 0.98 

Age of reference person 43.06 -0.35 -0.14 -1.45 -0.14 

 

Part (b) – Elasticities for VMT equation 

Elasticities 
Variable 

Variable 
means 

Reg.  
#4 

Reg.  
#7 

Reg.  
#8 

Reg.  
#9 

Income 51.02 0.19 0.201 0.199 0.201 

Gas price 1.18 -0.16 -0.204 -0.206 -0.236 

Population density 0.81 -0.02 -0.011 -0.012 -0.017 

Access to transit 0.50 -0.09 -0.085 -0.085 - 

Area of MSA  2.79 0.001 0.000 -0.001 - 

Highway density 2.45 -0.003 -0.002 -0.002 - 

Distance to work 10.69 0.17 0.168 0.178 0.169 
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5 The case of car ownership 

5.1 Introduction 

 Chapter 4 of this dissertation analyzed the interaction between distance to 

work and travel demand.  In particular, it looked at the effect of a household’s 

distance-to-work (DTW) on its total annual vehicle miles traveled (VMT). Vehicle 

ownership was not modeled explicitly and the VMT equation was a reduced form 

equation reflecting factors affecting both cars owned and number of miles driven. In 

this Chapter 5 I extend the model developed in the previous chapter to analyze 

vehicle ownership together with distance to work and travel demand.  In this sense, 

the objective of Chapter 5 is to analyze the effect that urban form and distance to 

work have on demand for miles once vehicle ownership is made endogenous.   

  The regression analysis in this section is, like in the previous chapter, a short 

to medium term analysis, as demand functions are estimated for given levels of 

distance to work. Note also that individuals can change the number and types of cars 

they own in a short period of time, therefore they can adapt relatively quickly to 

changes in exogenous shocks. Consider the example of rising gasoline prices and 

travel demand—consumers will eventually find ways to conserve their fuel use.  

However, some alternatives to reducing gasoline consumption, like finding a more 

fuel-efficient car, take time.  In the short run, individual may adapt to price shocks by 

switching away from private vehicles into less expensive forms of transport (i.,e. 

public transport). But in the long term, individuals will adjust their job or housing 
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location or the efficiency of their vehicles (i.e. change vehicle type) to adapt to these 

changes.  This example is supported by empirical results, as researchers have 

concluded that the short term travel demand (measured by annual VMT) elasticity 

with respect to gasoline price is around -0.1, while the long-run elasticity is about -0.3 

(see section 5.4.3 and Table 4-9).  

 Vehicle ownership and use (mileage, number of trips) has been studied 

significantly in the past.  Bhat and Sen (2006) outline two important reasons for the 

amount of research in this area: first, car manufacturers are interested in 

understanding household’s preferences for different kinds of vehicle types in order to 

obtain information that can allow them to target the market in a more strategic way.  

Second, understanding vehicle holdings and use is key for policy makers, as it has 

serious implications from a congestion and pollution perspective.  

 De Jong et al (2004) present a recent survey of the literature of vehicle 

ownership. In general, studies on vehicle ownership can be classified according to the 

data used. Models using aggregate data are usually at the national level and are based 

on time series (sometimes disaggregation is done by cohorts).  These studies are 

typically used to estimate gasoline consumption demand (and pollution) and traffic 

demand.  Examples of these types of studies include Ingram and Liu (1997), Whelan 

et al. (2000), Whelan (2001) and Dargay and Cately (1999).  Models based on 

disaggregate data (household data) can be static (Train, 1985, Whelan, 2001, and 

Rich and Nielsen, 2001, Bento et al., 2005) or dynamic (Mannering and Winston 

1985).   
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Figure 5-1.   Classification of Car ownership models by type of data 

 

Source: Based on classification proposed in de Jong et al (2004) 
  

Static and dynamic models of car ownership typically focus on analyzing the 

determinants of car ownership. In these types of models, a household’s or individual’s 

inclination to own vehicles is linked to its socio-economic characteristics, the costs of 

owning and driving a car, the availability of alternative means of transport, and more 

recently due to advances in GIS, its locational characteristics (for example Bento et 

al. 2005). Early studies in the field tended to be cross-sectional (static) and focused 

mostly on car ownership levels (Lerman and Ben-Akiva, 1976 and Train, 1980, Bhat 

and Pulugurta, 1998). As discrete choice methods in econometrics advanced (i.e. 

nested logits), researchers started exploring the choice of car type of the household 

given car ownership levels (Berkovec, 1985; Mannering and Winston, 1985; Train, 

1986; de Jong, 1990; and Hensher et al, 1992).  
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Later, as Whelan (2005) points out, increases in traffic congestion and 

advances in fuel efficiency led researchers to explore the interrelated choice of car 

ownership and use, largely based on the framework of continuous-discrete models.  

This framework is typically used to analyze the interaction between transportation 

and land use, and includes an equation to model of the number of cars owned by a 

household and an equation to model of the annual demand for miles (VMT).  

Different measures of land use enter the model as explanatory variables and allow 

researches to measure their impacts both on car ownership and travel demand.  

Steiner (1994), Wilson (1998), and Badoe and Miller (2000) present recent surveys of 

the literature on the interaction between land use and transportation.  In this literature, 

car ownership and VMT equations are jointly estimated, using continuous discrete 

methods, as described in Train (1986).  First, households select how many cars to 

own.  Second, conditional on vehicle ownership, the household decides how much to 

use each car.  Though decisions are modeled sequentially for estimation purposes, the 

choices are made simultaneously as they come from the same utility maximization 

problem (see Train, 1986; chapter 5).  Examples of papers analyzing the interaction 

between car ownership and VMT include Mannering and Winston (1985), Train 

(1986), de Jong (1990), Berkowitz et al. (1990), Hensher et al (1992), Kockelman 

(1997), Linciano (1997), Choo and Mokhtarian (2004), West (2004), and Bento et al 

(2005).  

Finally, dynamic models follow a similar structure as static models, except 

that instead of having a cross-section of data, researchers have either a panel or 

pseudo panel of data.  Models incorporate this additional source of information using 
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standard estimation techniques (i.e. fixed or random effects).  Examples include 

Kitamura (1987), who used 10 waves of the Dutch National Mobility Panel to 

determine simultaneously car ownership and number of trips per week. Nobile et al 

(1996) used panel data to estimate a random effects multinomial probit of car 

ownership levels.  More recently, Hanly and Dargay (2000) use a panel to analyze 

vehicle ownership in Great Britain 

A common feature in the studies on demand for transportation is that role of 

household location is typically not recognized and not included in the estimation.  In 

general, VMT is modeled as a function of demographic characteristics (household 

size, income, number of workers in the household, among others), car characteristics 

(cost per mile) and land use measures. Among the land use measures, population 

density of the individual’s neighborhood is sometimes included as an explanatory 

variable, although without considering its correlation to unobservable variables 

affecting VMT (e.g. Schimek, 1997).  Some papers like Bento et al. (2005) highlight 

this potential problem of endogeneity and use measures of density that are truly 

exogenous to the household—density at the city level instead of the local level. I 

follow this approach and include variables such as density and access to transit at the 

city level, as discussed in Section 4.3.3. This approach allows me to compare the 

effect of these important variables by studying the differences in density and access to 

transit among different MSAs. Though this is not the best approach, there is still a 

good deal of information that can be learned from following it.14 

 

                                                 
14 Ideally, one should model each of these endogenous decisions explicitly, but models would become 
untractable due to the large amount of dependent variables. 
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5.2 Data 

 I use a slightly different sample of the NPTS than that used in Chapter 4. The 

two main differences are: (i) I include households that own no vehicles in the CARS 

equation, but these households are dropped in the VMT equation because their 

VMT=0; and (ii) I exclude households with no workers.  Households with no workers 

are excluded because I am interested in studying the effect that distance to work has 

on travel demand conditional on car ownership.  Table 5-1a shows the sample size 

used in the estimation. 

 The original sample size of the 1995 NPTS is 42,033 households. As shown in 

Table 5-1a, a total of 23,446 households were dropped from the sample because (i) 

there were no workers in the household, (ii) household is not in an MSA or is located 

in an MSA with less than 20 observations, and (iii) there are missing values in the 

explanatory variables, including no VMT data.  The CARS equation was estimated 

using a total of 18,587 observations.  This includes households in the 134 largest 

metropolitan statistical areas (MSA) that had at least 20 observations. The threshold 

of 20 observations was chosen randomly but I feel it is a large enough number to 

permit enough variation in the calculation of the MSA wide measures.  

 The NPTS asks households to indicate the number of cars in the household, 

and then proceeds to collect detailed information on each of the vehicles (make, 

model, and year, odometer readings, principal driver). As a result, households 

reported car ownership levels ranging from no vehicles to 10 cars.  Four categories of 

car ownership were created as follows (see Table 5-1b): households with no vehicles 
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(6.65 percent of the sample), 1-car households (27.45 percent), 2-car households 

(46.61 percent), and households owning 3 or more vehicles (19.27 percent). 

 To estimate the VMT equation an additional 1,237 observations are lost 

because the household owns no cars (1,237 observations). As a result, a total of 

17,350 observations are used to estimate the three VMT equations. See Table 1a for a 

description of number of observations used in each of the equations.  As is described 

later in this paper (section 3.2), three VMT equations are estimated separately 

depending on whether the household owns 1 car (4,191 observations), 2 cars (7,042 

observations), or 3 cars (2,917 observations).  

 The NPTS is merged with data from other sources, as described in Chapter 3. 

5.3 Econometric Model 

5.3.1 Dependent Variables 

Car ownership (CARS).  The NPTS collected data on the number of cars 

owned by each household.  I define a new variable, car ownership (CARS), as a 

categorical variable based on the number of cars owned by each household.  The 

categories are 0 (No cars), 1 car, 2 cars, and 3 or more cars in the household.  Over 90 

percent of the households in the sample own at least one car, with the biggest portion 

of households owning two cars.  Table 5-1b shows the distribution of the categorical 

variable—6.7 percent of the households in the sample own no vehicles, while 27.4, 

46.5, and 19.3 percent of the households own 1-, 2, and 3 or more vehicles, 

respectively. 
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 Vehicle Miles Traveled (VMT).  The variable representing annual vehicle 

miles traveled (VMT) is built as described in the Chapter 4: as the sum of miles over 

all cars in the household.    

 

5.3.2 Model and Discussion 

 Our general model is a system of 2 equations, one continuous and one 

discrete.  The two equations are: 

 

 Prob (CARS = i) = Prob (Ui > Uj) for i≠j and i=0,1,2, or 3 (1) 

where Ui = β1i Z1 + αi DTW + εi 

 VMTi = β2i X2i + δ HHDTW + νi                  for i= 1,2, or 3  (2) 

 

Equation 1 represents the vehicle ownership equation.  The variable CARS is 

categorical in nature, represents the number of cars owned by each household, and 

ranges from 0 to 3 (a value of 3 stands for households owning 3 or more vehicles).  

Equation 2 represents household travel demand. As discussed before, I use an 

annualized measure of travel demand equal to the sum of vehicle miles traveled in all 

vehicles in the household.  Since I am interested in exploring the effect of distance to 

work (DTW), this variable has been made explicit in the above model.  HHDTW is 

measured as the sum of the annualized distance to work for each of the members in 
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the household.  The annualized distance to work is obtained by multiplying the one-

way distance to work by 480.15 

Note that equation (2) is really 3 different equations. The system above can be 

rewritten as follows: 

 

 Prob (CARS = i) = Prob (Ui > Uj)    for i≠j and i=0,1,2, or 3 (1a) 

where Ui = βi Z1 + αi HHDTW + ε1 

 

1-car households: 

 VMT1 = β21 X1 + δ1 HHDTW + γ1  scf1(Pi) + υ2 (2a) 

2-car households: 

 VMT2 = β22X2 + δ2 HHDTW + γ2  scf2(Pi) + υ3 (3a) 

3-car households: 

 VMT3 = β23X3 + δ3 HHDTW + γ3  scf3(Pi) + υ4 (4a) 

 

The error structure is given by: 

 Ω = )],,,][,,,([ 43214321
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15 It is assumed that households work a total of 240 days a year (5 days per week for 48 weeks ).  The 
one-way distance to work is multiplied by 2 to simulate the total daily commute in miles.  
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 The model above is described in the literature as a continuous-discrete model. 

Its estimation procedure is also well documented in the literature (see Train, 1986, 

Chapter 5). Ideally, since the household decisions of how many cars to own and how 

much to drive each vehicle are made simultaneously, estimation of the system of 

equations (1) and (2a)-(2c) would be done using full information maximum 

likelihood methods.  But in practice this approach is not used because it is difficult to 

make such a complicated model converge.  Instead the model is estimated in three 

steps, as follows: .  

i. First, estimate the car ownership equation and obtain the predicted choice 

probabilities, iP̂  

ii. Second, estimate the selectivity-correction term, scf( iP̂ ). Dubin and 

McFadden (1984) have shown that when the discrete choice probability is 

distributed log-weibull and the continuous variable is distributed normal, then 

the selectivity correction factor in equations 2(a) to 4(a) takes the form: 

 scfi( iP̂ ) =∑
≠ 
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iii. Finally, estimate equations (2a) to (2c) including the term scf( iP̂ ) is included. 

Note that an equation of VMT on its regressors is estimated for each category 

of car ownership. In my particular case, I estimate three different equations. 

Parameter estimates obtained following this procedure are consistent (Train, 

1986). 
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  Exogenous vs. endogenous DTW. Estimation of the model described in (1) to 

(2c) assumes that DTW is exogenous. As basic econometric textbooks show, the 

inclusion of an endogenous variable as an explanatory variable in an equation leads to 

biased estimates. In this case I face a tradeoff between obtaining biased estimates and 

the tractability of the model. In this chapter, I make the choice of using DTW as an 

explanatory variable because chapter 4 shows it is an important variable explaining 

travel demand.  Not only is this variable important (income elasticity of VMT 

increases by 10% when DTW is omitted), but it also allows us to estimate the 

contribution of commute miles to total miles. Finally, by assuming that household 

location is exogenous, I can focus my attention on the relationship between car 

ownership and travel demand, and the econometric complications of estimating this 

kind of system.   

  

5.3.3 Explanatory Variables 

5.3.3.1 CARS equation 

I focus on static car ownership models, as classified by Jong et al. (2004) and 

described in Section 2. Recent studies analyzing the interrelated choice of vehicle 

ownership and use include Mannering and Winston (1985) Train (1986), Goldberg 

(1998), West (2004), Bento et al. (2005), and Bhat and Sen (2006). In these models, 

and following the work by Dubin and McFadden (1980) and Heckman (1984), the car 

ownership and VMT equations are interrelated, and usually appear in nested form.  

A review of the literature shows that the main variables explaining the number 

of cars owned are: the household’s income, the number of workers, the cost of 
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owning an automobile, and recently, different measures of land use, including density 

and the availability of public transit. I use these variables and others, as described 

below. 

Income. Income has been consistently found to be significant and positively 

correlated with car ownership in the literature. It is one of the most important 

variables explaining car ownership as buying a car requires a significant investment.  

 Number of workers. A second important variable explaining car ownership is 

the number of workers.  Given a household location (i.e. DTW as well as transit 

availability and access), as the number of workers (NUMWORK) in the household 

increases, more cars will be needed for the commuters.  Therefore car ownership will 

increase as number of workers increase in the household. 

 Price of gas. The literature often includes a measure of the costs of owning a 

vehicle, typically the purchase price or an annualized user cost. Annualized user costs 

include costs of insurance and fuel expenses.  All these costs depend on the type of 

car (make and model) that the household owns.  Bigger and more “powerful” cars 

typically have higher purchase prices, insurance costs, and fuel expenses.  As in the 

chapter 4, I use state-level gas prices (GASPRICE).  Gas price is selected over 

annualized user costs in order to compare my estimates to the literature. 

 Distance to work (HHDTW).  The relationship between car ownership and 

household location has been taken into consideration by Waddell (1996) and Sermons 

(2000), but in a context quite different from the one I am currently using: these 

authors used number of cars as an explanatory variable in their (discrete) household 

location models.   
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 City characteristics.  Car ownership will be affected by measures of city form 

that describe access to jobs or other facilities (schools, doctor, shopping, transit). I 

proxy accessibility to jobs and other facilities with population density 

(POPDENSITY) at the city level. I cannot use population density at the zipcode or 

census tract level because this would be an endogenous choice.  Population density at 

the city level is a very rough measure of accessibility but is closer to being truly 

exogenous.   

 I complement population density and access to transit with other measures 

developed by Bento et al (2005) and described in Chapter 4. These include city shape 

(CITYSHAPE), and city area (AREA). In addition, a variable describing highway 

density at the city level (HWY_DENS) is also included in the regression. Households 

living in cities with higher highway density are expected to own more cars, ceteris 

paribus. 

 Household characteristics. Other variables that affect car ownership and have 

been frequently included in previous studies are age and education level of the 

reference person as well as variables that represent the life cycle. Households that 

have children, for instance, may tend to own more cars to take them to extracurricular 

activities or parks over the weekends. I include variables NUM_KID6 to represent the 

number of children under 6 in the household, and NUM_OLD to represent the 

number of household members over 65.  

 Finally, number of drivers (DRVRCNT) in the household is also an important 

variable that affects car ownership. By number of drivers the NPTS refers to 
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individuals that know how to drive. It does not necessarily imply having a drivers 

license. 

5.3.3.2 VMT equation 

 Variables used in the VMT equation are discussed in section 4.3.3. I mention 

them here for clarity, but the rationale for their inclusion is not described in this 

section. 

 Income is a key variable in explaining vehicle ownership and thus widely used 

in explaining VMT.  For the VMT regressions I use absolute, not relative, income 

since most of the purposes of non-commute VMT involve purchase of items that are 

tradable across cities, unlike houses.  Regarding a measure of cost of travel, I use the 

truly-exogenous state-level gas prices.   Other important household-level 

variables are the number of drivers, number of children, and the household’s life 

cycle.   

 Table 5-2 contains the means of the variables used in the above-mentioned 

models. 

 

5.3.4 Research Questions and Hypotheses 

My main questions concern (i)  the effect of distance to work on car 

ownership (ii) the effect of distance to work on VMT, conditional on car 

ownership, including an analysis of the task sharing implied by this 

relationship, (iii) the effect of city characteristics on car ownership levels, 

conditional on household location, (iv) the effect of city characteristics on 

VMT, conditional on household location and vehicle ownership, and finally 
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(v) does the model of car ownership change the relationship between VMT 

and DTW?.  

 

5.4 Results 

5.4.1 Car ownership model 

 Table 5-3 shows the results for the multinomial logit regression. The 

dependent variable is the number of vehicles owned by the household. The base 

category for the regression is “household does not own any cars”.  This means that 

the coefficients are all relative to this category.  

 Regressions #1 to #4 in Table 5-3 show the effect of different variables on car 

ownership, in order to analyze the robustness of the estimated parameters.  

Regression #1 is the main equation analyzed, and the results described below are 

based on this regression.  

 The results from regression #1 show that an increase in household income by 

10 percent will increase the log-odds of owning three cars over no cars by 3.49, the 

log-odds of owning two cars over none by 3.21, and the log-odds of owning one 

vehicle over none by 1.66.  The variables “number of drivers” and “age of household 

head” also have positive effects on number of cars: increasing the number of workers 

and the age of the household head increases the log-odds of owning one, two, or three 

vehicles over owning no vehicles. Furthermore, the log-odds of owning more vehicles 

increase as the number of workers in the household increase. The presence of an 

additional worker in the household increases the log-odds of owning 2 and 3 vehicles 
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by 1.01 and 1.94, respectively, but reduces the log-odds of owning one vehicle by 

0.04.  

 In general, when dealing with multinomial logit models it not straightforward 

to interpret the coefficients arising from the regression since these represent the log of 

the “odds-ratio”.  It is easier to analyze the results in terms of the partial effects or the 

differences in probabilities. The partial effects can be calculated (following Greene, 

2005) according to the following formula: 
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 Even though estimation of the partial effects is not difficult, it is easier to 

interpret the results if these are described in terms of the difference in probabilities. 

Therefore I follow this latter approach in the ensuing discussion. Following 

Wooldridge (2002, pg. 499), define the predicted probability in situation t, where t 

equals 0 or 1 depending on whether it is before or after the change in the variable of 

interest, is given by: 
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carP   , for i = 1, 2 or 3;  and t = 0 or 1 

where  i denotes the number of cars owned by the household, t represents the “with” 

(t=0)  and “without” (t=1) cases, and ib̂  are the estimated coefficients from the 

multinomial logit regression.  The predicted probability of owning no cars is given by 
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 The difference in the probability of owning i cars is as: 

  ∆P(cari) = P1(cari) - P0(cari).   

 For instance, given an average household income of $40,000, the predicted 

probability of owning 2 cars, Pt=0 (car2), equals 61.8 percent (see Table 4a).  If the 

average household’s income were to increase to $60,000, the new predicted 

probability, Pt=1(car2), increases to 67.3 percent.  Therefore by increasing income 

from $40,000 to $60,000, the probability of owning 2 cars is increased by 5.49 

percentage points.  Following this same logic, one finds that the predicted probability 

of owning 3 cars increases by 4.67 percentage points, and that the probability of 

owning 0 or 1 car decreases by 0.6 and 9.56 percentage points after this increase in 

income.  

 The analysis in the remainder of this section is based on the logic described in 

the paragraph immediately above. Table 4b shows that increasing the number of 

workers in the household from 2 to 3 increases the probability of owning 3 cars by 

18.6 percentage points, while the probability of owning 1 car decreases by 18.0 

percentage points. At the same time, the probability of owning 0 and 2 cars is 

practically unchanged. The probability of owning no cars decreases by 0.8 percentage 

points, while the probability of owning 2 cars increases by 0.2 percentage points.   

Since income, number of workers, and distance to work are the main variables 

of interest for explaining vehicle ownership, the marginal effect analysis is extended 

for these three descriptors.  The change in probabilities due to a change in income 
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was calculated starting from a base income of $40,000 (the average household 

income in my sample) and varying income from $10,000 to $100,000 using a step of 

$5,000.  The results are shown in Graph 1 below.  For example, if income decreases 

from $40,000 to $20,000, the probability of owning 0 and 1 cars increases by 4 and 

15 percentage points, respectively, while the probability of owning 2 and 3 cars 

decreases by 12 and 6percentage points, respectively. 

 

Figure 5-2.   Car ownership – marginal effects from changes in income 

Change in probability of owning X  cars from changes in income, in percentage points. 

Base income 40,000 dollars
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Figure 5-3.   Car ownership – marginal effects from changes in workers 

Change in probability of owning X  cars from changes in number of workers, 

in percentage points. Base is 2 workers per household

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 1 2 3 4

Number of workers in household

3 Car Alternative

1 Car Alternative

2 Car Alternative

No Car Alternative

 

 Graph 2 above shows the relationship based on variation in the number of 

workers in the household. Starting from a base of 1 worker, the probability of owning 

3 cars increases substantially as number of workers in the household increase. When 

the number of workers in a household changes from 2 to 4, the probability of owning 

3 vehicles increases by a dramatic 45 percentage points.  On the other hand, if the 

number of workers decreases from 2 to 1, the probability of owning 1 vehicle 

increases by almost 18 percentage points, while the probability of owning 3 decreases 

by the same 18 percentage points. 
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Figure 5-4. Car ownership – marginal effects from changes in DTW 

Change in probability of owning X  cars from changes in DTW. 

Base is 17 miles per household (one-way)
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 Distance to work has a small effect on car ownership (see Graph 3, above). 

Recall that the household’s total one-way distance to work is estimated as the sum of 

the one-way distances of each of the working member. For instance, if there are 2 

working members in particular household, each living 5 miles from their work, the 

total one-way distance to work for this household is 10 miles. Increasing the average 

household’s one way distance to work from 17 to 25 miles per household, increases 

the probability of owning 2 and 3 cars by 2 percentage points each.  

 City characteristics. My results show that increasing population density by 10 

percent decreases the probability of owning 2 and 3 vehicles by 7.1 and 8.8 

percentage points, respectively. At the same time, the probability of owning 0 and 1 

vehicles increases by 2.2 and 13.7 percentage points after the above-mentioned 

increase in density. Similarly, increasing the number of households living within half 
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a mile of a transit stop (i.e. providing better access to transit) by 10 percent decreases 

the probability of owning 2 and 3 vehicles by 2.93 and 0.6 percentage points, 

respectively, while it increases the probability of owning 0 or 1 car by 0.3 and 3.2 

percentage points. Finally, and surprisingly, increasing highway density in a city 

decreases the probability of owning 3 cars by 0.6 percentage points, while increasing 

probability of owning 1 and 2 cars by 0.4 and 0.2 percentage points, respectively. The 

effect of increasing highway density on car ownership is very small.  

 

5.4.2 Predicted car ownership levels for 6 cities 

 To further understand the effect of the explanatory variables on car ownership, 

I carried out the following analysis: I predicted the effect on car ownership of moving 

a household from its current city of residence to other cities in the US.  For 

presentation purposes I use the following 6 cities: Atlanta, Boston, Chicago, Houston, 

Phoenix, and San Diego. These represent cities from most of the census regions and 

have different growth histories and patterns. Table 3.b presents a summary of the 

results. These results are based on regression #1. 

 To understand the results in Table 3.b, suppose that a household moves from 

Atlanta (column 1) to Chicago (column 5). The table below describes the average 

household in both of these cities, as well as the city measures used in the regressions. 

The average household in Atlanta has an annual income of $46,500, has 1.4 workers, 

0.6 children below the age of 6, 0.36 kids 6 to 18 years old, and 0.27 adults over the 

age of 65. The reference person is 45.7 years old and has 13.5 years of education (see 

Table 5-2b). 
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 If the average Atlanta household moves to Chicago, it will tend to own fewer 

vehicles than it does now.  The probability of owning 2 and 3 vehicles is predicted to 

decline by 12.8 and 9.6 percentage points, respectively, while the probability of 

owning 0 or 1 cars increases by 2.1 and 20.3 percentage points.  To put this another 

way, an average household in Atlanta has a 20, 62, and 18 percent probability of 

owning 1, 2, and 3 cars, respectively.  If this same household were to move to 

Chicago, its probability of owning 1 vehicle would jump to 40 percent, while its 

probability of owning 2 and 3 cars would decrease to 49 and 8 percent, respectively.  

Table 3.b shows that if an average household from Chicago or Boston moves to any 

of the other cities, it will have a greater probability of owning 2 or 3 cars. The 

opposite happens when an average household from Atlanta, Houston, Phoenix or San 

Diego moves to Boston or Chicago: the probability of it owning 0 or 1 cars increases 

substantially.  

 The general conclusion of this exercise is that households that move to higher 

density cities, with better transit access, and higher road density will tend to own less 

cars.  In the particular example of a household moving from Atlanta to Chicago, the 

difference in the population density between the cities is the main force leading the 

results.  This result is important from a policy perspective, as households with less 

cars drive less miles per year.  Section 5.4.4 expand on this finding be extending the 

effect of changes in city characteristics to VMT.  
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5.4.3 Demand for miles conditional on Car Ownership 

 Tables 5-5 to 5-8 show the results for the VMT regression.  As described in 

the estimation procedure, the sample is broken down by number of vehicles owned.  

A separate OLS regression is run for households owning 1, 2 and 3 vehicles.  

Equations 1 to 3 in Table 5-5 are estimated using the true value of distance to work in 

the DTW variable.  In other words, equations 1 to 3 assume that DTW is exogenous 

or at least uncorrelated with other right-hand-side variables.   

 Income. Income elasticity varies between 0.19 and 0.13 for households 

owning 1 and 3 vehicles, respectively, holding number of vehicles constant.16  In 

other words, increasing household income by 10 percent would increase VMT by 13 

to 19 percent conditional on current vehicle ownership.  Since the average income of 

households owning one vehicle is approximately $24,000 and that they drive 10,800 

miles per year, increasing household income by $2,400 dollars would imply that one-

vehicle households would drive an average of 2,052  miles more per year.  On the 

other end, the average income of households owning 3 is approximately $51,400 

dollars, so increasing household income by $5,100 would increase travel demand by 

three-vehicle households by 3,890 miles per year.  

Two issues should be highlighted from these results. First, my results are in 

the lower end of those found in the literature (see Table 4-9)—BCMV find that 

income elasticity for 1-car households is around 0.3, while for 2-car households the 

elasticity is about 0.15—I find that my estimated elasticities for 1-car households is 

almost half theirs. My elasticity for 2-car households is 0.15, very similar to what 

                                                 
16 For  the VMT equation, the elasticity is εlnX1 = [∂VMT/∂lnX1]·[1/VMT] = γ1 · [1/VMT] or εX2 = 
[∂VMT/∂X2]·[X2/VMT] = γ2 · [X2/VMT].  Elasticities are calculated at the mean value of the variable 
for each level of car ownership.   



 

 112 
 

they found.  Second, income elasticity is higher for households owning 1 car than 

those owning 2 or 3 cars.  The latter is an expected result, as households  with more 

cars are closer to a point of satiation (there’s so many cars one person can use at a 

time).  

 Effect of DTW on VMT. The regression of VMT on DTW (Table 5-5) allows 

me to calculate the contribution of commuting miles to total miles driven.  It is easier 

to analyze the effect of DTW on VMT by looking at the marginal effect instead of the 

elasticity.  The estimated marginal effects are 0.32, 0.35, and 0.36 for 1-, 2- and 3-

vehicle households, respectively.17  Given that the marginal effects are less than one, 

it is easiest to think of this as a strong degree of task-sharing, as discussed in section 

4.5.4. Section 5.4.4 analyses the overall effect of HHDTW on VMT, conditional on 

car ownership. 

 Gas price. Several authors review the price elasticity of vehicle miles traveled, 

including Litman (2007), Goodwin, Dargay and Hanly (2003), and de Jong and Gunn 

(2001). Gasoline price elasticity of travel demand is relatively inelastic in the short 

run, with values ranging between -0.1 and -0.26. In the long run, as households 

account for higher prices in their decisions such as the type of car to own and where 

to live, gas price elasticities are higher. In the literature, estimates for the long run 

price elasticities range from -0.29 to -0.32. See Table 4-9 for a summary of 

elasticities found in these reviews and the literature in general. 

                                                 
17 The elasticity of VMT with respect to DTW is estimated as follows:  
 ΕDTW   = [∂VMT/∂DTW]·[DTW/VMT] [NUMWORKERS] 
  = [δ NUMWORKER ] X [DTW/VMT] 
Recall that the household’s distance to work is estimated as (average) DTW x NUMWORKERS. 
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  The gas price elasticities obtained in my analysis are -0.041, -0.078, and -0.18 

for 1-, 2- and 3-vehicle households, respectively. These elasticities are around the 

short term elasticity found in the literature of -0.1. Note also that elasticities increase 

as vehicle ownership increases. Since VMT increases as car ownership increases, the 

effect of the elasticity is magnified. Households owning 1 vehicle travel on average 

10,000 miles per year, while 3-vehicle households travel around 28,000 miles per 

year. The elasticity of -0.04 for one-car households implies that their annual miles 

will decrease by 40 miles per year if gasoline prices increase by 10%. On the other 

hand, 3-vehicle households will reduce their travel demand by approximately 504 

miles per year as the price of gas increases 10%. This is an expected result as 

households with more vehicles can adapt easier to price increases, for instance by car 

sharing—this is, households may decide to travel together (in one vehicle) instead of 

having two individuals making discretionary trips in response to the increase in the 

price of gas. 

 Finally, recall that the gasoline price elasticity of travel demand obtained in 

Chapter 4 was around -0.28. Note that my current estimates for this elasticity 

conditional on number of cars owned range from -0.04 to -0.18. Both of these results 

agree with the existing literature, where long the term elasticity is around -0.3 while 

the short term elasticity is approximately -0.1. As discussed above, by taking car 

ownership into consideration in the analysis of travel demand, I am looking at a 

shorter term relative to the case in which I explore only household location. Therefore 

it is expected that the elasticities in this chapter will be smaller in magnitude than 

those obtained in Chapter 4.  
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 City characteristics.  The results show that Population Density and City Area 

have very small effects on VMT conditional on number of cars.  I include population 

density because it represents, roughly speaking, the density of friends and (in most 

cases) other non-commuting destinations.  I expect that this characteristic is the key 

determinant of non-work miles.  The higher is the density, the lower should be VMT.  

The marginal effect for population density ranges from 0.1 to -0.3 percent for 2- and 

3- vehicle households.  In other words, increasing density will not produce significant 

reduction in travel demand in the short term.  Similarly, for city area, the marginal 

effect ranges from -11% for 1 vehicle households to 4.7% for 3- vehicle households.  

 Household characteristics. The remaining variables are in line with what I 

expected (see Table 5.5).  (i) An increase in the number of drivers leads to an increase 

in miles for all levels of vehicle ownership. (ii) an increase in the number of adults 

over 65 reduces miles for all levels of vehicle ownership, and (iii) the marginal 

effects associated to increases in the number of children under 6 and the number of 

kids between 6 and 18drivers is very small. 

 

5.4.4 Overall effects.  

 Sections 5.4.1 and 5.4.2 show the marginal effects for the car ownership and 

travel demand models separately. By presenting results in the previous fashion, one 

can understand more clearly the effects of the explanatory variables. But many 

variables such as income, distance to work, population density, and number of 

workers affect both the number of cars a particular household will own and its travel 

demand. This section looks at the marginal effect of some key independent variable 
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as a whole—this is, the total of their direct and indirect (through number of cars) 

effects on travel demand. The results described in the next paragraphs are shown in 

Table 5-8. 

 Consider a young household living in Atlanta.  Assume this household is 

composed of four individuals: the reference household head, a spouse and two 

children. The household head is the only worker in the household. This individual 

earns an annual income of $40,000, and lives 11 miles away from work. The 

household head is 45 years old and has 16 years of education.  Based on regression #1 

in Table 5-3, the predicted probabilities of owning 0, 1, 2, and 3 households are 1, 20, 

67, and 12 percent, respectively.  Thehousehold is estimated to travel 18,076 miles 

per year.18  

 First, suppose that the household’s income were to increase by 50 percent. As 

a result, the probabilities of owning 2, and 3 vehicles would increase by 5 and 2 

percentage points, respectively, while the probability of owning 1 car decreases by 7 

percentage points. The average number of cars for this household would increase 

from 1.88 to 2.00, and total VMT are expected to increase by 2,102 miles to 20,179 

miles.  

 Second, suppose that the reference person’s distance to work increases by 50 

percent, from 11 miles to 16.5 miles.  As a result, the probabilities of owning 2 and 3 

vehicles increase by 1.3 and 0.5 percentage points, while the probability of owning 0 

and 1 vehicles decreases by 0.7 and 1.1 percentage points.  The average number of 

cars for this household would increase from 1.88 to 1.91, and total VMTs are 

predicted to increase by 1,120 miles per year to 19,197 miles per year. These results 

                                                 
18 The average total VMT over all households for Atlanta is 20,320 miles per year. 
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imply a marginal (overall) effect of HHDTW on VMT equal to 0.42,19 which turn 

suggests a significant amount of task sharing. Recall that in section 4.5.2.1 I had 

estimated this marginal effect to be around 0.33.  By simultaneously estimating VMT 

and car ownership, we are obtaining a higher marginal effect—an expected result 

given the longer term analysis that the model in chapter 5 represents.  By allowing 

DTW to change, households’ respond by changing the number of cars they own.  

Households need additional mobility to be able to meet their needs. As a result, the 

level of task sharing is reduced compared to chapter 4.  

 Third, suppose that a second household member gets a job, but the 

household’s (average) distance to work does not change. This can occur if the spouse 

gets a job very close to home or if the family moves to a different home so that, even 

though both workers will be closer to their jobs, the household’s overall distance to 

work does not change.  In this case, the probability of owning 3 cars increases by 16.8 

percentage points, while the probabilities of owning 0-, 1- and 2 cars decreases (?) by 

1.4, 13.1 and 2.4 percentage points, respectively. Even though the probability of 

owning 3 vehicles increases by such a large amount, the household’s VMT are 

predicted to increase only by 1,744 miles to 19,821 miles. This relatively small 

change is driven by the fact that I have artificially kept the household’s overall 

distance to work constant. If, for example, the second household member got the job 

close to that of the reference person’s, the predicted VMT would increase by 3,750 

miles to 21,826. 

                                                 
19 An increase of 5.5 one-way miles is equivalent to increasing 2640 annual miles. Since the overall 
effect was to increase VMT by 1120 miles, the implied ratio of VMT to HHDTW is 1120/2640=0.42. 
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 Finally, suppose that the reference household in Atlanta moves to Chicago. 

Assume also that the reference person’s income does not change and that he locates 

also 11 miles from work. This household’s probability of owning 2 and 3 cars 

decreases by 17 and 6.7 percentage points, while the probability of owning 0 and 1 

vehicles increases by 8.4 and 15.3 percentage points.  These changes are due mostly 

to changes in population density. Note that the reference household’s probability of 

owning 2 or more vehicles in Atlanta is 79 percent. This probability reduces to 55 

percent if the household was to move to Chicago. As a result, the household is 

expected to demand 4,012 miles less per year.  

 Households adapt to the new city structure by changing their car ownership 

levels, as shown by the data (the probability of owning 0 or 1 cars increases by 22 

percentage points, while the probability of owning 2 or 3 cars decreases by the same 

amount).  Therefore, the change in travel demand is mostly due to changes in vehicle 

ownership.  In the long run, households adjust their household location and therefore 

the impact on travel demand is smaller. 

 

5.5 Comparison of results to existing literature 

 In this section I calculate the marginal effects of income and number of 

drivers using Train’s (1985) results20. This was done in order to compare my results 

with the ones he obtained. The focus is on income and number of drivers as these are 

the main variables explaining car ownership in the literature.  Unfortunately (for my 

purposes) Train did not calculate the effects of population density or other city-level 

                                                 
20 I use Table 8.1 in page 147 for this exercise.  
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variables.  Table 5-9b shows the marginal effects using Train’s parameter estimates. 

Note that Train used only three alternatives for the vehicle quantity submodel (i.e. 

household owns zero, one, or two vehicles), while my model has 4 alternatives.  

 Nonetheless, my results are comparable to Train—The marginal effects for 

Train show that increasing household income from $40,000 to $60,000 would 

increase the probability of owning 2 cars by roughly 5%, while the probability of 

owning 0 or 1 car is decreased by a similar amount. Our results are along these lines, 

as I found that increasing income from 40,000 to 60,000 increases the probability of 

owning 2 and 3 cars by 2.7 and 3.6 respectively. The probability of owning less than 

2 cars decreases by 6.3%. 

 With respect to number of drivers, the results obtained by Train (1986) show 

that increasing the number of drivers in the household from 1 to 2, increases the 

probability of owning 2 cars by 10.5%. Our results show that increasing the number 

of drivers from 1 to 2, increases the probability of owning 2 and 3 cars by 3.4% and 

18.3%, respectively, meanwhile, the probability of owning 0 or 1 cars decreases by 

2.1% and 19.6%, respectively. 

 BCMV focus their study on analyzing the impacts of urban form on car 

ownership and travel demand. Their results show that their measures of urban form 

have little impacts on the odds of car ownership. Only the population centrality 

measure has a significant impact on car ownership: households in less sprawled cities 

are less likely to own one, two, or three or more vehicles. A 10% increase in 

population centrality reduces the probability of owning 2 vehicles by 1.5% and the 

probability of owning 3 vehicles by 2.1%. Similarly, Train uses the variable “annual 
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transit trips per capita in area” to capture the quality of transit in the households area. 

This variable also has the expected sign and magnitudes: an increase in the quality of 

transit in a household’s area increases the probability of choosing one vehicle over 

two and the probability of owning no vehicles over none. 

 Regarding urban form, my results show that density does have an important 

effect on car ownership. A 10% increase in the average city level density reduces the 

probability of owning 2 and 3 cars by 1.7 and 8.9 percentage points, while increasing 

the probability of owning 0 and 1 cars by 10.6 percentage points. The remaining 

variables I used to describe urban shape have very small effects on car ownership. 

 Regarding travel demand, Bento et al show that adding an additional worker 

to the household raises VMT by approximately 5,000 miles per year, though most of 

these miles are due to an increase in car ownership (4,000 miles per year).  I find that, 

for the specific example of a young household in Atlanta, the additional worker 

increases travel demand also by roughly 4000 miles per year.  

 

5.6 Robustness of Estimated Effects 

 I next analyze how robust my results are to different subsets of the data and to 

a different functional form specification. The analysis was done following the 

procedure described in Chapter 4 (previous paper). Elasticities were estimated for 

regressions #1 to #4 in table 2 (car ownership model), and for different sample sizes 

(i.e. removing some cities and therefore altering sample size), and by adding and 

removing variables. The results obtained in regressions table 2 are highly robust. 

Coefficients and calculated elasticities are nearly identical between all estimated 
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regressions. A similar approach was followed for the VMT model, with estimated 

coefficients being robust. Finally, a log-log specification was also estimated for the 

VMT equation. Results were not much affected by this change in function form. 

These results are reported in Table 5-10.   

 

5.7 Concluding comments 

 This paper analyzes the effect that household location has on travel demand 

conditional on car ownership. It also analyzes the effect of household location on 

travel demand and car ownership. 

 Effect of household location on travel demand. Household location affects 

travel demand in two separate ways: first, it affects the number of vehicles owned by 

a household, and second, it affects the total number of miles driven by each car 

ownership level. As households move further away from their jobs, their travel 

demand is expected to increase. But the increase in travel demand will be less than 

proportional to the increase in distance to work. This is due to the fact that “commute 

miles” are only a small proportion of total travel demand. According to my data, 

approximately 23% of the average household’s annual vehicle miles traveled are due 

to its commute. 

 Our results show that increasing distance to work by 10 percent will only 

increase travel demand by 0.8, 1.4 and 1.6 percent for households owning 1, 2, and 3 

vehicles respectively. In the particular case of a young household from Atlanta, and 

once I consider the overall effect (i.e. change in car ownership and change in VMT) 

of an increase in travel demand, a 10 percent increase in distance to work will 
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increase VMT by 1.4 percent. Additionally, most of the change (77 percent) can be 

attributed to a change in VMT, rather than a change in the car ownership levels.  

 From a policy perspective, this result is important because it allows planners 

to analyze the impact of programs such as the “Live Near Your Work” program in 

Baltimore. For instance, suppose that a family that used to live 11 miles from their 

work takes advantage of the incentives in this program and purchases a home only 3 

miles from their work. It is estimated that this household will travel approximately 

1600 miles less per year. By driving 1600 miles less per year, a household would 

avoid consuming roughly 80 gallons of gasoline and save around $240 per year.21 

 Price elasticity of travel demand. As described in Section 4.2 and Table 9, the 

gasoline price elasticity of travel demand is relatively inelastic in the short run, with 

values ranging between -0.1 and -0.26. In the long run, as households account for 

higher prices in their decisions such as the type of car to own and where to live, gas 

price elasticities are higher. In this case, estimates for the long run price elasticities 

range from -0.29 to -0.32. Since I am modeling travel demand taking into 

consideration car ownership, my estimates represent short term impacts of the 

independent variables in my model. Our estimated gas price elasticities are -0.041, -

0.078, and -0.18 for 1-, 2- and 3-vehicle households, respectively. These elasticities 

are around the short term elasticity found in the literature of -0.1.  

 Additionally, note that my elasticities increase as vehicle ownership increases. 

Since VMT increases as car ownership increases, the effect of the elasticity is 

magnified. Households owning 1 vehicle travel on average 10,000 miles per year, 

while 3-vehicle households travel around 28,000 miles per year. The elasticity of -

                                                 
21Assuming a vehicle efficiency of 20 miles per gallon and a price of gasoline of $3 dollars per gallon. 
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0.04 for one-car households implies that their annual miles will decrease by 40 miles 

per year if gasoline prices increase by 10%. On the other hand, 3-vehicle households 

will reduce their travel demand by approximately 504 miles per year is the price of 

gas increases 10%. This is an expected result as households with more vehicles can 

adapt easier to price increases, for instance by car sharing—this is, households may 

decide to travel together (in one vehicle) instead of having two individuals making 

discretionary trips in response to the increase in the price of gas. 

 Finally, recall that the gasoline price elasticity of travel demand obtained in 

chapter IV was around -0.28. Note that my current estimates for this elasticity once 

car ownership is taken into account range from -0.04 to -0.18. Both of these results 

agree with the existing literature, where long the term elasticity is around -0.3 while 

the short term elasticity is approximately -0.1. As discussed above, by taking car 

ownership into consideration in the analysis of travel demand, I am looking at a 

shorter term relative to the case in which I explore only household location. Therefore 

it is expected that the elasticities in this chapter are smaller in magnitude than those 

obtained in Chapter IV. 

 Measures of land use. Our measures of land use show that density is the most 

important variable affecting travel demand. In my example in section 4.3, I assumed 

that a household moved from Atlanta to Chicago. This household was expected to 

travel roughly 4,000 miles less per year. Additionally, most of the savings in annual 

miles are due to changes in car ownership (80%) instead of actual reductions in VMT. 

This means that policies affecting land use could in principle reduce travel demand, 

mainly by inducing changes in car ownership levels. 
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 Endogeneity of household location. Finally, the issue of endogenous 

household location is an important one from the point of view of biased estimators. 

This is left for future research. But since the effect on distance to work on car 

ownership and travel demand has not been analyzed in the literature before, even 

treating location exogenous gives me an initial approach at the relationship between 

these variables.  
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5.8 Tables for Chapter 5 

 
Table 5-1. Number of observations and distribution of CARS variable 

Part (a) – Number of observations 

Description 
Number of 
observations 

Initial sample (total observations in 1995 NPTS) 42,033 

Observations dropped from original sample 23,446 
 Not in MSA or MSA with less than 20 observations 10,629 
 No workers in household 2,859 

 No income data 3,885 
 No VMT data 1,371 

 
Missing values in other explanatory variables 
 

4,702 

CARS  equation (a)  

Total usable observations (134 MSAs) 18,587 

 Households owning no vehicles 1,237 
 Households owning 1 vehicle only 5,102 
 Households owning 2 vehicle only 8,667 

 Households owning 3 or more vehicles 3,581 
  

VMT equation (a)  

Total usable observations (134 MSAs) 17,350 
 Households owning 1 vehicle only 5,102 
 Households owning 2 vehicle only 8,667 
 Households owning 3 or more vehicles 3,581 
Notes: 
(a) 

The difference in sample between the CARS and VMT equations are the 1,237 households that 
do not own any vehicles. 

 

Part (b) – Distribution of CARS variable 

Category Observations Frequency 

Households owning no vehicles 1,237 6.7% 

Households owning 1 vehicle only 5,102 27.4% 

Households owning 2 vehicle only 8,664 46.6% 

Households owning 3 or more vehicles 3,581 19.3% 

Total usable observations (134 MSAs) 18,587 100.0% 
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Table 5-2.   Descriptive Statistics 
Part (a) –  Descriptive statistics for CARS equation 

Variable 
1-car 

household 
2-car 

household 
3-car 

household 
Overall 
sample 

Income, in thousands 23.97 44.46 51.03 35.04 

Log gas price, in dollars 1.18 1.18 1.17 1.18 

Population density 0.83 0.81 0.75 0.81 

City area 0.54 0.53 0.53 0.53 

City shape 2.76 2.76 2.86 2.77 

Highway density 0.69 0.69 0.69 0.69 

Number of drivers 2.54 2.46 2.31 2.47 

Number of children 1.25 2.01 2.64 1.82 

Number of kids 6-18 0.04 0.11 0.07 0.08 

Number people over 65 0.24 0.49 0.62 0.43 

Number of workers 0.40 0.21 0.17 0.27 

Household yearly distance to work 0.80 1.57 2.14 1.39 

Annual VMT, in thousands 10.09 20.47 27.99 17.16 

 

Part (b) –  Descriptive statistics for VMT equation 

Variable Atlanta Boston Chicago Houston Phoenix 
San 

Diego 

Income, in thousands 46.5 37.43 39.15 42.92 32.30 34.44 

Number of workers 1.41 1.50 1.47 1.48 1.12 1.22 

DTW, in thousand miles 9.31 9.85 9.13 10.17 5.74 8.25 

Population density 0.55 1.63 3.22 0.62 0.23 0.59 

Access to transit 0.48 0.53 0.74 0.45 0.41 0.62 

Highway density 1.92 3.89 2.47 1.13 0.48 1.09 

Number of kids under 6 0.06 0.10 0.07 0.09 0.09 0.09 

Number of children 6-18 years 
old 

0.36 0.45 0.48 0.29 0.40 0.28 

Number of members 65 or 
older 

0.22 0.23 0.27 0.16 0.39 0.41 

Age of reference person 45.77 46.54 47.28 44.46 51.48 49.10 

Years of education of 
reference person 

13.59 12.69 12.91 13.85 12.12 13.05 

Annual VMT, in thousands 20.32 19.25 15.95 20.52 16.00 17.57 
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Table 5-3.   Car ownership model – regression results 
 

Part (a) – Parameter estimates for 1 car option 

1 car option 
Eq. #1 
Coef. 

Eq. #2 
Coef. 

Eq. #3 
Coef. 

Eq. #4 
Coef. 

 (std. err) (std. err)  (std. err)  (std. err)  
Log of income 1.05 0.15 1.14 0.90 
 0.0488 0.2356 0.0455 0.0352 

Log of income squared -- 0.21 -- -- 
  0.0487   

Number of workers 0.02 -0.04 -0.08 -0.32 
 0.0764 0.0766 0.0647 0.0461 

Yearly distance to work 0.13 0.12 0.11 0.09 
 0.0161 0.0160 0.0146 0.0089 

Population density -0.32 -0.31 -0.30 -- 
 0.0512 0.0515 0.0492  

Access to transit -0.70 -0.68 -0.85 -- 
 0.3811 0.3814 0.3701  

Highway density -0.05 -0.05 -0.05 -- 
 0.0192 0.0198 0.0180  

Number of children under 6 -0.49 -0.49 -- -- 
 0.1491 0.1486   

Number of children 6 to 18 -0.11 -0.11 -- -- 
 0.0578 0.0577   

Number of old 0.39 0.38 -- -- 
 0.0828 0.0835   

Reference person: Age -0.01 -0.01 -- -- 
 0.0030 0.0029   

Reference person: Education 0.05 0.05 -- -- 
 0.0068 0.0068   

Constant -1.59 -0.76 -1.15 -1.57 
 0.2918 0.3933 0.2216 0.0971 

Log likelihood -16,917.8 -21,262.9 -16,784.9 -14,531.9 
Number of observations 18,587 20,598 18,587 16,252 
LR chi2(3) 11,079.7 7,031.88 11,345.5 6,935.9 
Prob > chi2 0 0 0 0 
Pseudo R2 0.2467 0.1419 0.2526 0.1927 
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Table 5-3 (cont.) 

     

Part (b) – Parameter estimates for 2 car option 

2 car option 
Eq. #1 
Coef. 

Eq. #2 
Coef. 

Eq. #3 
Coef. 

Eq. #4 
Coef. 

 (std. err) (std. err)  (std. err)  (std. err)  
Log of income 2.31 -1.29 2.26 1.85 
 0.0593 0.2764 0.0537 0.0417 

Log of income squared -- 0.63 -- -- 
  0.0536   

Number of workers 1.08 1.01 0.72 0.44 
 0.0793 0.0790 0.0659 0.0461 

Yearly distance to work 0.16 0.15 0.13 0.11 
 0.0161 0.0160 0.0146 0.0088 

Population density -0.55 -0.57 -0.51 -- 
 0.0561 0.0567 0.0535  

Access to transit -1.55 -1.52 -1.70 -- 
 0.4058 0.4043 0.3915  

Highway density -0.13 -0.13 -0.13 -- 
 0.0231 0.0239 0.0215  

Number of children under 6 0.10 0.07 -- -- 
 0.1521 0.1507   

Number of children 6 to 18 0.03 0.03 -- -- 
 0.0595 0.0595   

Number of old 1.03 1.06 -- -- 
 0.0884 0.0889   

Reference person: Age -0.01 -0.01 -- -- 
 0.0033 0.0032   

Reference person: Education 0.02 0.01 -- -- 
 0.0073 0.0073   

Constant -5.75 -0.52 -4.75 -5.44 
 0.3265 0.4732 0.2514 0.1279 

Log likelihood -16,917.8 -21,262.9 -16,784.9 -14,531.9 
Number of observations 18,587 20,598 18,587 16,252 
LR chi2(3) 11,079.7 7,031.88 11,345.5 6,935.9 
Prob > chi2 0 0 0 0 
Pseudo R2 0.2467 0.1419 0.2526 0.1927 
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Table 5-3 (cont.) 

 
Part (c) – Parameter estimates for 3 car option 

3 car option 
Eq. #1 
Coef. 

Eq. #2 
Coef. 

Eq. #3 
Coef. 

Eq. #4 
Coef. 

 (std. err) (std. err)  (std. err)  (std. err)  
Log of income 2.62 -1.99 2.48 1.99 
 0.0706 0.3442 0.0630 0.0514 

Log of income squared -- 0.77 -- -- 
  0.0606   

Number of workers 2.00 1.94 1.57 1.27 
 0.0837 0.0834 0.0703 0.0512 

Yearly distance to work 0.17 0.16 0.14 0.11 
 0.0162 0.0161 0.0147 0.0089 

Population density -0.72 -0.75 -0.67 -- 
 0.0647 0.0653 0.0616  

Access to transit -1.50 -1.46 -1.69 -- 
 0.4444 0.4427 0.4280  

Highway density -0.28 -0.28 -0.27 -- 
 0.0321 0.0326 0.0300  

Number of children under 6 -0.04 -0.06 -- -- 
 0.1661 0.1647   

Number of children 6 to 18 0.07 0.07 -- -- 
 0.0628 0.0627   

Number of old 1.08 1.12 -- -- 
 0.1000 0.1004   

Reference person: Age 0.03 0.02 -- -- 
 0.0037 0.0037   

Reference person: Education -0.01 -0.02 -- -- 
 0.0080 0.0080   

Constant -10.23 -3.15 -7.68 -8.49 
 0.3825 0.6273 0.3017 0.1774 

Log likelihood -16,917.8 -21,262.9 -16,784.9 -14,531.9 
Number of observations 18,587 20,598 18,587 16,252 
LR chi2(3) 11,079.7 7,031.88 11,345.5 6,935.9 
Prob > chi2 0 0 0 0 
Pseudo R2 0.2467 0.1419 0.2526 0.1927 

 
 
 



 

 129 
 

 
 

Table 5-4.   Car ownership model – Marginal effects 
 

Part (a) – Marginal effect of increasing income from $40k to $60k 
(based on Regression #1) 

Predicted probabilities  Car ownership levels 
 0 cars 1 car 2 cars 3 cars 
Probability of owning x cars, P0(cari) 
Income = $40,000  
 

0.80% 19.90% 61.84% 17.45% 

Probability of owning x cars, P1(cari) 
Income = $60,000 
 

0.20% 10.34% 67.33% 22.13% 

Change in probability due to change in income (*) -0.60pp -9.56pp 5.49pp 4.67pp 

Notes: 
(*) in percentage points (pp) 

 
 

 
Part (b) – Marginal effects for car ownership model, all variables 

(based Regression #1) 

Change in independent variable 
Increase in the probability of  

owning x cars, in percentage points 

 0 cars 1 car 2 cars 3 cars 
Increase income from $40 to $60k -0.60 -9.56 5.49 4.67 

Increase number of workers from 2 to 3 -0.77 -18.00 0.21 18.57 

Increase population density by 10% 2.25 13.68 -7.14 -8.79 

Increase access to transit by 10% 0.31 3.22 -2.93 -0.60 

Increase Highway density by 10% 0.03 0.43 0.17 -0.63 

Increase age of ref. person by 5 years 0.01 -0.45 -1.97 2.42 

Increase education of ref. person by 5 years -0.04 3.16 -1.11 -2.01 

Increase total distance to work by 10% -0.09 -0.34 0.24 0.20 
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Table 5-4. (continued) 
 

Part (c) – Marginal effects for 6 cities  
Increase in the probability of owning x cars (in percentage points) 

 by moving from city in column 1 to destination cities (columns 3-8) 
Destination city 

City of 
origin 

Cars 
owned Atlanta Boston Chicago Houston Phoenix 

San 
Diego 

Atlanta 0 car 0.00 0.64 2.11 -0.05 -0.18 0.04 

 1 car 0.00 10.13 20.34 -1.41 -4.61 0.51 
 2 car 0.00 -3.28 -12.81 -0.40 -0.60 -2.23 
 3 car 0.00 -7.48 -9.64 1.87 5.38 1.68 

Boston 0 car -0.55 0.00 1.30 -0.59 -0.70 -0.52 
 1 car -9.13 0.00 9.59 -10.37 -13.13 -8.74 
 2 car 1.38 0.00 -8.57 0.63 -0.27 -0.97 
 3 car 8.30 0.00 -2.33 10.34 14.10 10.22 

Chicago 0 car -1.80 -1.26 0.00 -1.84 -1.94 -1.77 
 1 car -18.56 -9.54 0.00 -19.79 -22.51 -18.18 
 2 car 9.70 8.47 0.00 8.93 7.98 7.35 

 3 car 10.66 2.33 0.00 12.70 16.47 12.59 

Houston 0 car 0.03 0.39 1.28 0.00 -0.07 0.05 
 1 car 1.16 9.76 19.16 0.00 -2.56 1.55 

 2 car 0.78 -0.27 -8.42 0.00 -0.97 -1.53 
 3 car -1.96 -9.88 -12.01 0.00 3.60 -0.07 

Phoenix 0 car 0.48 2.10 5.55 0.35 0.00 0.59 
 1 car 5.77 17.24 26.93 4.04 0.00 6.44 

 2 car -1.28 -7.78 -18.87 -1.09 0.00 -3.40 
 3 car -4.97 -11.56 -13.62 -3.30 0.00 -3.63 

San Diego 0 car -0.07 0.88 3.00 -0.14 -0.34 0.00 

 1 car -0.62 10.46 20.84 -2.22 -5.92 0.00 
 2 car 2.15 -3.08 -13.54 2.11 2.68 0.00 
 3 car -1.46 -8.26 -10.30 0.26 3.58 0.00 
 
Notes: 
This table should be read as follows: Suppose a household moves from Atlanta (column 1) to Chicago 
(column 5). The household’s probability of owning 0 or 1 car increases by 2.1 and 20.3 percentage 
points, respectively. At the same time, this household’s probability of owning 2 or 3 cars decreases by 
12.8 and 9.6 percentage points, respectively. 
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Table 5-5.   Vehicle miles traveled, Regression results  
(Dependent variable=VMT) (a) 

Variable 

#1 
1-car option 

Coeff. 
(Std. Err) 

#2 
2-car option 

Coeff. 
(Std. Err) 

#3 
3-car option 

Coeff. 
(Std. Err) 

Log of income 1.893 3.126 3.890 
  (0.1917) (0.3211) (0.6258) 

Log gas price -1.353 -3.326 -1.078 
  (1.8288) (2.4420) (5.0176) 

Population density -0.213 -0.320 0.809 
  (0.2001) (0.2634) (0.5709) 

Access to transit -3.984 -2.274 -6.890 
  (1.3304) (1.7116) (3.4337) 

City area -0.046 0.023 -0.048 
  (0.0437) (0.0575) (0.1210) 

City shape 0.870 1.428 0.104 
  (0.6997) (0.8702) (1.8132) 

Highway density -0.160 0.362 0.033) 
  (0.0749) (0.1668) (0.3644) 

Number of drivers 0.895 0.861 2.836 
  (0.2769) (0.3627) (0.4436) 

Number of children -0.241 1.256 -1.037 
  (0.5522) (0.4614) (1.1053) 

Number of kids 6-18 0.304 0.066 -0.371 
  (0.1948) (0.1744) (0.3349) 

Number people over 65 -1.459 -1.378 -1.249 
  (0.2007) (0.2730) (0.6288) 

DTW x number of workers 0.315 0.345 0.356 
  (0.0238) (0.0159) (0.0290) 

Mills ratio 0.390 0.051 -0.139 
  (0.0884) (0.1439) (0.1555) 

Constant 5.884 4.199 3.930 

  (1.0970) (1.8844) (3.9945) 

Notes: 
(a) Results in this table are based on Regression #1 in Table 3. 
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Table 5-6.   Vehicle miles traveled - Marginal effects 

Variable 
1 Car 

household 
2 Car 

household 
3 Car 

household 
Income 0.19 0.15 0.14 
Price of gasoline -0.13 -0.16 -0.04 
Population density -0.02 -0.01 0.02 
Access to transit -0.21 -0.06 -0.13 
City area -0.01 0.00 0.00 
City shape 0.06 0.05 0.00 
Highway density -0.04 0.04 0.00 
Number of drivers 0.11 0.08 0.27 
Number of children 0.00 0.01 0.00 
Number of kids 6-18 0.01 0.00 -0.01 
Number people over 65 -0.06 -0.01 -0.01 
Yearly distance to work 0.08 0.15 0.16 
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Table 5-7.   Vehicle miles traveled - Marginal effects from moving between cities 
Effect on travel demand of moving a household from 

city of origin (column 1) to destination city (columns 3-8)  
Destination 

City of 
origin 

Cars 
owned Atlanta Boston Chicago Houston Phoenix 

San 
Diego 

Atlanta 1 car 0 -548 -1259 391 -87 -120 
 2 car 0 15 -1388 -263 -967 -933 
 3 car 0 460 783 -680 -1545 -899 

Boston 1 car 603 0 -794 1031 508 472 
 2 car -15 0 -1403 -277 -981 -948 
 3 car -443 0 310 -1097 -1928 -1308 

Chicago 1 car 1609 920 0 2095 1501 1460 
 2 car 1635 1653 0 1328 500 539 
 3 car -734 -303 0 -1371 -2180 -1577 

Houston 1 car -366 -874 -1521 0 -447 -478 
 2 car 270 286 -1153 0 -722 -688 
 3 car 723 1211 1552 0 -923 -234 

Phoenix 1 car 88 -466 -1176 486 0 -33 
 2 car 1082 1098 -473 788 0 37 
 3 car 1802 2337 2712 1009 0 754 

San Diego 1 car 381 -605 -1119 -75 -162 0 
 2 car 801 -910 -1217 5 107 0 
 3 car 716 87 1179 -48 -540 0 
 
Notes: 
This table is read as follows: Suppose a household moves from Atlanta (column 1) to Chicago (column 
5). Household owning 1 car will travel, on average, 1,259 miles less per year The household’s 
probability of owning 0 or 1 car increases by 3 and 13 percentage points, respectively. At the same 
time, this household’s probability of owning 2 or 3 cars decreases by 9 and 7 percentage points, 
respectively. 
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Table 5-8.   Overall marginal effects from moving young household in Atlanta  

Description 
1-car 

household 
2-car 

household 
3-car 

household 

Original predicted probabilities (b) 20% 67% 12% 

Original predicted VMT, in thousands (c) 11.6 19.8 22.2 

Total (weighted) VMT for young household(d) 18,076 Miles per year 

    

Case 1: increase income by 50% 

Percentage Change in probabilities -6.9pp 5.4pp 2.7pp 
Predicted probabilities after income increase 13% 72% 14% 

Predicted VMT after increase, in thousands 12.4 21.1 23.7 

Total (weighted) VMT 20,179 Miles per year 

Change in VMT from increase in income 2,102.4 Miles per year 
    

Case 2: Increase DTW by 50% 

Percentage Change in probabilities -1.1pp 1.3pp 0.5pp 

Predicted probabilities after increase in DTW 13% 72% 14% 

Predicted VMT after increase, in thousands 12.4 20.7 23.1 

Total (weighted) VMT 19,197 Miles per year 

Change in VMT from increase in DTW 1120.7 Miles per year 

    

Case 3: Additional worker in household 

Percentage Change in probabilities -13.1pp -2.4pp 16.8%pp 
Predicted probabilities after increase in workers 7% 64% 29% 

Predicted VMT after increase, in thousands 11.6 19.8 22.2 

Total (weighted) VMT 19.821 Miles per year 

Change in VMT from increase in workers 1744.6 Miles per year 
    

Case 4: Household moves from Atlanta to Chicago 

Percentage Change in probabilities 15.3pp -17.0pp -6.7pp 
Predicted probabilities after move 35% 50% 5% 
Change in VMT from move 10.3 18.8 22.8 

Total (weighted) VMT 14.064 Miles per year 

Change in VMT from changing cities -4012.1 Miles per year 

Notes: 
(a) Young household in Atlanta is defined as having four individuals (reference person, spouse and two 
children). The household head is the only worker in the household, earns $40,000 per year, and lives 
11 miles from work (one way) 
(b) Predicted probabilities are estimated using equation #1 in Table 5-3 
(c) Predicted VMT are estimated using equation in Table 5-5 
(d) Total (weighted) VMT is estimated as follows: VMT = Σ Prob(CARS = i) x VMTi 
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Table 5-9. Regression results from Train (1986) 

Part (a) – Regression results, Car ownership model (K. Train, 1986 

Coefficient estimates 
Variable One-vehicle 

household 
Two-vehicle 
household 

Log income 1.05 1.57 
Number of workers 1.08 1.5 
log household size 0.181 0.197 
Number of  transit trips per capita -0.0009 -0.0021 
average utility 0.635 0.635 
Constant -1.79 -4.95 

 

Part (b) – Marginal effects, car ownership model 
Variable 0 cars 1 car 2 cars 

Income -0.35% -4.59% 4.94% 
Number of  workers -0.27% -10.21% 10.48% 
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6 Concluding comments 

 The objective of this dissertation is to analyze the impact of land use on 

transportation conditional on household location and car ownership. Much of the 

research on VMT has focused on the effect of car ownership on VMT, and very little 

has been said about the interaction between household location and VMT. In 

particular, I examine household’s distance to work (DTW) within a city. The short-to-

medium term constraints imposed by household location are likely to be more 

important economically and for policy than the automobile stock. I approached the 

above objective in two separate manners: first I treat distance to work as endogenous 

and study the interaction between VMT and DTW. Second, I study the overall effect 

of DTW on car ownership and VMT. This approach allows me to untangle the direct 

and indirect effects of DTW on VMT via car ownership.  

 

6.1 Summary of results 

 Regarding the first issue of examining the simultaneous interaction of DTW 

and VMT, I reach two broad conclusions.  First, those city characteristics that might 

be expected to affect commutes or the jobs-housing match (other than the city’s 

physical size) have remarkably little effect on households’ distance-to-work. 

Variables like city shape, or the joint jobs-housing distribution have little apparent 

effect on city-average distance-to-work.  Only commute speed has a substantial effect 

on DTW. Our measure of congestion (MEDSPEED) suggests that people will locate 
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around 8.8 percent further from their work when commute speed increases by 10 

percent.  In other words, by increasing commute speed from a national average of 

29.5 mph to 32.5 mph, I expect people to live on average 1.24 miles further their jobs 

than they do now.  That is, the mean one-way distance-to-work would increase from 

9.7 to 10.9 miles 

 Second, I conclude that distance-to-work provides a quite modest constraint 

on overall household vehicle miles traveled.  A one percent increase in distance-to-

work leads to a 0.33 percent increase in VMT.  In level terms, a one mile increase in 

one-way distance-to-work for one worker, which translates into roughly 480 

additional commuting miles per year, leads to an annual increase of about 206 vehicle 

miles.  These figures mean that a reduction in distance-to-work would have only 

small effects on overall vehicle miles traveled.   

 With respect to the second approach to analyze the effect of distance to work 

on travel demand conditional, I find that household location affects travel demand in 

two separate ways: first, it affects the number of vehicles owned by a household, and 

second, it affects the total number of miles driven by each car ownership level. As 

households move further away from their jobs, their travel demand is expected to 

increase. But the increase in travel demand will be less than proportional to the 

increase in distance to work. Our results show that increasing distance to work by 10 

percent will only increase VMT by 1.4 percent.  One explanation for this small effect 

could be to the fact that “commute miles” are only a small proportion of total travel 

demand. According to my data, approximately 23% of the average household’s 

annual vehicle miles traveled are due to its commute. Finally, of all my measures of 
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city form, access to transit and population density have the highest effects on VMT, 

but the effects are still small. 

 In addition to the above, there are two other results that I find noteworthy and 

that I feel have received insufficient attention from the literature.  First, I find that 

conditional on distance-to-work, people do not drive (much) more in physically larger 

cities.  This result may not be surprising, since non-commuting “chores” can mostly 

be done locally, regardless of a city’s size, but the size and nature of this conclusion 

has not been estimated to my knowledge.  Previous research has either not examined 

the city area effect (despite, I feel, its seemingly obvious role) or, in the few cases 

where it has been included, has not emphasized it (BCMV).  One implication of my 

finding is that household migration – mostly from physically small to large cities – 

will likely have substantial effects on nationwide VMT.  This effect has not been 

much remarked on. 

 I also find that non-working households have a considerably smaller VMT-

gas-price elasticity.  Previous literature has not focused on the work decision, despite 

the fact that non-working households drive approximately 10,000 miles less per year 

than working households.  I estimate separate VMT equations for workers and non-

workers (i.e., no workers in the household.)  Of course, this distinction also entails 

my recognizing that the work decision is endogenous. 

 

6.2 Directions for future research 

 There are several key areas worth investigating in the future: First, an obvious 

extension of the model in Chapter 5 would be to tackle the endogeneity issue of 
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distance to work by explicitly modeling this decision. Under these circumstances, it 

could be assumed that households simultaneously select where to live, how many cars 

to own, and how much to drive to maximize their utility. The structural equations 

resulting from this problem are listed below: 

 

Prob (CARS = i) = Prob (Ui > Uj)  for i≠j and i=0,1,2, or 3 [6-1] 

ln (DTW) = X1 β + ε2        [6-2] 

VMT = X2 + δ DTW + ε3        [6-3]  

 

 Estimation of this model is not very straightforward, but several approaches 

can be analyzed. For instance, the model could be estimated via maximum likelihood, 

though the set up is not very easy.  

A second natural extension of the work developed in this dissertation would 

be to model commute mode. This could be done following the work of Bhat (2005), 

Train (1986), and Mannering and Winston (1985) who have applied nested logit 

models to study car ownership and type choice. This framework could be used to 

model car ownership and commute mode. This approach could lead to very 

interesting policy questions related to commute and non-commute VMTs and policies 

to reduce VMTs. 

A third direction is to tackle a different set of questions.  Two such questions 

in particular are suggested by my research.  First, I wonder how these conclusions 

would change if I characterized household location using Time-to-Work (TTW) 

rather than DTW.  TTW may be a more accurate measure of the costs of living far 
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from one’s work than is DTW.  It has two potential drawbacks, however: (i) its role in 

contributing to externalities is weaker, and (ii) it cannot be naturally measured on the 

same scale as VMT and DTW allow. Second, the high degree of household mobility 

in the U.S. suggests a future research agenda that explicitly studies the DTW or TTW 

decisions of movers and the implications of such mobility for VMT. 



 

 141 
 

  

 



 

 142 
 

Appendices 
 

7 Appendix 1 –Switching regression when one of the regimes 

is distributed bivariate normal 

7.1 Switching regression model 

In the following model, the behavior of the agents is described by three equations 

working under two regimes. There is one criterion function that determines which of 

the two regimes is applicable. The special thing about the particular model described 

next is that in regime 1, behavior is characterized by a system of two equations. 

Furthermore, these equations are assumed to be distributed bivariate normal. The 

following model is based on the switching model described in Maddala (1983), page 

223. 

The criterion function is defined by equation A.1 below: 

 

I =
1 if 1 > −γZ

0 if 1 < −γZ
 

A.1 

 

The model is completed by the following two regimes: 

 

Regime 1:
VMT = X2β2 + δDTW + 2

DTW = X3β3 + 3

iff I = 1

Regime 2: VMT = X4β4 + 4 iff I = 0
 

A.2 
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Following the model described in 4, the variance-covariance matrix for the 

system described in Equation A.2 is defined as: 

 

V =

1 σ12 0 σ14

σ2
2 σ23 0

σ3
2 0

σ4
2

 

A.3 

 

where V is an symmetric matrix, and, furthermore, it is assumed that jiijij σσρσ =  

The likelihood function for the model defined by equations A.1 to A.3 is: 

 

Lβ,σ,ρ = ∏ ∫
−γZ

∞
g1 ,2 ,3d1

I i

∫
−∞

−γZ

f1 ,4d1

1−I i

  #   

 

A.4 

 

where ),,( 321 εεεg  and ),( 41 εεf  are trivariate and bivariate normal distributions, 

respectively. It can be shown that equation A.4 can be expressed as: 
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A.5 

 

where ),( 3223 εεg  is a bivariate normal distribution function such that, first, 

),(),|(),,( 3223321321 εεεεεεεε ggg ⋅= , second, )( 44 εf  is a normal distribution 

function such that )()|(),( 444141 εεεεε fff ⋅= ; and )(⋅Φ  is the cumulative 

distribution function of a standard normal. The log likelihood function is therefore: 
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lnLβ,σ,ρ = ∑

I=1

lng232 ,3 + lnΦ−w2 ,3

+∑
I=0

lnf44 + lnΦw4

  #   

  #   

 

A.6 

 

where each of the functions is defined above. 

7.2 Derivation of the Likelihood function 

In order to show that equation A.4 can be expressed as equation A.5, I will 

derive alternative expressions for each of the two terms in the square brackets on the 

right hand side of equation A.4. First, I begin by showing that the first integral on the 

right hand side of equation A.4 equals: 

 ( )),(),(),,( 3232231321 εεεεεεεε
γ

wgdg ii
Z

−Φ⋅=∫
∞

−
 

A.7 

 

To do this, note that the trivariate normal density function ),,( 321 εεεg may be 

written in terms of its conditional and marginal distributions, as follows: 

 
∫
−γZ

∞
g1 ,2 ,3d1 = ∫

−γZ

∞
g11 | 2 ,3 ⋅ g232 ,3d1

= g232 ,3 ⋅ ∫
−γZ

∞
g11 | 2 ,3d1   #   

 

A.8 

 

where the conditional distribution can be expressed as: 
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g11 | 2 ,3~ Nμ∗,η1

2 

where

μ∗ = μ1 − η1

η2
2 − μ2  −

η1

η3
3 − μ3 

η1 =
1 − ρ12

2 − ρ23
2 

1 − ρ23
2 

η2 = −
σ2 1 − ρ23

2 1 − ρ12
2 − ρ23

2 
ρ12

η3 =
σ3 1 − ρ23

2 1 − ρ12
2 − ρ23

2 

ρ23ρ12 

  #   

  #   

  #   

  #   

  #   

 

A.9 

 

The variables 21 ,µµ  and 3µ  are the means of 21,εε  and 3ε  respectively. 

Therefore, assuming that 0321 === µµµ , the probability density function for 

equation A.8 is  

 

∫
−γZ

∞
g11 | 2 ,3d1 = ∫

−γZ

∞ 1

2π ⋅ η1

exp − 1
2

1 − μ∗

η1

2

d1   #   

 

A.10 

 

where 32 3

1

2

1 εεµ η

η

η

η −−=∗  and  ,, 21 ηη  and 3η  are defined in equation A.7 above. 

Define the following transformation 

 
z =

1 − μ∗

η1
  #   
 

A.11 

 

where  

 

1

1

η

εd
dz =  

A.12 

 
),( 32

1

1 εε
η

µγ
γε w

Z
zZ ≡

−−
→⇒−→

∗

 
 

 ∞→⇒∞→ z1ε   
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Therefore, by replacing the equations in A.12 into equation A.10, I obtain 
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A.13 

 

Finally, replacing equation A.13 into A.8 yields 

 
∫
−γZ

∞
g1 ,2 ,3d1 = g232i,3i ⋅ Φ−w2 ,3

= g232i,3i ⋅ Φ
γZ + μ∗

σ∗   #   

 

A.14 

 

where ),( 3223 iig εε  is the pdf of a bivariate normal distribution, ( )),( 32 εεwΦ  is the 

cdf of a standard normal distribution, and ),( 32 εεw is defined in equation A.12 above. 

Second, I will show that the second integral on the right hand side of equation 

A.4 equals 

 ( ))()(),( 444141 εεεεε
γ

wfdf
Z

Φ⋅=∫
−

∞−
 

A.15 

 

To do this, note that the bivariate normal ),( 41 εεf  can be expressed in terms 

of its conditional and marginal distributions, as follows: 

 
∫
−∞

−γZ

f1 ,4d1 = ∫
−∞

−γZ

f44 ⋅ f11 | 4d1

= f44 ⋅ ∫
−∞

−γZ

f11 | 4d1   #   

 

A.16 
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where [ ])1(),()|( 2
14144141411 4

1 ρσµερµεε σ

σ −−+∼ Nf , and 1µ  and 4µ  are the means 

of 1ε  and 4ε , respectively. By assumption, I have that 041 == µµ  and .12
1 =σ  

Therefore [ ].)1(,)|( 2
144411 4

14 ρεεε σ

ρ −∼ Nf  The function )( 44 εf  is distributed normal 

with mean 0 and variance 2
4σ . Under these conditions, the integral on the right hand 

side of equation A.16 can be expressed as: 
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A.17 

 

Define the following transformation 

 

z =
1−ρ14

4

σ 4

1 − ρ14
2

  #   

 

A.18 

 

where  

 
dz =

d1

1 − ρ14
2

  #   

 

A.19 

 ∞−⇒−∞→ z1ε   
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Therefore by replacing equations A.18 and A.19 into equation A.17, I obtain 



 

 148 
 

 

( ))(

2

1
exp

2

1

1)1(2

1
exp

2

1
)|(

4

2
)(

2

14

1

2

2

14

41

141

4

4

14

ε

π

ρ

ε

ρ

εε

π
εεε

ε

σ

ρ
γγ

w

dzz

d
df

w

ZZ

Φ=









−=

−



























−

−
−=

∫

∫∫

∞−

−

∞−

−

∞−

 

A.20 

 

where )( 4εw  is defined in equation A.19 above. Replacing A.20 into A.16 yields the 

expression in A.15, which is what I were trying to show. 

Finally, replacing equations A.7 and A.15 into equation A.4 yields the 

following expression for the likelihood function: 

 
Lβ,σ,ρ = ∏

I=1

g232i,3i ⋅ Φ−w2 ,3 ⋅∏
I=0

f44 ⋅ Φw4

where

w2 ,3 ≡
−γZ − μ∗

η1

w4 ≡
−γZ − ρ14

4

σ 4

1 − ρ14
2

  #   

 

A.20 

 

where 32 3

1

2

1 εεµ η
η

η
η −−=∗ . Taking the log of the likelihood function yields: 

 
lnLβ,σ,ρ = ∑

I=1

lng232 ,3 + lnΦ−w2 ,3

+∑
I=0

lnf44 + lnΦw4

  #   

  #   

 

A.21 

 

where ),( 32 εεw  and )( 4εw  are defined in A.20 above. 
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7.3 Maximum likelihood estimation 

The model described in the previous section can in principle be estimated via 

maximum likelihood. A STATA program was developed to estimate the parameters. 

This program is listed in the annex to the appendix. Unfortunately, the program does 

not converge when the NPTS data are used. Simulations using Monte Carlo methods 

were carried out to determine whether the program was working correctly. The results 

of estimating the model in Chapter 4, using generated data are listed in the table 

below: 

 

Table A-1. Simulations using Monte Carlo for the Model used in Chapter 4. 
Estimation is done using FIML and LIML 

 Variable 

 X21 X22 Y3 Constant 

True beta 0.35 -0.29 1.25 1.16 

Beta (FIML) 0.349819 -0.28751 1.210815 1.185928 

Std Dev (FIML) 0.330569 0.339508 0.326116 0.568624 

Beta (LIML) 0.350138 -0.29158 1.186442 1.243583 

Std Dev (LIML) 0.531846 0.570238 0.820107 0.416682 

 

For the simulation, a dataset with 19 parameters and 1000 observations was 

created. The model was estimated 1000 times, and the average and standard 

deviations are presented for the equation that in Chapter 4 represents VMT. The 

model was estimated both using FIML and LIML. Note that the FIML estimation 

approximates the true betas very well and the standard error is smaller than when 

LIML is used. But LIML is still a good estimator, as the true beta is contained within 

a standard error of the estimated beta.  
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Annex to Appendix 1 
 

Table A-1. Stata Code used to estimate model by maximum likelihood 
***************************************************************************** 

*                                SIMULATIONS                                * 

*                                                                           * 

* FIML and LIML estimation of a swithching regression model where one of    * 

* the regimes is a system of equations                                      * 

***************************************************************************** 

clear 

set more off 

 

capture log close 

log using $stata\pwj\FIMLandLIML_10000iter_09082007,replace 

 

 

*---------------------------------------------------------------------------* 

* STEP 1 - CREATE COEFFICIENTS                                              * 

*---------------------------------------------------------------------------* 

capture program drop gencoef2 

program gencoef2  /* 1 parameter */ 

version 8.2 

    local k `1' 

    local kplus1=`k'+1 

   

*...........................................................................* 

* Create matrix where original ("true") coefficients will be stored.        * 

*...........................................................................* 

    matrix beta1=J(4,`kplus1',.)     

 

*...........................................................................* 

* Create coefficients (betas) for the "k" independent variables (Xij) and   * 

* the coefficient for the constant term. Organize results in a vector.      * 

*...........................................................................* 

    forvalues j=1/4{ 

    forvalues i=1/`kplus1' { 

        matrix beta1[`j',`i']=int(100*invnorm(uniform()))/100                                

    } 

    } 

         

end 

*---------------------------------------------------------------------------* 

 

 

*---------------------------------------------------------------------------* 

* STEP 2 - CREATE FICTIONAL DATA (X, e, and Y)                              * 

*---------------------------------------------------------------------------* 

capture program drop gendata  /* 1 parameter */ 

program gendata 

version 8.2 

  local obs `1' 

  local k   `2'                   /* No. of indep. vars excluding constant */ 

  local s12 `3' 

 

  local kplus1=`k'+1 

 

   

*...........................................................................* 

* Create error term                                                         * 

*...........................................................................* 

  matrix mu  = (   0,      0,     0,     0) 

 

  matrix var = (    1, `s12',     0,  0.57\     /// 

                `s12',     4,   0.8,     0\     ///   

                    0,   0.8,  1.44,     0\     ///  

                 0.57,     0,     0,     2)   

 

  drawnorm e1 e2 e3 e4,n(`obs') m(mu) cov(var) 
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*...........................................................................* 

* Create independent variables X_ij and dependent variable Y                * 

*...........................................................................* 

  

 forvalues j=1/4{ 

    forvalues i=1/`k'{ 

       gen x`j'`i'=uniform() 

    } 

  } 

 

end 

*---------------------------------------------------------------------------* 

 

 

 

***************************************************************************** 

* STEP 3 - ESTIMATE REGRESSION AND RECOVER PARAMETERS                       * 

***************************************************************************** 

display c(current_time) 

clear 

local maxiter= 1000 

local obs    = 1000 

local coef   = 2                   /* No. of indep. vars excluding constant */ 

local eqns   = 4 

 

 

scalar alfa  = 1.25 

local  s12   = 1.2 

 

local kplus1 = `coef' + 1 

local maxobs = max(`maxiter',`obs') 

 

gencoef2 `coef'                    /* Create coefficients                   */ 

 

matrix list beta1 

 

*tempfile bliml bfiml 

quietly{ 

 

*...........................................................................* 

* Begin iteration procedure                                                 * 

*...........................................................................* 

  forvalues x=1/`maxiter'{ 

  gendata `obs' `coef' `s12'  

 

*...........................................................................* 

* Generate Y variables                                                      * 

*...........................................................................* 

  gen y1 = beta1[1,1]*x11 + beta1[1,2]*x12 + beta1[1,3] + e1 

  gen y3 = beta1[3,1]*x31 + beta1[3,2]*x32 + beta1[3,3] + e3 

  gen y4 = beta1[4,1]*x41 + beta1[4,2]*x42 + beta1[4,3] + e4 

 

  gen y2 = beta1[2,1]*x21 + beta1[2,2]*x22 + beta1[2,3] + scalar(alfa) * y3 + e2 

 

 

  gen I=y1>0 

 

*...........................................................................* 

* LIML estimation                                                           * 

*...........................................................................* 

  probit I x1* 

  predict Ihat,xb 

 

  reg y3 x3* 

  predict y3hat  

 

  gen mills1 = normden(Ihat)/norm(Ihat)  if I==1 

  gen mills0 = normden(Ihat)/norm(-Ihat) if I==0 

 

  reg y2 x2* mills1 y3hat if I==1 
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  noisily display in green "LIML round `x' completed" 

 

  preserve 

*...........................................................................* 

* Create new file with estimated parameters for LIML                        * 

*...........................................................................* 

      matrix bhat_l=e(b) 

      local kplus1 = colsof(bhat_l) 

 

          if `x'==1{ 

              svmat bhat_l 

              set obs `maxobs' 

              keep bhat* 

              save c:\bliml,replace 

/*        end if */    }  

          else{ 

              use c:\bliml,clear 

              forvalues y=1/`kplus1'{ 

                  replace bhat_l`y'= bhat_l[1,`y']  in `x' 

/*            end forvalues */  } 

              save c:\bliml,replace 

/*        end else */    }  

 

  restore 

 

 

*...........................................................................* 

* FIML estimation                                                           * 

*...........................................................................* 

  ml model lf swregtri_lf_v4 (I = x1*) (y2 = x2* y3) (y3 = x3*) (y4 = x4*)  /// 

                             /sigma2 /sigma3 /sigma4                        /// 

                             /rho12  /rho23  /rho14 

  ml search 

  ml maximize 

 

  noisily display in green "FIML round `x' completed" 

 

*...........................................................................* 

* Create new file with estimated parameters for FIML                        * 

*...........................................................................* 

      matrix bhat_f=e(b) 

      local kplus1 = colsof(bhat_f) 

 

        if `x'==1{ 

            svmat bhat_f 

            set obs `maxobs' 

            keep bhat* 

            save c:\bfiml,replace 

/*      end if */    }  

        else{ 

            use c:\bfiml,clear 

            forvalues y=1/`kplus1'{ 

                replace bhat_f`y'= bhat_f[1,`y']  in `x' 

/*          end forvalues */  } 

            save c:\bfiml,replace 

/*      end else */    }  

 

 

 

*...........................................................................* 

* Show some output while the "loop" runs (for the entertainment value)      * 

*...........................................................................* 

    if mod(`x',50)==0{ 

      noisily display in yellow "Round `x' of `maxiter'" 

/*  end if      */    } 

/*end forvalues */  } 

 /*end quietly   */  } 

 

use c:\bliml,clear 

  preserve 

    collapse (mean)b* 
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    mkmat _all,matrix(bliml_ave) 

  restore 

  preserve 

    collapse (sd)b* 

    mkmat _all,matrix(bliml_sd) 

  restore 

 

use c:\bfiml,clear 

  preserve 

    collapse (mean)b* 

    mkmat _all,matrix(bfiml_ave) 

  restore 

  preserve 

    collapse (sd)b* 

    mkmat _all,matrix(bfiml_sd) 

  restore 

 

 

*...........................................................................* 

* Organize matrices into nice output                                        * 

*...........................................................................* 

display c(current_time) 

 

matrix fe1=bfiml_ave[1,1..3] 

matrix fe2=bfiml_ave[1,4..7] 

matrix fe3=bfiml_ave[1,8..10] 

matrix fe4=bfiml_ave[1,11..13] 

matrix fe5=bfiml_ave[1,14..19] 

matrix fe1sd=bfiml_sd[1,1..3] 

matrix fe2sd=bfiml_sd[1,4..7] 

matrix fe3sd=bfiml_sd[1,8..10] 

matrix fe4sd=bfiml_sd[1,11..13] 

matrix fe5sd=bfiml_sd[1,14..19] 

matrix E1=beta1[1,1...] \ fe1 \ fe1sd 

matrix E3=beta1[3,1...] \ fe3 \ fe3sd 

matrix E4=beta1[4,1...] \ fe4 \ fe4sd 

 

* true coeffs VMT eqn 

matrix A1 = beta1[2,1..2] 

matrix A2 = (scalar(alfa)) 

matrix A3 = beta1[2,3] 

matrix A  = A1,A2,A3 

matrix E2 = A \ fe2 \ fe2sd \ bliml_ave[1,1..4] \ bliml_sd[1,1..4] 

matrix rownames E2 = "True beta" "Beta (FIML)" "Std Dev (FIML)" "Beta (LIML)" "Std Dev 

(LIML)" 

matrix colnames E2 = "X21" "X22" "Y3" "Constant"  

matrix list E2 

matrix dir 

matrix list beta1 

matrix list bfiml_ave 

matrix list bfiml_sd 

matrix list bliml_ave 

matrix list bliml_sd 

log close 

exit 
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