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Abstract

Memory consumption is an important metric for DSP software implementation [11]. In this paper,

we develop a module characterization technique that promotes more economical use of memory

resources at the system level. Our work is in the context of software synthesis from signal/video/

image processing applications expressed as synchronous dataflow (SDF) graphs. SDF is a

restricted form of dataflow where each computational module (actor) consumes and produces a

fixed number of data values (tokens) on each firing. Usually, no assumption is made about when

during the execution of an actor, the tokens are actually consumed and produced; the firing of an

actor is treated as an atomic event for most purposes. However, we show in this report that it is

possible to concisely and precisely capture key properties pertaining to the relative times at which

tokens are produced and consumed by an actor. We show this by introducing the consumed-

before-produced (CBP) parameter, which provides a general method for characterizing the token

transfer of an SDF actor. Good bounds on the CBP parameter can aid an SDF compiler in per-

forming more aggressive optimizations for reducing buffer sizes on the edges between actors. We

formally define the CBP parameter; derive some useful properties of this parameter; illustrate how

the value of the parameter is derived by examining in detail the multirate FIR filter, which is a

fundamental actor in multirate signal processing applications; and examine CBP parameteriza-

tions for several other practical SDF actors.

1. Technical report UMIACS-TR-99-56, Institute for Advanced Computer Studies, University of Maryland, College Park, 20742,
September, 1999. S. S. Bhattacharyya was supported in this work by the US National Science Foundation (CAREER,
MIP9734275) and Northrop Grumman Corp.
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1 Introduction

Dataflow is a natural model of computation to use as the underlying model for a block-dia-

gram language for designing digital signal processing (DSP) systems. Functional blocks in data-

flow-based, block-diagram languages correspond to vertices (actors) in a dataflow graph, and the

connections correspond to directed edges between the actors. These edges not only represent

communication channels, conceptually implemented as FIFO queues, but also establish prece-

dence constraints. An actor fires in a dataflow graph by removing tokens from its input edges and

producing tokens on its output edges. The stream of tokens produced this way corresponds natu-

rally to a discrete time signal in a DSP system. In this paper, we consider a restricted form of data-

flow called synchronous dataflow (SDF) [8]. In SDF, each actor produces and consumes fixed

numbers of tokens, and these numbers are known at compile time. In addition, each edge has a

fixed number of initial tokens, called delays. SDF is used in numerous commercial and research-

oriented design tools for DSP, such as COSSAP [12] from the Aachen University of Technology

(now from Synopsys), GRAPE [7] from K. U. Leuven, Ptolemy [5] from U. C. Berkeley, DSP

Canvas from Angeles Design Systems, SPW from Cadence, and ADS from Hewlett Packard.

2 Notation and background

Fig. 1(a) shows a simple SDF graph. Each edge is annotated with the number of tokens

produced (consumed) by its source (sink) actor. Given an SDF edge , we denote the source

actor, sink actor, and delay of by , , and . Also, and

denote the number of tokens produced onto  by  and consumed from  by .

A schedule is a sequence of actor firings. We compile an SDF graph by first constructing a

valid schedule — a finite schedule that fires each actor at least once, does not deadlock, and pro-

duces no net change in the number of tokens queued on each edge. Corresponding to each actor in

the schedule, we instantiate a code block that is obtained from a library of predefined actors. The

resulting sequence of code blocks is encapsulated within an infinite loop to generate a software

implementation of the SDF graph.

SDF graphs for which valid schedules exist are called consistent SDF graphs. In [8], effi-

cient algorithms are presented to determine whether or not a given SDF graph is consistent, and to

determine the minimum number of times that each actor must be fired in a valid schedule. We rep-

e

e e( )src e( )snk del e( ) e( )prod e( )cons

e e( )src e e( )snk
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resent these minimum numbers of firings by a vector , indexed by the actors in (we often

suppress the subscript if is understood). These minimum numbers of firings can be derived by

finding the minimum positive integer solution to the balance equations for , which specify that

 must satisfy

, for every edge  in . (EQ 1)

The vector , when it exists, is called the repetitions vector of .

3 Constructing memory-efficient loop structures

In [1, 2], the concept and motivation behind single appearance schedules (SAS) has been

defined and shown to yield an optimally compact inline implementation of an SDF graph with

regard to code size (neglecting the code size overhead associated with the loop control). An SAS

is a looped schedule in which each actor appears only once. A looped schedule is a schedule that

employs a parenthesized schedule loop notation to organize repetitive execution sequences into

looping constructs. Figure 1 shows an SDF graph, and valid looped schedules for it. Here, the

schedule loop represents the firing sequence . Similarly, is a schedule loop

with the firing sequence . Schedules 2 and 3 in figure 1 are single appearance sched-

ules since actors appear only once. An SAS like the third one in Figure 1(b) is called flat

since it does not have any nested loops. In general, there can be exponentially many ways of nest-

ing loops in a flat SAS [2].

Scheduling can also have a significant impact on the amount of memory required to imple-

ment the buffers on the edges in an SDF graph. For example, in Figure 1(b), the buffering require-

ments for the four schedules, assuming that one separate buffer is implemented for each edge, are

50, 40, 60, and 50 respectively.

qG G

G

G

q

e( )prod q e( )src( ) e( )cons q e( )snk( )= e G

q G

Fig 1. An example used to illustrate the interaction between scheduling SDF graphs and the memory
requirements of the generated code.
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To guide scheduling decisions, it is useful to have an accurate characterization of the inter-

face (data production/consumption) behavior of each actor. The quantities and

are examples of useful forms of interface characterization. In this paper, we develop an additional

form of interface characterization, which we call the consumed-before-produced (CBP) param-

eter.

4 The CBP parameter

We say that a token is consumed from a memory buffer when the last access to it from the

buffer is completed. Also, for a given invocation of an SDF actor, a given input edge of the

actor, and a given output edge , we represent the number of tokens produced (onto ) and

consumed (from ) during the time interval by and , respectively (time 0 cor-

responds to the starting time of the actor invocation, and must be less than or equal to the com-

pletion time). If is understood from context, we may drop the subscript , and simply write

 and .

Definition 1: Suppose that is an actor in an SDF graph, is an input edge of , and is an

output edge of . The CBP parameter of the pair for the given implementation of ,

denoted , is intended to specify the best (largest) known lower bound on

.

Thus if a CBP parameter has been specified by the actor programmer for , then an

SDF compiler can assume that for any invocation , and for all

valid . If no CBP parameter has been specified, a worst-case CBP parameter

must be assumed, or the actor source code must be analyzed to try

to determine a tighter bound. Such source code analysis is beyond the scope of this paper, and we

simply assume the worst case bound when the actor programmer

has not specified a CBP value. Note that we always have since

. Thus, we have the following fact.

Fact 1: If is an actor with input edge and output edge , then the value of the associated

CBP parameter must satisfy

. (EQ 2)

e( )prod e( )cons

I αi

αo αo

αi 0 t,[ ] pI t( ) cI t( )

t

I I

p t( ) c t( )

A αi A αo

A αi αo,( ) A

CBPA αi αo,( )

cI t( ) pI t( )–

αi αo,( )

cI t( ) pI t( )–( ) CBPA αi αo,( )≥ I

t

CBPA αi αo,( ) αo( )prod–=

CBPA αi αo,( ) αo( )prod–=

CBPA αi αo,( ) 0≤

cI 0( ) pI 0( ) 0= =

A αi αo

αo( )prod–( ) CBPA αi αo,( ) 0≤ ≤
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Higher CBP values give more flexibility in buffer sharing, as will be demonstrated below,

and thus, it is advantageous to specify a tight lower bound as the CBP. Due to the regularity of

many DSP computations, the computation of tight CBP bounds is often straightforward.

As a simple example of a tight CBP bound, consider the “block addition” actor illustrated

in Figure 2(a), which inputs a block of tokens from each input, and outputs a block of tokens

such that each th value in the output block is the sum of the th values in the input blocks. If the

Motorola DSP56000 code outlined in Figure 2(b) is used to implement this actor, then it is appar-

ent that the th token read from each input edge is always consumed before the th output is com-

puted. As a result, the total number of tokens produced at any given time (during the

execution of a particular invocation of the actor) can never be greater than the number of tokens

consumed until that time from any single input edge. Thus, we are guaranteed that

 and  is a valid choice.

This knowledge that allows us to fully overlay the output buffering for

the code segment shown in Figure 2(a) with either of the two input buffers. For example, if we ini-

tialize the output write pointer to the beginning of the input buffer that starts at address inbuf1, we

are guaranteed by the relation that the output write pointer will never “over-

take” the input read pointer associated with the inbuf1 buffer. Code for the block addition actor

that incorporates this input/output overlaying is shown in Figure 2(c). We refer to this form of

move #inbuf1, r0

move #inbuf2, r5

move #outbuf, r4

move x:(r0)+, x0 move y:(r5)+, a

do #N, LOOPEND

add x0, a move x:(r0)+, x0 move y:(r5)+, a

move a, y:(r4)+

LOOPEND:

+

N

N

N

move #inbuf1, r0

move #inbuf2, r5

move r5, r4

move x:(r0)+, x0 move y:(r5)+, a

do #N, LOOPEND

add x0, a move x:(r0)+, x0 move y:(r5)+, a

move a, y:(r4)+

LOOPEND:

(a)
(b) (c)

Fig 2. A block addition actor that illustrates the derivation and exploitation of a tight CBP bound.

N N

i i

i i

p t( )

c t( )

cI t( ) pI t( )– 0≥ CBPA αi αo,( ) 0=

cI t( ) pI t( )– 0≥

CBPA αi αo,( ) 0=
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buffer sharing — in which an input channel and output channel of the same actor share the same

physical buffer — as buffer merging.

Definition 2: Since  always lies in the range

,

the ratio of the absolute value of the CBP parameter to is a useful gauge of the degree

to which a given actor implementation facilitates the consolidation of an input/output buffer pair.

Thus, we define the CBP efficiency of an actor implementation with respect to the ordered pair

 as the sum

, (EQ 3)

which is always equal to

(EQ 4)

since from Fact 1, the value of the CBP parameter is always non-positive.

Thus, the CBP efficiency is always a non-negative rational number that lies in the closed

interval . For the example of Figure 2, we have a CBP efficiency of unity, or 100%, since

. In Section 5, we will see an example of an actor that can have an infinite

range of different CBP efficiencies depending on its functional parameters.

CBP parameters can also be exploited significantly in multirate FIR filters, which are com-

mon building blocks in multirate DSP applications. As we show in the following section, a multi-

rate FIR filter that performs a sample rate conversion of factor (in reduced-fraction form) can

be implemented with an efficient polyphase realization [2, 3] for which the CBP parameter can be

set to

. (EQ 5)

CBPA αi αo,( )

αo( )prod– αo( )prod– 1+ αo( )prod– 2+ … 0, , , ,{ }

α0( )prod

A

αi αo,( )

1
CBPA αi αo,( )

αo( )prod
----------------------------------+

1
CBPA αi αo,( )

αo( )prod
-------------------------------------–

0 1,[ ]

CBPA αi αo,( ) 0=

a

b
---

CBP αi αo,( )
0 if a b<( )

b a–( ) if a b>( )



=
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We conclude this section with a simple fact concerning CBP parameters that is useful in

deriving CBP parameters for specific actor implementations.

Fact 2: Suppose that , , and are as in Definition 1. Given an invocation of , let

denote the time (relative to the beginning of ) at which the th output token of is produced,

for . Also, define , let denote the duration of , and let be

a non-positive integer. Then, if for all , we are guar-

anteed that  for all .

The most important implication of Fact 2 is that to determine a lower bound on

it suffices to examine the values of and only at the time instants at which

output tokens are generated. In particular, we need not explicitly consider the time instants associ-

ated with consumption activity. We will exploit this simplification in Section 5.

Proof of Fact 2: Since no production activity occurs between successive s, we have that

 for . (EQ 6)

Similarly,

. (EQ 7)

From (6) and (7), we can conclude that

,  such that . (EQ 8)

The desired result follows immediately from (8). QED.

5 Multirate FIR filters

A multirate FIR filter actor, shown in Figure 3(a), performs a sample rate conversion of an

arbitrary rational factor along with an FIR (“finite impulse response”) filtering operation. Func-

tionally, it is equivalent to the structure shown in Figure 3(b), which contains a conventional

upsampler, downsampler, and an appropriately designed single-rate FIR filter. Details on the

applications and signal processing aspects of multirate FIR filters are given in [6].

A αi αo AI A ti

AI i AI

i 1 2 … α0( )prod, , ,{ }= t0 0≡ T I AI x

cI ti( ) pI ti( )– x≥ i 0 1 2 … α0( )prod, , , ,{ }∈

cI t( ) pI t( )– x≥ t 0 T I,[ ]∈

cI t( ) pI t( )– cI t( ) pI t( )

ti

ti t ti 1+< < cI t( ) pI t( )– cI ti( ) pI ti( )–≥⇒ 0 i α0( )prod<≤

t α0( )prod t T I≤< cI t( ) pI t( )– cI t α0( )prod( ) pI t α0( )prod( )–≥⇒

t∀ ∗ 0 T I,[ ]∈ i∃ ∗ 0 1 2 … α0( )prod, , , ,{ }∈ cI t∗( ) pI t∗( )– cI t
i∗( ) pI t

i∗( )–≥

u

d
---
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The computational “core” of Figure 3(b) is the FIR actor, which effectively forms an inner

product of a vector of adjacent data samples with a vector of constant coefficients. In this discus-

sion, we consider the class of multirate FIR filter implementations in which the vector of “past”

(previously consumed) data samples involved in the FIR inner product is maintained in a separate

memory buffer that is internal to the multirate FIR actor. This is a natural approach to implement-

ing filtering operations, and it is compatible with the concept of polyphase filter implementations

in which storage and operations associated with zero-valued samples are avoided [6][4].

In other words, we do not consider “in-place” computation of the FIR operation, where the

inner product operates directly on the buffer associated with the input edge to the multirate FIR

actor. This assumption is consistent with our primary objective of memory minimization since

performing in-place buffering generally increases the lifetimes of the buffers on the associated

edges, and thus reduces opportunities for buffer sharing [10]. The benefit of in-place buffering is

that it saves the execution-time cost of having to move each data sample from the input edge

buffer to the corresponding internal buffer. The problem of systematically balancing the execu-

tion-time benefits of in-place buffering for SDF graphs with the construction of compact looped

schedules and buffer sharing is a useful topic for future study.

Fig 3. An example of a multirate FIR filter actor that we use to illustrate the derivation of CBP parameters.

d u
MFIR

1 u
FIR ↓d↑u

1 1 d 1

x-100x0000x20 00 0 0 x-2x1

y0y1y2

(a)

(c)

(b)



The CBP Parameter — a Useful Annotation to Aid SDF Compilers 9 of 20

Figure 3(c) illustrates the production and consumption activity that occurs in a multirate

FIR filter. In this illustration and are taken to be and , respectively, and the order of the

filter is taken to be . The order of the filter is the number of adjacent samples from the input

of the FIR block of Figure 3(b) that are involved in the computation of each output sample.

Since and in the illustration of Figure 3(c), the multirate FIR filter actor

consumes tokens and produces tokens per invocations here. The first row of symbols (zeros

and s) shown in Figure 3(c) represents a stream of data samples processed in a given invocation

of the multirate FIR filter . The zeros shown in the stream are inserted by the logical

upsampler block (labeled “↑u”) in Figure 3(b). The upsampler effectively interleaves zeros

between each pair of input tokens.

Each represents the input token value at offset relative to the beginning of . Thus,

and are, respectively, the first and second token values consumed by ; is the first

token value consumed by , the next invocation of ; and is last token value consumed

by (if is the first invocation of — that is, — then is part of the initial

state of ). Similarly, represent the first, second and third token values produced by

.

The three overlapping ovals in Figure 3(c) group sets (“windows”) of adjacent

token values in the upsampled stream with the actor output tokens that are derived from them.

Successive windows (windows associated with successive actor invocations) are offset by two

sample positions due to the downsampler of Figure 3(b), which has downsampling factor

in this example. Assuming that the output tokens are produced according to their logi-

cal ordering (as they usually are) — that is, as long as

 — (EQ 9)

we have the following observations from Figure 3(c):

, , and , (EQ 10)

where  respectively denote the times at which  are produced.

u d 3 2

4 OM

u 3= d 2=

2 3

xi

M I M

u 1–

xi i M I

x0 x1 M I x2

M I 1+ M x 1–

M I 1– M I M I 1= x 1–

M y0 y1 y2, ,

M I

OM 4=

d 2=

y0 y1 y2, ,

i j<( ) yi is produced before y j( )⇒

c t0( ) 1≥ c t1( ) 1≥ c t2( ) 2≥

t0 t1 t2, , y0 y1 y2, ,
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It follows that for the multirate FIR filter illustrated in Figure 3(c) ( , ), we

have that

. (EQ 11)

Thus, for this example, a CBP parameter of 0 is feasible for any implementation.

To generalize this analysis, we observe that for arbitrary , and , the grouping of

values in the upsampled stream with corresponding output tokens has the following characteris-

tics: each pair of adjacent input tokens and is separated by exactly zero-valued

samples; each output token is derived from a “window” of adjacent values in the upsampled

stream; each successive “window” of samples is shifted units (token positions) to the left

(towards increasing time) with respect to the previous window; and the first window — the win-

dow associated with output  — has  as its left-most sample1.

Now let and denote the total number of tokens consumed and produced, respec-

tively, during the first time units (during the interval ) in the execution of a given invoca-

tion of a multirate FIR filter actor. Recall that each output token is derived from a window of

successive samples from the upsampled data stream illustrated in Figure 3(b), and let

denote the offset, relative to , of the window that corresponds to the th output token. Thus,

, , , and so on. In other words,

 for . (EQ 12)

Furthermore, observe that for , we must have

; (EQ 13)

otherwise tokens will have been consumed throughout the time interval . This is

because each pair of successive s is separated by exactly zero-valued samples in the

“internal” upsampled data stream, and we are assuming that input tokens to the multirate FIR fil-

ter are transferred to an internal buffer as soon as they are encountered (no in-place computation).

From (12) and (13), it follows immediately that

1. This last characteristic depends on the phase setting of the multirate filter. Our analysis in this section can easily be extended to
handle arbitrary, less conventional phase settings to derive CBP parameters for such cases. We omit the details in this paper.

u 3= d 2=

c t( ) p t( )– 1 1–( ) 1 2–( ) 2 3–( ), ,{ }( )max≥ 0=

u d OM

xi xi 1+ u 1–( )

OM

OM d

y0 x0

c t( ) p t( )

t 0 t,[ ]

M∗

OM Lk

x0 k

L1 0= L2 d= L3 2d=

Lk k 1–( )d= k 1 2 … u, , ,=

p t( ) 1≥

Lp t( ) c t( ) 1–( )u u 1–( )+≤

c t( ) 1+( ) 0 t,[ ]

xi u 1–( )
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, (EQ 14)

and although we have derived (14) under the assumption that , the inequality is easily

seen to hold for as well. This is because by definition, we have that , and

, and thus,

. (EQ 15)

We conclude that (14) holds for all .

With some rearrangement of terms, (14) can be seen to be equivalent to

. (EQ 16)

Now suppose, as above, that denote the times at which outputs

, respectively, are produced. Then, clearly for all ,

, (EQ 17)

and combining this with (16) yields

, (EQ 18)

which is equivalent to

. (EQ 19)

Thus, combining (19) and (17), we have

. (EQ 20)

From (20) and the restriction that

(EQ 21)

p t( ) 1–( )d c t( ) 1–( )u u 1–+≤

p t( ) 1≥

p t( ) 0= d 1≥

c t( ) 0≥

c t( ) 1–( )u u 1–+ c t( ) 1–( )u u 1–+( )
c t( ) 0=

≥ 1–= d–≥ p t( ) 1–( )d( )
p t( ) 0=

=

t

p t( ) 1
c t( )u

d
-------------+<

t0 t1 … tu 1–, , ,

y0 y1 … yu 1–, , , i

p ti( ) i 1+( )=

i 1+ 1
c ti( )

d
-----------u+<

c ti( ) di

u
----->

c ti( ) p ti( )–
di

u
----- i 1+( )–>

i 0 1 … u 1–( ), , ,{ }∈
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(since  produces  output tokens), it follows that

 whenever . (EQ 22)

On the other hand, if , then the LHS of (19) attains its minimum value over the range (21)

when . Thus, for , we have

, (EQ 23)

which is equivalent to

. (EQ 24)

Since , and both  and  must be integers, it follows that

 whenever . (EQ 25)

From Fact 2, we can extend the conclusions of (22) and (25) to arbitrary values of . That

is, throughout any invocation of , we have that

 and . (EQ 26)

In summary, we have established the following result.

Theorem 1: If in-place buffering is not used and output tokens are produced according to their log-

ical ordering, then a rational, multirate FIR filter can be derived from the following relations:

, (EQ 27)

where  is the reduced form of the output-to-input sample-rate conversion ratio.

From Theorem 1, we see that the CBP efficiency of a multirate FIR filter is unity (100%) if

; otherwise, for , the CBP efficiency is given by

. (EQ 28)

M∗ u

c ti( ) p ti( )– 0≥ d u≥

u d>

i u 1–( )= u d>

c ti( ) p ti( )–
d u 1–( )

u
-------------------- u–>

c ti( ) p ti( )– d u–( ) d

u
---–>

u d> c ti( ) p ti( )

c ti( ) p ti( )– d u–( )≥ u d>

t

M∗

d u≥( ) c t( ) p t( )– 0≥( )⇒ u d>( ) c t( ) p t( )– d u–( )≥( )⇒

CBP
0 if u d≤( )

d u–( ) if u d>( )



=

u

d
---

u d≤ u d>

1
d u–

u
------------ 

 +
u d u–+

u
---------------------

d

u
---= =
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Thus, when a multirate FIR filter has an output-to-input sample-rate conversion ratio that exceeds

unity, the CBP efficiency decreases monotonically with the magnitude of the conversion ratio.

6 Chop

The chop actor is another example of a practical actor for which CBP parameterization is

useful. In this section, we consider the chop actor that is available in the Ptolemy design environ-

ment [5]. On each invocation, the chop actor reads a block of data from its input channel, and in

general, produces on its output a “window” of contiguous samples from the input channel. Three

parameters — the integer offset , the boolean-valued past-inputs parameter, and the production

parameter — determine the size and relative position of the output window that is produced.

The size of each input block is determined by the consumption parameter . These parameters

must satisfy

, (EQ 29)

which ensures that the actor will not attempt to read samples that have not yet been produced.

If , then the output window starts at an offset of from the beginning of the input

window and extends for samples. The past-inputs parameter is not relevant in this case. If

, and past-inputs is false, then the first tokens that are produced are all zero-valued

tokens, and the remaining output tokens are copies of the first tokens in the input block.

Finally, if and past-inputs is true, then the first tokens produced are copies of the last

tokens from the previous input block. Again, the remaining output tokens are copies of the

first  tokens in the input block.

Using techniques similar to those illustrated in Section 5, the implementation of the chop

actor in Ptolemy can be shown to satisfy the following tight CBP parameterization:

. (EQ 30)

∆

Nw

NR

Nw ∆+ NR≤

∆ 0> ∆

Nw

∆ 0< ∆–( )

Nw ∆+( )

∆ 0< ∆–( )

∆–( )

Nw ∆+( )

CBP

0 if ∆ 0≥( )
∆ if ∆ 0<( ) past-inputs false=( )and( )

N r Nw– 0,{ }( )min( ) if ∆ 0<( ) past-inputs true=( )and( )





=
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7 Autocorrelation

The autocor actor in the Ptolemy SDF DSP library “estimates a certain number of samples

of the autocorrelation of the input by averaging a certain number of input samples.” Like the mul-

tirate FIR and chop actors, autocor has one input port (edge) and one output port. Two parameters

control the token transfer of this actor. The first parameter specifies the number of input

samples that are averaged, and the second parameter specifies the number of lags that are

estimated. It is required that the value of the parameter be strictly greater than the value of

. The number tokens consumed from the input edge , and the number tokens produced on

the output edge  on each invocation are given by

, and . (EQ 31)

By analyzing the definition of the Ptolemy autocor actor, the following tight CBP specifi-

cation can be derived:

. (EQ 32)

The associated CBP efficiency is thus given by

. (EQ 33)

As increases from its minimum possible value of , the CBP efficiency decreases monoton-

ically from 100%, and asymptotically approaches 50% as . To get a sense of a “typical

value” of CBP efficiency for this actor, observe that the default value of in Ptolemy is 64.

From (33), this yields a CBP efficiency of 50.8%. Indeed, since usually , the CBP effi-

ciency of autocor is usually very close to 50%.

8 CBP tables

For actors that have multiple input ports or multiple output ports, the full specification of

CBP parameters takes the form of a matrix or table. Each entry of the matrix corresponds to the

CBP parameter associated with the merging of a specific input port with a specific output port.

Navg

N lag

Navg

N lag ei

eo

ei( )cons Navg= eo( )prod 2N lag=

CBP 1 N lag–=

1 N lag+

2N lag

-------------------

N lag 1

N lag ∞+→

N lag

N lag 1»
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8.1 Block lattice

As a simple example, consider the block lattice actor in Ptolemy, which has two input

ports — the “coefficient input” and the “signal input” port — and two parameters, the block size

and the filter order . On each invocation, new filter tap values are read from the coeffi-

cient input port, a block of samples is consumed on the signal input port, and a block of

samples is output on the output port. Tight CBP parameters for the Ptolemy implementation of

block lattice can be specified by the following table:

The associated CBP efficiencies can be specified in a similar manner:

8.2 Commutator

Another example of an actor with multiple input ports is the commutator actor, which

interleaves blocks of samples from multiple input streams onto a single output stream. This actor

has three parameters — the number of input ports , the block size , and an ordering

of the input ports. On each invocation, samples are consumed from each input

port, and samples are produced on the output port. The first output samples are

derived by copying samples from the first input port ; the next block of output samples

is derived by copying samples from the input port ; and so on. Since the number of samples

produced on the output is significantly larger than the number consumed from any given input, the

Table 1. The CBP table for the block lattice actor.

Input

port

CBP w.r.t.

output port

coefficient input

signal input

Table 2. The table of CBP efficiencies for the block

lattice actor.

Input

port

CBP

efficiency

coefficient input 1.0

signal input

NB No No

NB NB

0

1–

NB 1–( ) NB⁄

k NB

i1 i2 … ik, , ,( ) NB

k NB×( ) NB

NB i1 NB

NB i2
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CBP efficiencies associated with this actor are relatively low. For any input port, the CBP with

respect to the output port is given by

, (EQ 34)

and the CBP efficiency is given by

. (EQ 35)

8.3 Distributor

The distributor actor is the dual of the commutator. Like the commutator, the distributor

has three parameters. These parameters specify the number of output ports ( ), the block size

, and an ordering of the output ports. On a given invocation, the first (least

recent) samples from the input channel are copied to the first output port ; the next

input samples are copied to output port ; and so on. Given and

, the number of tokens consumed just prior to producing the th output

sample on the th output port is given by

. (EQ 36)

Thus, if denotes the number of tokens consumed from the input port up to time , and

denotes the number of tokens produced on output port  up to time , we have that

. (EQ 37)

From the definition of CBP, it follows that for any output port ,

(EQ 38)

is a valid CBP parameter setting for any output port with respect to the input port.

CBP 1 k–( )NB=

1
1 k–( )NB

kNB

------------------------+
1

k
---=

k

NB( ) o1 o2 … ok, , ,( )

NB o1 NB

o2 i 1 2 … k, , ,{ }∈

j 1 2 … NB, , ,{ }∈ c i j,( ) j

i

c i j,( ) i 1–( )NB j+=

c t( ) t pi t( )

i t

c t( ) pi t( )– i 1–( )NB≥
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9 Summary of derivations

To emphasize that CBP parameters may vary widely depending on the particular actor

under consideration, and to juxtapose the practical examples examined in this paper, Table 3 sum-

marizes the CBP efficiencies that we have derived. For actors that have multiple inputs or multiple

outputs, we have listed the maximum CBP efficiency over all input/output combinations. We

observe that a significant proportion of the actors examined in Table 3 admit a CBP efficiency of

100%, while the CBP efficiencies of other actors can be significantly lower and heavily parame-

ter-dependent.

10 Related Work

The CBP parameter plays a role that is somewhat similar to the array index distances

derived in the in-place memory management strategies of Cathedral [16], which apply to nested

loop constructs in Silage. The CBP-based buffer merging approach presented in this paper is dif-

ferent from the approach of [16] in that it is specifically targeted to the high regularity and modu-

Table 3. A summary of the CBP parameterizations derived in this paper.

Actor Relevant parameters (Max.) CBP efficiency

Block addition Block size . 1 (100%)

Multirate FIR filter
Rate conversion ratio

(in reduced form).

 if ;

 if .

Chop

Production param. ;

consumption param. ;

offset ;

past-inputs (boolean).

 if ;

 if ;

if .

Autocorrelation
Inputs to average ;

lags to estimate .

Block lattice
Block size ;

filter order .

Commutator
Number of input ports ;

block size .

Distributor
Number of output ports ;

block size .

N

a b⁄ 1 a b<
b a⁄ a b>

N
w
N

r
∆

1 ∆ 0≥
1 ∆ N

w
⁄+ ∆ 0<( ) past-inputs false=( )and( )

1
N

r
N

w
– 0,{ }( )min

N
w

------------------------------------------------+

∆ 0<( ) past-inputs true=( )and( )

Navg

N
lag

1 N
lag

+

2N
lag

--------------------

NB
No

1

k

NB

1

k
---

k

NB
1
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larity present in SDF graph implementations (at the expense of decreased generality). In

particular, the overlapping of SDF input/output buffers by systematically applying CBP analysis

does not emerge in any straightforward way from the more general techniques developed in [16].

Our form of buffer merging is especially well-suited for incorporation with the SDF vectorization

techniques (for minimizing context-switch overhead) developed at the Aachen University of

Technology [13] since the absence of nested loops in the vectorized schedules allows for more

flexible merging of input/output buffers. Buffer merging is also compatible with buffer access

enhancements such as polyphase filter implementation [4, 6], and cyclo-static dataflow specifica-

tion [3].

Vanhoof, Bolsens and H. De Man have observed that in general, the full address space of

an array does not always contain live data [15]. Thus, they define an “address reference window”

as the maximum distance between any two live data elements throughout the lifetime of an array,

and fold multiple array elements into a single window element using a modulo operation in the

address calculation. The concept of the address reference window is similar to our use of the max-

imum number of live tokens as the size of each individual SDF buffer. The number of logically

distinct memory elements (the full address space) in a buffer for an edge is equal to

, which can be much larger than the maximum number of live tokens that

reside on  simultaneously [2].

11 Conclusions

The CBP parameter provides a concise and precise method for encapsulating a library

developer’s knowledge of DSP software functionality in a manner that is valuable for synthesis

tools. Our previous work has demonstrated the ability to systematically exploit pre-specified CBP

parameters to significantly reduce memory requirements in software implementations [9]. In this

paper we have discussed the derivation of CBP parameters for individual DSP functions. By

focusing on the multirate FIR filter, we have demonstrated analysis techniques that can be used to

derive tight CBP parameters from an understanding of the library function or analysis of code that

implements the function. We have also given general, tight expressions for the CBP parameters

for a number of additional practical DSP building blocks, which were obtained by analyzing

implementations in the DSP libraries provided within the Ptolemy design environment [5]. A use-

e

q e( )snk( ) e( )cons

e
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ful direction for further study is the investigation of tools to help automate the derivation of tight

CBP parameters.
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