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Ground teleoperation of a satellite servicing spacecraft is a challenging task

for a human operator, especially when there is significant communications delay

between the control station and spacecraft. On-orbit operations are further compli-

cated by a communications time delay between the ground and spacecraft. Operator

performance can be improved with the use of a graphical simulation of the robot.

By displaying the robot’s commanded position, graphical simulation can also mit-

igate some effects of time delay. This work implemented a visualization tool and

commanded display to assist operation of a remote dexterous manipulator. A Fitts’

Law experiment was designed to determine the effectiveness of the commanded dis-

play in reducing the impact of time delay. The experiment was conducted with a six

degree of freedom manipulator over a range of time delays, from 0.0 to 6.0 seconds.

The experimental results were analyzed to assess the reduction of task completion

time and operator workload.
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Chapter 1: Introduction

1.1 Motivation

Control of a telerobotic satellite servicing spacecraft is a complex and chal-

lenging task for a human operator. As with any telerobotic system, the interfaces

between the operator and robot are critical elements. Their design determines how

effectively an operator can command the robot. These interfaces can be improved

with computer systems, which can be used to create interfaces that increase situa-

tional awareness, reduce operator workload, and improve overall task performance.

Advanced interfaces can be used to alleviate operator performance degradation

caused by round trip time delay. Round trip time delay, in this context, refers to the

time between when a command is sent to the robot to the time when the operator

receives feedback. If an operator issues a command to move forward, and it takes one

second for the command to reach the vehicle, and one second for the confirmation

to reach the operator, then the total round trip is two seconds. This communication

time delay is an inherent property of any communication network, and has a sig-

nificant effect on the ability to remotely operate robotic systems. It may be on the

order of microseconds, such as on a local area network, or minutes for a spacecraft

millions of kilometers from Earth. For a spacecraft in low Earth orbit (LEO), the
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minimum round trip time delay is 0.4 seconds due to the speed of the light. In prac-

tice, this time delay can be upwards of 6 seconds due to multiple bounces between

communication satellites and other network equipment [21] [14]. Because LEO and

higher Earth orbits are likely targets for robotic servicing spacecraft [3], round trip

time delay has serious implications for ground-based teleoperation. In addition to

spacecraft servicing, high time delay can be a concern with any remotely operated

system, including telesurgical robots [13], remote underwater vehicles, and ground

vehicles.

To mitigate this issue, this work seeks to implement a commanded display to

represent a dexterous robotic arm’s commanded position. By overlaying the com-

manded display on a display based on the robot’s actual telemetry, the operator

receives immediate visual feedback from commanded inputs. This allows the oper-

ator to control a simulated arm in real time, without having to wait for telemetry.

After the duration of time delay has passed, the operator can verify that the ac-

tual, telemetry-based display converges to the commanded position. By eliminating

the delay between input and visual feedback, this research aims to improve task

performance and reduce operator workload during teleoperation tasks. In doing

so, this work will be expanding upon previous work performed at the University

of Maryland’s (UMd) Space Systems Laboratory(SSL), particularly that of Lane,

who demonstrated a commanded display on a purely virtual system [1] [2]. This

work extends the commanded display to a physical robotic system and assesses its

performance in a real-world manipulator positioning task.
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1.2 Requirements

The primary goal of this work was to implement the commanded display on a

teleoperation workstation. Implementing the display necessitated the development

of a visualization software tool capable of working with existing robotic systems at

the Space Systems Laboratory. To work with SSL systems, the system had to:

1. send joint pose commands to SSL DMU software

2. receive telemetry from SSL DMU software

3. display a graphical simulation of a serial-link manipulator with up to 8 degrees

of freedom

4. update a the pose of a graphical arm model with real telemetry

5. overlay a graphical arm model of a manipulator’s commanded position over

the telemetry display

6. receive input from existing SSL hand controller clients

These abilities summarize the requirements that had to be met in order to

implement the visualization tool and integrate with existing SSL systems. Con-

siderations such as software reusability, modularity, and cross-platform capabilities

also heavily influenced the development.
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1.3 Thesis Organization

The following chapters will describe the specific aspects of this work. Chapter

2 provides background information relevant to this research. It begins with a discus-

sion of time delay and previous work in time delay mitigation. The last part of the

chapter describes several existing systems at the SSL that were used in the experi-

mental setup, as well as the Open Source software libraries that were leveraged by

the software design. Chapter 3 presents the software design and implementation of

the commanded display. Chapter 4 describes the experiment, experimental setup,

and results. Chapter 5 is the final chapter. It includes a summary of this work’s

findings and suggestions for future work.
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Chapter 2: Background

This chapter begins with a discussion of time delay and its impact on task

performance. It then discusses previous work done with graphical displays to am-

meliorate time delay’s negative effects. The chapter concludes with an overview

of existing resources used in this research, including robotic hardware used in this

work and the open source software solutions leveraged for the visualization software

design.

2.1 Time Delay

Human task performance generally suffers due to time delay. Research has

shown how time delay impacts the realtime teleoperation of remote robotic systems

[21] [27], including six or higher degree of freedom (DOF) dexterous manipulators

[31] [1] [13] [14]. Significant round trip time delay inhibits an operator’s ability to

control robotic vehicles, reducing overall performance and increasing the operator’s

workload. Held found that delays as low as 0.3 seconds can cause operators to have

difficulty adapting, causing them to decorrelate their movement from the system’s

response [28].

At higher time delays, it has been found that subjects lose the ability to
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adapt completely and transition to a “move and wait” strategy [27]. Instead of

continuously controlling the robot, the operator will input their commands, then

wait to receive feedback before sending new commands. The transition to this

strategy occurs at around one second of time delay. This strategy allows the operator

to trade positional accuracy with completion time. In other words, they may spend

more time waiting and verifying their motions in order to get a precise placement,

or they may command broad motions before stopping to observe the robot’s new

position. In any case, the time spent waiting to verify and adjust the robot’s position

can drastically increase task completion time.

In many cases, time delay varies over time. On Internet protocol (IP) networks,

data packets may be routed differently, causing commands to take different amounts

of time to arrive at their destination. On-orbit, the communication path may change

depending on which communication satellites and ground stations are in view from

the spacecraft. This may result in periodic spikes in latency or high variability in

the delay. Short variable delays can cause greater impact than longer fixed delays,

due to the inability for subjects to predict and adapt to the delay period.

Time delay has a significant effect, regardless of task complexity. Thompson

[25] showed the effects of time delay and a task’s degree of constraint in degrading

performance. He defined the degree of constraint as a restriction along an axis of

motion for positioning an object. For example, placing a robot’s tool-tip against a

flat plate has no degrees of constraint. The robot may move freely in any direction in

its path to contact the plate. In contrast, insertion of a square peg into a square hole

would have five degrees of constraint. The tool tip may not rotate in any direction

6



without colliding into the hole’s wall, and it may not translate against walls. The

only remaining degree of freedom available is insertion into the hole. Increasing the

degree of constraint linearly increased a task’s completion time. This relationship

was shown for several time delays, and the effects of time delay were additive to the

effects of increased degree of constraint.

In this work, time delay was simulated using the netem network emulation tool.

Netem was used to introduce a bi-directional time delay between a robot’s local area

network and the control station’s local area network. This differs from several of

the works discussed here, which only simulate time delay on commands transmitted

from the operator to the robot [1]; they do not model the communication delay for

the telemetry from the robot. Instead, they add the full round trip time delay to the

transmission of the command, sometimes by simply holding commands in a buffer.

In this way, it still appears that a full round trip delay occurred between issuing

of a command and receipt of telemetry. Because netem actually emulates network

conditions, it was felt that netem was a more appropriate tool for introducing a

communication delay. Netem allowed more flexibility in the experimental network

design, despite challenges of data transmission over an actual network delay. Netem

also allows emulation of variable time delay and other adverse network conditions,

however the study presented in this work investigates only a fixed time delay.
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2.1.1 Predictive Displays

Real-time teleoperation is increasingly difficult at higher and higher time de-

lays. To mitigate this issue, supervisory control techniques and increased levels of

robot autonomy have been developed and studied. One of these techniques is the

predictive display. The predictive display attempts to graphically display a system’s

future state to the operator. First introducted in 1953 [32], predictive displays are

common tools for reducing the performance degradation due to time delay. Predic-

tive displays help maintain the effectiveness of an operator when performing realtime

control [24] [26] [21] [1]. Predictors employ a mathematical simulation of the system

to estimate the state of the robot after it responds to the command. This state is

immediately presented to the user in the form of a graphical display. In a typical

case, the predictive display is rendered with transparency or in a wireframe mode,

and overlaid on top of an opaque model based on the actual system. An example of

this type of overlay is shown in Figure 2.1.

One of the early predictive displays for robotic manipulation was developed

by Noyes [26]. He used a predictive display to assist in teleoperation of a six DOF

arm to perform a block moving manipulation task and a path tracing task. For the

tasks, he overlaid a wireframe model of the manipulator over video with extremely

low update rates. The rates considered were once every 0.5 seconds and once every

1.5 seconds. The low update rates are somewhat analogous to communication time

delay, in that the operator must wait for a period to receive feedback from the

system. Using the same robot and overlay system, Mar demonstrated the predictive
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Figure 2.1: Wireframe Rendering Overlay on a Solid Model of a Motoman 10D.

OpenSceneGraph model file courtesy of NASA Goddard Space Flight Center.

display times of 1.5, 3, and 5 seconds. [24]. She found improvements of 15-25% when

using the predictive display at these delays.

Figure 2.2 illustrates a general predictive display algorithm. These early sys-

tems had open-loop control systems, and responded to force commands instead of

higher level position or rate commands. The system’s operator was required to

close the control loop by commanding the adjustments necessary to maintain a de-

sired operating parameter. Their force commands would be sent to both the actual

and simulated system. Slight differences in when commands are sent can cause the

calibration between the predictive simulation and the actual system to diverge, de-

creasing the predictive display’s effectiveness and requiring periodic recalibration or

sophisticated calibration algorithms.
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Figure 2.2: General Algorithm of Predictive Display System.

2.2 Supervisory Control

Early predictive systems were open-loop, requiring fine adjustment from the

operator to close the control loop. Advances in technology led to increased local

autonomy in robotic systems, in turn allowing more sophisticated levels of supervi-

sory control [21]. With these systems, operators could control a graphical display

to generate scripted or symbolic commands for robotic systems to autonomously

follow [31] [30]. Operator input could be recorded and modified before sending to

the actual robot, allowing any desired course adjustments.

Conway used a display to generate commands for a manipulator using the

concept of position and time clutching [29]. The operator could disengage the time

clutch and control the simulation faster or slower than they would control the real

robot to set waypoints for the robot to follow. The commands would then be sent

to the real robot, which would interpolate between the waypoints as it moved to the

commanded positions. This technique effectively reduced the impact of time delay,

and even improved performance for teleoperation without time delay.
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2.3 The Commanded Display

Many modern robots are able close their control loops autonomously, allowing

them to respond to higher level commands, such as holding a desired position. This

allows systems where a control station can generate a commanded position, and send

that position to the robot. Lane used this concept to develop a commanded display

for realtime teleoperation [1]. The operator will controls a graphical display which

continuously sends commanded positions a physical robot. The general algorithm

is shown in Figure 2.3.

Figure 2.3: General Algorithm of Predictive Display System.

In a commanded display, as in a predictive display, the operator’s inputs are

passed into a simulation of the arm, which updates a graphical model to give the op-

erator visual feedback. However, these operator’s inputs are not directly sent to the

actual robot. Instead, the commanded display simulation generates the commanded

position of the robot. That commanded position is then sent to the arm. This allows

the operator to drive the commanded robot in realtime while waiting for telemetry

from the actual robot. After the time delay passes, the actual robot converges to

the commanded robot’s position. Because the commanded display produces a joint

pose or position command, and because the robot will nominally be able to close

the loop and autonomously go to that position, the simulation and actual system
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will not diverge due to growing calibration errors.

Lane found that the commanded display eliminated up to 91% of the increased

task completion caused by time delays of 1.5, 3.0, and 6.0 seconds in a virtual envi-

ronment. Additionally, he compared the commanded display to a simple predictive

display, which yielded reductions of only 40% to 50% at the same time delays.

Figure 2.4 illustrates the overall algorithm of the commanded display used in

this study. The operator commands the velocity of the robot’s tool-tip, ẋc, with

the input device. The velocity is expressed as the commanded rate of the tool-tip’s

Cartesian position and orientation, xc. The rate command is passed into a kinematic

simulation of the arm. The simulation performs the inverse kinematics computations

and position integration to calculate the commanded joint pose, qc. The commanded

position is simultaneously sent to the actual system and the commanded display. In

the commanded display, the operator sees the results of their inputs immediately.

Before reaching the actual system, the joint command is delayed by the communi-

cation distance. The robot receives the delayed joint command, q′c, and updates its

desired joint position, qd. The robot then sends its current measured joint pose, qm,

back to the operator. The measured joint pose passes through the communication

time delay and becomes the delayed measured joint pose, q′m. The delayed pose then

updates the operator’s actual display. After the operator issues a command, they

will see the results immediately on the commanded display. After the duration of

the round-trip time delay has passed, they should see that the actual robot position

converges to the commanded position.

The ultimate goal of this research is to increase the effectiveness of realtime

12



Figure 2.4: Block Diagram of Commanded Display Algorithm.

telemanipulation at high time delays. In particular, it seeks to implement the com-

manded display on a real-world robotic system. Previously, Lane had shown the

performance benefits of the commanded display on a purely virtual system. Ex-

tending the commanded display to a physical system will verify Lane’s findings and

justify the use of the commanded display in future real-world applications.

2.4 Ranger NBV-I Arm

The Ranger NBV-I arm is a six degree of freedom (DOF) manipulator designed

at the University of Maryland (UMd) Space Systems Laboratory (SSL). Figure 2.5

shows NBV-I mounted to an optical bench in the SSL’s Advanced Robotics Devel-

opment Laboratory. The arm is a serial link manipulator with six revolute joints,

and the joints are arranged in a roll-pitch-pitch-roll-pitch-roll configuration.

It was originally designed in the 1990’s as a camera arm for the Ranger Neutral

Buoyancy Vehicle(NBV), which was designed to demonstrate spacecraft servicing

tasks in neutral buoyancy. A recent overhaul by Ellsberry and D’Amore has returned

the arm to operational status [6] [5], and it is now used as a research platform at

the SSL. Table 2.1 gives the Denavit-Hartenberg(DH) parameters as measured by
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Figure 2.5: NBV-I Mounted to an Optical Bench in the SSL’s Advanced Robotics
Development Laboratory

Ellsberry, and Figure 2.6 shows the attached link frames. The DH parameters are

listed using the modified Denavit-Hartenberg convention [12]. The arm is typically

controlled by commanding the rate of the end effector Cartesian position with pair

of hand controllers. The DH parameters are used by kinematic routines in the

commanded display simulation in order to generate commanded poses from rate

inputs. The tool-tip parameter was modified to account for the experiment’s end-

effector.

The visualization software developed for this study was required to communi-

cate with NBV-I’s Data Management Unit (DMU) software. The DMU presents 3

Universal Datagram Protocol (UDP) ports for communication. One is for general

commands, and one each for streaming of Cartesian rate and joint pose commands.

The streaming ports are used for realtime teleoperation. Teleoperation using the
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i αi−1 (deg) ai−1(m) di(m) θi(deg)
1 0 0 0.2491 θ1
2 90 0 0 θ2
3 0 0.5589 0 θ3
4 -90 0.1514 0.5388 θ4
5 90 0 0 θ5
6 90 0 0 θ6
T 0 0 0.2666 0

Table 2.1: Denavit-Hartenberg Parameters of NBV-I as Measured by Ellsberry [6]

Figure 2.6: Rendering of NBV with attached link frames, from [6]

commanded display required controlling the arm in joint space, so the joint com-

mand port was the most important of these.

2.4.1 Input Devices

2.4.1.1 Two 3DOF Hand Controllers

The use of a pair of two 3DOF hand controllers is a common method of

controlling a robotic arm on-orbit. The operator inputs desired Cartesian rates of

motion of the robot’s end effector or tool tip. The translational hand controller

is mapped to the Cartesian translation of the robot’s end effector. Likewise, the

rotational hand controller is mapped to the end effector’s orientation. Figure 2.7

15



shows the hand controllers used in the present work, along with their mappings to

end effector motion.

Figure 2.7: Translational and rotational hand controllers with axes and mappings
shown.

2.4.1.2 SpaceNavigator

The SpaceNavigator
TM

is a six DOF human input device manufactured by

3Dconnexion. It combines three translational and three rotational input axes in

its pressure sensitive handle. This allows the user to control the position and ori-

entation of a 3D object with a single hand. It sees wide use in computer aided

design packages, 3D modeling and animation, and other visualization applications.

Although it is designed primarily for interacting with 3D environments, it is also

suitable to Cartesian control of a robotic manipulator. Unlike the hand controllers

discussed in the previous section, the SpaceNavigator is highly portable. It is a USB
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device and is compatible with Mac OSX, Microsoft Windows, and Linux/X11. It

also does not require mounting into a work station table.

2.4.2 Software Libraries

Software reuse has the potential to save a significant amount of time and

cost from a development effort. The present work utilizes several existing software

libraries and frameworks.

The following subsections describe the software libraries chosen for the current

work. Each has been designed with the goal of facilitating software development and

offers a unique set of functionality.

2.4.2.1 OpenSceneGraph

OpenSceneGraph(OSG) is an open source 3D graphics toolkit [16] [17]. It

is commonly used by developers to create visual simulations, virtual reality appli-

cations, and provide scientific data visualization. Designed to be highly portable,

OSG is written in standard C++ and uses OpenGL. OpenGL is an API that gives

developers access to the graphics hardware. OpenSceneGraph is rendering middle-

ware, which abstracts many of the low level calls and provides an object oriented

interface to the developer. OSG runs on most common operating systems, including

Windows, OSX, and GNU/Linux. OSG supports many common 3D file formats,

including COLLADA and 3D Studio Max. It also defines its own “osg” 3D file

format.
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OpenSceneGraph’s main purpose is to provide rendering capabilities to the

developer. As indicated by its name, OSG contains a scene graph implementation. A

scene graph is a data structure that contains and arranges the logical representation

of elements within a graphical scene. Nodes in the scene graph represent objects in

the scene. Nodes are arranged in a tree structure, in which a node may have a parent

and children nodes. This allows the developer to define spatial relationships between

nodes. A geometric node will often have a transformation matrix that defines its

spatial position with respect to its parent node. If the parent node moves, the child

node retains that relationship, and moves along with the parent.

The core of OSG provides the functionality to load, manipulate and render the

scene graph. It defines classes for scene geometry, transformations, and a variety

of other node types. It also defines a number of geometric primitives, including

points, polygons, a vectors. These classes include methods for vector and matrix

operations. OSG also provides an abstraction of OpenGL functionality. It provides

the rendering backend for the scene graph, which must transform the scene graph

into the necessary OpenGL calls.

The OpenSceneGraph library also contains a number of NodeKits. NodeKits

provide additional functionality beyond the basic 3D capabilities. These typically

implement frequently used functionality, such as text, particle generation, and post-

processing. Of particular importance to this work is the osgQt NodeKit. This

NodeKit provides an easy path for integration of OSG within Qt applications. It

also enables the developer to embed Qt GUI components within an OSG application.
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2.4.2.2 Qt

Qt is a software framework designed by the Qt Project for developing applica-

tion software [18]. Qt is used primarily for developing applications with a graphical

user interface(GUI), but it is also suitable for applications without a GUI. It is cross-

platform, supporting all major desktop operating systems, as well as several mobile

platforms. Qt is currently developed by Digia and the Qt Project, and available

under commercial and open source licenses.

Qt provides several useful features for application development. As with any

GUI toolkit, Qt provides an application programming interface (API) to make use

of widgets. A widget is simply an element in a GUI. Developers may choose from a

number of predefined widgets, or they may create their own. Custom widgets inherit

from Qt’s existing widget classes, removing the need for developers to re-implement

existing widget functionality.

One unique feature in Qt is its “signals and slots” mechanism [19]. This

mechanism provides infrastructure for communication between objects. Objects

may use this to pass event and other state information to other objects. Objects send

this information with a signal. The receiving object accepts the information on a

slot. Slots are functions that are called whenever they receive a signal. This method

offers several advantages over other GUI frameworks. Traditionally, a processing

function will be passed a pointer to a callback function. The callback function is

then called when appropriate. One major drawback to this method is that the

processing and callback functions are tightly coupled. The processing function must
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be able to call the right callback function. Signals and slots allows a more modular

approach. Slots simply know what type of information to expect. This allows a

more modular approach to application programming. Qt already has predefined

signals, and the developer is free to define their own.

Qt also provides functionality relevant to general application development.

The ones most relevant to this work include XML parsing, thread management,

network sockets, and file handling.

2.4.2.3 Orocos Kinematics and Dynamics Library

The Open Robot Control Software (Orocos) Project [4] was initiated to facil-

itate advanced robotics research. Orocos promotes software reuse and rapid soft-

ware implementation through object-oriented and component-based programming

paradigms. The project itself encompasses several smaller projects. The project of

most relevance to this work is the Kinematics and Dynamics Library (KDL).

The Orocos KDL provides functionality for kinematic and dynamic calcula-

tions for serial-link systems. It defines a number of classes to represent kinematic

chains. These include the KDL::Chain and KDL::Joint classes. The chain class

contains information about the kinematic chain, while the KDL::Joint class repre-

sents each degree of freedom in the chain. KDL provides solvers to compute the

forward and inverse kinematics of any kinematic chain. KDL also defines classes

useful for any dynamic system. This includes a number of geometric primitives such

as vectors, rotations, and three-dimensional transformations.
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2.4.2.4 OpenCV

The Open Source Computer Vision Library (OpenCV) was designed to support

computer vision projects. The library provides over two thousand algorithms for

computer vision and machine learning. These algorithms can be used to track

human gestures, identify objects, extract 3D models of objects, and identify features

for augmented reality overlays. The present work simply uses OpenCV to obtain

imagery from a camera source to display to a user, however OpenCV has many

possible applications in the development of future visual interfaces.

2.4.3 Software Utilities

This work employed several software utilities in parts of the experimental

setup. The following subsections describe each utility and its function.

2.4.3.1 netem

The netem
TM

utility is a packet scheduling tool designed to perform network

emulation of wide area networks [7]. It was designed to simulate non-ideal network

conditions in order to test software on a local network. Conditions netem can

emulate include fixed time delay, time delay jitter, packet loss, packet re-ordering,

and bandwidth limitations. This utility was used in this research to emulate high

time delays.
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2.4.3.2 VLC media player

VLC media player
TM

is a versatile media player and media streaming server

developed by the VideoLAN Organization [8]. Its first open source release occurred

in 2001, and it has been continuously developed since then. VLC supports most

modern operating systems, including Linux, Windows, and OSX. Additionally, it

can play almost all common media sources and formats. Of particular interest

to this work is H.264 video compression format. It can both encode and decode

video sources in this format. The current application was to encode raw video

from a camera at the worksite into an H.264 format, and stream it over a network.

The VLC instance on the receiving end then decoded the stream and displayed it

to the computer screen. VLC supports a variety of streaming options, including

RTSP/RTP. RTSP, or Real Time Streaming Protocol, is a network protocol widely

used by streaming media servers; RTP, or Real Time Transport Protocol, defines a

packet format for carrying media over a network.
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Chapter 3: Software Development

This chapter describes the visualization software developed for this research.

The goal was to develop a flexible visualization and simulation system that would

support the current and future teleoperation research. Modularity and code reusabil-

ity were emphasized in the design. It is hoped that this approach will facilitate fu-

ture development for future projects. Software development leveraged open source

projects to reduce development time and for community support.

3.1 Overview

Figure 3.1 illustrates the current software design. The software is a single Qt

GUI application with two threads. The blocks represent the individual class objects

that comprise the system. The illustration shows the main connections and data

flow between objects. The primary messaging infrastructure is provided by Qt’s

signals and slots mechanism. Each block inherits from Qt::Object, either directly

or through defined Qt GUI classes, giving each object the signal and slot messaging

capability.

The software is multi-threaded. The main application thread handles simula-

tion and GUI computations. This thread is starts upon application startup. The
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Figure 3.1: Overview Block Diagram of Software Design Showing Main Components

and Data Flow.

second threads is dedicated to rendering. The OpenSceneGraph rendering object,

VisualizationWidget, is loaded after the program completes initialization. This ob-

ject contains the root node of the scenegraph and runs the update and rendering

loop. Threading is handled by Qt’s Qt::Thread class. The main application instan-

tiates a Qt::Thread object and moves the rendering object is moved to it. Because

signals and slot messaging is thread safe, thread safety is ensured.
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3.2 Commanded Robot Kinematic Simulation

The kinematic simulation forms the basis of the commanded display. It is

implemented in the CommandedRobotSimulation object. This object’s purpose is

to transform the operator’s Cartesian rate inputs into a commanded joint pose for

the robot arm. This object inherits from a GenericRobotInterface class which defines

the needed messaging interfaces between components.

The GenericRobotInterface is an abstract class that is the basis for repre-

sentations of robotic manipulators. It defines the signals and slots needed to re-

ceive commands and transmit telemetry. By inheriting this class, robot objects can

be implemented and connected without reimplementing interfaces. It also ensures

consistent interfaces between these objects. The key slots include Joint pose and

Cartesian position commands, and commands to initialize and set the internal state

variables. The telemetry is sent through several signals. Of particular importance

are the current joint pose and Cartesian positions. In the commanded display im-

plementation, the joint telemetry signal from the CommandedRobotSimulation is

connected to the joint pose command slot of the ActualRobotInterface.

The CommandedRobotSimulation object keeps track of the simulated joint

pose and Cartesian state. When it receives a rate command, it performs an inverse

velocity kinematic routine to calculate corresponding joint rates. It then integrates

the joint rate over the time step to get the change in joint angles. Finally, it sums

the change with the current joint angles to get the new pose. This new pose is the

commanded pose that is sent to the actual robot. This pose also is sent to a forward
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position kinematic routine to calculate the new Cartesian tool-tip position. Both the

pose and telemetry are sent to the joint and Cartesian DockWidgets, respectively.

Orocos KDL provides the kinematics routines used in the simulation. The

KDL::ChainIkSolverVel wdls class performs the computations for the inverse veloc-

ity kinematics, while KDL::ChainFkSolverPos recursive performs the forward po-

sition kinematics. These solvers were wrapped in Qt::Object classes, which were

then connected to the main CommandedRobotSimulation object. The kinematic

objects set up the supporting functions, the kinematic chain representations, and

initialization required to use the KDL solver classes. They initialize the kinematic

chain using the real robot arm’s D-H Parameters. The D-H parameters for NBV-I

were used for the majority of this work, however these objects could be used with

any manipulator, given its D-H Parameters.

Telemetry from the actual robot can be used to update the simulation’s state.

This is typically used for initialization of the object. For teleoperation, the joint pose

of the commanded simulation and the actual robot must agree before the simulation

begins sending commands to the actual robot. Different initial positions will result in

large sudden movements of the actual robot as it moves to the commanded position.

The operator may “latch” the commanded display output, however. Disabling the

command stream from the commanded robot can allow the operator to move the

commanded display without sending commands to the actual robot. The operator

can then send the resulting position to the robot at a later time.
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3.3 Actual Robot Interface

The hardware robot interface is implemented in the ActualRobotInterface ob-

ject. This object inherits from GenericRobotInterface, described in the previous

section. This concrete implementation of the abstract class defines the methods

necessary to send and receive data from the SSL’s Data Management Unit software.

Communication with the DMU occurs over three Universal Datagram Protocol

networking sockets. The first UDP port is used for general robot commanding

and offline teleoperation. Figure 3.2 shows the Qt::Dialog window that gives the

user access to these commands. The key startup commands are: (1) requesting

Command Authority, (2) enabling Robot Control, (3,4) enable Joint or Cartesian

control modes, (5) load and issue trajectory commands, (6,7) enable online Joint

or Cartesian teleoperation streams. The dialog highlights important information,

such as the control mode of the robot, and whether or not the software currently

has Command Authority to issue commands. The dialog also outputs error message

strings from the robot. The robot and dialog objects reimplement much of the Text

User Interface developed by D’Amore [5] in a Qt Framework.
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Figure 3.2: Dialog Box to Interface with NBV-I
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The other two UDP ports receive streaming data for direct teleoperation.

One socket is used for joint space streaming, and the other receives Cartesian rate

commands. The commanded display algorithm generates commands in joint space,

so the software primarily used the joint stream port.

3.4 Input Devices and Handling

The software was designed to enable rapid implementation of new input de-

vices. The input chain performs two main functions: (1) receive incoming rate

commands, (2) map incoming rate commands. The CommandHandler Each of the

functional blocks inherit Qt::Object, enabling the use of signals and slots. All data

interfaces between these objects are implemented as signals or slots. The input

object defines its own interface to obtain the raw input.

The InputObject is responsible for receiving input from external sources. An

abstract input object was defined with the interfaces required to send data to the rest

of the input chain. This allows input object implementations to inherit the necessary

interfaces from the generic object. The input device object can be instantiated and

connected to the input chain at runtime. A configuration file identifies the specific

input device to use. The software then loads the selected device during application

initialization.

Two input device objects have been implemented, as of this writing. The first

to be implemented was the handler for the SpaceNavigator 3D Mouse, described in

Section 2.4.1.2. The SpaceNavigator object links against the device’s library, which
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defines the device API. It uses the functions provided by the API to check for new

input data. The data contains the state of the six axes and two buttons of the

device. The device axes are mapped to x, y, z, roll, pitch, and yaw before being

packaged into a KDL::Twist object. The data is emitted after it is read and in the

proper format.

The second input device object does not directly interface with an input de-

vice. Rather, it implements the SSL’s input device client interface. The SSL’s

device clients read raw data from their respective input devices and transmit rate

commands over a UDP socket. The object receives that stream of input data over its

corresponding UDP socket. It creates the socket using the Qt::QUdpSocket class.

This UDP input object is primarily used to receive data from the SSL’s transla-

tional and rotational hand controllers, described in Section 2.4.1.1. Although only

the hand controllers have been tested with this object, any device client that out-

puts data according to the SSL input device client interface would work with this

software.

The InputMapper object remaps incoming rate commands to a desired scale.

The linear mapping is primarily used to rescale the input. This is particularly useful

for converting raw hand controller axis readings into the desired range of rates. The

linear mapping can also be used to change the maximum allowable range of rates.

An input device with a scale from -20 to 20 cm/s could be remapped to -10 to

10cm/s, for instance. The square mapping remaps a linear input scale according

to a square law. This gives the operator a greater input range at low speeds. It is

possible to perform both linear and scale mappings on the same input source.
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The output of the InputMapper goes into the CommandHandler. In addition

to an input device, a user may issue commands through the controls provided on

the joint or Cartesian control dock widgets. The CommandHandler controls which

of these input sources is passed through to the robot. The GUI windows supersede

hand controller input when they issue a command.1

3.5 Application Manager and GUI

The ApplicationManager object is the application’s main class. It inherits

Qt::MainWindow and sets up the initial GUI window. It also handles application

start-up and shut down.

The ApplicationManager is responsible for the application’s initialization. It

first reads the configuration file specified by the command line arguments. It creates

and connects all of the main application components according to the configuration

parameters. It also creates the rendering thread for the visualization.

The ApplicationManager is the “parent” of all the GUI windows and dialog

boxes. The class itself inherits from QMainWindow and creates the main application

window. This window is home to the CartesianDockWidget and JointDockWidget

widgets. As their names suggest, these widgets “dock” with the main window,

appearing to be part of the window.

The main window has the application’s main menu. The menu is used to

1The main development of the current system focused on the visualization and commanded
display of the robot. The GUI features only basic go-to commands. A more full-featured GUI
would implement more sophisticated controls, and the CommandHandler should handle inputs in
a more rigorous manner.
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launch the other application windows. It has menu options for loading the visu-

alization window, test configuration dialog, and robot dialog. It also has several

functions to support the experimental testing discussed in Chapter 4. These include

functions for data logging and saving camera views.

3.6 Scene Graph

The scene graph is the virtual representation of the robot worksite. It is

constructed by the SceneGraphManager object. Its individual components are con-

trolled by SceneObject components.

The SceneObject components represent and handle individual objects in the

scene graph. The basic purpose of the SceneObject is to wrap OSG node in a Qt

object, and expose the node’s OSG functions to the signals and slots mechanism.

The basic SceneObject class allows other objects to send messages to controlling the

SceneObject’s position and orientation.

Specialized SceneObjects represent objects in the scene graph that require

additional functionality. The RobotArmDisplay object inherits from the basic Sce-

neObject class, gaining its basic wrapped OSG functions. In addition to the position

and orientation of the robot’s base frame, the SceneObject must specify the joint

angle of each degree of freedom in the arm model. When the RobotArmDisplay ob-

ject first loads the arm model, it traverses the model tree to identfy the transforms

that correspond to the joints. It creates a slot function that accepts a KDL::Joint

to update the full joint pose of the model. The RobotArmDisplay also adds a frame
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to the end of the robot to allow the attachment of an end-effector. For the present

work, a basic SceneObject loads a model of the tool-tip. The SceneGraphManager

then attaches the tool-tip’s base frame to the robot model’s tool-tip frame.

Specialized TestBoard and TargetPair SceneObjects were implemented for the

experiment described in Chapter 4. The TestBoard object loads the task board

model, which contains a frame for the target position. The object has a slot for

controlling the position of the target object on the board’s face. The TargetPair

object is solely positioning of the target models, it loads no models itself. It consists

of a frame that corresponds to its center, and it has two frames that correspond to

the target positions. It has a slot for specifying the desired horizontal target sepa-

ration. Two basic SceneObjects load the target model. One of those SceneObjects

is attached to the TargetPair’s left target frame, and one is attached to the right

target frame.

The SceneGraphManager initializes all of the SceneObjects and builds the

main scene graph. It specifies which model files each SceneObject loads, and how

to attach the SceneObjects to other SceneObjects. The manager also contains the

root node of the main scene graph. It attaches the base node of the SceneObjects

to the root node. After program initialization, the ApplicationManager accesses the

root node and passes it into the RenderDriver object and starts the visualization.

The RenderDriver is essentially a Qt wrapper for OSG’s osgViewer::CompositeViewer

class. This class provides the rendering functionality for the graphical environ-

ment and supports multiple views of the scene. The RenderDrive inherits os-

gViewer::CompositeViewer and implements the main rendering loop. This allows
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the RenderDriver to be moved to a dedicated Qt::Thread.

3.7 Visualization Window

The VisualizationWindow object provides the operator’s main visual inter-

face. Its main purpose is to initialize and display the widgets that provide views of

the workspace. This window was primarily designed to display virtual views, but

optional video views have also been integrated into the window. The VirtualView

widget displays a view of the graphical environment, and the VideoView widget

displays video from a hardware camera.

The VirtualView widget is designed around an osgViewer::View object. The

widget handles initialization for the view. It sets up the osg::Camera and event

handler for the view, sets the view’s scene graph data to the main scene graph’s root

node, and adds its osgViewer::View object to the RenderDriver’s osgViewer::CompositeViewer

object. After setup is complete, the VirtualView adds the view’s GLWidget to its

layout. The GLWidget is created by using the osgQt::GraphicsWindowQt class to

set the camera’s graphic context, where the graphic context is the window in which

the graphical view will be drawn. This class enables the OpenSceneGraph and Qt

integration.

The virtual camera may be a fixed view, or adjustable. OSG provides sev-

eral useful classes for manipulating the camera view. For adjustable views, an

osgGA::TrackBallManipulator is attached to the camera. This allows the user to

position and rotate the camera using mouse input. If a fixed view is specified, the
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VirtualView widget does not attach a manipulator to the camera. Instead, it man-

ually sets the camera’s view and perspective matrices based on previously saved

camera views.

The VideoView widget displays video from a hardware camera source. This

widget is very similar to the VirtualView widget. It utilizes OpenSceneGraph for

rendering, and performs the same initialize steps described previously. The key

difference is that the VirtualView does not use the main scene graph’s root node

for the view’s scene graph data. It creates a textured quadrilateral polygon, and

renders the incoming camera video to this polygon. The osg::Camera is given a

fixed orthographic projection matrix to appropriately display the image to the view

window.
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Chapter 4: Fitts’ Law Study

4.1 Overview

This work utilized a Fitts’ Law tapping task to investigate the effectiveness of

the commanded display. Table 4.1 lists the variables tested. The contact parameters

were selected such that two of the IDs would overlap, giving 3 distinct IDs.

Table 4.1: Fitts’ Law Task Summary

Task: Fitts’ Law Task
Independent Variables Dependent Variables
Time Delay: 0.0, 0.33, 1.0, 2.0, 4.0, 6.0 seconds Task Completion Time
Display Method: No Overlay, Commanded Display NASA Task Load Index
Target Size: 2.0, 4.0 in
Target Separation: 11.0, 25.0 in

Total Test Cells: 48

4.1.1 Participants

Five adult males participated in the study. Technical background was a key

criteria for recruiting test subjects, and three test subjects had direct previous expe-

rience operating robotic systems. All subjects had a background in an engineering

discipline. Each subject was right-handed. Four subjects had vision correctable to

20/20, and one subject had vision corrected to 20/100.
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UMd’s Institutional Review Board (IRB) approved the use of human test

subjects for the testing conducted in this work. A key component of the IRB process

is obtaining informed consent from each participant. The approved consent form

is included in Appendix C. Each part of the form was explained to each new test

subject. Key areas of discussion included the potential risks, the voluntary nature

of the study, and protection of anonymity. If the prospective subject agreed to

volunteer for the study, they then signed the consent form. Each Subject’s identity

was tracked for this work, due to the need for multiple test sessions. The subject’s

anonymity was protected with the use of a keyed list kept in a secure facility.

4.2 Fitts’ Law Task

The experiment was a two DOF Fitts’ Law task. Fitts proposed a relationship

to characterize a simple human manipulation task. [11] In the task, a human moved

their finger from one target to another. Fitts’ Law relates the time to move between

targets to the distance between the targets and the target size. Based on these

parameters, Fitts defined the Index of Difficulty to characterize the difficulty of the

manipulation task. The index of difficulty is given by the following expression:

ID = log2(2 ∗D/W ) (4.1)

where ID is the Index of Difficulty, D is the distance between targets, and W is the

target width. The difficulty of a task is directly proportional to the size of the targets

and distance between them, and task completion time has been found to relate

linearly with ID for many tasks. For each target configuration considered, targets
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were placed in a horizontal line with some separation. The goal of the operator was

to move the robot tool-tip back and forth between the targets as quickly as possible,

and to contact the targets with the tool-tip during each traverse.

4.3 Experimental Setup

Figure 4.1 shows the overall view of the physical and virtual robot workspace

used for this task. The physical workspace includes the robot arm, task board,

targets, and contact sensors. The virtual environment models the key workspace

elements, particularly the robot arm, task board, and targets.

Figure 4.1: NBV-I Mounted to an Optical Bench in the SSL’s Advanced Robotics
Development Laboratory
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4.3.1 Task Board

The task board held the targets for each task. The physical task board was a

sheet of pegboard, with a grid of holes spaced one inch on-center in both the vertical

and horizontal directions. Thus, the targets could be rapidly mounted in one inch

increments vertically or horizontally. The task board itself was mounted to an optical

bench, which also had holes with a one inch spacing. The entire test board could

be moved forward or back in one inch increments, but its location remained fixed

throughout the experiment. The visualization software has corresponding controls

for the task board and target positioning in the virtual environment. Only the

horizontal target spacing was varied between tasks in this study. Figure 4.2 shows

a virtual view of each target configuration considered.

The physical task board had one lamp indicator on each side of the board.

The lamp above the active target was illuminated. This gave the operator a visual

indication of successful contact. When the operator made contact with the active

target, the lamps switched. The active target becames the inactive target, and its

light turned off. The previous target became the active target, and its light was

turned on.

The task board’s contact sensors and indicators were controlled by an Arduino

microcontroller, shown in Figure 4.3. The key elements are the contact detection

and the lamp control. The targets themselves were the contact sensors; they were

aluminum plates that were held at digital high through a 10KΩ pull-up resistor,

and one of the microcontroller’s digital input/output(IO) pins was connected to
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(a) Size: 2in; Separation: 11in (b) Size: 2in; Separation: 25in

(c) Size: 4in; Separation: 11in (d) Size: 4in; Separation: 25in

Figure 4.2: Virtual View of Target Configurations

each plate. Contact was detected when the electrode on the arm’s tool-tip made

contact with the plate. The tool-tip electrode was grounded, so the target contact

was pulled to ground during contact. The microcontroller detects this change on

its IO pin and updates the target states. The embedded software only changed the

target states when contact was detected on the active target, so multiple hits on the

non-active target would not be registered. The microcontroller also controlled the

state of the indicator lamps. The active target’s lamp would always be on, and the

non-active lamp would be off. The lamps were powered by a benchtop power supply

The lamps are driven with N-type MOSFETs in a low-side switch configuration. To
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turn on a lamp, the microcontroller drives the mosfet gate high with a digital I/O

pin. Likewise, setting the IO pin low turns off the lamp.

Figure 4.3: Electronics for task board control and contact detection.
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The Arduino was connected to the task server, described in 4.3.2. A program

on the task server relayed target state data from the Arduino to the visualization

software on the workstation computer. It opened the a serial connection with the

Arduino, read and parsed the incoming serial data, and then transmitted the data

over the network via UDP. The software on the workstation then synced the target

data with the telemetry data. In this way, the task board state was treated as

another piece of telemetry from the remote worksite, and experienced the same

delay as the robot telemetry before it reached the operator’s workstation.

4.3.2 Network Overview

The experiment utilized five computers connected on a gigabit Ethernet local

area network. Figure 4.4 illustrates the network layout. The network was divided

into two main sections. The first section is the workstation side. These are the

computers that handled the operator’s interfaces for the tasks. These were the

main workstation computer and the hand controller server. The other section, the

arm-side, contained the computers involved with the arm and telemetry. These

computers were the arm’s Data Management Unit (DMU) and the Test Server. The

two sides are separated by the time delay unit (TDU). Figure 4.5 illustrates the

messages sent between each of the computers. The workstation computer was the

center of this configuration. It handled the operator’s inputs, telemetry from both

the task server and DMU, and issued commands to the DMU. The TDU did not

issue or handle any task data, aside from introducing the time delay.
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Figure 4.4: Diagram of the local area network in the test configuration.

Figure 4.5: Illustration of message handling in test configuration.

43



4.3.3 Operator Workstation

The operator workstation contained the display and input interfaces used by

each test subject. Figure 4.6 shows how the workstation was configured for this

experiment.

Figure 4.6: Overall view of the operator workstation. Shows screen arrangement
and hand controllers.

The three DOF translational and three DOF rotational hand controllers were

the primary input interface for this experiment. They are mounted into the work-

station table. The hand controller server read the inputs and mapped the values

to commanded Cartesian rates according to a square law. It then streamed the

mapped rates to the main workstation computer.

The operator’s visual interface was provided by two LCD monitors connected

to the main workstation computer. The workstation displayed both the graphical
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simulation and camera video of the arm. Four graphical views and four camera

views were provided. The graphical views included an orthogonal view from the

side and bottom of the target board. One view gave an overview view of the task

board. A fourth view gave an overall view of the robot and its workspace. The latter

view was primarily so the operator could ensure a safe arm configuration, while the

the three former views gave the operator a closer view of the task site. The actual

camera views corresponded roughly with the virtual views, with one exception. The

task board overview was replaced with a tool-tip camera. The camera was attached

to the robot’s distal linkage and included the tool-tip contact in its field of view.

All views were displayed simultaneously. In order to delay the camera video, it was

necessary to use video from a network source. The workstation receives the camera

feed from the test server. The workstation then opened and displayed the stream

using the VLC media player.

4.3.4 Time Delay Unit

The TDU introduced the communications time delay. The TDU sat between

the robot and operator sides of the network. It was a Xubuntu 12.04LTS computer

with two network interface cards (NIC). The ethernet switches on either side of the

network connected to one of the two NICs. The network interfaces were bridged

to connect the two network segments. The netem utility introduced the time delay

emulation across the ethernet bridge. Netem adds a time delay to each network

interface, resulting in a time delay that acts in both directions. With netem, the
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TDU was capable of generating variable time delays, packet loss, corruption, and

other poor network conditions. A more detailed description of netem can be found

in Chapter 2. Each time delay treatment in this study was emulated as a constant,

bi-directional time delay. The time delay in each direction was half of the total

round trip time delay.

4.4 Procedure

Each new test subject was first familiarized with the task. They were shown

the workstation, robot, and task board. Each component, its functions, and possible

configurations were described. The subject was then shown how to operate the

NBV-I arm using the hand controllers and visualization software. The subject then

underwent a training period before performing the experiment. They informally

practiced moving the arm’s tool-tip between targets and hitting the contacts. They

then performed several test trials. After the test trials, they filled out a practice

NASA Task Load Index form.

The experiment was split over two or three hour sessions, depending on the

availability and fatigue of the particular subject. Each test session lasted between

two to three hours. Subjects performed no more than a single test session in a day.

Test sessions did not exceed three hours.

For each test, the subject performed a series back-and-forth traverses between

the targets with NBV-I. Figure 4.7 shows the general sequence. The operator po-

sitioned the target over the first target, made contact, then moved the arm to the
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next target, and again made contact. This was repeated five times for each test cell,

for a total of 10 target hits. Lights over the target would change to indicate the

active target and provide visual confirmation of successful target contact.

(a) Position Over Left Target (b) Contact

(c) Position Over Right Target (d) Contact

Figure 4.7: Sequence of Arm Positioning and Target Contact

For test cells in which the commanded display was enabled, the operator could

position the commanded arm while waiting for feedback from the real arm. Fig-

ure 4.8 shows the commanded display being positioned at the target as the real arm

lags behind.
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Figure 4.8: Commanded Display Positioned on a Target While the Delayed Actual
Display Moves to the Commanded Position
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Testing began at the lowest time delay treatment and progressed from low-

est to highest. Within each time delay treatment, the subject began without an

overlay and performed a test for each target configuration treatment. They then

switched to the commanded display and repeated each target configuration. The

target configurations were changed every each test. After each combined time delay

and display method treatment, the subject filled out a NASA TLX form to assess

their workload. Tests for each target configuration were considered too similar to

fill out a TLX. The subject typically got through two time delay treatments in each

session. Test sessions always ended after a full time delay treatment was completed.

Table 4.2 gives the fully populated test matrix of the Fitts’ Law Task.

Table 4.2: Fitts’ Law Task Test Matrix

Display Method No Overlay Commanded Display
Target Separation 11.0 in 25.0 in 11.0 in 25.0 in
Target Size 2.0 in 4.0 in 2.0 in 4.0 in 2.0 in 4.0 in 2.0 in 4.0 in

Time Delay

0.0 s 5 5 5 5 5 5 5 5

0.33 s 5 5 5 5 5 5 5 5

1.0 s 5 5 5 5 5 5 5 5

2.0 s 5 5 5 5 5 5 5 5

4.0 s 5 5 5 5 5 5 5 5

6.0 s 5 5 5 5 5 5 5 5

4.5 Hypothesis

The experiment was designed to gauge operator performance and workload

over a number a number of variables. It records the completion time of each test

and the workload of each combined delay and display treatment. Previous work has

shown that time delay decreases performance, and that graphical overlay techniques
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can offset some of the impact. Lane demonstrated the benefits of the commanded

display on a simulated robot. It was therefore hypothesized that completion time

and workload would increase as the time delay increased. It was expected that using

a commanded display with a real robot would be effective at mitigating the effects

of time delay.

Different target configurations required different types of motion. The smaller

targets require finer motion to position the tool-tip to make contact. The wider

separations require a higher degree of gross motion to move between contacts. It

was hypothesized that the commanded display might be more effective for different

types of motion. Because the operator would need to verify final adjustments with

real telemetry, it was expected that the commanded display would have greater

benefits for gross positioning.

This task required operator training for each test subject. It was assumed

that learning would be major factor, so training tasks were designed to bring the

operator down the learning curve. As the subject completed more trials, it was

expected that their task completion times would improve.

4.6 Results

The experimental results support the hypothesis that time delay decreases

task performance and increases operator workload. The results also indicate that the

commanded display reduces the impact due to time delay. However, the effectiveness

of the commanded display was not shown to vary due to target configurations. A
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summary of the data is provided in Appendix A, and the results of the analysis of

variance to determine statistical significance of the results are included in Appendix

B.

4.6.1 Task Completion Time

Figure 4.9 shows a comparison of the average completion time due to time

delay and display method. It plots both a performance curve and a comparison

with standard deviation error bars. The main effects of both time delay and display

method were statistically significant to better than a p < 0.01 level. The interaction

between display method and time delay was also statistically significant to the p <

0.01 level.

The plots show clear reductions in performance degradation for time delays of

2.0 seconds and higher when using the commanded display. The plots also indicate

improvements over the no overlay case at all time delays, however improvement at

low delay treatments was not significant. Table 4.3 summarizes the improvement

and impact reduction for the high delays when using the commanded display. The

Improvement column indicates the improvement as compared to the No Overlay

treatment for a given time delay. The Delay Mitigation column indicates the reduc-

tion in performance degradation due to time delay. The performance degradation

here is defined as the additional time it takes to complete a task, as compared to

no delay. These results indicate that the commanded display eliminated nearly all

performance degradation due to time delay for this task.
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Table 4.3: Percentages of Performance Improvement using the Commanded Display
compared to No Overlay, and Percentages of Time Delay Mitigation.

Time Delay (s) Improvement (%) Delay Mitigation (%)
2.0 48 96
4.0 64 96
6.0 67 93

Figure 4.9: Performance(top) and Standard Error (bottom) Comparison of Time
Delay by Display Method over Combined Target Separation and Size.
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It had been the original intent of this work to analyze the task completion

time as a function of the Index of Difficulty. However, the target size did not have

a statistically significant effect. The target size was also examined for a possible

interaction with the display method. However, as shown by Figure 4.10, the target

size had no effect. Its main effects were not statistically significant.

Figure 4.10: Comparison of Target Size over Combined Time Delay, Display Method,
and Target Size and Separation.
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The separation between targets did, however, have a statistically significant ef-

fect on completion time to the p < 0.01 level. The completion time due to separation

is plotted with standard deviation error bars in Figure 4.11.

Figure 4.11: Comparison of display method over combined target configurations.
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Of greater interest was a possible interaction between target separation and

display method. Figure 4.12 shows the average completion time as a result of sep-

aration for each display method. No significant interaction between these variables

was found. This suggests that the commanded display was equally effective for both

the gross and fine movements required for this positioning task.
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Figure 4.12: Comparison of Target Separation by Display Method over Combined
Time Delay and Target Size and Separation.
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4.6.2 NASA TLX

Figure 4.13 plots the average combined task load index with standard deviation

bars for each time delay and display treatment. The plot indicates that workloads

tends to increase as time delay increases without the commanded display. It also

suggests that the commanded display reduces workload at time delay treatments of

2.0 seconds and higher. However, the main effects of time delay were not statistically

significant. The display method was significant to the p < 0.05 level.

Figure 4.13: Workload Comparison of Time Delay by Display Method
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Figure 4.14 plots the effect on workload due to display method for each time

delay. At latencies of 2.0 seconds and higher, the commanded display appears to

have resulted in a large decrease in workload, suggesting an interaction between

time delay and display method. Without the commanded display, workload tended

to increase as time delay increased. With the commanded display enabled, a similar

rise in workload occured for time delay treatments from zero to one second. This

trend may be due to the subjects relying more on the visualizer than the camera

views at high delays. Several subjects reported that the commanded display was

easier to use, and that they used it more after they could no longer compensate for

the time delay.

Although these trends appear reasonable from the plots and consistent with

subject polling, statistical significance could not be demonstrated. This may be

exacerbated by the different internal scales used by each subject. This could also

be due to unfamiliarity with filling out TLX forms, despite the practice during the

training tasks.
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Figure 4.14: Workload comparison of Display Method by Time Delay
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4.6.3 Learning Effects Results

Two brief follow-on studies were conducted to examine learning effects. Long

term learning can be a major source of error in human factors testing. Each task

contributes to a subject’s cumulative learning. This can lead to better performance

during later tasks than earlier tasks with similar treatments. In order to reduce

this effect, each subject underwent training before performing the experiment. The

goal of training was to move down the learning curve so that the task completion

time leveled off. Additional task iterations should show little to no improvement in

performance.

Task performance of one of the subjects was tracked during training. This test

subject had no previous experience operating a robotic manipulator and had not yet

participated in any testing. This test was conducted with the 2.0 inch targets with

a 25.0 inch separation at no time delay. The commanded display was not used.The

results of their first training task is shown in Figure 4.15.
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Figure 4.15: Completion Time Data and Learning Curve for One Subject During
Their First Test.
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Long term learning was still a concern during the experiment. A subset of

the experiment was repeated with one test subject in order to assess the long-

term learning effects. Table 4.4 identifies the test cells that were repeated. This

study was designed to determine whether learning introduced an error that affected

the previous results. Testing was conducted across all time delays and display

treatments. Only a single target configuration was used: the 2.0 inch targets were

used at 25.0 inch separation. Figure 4.16 shows the results, split by time delay and

display method. The mean values indicate slightly better performance during the

repeated test.

Table 4.4: Long-term Learning Test Matrix

Display Method No Overlay Commanded Display
Target Separation 11.0 in 25.0 in 11.0 in 25.0 in
Target Size 2.0 in 4.0 in 2.0 in 4.0 in 2.0 in 4.0 in 2.0 in 4.0 in

Time Delay

0.0 s 5 5

0.33 s 5 5

1.0 s 5 5

2.0 s 5 5

4.0 s 5 5

6.0 s 5 5
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Figure 4.16: Task Completion Time Performance (top) and Standard Error (bottom)
Comparisons of first and second times through a subset of the test matrix for a single
subject.
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4.7 Discussion

Time delay was clearly a significant factor in this experiment. The results show

a strong relationship between time delay and the task completion time. As the delay

increased, the task performance suffered. For the highest delay treatments, subjects

had completion times several times higher than the no delay treatment. The use of

the commanded display, however, nearly eliminated this performance decrease.

The study clearly demonstrates the effectiveness of the commanded delay at

ameliorating time delay effects for a robot positioning task. At high delay treat-

ments, the commanded display reduced the completion time due to delay by upwards

of 90%. This strongly corroborates Lane’s study, which found improvements in the

range of 84-91% for a similar Fitts’ Law task [1].

The results indicate a slightly larger amelioration of time delay with the com-

manded display than what Lane found. This result was somewhat unexpected.

Rather, it was expected that testing on a physical system would introduce some

performance degradation due to real-world system dynamics. In comparison, Lane’s

study employed a purely kinematic simulation with no system dynamics. It could

be argued that this discrepancy is simply not significant, but there are several pos-

sibilities that warrant consideration.

One explanation is the task complexity. Lane’s modified Fitts’ Law task re-

quired movement along all three of the robot tool-tip’s translational axes, where

the present work only considered a two DOF task. Additionally, in this study, the

subjects knew where the targets were for the duration of the task. Several subjects
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would begin moving the commanded robot to the next target before delayed video

feedback indicated a target hit. In Lane’s Fitts’ Law study, only one target was in

a fixed location; the simulation generated a new target at a random location after

each contact with the fixed target. The subjects’ knowledge of the target location

very likely allowed subjects to shave extra seconds off their completion times.

The rigorous training protocol and increased testing duration in Lane’s study

could be another explanation. In the present work, it was considered sufficient

that the test subjects knew how to operate the robot arm and move down the

initial learning curve for the experimental task. Lane’s subjects performed trial

runs for each test combination of test treatments. Increased learning may have

better prepared subjects to deal with time delay, so that the resulting improvement

with commanded display was not as pronounced.

The commanded display also shows a slight improvement in the mean com-

pletion times at the zero and low delay cases. However, this improvement is very

small and was not shown to be significant in the post-hoc tests. It does not seem

that, in its current implementation, the commanded display helped until higher de-

lay treatments. Subjects reported relying primarily on video until they could no

longer compensate for the delay. Only at that point did subjects begin to rely more

heavily on the commanded display. A commanded display overlay on the video feed

may offer increased benefit even at lower time delay cases.

The initial learning results demonstrate the importance of initial training. As

expected, practice with the task lowered yielded lower completion times. As the

subject hit the targets, their completion time improved until it eventually leveled
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off. The initial training was meant to prevent learning effects from impacting the

experimental data, but it was still necessary to examine the effects of long-term

learning.

The long-term learning results suggest that learning was not a major source of

error. Data from the second round of testing shows the same trends present in the

first sessions. In most cases, the completion times for the second round were lower,

however this improvement was small. Additionally, the improvement appears to be

unrelated to either the time delay or display treatment. If long-term learning had

a major effect, it would be expected to see higher levels of improvement in the first

tests performed. Because of the order of testing, the improvement would be more

significant as the delay delay treatment decreased. Instead, the level of improvement

is relatively constant across all test cases.

The TLX results support the hypothesis that the commanded display reduces

operator workload for high time delay treatments. The benefit, however, was not

significant at low time delays. The surprising result is that workload actually de-

creased from 1.0 second to 2.0 seconds of delay when using the commanded display.

These trends corroborate with reports from test subjects. Several subjects described

relying mostly on the video until they could no longer compensate for the time delay.

When the delay was too high, they began to rely more on the commanded display.

This result is not unexpected, as it has been shown that a one second delay has

been shown to be the transition region between a subject’s ability to compensate

and when they use a move-and-wait strategy [21] [1]. In addition to the TLX data,

several subjects reported that the commanded display eliminated any frustration
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they experienced due to time delay at high delays. It should be noted that statisti-

cal significance could only be demonstrated for the display treatment’s main effects.

However, these trends appear reasonable and are corroborated by verbal reports

from several subjects, and thus are worth noting. Much of this issue stems for the

various internal scales used by the subjects to fill out the TLX forms, resulting in

high variances in the data.
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Chapter 5: Conclusions and Future Work

5.1 Summary

This primary goal of this research was to extend the commanded display to a

real robotic system. First demonstrated as a realtime teleoperation tool by Lane,

the commanded display had been shown to effectively reduce task completion time

for a purely simulated system. Experimental testing with the NBV-I manipulator

demonstrated the effectiveness of the commanded display on a real-world system,

and confirmed Lane’s findings. The commanded display nearly eliminated the neg-

ative effects of time delay for a robot positioning task.

This work also demonstrated the commanded display’s effectiveness at reduc-

ing operator workload. This display method significantly reduced task completion

time and operator workload at time delays above 1.0 second. Unlike Lane, no signifi-

cant performance improvement occurred at time delays below 1.0 second. Curiously,

the overall workload from one second to two seconds decreased. This likely had to

do with the implementation of the commanded display. The video feed and visu-

alizer screens were separate, requiring test subjects to look away from the video to

see the commanded display. These results may also have arisen because 1.0 second

of delay tends to be in the transition region between ability to adapt and a move
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and wait strategy. Several subjects reported using the video until they felt they

absolutely needed the command display at the higher time delays. At that point,

subjects primarily used the commanded display, and only used the video to verify

task completion.

This work also resulted in the development of a visualization tool for robotic

arms. The visualizer is capable of displaying a model of a robotic arms pose during

teleoperation. The software is compatible with the labs DMU software, and thus

can be used with most of the labs robotic arms. This work developed models for the

NBV-I manipulator in order to test and demonstrate the capabilities of the system.

5.2 Future Application

The commanded display has great potential to benefit remote manipulation

tasks during spacecraft servicing operations. Spacecraft communication suffers from

long communication distances, and the resulting time delay hinders the ability to

perform realtime teleoperation. The commanded display mitigates this issue, nearly

eliminating the performance loss due to delay for robot positioning. It restores the

ability of the operator to effectively perform interactive realtime teleoperation of

the robot. The commanded display would also be beneficial to other remote manip-

ulation platforms that incur delay. One example is remotely operated underwater

vehicles (ROVs) performing tasks that may include underwater maintenance, sur-

veying, and construction.

The visualizer developed for this work will see a number of uses at the Space
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Systems Laboratory. Not only will it continue to support NBV-I operations, the

visualizer will be extended to SAMURAI and Dymaflex arms, once appropriate

models are created. As of this writing, the SSL is refitting its Ranger Telerobotic

Shuttle Experiment (RTSX) arms with new motor controllers and electronics. When

the refit is complete, RTSX will be run with the SSLs current DMU software. The

visualizer will be used to verify DMU operation before actual robot motion.

The visualizer has a great amount of utility in operations that would otherwise

require running an actual robot. With the DMU in simulation mode, an operator

can control a robot virtually, without the additional overhead. This is especially

useful for operator training. New operators may familiarize themselves with a robots

controls and before they ever control hardware. Experienced operators may also find

the visualizer useful for planning new tasks and operations.

Additionally, commanded display functionality will be integrated into the

NASA Satellite Servicing Capabilities Office (SSCO) Robot Development Team sys-

tems, where it will be used to perform simulated satellite servicing tasks, such as

those performed on the Robotic Refueling Mission [15]. The new commanded display

simulation will employ Goddard Space Flight Centers in-house kinematics routines,

and it will integrate into their existing GUI and visualization software. Initially,

this functionally will be deployed and tested on a Motoman 10D industrial robot.

The ultimate goal will be a full end-to-end satellite servicing mission simulation that

utilizes the commanded display.
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5.3 Future Studies

Future research should compare the commanded display to other predictive

displays on a real world system. More sophisticated predictive displays may incor-

porate the systems dynamics and environment models, and may be more beneficial in

some situations. Methods of combining commanded and predictive displays should

also be explored.

One avenue of expansion would be the combination of a commanded display

with a predictive display in a single interface. A possible benefit of a predictive

display is the ability compensate for dynamic effects. To see the highest benefit

of this system, the predictive display would need to have an accurate model of

the robot’s dynamics, while still being able to perform the computations quickly.

A simple approach to combining displays would be to present a system with two

options. Due to screen clutter, the operator would switch between the commanded

and predicted displays depending on which was bested suited to the situation.

Another approach would be to develop a system in which a commanded robot

simulation drives both the actual robot and the predictive display. Both the pre-

dictive simulation and actual simulation would be using a closed control loop to

move to the same commanded position. This would prevent the predictive display’s

calibration from diverging due to the drifting calibration caused by small discrep-

ancies in the computations. This commanded-predictive display would allow the

operator to compensate for dynamic effects while still retaining the benefits of the

commanded display.
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The study presented here considered a commanded display overlay in a visu-

alization that was independent of the actual camera views. Future study should

examine the effects of having an overlay on the video feed. This will require care

to be taken to ensure proper image registration between the graphical overlay and

video. The main benefit of this method is that the operator would not have to

continually scan between different areas on the screen to obtain the information

provided by a commanded display and actual video. However, the visualizer has

value in offering views that would otherwise be unattainable, and could allow an

operator to move the viewpoint as the situation required. This is especially useful

when the number of camera views is limited due to bandwidth constraints. Study

is needed to determine how to best leverage both types of systems.

The past few years have seen dramatic advances in displays technology, lead-

ing to higher resolution screens, more sophisticated head mounted displays, and

growing availability of stereoscopic displays and head-tracking systems. These tech-

nologies could be directly applied to the commanded display in order to improve

the operator’s situation awareness.
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Appendix A: Data Summary

This appendix includes a summary of the test data for the Fitts’ Law study.

A.1 Task Completion Time

Mean
Time(s) C1 NOCMD C1 CMD C2 NOCMD C2 CMD C3 NOCMD C3 CMD C4 NOCMD C4 CMD
0 16.171 14.312 24.068 22.654 20.432 15.576 24.545 23.249
0.334 20.265 18.405 27.863 25.822 20.973 18.403 26.601 25.579
1 27.608 19.169 35.257 28.153 30.025 19.458 34.630 26.611
2 36.718 19.752 48.204 24.129 39.041 20.250 47.439 24.463
4 65.186 19.904 69.418 27.836 52.897 17.819 63.997 25.754
6 60.083 22.261 84.025 31.497 68.893 19.438 87.760 26.369

Standard Deviation
Time(s) C1 NOCMD C1 CMD C2 NOCMD C2 CMD C3 NOCMD C3 CMD C4 NOCMD C4 CMD
0 3.404 2.644 3.182 3.175 7.188 3.579 3.334 3.210
0.334 3.697 3.327 2.867 3.417 4.865 3.677 4.118 3.630
1 6.637 4.430 4.392 7.601 4.436 5.374 3.816 4.134
2 8.047 4.653 17.986 3.272 7.331 9.455 14.922 4.864
4 24.747 4.584 25.268 3.473 17.198 5.861 19.712 4.092
6 22.935 3.804 40.446 5.502 17.695 6.113 39.279 6.559

C1 - Size: 2in Separation 11in
C2 - Size: 2in Separation 25in
C3 - Size: 4in Separation 11in
C4 - Size: 4in Separation 25in

Table A.1: Mean (top) and standard deviation(bottom) of Task Completion Time
for varying Time Delay, Display Method, Target Separation, and Target Size.

A.2 NASA Task Load Index
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Mean

Display Method Time Delay
0 0.334 1 2 4 6

No Overlay 24 31.4 32.2 37.6 41.6 35.6
Commanded Display 23.6 26.2 28.6 19.2 17.6 17.6

Standard Deviation

Display Method Time Delay
0 0.334 1 2 4 6

No Overlay 14.83 18.06 18.04 15.55 18.74 18.56
Commanded Display 14.24 16.45 21.14 15.79 17.26 16.09

Table A.2: Mean and standard deviation of NASA Task Load Index for varying
time delay and display method.
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Appendix B: Data Analysis Summary

B.1 Fitts’ Law Task

B.1.1 Task Completion Time

An analysis of variance (ANOVA) was conducted for each of the tests con-

ducted. Wherever the results indicated significance for variables with three or more

treatments, Tukey and Duncan post-hoc tests were performed. This appendix con-

tains tables of the ANOVA and post-hoc test results.
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Variable Treatments N

Disp CMD 120
NO CMD 120

TgtSep
11 in 120
25 in 120

TgtSize
2 in 120
4 in 120

Delay

0 s 40
0.334 s 40

1.0 s 40
2.0 s 40
4.0 s 40
6.0 s 40

Source Sum Squares df Mean Square F Sig.
Corrected Model 79916.665 47 1700.355 8.788 .000
Intercept 256422.171 1 256422.171 1325.254 .000
Disp 25547.569 1 25547.569 132.036 .000
TgtSep 4287.570 1 4287.570 22.159 .000
TgtSize 7.622 1 7.622 .039 .843
Delay 27283.154 5 5456.631 28.201 .000
Disp*TgtSep 82.526 1 82.526 .427 .514
Disp*TgtSize 18.399 1 18.399 .095 .758
Disp*Delay 20893.546 5 4178.709 21.597 .000
TgtSep*TgtSize 24.386 1 24.386 .126 .723
TgtSep*Delay 479.589 5 95.918 .496 .779
TgtSize*Delay 336.009 5 67.202 .347 .884
Disp*TgtSep*TgtSize 2.484 1 2.484 .013 .910
Disp*TgtSep*Delay 461.613 5 92.323 .477 .793
Disp*TgtSize*Delay 370.172 5 74.034 .383 .860
TgtSep*TgtSize*Delay 76.069 5 15.214 .079 .995
Disp*TgtSep*TgtSize*Delay 45.957 5 9.191 .048 .999
Error 37149.905 192 193.489
Total 373488.741 240
Corrected Total 117066.570 239

Table B.1: General linear model table for task completion time between Time Delay,
Display Method, Target Size, and Target Separation over combined test subjects.
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Post-Hoc Test Delay N
Subset

1 2 3 4 5
Tukey HSD 0 s 40 20.12596

0.334 s 40 22.98891
1.0 s 40 27.61383 27.61383
2.0 s 40 32.49961
4.0 s 40 42.85148
6.0 s 40 50.04089
Sig. 0.159 0.619 0.195

Duncan 0 s 40 20.12596
0.334 s 40 22.98891 22.98891
1.0 s 40 27.61383 27.61383
2.0 s 40 32.49961
4.0 s 40 42.85148
6.0 s 40 50.04089
Sig. 0.358 0.139 0.118 1 1

Table B.2: Post-Hoc tests for Task Completion Time due to Time Delay over com-
bined Display Methods, Target Separations, and Target Sizes. Means within subsets
are not statistically significant.

B.1.2 NASA Task Load Index
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Variable Treatments N

Disp CMD 120
NO CMD 120

TgtSep
11 in 120
25 in 120

TgtSize
2 in 120
4 in 120

Delay

0s, NO CMD 20
0.334s, NO CMD 20
1.0s, NO CMD 20
2.0s, NO CMD 20
4.0s, NO CMD 20
6.0s, NO CMD 20

0s, CMD 20
0.334s, CMD 20

1.0s, CMD 20
2.0s, CMD 20
4.0s, CMD 20
6.0s, CMD 20

Source Sum Squares df Mean Square F Sig.
Corrected Model 79916.665a 47 1700.355 8.788 0
Intercept 256422.2 1 256422.2 1325.254 0
Sep 4287.57 1 4287.57 22.159 0
Size 7.622 1 7.622 0.039 0.843
CombDelay 73724.27 11 6702.206 34.639 0
Sep * Size 24.386 1 24.386 0.126 0.723
Sep * CombDelay 1023.727 11 93.066 0.481 0.914
Size * CombDelay 724.58 11 65.871 0.34 0.976
Sep * Size *
CombDelay

124.51 11 11.319 0.058 1

Error 37149.91 192 193.489
Total 373488.7 240
Corrected Total 117066.6 239

Table B.3: General linear model table for task completion time between combined
Time Delay and Display Method, Target Size, and Target Separation over combined
test subjects.
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Post-Hoc Test Delay N
Subset

1 2 3 4 5
Tukey HSD 0s CMD 20 18.94799

0s NO CMD 20 21.30394
0.334s CMD 20 22.05241

2s CMD 20 22.14862
4s CMD 20 22.82818
1s CMD 20 23.34766

0.334s NO CMD 20 23.92542
6s CMD 20 24.89159

1s NO CMD 20 31.88001 31.88001
2s NO CMD 20 42.85059
4s NO CMD 20 62.87477
6s NO CMD 20 75.1902

Sig. 0.136 0.35 0.189
Duncan 0s CMD 20 18.94799

0s NO CMD 20 21.30394
0.334s CMD 20 22.05241 22.05241

2s CMD 20 22.14862 22.14862
4s CMD 20 22.82818 22.82818
1s CMD 20 23.34766 23.34766

0.334s NO CMD 20 23.92542 23.92542
6s CMD 20 24.89159 24.89159

1s NO CMD 20 31.88001
2s NO CMD 20 42.85059
4s NO CMD 20 62.87477
6s NO CMD 20 75.1902

Sig. 0.259 0.054 1 1 1

Table B.4: Post-Hoc tests for Task Completion Time due to Time Delay over com-
bined Display Methods, Target Separations, and Target Sizes. Means within subsets
are not statistically significant.

Variable Treatment N

Display CMD 30
NO CMD 30

Delay s

.000 s 10

.334 s 10
1.000 s 10
2.000 s 10
4.000 s 10
6.000 s 10

Source Sum Squares df Mean Square F Sig.
Corrected Model 3483.733a 11 316.703 .860 .584
Intercept 46816.267 1 46816.267 127.117 .000
Display 2018.400 1 2018.400 5.480 .023
Delay s 286.933 5 57.387 .156 .977
Display * Delay s 1178.400 5 235.680 .640 .670
Error 17678.000 48 368.292
Total 67978.000 60
Corrected Total 21161.733 59

Table B.5: General Linear Model table for NASA Task Load Index between Time
Delay and Display Method over combined Subjects.
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B.2 Long Term Learning Error

Variable Treatment N

Repetition 1 12
2 12

Source Sum Squares df Mean Square F Sig.
Corrected Model 39.157 1 39.157 .340 .566
Intercept 21868.38 1 21868.308 189.797 .000
Repetition 39.157 1 2018.400 .340 .566
Error 2534.822 22 115.219
Total 24442.287 24
Corrected Total 2573.979 23

Table B.6: ANOVA table for Task Completion Time between Repetitions over com-
bined Time Delays and Displays.
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Appendix C: Institutional Review Board Consent Form

This appendix contains the approved consent form, with identifying informa-

tion removed. This was the form used to obtain informed consent from each test

subject. It includes information about the study, the risks involved, protection

of identifying information, the right to withdraw at any time, and a statement of

consent.
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University of Maryland College Park 

Page 1 of 3                  Initials _______ Date ______ 

 

 

 

Project Title 

 

Human Factors Evaluation of Operator Interfaces for Teleoperation of a 

Dexterous Manipulator 

Purpose of the Study 

 

 

 

 

This research is being conducted by Dr. David Akin and Kevin Davis at 

the University of Maryland, College Park. We are inviting you to 

participate in this research project because you are a healthy adult.   

 

The purpose of this research project is to evaluate human factors 

attributes of a telerobotic workstation for a dexterous manipulator. 

Robot operators will use a variety of display techniques and input 

devices to control a dexterous satellite servicing robot with time delay. 

The goal of this research is to decrease operator workload and task 

completion time, as well as identify and minimize bandwidth 

requirements between a workstation and robot.  

Procedures 

 

 

 

The procedures involve remote operation of a robotic manipulator to 

perform a simulated satellite servicing task. 

 

The researchers will first explain the task. You will sit at a workstation 

with a desktop computer and set of hand controllers. The researchers will 

configure the workstation for a test run and explain the workstation 

configuration and interfaces. The test run will begin, and you will perform 

the same task a set number of times. After the test run is complete, you 

will be given a break, and the researchers will reconfigure the workstation 

for another test run. You will perform a set number of test runs during 

each test session. 

 

You will be asked to participate in three test sessions over a period of 

several months. Each test session should last approximately two hours. 

 

The research will be conducted at the Space Systems Laboratory at the 

University of Maryland, College Park. Lab facilities are located in room 

1309 of the Jeong H. Kim Engineering Building and at the Neutral 

Buoyancy Research Facility.  

 

You will be given a survey with questions relevant to using a computer 

workstation. For example: Are you left or right handed? (Pick one) Left, 



2 

 

Right, Ambidextrous 

Potential Risks and 

Discomforts 

 

There may be some risk of discomfort from participating in this research 

study. The tasks you perform will likely increase your mental workload, 

which may lead to feelings of fatigue. Workload levels are similar to 

playing a video game. 

Potential Benefits  There are no direct benefits from participating in this research. We hope 

that, in the future, other people might benefit from this study through 

improved understanding of techniques to improve task performance during 

teleoperation. We also hope to better define the bandwidth requirements 

that impact the design of satellite servicing spacecraft.    

 

Confidentiality 

 

 

Any potential loss of confidentiality will be minimized by storing data in a 

locked office or on a password protected computer. 

 

Your name will not be included on the surveys and other collected data; a 

code will be placed on the surveys and other collected data; through the 

use of an identification key, the researcher will be able to link our survey 

to your identity; and only the researchers will have access to the 

identification key. 

 

If we write a report or article about this research project, your identity will 

be protected to the maximum extent possible.  Your information may be 

shared with representatives of the University of Maryland, College Park or 

governmental authorities if you or someone else is in danger or if we are 

required to do so by law.  

 

Right to Withdraw 

and Questions 

Your participation in this research is completely voluntary.  You may 

choose not to take part at all.  If you decide to participate in this research, 

you may stop participating at any time.  If you decide not to participate in 

this study or if you stop participating at any time, you will not be penalized 

or lose any benefits to which you otherwise qualify.  

 

If you decide to stop taking part in the study, if you have questions, 

concerns, or complaints, or if you need to report an injury related to the 

research, please contact the investigator:  

 

REDACTED 



University of Maryland College Park 

Page 3 of 3                  Initials _______ Date ______ 

 

 

Participant Rights  

 

If you have questions about your rights as a research participant or wish to 

report a research-related injury, please contact:  

 

REDACTED 

 

This research has been reviewed according to the University of Maryland, 

College Park IRB procedures for research involving human subjects. 

Statement of Consent 

 

Your signature indicates that you are at least 18 years of age; you have 

read this consent form or have had it read to you; your questions have been 

answered to your satisfaction and you voluntarily agree to participate in 

this research study. You will receive a copy of this signed consent form. 

 

If you agree to participate, please sign your name below. 

Signature and Date 

 

NAME OF PARTICIPANT 

[Please Print] 

Signature and Date 

 

SIGNATURE OF 

PARTICIPANT 

 

 

DATE 
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