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One of the central goals of this thesis is to verify the local Langlands corre-
spondence for the rank two symplectic group Sp,(F'), where F is a p-adic local field
with p # 2. This correspondence seeks to parameterize admissible representations
of various matrix groups over F' with representations of the Weil-Deligne group of
F (denoted W}). This correspondence should include an equality of certain local
factors, one being the local L-factors attached to both representations of both the
matrix group and the Weil group.

We will restrict our attention to constituents of the unramified principal series
of Spy(F). In particular, we employ some criteria of Lusztig to assign these rep-
resentations Weil-Deligne data. While computing the L-factor for representations
of the Weil-Deligne group is well known and understood, we require a method for
defining the local L-factor for representations of the matrix group.

Our method for defining L-factors for representations of Sp,(F') is a modifi-

cation of the doubling integral of Piatetski-Shapiro and Rallis [8]. While Piatetski-



Shapiro and Rallis formulate a definition of L-factor via this doubling method, we
seek to realize the Weil-Deligne L-factor as an application of our modified integral
evaluated on certain “good test vectors”. Such choices will rely on a wide range of
machinery, including intertwining operators, the Weil representation and studying
local densities of quadratic form. We tie this wide range of material together, in
great detail, through the course of the thesis.

Finally, this method of defining L-factors can be extended in a natural way
to representations of the metaplectic cover of Sp,(F). While the Local Langlands
correspondence does not apply to this group, we are still able to produce Weil-
Deligne data and L-factors for these representations by using Lusztig’s criteria on
constituents of the unramified principal series of SO5(F"). In particular, we demon-
strate a bijection between constituents of the genuine unramified principal series of
/S—I\);(F ) and the unramified principal series of SO5(F’) in such a way that the doubling
L-factor for a representation on the metaplectic group matches the Weil-Deligne L-

factor for the corresponding representation on the special orthogonal group.
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Chapter 1
Introduction

1.1 The Thesis Problem

One goal of the Langlands program is generalizing the results of local class

field theory. For instance, let I’ be a p-adic field and let
Wr C Gal(F/F),

be its Weil group. It is a well known fact from local class field theory that we have
a reciprocity isomorphism

Artp : F* — W,
So characters of the group F'* are identified with characters on Wpg. Furthermore,

there exists a uniformizer @ € F' and a Frobenius element Fr, € Wp such that
Artp(w) = Fry,

where ﬁq is the image of Fr, in W¥. Consequently, if
Xo @ F*— C~

and
o, W — C*

are corresponding characters, then we have an equality of local Tate factors

(1= Xo(@)g ™) " = (1 = 0y(Frg)g ") "

1



In this thesis, we seek to demonstrate a generalization of these results to certain
representations of G = Sp,(F’), the rank two symplectic group. In particular, we
will be working with constituents of the unramified principal series. While we will
eventually discuss the local Langlands correspondence in some greater generality,
we ultimately seek to prove a particular case of that very general conjecture. In
particular, for 7 a constituent of the unramified principal series of Spy(F'), we will
define an L-factor L(s, 7, 1) as the result of applying a modified doubling integral
(see Chapter 4, [22] and [8]) on a particular set of “good test vectors” (see Tables
B.7-B.8). We then compare this local factor to one arising from a representation of
the Weil-Deligne group W} (see Chapter 2). In particular, one might state the first

goal of this thesis as follows.

Theorem 1.1.1. Let m be a constituent of the unramified principal series of G =

Spo(F') (see Table B.1), then there exists an admissible representation
p'=(p,N): Wp — “G" =505(C),

determined via some criteria of Lusztig (see Chapter 2 and [25]), satisfying the

following property: Let ry : SO5(F) — GL5(C) be the obvious inclusion, so that
ryop : Wp — GL5(C)
15 a Weil-Deligne representation, then
L(s,m ry) = L(s,rg0p).

Note that Tables B.5 and B.6, give the description of the Weil-Deligne repre-

sentations that we associate to the various m by Lusztig’s criteria. While we will



explain this in greater detail in Section 2.3.3, it can be summarized as following

(with 7 and p’ as in the theorem above):

1. Let 7" be the spherical representation parameterized by p. Then 7 and 7’ are

constituents of the same induced representation.

2. If 7 is spherical, then N = 0. Otherwise, Lusztig’s method determines the
N according to whether 7 is a tempered representation or induced from a

tempered representation on the Levi factor of a proper parabolic subgroup.

Further, we will occasionally refer to the set of representations mapping to a fixed
¢ = (p,N) under Lusztig’s criteria as the L-packet defined by p'; the equality of
L-factors from our theorem provides some evidence to support this definition of an
L-packet.

As we will eventually show, computing the factor L(s,rso0p’) can be done in a
completely general way and offers us a set of L-values that conjecturally match the
L-factors we compute for constituents of the unramified principal series of G. While
computing L-factors on the “Galois” side of the correspondence can be done in a
very general setting, there is no known general method for defining L(s, 7, ry) for ar-
bitrary matrix groups. There are various techniques that require specific conditions.
Some require conditions on the actual matrix group G, others place conditions on
the representation .

For the purpose of this thesis, we employ a variant of the doubling integral
of Piatetski-Shapiro and Rallis to define the various the L-factor for an admissible

representation of G. This method uses a global Rankin-Selberg integral that can



be unwound as a product of local integrals. It puts no extra conditions on the
representation 7, but it requires a group such as Sp,(F') that is defined as preserving
an inner product.

Ultimately, one goal of this thesis is to realize the Weil-Deligne L-factors by
computing a slight variant of the doubling integral on some “good test vectors”. At
the various nonarchimedean local places F', Piatetski-Shapiro and Rallis generate
an ideal of the ring C[g~®], where ¢ is the cardinality of the residue field of F,
by computing the doubling integral over several large families of functions. The
normalized generator of this ideal defines the L-factor for the representation. Our
method seeks to find sufficient “good test vectors” that produce an L-factor in
the same fractional ideal that matches L-factor predicted by the local Langlands
correspondence, where we use Lusztig’s method for assigning L-homomorphisms to
unramified principal series representations of Sp,y(F).

The other results of this thesis concern genuine principal series representations
of Sp,(F), the metaplectic cover of Sp,(F). With only the most minor adjustments,
we will produce local L-factors for certain constituents of the genuine principal series
of the metaplectic group. Although there is no local Langlands correspondence for
metaplectic group, we would still like to make sense of the L-factors. In this case,
we should be able to relate them to L-factors of certain representations of SO5(F).

Before we continue, it is worth noting which covering group Sp, (F) we are

dealing with. Much of the literature is devoted to the 2-fold cover of Sp,,(F') (which

—(2
we will denote Spn( )(F )); however, our cover will be infinite. In fact, our covering



group satisfies the following exact sequence
1 — C" = Sp,(F) & Sp,(F) — 1

and realized as
Spo(F) = Spy(F) x C!
with
91, 21]1 - [92, 22] = [9192, cL(91, 92) 21221

Note that the cocycle we consider is not the typical Rao cocycle [31] that is used
to define the double cover. Instead we will employ the Leray cocycle (also defined
in [31]) which is valued in the eighth roots of unity. The advantage is that larger
cover offers more splitting of subgroups of Sp,, (F') than the double cover. The Leray
cocycle also allows us to define parabolic induction on ST)n(F ) in a manner more
analogous to parabolic induction on Sp,(F'). For parabolic subgroups P = M N

contained in the Siegel parabolic, we show that there exists a splitting
P—Sp,(F)  pr [p s

In particular, this splitting applies to the Borel subgroup Py C P. So for a repre-
sentation (o, V') of the Levi factor M, we can inflate to P and then extend this to

a homomorphism ¢’ on P = 77! P via

' ([p, z]L)v = zo(p)v.

We can then induce this representation up to gf);(F ). Note that this is not quite the

same process used to define induced representations for the double cover of Sp,(F)



defined by the Rao cocycle. However, we will show that our construction relates
induced representations on the double cover in a natural way.

Let 7 be a constituent of the genuine unramified principal series of QE(F ).
As in the case of Spy(F), we will define an L-factor L(s,7,rs) as the result of
our doubling integral applied to certain “good test vectors.” However, the local
Langlands conjecture does not apply to covering groups like QE(F ). Instead, we
will show demonstrate a bijection between constituents 7 of the genuine unramified
principal series of /SBQ(F ) and constituents 7 of the unramified principal series of the
split group SO5(F'). Under this bijection, the doubling L-factor L(s, T, rs) matches
the Weil-Deligne L-factor L(s,ry 0 p') attached to the Weil-Deligne data p’ to which
7 maps by Lusztig’s criteria. In particular, we would like to show the following

result.

Theorem 1.1.2. There exists a bijection between constituents @ of Ind%((Xl ®x2)")
with

vi: F* —C*
unramified quasi-characters (see Table B.9) and constituents 7 of
IndiéOS(F) (X1 ® x2)
(see Table B.10; note Py is a fized Borel subgroup) with the following property. For
T p = (p,N)
given by Lusztig’s criteria [25], then

L(s,7,rs) = L(s, g 0p)



(see Tables B.15-B.18).

As a future project, one might ask if this bijection could also be realized using
the theta correspondence on the dual reductive pair (gio/g(F ), SO5(F)).

Now having described the main results, we will outline the content of the
thesis. Also note that while much of this thesis can be applied to extensions of @,
for arbitrary p, there are also large portions that require p # 2. Consequently, we
will just enforce the condition that p # 2 throughout the thesis. This is especially
necessary in much of Chapters 4 and 5, which contain the essential results building
toward our main theorems.

It is also worth mentioning that the doubling method introduced in [22] does
include the p = 2 case. In fact, computing the p = 2 largely motivated this mod-
ified doubling integral of Kudla, Rapoport and Yang. However, the p = 2 case is
more complicated than the p # 2 in [22]. Thus, one could reasonably assume that
extending the results of this thesis to p = 2 is possible, but likely more complicated

than the p # 2 case.

1.2 An Outline of the Thesis

The next chapter will discuss some representation theory of general p-adic
groups as well as some representation theory specific to Sp,(F). While we won'’t
mention metaplectic covers in this chapter, much of the machinery we introduce will
be applicable to metaplectic groups with little or no modification. In particular, we

will describe parabolic induction, Jacquet modules, Frobenius reciprocity as well as



results particular to unitarizable representations. This material will be crucial later
when we develop various methods for ascertaining the explicit values of Iwahori-
fixed vectors in principal series representations. The next section of this chapter
deals with reducibility points of principal series representations of Spy(F'). Much
of this material can also be found in [37] and [33]. In particular, Sally and Tadi¢
determine the reducibility points of both the principal series of GSp,(F') and Spy(F).
The final section of the next chapter will explain the local Langlands conjecture as
it applies to split p-adic groups. In particular, we will discuss Lusztig’s criteria
for assigning principal series representations to L-packets and how to compute the
L-factor associated to each packet.

The subsequent chapter will discuss the metaplectic cover of Sp,,(F). We will
define these covering groups and discuss genuine representations for these groups. In
particular, we will discuss the relationship of our definition for parabolic induction
to the one used for the double cover defined by the Rao cocycle. This is impor-
tant because of a conjectured correspondence between representations of SB;(Q)(F)
and SOg,41(F). We would like to use Lusztig’s criteria for finding conjectural L-
values for representations applied to SO5(F) and then prove that such L-factors
are identical those on defined by doubling on the corresponding representations of
Spy(F).

Another section of this chapter explains the Weil representation (wy,S(V™))
on §1\);(F ). Aside from being an important tool for producing liftings between repre-
sentations of various groups, we also employ this representation in our construction

of the doubling integral. In particular, this representation allows us to recast the



question of choosing functions in a certain induced representation to that of selecting
appropriate smooth functions on a quadratic vector space.

Chapter 4 explains the method used to compute local L-factors on Sp,y(F)
and its metaplectic cover. We explain the classical doubling method of Piatetski-
Shapiro and Rallis from [8] and then give a detailed explanation of the variant of
Kudla, Rapoport and Yang [22]. Ultimately, our method integrates a function from
our constituent on Spy(F) against a test vector from an induced representation
on Sp,(F). Notice that this construction computes L-factors for representations on
Sp,(F') by using the symplectic group of double rank; hence the name of the method.
The variant in [22] actually defines an operator on the given representation. So for
7 an irreducible constituent of the unramified principal series of Sp,(F’), we can

compute L(s, 7, ry), as defined in [8], via the following steps.

1. Find a parahoric subgroup Jg with

dime(77¢) = 1.

2. Choose a family of function {®,}gre(s)>>0 on Sp,(F) that has a related invari-

ance property.
3. For the correct choice of {®,}, the doubling integral

Z(s,®, f) € wlc.

4. In particular, we should have

L(S, T, I’St)

Z(s,®, f) = 7a()

f



where dg(s)™! € Clg].

As was mentioned above, we will employ a interpolation method to transfer the
problem of selecting a ®, to that of selecting a Schwartz function on a quadratic
vector space.

Because our computation relies on the explicit values for various Iwahori-fixed
vectors, we devote one section of this chapter to several methods for ascertaining
such values. One method relies on the vanishing of standard intertwining operators
on the full induced representations. In particular, we will derive relations that are
satisfied by the Iwahori invariants of a given representation. Ideally, we should find
enough relations to determine the explicit values on the set of Iwahori invariants.
This technique works very well for regular inducing data. For irregular data, we
derive some techniques involving exactness of parabolic induction as well as inner
products on unitarizable subquotients in order to derive similar relations as above.
In both cases, we leverage explicit information regarding the Iwahori invariance of
the inducing data in order to determine information about the Iwahori invariance
of the constituents on the larger group.

The last section of this chapter deals with the topic of local densities of
quadratic forms. In particular, we explore the work of Tonghai Yang [42] that
computes local densities of arbitrary quadratic forms in low rank cases. In order
to compute the local doubling integral, we spend a great deal of effort reducing the
doubling integral to a linear combination of Whittaker functions. These Whittaker

functions are closely related to local densities of quadratic forms. Unfortunately, the

10



results of Yang are not quite general enough to apply to these Whittaker functions,
so we also spend some effort reducing arbitrary Whittaker functions to terms that
can be computed using Yang [42].

The final chapter computes some local L-factors using the doubling integral
and the other results that we develop throughout the thesis. This section is very
detailed and explicitly escorts the reader through the entire calculation for several
representations. In particular, we compute the local L-factor in the spherical case
on both the linear and metaplectic group. For these representations, the calcula-
tions are still sufficiently simple to be computed by hand. We also demonstrate a
calculation for one ramified representation of the linear group. The ramified cases
are much more computationally intensive and require some help from Mathematica.

This thesis also contains two appendices. The first is simply a compilation
of material needed to compute the various Weil indexes that are ubiquitous in the
study of Weil representations. The second appendix is a table that summarizes all
the results outlined above. There are also several tables that contain data about
the unramified principal series of Sp,(F') as well as similar data for the relevant
representations on Sp,(F) and SOs(F).

So in order to establish our theorem, we have the following steps:

For Sp,(F), we must:
1. Determine all admissible representations 7 having an Iwahori-fixed vector.
2. Associate such representations to L-packets p' = (p, N).

3. Compare the doubling L-factor L(s,,ry) with the Galois L-factor

11



L(S, rg O pl)
For §£);(F), we must:
1. Determine all admissible representations 7 having an Iwahori-fixed vector.

2. Associate such a representation to an admissible 7 of SOs5(F') having an

Iwahori-fixed vector.
3. Associate the various 7 to L-packets p’ = (p, N).

4. Compare the doubling L-factor L(s, 7, ry) with the Galois L-factor

L(S, rg O pl)

12



Notation

The following notation holds throughout the thesis:

4 3\
1 ¢
1
Ny =< ny(c) = lceF
1
—c 1
\ Vs
I b
N2 = 7’Lg<b) = | b € Symz(F)
I
a
A=<ma) = | a € GLy(F)
tg—1
and
a
a2
diag(alya27"'aa’n) =

7

Finally bold letters denote the image under the splitting map
P, < Sp,(F).

For instance, m(a) = [m(a), 1]L.
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Let k be any field with char(k) # 2. For our purposes, the standard parabolic
subgroups of G = Spy(k) will be subgroups P O Fj. Moreover, Py is a Borel

subgroup with

Py = MyNy
where

My ~ (k*)?
is the diagonal torus and

Ny, Ny C Ny.

The standard parabolic subgroups of interest are:
e (Siegel Parabolic) P, = M,N, with
M, ~ GLy(k) and N, ~ Sym, (k).

e (Long Root Parabolic) P3 = MzNg with

Mg~ k™ x Sp,(k) and My~ H(k?)

where H(k?) is the Heisenberg group associated to the quadratic space

(K, Q(z,y) = 2zy).

Let F' and O be as in the introduction. Further, set K = Sp,(O), then a
standard parahoric subgroup will be either the subgroup K or the full universe

image of one of the standard parabolic subgroups under the map
K — GL(O/P).
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Chapter 2
General Representation/Representation Theory of Spy(F)

2.1 Representation Theory of p-adic Groups

In this first chapter, we will explore some general representation theory that
applies to all manner of p-adic topological group. We will then discuss results
that are more applicable to arbitrary symplectic groups Sp,,(F') and finally we will
specialize all our results to the group Spy(F'). While some of the results discussed

in this section are well known, we will apply them toward the following goals.

1. Determine the reducibility points of the unramified principal series of Sp,(F).

The results are contained in Table B.1.

2. Begin building techniques for computing the explicit values of Iwahori-fixed
vectors and the dimension of the Iwahori invariants of various representa-
tions. The three main constructs applied here are the standard intertwining
operators, inner products for unitarizable representations and the exactness
of parabolic induction. These techniques should apply to fairly general p-adic

groups.

3. Describe the local Langlands conjecture for split p-adic groups. Applied to
Sp,(F') this allows us to produce conjecture L-factors that we will later com-

pute on representations of Spy(F).

15



Finally, we begin with some very basic representation theory for general p-adic

groups.

2.1.1 Induction, Jacquet functors and Frobenius reciprocity

Let us recall some of the basic facts from the representation theory of p-
adic groups and give some context as to how they will be used in this thesis. For
instance, let G = G(F') be the p-adic points of an algebraic group and P C G be
any parabolic subgroup with Levi decomposition M N. Then for any admissible

representation (o, W) of the group M, we define the induced representation

f(mng) = dp(m)2o(m)f(g) Vm € M,n € N,g € G
nd%(o) =4 f:9—W| ;
JK compact open, f(gk) = f(9)Vke K,g € G
where dp : P — C* is the modulus character of P. G acts on this space via right
translation; such a construction is called (normalized) smooth induction. So for the
purpose of this thesis, all induction is assumed to be normalized. This has the benefit

that inducing from unitary data results in a unitary representation. Furthermore,

for a representation (m, V') of the group G, we consider the set
V(N) =spanc{r(n)v —v |v € V,ne N}

and notice the quotient Viy = V/V(NN) is a representation of the group M via the
action

m - (v+ V(N)) = p(m) " 2a(m)v + V(N).

We call 7§ the (normalized) Jacquet functor with respect to P and r$(7) the (nor-
malized) Jacquet modules for m with respect to P. It is known that both con-
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structions respect admissibility. Thus, let S8(G) is the Grothendieck group of the
category of smooth finite-length representations of G. This is essentially the free
abelian group of the set of finite-length representations of G. We notice that the
functors for parabolic induction Ind% and the Jacquet functor r§ lift to obvious
maps on the Grothendieck groups R(G) and R(M). Further, SR(G) has a natural
partial ordering m; < o if m(7,m) < m(7,m) for all smooth irreducible 7, where
m(7,m) is the multiplicity of 7 in 7. Additionally, parabolic induction and the

Jacquet functor satisfy the following adjointness property.

Theorem 2.1.1 (Frobenius Reciprocity). Let 7 € R(G) and o € R(M), then
we have

Homg (7, Ind% (o)) = Homy (r$(7), o).

Proof. See [2]. O

While this appears to be a categorical statement regarding two adjoint func-
tors, we will use it in some explicit computations. Moreover, let G = Sp,(F') and
P = Py, a Borel subgroup with My = (F*)?. The irreducible representations of Mj

are parameterized by pairs of quasicharacters y; : F* — C*. In fact, we have

ay
X1 ® x2 : My — C* X1 ® Xaf ) = x1(a1)xz2(az).
ag

Furthermore, we define an action of the Weyl group Wg = Wy, on these pairs by

ay a1 .
X1 ® X2 0 w( ) = x1 ® xa(w w ).
a2 as

17



In the case of Spy(F'), We =< w,, ws > where w, (resp. wg) corresponds to the

short (resp. long) root in the Dynkin diagram for Sp,(F'). On Mj we have that

X1®X20W, = X2® X1

XY1®x20wWs = X1®X5'

It is elementary to show that

Tg(lndIGD@ (Xl ® XQ)) = Z X1® X2 0W € SR(M@)

weWa

So for any irreducible constituent 7 of Ind%j (x1 ® x2), Frobenius Reciprocity deter-
mines for which Indg@(xl ® x2 o w) our data m appears as a submodule. In fact, if

X1 ® X2 is regular (i.e., x1 ® x2 0w # x1 ® X2 for any w € W), then

dim¢(Homg [, Indgm(xl ®x20w)]) = dimc(Homy,, [rgw (1), x1 ® X2 0 wl])
Lif x1 ®@ xaow < 7“1%,(7?)
0if y1 ® xoow £ Tgw(ﬂ).
Moreover, since m was taken to be irreducible, we know that any non-zero element
of Hom|r, Indgm(xl ® x2 o w)] is an embedding. In fact, Frobenius Reciprocity tells
us that

Homg(Ind% (X1 ® x2), IndJGD@(Xl ® X2 0w))

is one dimensional for regular y; ® yo. In particular, we will show that this one
dimensional space is spanned by a standard intertwining integral over a certain
subgroup of the unipotent radical Ny. We will define this useful operator in a later

section.
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2.1.2  Some results regarding contragradient and unitarizability

Most of the machinery that we have discussed works in a great deal of gener-
ality, but is particularly effective when our inducing data is regular. We now discuss
some additional tools that are quite useful in several of the cases that the inducing
data is irregular. For Sp,(F'), most reducible representations coming from irregular
data will have certain unitarizable constituents. We begin with a brief sketch of
results pertaining to unitarizability.

Let (m, V') be an admissible representation of G = G(F') and let (7%, V*) be the
(smooth) contragradient. Thus these are the smooth vectors in the space of linear
functionals on V. One can show that for (7, V") admissible, that (7*,V*) is admis-

sible as well [2], [6]. Moreover, we have the following properties of contragradients
[6].
1. The functor 7 +— 7* is a exact and contravariant.
2. ()" =m.
3. For P C G a parabolic subgroup with P = MN and (o,V,) an admissible
representation of M, we have

Ind$(0*) = Ind$(0)*.

The third property actually follows from the following result in [4] and [38].

Lemma 2.1.1. Let G be a p-adic group and P = M N a parabolic subgroup. Further,

let C*(P\G;dp) be the set of smooth, complex valued functions on G such that

f(pg) =dp(p)f(g)
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where 6p is the modulus character of P. Then there exists a G-invariant linear
functional on C*(P\G;dp) given by
fo / F(k)dk.
K

So we see that for f € Ind% (o) and f* € Ind$(0*) that the function

Wy p(9) =< fl9), f*(g) >

belongs to C*°(P\G;dp) and

<< [ fF>>= / < f(k), f(k) > dk
K

is non-degenerate pairing on Ind%(o) x Ind%(6*). Now that we have considered some
general theory regarding contragradients, let us examine the unitarizability of two
kinds of representation that are useful in this thesis.

First, let us suppose that P = M N is a parabolic subgroup of G and that
(0,V,) is a unitary representation of M with non-degenerate inner product < -, - >,.
This inner product gives us a natural isomorphism between (o, V,) and (¢*, V) in

the usual way. Moreover, for f, f’ € Ind%(o)

U (9) =< f(9), ['(9) >o€ C(P\G;0p).
Therefore,
<< f,f >>:/ < f(k), f'(k) >, dk
K

is a non-degenerate Hermitian form on Ind%(o). In particular, if P = B is a Borel

for G and {x;}!, are unitary characters, then

Ind% (X1, X2, - - - s Xn)
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is unitary with inner product

<< f, f >>= /Kf(k)mdk.

Such a representation is completely reducible. For instance, let £ : F* — C! be the
unique unramified character of order 2. For G = Sp,(F) ~ SLy(F') and B the upper
triangular Borel,
Ind§(¢) =T} @ T¢

with Tg the spherical constituent. So we see that for unitary inducing data (o, V),
the resulting induced representation is also unitary and we have an explicit formula
for an inner product on this space that is derived from the inducing data.

The second type of representation of interest in this section are the square-

integrable representations. Let (7, V') be a representation and (7%, V*) its contra-

gradient. A matrix coefficient is a function of the form
Con(g) =< m(g)v,v* >

for v € V and v* € V*. An irreducible representation (m, V') is called square-

integrable if the following two criteria hold:

® 7|z acts via a unitary character, where Z(G) is the center of G (i.e., has a

unitary central character).

e All the matrix coefficients belong to L?*(Z\G) (all matrix coefficients are

square-integrable mod center).

An important representation of this type is the Steinberg representation of a
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group G. For the groups we are interested in, this representation is the unique
square-integrable subquotient of Indg(éé), where B is a Borel subgroup of G.

In general, irreducible square-integrable representations are unitarizable. In
particular, they admit the following G-invariant inner product. Let (m, V') be an
irreducible square-integrable representation and (7*, V*) its contragredient. Further,
fix a v§ € V*, then we get the following non-degenerate Hermitian inner product on
v

<< U,V >>i= / < m(g)u, vy > < mw(g)v, v >dg.
Z\G

The square-integrability ensures that this definition makes sense.

While the examples above do not exhaust the unitarizable representations
of G, they do include the cases of unitarizable representations that are needed
for us to compute the explicit values of our Iwahori invariants for representations
induced from irregular data. In nearly all these cases, our representations will have
unitarizable inducing data. Thus the inducing data will have a non-degenerate inner

product that we can extend to the induced representation as described above.

2.1.3 Iwahori factorization and the dimension of Iwahori invariants

As was suggested in the introduction, we also require a method of computing
the dimesion of vectors fixed by various standard parahoric subgroups. Finding an
upper bound for these dimensions is trivial. Let G = G(F) be an arbitrary p-adic

group as above, P C G a parabolic subgroup with Levi decomposition P = M N
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and J C G a parahoric subgroup. Then for a representation (o, V') on M,
dime(Ind$ (o)) < #(P\G/J).

So for 7 C Ind%(0), then dimg(n?) < #(P\G/J). Now we will study the various
Jacquet modules will determine a lower bound on these dimensions. In the case of
Sp,(F'), we will show that this suffices to determine the exact dimensions. For this
section, we follow the notes of Casselman [5].

Let (m,V') be a representation of a p-adic group G. We begin by defining an
Iwahori factorization for a compact open subgroup of G with respect to a parabolic
subgroup P = M N. While Casselman has a more precise definition, for our purposes
a compact open subgroup K, of G has an Iwahori factorization with respect to

the parabolic subgroup P = M N if
Ko = (Ko N N)(KoNM)(KoNN)

along with a condition pertaining to conjugating Ky N N and Ky N N by a subset
of the center of M (see [5]). If K has an Iwahori factorization with respect to the

parabolic P, then Casselman shows that

Ko rg(w)(KomM)

is surjective under the natural projection of V' onto its Jacquet module Vy. For
G = Spy(F'), one can easily verify that each of our standard parahoric subgroups
I. C K (x € {0, a, $}) has an Iwahori factorization with respect to the corresponding

parabolic subgroup P, = M, N,. Consequently, we find that

IndJGD@(Xl ® x2)" — Tg* (Indg@ (X1 ® X2))M*(O)-
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is surjective. So Indgw(xl ® x2) has at least as many [.-fixed vectors as there are
spherical representation in r (Ind% (X1 ®x2)). Moreover, we have computed all the
applicable Jacquet modules and find that there are #(Py\G/I,) such vectors. Thus
our map

Indg@(m ® x2)™" — rg*(lnd% (X1 ® x2))" @

is a vector space isomorphism. Therefore for any constituent = of the unramified

principal series of Sp,(F'),
dime (7'*) = dime(r§ (7)M-().

Thus knowing all the Jacquet modules with respect to the standard parabolic sub-
groups is sufficient for determining the dimensions of parahoric invariants. It is
interesting to note that for Sp,(F’), every constituent = of the unramified principal

series has a parahoric I, with dime(7!*) = 1.

2.2 Reducibility of Principal Series for Sp,y(F)

In the previous sections, we developed some of the basic tools in the study
of p-adic groups. However, we have yet to discuss the reducibility points of the
their induced representations. Consequently, this section will be devoted to the
reducibility points for principal series representations of p-adic groups. First, we will
discuss some general results that offer a partial solution to finding such reducibility
points [37]. Moreover, the reducibility points for the unramified principal series of
Spy(F') are known. So we will summarize the work of Paul Sally, Jr. and Marko
Tadi¢ [33].
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2.2.1 Some general reducibility results of Tadi¢

We now aim to describe some general reducibility and irreducibility criteria
determined by Marko Tadi¢ [37]. Also note that we will follow Tadié’s notation in
this section as well. In particular, let G = G(F') be the p-adic points of an algebraic
group. As in the previous sections, R(G) will denote the Grothendieck group of G.
Tadi¢ has the following reducibility criteria for representations of p-adic groups G :

Suppose Py = MyNy and P = M N are standard parabolic subgroups of G.
Further, suppose ¢ is a smooth representation of M, and 7, Il smooth finite-length

representations of G. Finally, suppose that
1. Indf (o) <I,7 <IL
2. rg(Indf (o)) +r@(m) # r(1).
3. rg(lndgo(a)) £ rG(m).

Then, Indg0 (o) is reducible.

As a concrete application of this criteria, let G = Sp,(F') and let us consider
the representations Indga(V%StGLz) and IndIGgﬁ(l/2 ® Stsp, ). Here v denotes the qua-
sicharacter v(a) = |a| for a € F*. Finally, let II = Indg@ (1*®@v). First, by exactness

of induction, we see that
Ind, (v ® Stsp,) € Ind%, (12 @ Ind? " (v)) = ndf, (V* @ v)

and

Ind$, (v2Star,) € Ind§ (viIndg™" (V2 @ v™2)) = nd§ (* @ v).
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Thus criterion (1) holds. Next we see that

r% (Indg@(u2 @v) = rev+rrevi+rvilierr+rier?

—i—V*Q®V*1+1/*2®V—|—V®u*2+y®y2
rg@ (Indga(V%StGLQ)) = Veov+rerv ! +rierr+rvior?

rgw(lndgﬁ(yz ® Stgp,)) = VFovtrerr+reariirio

So verifying criteria (2) and (3) are routine. Further notice that for our choices
above, either representation induced from the maximal parabolic subgroups P, or
Pg can function as the 7 or Indgo(a) in Tadi¢’s criteria. Thus we conclude that both
representations are reducible. In particular, Stg,, is a submodule for both and their
quotients are two inequivalent Langlands quotients.

Tadi¢ also has a methodology for ascertaining the irreducibility of various
representations through the use of Jacquet modules. In particular, Tadi¢ shows
that given o, an irreducible representation of My, one can derive criteria regarding
the various Jacquet modules for Indgo(a). Let Indg0 (0) = m + my with m; > 0 in

R(G). For any standard parabolic subgroup P = M N, let

T, p =rp(m) € R(M),
then the following must hold (see [37]):
1. T, p > 0and Ty p # 0 if and only if 75 p # 0.

2.Tvp+Top= T]G;(Indgo (0)).

3. T%%Ml(Ti,Pl) =T, p, for P, D Ps.
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So the representation Indg0 (o) is irreducible if there is no parabolic P such that
we write Tg(lndgo(a)) as a sum Sy p + Sg p with the S; p conforming to the above
criteria.

For a concrete example of this, let us consider the representation Indgﬂ (x ®
Stsp,) where x & {&, v, v*? | €2 = 1}. Here v and ¢ are quasicharacters on F'*
with

v(a)=la| and &(a) = |a|we.

The Jacquet modules with respect to the standard parabolic subgroups are listed
below. In particular, the center column contains the Jacquet module for our example
with respect to the Borel subgroup Fj. The lines in the diagram match a represen-
tation on a larger Levi component 7 with 7% P (7). We choose to draw these lines
to help illustrate how criterion (3) of Tadié¢’s irreducibility criteria creates some rigid

requirements that will actually force our representation to be irreducible.

mdS" ) (y @ v) — X Qv — X ® Stsp,
\
v X — v ® Ind3" 7 (y)
/
IndgLQ(F) (x'ov) — v®x!
X ltor ——— X' ® Sty

So let us suppose that Indgﬂ (x ® Stgp,) = m + m. We will show that either
m or my must be the whole representation and so our original representation is

irreducible. Now suppose that 7’%(%1) > 0 in R(G). Without loss of generality, let
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7’% (m1) > x ® v. Since r}% (m1) > x ® v, then
g, (m) = Ind; " (x @ w).
However, criterion (3) tells us that
(M) 2 X v+ y.
Similarly, we see that
Tgﬁ(m) > X ® Stgp, +V @ Ind%pl(F)(X) and r% (r)>x@v+rvx+rex b

and

rS (m) > dS=F (v @ v) + mdS=F (@ ).

Thus we know that r§ (m) > rga(lndgﬁ(x ® Stsp,)). So m is our entire representa-
tion. Notice that criterion (3) forces m; to contain all the available submodules of

rg(lndgﬂ (x ® Stgp,)). This ensures that
m = Indg, (x ® Stsy,)

is irreducible.

It is also worth noting that if y € {v*2,¢ | & = 1}, Indgﬁ(x ® Stgp,) is
reducible (thus we wouldn’t expect Tadié¢’s irreducibility criteria to hold). When
x = v*! the representation is still irreducible, however we need more sophisticated
machinery to establish this. Notice that in such a case, the data is irregular. As
with material in previous sections, Tadi¢’s various criteria are most useful when the
inducing data is regular. To resolve the remainder of the cases, Sally and Tadi¢
derive the reducibility points for the unramified principal series of GSp,(F') and
deduce the reducibility points for Sp,(F) from these.
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2.2.2  Some results of Sally and Tadi¢

Next we mention some of results of Sally and Tadi¢ in [33]. In this paper, Sally
and Tadi¢ determine the reducibility points for representations of the principal series
of GSp,(F') and Sp,(F'). Much of the paper proves reducibility results for GSpy(F)
and then leverages them to derive similar results for Sp,(F'). In particular, they use

the following defintions and results for GSp,,(¥") and Sp,,(F).

Definition 2.2.1. Let (F*)~ denote the set of quasi-characters of F*. For m €

R(GSp,,(F)) define
Xsp, (1) = {x € (F)” [ xm = minR(GSp, (F))}-

Here y7 represents the twist of © by a quasicharacter y composed with the similitude

character GSp,,(F') — F*. Sally and Tadié¢ then state that for = € :(GSp,,(F)),

dimc (Endsy, (7 (7[sp, (7)) = #Xsp, (7). (2.1)

To see an example of the utility of these statements, let us consider the case
when n = 1. Thus GSp, (F') ~ GL2(F') and Spy(F) ~ SLy(F). Let B (resp. B’) be

the upper triangular Borel subgroup of GLy(F) (resp. SLy(F)). Then we have that
Indy; " (1 @ xa)lsta(r) = Ind?" (xaxz ™)

as representations of SLy(F'). One direction of this isomorphism is obvious. In

particular, we have

[ — flstar)-
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SLa( F)(

Furthermore, for any f’ € Indp; X1X5 "), we define

1

£(9) = x2(det(g))|det(g)| 2 f'( 9).
det(g)™

One can verify that [ € IndGL2 F)(

X1 ® X2) and its restriction to SLy(F') is obviously
f’. Finally, we note that both maps are SLy(F') intertwining maps and are inverse
bijections of each other.

So now, let us consider the representation m = IndGL2 ({ ® lpx), where

€ =1and ¢ # 1. Tt is known that this representation is irreducible. Moreover, by

the previous paragraph, we see that
Ind5" (€ ® Lpe)lstacm = Indi* 7 (©).

Notice that

SO

dimC(EndSLQ(F)(ﬂSLQ)) = 2.

This fact, along with some elementary arguments, brings us to the conclusion

IndSBL,Q(F) (&) is completely reducible (see [38]). In fact,
Indy 2" () = T} @ 77
where Tg is spherical.
Using similar results, as well as the previously mentioned reducibility criteria,
Sally and Tadi¢ give a complete list of reducibility points for the principal series of
GSp,(F') and Spy(F'). The results for the unramified principal series of Spy(F) is
included in Tables B.1-B.4 in Appendix B.
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2.3 Representations of the Weil-Deligne Group

The last section of this chapter seeks to explain a conjectured correspondence
between representations on p-adic algebraic groups and related Galois representa-
tions. For G = F'*, such results are a well-understood part of local class field theory.
One goal of the Langlands Program is to generalize this to the non-abelian setting.
There are several formulations that depend on various properties of the p-adic group
in question. In our case, we are working with Sp,(F"), a split p-adic group. Thus we
shall use the formulation of the local Langlands correspondence that is commensu-
rate with the split p-adic case. In particular, a more general case involves an action

of Gal(F/F) that is trivial for split groups.

2.3.1 Basic definitions
Let us begin with some of the basic definitions. Consider the exact sequence,
1 — Ir — Gal(F/F) — Gal(F,/F,) — 1,

where F, is identified with O/P and Z C Gal(F,/F,) ~ Z. We let Wp be the inverse
image of Z in Gal(F'/F) and we let Fr, € Wp be an element that maps to 1 € Z.
We call Wr the Weil group of F' and Fr, is referred to as a Frobenius element
of We.

There is a more general group W}, called the Weil-Deligne group associated
to F'; however for our purposes, we don’t need much of the extra structure. Futher
details can be found in the Corvallis proceedings [39] and [3]. For our applications,
one could largely treat W1 as the aforementioned We.
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2.3.2 Generalizing local class field theory
According to local class field theory, there is a reciprocity isomorphism
FX Wb with w < Fr,.
Quasicharacters y, of F* correspond to homomorphisms
0q: W& — C*

by composition with the reciprocity map. Moreover, there is an equality of local
factors
(1= xo(@)g™*) ™" = (1= 0q(Frg)g™") .
It is these results that one would hope to generalize to arbitrary p-adic groups.
In particular, we will now describe the local Langlands correspondence for split p-
adic groups.
For such a group G, a complex Weil-Deligne representation of Wy is a pair

o = (p, N) where p is a continuous homomorphism
p:Wp — GL(V)

(here V' is a C-vector space) along with a nilpotent endomorphism N € End(V)
such that

p(Fr,)Np(Fr,) ™' = |=|N. (2.2)
Such a representation (p, N) is called admissible if p is semi-simple as a represen-
tation on Wy.. Two such representations (p1, V1) and (p2, Na) are called equivalent

if there exists a go € GL(V) with

Inn(go) o p1 = pa and Ny = goNigy*
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where Inn(go)(z) = gozgy ' is the inner automorphism defined by go.
As with representations of GG, Weil-Deligne representations have L-factors at-

tached to them. We can then define the following functions
L(s,p") = L(s,p,N) := det(1 — cfsp(Frq)h/ﬁF)*1

where Viy = ker(N) and VZF are the p(Zr) invariant vectors in V.
Furthermore, for a split p-adic group G, there exists a complex group “GY,
called the Langlands dual group, associated to G. In the case of G = Spy(F),

L@GY = SO5(C). Let us suppose we have a pair p' = (p, N) as above such that
p:Wh — EG°

and N € Lie(*GY) is a nilpotent operator satisfying Equation 2.2. Then any repre-
sentation

r: G — GL(V),

with V' a C vector space, give us a Weil-Deligne representation
rop : Wy — GL(V).
For instance, Spy(F') has the map
rs: : SO5(C) — GL;5(C)
as the obvious inclusion. So given any pair p’ = (p, N) with
(P, N) : Wy — *G°

we can compose this map with ry to yield a Weil-Deligne representation ry o p'.

33



Let Ap(G) denote the isomorphism classes of admissible representations of
G and let Gp(G) denote the equivalence classes of admissible representations of
Wi} — LG°. The Local Langlands Conjecture seeks to partition the set Ap(G) via
elements of Gp(G). In particular, let p' = (p, N) € Gr(G), then it is conjectured

that there exists I, C Ap(G) with several properties that include the following:

o I, NI, =0, if p} # py. Such a IT,, is called an L-packet.

o Ar(G) = Uyegriey

e Vr €Il and map

r: G — GL(V),
(V' a C-vector space). We have,
L(s,m,r) = L(s,rop),
in the cases where the local factor L(s,,r) is defined.

It is worth noting that this correspondence is known in some cases. Most
notably, Harris and Taylor proved it for GL,,(F') [10]. Also note that for G = Sp,(F),

we are interested in (p, V) where p has the form
p: Wh — LG® = S05(C)

and r = rg, where ry maps SO5(C) into GL5(C) as an inclusion.

2.3.3 Lusztig’s criteria for choosing p'

While this correspondence is not known in general, Lusztig gives some criteria
for how one might choose a pair p' = (p, N) that parameterize constituents of the
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unramified principal series of various p-adic groups [25]. For such a 7, his criteria
can be described as follows:

For a split p-adic group G with Borel subgroup B and 7 a constituent of the
unramified principal series of GG, there exists a set of unramified quasi-characters
{xi} such that 7 is a constituent of Ind§(x1, X2, ..., X»n). Notice that the induced
representation has a spherical constituent. Thus p(Fr,) should be the Satake pa-
rameter of this spherical representation and p|z, = 1. This is clearly a semisimple
representation of Wi.

Since the Satake parameter is a equivalence class of semisimple matrices, we

desire to fix a particular representative for our calculations. Since the y; are un-

ramified, y; = | - |* for some s; € C. Furthermore, because the quasicharacter
| - |* is (2mi)/log q periodic as a function of s, we can restrict our s; to the strip

0 <Im(s) < (2m7)/log q. So define an ordering on this strip as follows:

Re(z1) > Re(z2) or
21 > 29 if
Re(z1) = Re(z2) and Im(z1) > Im(zy)
One may thing of this as a kind of dictionary ordering. So by convention, we will
our representative of the Satake parameter with s; > s; for ¢ < j. For example, in
the case of Sp,(F"), our unramified principal series representations are induced from

two characters x; = | - |** and x2 = | - [%2. Our convention dictates that s; > s, and

the representative of the Satake parameter we use in our computations will be

diag(|w|®, |w|*?, 1, || ~*, || ~*2).

While this convention is certainly not needed for one to obtain L-factors that match
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those in this thesis, it does allow the reader to more easily follow our intermediate
steps.

According to Lusztig [25], choosing N reduces to the case that 7 is tempered.
If 7 is not tempered, then it will be the Langland’s quotient of some representation
induced from the twist of a tempered representation of a proper parabolic subgroup’s
Levi factor. Once we have a method of selection for tempered representations, we
can choose the appropriate nilpotent operator on the Levi factor and then take the
corresponding N in Lie(*G°®). When 7 is tempered, we look at the set of all N
satisfying

p(Fr)Np(Fry) ™" = |=|N.

This set will have unique open orbit under the action of W;.. Choosing any element
from that orbit will function as our N. Using these criteria, we have found pairs
(p, N) corresponding to all representations of interest. The results are summarized

in Table B.5 in Appendix B. This table will also include the various local L-factors

L(s,rs 0 p') = det(1 = (o 0 p) (Frg)| 7).

. . .. T
In our case, the action of Zp is trivial, so Viy = V"

2.3.4 An example

Now that we have described the computations on the Galois side of correspon-
dence, let us compute an example relevant to this thesis. In particular, we will apply

our calculations and Lusztig’s criteria for the representation

Ind%}(u2 R V).
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This representation has four irreducible subquotients: Stq, L(v?, St ), L(vsStar,)
and 1. We know that Stg is tempered (in fact, square-integrable) and the Lang-
lands quotients are induced from twists of Steinberg representations on the Levi
factors of the maximal parabolic subgroups. By our criteria, p(Fr,) should corre-

spond the the Satake parameter of the spherical constituent. In particular,
p(Ir) =1so, and p(Fr,) = diag(|w|?, |=|', 1, |=| 2, |=| ") € “Sp, = SO5(C).

Now the set of nilpotent matrices in s05(C) = Lie(SO5(C)) that satisfy the desired

property when conjugated by p(Fr,) are given by

Nz,y)={l 000 0 —y | lzyeC}

000 —z 0

The open orbit of the space under the conjugation action of “GP is clearly the
subset of N(z,y) with x,y # 0. So we take the representative with x = y = 1 (call
this matrix N3); thus (p, N3) should be the data corresponding to the Steinberg
representation Stg. Furthermore, 1 is spherical, so it corresponds to the data (p, 0).
So finally, we come to the Langlands quotients. The representation L(V%StGL2) is
the unique irreducible quotient of Indga(u%StGLQ). It is induced from the twist of

a tempered representation of M,, the Levi factor for P,. As a representation of
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GLs(F), StgL, corresponds to the Weil-Deligne representation with

||z 0 1
p(Te) =1 p(Fr,) = N=

||~ 00
where “GL) = GLy(C). Moreover, SO5 has a standard parabolic subgroup with Levi
factor isomorphic to GLg, so we choose the subset of N(z, y) that exponentiates into
that Levi factor. Our N will be a representative of that subset. In particular, we
choose x = 1 and y = 0 (call this element N;) and this finally specifies the pair
(p, N1). The other Langlands quotient is done similarly, when we note that it is
a quotient of a representation induced from the parabolic F'* x Sp,(F’) and the

Langlands dual to this group is C* x SO3(C) which is the Levi factor into which

N(0,y) exponentiates.
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Chapter 3

Basic Theory Surrounding éf);(F )

We will also demonstrate that the method for defining L-factors offered in this
thesis actually generalizes to covering groups of Sp,(F') called metaplectic covers.
We will now discuss one construction of the metaplectic group. However, it is
worth mentioning that our method is not the only way to realize these topological
covering group. For instance, [18] refers to a somewhat different construction that
relies on the Stone-von Neumann Theorem regarding Hiesenberg groups and

the uniqueness of their representations having a given central character.

3.1 The Weil Representation and the Metaplectic Group

In this section section, we will describe the metaplectic cover évpn(F ) of the
symplectic group Sp,,(F). We are interested in this group for two reasons. First, it
is a p-adic (topological) group in its own right. In fact, we will discuss its parabolic
subgroups, the genuine principal series representations of this group and define the
local L-factor for most of these representations. Second, the metaplectic group is
the natural group on which to define the Weil representation.

The Weil representation is a very important object in the study of representa-
tion theory for several deep reasons. For instance, it is used to define theta liftings

between representations forming a dual reductive pair. In fact, we will use some of
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these theta lifts in order to relate certain genuine principal series representations of
gf)/z(F ) to constituents of the principal series for SO5(F"). Additionally, our doubling
integral will require an auxiliary computation that proceeds directly from the Weil

representation.

3.1.1 The metaplectic cover of Sp,,(F)

Now we will construct the metaplectic cover of Sp,,(F'). Let G = Sp(V'), where

V = F?" has a basis e1,..., ¢y, fi,..., [, and symplectic form given by
< €5,€65 >=< f,‘, fj >=0 and < ei,fj >= 6ij

for all 4, j. Then V has a complete polarization V' = X +Y where X = spanc{e; }I",
and Y = spanc{f;}I", are maximal isotropic subspaces. We then define P = Py to
be the stabilizer of Y in GG, where G acts on V' via right multiplication. Notice that
Py is precisely our upper triangular Siegel parabolic. Further, let K = Sp,(O) and

define

for 0 < 7 < n. We notice that these represent distinct elements of the Weyl group

We of G. Furthermore, wy = I and w, represents the long Weyl group element in

G.
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The metaplectic extension G of G satisfies the following exact sequence
1-C'-G—G—1.
There exists an obvious section G — G so that G is realized as the set
G~GxC!
with multiplication given by

[91, Zl]L : [92, Z2]L = [9192, CL(QI;QQ)leQ]L-

In this notation, the ¢ (-, -) is the Leray cocycle, which we describe below. For each

a b
g = € G, define an operator on the Schwartz space S(X) = S(F") by

c d

)o@ = [ () + (abye) + (e vd)p(ra + ge)d,(y).
F™ [ker(c)

where z,y € F™ are row vectors and (x,y) = x'y. Furthermore, the measure is
normalized to ensure that r(g) is a unitary operator. While these operators do not
define a representation of G, they do define a projective representation of G on
S(F™) where

7(g1)r(g2) = cr(g1, 92)r (91, g2)-

Notice that this defines a representation of the covering group G on S (F™) by

[9-2] - () = 2r(g)p(z).

A theorem of Rao [31] also shows that

cL(91,92) = Y(¥ o q(g1, 92)),
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where
q(g1,92) = Leray(Yg,Y, Y g5 ").

Here Leray (Y7, Y5, Y3) denotes the Leray invariant attached to the triple of isotropic
subspaces (Y7, Y5, Y3) and (1) oq) is the Weil index of the character of second degree
1 oq (see [31]).

The Leray cocycle is trivial on G x P and P x (. This fact will be sufficient
for most of the computations in this thesis. However, the cocycle is not trivial on
K x K, so it must be modified for use in the global setting. Kudla, Rapoport and

Yang define such a modification in [22]. Tt is very elementary to show

r(m(a))p(x) = |det(a)|}p(za),
rna(B)e(r) = (3 (. 2b)e(x) and
rwe@) = [ ol ey

We also note that the various r(w,) are the partial Fourier transforms for the last j
coordinates of X.

It is also worth mentioning that the typical definition of covering groups for
G rely on a different cocyle cg(+,-) called the Rao cocycle. For this thesis, let

%;*(F ) denote the metaplectic cover
1—-C' — SB;*(F) — Sp,(F) — 1

defined using the Rao coordinates. It is worth noting that because the Rao cocycle
is valued in {1}, that we have a character

Sp, (F) = C'  [g,2]p— 2°
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with kernel é?);(z)(F ), the unique double cover of Sp,(F'). Furthermore, one can
verify that the double cover is the commutator subgroup of SE);*(F) Even though
the double cover has fewer splitting than the circle cover, the double cover is the
group that appears most often in the literature. In particular, we will mention some
conjectures regarding a correspondence between representations of §£);(2)(F ) and
representations of odd special orthogonal groups. Consequently, we will use one

section to discuss this conjecture.

3.1.2  Some splittings of the metaplectic cover

We would also like to consider splittings for subgroups of G into G. We will
see that properties of these splittings are important the parabolic subgroups and
intertwining operators on the metaplectic group. Furthermore, in this section, it is
important that p # 2. First, if we let P = Py C Sp,,(F') be the Siegel parabolic

subgroup, the the map P — gf);(F ) given by

p—[p 1L
is a splitting of P. This a simple consequence of the cocycle being trivial on P x P.
However, there is an additional splitting that will be useful. If we consider the

projective representation (r, S(F™)) of Sp,(F) above and consider ¢° € S(F") to

be the characteristic function of O™ C F™, then we define a function A on K by

By this definition, we notice that

CL(kl, kZQ) = )\(klkg))\(kl)_l/\(kg)_l.
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Thus we get the splitting of K — é,
k— [k, (k)|

Finally, we would like to explicitly compute the value of A(k) for a particular
choice of k. This computation becomes important when we consider the intertwining
operators on the metaplectic group. For G = Sp,(F) and P, = M,N, the Siegel
parabolic subgroup, let

n(a) € N, ~ Sym,(F)
that corresponds to the matrix
00

€ Sym,(F).
0 a

-1

n

Further let n(a) = w,n(a)w, ', where w, is the long Weyl group element. Notice

that n(a) € Mg the Levi factor of the Long Root parabolic Pz. Let us consider

A(n(a)). First, we realize that
cr(nfa), w,) = MA(a)w,) M w,) " ANnla)) .
However, A(w,,) = 1 can be easily verified by the definition. Also
An(a)w,) = Mwyn(a)) = cp(wn, n(a)) Mw,)A(n(a) = 1.
So we see that A(7i(a)) = cr(7(a), w,)~*. Moreover, we know that
cr(i(a), wn) = (¢ o q(A(a), wn)) ™"
where q(ni(a), w,) is the Leray invariant of the triple (Y7 (a),Y,Yw,!) of isotropic
subspaces. This we compute using [31] and find that
q(n(a), w,)(r) = —=az”.
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Moreover, Rao’s appendix gives us the means to compute the Weil index of ¥ o

q(n(a),w,)(x). In particular,

Y(¢ o g(n(a), wn)(x)) = (Y-

2

07) =(—gavordywor?) (1)

Finally, Proposition A.11 of [31] tells that

Y(Woa?) =1

for our choice of additive character and for a = uw® 4@,

1 1 if ord(a)is even
7<_§a7 ¢ o 1'2) =
(&), -0 if ord(a)is odd
where (—) - 1s the Legendre symbol for F" and 6 is a fourth root of unity depending

w

only on 1. So we see equation 3.1 becomes

1 if ord(a)is even
1@ o g(n(a), wn)(x)) = : (3:2)
(E)F -0 if ord(a)is odd

w

3.1.3 Parabolic subgroups of g\/pn(F )

We now explore one of the more important aspects the splittings we have just
discussed. In particular, by using the Leray coordinates for §vpn(F ) and obtaining
the splitting of the Siegel parabolic, there will be a very natural structure relating
the parabolic subgroups of G and G. In particular, let P be the Siegel parabolic of

Sp,,(F). Then for any P’ C P, we have the splitting map

P'—Spy(F)  pr[p s
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discussed previously. Now let @ = M N be an arbitrary parabolic of Sp,,(F'). Then
M ~ GL,, (F) x GL,,,(F) x -+- x GL,,(F) x Sp,,(F)
with m + >_7_, n; = n. Notice that the subgroup
A~ GLy, (F) X GLy, (F) x - - X GL,,, (F) x {1gp, }
is contained in the Siegel parabolic subgroup. So again we get a splitting
A—>§I\);(F) a— [a,1].

If we let 7, : QEL(F) — Sp,,(F') be the natural projection map, we see that the
inverse image of M in é—pvn(F ) is given by

—~

77N (M) = M =~ GLy, (F) X GLy, (F) X -+ x GLy, (F) x Sp,,(F)
as groups. Furthermore if m = 0, we will define
Spo(F) = C',

in order to keep our notation consistent. So

~ —~

O~ MN

where N is identified with its image under the splitting n +— [n, 1];,. Moreover, one

can easily see that for parabolic subgroups

Q' C Q C Sp,(F),

then
Q' CQCSp,(F)
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in the obvious way. So for our purposes, a parabolic subgroup Q of gf)/n(F) will be

a subgroup of the form described above having a Levi decomposition

Q ~ MN.

3.1.4 Genuine principal series of metaplectic group

Now that we have discussed the parabolic subgroups for the metaplectic group,

let us look at parabolic induction in this context. Let
P=MN

be a parabolic subgroup of G with

M 2 GLy, (F) X GLy,(F) X + -+ x GLy, (F) x Sp,(F).

Let (m;, V;) be a representation of GL,, (F') and let (o, V') be a genuine representation
of S/I;,/n(F ). Then we can define (normalized) induction in the usual way

Indsﬁp”(F)(m RI @+ QT ®0)

with 05 = dp. If m > 1, one can routinely verify that this gives a genuine represen-

tation of Sp,,(F). If m = 0, then we define the representation
oo - QE(F) — Cl 0'0(2) = Z.

So for P = MN with

M =~ GLy, (F) X GLpy(F) X ++- x GL,, (F) x Spy(F)

and IT = Q);_, m,
Ind?(F)(H ® 09)
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consists of locally constant functions satisfying

=

f(lp. 2l1g") = z6p(p)211(p) f(9).

For ease of notation, in the case that m = 0, we will denote the representation

(® ) = (@ ) ® 0.

Let B be the Borel subgroup of Sp, (F'), then we have the following exact sequence

of representations
: Spy(F), 1 TSP () Ly 1
1 — 7(evz) — Ind>""(cv2 ® 09) = Ind 2" ((cv2)') — m(svz) — 1

(see [22]).

It is also worth noting that using the Leray cocycle, we have the same transi-
tivity of induction that was discussed for the linear group in the previous chapter.
In particular, if P’ = M'N’" and P = MN are parabolic subgroups with P c ﬁ,
then P'N M is a parabolic subgroup of M. Consequently, we can extend all our re-
sults regarding Jacquet modules as well as Tadi¢’s reducibility (resp. irreducibility)
criteria to the metaplectic group in the obvious way. In fact, the table of reducibility
points for the genuine principal series of Spy(F) (Table B.9) is derived from these

very results.

3.2 The Weil representation

Now that we have defined the metaplectic cover of GG, we would also like to

define the Weil representation of G associated to a quadratic space. Let (V,Q) be
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a quadratic vector space over F. We define the Weil representation (wy, S(V")) of

G associated to (V,Q) as follows

wv (g, 2L)e(x) = xv (@(9)) (270 D) 7 (n 0 V)T Iry (9) () (3.3)
where
0 if dimp(V)is even

1if dimp(V)is odd.

Before we define the multitude of factors arising from this definition. Note
that if dimp (V) is even, then wy is trivial on {[1, 2]y | z € C'}, so the representa-
tion factors through the group G. This follows from the fact that (z7(1)(9)) is the
only factor in (3.3) containing z. Moreover, if dimg(V') is odd, then the Weil rep-
resentation is genuine. We now define the various terms above. Let m = dimp(V),

then

xv(t) =, (=1)" > det(V))r
where det(V) is the determinant of the matrix of the bilinear form on V and (-,-)p

is the Hilbert symbol of F. In order to define z(g), we note that

G = U wajpy

0<j<n

is a disjoint union. So for g € G, g = p1w;p, where w; is uniquely determined. Thus
2(g) = z(prw;ps) = det(pipsly) mod (F*)*.

If addition, if



then j(g) = rank(c). One can show that for g € Pyw; Py, j(g) = i. So we see that
{Pyw; Py}"_, partitions G according the the rank of the lower left block.

Next, we define n = ¢ (ie., n(t) = ¥(it)). As before, v denotes the Weil
index. In particular, v(n) is simply the Weil index of the character of second degree

n o ). Furthermore, Kudla defines

(o V) :=~(det(V),n)v(n)"e(V)

in [18]. Here ¢(V') is the Hasse invariant of the quadratic space V' and v(det(V'),n)
is the relative Weil index and is computed by Rao in [31]. Ultimately, all the Weil

index computations and definitions can be found in [31].

a b
Finally, if g = let

c d

rv(g)e(r) = / P(tr (%(m, xb) + (wb,yc) + %(yc, yd)) )o(xa +yc)dy(y)
(©)

V7 /Ker(c

where z,y € V", (z,y) = [(%i,y;)v]i; and (z;,y;)v is inner product defined using

Q). Moreover, d,(y) is normalized so that r(g) is unitary.

3.3 Liftings Between Representations of éf);(F ) and SO5(F)

While we have the Local Langlands Correspondence to give us conjectural L-
factors L(s,rg o p) for representations of Spy(F), this conjecture does not apply
to the metaplectic group gi)/z(F) However, we shall see that there may still be a
method for us to compute conjectural L-factors for constituents of genuine principal

series representations of QE(F) Ultimately, they should correspond to L-factors
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of the unramified principal series of SO5(F). We can then compute conjectural L-
factors for these using Lusztig’s criteria. The connection between these groups will

come from the local theta correspondence between Spy(F) and SOs(F).

3.3.1 Conjectural L-values Sp,(F) and SOs(F)

We now give only a brief sketch of the local theta correspondence and cite
some sources for this material. Two subgroups G, G’ C Sp(V), are called a dual

reductive pair if

1. Csp)(G) = G" and Cspv)(G) = G' where Cgpv)(G) denotes the centralizer

of the subgroup G in Sp(V).
2. The actions of G and G’ on V" are completely reducible.

The theory of local theta lifts and Howe duality predict that given a dual
reductive pair (G, G"), there exists a bijection of certain subsets of admissible rep-
resentations of G and G’. In [15], Kudla proves results along these lines for the
dual pair (O(V),Sp(W)) with V and W arbitrary. The paper futher proves the
compatibility of the theta correspondence with parabolic induction. The metaplec-
tic group can also form half of a dual reductive pair (along with certain orthogonal
and special orthogonal groups). Some general results regarding theta lifts on dual
pairs of this form appear in the work of Maeglin, Vignéras and Waldspurger [26].
Moreover, Waldspurger studies the case of (é—i—;@), SO3) in great detail [40] and [41].

In this thesis, we can compute the various reducibility points for genuine prin-

cipal series representations Ind%((xl ® x2)'). In particular, we use the Tadié¢’s
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criteria for both irreducibility and reducibility to derive the results in Table B.10.

For instance, consider the representation
~ 3 1
Ind%((gui ®cr2))

where ¢? = 1 is unramified. We notice that this representation satisfies the following

two exact sequences
1 — Ind§ ((svStar,)') — Ind%((gug ®cv)) — Ind% ((svler,)) — 1

and

3
2

D=

1— Ind%(gug ® T(QJ%)) — Ind%((gy @srz)) — Ind% (gug ® 7T<§V%)) — 1.

Each representation induced from the Siegel parabolic shares a constituent with a
representation induced from the long root parabolic. Using Tadi¢’s irreducibility
criteria, we see that the shared constituents are irreducible. A similar argument

works for

except that we need to consider some results regarding unitarizability and complete
reducibility. In particular,

Ind%((gué ® gu_%)')
has unitarizable subquotients

md¢ ((<Star,))

and
Indga ((gILGL2 )/) .
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These representations are completely reducible. Moreover, Frobenius reciprocity

shows us that for either of these representations (denoted as 7)
dim¢ [Homg(7, )] < 2,

so both may have at most two inequivalent irreducible constituents. At this point,
our argument is identical to the previous example. The irreducible constituents are
shared by one of the unitarizable representations induced from the Siegel parabolic
and a representation induced from the long root parabolic found in the exact se-

quence

1 — Indgﬁ (gué ® T(§I/_%)) — Ind%((gl/% ® gz/_%)') — Ind%ﬁ(gué ® 7T(§V_%)) — 1.

N[

).

Ultimately, Tables B.10 and B.11 outline a bijection between constituents of

) and 7(sv2) ~ 7(sv

N

Note that 7(sv~2) ~ m(cv

1 (1 @ xa))

and constituents of

(1 @ v2)

where P is a fixed Borel subgroup of SO5(F'). In particular, the representation on a
given line of Table B.10 corresponds to the representation on the exact same line in
Table B.11. Note that our data regarding the reducibility of the principal series of
SO5(F') comes from the work of Jantzen [12]. As we will eventually prove, there is an
equality of L-factors for representations that correspond according to this bijection.

In particular, the doubling L-factor of a constituent 7 for gi);(F) matches to the
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Weil-Deligne L-factor for the data p’ in the image of the corresponding constituent

7 for SO5(F). Again, we are using Lusztig’s criteria to specify the map

T p.

In the future, one might ascertain whether or not our bijection is consistent with the
local theta correspondence on the dual pair (Spy(F),SOs(F)). Finally, we would
like to relate representations of G to representations of the double cover 6(2), since

it is the double cover that appears most frequently in the literature.

3.3.2 Relating representations of G and G©@.

The relevant theta correspondence results are often formulated for the dual
pair (gpvn(z)(F ), O2n11(F')). However, the double cover of the symplectic group is
naturally defined using the Rao cocycle. Consequently, the representation theory
is defined in a slightly different way. One can consult [1] for a fuller explanation.
Ultimately, we will take principal series representations of gf);(F) relate them to
representations of gvpn*(F ) and then restrict those to the double cover. This relates
a representation on the Leray cover to a representation for which the conjectural
liftings with SO5(F') makes sense.

So now let us relate certain induced representations of gﬁ;*(F ) to those of
é});(F) Let us specialize to the case that we are inducing from a parabolic subgroup
contained in the Siegel parabolic. Let P be a parabolic subgroup of Sp,,(F') that is

contained in the Siegel parabolic. Further we let P (resp. ﬁ*) be the inverse image
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of P in §£);(F) (resp. §vpn*(F)) Adams employs a character

X P = C (g, 2r) == y(det(g), )z

where 7 is the Weil index discussed in the previous sections. So for a representation

(m, V) of P, we get a representation of P* on V given by

OCm) (s 2lr)v = X (Ip, 2]r) 7 (p)v = 2y(det(p), n)7(p)v.

We would like to show that this is identical to the representation (7, V) on P given
by

7' ([p, z]L)v := 27 (p)v.
To see this, we notice that the Leray and Rao coordinates are related as follows

[9,2]r = 19, 28(9)]L

where
Bg) = (x(g),m) "y (n) 7
which are described in detail in the Section 3.2. We also note that for p € P
z(p) =det(p) and  j(p)=0.

Thus,

B(p) = y(det(p),n)~".

So finally we see that
X ([, 26(p)1r) = 2B(p)""(det(p), n) = =.
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Therefore, the representations xy*m and n’ are the identical representations viewed

under different coordinates. As a result, we see that
Spo(F) (1
Ind3™7 ()
and
Sp, (F) (.
Indﬁ* (x*)

are also the same representation viewed in different coordinates. Because of this

and using the results of Kudla [15], we feel justified in relating constituents of

Ind%((Xl ® X2)")

with those of

Indi%(F)(Xl ® X2)-

The next chapter will discuss a method for computing L-factors for represen-
tations of certain p-adic (topological) groups. In particular, we will use a method
that does not depend on the existence of Whittaker models (i.e., the representation
being generic) so the method will apply to all of the representations discussed in

this and the previous chapter.
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Chapter 4

Building the Doubling Integral

In this chapter, we are going to build all the necessary machinery to pro-
duce local L-factors for constituents of the unramified principal series of Spy(F') and
é});(F ). Much of this chapter applies to more general groups; however, we will con-
centrate mostly on our rank two cases. We begin by describing the main method for

defining analytic L-factors for the standard representation ry, the doubling integral.

4.1 Computing L(s, 7, rs) for m a representation of Spy(F)

While there is a very general method for defining L-factors attached to Weil-
Deligne representations of W7, the same cannot be said regarding admissible repre-
sentations of reductive p-adic groups. While there are several methods for defining
such analytic L-factors, they all require some extra conditions whether they be
on the group or on the representations themselves. For instance, Godement and
Jacquet produces a method for determining the analytic L-factors for representa-
tions of GL,. On the other hand, the Langlands-Shahidi method that work for more
general groups but requires the representation to be generic (i.e., have a non-zero
Whittaker functional).

In this section, our main tool for defining L-factors for representations of

Sp,(F') will be the doubling method of Piatetski-Shapiro and Rallis [8]. Moreover,
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we shall see that this same method works to define L-factors for representations
of §£)/2(F ). To briefly summarize, the doubling integral gives a way of defining the
L-factor of a representation as the normalized generator of some fractional ideal
produced via these integrals. Moreover, the L-factor attached to spherical repre-
sentations of more general p-adic groups are defined via their Satake parameter. In
the spherical case, the L-factor provided by the Satake parameter can be realized

by evaluating the doubling integral at certain ”good test vectors”.

4.1.1 The doubling method of Piatetski-Shapiro and Rallis

We will now explain the doubling method of Piatetski-Shapiro and Rallis [8].
This Rankin-Selberg type integral is constructed globally but unwinds as a product
of local integrals for factorizable global data. Our main goal is the study of these
local integrals for constituents of the unramified principal series of G = Sp,(F') and
G.

In order to motivate and explain the doubling integral, we begin by explaining
this method as it pertains to the symplectic groups Sp,,; one should also note that
this method can be generalized to classical groups defined as preserving an inner
product. For this section, k£ will be a number field and k, will be its completion
with respect to the place v. Also, A will be the ring of adeles over k. Finally, for
any group GG defined over k£ and for any k-algebra R, we let Gr denote the R points
of G.

Let G = Sp(V') where V is an 2n-dimensional symplectic vector space over k
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with skew-symmetric form < -, - >y. We now define a new vector space W =V gV

and endow it with the following symplectic inner form
<< (v1,v2), (V,0) >>wi=< v1,v] >y — < vz, Uy >y .

Thus we find an obvious map iy : G X G — H = Sp(W) by considering the action

of G x G on W given by

(01,02) : (91,92) = (Ulgl>v2g2)-

Moreover, since we defined the inner form on W as the difference of the inner forms
from V', we notice that the space V¢ = {(v,v) € W | v € V'} is isotropic. In fact,
V4 is a maximal isotropic subspace of W. So let Py C H be the subgroup that fixes
the V¢, then Py\H becomes the variety of maximal isotropic subspaces of W.

We now consider the G x G orbits of X = Py \H. Piatetski-Shapiro and Rallis
define such an orbit X’ to be negligible if 32’ € X’ such that the its stabilizer
R in G x G contains the unipotent radical N’ of a proper parabolic subgroup
P’ C G x G with N normal in G x G. If we let zy be the identity coset Py and Xg
its orbit, we see that its stabilizer is Py N (G x G) = {(g9,9) € G x G | g € G} =:
G“. Finally, Piatetski-Shapiro and Rallis prove that the action above satisfies the

following conditions:

1. The stabilizer of =, is G.

2. All orbits X’ # X, are negligible.
glg

Piatetski-Shapiro and Rallis call X, the main orbit for reasons that will become
readily apparent.
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Let 05 : Pgy — k™ be the modulus character of Py and let x : [,/k* — C*

be any quasicharacter such that y o §% is trivial on G¢. Next let

®, € Indpt (|det|*y 0 d}) =: I(s, x),

JA

where the induction is taken to be normalized. To this ®,, we can associate the

Eisenstein series

E@(h; S) = Z ®s(7h)

YEPH k\Hy

wherever this sum is absolutely convergent (for Re(s) >> 0). Furthermore, let 7 be
an irreducible cuspidal automorphic representation of G and 7" its contragredient.
For f € m and f' € 7V we may finally define

Z(s.x. @, f. f') = / Ealiolgr, 92); 5)f(91) ' (92)dgrdgs.
(GXxG)\(GXG)a

Because m and 7V are cuspidal, this integral converges; further, it inherits the ana-
lytic properties of Fg. Perhaps the most important property of this integral is the

following identity

/ Eg(io(g1,92); ) f(91) [ (92)dg1dgs =

(GXG)\(GXG)a
= [ ®ulin(g, 1)) < 7). >padg
Ga
where < -, - >pe is the Peterson inner product. The proof of this can be found

in [8], but it boils down to a interchanging the summation in the Eisenstein series
with the integral. In doing this, we obtain a finite sum of integrals indexed by the
orbits. The domain of integration of each term becomes R)\(G x G)a, where R?
is the stabilizer of Py € P\H. Because f and f’ were chosen to be cuspidal, the
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integrals corresponding to the negligible orbits vanish and only the integral over
the main orbit persists. Some more elementary manipulations yields the equation
above. Finally, because y = ®y, and < -, - >pei= ®, < -, - >, factor as a product of
local terms, if we choose &5 = ®,P,,, f = ®,f, and ' = ®,f, to be factorizable,

then

Z(5,: @, £, 1) = Q) Z(s, X0, Pu, fur [1)

= / Dy (i0(gv, 1)) < 7o) fo, fo > dgo.
v Cr

We now consider the local case of the doubling integral for a nonarchimedean
place v. In the original work by Piatetski-Shapiro and Rallis, they suggest com-
puting their doubling integral over a family of good sections {®,}. The corre-
sponding family {Z(s, xu, o, fu, )} generates a fractional ideal in the polynomial
ring C[¢~*]. The normalized generator of this ideal defines the L-factor associated
to 7, under the standard map ry on the dual group. Let us consider the following
definitions with Ky = Hjy, N GL4,(O), (resp. Kg = Gg, N GLy,(O)) a maximal

compact subgroup of Hy, (resp. G, ).

Definition 4.1.1. A section ®, is called standard if its restriction to Ky is

independent of s.
Definition 4.1.2. The family of good sections consists of

1. Cl¢®, ¢ ] standard sections.

2. Iy, (s,x)Clq%, ¢°] - standard sections, where I}, (s,X) is a normalized standard
intertwining operator defined using the long Weyl group element w, (see [20]
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for the definition of I}, (s, x)).
3. Sections of the form
dv,H(Sa X) : q)g,s * s
where us € H(Hg,, Kg)[q®,q*]. In this notation, H(Hy,, Ky) is the Hecke

algebra with respect to Ky, ®) , is the Ky-invariant function with ®) (1g) =

v,

1. Furthermore, d, y(s,x) is a normalizing factor that we will address below.

In the various works [27] and [28], Piatetski-Shapiro and Rallis prove the fol-

lowing proposition.

Proposition 4.1.1. Let m, be an irreducible admissible representation of Gy, and

nr). its contragredient. Let f, € m, and f, € w).

v

1. For any good section O, s, Z (S, Xv, Pu, fo, f}) is a rational function in ¢ *.

2. There exists f, € m,, f, € m) and there is a good section ®,, s with
Z(SJ Xv7 (I)Uv fv; f{;) = ]'
3. The set

Z(8, Ty, Xo) = {Z(8, Xus Puy fu, [2) | fo € 7w, [ €T, o s € good sections}

is a fractional ideal for Clq®,q~*], with generator P(q=*)~!, for a unique poly-

nomial P(x) € C[z] with P(0) = 1.

Notice that the proposition indicates that one might be able to find “good”
test vectors f and f’ as well as a “good” section that computes L(s, m,, ry) exactly.
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In our variant of the doubling method, we seek to use “good test vectors” to realize
the Weil-Deligne L-factor L(s,rg o p') for m, in the ideal Z(s,m,, x,). Because
we restrict ourselves to the case that 7, is a constituent of the unramified principal
series, we will choose f,, € m, to be fixed by one of our standard parahoric subgroups.
As a consequence, we will require our section {®, ;} to have a related invariance
property. However, we will see that the most natural choices of good section actually
require a further normalization before they compute L(s,ry 0 p’) exactly. Let us see
an example of this that will also explain the d, g(s) from Definition 4.1.2.

Suppose that m, and 7 are spherical. In this case, choose f, € m, (resp.
[l € m)) to be the normalized spherical function with f,(1¢) =1 (resp. f/(1g) =1).
Also, choose the section ®) | spherical with ®) (1x) = 1. With these rather natural
choices, one might presume that Z(s, x,, @y, fu, f,) would exactly match the L-factor

defined using the Satake parameter. However, this is not the case, instead

L(S, Xm T, rst)

Z<S7XU7<Dvan7f;) = dH (S)

where L(s, Xy, Ty, I's) matches the L-factor provided by the Satake parameter and

21

1
di(s) = L(s+ §(n +1),x0) H L(2s+2i +1,x2).
i=0

Similar formulas exist for the different classical groups. So for a cuspidal represen-

tation ™ = ®,m, of G4 we define

djj(s) = [ [ du.(s)

vgS

where S is the finite set of places such that if v is nonarchimedean and 7, is un-
ramified then v ¢ S. Consequently, we call dy(s) the normalizing factor of our
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Eisenstein series.
For arbitrary places v, with 7, possibly ramified, we will construct the ®, ,
having a certain desired invariance property. Using such sections, our doubling

integral will yield a rational function

L(S, Xvs Ty, rst)
d.:pvv(S)

where dg,(s)”" € Clg*] and deg(L(s, Xv, T, Tst) ") = deg(ds,(s)™!) as polyno-
mials in C[¢g~®]. Notice that this agrees with the spherical case mentioned above.
While this equality of degrees may not hold for general representations 7, it certainly
seems to apply toward constituents of the unramified principal series.

Finally, while we will not use this fact in this thesis, it is worth mentioning that
this doubling construction yields a functional equation. The following proposition
is due to Piatetski-Shapiro and Rallis as well as Lapid and Rallis (see [8], [27], [2§]
and [24]).

Proposition 4.1.2. Let m be an irreducible admissible representation of G,. Then
dim(Homg, x¢, [Indji4 (|det|*x 0 6p), 7 @ 7])

A

is at most one for all but finitely many s. Thus there exists a factor I'q, (s, 7, x)

such that

Z(_Sv X717 Hwo(sv X)‘I)v fa f/) = PGA<S7 T, X)Z(Su X5 (I)v fu f/>

forall f emx, f€nY and ®, a good section.
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4.1.2 The variant of Kudla, Rapoport and Yang

Now the doubling method that we will employ is similar to the one described
above. Unlike the Piatetski and Rallis version of the doubling integral, this method
will involve computing an integral for specific “good” test vectors in order to explic-
itly compute the our local L-factors. We also make some other alterations that will
allow our doubling integral to be more easily computed.

One alteration to the method involves the embedding of G x G into H. This
altered embedding will be more natural for applying the doubling method to the
metaplectic covers of G and H. After we discuss the alterations made to the original
embeddings, we will explain their extensions to G x G in H.

We now return to our original notation, so F' is a p-adic local field of odd
residue characteristic. In particular, we are only considering local theory, so we
drop the v subscript for the remainder of the thesis. Also, we will need to define the
analogous embeddings and maps more explicitly for our applications. In our case,

we have the following embedding of G x G into H

ai by
) az by
o (gla 92) = s
C1 d1
Cy dg
a bz
where ¢; = blockwise. For a particular choice of basis, this agrees with
C; dz

the embedding described above. Also notice that for the projective representation
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(r,S(X)) in Section 2.2.1 , we have

7(15(91,92)) = 7(91) @ 7(g2)

where S(F™) ® S(F™) < S(F?") in the canonical way. Futhermore, if we let V =
Vi + V4 according to the embedding 7,, then Y NV =Y NV, +Y NV, and we see
that the Leray cocycle is compatible with i,. So consequently, we see that i, lifts to

a map
io:GxG—H iollg1, 1], (92, 22]1) = lio (91, 92), 2122
Next we modify this embedding via
i(91, 92) == io(g1, 95).

where

-1, -1,

With this twisted embedding, we will also use a different representative for our main

orbit. In our case, we represent the main orbit with the coset Pyd such that

This § also conjugates G¢ into our standard Siegel parabolic. In particular, di(g, g) =
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p(g)d, where

d ¢ —c
b a —b
p(g) =
a b
—c d

Notice that this relations shows us that Pyd is stabilized by

G* ={i(9,9)| g € G},

which justifies our claiming that it is in our main orbit. Moreover, the altered
embedding also extends to the metaplectic case in the obvious way. In particular,

we would like to show that this map has a lift to G.

Lemma 4.1.1. The map ¥ : G — G has a lift to ¥ : G — G, given in Leray

coordinates by

9. 2]1 = 19", 27"]1.
Proof. The proof reduces to showing that cz(gy,95) = cz(g1,91) . But notice that
— 1 1 S
r(g")e(z) = (=5 (za, xb) + (xb,yc) — S (ye,yd) | p(ra —ye)dy(y)
F [ker(—c) 2 2

= /Fn/ker(c) (0 (-%(za,xb) — (xb,yc) — %(yc, yd)) o(za + ye)dy(y)

= 1(g9)p(x)

where we simply perform the transformation y — —y. Our result follows when we

realize that since ¢ (g1, g2) is unimodular, so conjugation is the same as inversion.

]
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Consequently, we see that i : G x G — H, lifts to
i:GxG—H illg 2] 92, 2)) = iollgr, 21]e, (9, 22]7) = [i(g1, 92), 2125 ']
Also, if we consider the A\ defined in Section 3.1.2, we have the following facts.
MEY) = A(k)7!
and
Asi(ig(ky, k2)) = Aa (k1) Aa(kz)
where we use the subscript to distinguish the various A. Putting all this together,

we realize that ¢ is consistent with the splittings
Kg ' Spy(F)  and Ky Spy(F).

Our modified doubling integral also uses some slightly different data. Instead
of integrating our section {®,} against two functions f € m and f’ € 7" to obtain a
function of s, we integrate against a single function f € w. The doubling integral will
thus define another function Z(s,®, f) € m. For our local integrals, the ultimate
strategy will be to choose ®; is such a way that Z(s, ®, f) will have invariance
properties of similar to those of the original f.

Now let o be an admissible representation (resp. genuine admissible represen-
tation) of G = Spy(F) (resp. G = SE(F)) Further, let y be a character of the
Siegel parabolic Py and let I(s, ) denoted the representation induced from y|det|®

(resp. (x|det|®)’) on Py (resp. 1/3:1) to H = Sp,(F) (resp. H = /SE(F)) Then for

f € o and &, € I(s,x), we define the local doubling integral

2(s,%, f)(gh) = / &.(8'ilgh, ))o(s') fdg (4.1)

SPQ(F)
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where ', ¢’ are any elements projecting to € Sp,(F') and g € Spy(F) respectively.
Notice that the integrand is independent of the choice of ¢’ over g. For sufficiently

large Re(s), the integral converges absolutely and
Z(s,®, f) € 0.

The main result in [22] that motivates this variant of the doubling method is

the following (see Lemma 4.1 in [22]):
Lemma 4.1.2. (i) For any choice of &' € H with image 6 and ¢’ € G,
d'i(g', g") = p(g')d'
where p(g') € Py satisfying x(p(¢g")) = 1. In particular, for g}, ¢, and g € G,
©(6"i(9091, 9092)) = s(0'i(g1, 93))-
(ii) For ¢’ € G,
Z(s,R(i(1,9")®,0(d')f) = Z(s, 2, )
and

o(g)Z(s,®, f) = Z(s, R(i(4',1))®, f).

Here R denotes right multiplication.
In particular, we have the following important corollary from [22].

Corollary 4.1.1. Suppose there exists a subgroup A C G’ such that

R(i(a,1))®, = &, Va € A.
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Then

Z(s,®, f) € o™,
In particular, if 04 =0, then Z(s,®, f) =0 for all f € 0.
Perhaps equally important, if there exist a subgroup A C G’ such that
dimg(c?) = 1
and
R(i(a,1))®, = &, Va € A,

then

Z(s,®,f)=A(s,P,0)f

for all f € o®. Ultimately, our goal will be to make good choices for ®, and f so

that A(s,®,0) = L(s,rs o p') for the Weil-Deligne representation rg o p’ where
o= p = (p,N)

via Lusztig’s criteria.

Finally, this version of the doubling integral will employ an interpolation
method to construct ®,. In particular, we will take the Weil representation of Sp,(F)
on a space of Schwartz functions and define a map from this space to I(s, xy). Ul-

timately, our choice of @, will actually amount to a choice of Schwartz function.

4.1.3 The interpolation method

We will now describe an interpolation method used to construct the sections
®,. It is worth noting that this method is valid for our calculations on both the
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linear and metaplectic groups. For G = Sp,,(F'), consider the following map

Ay 2 S(V") = Indi (xv] - [*) o= Mw(9)((9.210) = wi(lg, 2]2)e(0)

dimp (V)= (n+1)
2

where sg = . This interpolation trick also respects the various splittings

that defined above. For instance, we have the following lemma (see [22]).

Lemma 4.1.3.

wy(lg”, 27 L)e(x) = wy([g, 2]L)p(x)

Proof. For our choice of additive character, xv (z(9))(v(7)(g))*y(noV) =¥ € {41},

so we need only verify that

However, this follows from nearly the same argument as the proof of Lemma 4.1.1.

]

Consequently, we have that for ¢; ® @s(z) € S(V™) @ S(V") — S(V?"),

wv (i([91, 21]L, [92, 22]1)) [p1 @ Pa(x) = (wv ([91, 21]L)p1) @ (Wv ([g2; 21]L)p2) (2).

The Weil representation also has the following property for V=V, & V5, (an

orthogonal sum) with m; := dimg(V;).

Lemma 4.1.4. The Weil representation wy of G on S(V") ~ S(V*) @ S(V3) is

gien by

(g™t mymy is odd
wy(9') = wn (9) @ win(g') -
1 otherwise

where ¢ : G — C' is a character defined in [22].
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Proof. See [22]. O

Ultimately, we will create a family of functions {®,4,}52, using our interpo-
lation method while extending our vectorspace V by adjoining hyperplanes (F?, Qo)
where Qo(x,y) = 2xy. Since a product of hyperplanes is even dimensional, the
previous lemma says that Weil representation factors as a tensor product according
to Weil representations on V' and the hyperplanes. Let V., denote the orthogonal
sum of r hyperplanes and let

Vi=VaeV.,.

For any ¢ = @ ,0; € @ S(V) — S(V"), we define ¢ as
i=1
" =X (i © )
i=1

where ¢} € S(V,,) is the characteristic function of O* € V,.,.. We now define the

function &, as

(r)

Popir = Moy @ @5”) € I(s0+ 7, xv)

where ¢; € S(V").
For our purposes, the ¢; will be characteristic functions of various good lat-
tices L having the property

w(l*)c LcL?

where L# is the dual lattice to L via the bilinear from on the quadratic space (V, Q).
It is worth noting that the choice of the various lattices matters much less than their

relatively position to each other. Consider the following example.
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Example 4.1.1. Let (V,Q) = (My(F), kdet) with k € O* and let

Ly = MyO0O)
L, = diag(w ™', 1)M5(0O)diag(w, 1).
Consider the functions,
A(@Li@Li)'

One can easily verify that both functions are spherical vectors in the appropriate

induced representation. So we see that

Meror,) = cAM@ryoL,)
and a routine calculation shows that ¢ = 1.

It is worth noting that Lo is the image of L; under an element of O(V). As

such, there is a natural action of O(V') on S(V") and that
A S(V™) — I(se, xv)

is O(V) invariant. See [18] for a more detailed discussion of this action and how it
relates to the dual pair (O(V'), Sp(W)).

More generally, we desire that (¢ gyo) be lp-fixed. This is achieved if
wl/ CLCL. (4.2)

Notice that this requirement involves only to the relative position of the lattices.
Again, this comes from the O(V') invariance of A\. Once we know that A(¢) is Iwahori-

fixed, then the function becomes determined by its values on representatives of the
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Weyl group Wg = W,,,. For our chosen generators w, and wg, we see that

Meror)(Wa) = [wy(wa)prer](0) = ¢rer(0) =1

and
Aerer)(ws) = [wyv (wp)erer](0) = 0L(0)@r(0) = ¢
where my is characterized by our choosing the Haar measure on V' that is self-dual

with respect to ¢ o (-, ).

4.2 Explicit Values for Iwahori Fixed Vectors

Previously, we mentioned needing some general methods for computing explicit
values of Iwahori-fixed vectors; now let us describe these methods in further detail.
First, the Iwasawa decomposition for split p-adic groups says that for any split p-adic
group G,

G = BK
where B = M N is a Borel subgroup with Levi factor M and unipotent radical N
and K an appropriate choice for a maximal compact subgroup of G. In practice, K
will be the O-points of the group defining G. We can further decompose K as

K= ] NOwJ

weWqg

where N(O) = N N K, J is an Iwahori subgroup having an Iwahori factorization

with respect to (B, M). Thus,



so f € Indg(xl, X2, -+, Xn)” is determined by its values on representatives of the

finite set of Weyl group elements representing double cosets
B\G/J.

Thus in the next section, we will use some of our general representation theory in
order to compute the various values of Iwahori-fixed vectors on Weyl group elements.
In particular, if f is an Iwahori-fixed vector in a representation 7, we will use
the vanishing of certain standard intertwining operators to find various relations
amongst the elements of {f(w) }wew,-

Recall that for regular y; ® xo,
dim@Homg(Indg@ (x1 ® x2), IndIGDQ)((Xl ® x2) ow)) = 1.

We also notice that the intertwining operator

L, : Indf, (x1 ® x2) — Ind, (x1 @ xaow)  (Luf)(g) == [ f(wng)dn,
N/UJ

where N = Ny 0w 'Nyw gives a basis for this space as long as the integral
converges. However, even when the integral does not converge, we can still make
some sense out of this construction.

Suppose Indgw (x1 ® x2) is such a representation where I, does not converge.
Let us consider the family of representations {Ind% (x1V° ® x2v°) }sec (recall v(x) =
|z|). Tt is known that the family of intertwining maps I,(s) varies analytically
in the domain where the I,(s) converge. Thus these intertwining maps can be

meromorphically extended beyond the domain of convergence. Thus we see that
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the intertwining maps of interest are either given as an integral or the meromorphic

continuation of an integral.

4.2.1 Constituents of induced representation with regular data

Let us start with some general results. For this section, let G = G(F') be the
p-adic points of a split group. Let B be a fixed Borel subgroup of G with B = M N,
M ~ (F*)" its Levi factor and N its unipotent radical. Further, let K = G(O)
a maximal compact subgroup. Finally, we let J C K be an Iwahori subgroup in
K having an Iwahori factorization with respect to (B, M) and let W be the Weyl
group of G.

Now suppose that (7, V') is an irreducible constituent of the unramified prin-
cipal series of G, then there exists and unramified characters {x;},; such that
T Indg(xl, X2, - -5 Xn). Moreover, let r§ represent the Jacquet functor with re-
spect to the parabolic subgroup P with Levi factor Mp. Recall from Section 2.1.1
that both the induction and Jacquet functors are normalized to respect unitariz-
ability. Frobenius reciprocity tells us that for 7 an admissible representation of G

and ¢ an admissible representation of Mp,
Homg (7w, Ind (o)) ~ Homyy, (r%(7), o).
If we specialize to the case that 7 is irreducible and P = B, then we find

HomG(W,Indg((Xl, X255 Xn) OW)) = HomM(Tg(W), (X15X2 -+ Xn) OW).

Recalling the definition of the intertwining operators that we previously intro-
duced, we can now give a methodology for computing the explicit values of Iwahori-
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fixed vectors of a given irreducible constituent 7 of the unramified principal series

for G.

1. Use Frobenius Reciprocity to find inducing data (xi,x2,-..,Xn) With 7 <
Indg(xl, X2 - -+, Xn). Notice that this inducing data need not be unique. More-
over, the explicit values of the Iwahori fixed vectors may depend on this choice

of inducing data.
2. Find an element w of the Weyl group W such that
(X1 Xas -+ 5 Xn) 0w £ T5(T) € R(M).
Then Frobenius Reciprocity establishes that 7 is not a submodule of

Indg((XhX% s aXn) © w)

Note that if no such w exists, then this intertwining method cannot be em-

ployed.
3. Compute the standard intertwining operator

]Iw : Indg(Xla X2y .- 7Xn) - Indg((Xb X2y« 7Xn) o w)

for an arbitrary Iwahori fixed vector
f S Ind%(XIa X2y 7Xn)J'

4. Use fact that I,(f) =0 for f € 7 to find relations amongst the { f(w) }wew,-

Since |Wg| = 8 for G = Spy(F), we would need 8 — dime(7/0) relations to explicitly
determine the set of Iwahori fixed vectors in a given 7. For our purposes, the

7



standard intertwining operators are sufficient for determining Iwahori fixed vectors
when the inducing data is regular; however more tools will be needed to deal with

irregular characters. However, we first compute an example.

4.2.2 An example involving Sp,(F)

Let G = Spy(F). We will need the various parabolic subgroups described
earlier. Let us consider the representation Indg@(y2 ® v). As we see in our ta-
ble of constituents, this representation has an irreducible subquotient Stgp,, with
T%(S t2) = > @v. Frobenius Reciprocity then tells us two crucial facts. First, Stgp,
is an irreducible submodule of Ind%(u2 ® v). Second, is is not an irreducible sub-
module of any Indg@((y2 ® v) o w) for any non-trivial w. Thus, this representation
is in the kernel of any nontrivial standard intertwining operator. So we consider the

following operators I, and L,:

L, f(9) = f(wjng)dn.

Nvi
It is clear that if f is fixed by the Iwahori subgroup that L, f will be as well.
Furthermore, because I, f € Indgm((y2®y) ow;), we see that I, f = 0 for f € Stg,,.
So let us derive some relations on the f(w) for our Iwahori fixed vector f. First, let

W;j = W,, then for w with {(w) < {(w,w) we have

1 =z
0=10,, f(w) = fwanw)dn = / flwam w)dx
F

Nwa

= /f(waw)dx—l— f(m " w)dz.
@ F\O
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Notice that for w with £(w) < £(waw), we have w™ N*¥w C N, so the first integral

follows. The second integral comes from the equality

along with the fact that f is an Iwahori fixed vector. Furthermore, if we normalize
dx to so that O has measure 1, then we find
0 = S+ Y [ fal el )
jzlp—j\p—jﬂ

= flwaw) + Z 7¢I =g ) f(w) = f(waw) + ¢ fw).

Similarly, one does nearly the identical calculation for w with £(w) > ¢(w,w) except
that one replaces the O with P and the summation then begins with 7 = 0. This

adjustment is necessary since for w satisfying f(w) > l(w,w), w'N¥w C N.

However, after this slight alteration, we see that

0=q " fwaw) + f(w).

We can also perform a similar calculation with the Weyl group element wg.

In this case, we find that,

0 0
0=1Ty,f(w) = s f(w/gnw)dn:/Ff(wgng w)dz
0 =z
1 0
= /f(wﬁw)dx—l— (m w)dx.
o F\O 0 -1

Analogously to the previous case, we notice that if £(w) < ¢(wgw), then w™ ' N“sw C
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N. We also have the decomposition

Combining these with f being Iwahori invariant yields,

0 = flww)+Y / 2] f (w)de

I=lp—j\p-j+

= flwsw) + Z 1= q ") f(w) = flwgw) + ¢ " f(w).

Furthermore, one can verify as above that for ¢(w) > {(wsw) we get

0=q " f(wsw) + f(w).

Now we consider all of the relations that we have just formulated. We notice
that f(w) = —¢~'f(w') for w,w’ € Wg with £(w) = £(w') — 1. Consequently, we

have the following proposition.

Proposition 4.2.1. Let Sts be the Steinberg representation of Spy(F') and let f €

Stlo such that f(1g) = 1. Then we see that

for our chosen Weyl group representatives w € Wg.

4.2.3 1T, for {(w) > 1 and analytically continuing I, (s)

There a couple of points worth noting about this technique. First, for rep-

resentations m with r% (m) having multiple submodules, it might be necessary to
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compute I, f for £(w) > 1. In this case, take a reduced expression for w in terms of
w, and wg and compose the various I, and I, according to this decomposition.
Thus one can use a sequence of calculations that are nearly identical to the ones
above. Second, for some representations, it may be necessary to take an analytic
continuation of the standard intertwining operator. For instance, consider the repre-
sentation Ind% (v™2 @ v~!). This representation contains the trivial representation
of Spy(F) as a submodule. In particular, 1o C Ind(r~2 ® v~!) is spherical with

r%(]lg) = v 2®@ v, When we try to follow the computations above we find

00
0=1Iy,f(w) = . f(wgnw)dn:/Ff(wﬁnQ w)dz
0 x

= /Of(wgw)d:c—l— (m w)dx

F\O x_l
— fwm)+Y [ lellel )
jzlp—j\p—jﬂ
Clearly the integral above does not converge, so instead we need to use the analytic

continuation of this intertwining operator. To compute this, let us consider the

family of intertwining operators on the representation Ind%(l/% ® v°) as above.
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Thus we have,

0 0
]Iwﬁ(s)f(w) = . f(wgnw)dn:/Ff(wgng w)dx
0 =z

= /f(ng)d.Z'+ f(m w)dx
@

F\O 21
= )+ Y [ el el (e
jzlp—j\P—j-H

= wﬁw+zq (1 =g f(w)

—S

o q
= flwpw) + 7=

— (1 =q¢ ) f(w).

Now if we consider I,,(s)f(w) to be a function of the complex variable s, then

wp
the rational function that we have just derived is the analytic continuation of the

integral expression for I,,(s)f(w). This rational function has a well defined value

as s approaches —1. In fact, as s — —1 we see that

0= flwsw) - f(w).
Notice that at s = —1, we have the analytic continuation of the standard intertwin-
ing operator

Indg@(u_2 v — Indg@(y_2 ® V),
which vanishes for 1g,,. So we get exactly the relation that we would expect from
the spherical vector. A similar technique also works for I, f(w). Finally, we see
that using the various compositions and analytic continuations, we can compute
almost any of the standard intertwining operators evaluated on our set of Weyl
group representatives.
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4.2.4 Intertwining operators on Spy(F')

There is also one alteration worth mentioning when we attempt to employ these
techniques for the metaplectic group éE(F ). First, we realize that the definition of
the intertwining operators are completely analogous to those on the linear group.

In fact,
Lof(lg, 2ls) = / £([w, 1)1, 1]2]g, 2)1)dn.

Notice that n — [n, 1] is a splitting of N < Sp,(F). As we saw in a previous
section, we also have a splitting K — Sp,(F) given by [k, A(k)]1.. If we choose f to
be fixed by Iy — /S—I\);(F ), then we can attempt to emulate the procedure described
above. In the case of I,,_, the above procedure proceeds without modification. This

occurs because of the decomposition

1 =z
[wa,l]L[m 71]L
1
1 —a! z! 1
= [m 71][1[7’)1 ,1]L[m ,1]L.
1 x -z 1

In this case, all the elements involved belong to P, on which the Leray cocycle is
trivial. However, the same is not true when we consider the intertwining map I, .

In that case, we have the following matrix decomposition

0 0
[wg, 1 L[n2 AL
0 =z
0 0 1 0 0
=[ny 1 m Az )] L[z ()]
0 27! x~! 0 —z!
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where

n(a) =y
0 a

Because f belongs to a genuine principal series representation, we see that

P—i\P-i+l

for j > 1. Using Equation 3.2, we see that

Joipyir Ldz if jis even
/ AA(z—Y))dz — PPt
2?71 . .
p-i\p-i+1 pr,j\p,jﬂ <?>Fdx if jis odd

In the case that j is odd, we can transform z +— w/z and get

-1
qu/ ($—> dx,
X w F

which is the integral of a ramified character over the group of units of O; therefore,
it vanishes. What we have shown is that when computing L,,(f), we will still get
a sum of integrals over P~/ \ P71 as in the linear group case, except that the

integral vanishes for all odd j.
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4.2.5 Techniques for irregular inducing data

The techniques we employ above are sufficient to determine the explicit values
of Iwahori fixed vectors when 7 is a constituent of a representation induced from
regular data. However, this may no longer be the case when our representation is
induced from irregular data. Fortunately for both Sp,(F') and its metaplectic cover,
most reducible principal series representations induced from irregular data will have
certain unitarizable constituents. We can exploit this extra structure in order to
compute the explicit values of the Iwahori fixed vectors.

First, let us suppose that our inducing data is not regular without any other
conditions on the constituents. For Sp,(F) and §£);(F ) such representations will
have constituents that are induced from representations on the maximal parabolic
subgroups. In these cases, we can use the exactness of parabolic induction as well as
knowledge of Iwahori invariance in the inducing data to derive the necessary results.

We see above that for a larger parabolic subgroup P, Frobenius Reciprocity
still allows us to determine representations into which 7= embeds. Let P = MpNp
and Q = MgNg be parabolic subgroups with () C P and ) N Mp = M. Further,

consider the following exact sequence of Mp representations
0—0y —>m— 09— 0.
The exactness of parabolic induction tells us that
0 — Ind%(0y) — IndS(7) — Ind$(0y) — 0

is also exact. Furthermore, if 7 = Indgﬁ v, (7) for (7, V) arepresentation of Mg, then

there is a natural isomorphism between Indg(lndgﬁ vy (7)) and Indg(T). Moreover,
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we can use this isomorphism to understand the Iwahori invariants of Ind% (o). Let

us compute an example for G = Sp,(F'). For this, we consider the representations
x@hnd"(Q) = (xo ) e (xo 7))

of F* x Sp,(F'). Now Pj is a parabolic of G with Levi factor isomorphic to F* x

Sp; (F'), so by the exactness of induction, we get a direct sum of representations on

G
Ind%, (x ® Indj?" " () = nd, (x ® T2) & Ind§, (y ® 7).

It is worth noting that for P € {Py, P.},
/(g (x © T4) = r$(IndS, (x & 72))

so using our techniques with intertwining operators would not seem very fruitful in

this case. However, there is a natural isomorphism
A Indg (x © Ind" (€)= Indg (x® &) f — (Af),

where (Af)(9) = [f(9)](1pxxsp, (7). Now let us consider the double coset space

P3\G/Iy. 1t is clear that

G= |J Pl
weWgqg
Lwgw)>L(w)
is a disjoint union. Let us define the set W3 = {w € W | {(wgw) > ¢(w)}. Since

|Ws| = 4, we see that
dimg[Indf, (x ® T¢)"] = 4 x dimc[(y @ T7)°" ]

where [ is the Iwahori subgroup of Sp,(F’) corresponding to the upper triangular
Borel. In fact, let ¢; be the Iwahori-fixed vector of y ® Tg with ¢;(1sp,) = 1. We
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define the functions f} € IndIGgﬁ (x ® T¢) with supp(f}) C Pswly and fi(w) = ¢;.
Then one can show that (Af7) € Ind$ : (X®ng )fo. Moreover, this construction yields
all the Iwahori-fixed vectors in Indgﬁ (x®T 5] ). This is clear because it produces four
1-dimensional spaces of Iwahori fixed vectors having pairwise disjoint support.

Now let us examine the case where our representation in induced from unita-
rizable data. For example, consider m = Indgﬁ(]lFx ® Stgp,) C Indgw(]lFx ®v). As
before, induction is normalized so 7 is unitarizable. Consequently, 7 is completely
reducible. In fact,

7 =o(viler,) ® (v Star,)

where

1
Tgw(U(V§1GL2)) = ]1F>< (%

Tg@(O’(V%StGLQ)) = ]]_Fx ®l/+2 . V® ]]_Fx.

Notice that we can use the intertwining operator I,, as above to find that

wg

both constituents have Iwahori-fixed vectors satisfying

—q  f(w) if L(wsw) > L(w)
flwsw) =
—af(w) i fwgw) < U(w)

Moreover, the intertwining operator I,,, can be applied to O'(V%ILGIQ) to show that

it has an Iwahori fixed vector satisfying

fwaw) = f(w).

Consequently, we see that the representation O'(V% lgL,) has a one dimensional space
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of Iwahori-fixed vectors spanned by f, with

fo(le) = fo(wa) =1
Jotwg) = fo(was) = folwga) = fo(waga) = —¢~"

fo(wgap) = fo(’waﬂa,a)zq*?

Alternatively, for w € W such that ¢(wgw) > ¢(w) define f,, € Indgﬂ(]lpx ® Stgp, )0
with
supp(fuw) C Pswly

and
Jo(w) = ¢

where ¢ is the unique Iwahori-fixed vector in Stg, C Ind%pl(F)(u) with ¢(1gp, ) = 1.

Then we see that
fO = fwo + fwa - q_lfwag - q_lfwaga

Though note that I, need not vanish on the representation O'(V%StGL2>. So
we would like to use the inner product on the representation Indgg(ﬂ x ® Stgp, ) in
order to find the explicit values of Iwahori fixed vectors in U(U%StGLz).

In this case, we notice that dim@(lndgﬁ(ﬂm ® Stsp,) ) = 4 and
IHdgﬁ(:ﬂ.Fx ® Stspl)fo = J(V%ILGL2)1@ & O'(V%StGLQ)I(Z).

Moreover this is an orthogonal direct sum with respect to a non-degenerate inner
product on the induced representation. To define this inner-product, notice that

the square-integrability of Stg, affords us an non-degenerate positive-definite inner
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product < -, - >g, with
< 9,0 >gp,= 1.
Then the inner product on Indgﬁ(]l px ® Stgp,) is defined by

<< fi, fa >>= /K < fi(k), fo(k) >sp, dk.

Thus for any f € o(v2Star,)™ and f, as above, we have

0=<<f, fo>>= /K < f(k), fo(k) >sp, dk.

From previous arguments, we see that f must be of the form

f - )‘Ofwo + )\OthJa + Aa,@fwa@ + Aa,@afwaga

with A\; € C. When we compute << f, fo >>, we find
0=20+ ¢ha — ¢ap — ¢ Naga-

This relation proves sufficient to determine the Iwahori invariants of U(V%StGLQ).
Moreover, using the the two methods outlined in this section, we are able to com-
pute the explicit values of our Iwahori invariants for constituents of representations

induced from irregular data.

4.2.6 Tables of Parahoric Invariants

The following pages contain several tables summarizing our computations of
the explicit values for Iwahori-fixed vectors. Table 4.1 lists the various irreducible
constituents 7 of the unramified principal series for Sp,(F') as well as which induced
representation Ind% (x1 ® x2) we embedded 7 into in order to compute the values of
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the parahoric invariant vectors. It is worth noting that while the dimension of the
parahoric invariant vectors is independent of the embedding, the actual values of the
vectors depend on which induced representation we use to realize 7 as a submodule.
As such, Table 4.1 outlines these realizations for representations of Spy(F'). Table
4.2 contains the same information for the group §I\);(F ). Finally, Table 4.3 gives the
explicit values of all the Iwahori-fixed vectors stemming from Tables 4.1 and 4.2. In
this table, each row contains the data for a different Iwahori-fixed vector. Notice
that the last column lists which constituents from Tables B.1 and B.9 contain the

vector whose data is described in a given row.
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Table 4.1: Realizing our constituents as submodules-Sp,(F)

case
Constituent Representation
I Indgm (x1 ® x2) (irreducible) Ind% (x1 ® x2)
. a IndIG;Q (xStcr,) Indgm (xv: @ x"lvz)
b | Ind? (xlaw,) Ind, (xv* @ xv~?)
- a Indgﬁ (x ® Stsp,) Indgw (v ®x)
b | Ind (x ® Isp,) Ind, (x ©v)
vl® Ind, (x ® T2) Ind%, (£ ® x)
b | Indg, (x ® TY) Ind%, (x ® &)
a | Stsp, Indgw (1? @)
v b | L(v?, Stsp, ) Indg@ (v @ v?)
¢ | L(v?StaL,,1) Indg, (v @ v71)
d | Isp, Indgm v2@uvt
a | o(v2Star,) Indgw(]lpx Q)
. b | L(v?Star,, 1) Ind3, (1px @ v71)
¢ | o(rzlay,) Indgm(]lFx ® V)
d L(l/,]lpx,l) IndIGgw(]lpx ®l/_1)
2 €]
a|o(vely) Indp, (v ®¢)
b 0(1/®T£1) Indgm(l/®§)
VII
¢ | L, T Ind3, (v ®¢)
d | L(v,T}) Ind% (v ®¢)
Table continued on nextpage.
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Table 4.1: Realizing our constituents as submodules-Sp,(F)

case
Constituent Representation
a | 8([¢,ve], Dz Indf, (év ® €)
b | 8(€,v€), Dy Ind§, (6v ® €)
VIII | ¢ | L(v2€Star,,1) Indg, (£ ® &v)
d | L(ve, T¢) Indf, (6v~! @ ¢)
e | L(w¢, T} Ind3, (¢v~! @ ¢)
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Table 4.2: Realizing representations as

submodules-é};(F) case

Constituent Representation
IX Ind§, (O @ x2)') md$ ((x1 ® x2)')
Indga((xStGLz)’) Indg (xvz @ x tvz))
X
G / G 1y,
Ind ((xlcr,)') Ind3 ((xvz @ xv~2))
Indgﬁ (x ® 7(sv2)) Ind¢ ((sv? ® x)')
XI
Indf (x m(cvz)) Ind¢ ((x ®sv3)’)
H((CStGLQ)’,gué ® W(gué)) Indg ((svz @cv %)’)
((sStar,) v @ (sv?)) | Ind§ ((sv? @ v=2))
XII
H((CHGLZ)/7§V% ® T(g]/%)) Ind%((gy_% ® CV%)’)
((slar,),sv? @ w(sv?)) Indg (=2 @cvz))
I((svStaL,), sv2 ® T(sv7)) Indg@((gl/% ®cvt))
H((CVStGLz)/’CV% ® w(cué)) Indg ((sv2 @cv %)’)
XIIT
I((svlgL,)’, whr e T(gz/%)) Ind%((g,j% ® §I/%)')
H((§VILGL2)/’ gz/% ® 7T(§V%)) Ind%((gy_f R <v %)/)
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4.3 Local Densities of Quadratic Forms

As we have seen in the first section, the interpolation method used to construct
®,, 1, requires choosing a quadratic space (V, Q). Eventually, we reduce our doubling
calculation to a combination of Whittaker functions that are closely related to the
local densities of the quadratic space (V, Q). In fact, by some results of Yang [42],
there exists completely general formulas for local densities of quadratic forms in
various low rank cases. In particular, the cases needed for the doubling integral for

Sp,(F') and é});(F ) are completely computable via [42].

4.3.1 The work of Yang

As we compute Z(s, @, f)(gp), we will find that our doubling method eventually

requires us to compute integrals of the form

W)= [ et d

where L and L' C V are good lattices. We will further reduce such calculations to
a weighted average of integrals where L = L’. Such an integral is closely related to
one of the form

D

=1

ag(T, S) = W(T,S) = /S . Y (blQ (e (T))d db.

In this case, S and T are symmetric matrices of degree m and n respectively. More-
over, (V,Q) is the quadratic vector space with V' = F™ and Q(z) = *zSxz. The
matrix 7" has no analog in our integral.

While there are some general formulas to compute ag(7,.S) for any choice of
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T and S given by Hironaka and Sato [11], these are so complicated as to be compu-
tationally unusable. Some of the most general computationally useful formulas are
provided by Yang [42], where he gives general formulas in the case that S is arbitrary
and T' € F or T' € Sym,(F). The formula for n = 2 are vastly more complicated
that when n = 1, thus it would seem that the generalizing Yang’s results to higher
dimensional 7" would also provide unusable results in sufficiently high dimension.
Yang also formulates his result in a particularly useful way for our application.
Let V,(Q, S be as before. Then as before, we can adjoin r hyperplanes to form the
quadratic space V,.; in this case, we will denote the new matrix of the quadratic form

as S,. Yang then provides a formula for the integral

a8 =W sy = [ bR

when n € {1,2} and where a(q¢~", T, S) is polynomial in ¢~". In the case that n = 2,
Yang’s expression is a linear combination of 12 different polynomial terms of various
complexity. However, we will show that for » >> 0 and 7" — 0, nine of these terms
vanish and the others become convergent geometric series in ¢~ (realized as rational

functions). In fact, for » >> 0 they simplify in such a way that

Wo(r, L, L) = lim a(X, T, S)

T—0

is easily computed by hand. We will now derive the necessary formulas using Yang’s

results and notation in [42]. Let

S = diag(e;w");2,
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with [; <[; when ¢ < j be the matrix of the quadratic form on V. Further, let

alw‘“
T =
QT2

where the a; € O*. The following essential quantities are defined by Yang [42]. For

k > 0 an integer, we have
Lk, 1) = {1<i<m :1l;—k<0isodd}
(k1) = #L(k,1)

d(k) = k+ %Z(zi — k)

i<k
N
— 2 €;
w - (2), I @)
@ /F ieL(k,1) wir
1+ (1)1
k) = —|— 2
() 5

Yang then proves the following equation
Oé(q_r, T, S) = RO(X) + Rl(X) + RQ(X)
with

4
Ro(X) =1, R1(X):Z]1,i, Ry(X)=(1—q" qu +q 126
i=1

and X = ¢7". The individual I, are defined as polynomials in X using the quanti-
ties defined above. While many of these terms have complicated formulas, one can

see that in most cases [, — 0 with 7" — 0. For an example, consider one such term

a1 1 1
[2,2 = ((E)F 7(5 (a1 + 1) — _25+(a1 T 1))
X Z v(ay + V)o(k)ot (k)gutitdarthrdk) yatithk

O<k<a1
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Notice that the leading coefficient is at most 1 and the summation is at most

ai
E qa1+1+dhu+4)+dﬁﬂ)(a1+l+k.
k=1

Af we let p = % l;, then for a sufficiently large j, we have
i=1

d(]’)-@-%)jzu.

Let us choose a T sufficiently close to 0 so that a; > [; for all i. Then we have

al al
Z qa1+1+d(a1+l)+d(k)Xa1+1+k _ qa1+1+d(a1+1)Xa1+1 Z qd(k)Xk

k=1 k=1

al
_ qu+(2—%)(a1+1)Xa1+l Z qd(k)Xk
k=1

We now want to consider what happens as T" — 0 or alternatively when a; — oo for

both a; and as. First notice that

differs from

B
Il
—

becomes a convergent geometric series as a; — oo as long as 1 —m/2 —r < 0 which

holds in our cases. Furthermore, we see that
qu+(2f%)(a1+1)Xa1+1 _ (q”)(q2_%X)a1+1
which vansishes as a; — oo as long as 2 —m/2 —r < 0. Consequently, Tlim Iy =0

as long as 2 —m/2 —r < 0. Note that this slightly more stringent restriction on r
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and m is still satisfied by our Whittaker functions. In fact, all the vanishing terms
in a(X,T,S) are treated similarly. Either they can be written as a polynomial in
X times a convergent rational function or else the term is simply a monomial in
X, which obviously vanishes as T" — 0. Ultimately, we have the following three

non-vanishing terms as 7" — 0:

Ly = (1=¢7%) Y v(k)a"(k)g" M x*,

0<k<ai

Ly = (1—¢7?) Z (k1 )v(k2)6T (k)0 (o) gt TR FR2) ke,
O<ko<ki<ai

and

Lg = Z <5+(k>+q7157(k))qk+2d(k)X2k.

0<k<ai

As before, T'— 0 implies that a; — oo and our three terms above are dominated by
convergent geometric series. Let us now compute a concrete example that we will
use for the doubling integral with spherical representations. In both the linear and

metaplectic cases, we will be interested in computing

Wotr )= [ eatiQE])a
ymy 1 1

for
L1 = 04 (resp. L1 = O5>
where

S; = diag(2k, —2k, 2k, —2k)  (resp. S, = diag(2k, 2k, —2k, 2K, —2K))

is the matrix for the quadratic form in the linear (resp. metaplectic) case and
k € O*. Given these matrices, we can compute all of the auxiliary quantities above
(see Table 4.4).
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So we substitute these quantities into our formulas and produce the rational

functions in Table 4.5. By summing and simplifying all these terms, we find that

_ (=g A —g ) (2 + 1)¢(r)
Wolr, L, L) = (L—g )1 —-q¢7)  (2r+2)C(r+2)

in the linear case and

1—q @) ((2r+1)
1—q @) ((2r +4)

WO(Ta Ll; Ll) -

in the metaplectic case.

Similar calculations yield all the local densities needed for our doubling inte-
grals. However, to use Yang’s formula, one must write the matrix of our quadratic
form as if the desired lattice L ~ O%™()  For instance, if V = My(F), Q(X) =
kdet(X) and Ly = L; N Ly from Example 4.1.1, then we see that Ly ~ O* with
respect to the matrix S = diag(2k, —2k, 2wk, —2wk). To compute Wy(r, Lo, Lo), we
apply Yang’s formula to this matrix. We summarize all the necessary local density
calculations in the Tables 4.4 and 4.5. Table 4.6 summarizes all of the quadratic
spaces that will be relevant to the thesis. Notice that in this table B~ (F) represents

the division quaternion algebra with

i*=¢ and Pl=w
where ¢ € O* such that (i)F = —1. Table 4.7 computes
WO(T7 L7 L)

for all the relevant lattices.
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4.3.2 Some lemmas for computing Wy(r, L, L').

Now that we have computed the various values for Wy(r, L, L), we need to
consider how to compute the analogous result for Wy(r, L, L') where the L and L'
are the various lattices mentioned in the previous section and found in Table 4.6.

In particular, we have

Wolr, L, L') = / ", / RCCCCCNTEED

We will see that for lattices L, L' and L N L = L", Wy(r,L,L’) is a weighted
average of Wy(r, L*, L*) for L* € {L,L',L"}. In particular, we have the following

proposition.

Proposition 4.3.1. Let Ly, Ly be the self-dual lattices from Table 4.6 and Lo =

L1 N LQ. Then

WO(Tu Lla LQ) - WO(T7 L07 Ll) + WO(T7 LOa LQ) - WO(Ta L07 LO)

Proof. Let
L — Z [a] + L(()r) and LS") = Z [c] + L(()T)a
acO/P ceO/P
where
(r)
00
la] =
a 0
and
(r)
0 cow !
[c] =
0 0
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Note that for M € L;, M) denotes expanding M by a zero vector in V,, so that

M lies in LET). Then we find,

Wor k) = [ ete0Q@)drds

B b da db.
Z /Sme(F) /[a1+Lgr>@[c]+Lg>w(”< (Q()]))dx

a,beO /P

Next, we would like to show that for every a,c &€ P, then

W [ (er(b[Q(x)]))d db
Symy(F) Ja]+L§" @[c]+ LS

vanishes. Notice that [Q(x)] is a 2 x 2 matrix whose 7, ™ entry is given by (z;, z;)v
where (-,-)y denotes the inner product on our quadratic space V,. In our case,

21 = [a] + 2, and 25 = [c] + 2} where 2 € L. Thus,

(

([a]7[a])‘/+2<[a]>l‘/1)V+($/171‘/1)V ifi=j=1

(i 2)v = 4 ([al, [d)v + ((al, a5y + ([cl, 24)y + (@, 2}y i § #

([e]; [eD)v + 2([d], #5)v + (25, 25)v ifi=j=2

\

Notice that for the terms above, only ([a], [c])y € F\ O. If we set d = ([a], [c])v, we

have that
d
Q)] = +X

d
where X € Sym,(O). Let

01

w = ,
10

then [Q(x)] = dw + X. So we substitute this into our integral to get

W :/ / WY (tr(bdw) )y (tr(bX))dx db
Symy (F) J o]+ LY @[ +L{”
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So finally, we perform the translation b — b+tw where ¢t € O* such that ¢ (2dt) # 1.
Such a t exists because v is our standard additive character that is trivial on O but

not on P~1. So we have
W,. — v(2td) / / (e (b)) (tr(bX )b (tr(tw X ) )da db.
Symy(F) Jla+Lg @[+ L
Notice, though, that twX € Sym,(O) so ¥ (tr(twX)) = 1. Therefore we see that
Wae = (2td)W, .
if a,c ¢ P. So

Wee = / / Y(tr(b[Q(z)]))dx db = 0.
Symy(F) J[a]+L8 @[ +L

Since these terms vanish we find that

Wo(r, L1, Ly) = Z/s (F)/[HL(T)@L(T)w(tr(b[Q(x)]))dxdb

ae(’)/p
L T db

+ >
[JeO/P
- /Sym2(F) /Lg”@ng ¥ (tr(b[Q(z)]))dz db.

]

So we are reduced to the case that L C L’ or vice versa. We will show that the
quantity Wy(r, L, L") is a weighted average of the terms Wy (r, L, L) and Wy(r, L', L’).

In particular, we have the following lemma.

Lemma 4.3.1. Let L C L' C V be lattices lattices from Table 4.6 such that one of

the following holds:
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1. V=V, L=1Lyand L' € {Ly, Ly, L}
2.V =V, Le{L,Ly} and L' = LY.
3. V=V, L= Lyq and L' = L#..

Then we have,

1
WO<T7L7L/) = H—l (qWO(r7L7L> + WO(ra L,vLI)) : (43>

Proof. To prove this statement, we appeal to some results of Yang’s [42]. In par-
ticular, Proposition 5.1 in [42] states that for f a locally-constant bounded function

on Sym,(F') such that f € L'(Symy(F)). Then

= —3a 1 o 1.t
/symmf(b)db = >4 <2(1_(_;1)Fq1) /GLQ(O)f(q b'b)db

a€Z
1 .. .
21+ (F)ra ) /GLQ(O) Fla"bding(1, ) b)db)

1
dop X g [ pdiag(ug® ™) Db
QL2 (0)

4
ap<ag
u;€{1,u}

where u € O* with ( ) = —1. Ultimately, we will apply this Theorem in a manner

u
w/F

similar to that in Yang [42]. For our purposes,

OB SRR CC NS

whereas Yang uses a similar function twisted by a ¢(Tb) with T" a symmetric matrix.

So to derive our formula, we want to compute the following integral

AL, st 1) = / / W(—tr(bdiag(ty, 1) 'HQ(x)]))da db.
GL2(0) J LM (L))

We will carefully prove (4.3) in the case [L' : L] = ¢. For now, let L' =

> ax+ L.
acO/P
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Next, we will decompose K = GLy(O) into left cosets of the standard Iwahori

subgroup J (the inverse image of the upper triangular matrices in GL2(O/P)). In

particular,
K=JuU U n(c)wJ
ceOQ/P
1 1 ¢
where w = and n(c) =
1 1

Next we notice that

for b € J. So we can then rewrite the integral according to our decomposition. This

yields,

AL, Lstty) — / / - mw<—tr<bdiag<t1,t2>tb[@(w)}))dmdb

T Z/ s /L (—tr(bdiag(ty, t2) '0[Q(x)]))dz db.

op ooy

Now, we have already shown that the inner most integral is invariant under trans-

formation by J so we can integrate it out of our expression which yields,

A(L,L';t1,t5) = vol(J) (/L Y(—tr(diag(ty, t2)[Q(z)]))dx

M gL

S / (—tr(wn(c)diag(ty, t)n_(c)w]Q(x))))dx

a,ceO/P (T)®GI+L(T)

Next we note that x — =z - w interchanges the lattices and the transformation

x — xn(—c) translates the lattices. Thus our expression becomes,

ML Litts) = vol() [ o, P dingtt, QU] (4.4

+ vol(J) Y /GHL(T)@MHL()w(—tr(diag(tl,tg)[Q(x)]))dx.

a,ceO
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By a simple reordering how we sum the integrals in (4.4), we realize that

AL, L';ty,ts) = vol(J) (q /L(T)@L(T) W(—tr(diag(ty, t2)[Q(z)]))dz

" /L/M@L/m (—tr(diag(t, o) [Q(x)]))dx) (4.5)

When [L': L] > ¢, we find that the argument above doesn’t quite follow as simply.
For the general case, we need to add several integrals, having the same integrand
as in (4.5), but with domains of integration of the form y; + L") @ y + L™ where
Y1 — cyp € L) for any ¢ € O/P. However, these terms are essentially the Wa.c in
Proposition 4.3.1 which vanish.

So we have reduced our problem of an integral over L™ @ (L)) to a problem
involving a weighted average of (L*)") @ (L*)"). Further we notice that for any

b € GLy(0), we have (L*)™ @ (L*)™ - b = (L*)") @ (L*)™). Therefore,

/ W(—tr(diag(tr, £2)[Q(x - B)]))de
(L)L)
_ / (—tr(diag(tr, £2)[Q(x)]))da
(L)L)

for all b € GLy(0O). Finally, we see that

/ b(—tr(diag(t, £2)[Q(x)]) )dx
(L7 (L*)P)

= VOl(GLQ(O))l/ / Y(—tr(bdiag(ty, t2)"b[Q(x)]))dzdb
GLy(0) J (L) @ (L*)r)

and

vol(J)

AL, L'ty t9) = ol(GLy(0))

(QA(L, L, tl? tg) + A(L/, L/, tl, tz)) .

Finally, we realize that

vol(J) = (¢ + 1)~"vol(GL(0)),
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so we ultimately find

1
WO(T7L7L/) - H—1<QWO(T,L,L) + WO(Tv L/7L/))'

]

Finally, it is worth noting that the expression for Wy(r, L, L’) is invariant
under the transformations x — zw and b — wbw. This sequence of transformations
exchange the lattices so we have that Wy(r, L, L") = Wy(r, L', L). So by combining

Proposition 4.3.1 and the Lemma 4.3.1, we get the following corollary.

Corollary 4.3.1. Let L, L' and L” = L N L' be lattices from Table 4.6. Then we

have

1
Wo(?”, L, L/) = m«q — 1)W0(’l“, LH, LN) + Wo(T, L, L) + WO(T’, L,, L/))

Proof. Simply substitute the formula from Lemma 4.3.1 into the formula from

Proposition 4.3.1. O
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Table 4.4: Intermediate computations for the Whittaker functions in spherical case.

S, Sm
0 if k even 0 if k even
L(k,1) | = =
{1,2,3,4}if kodd {1,2,3,4,5}if kodd
0if k even 0if k even
I(k,1) = =
4if k odd 5if k odd
d(k) =—k = —%k
1 if keven
v(k) =1 =
(2;”) if k odd
(
1if keven
ot (k) =1 =
0if kodd
,
0if keven
5~ (k) =0 =
1if k odd
\

Table 4.5: Rational functions used to compute Wy(r, L, L), spherical case

Sl Sm
I — (1-g79)X — (=g X2
1,1 - T 1-X — T 1-g¢1x2
I _ (=g )¢ 'X? (1—g~%)g~5X"
2L 7 0-X)(1—¢1X?) | — (I—¢ 'X?)(1—¢ XY
—1+v2 —3v2,,—4vy4
— g X — X4 X
[2,8 — 1-¢ 1x2 - 1—q 4x4
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Table 4.6: Relevant quadratic spaces

Sp2(F) é});(F)
Vem = (F57 Q(xm s ,l’4>>
(V*,Q) Ve =(My(F), kdet)
Q(x) = k(22 — x129 — T374)
L My(O) 03
1 1
L2 MQ(O) @ D w’lo D w® D (92
w w!
Ly LiN Ly LN L,
yram — (F5, Q(Io, . 7?[74))
(Ve Q) Ve =(B~(F),kN)
Q(x)=rkExi+wrl—cwrs—x324)
L,, B_(O) o>

Table 4.7: Local densities required for the doubling integrals.

Spy(F) gf);(F )
Wolr L. 1) S e St
Wo(r, Lo, Lo) q%(1—q7(r+1))(14-(3:2:(12)r__'—z)7)r(_1~_3;(72rr)71)_2q7(2r+1)) q%Hq;::(Qg:lz;w)
Wolr: Lray Lra) T Lobtet
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Chapter 5

The Main Calculation

Now that we have set up the necessary machinery, we are ready to compute
L-factors. Note that because the formulas in this section essentially encompass both
the linear and metaplectic group cases simultaneously, G (resp. H) will be used to
denote either Spy(F) or §;2(F) (resp. Spy(F) or §1\DJ4(F)) We will also suppress the
tilde notation from the various parabolic subgroups.

Let f € Indgw((xl ® Xx2)'). Then for any {®,}re(s)>>0 With

q)s € IndgH<<XV| . |S)/) = I(S7XV>a

we have the doubling integral [22]

Z(s.®. f)(g}) = / B0 d

Using the Iwasawa decomposition G = PyK with Ny = Ny N; (see Notation page),

we get the following decomposition of the doubling integral,

Z(s,%, )(g) //F //Sm (Wil | T | )

aq C
% f(na(b)m K')db de d* a dk. (5.1)

a2

where ¢’ € G is any element projecting onto g € Spy(F).
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5.1 Constructing ®g 4,

Next we employ our interpolation method to construct our ®,,,. Let V' be
one of the quadratic spaces listed in Table 4.6. Thus our interpolation method will

produce a vector in IndgH (xv]| - [*°") where

—Lif G = Spy(F)

So =

0 if G = Spy(F)

So for ; € S(V?), we have

Qyyr = )‘V(QDY) ® ‘Pg))-

Lemma 5.1.1. Suppose that @, 4, = )\V(QDY) ® gog)), then

Brgsr(§i(05:) = 1V5) [ o a0)d (@) - ()8 ()

where 0 and v are defined in section 4.1.2.

I —I
Proof. Let o = . We have already seen that

I
By (ilgh, ) = wv, ([n, 1][m(a), 11i(gh, ¢) (¢ @ 0)(0)
= wy, (w1, 1 [m(@), 1) @y, (96)9 ® wy, (9")05”)(0).

Letting 61 = wy, (gh)\” and ¢ = wy, (¢')py”, we get

wy, ([wr, 1]z[m(a), 1) (d1 @ ¢2)(0) = V(VT)/ wy, (m(a))(¢1 ® ¢2)(z,0)dx

= v(V;) V¢1($)¢2(—I)d$

Substituting the ¢; back into the equation gives us our result. O]
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It is also worth noting that

(m+42r)(m+2r—1)
2

xv, (r) == (2, (=1) det (V7))

where m = dimp(V,). However, a routine calcultion shows that

(m+42r)(m+2r—1) m(m—1)

(—1) = et (1) = (—1) ™5 det(V)

so xv. = Xv. Lastly, by another elementary calculation, we see that

1 if G = Spy(F)
xv(x) = - .
(x,2K)F if G = Spy(F)

We now substitute this into our integral which yields

Z(so+1,®, f)(g0) // //S /wvrgow(f) (2)
Fx)2 ym, (F) J V2

a; ¢C
Xwy, (ng(b)m ks (x)dx

a; C

X f(ng(b)m K" dbdcd* a dk

2
— A
- [ [ et @
K J(F*X)2 JF JSymy(F) JV2

o ma@m | | kel (@) da (5.2)

a2

x|ay| " as| 72 f(m(diag (a1, az))ny (c)ng(b)k)db dc d* a dk

where the factor |a;|~*|az| ™ comes from the transformations
-1

ap C ay C
ny(b) — m ny(b)m

a2 a2
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and ¢ — ca;. Next, we use the fact that f € Indgm((xl ® x2)') and compute the

WEeil representation to arrive at

Z(SO + 7, ®> f)(gé))

5+2sg9+2r

= / Xv(a1a2)xl(a1)xg(a2)|a1a2|_2|a1a2| 2
(Fx

)2
x / / / v, (90)6" (@)
F Sym2(F) V’r2

< [ ) " D

a2

X (—tr(b[Q(x)]))dx dbdecd™a

1. T
:/ xvxi(a)xvxa(as)|aias| 2" 0// / WVJQO)@& )(37)
(F>)2 FJSymy (F)J V2

e - | T e @lQ@))de dbded*a

(5.3)

Note that, in practice go = lgp, .

In this final expression we have

1(f, ™) (x) = /K £ (k) () (@) dk.

This calculates the action of f averaged over K on ¢ (x) and turns out to be one of
the critical computations in our method. It is also worth noting that I(f, ™) (x) €
S(V;2); moreover, we will eventually show that I(f,™)(x) = I(f, )" (z). So we
see our method of augmenting the dimension of V' is very natural with respect to

our interpolation method.
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5.1.1 Choosing the characteristic functions

At this point, we must make a choice for our functions ¢;. As has been stated
previously, we will be interested in characteristic functions of lattices L @ L' C V2
where L* C V are good latices (as defined in Section 4.1.3). In particular, we will
return to the quadratic spaces (and notation) from Table 4.6. The next step in
our calculation is to compute I(f, p)(z), when we take ¢ as above and f to be an

Iwahori fixed vector. So let us define

vrer (x) = charpe ()

with L and L’ good lattices. We see that pqp () is Ip-invariant (resp. Ip-invariant)
if L C L' (resp. L' C L).
Let us now consider the calculations I(f, p)(x) for o(z) € S(V?). After that,

we will show that
I(f, ") (@) = I(f, )" (x).

In order to compute our doubling integrals, we will primarily be interested in com-
puting I(f, ¢) for the following characteristic functions: ¢r.er., Yroern, and ¢ oL,
with ¢ € {1,2}. A routine computation shows that the characteristic function for
each product of lattices is invariant under [y via the Weil representation. We will
see that this allows us to write our integral as a finite sum. In particular, we have

that

Sp2(0) = |J MNa(O)ywiy

weWst

where Wgp,, is the Weyl group of Sp, and Ny is the unipotent radical of Py = NyMj.
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However, we can refine this decomposition even more. Let us define some subgroups
of Ny that depend on the various elements of Wg = Wy, .

Let Wg now denote a fixed set of Weyl group representatives that we shall
explicitly describe below. Then for each w € Wg, let Inn(w) : G — G such that
Inn(w)(g) := wgw™". Also let Ny be the opposite unipotent subgroup of Ny (alter-
natively, Ny = Inn(wapas)Np for the long Weyl group element wasa5 € Wg). Thus
for any w € Wg, we define N := {n € Ny|Inn(w)(n) € Ny}. This gives us our first

refinement of

Spo(0) = | N"(O)wly.

weWag

We also notice that for n € N*(w), Inn(w)(n) € Iy. Therefore,

Sp,(0) = | (WN"(0)/N"(w)wly,

weWea

a finite union of cosets of /.
So if we choose a Haar measure on Sp,(F'), in particular so K = Sp,(O) has

measure one, our integral becomes

I(f o)) =vol(ly) > flw) > (wv(nw)p)().

weWg neN®(0)/N¥(w)
Consequently, we need only compute the action of certain Weyl group elements on
the factorizable function ¢rqr () = ¢r(r1) ® @ (z2) via the Weil representation.

We now consider this calculation for a factorizable p = ¢; ® o € S(V?). To do
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this, let

Wy = Wwp =

1 -1

Via some very simple calculations we see that

0 1 0 1
rv(wa)p(r) = |det( N2 o(x ) = 02(r1) ® p1(12)
10 10
] 10 0 0
wiwsele) = [ vlnlye E )
v 0 0 0 1
0 0 0 0 ) 0 0 1
0 1 0 —1 0 —1 0
10 0 0
X 90(95 +y )dy2
00 0 —1

- /V (2, —2))e1(1) © 2 ()
— i) ® ( [ s —yz))wz(—yz)dyz)
= p1(r1) ® Pa(w2).
So ultimately we see that
(e 0)p(2) = x(a(wa) 10 V)70, @ (1)
wy([wg, 11)e(x) = xv(z(wg))y(no V) @ gy(x)
using our expression for wy ([g, 2])(x). Also, from Section 3.2, we have

#(we) = x(ws) = 1,
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and
) Lif Ve{Vvs Vem}
Yo V) = ~(det(V), n)y(n)e(V) = :
—1if Ve {Vra yrom}
We would also like to compute the action of wy(nz(b)) on a function ¢(z)
for ny(b) € No(O). Notice that because Ny is an abelian subgroup of G, we can
compute this action individually for each variable by1, b1o = bs; and bas. Also notice

that for z(nz(b)) = 1 and j(nz(b)) = 0, thus wy(na(b))p(z) = ry(nz(b))e(x). So

we compute each individually (with x = (x1, z5)). For by,

by 0 1 b;1 O
rv(ng Jp(z) = ¢ Etr(x,x ) | o(2)
0 0 0 O
b
= ¢(%Q(m1))<ﬁ(l’1,$2)
Thus
b
> w(gQ(ﬁcl))s@(%wz)chho(Q(xl))w(m)- (5.6)
b11€0/7)
0 0
Notice that 7y (nz Jo(x) is handled almost identically yielding the fol-
0 b
lowing results
0 0 bos
ry(ng Je(z) = w(TQ(fcz))W(%’ﬂ?z)
0 bao
b
> ¢(§Q(l’z))@(l’1,$2) = qcho(Q(z2))p(). (5.7)
b2 €O/ P
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Finally, in the case where b1y = bsy, we find

O 1712 1 O b12
rv(nz Jolz) = ¢ | Jtrlz,z ) | (=)
b12 0 b12 0

= Y(bia(z1, 22)) (71, T2).

Thus,

Y Ulbi(er,x2))p(aa2) = geho((21,22) (). (5-8)

b12€0/7)

Thus if we apply equations (5.6) — (5.8) for a function ¢rq/ (x) for L and L’ lattices

in V', we get the following proposition.

Proposition 5.1.1. Let L and L’ be lattices in V' and let o(x) = prep (x), then we

have the following:

> oEQEeron() = wpunsen()

b11€(9/7>

b
Z w<§Q(Q?2))9@L@L’(m) = ¢Prawnw)#) (@)

b22€0/7)

Z Y(bia(1, 22))prer (v) = WL@(L/mL#)(fE)+C]90(Lm(y)#)@y(33)
bi12€OQ/P

_QSO(LH(L’)#)GB(L’OL#)(x)'
Also note that wy (ny(a))p(x) = ¢1(21) ® pa(x2 +axq). Although the formula

for

Y wv(m(a))p(@)

acO/P

doesn’t generally simplify in any particularly nice way, there are two cases that do

have simple expressions. They occur when ¢ = ¢ and L and L’ are good lattices
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with L C L' or L/ C L and [L : L'] = q. In these cases,

¢prer () fLcr
Z (1) ® pu(es +az1)= @pLor(z) + prev(z) (5.9)
aco/P if [L:L]=q.
—preL(z)

\

It is worth noting that in order to extend our doubling method to more exotic
representations, we would need to find another reasonable simplification when L' C
L and [L: L'] = ¢" with n > 1. Those sums involve much more complicated terms.
Using our formulas for the Weil representation on the necessary factorizable
functions, we include a table at the end of the chapter compiling the various I(f, ¢)
needed in this thesis (see Table 5.1).
There is another important property of I(f, ¢)(z) that we use over the course

of our calculation. Recall that we defined
V,=V+V,

where V., is the orthogonal direct product of r copies of the space (F?, Q) with
Q(z,y) = 2zy (i.e., V., is the orthogonal direct sum of r hyperplanes). Then, for

0" = o ® Y, we would like to show the following proposition.

Proposition 5.1.2.
I(f, ") (x) = I(f, )" (x).

Proof. Notice that wy, (g) = wy(g) ® wy; . (g) and the simple calculation

I(f, 6™, 2,) = /K F (kYo () (a2 dk

S R GEOEFROEIEa
= [ PSR © ek = 1))
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Notice that ¢0 is a K-invariant characteristic function. ]

Finally, we notice that by (5.4), (5.5), (5.9) along with Propositions 5.1.1, we

have the following lemma.

Lemma 5.1.2. Let L and L' be lattices in V with L C L' or [L: L'| = q and ¢rar

as above, then
I(f, oL )(z)

is a linear combination of functions pr,er,(x) with L; and Lj lattices in V.

5.1.2 Reduction of Whittaker functions to local densities

By Lemma 5.1.2; it now suffices for us to compute the integral of the form

1 r
/ XVXI(@l)XVX2(a2)‘a1@2’r+2+80/ / / SO(LB@LQ(I')
(F*)2 F JSymy(F) J V2

) pa(—rm e Y (—tr(b[Q(2)]))dz dbded*a  (5.10)

where L' are all good lattices. If fact we can define a function on GLy(F)

A(L17L27L37L4;9) ::/s - /\/2 gL (T)prser (—1g9)Y(—tr(b[Q(x)]))dx db.

Substituting this expression into (5.10) yields

aq C
/ X1 (a1)x2(az)|azan 20 /A(L1> L* P LY, )deda.  (5.11)
(Fx)2 F
a2
There are two important properties of A(L', L?, L3, L*; g) worth noting. First, if
ai

Q2
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then A(L',L% L3 L% g) is easily computable. Second, A(L', L% L3 L*; g) is both
right and left invariant with respect to compact open subgroups that depend on the
relationships between the lattices. We seek to make both statements explicit and,
as a consequence, will establish the connection between our doubling integral and

the local densities defined by Yang in [42].

Proposition 5.1.3. Let {L'}}_, be good lattices. Then we have

(

W()(T, Ll, L2)
if '@ L?Ca;'L?®ay' L
lay |~ D Wo (r, L2, L?)
ay if ;'@ L[> C L' ©ay' L
ALY L2 L3 LY ) =
ag ‘CZQ‘_(%—H)WO(Ta L1> Lg)
if ' @ay'L* Cal'l?® L2

|a1a2 | —(2r+1)WO (T, LB, L4)

if a]'L3®ay'L* C L' @ L2
where

Wo(r, L, L") ::/S " L@Llw(—tr(b[Q(x)]))dmdb.

Proof. The proof is nearly transparent. We notice that

Yrigr(T)prsern, ( " ) = (pri(x1) ® pre(z2)) (prs(r101) @ Pra(r202))

= [pn(z1)prs(z101)] @ [pr2(22)pra(z2as)]
= [pr(21) @11 (21)] @ [pr2(2) gy pa(22)]

So we see that the conditions on the lattices simply determine which characteristic
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function dominates in each pair. Moreover, for any pair where either a; ' L? or a, ' L*

dominates, then we make the appropriate transfromations x; +— xiai_l and
ay ay
b— b
ay ay
where af = a; when we transform the z; as above and a = 1 otherwise. ]
So to compute the integral
aq C
/ ALY, L2 L3 LY, )dc
F
a2

we will use the invariance properties of A(L', L?, L3, L*; g) to reduce our calculation

to the previous one. In particular, if L' C L?, then we see that

/S ) /\/2 PLigL2 ($)¢L3@L4(—xkg)w(_tr(b[Q(x)])) dx db
N / / (’DLl@m(xk_1)<ﬁL3@aL4(—$9)¢(—tr(b[Q($k_l)])) dx db
Symy (F) J V2

— [ ] enen@enen(-agu-ul@)) dr
Symy(F) JV;2

for all k € J where J is the standard Iwahori subgroup of GLy(F'). Notice we perform
the transforms x — zk~! and b — k~'b'k, which both preserve the measure. Thus
A(LY, L2, L3, L, g) is left J-invariant. Similarly, one can show that for L2 C L', then
A(LY, L2, L3, L%, g) is left J-invariant, where J is the opposite Iwahori (i.e., J = t.J).
Identical conditions on L3 and L* gives A(L', L?, L3, L*; g) right-invariance under .J
or J.

Finally, we consider the double coset space J;\GLy(F)/J; with J; € {J, J}.

We can now show that any upper triangular matrix in GLy(F') belongs to a double
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coset represented by a diagonal matrix or a matrix having only entries on the anti-

diagonal. In particular, we have the following proposition.

Proposition 5.1.4.

a1

J J if 3i,ord(c) > ord(a;)

J J if Vi, ord(c) < ord(a;)

—c*1a1a2

\

Proof. 1f ord(a;) < ord(c), then we have

a; ¢ ai 1 cal_1

ag (05} 1

Similarly, if ord(as) < ord(c), then we find,

a; ¢ 1 cay ! aq
a9 1 a9

Finally, if ord(a;) > ord(c) for both ¢ = 1 or 2, then we find,

a; ¢ 1 c 1

as clay 1 —ctaja, cla; 1

We get nearly identical results if we have left or right J invariance. In fact,

only the conditions on ord(a;) and ord(c) shift by +1.
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These previous two propositions finally allow us to compute the integral

(3]
/A(Ll,LQ,L3,L4; )de =
F

a2

/ /m >/V“’ @l | (a0 dr b de.

a2
For the sake of completeness, we will compute one example; the rest follow with
only minor adjustments.
Let V € {V*,V*»} and let L' = L? = I3 = LI and L* = L\" (see Table
4.6). In this case, we break our integral into four pieces according to whether
ord(a;) > 0 or ord(a;) < 0. First, let ord(a;) > 0 for both ¢ = 1 and ¢ = 2, then let

P8 = 4,0 U ay®. Using the results of Propositions 5.1.3 and 5.1.4, we have

aq C
/A(T, Ly, Lo, Lo, L1; )de
F Qo
= v O x| —tr(b dx dbd
F Sym,(F) V2 a2
_ (r) o el " —te(b dz dbd
Prowno(T)Proer, (—T JU(—=tr(b[Q(z)]))dx dbde
PB Sym, (F) V2 ao
c
F\PB Symy(F) V2 —clajas

X (—tr(b[Q(x)]))dx dbde.

In the second integral we make the substitution x — z - w™!. Then we follow

this with the substitution b — wbw ™! and notice that ¢ LM L™ is invariant via right
0 0
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translation by w, we get

a2
ay
= / / /SOLO@LO SOLO@LI( x Yo (—tr(b[Q(x)]))dx dbde
PB Sym, (F) V2 a2
(r) c*1a1a2
+ / / ProsLy (T (pLo@Ll( x
F\PB Sym,(F) V;2 c

X (—tr(b[Q(x)]))dx dbde

= /Wo r, LQ,LO dC—l— / WO T Lo,LQ dC—|— / |C| 2r+2+280)W (7’ Lo,L )d

O\P# ave)

where the Wy(r, L;, L;) is a Whittaker function that we evaluate using Yang’s work
[42]. The extra factor of |¢[~(2"*2+2%0) comes from the substitutions x5 +— ¢tz and

b — diag(1, c)bdiag(1, ¢). So ultimately we find,

ap ¢ (1 _ qfl)qf(2r+1+280)
/A(ﬂLo,LoyLo,Ll; )Ydc = Wy (r,Lo,Lo)+

F a2

WO(T7LOJL1)

1 — q- (2r+1+2s0)

for a; € O for both ¢. The other three cases are evaluated in a similar fashion using
the similar substitutions as above. We will compute those cases with less detail than
before.

Next let ord(a;) < 0 and ord(az) > 0. Furthermore, let P~ = ;0. In this

case,
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aq C
/A(T, Lo, Lo, Lo, L; )de
F a9
(") (r) “
- [ [ [ @ (b)) b e
P—1 Symy (F) V2 as
c
s [ [ @ )
F\P—o1 Symy(F) V2 —c tajay

X (—tr(b[Q(x)]))dx dbdc

— g @22, / Wo(r, Lo, Lo)dc + / |c|~@r+2F20) W (r, Lo, Ly)de
pren F\P~1

o (1 _ q—l)q—(2r+1+230)
1— q—(2r+1+250)

_ q7(2r+1+230)a1W0(r’ LO7L0)+q*(2r+l+230 Wo(r, Lo, L)

—(2r+142s0p)

— q7(2r+1+280)a1 (WQ(T, LQ,L()) + (1 . qfl) q

1— q—(2r+1+250)W0(,r’ Lo, Ll)) -

Now let ord(a;) > 0 and ord(az) < 0. As above, let P~ = ;0. We will see

this case is quite similar to the previous case. In particular,
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aq C
/A(T, Lo, Lo, Lo, L; )de
F a9
(") (r) “
- [ [ [ @ (b)) b e
P2 Symy (F) V2 a9
c
s [ [ @ )
F\P—22 Symy(F) V2 —c tajay

X (—tr(b[Q(x)]))dx dbdc

= ¢ Gri2t2so)as / Wo(r, Lo, L1)dc + / |c|~@r+2F20) W (r, Lo, Ly)de
pras F\P-e2

iz (1 o q—l)q—(2r+1+230)
1 _ q—(27‘+1+280)

_ q7(2r+1+230)a2W0(r’ LQ, L1)+q*(2r+1+280 WO(T, Lo, Ll)

—(2r+2+42s
—(2r+1+42sp) a2 - q ( 0)

= 4 1 — ¢-Crei+2s0)

Wo(T, Lo, Ll)

Finally, let ord(a;) < 0 for both i. As in the first case, we let PP = a;0UayO

and P~ = ;0. So we evaluate our integral,
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aq C
/A(r, Lo, Lo, Lo, L; )de
F a2

ai
- / / /QOLO@LO @LO@Ll( T )w(—tr(b[Q(x)]))dac dbdc
PB Symy (F) V2 a2
c
+ / / /90L0®Lo SOLO@LI( x )
F\PB Symy(F) V2 —c taja,

X (—tr(b[Q(x)]))dx dbde

_ q_(2r+2+2so)(a1+0‘2) /WO(T, Lo, Ll)dc
PB
+ / |c| B0 Ly ao |~ CrTIW (r, Lo, Ly)de

p-ar—az\ps

+ / |C|_(2T+2+250)WO (’I“, Lo, Ll)dC

F\P~a1-a2

— g @r2t2s)(antas) / Wo(r, Lo, Ly)dc + / ||~ G2 20)W (1, Lo, Ly )de

p-al—az F\p-ai—az
— g @rtit2s)(onta) 1 — g~ @rt+2+2s0)
1 — g—(@r+1+2s0)

WO(TJ LO; Ll)

We include Table 5.2 at the end of the chapter to summarize all of the com-

putations of

aq C
/ A(r, L, L', L", L', )dc
F

a2

needed in this thesis.
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5.1.3 Examples of doubling integrals for spherical representations

Until now we have evaluated all of the individual steps in the calculation with-
out considering the overall picture. We now use our previous results to compute a
few doubling integrals to achieve some local L-factors. The author originally com-
puted the spherical case by hand and the others followed later using Mathematica;
so let us start with the spherical case. We will follow the calculation for a represen-
tation of the linear group Sp,(F’) and then mention which slight modifications are
needed in the metaplectic case.

Let m = Indg@ (X1 ® x2) be irreducible. Because 7 is spherical, we choose our
Iwahori-fixed vector to be the spherical vector f normalized so f(1g) = 1. Next we
choose our {®, 1, }. In order to match the invariance properties of f, we want ® .,

to be invariant under i(K x {15}). Consequently, we choose @4, as

Byir(9) = M@ or, @ V00 ) (9).

Recall that L1 = Msyo(O) C V* where V* has dimension 4. As one might expect,

since <p§"3® 1, () is K-invariant under the Weil representation, we find that

I(f, 000 ) (@) = o7 ().

Furthermore, for A(g) := A(r, Ly, L1, Ly, L1; g), following the example from Section

5.1.2, one can easily verify that

)1 - q—(2r+1)

a; ¢
/A( )dC = |a1|—27’b(a1)|a2|—27’b((12 WU(Tv L17 Ll)

F (05}

1 — q—2r
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where

Oifa € O
t(a) = .
lifae F\O

Substituting these into (5.11) , we see that

1
Z(T - §7q)7f)(1G)
= —1 _ q_(2T+1) r—2ru(ay) r—2ri(az) d*
- —or WO(Ta Ly, Ll) Xl(al)XQ(a2)|a1| |a2| a.
l—gq (Fx)2

This integral breaks up according to whether the a; are in O or not. So we get four

integrals,
1
Z(r = 5.9, f)(1q)
1 q (2r+1) y y
1 7” Ll,Ll / / CL1)X2(CL2)|CL1| |CL2| d Cle (05}
—q? O\{0} O\{O}
1— q (2r+1) y y
e T (r, L1, Ly) / / x1(a1)xa(az)|ar|"|az| ™" d*ay d*ay
—q o\{o} JF\O
1 q7(2r+1) y y
+— ) 7” Ll,Ll / / CL1)X2((I2)|CL1’ |CL2| d ald a9
1—gq P\O O\{O}
1 q—(2r+1) y y
+ [— a2 WO(T7L1>L1)/ / xi(a1)xz(az)|ar| ™" az| ™" d*ay d”ay
—q F\O JF\O

So finally, with both Haar measures d*a; normalized so that O has measure 1 and

both x; being unramified, we see that

1 o 1 1 1— q_(2”+1)W I
Z(r — = 1 ’ )
e 1o Pt Bt o P T
-1 — —(2r+1
w)q " 1 1 — g @r+b)
+ Xl E1 )q _ —_r d ) WO(Ta L17 Ll)
I—x7 (@w)g " 1—=xa(w)g™ 1—¢q
1 -1 g 11— —(2r+1)
+ . X2 El )q — a ) WO(Ta LlaLl)
l—xi(@)g "1 —x3 (w)g™ 1—¢q
-1 - -1 — —(2r+1
r r 1 — (2r+1)
L X (w)q X2 (@)q q Wo(r. Ly, Ly).

11—y (@)1= x5 (@w)g" 1—q2
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This simplifies to

L(rv Xl)L(r7 XQ)L(ra XI_I)L(Tv X2_1)
C(2r 4+ 1)¢(2r)

20— 5.®,)(16) = Wo(r, Li. Ly)

in an elementary way. Finally, using our previous calculations for the local density

term, we make the substitution

¢(2r +1)¢(r)
C(2r +2)¢(r +2)

WO(Ta Ll; Ll) -
and we finally arrive at the following proposition.

Proposition 5.1.5. Let m be a spherical constituent of Ind%J (x1 ® x2). For the

choices of “good test vectors” outlined above, we have

L(r, x1)L(r, x2) L(r, 1p< ) L(r, X7 ) L(r, x5
C(2r +2)¢(2r)¢(r +2) '

Z(r — %,(I),f)(lg) = (5.12)

There are two points worth noticing about this particular result. First,

L(Tv Xl)L(Ta XQ)L(T7 1px )L(T, Xfl)L<T7 X;l)

is exactly the factor defined by the Satake parameter for a spherical representation
of Spy(F). Second, the extra term ((2r 4+ 2)((2r)((r 4 2) is predicted by Piatetski-
Shapiro and Rallis coming from the normalizing factor for the Eisenstein series in
their original work on the doubling integral [8].

From Section 4.1, we saw that the normalizing factor of the spherical Eisenstein

series had the following terms at the unramified places,

n—1
2n +1 .
dizo(s) = L(s + —5—.x) TTL2s+2i+1,x).
=0
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In our case n = 2, and x = xy = 1. Finally substituting s =r — %, we see that

1
1
diro(r = 5) = L(r+2,1px) [IL@r—1+2i+1,1p) = Cr +2)¢(2r)¢(2r +2),
i=0
which conforms to our doubling result.
One of the truly outstanding aspects of this doubling calculation is the sim-
plicity in with which one can modify the integral to work for genuine principal series

representations of gﬁ;(F ). In this case, let 7 = Ind%((xl ® x2)") be a irreducible

genuine principal series representation of G. So for f € 7,

f( ,2]1.9) = zxa(a1)xz(az)|a1]?laz| £()-

The only change in setting up the integral in this case involves the quadratic space

V. In this case, V = V* ~ [ and
2
Qsm(%, L1, L2, T3, $4) = H(% + X174 — €E2$3)~

So (V*m,Qs,,) is an analog to (V*, Q) that we used above. Furthermore, let
L, = ©5. This change in the quadratic vector space has three effects on our doubling
calculation. First, because V, is now one dimension larger than previously, we have

a shift r — r + % Second, we now have

C(2r+1)

W()(T’, L17L1> = m

Third, note that in the metaplectic case

xv(z) = (z,2K)p
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with k € O*, so xy is unramified but possibly nontrivial. Besides those adjustments,
the calculation is identical with the spherical case for Spy(F). Thus ultimately we

find have the following proposition.

Proposition 5.1.6. Let 7 be a spherical constituent of IndIG;@((Xl ® x2)'). For the

choices of “good” test vectors outlined above, we have

L3, xvxa) L+ 3, v xe) L+ 3, X ) L(r+ 5, xvxg )

Z(r,®, f)([1¢, 1) = C(2r +4)¢(2r +2)

(5.13)

It is worth remarking that due to a cancellation, the numerator and denom-
inator are one degree less than the Sp,(F') case. In fact, the results resembles the

L-factor defined by the Satake parameter for a spherical representation of SO5(F).

5.1.4 An example with a ramified representation

Next, let us consider an example of a non-spherical representation of Spy(F)
to illustrate how the calculation changes when a representation has a unique vector

fixed by a smaller compact open subgroup. Consider the representation
T = L(z/%StGLQ, 1) C Ind%@(y2 ®@vh).

We see that dime(n’*) = 1 and, for the given embedding of 7 into Indf, (v* @ v71),

mle is spanned by the vector f with

f(le) = flwa) = flws) = flwza) =1

f(wap) = f(Waga) = f(Wgap) = f(Wagap) = —q >
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Because we want to produce a doubling integral Z(s, ®, f) that is also [,-invariant,
we have two appropriate choices of characteristic functions to use in our interpolation

method. They are

era(®) = OLeeL.(r)  and  @o(2) = Preer,(T).
Using (5.4) — (5.9), one can show
Lemma 5.1.3. Let ¢y and @, be as above. Then,
I(f.40a)(z) = 0
I(f,p0)(x) = Ri(@)(rowr, (%) + Preer. () — Ro(a)(@rier,(2) + CroeL, (7))
where R;(q) non-zero rational functions in C(q).

Thus we see that only one choice of lattice functions afford us the desired

invariance properties while not vanishing. So we let

¢)50+7‘ = )\(SD(Z‘())EBL() ® 19802“0)@110)

with

q3

! vl i~ 1)

Now that we have selected {®, ., }, the computation proceeds in a similar way
as the spherical case. As before, we will divide the doubling integral Z(sq + r, @, f)
in (5.11) into four parts depending on whether a; € O or a; € F'\ O. There is one

slight difference. For 7, we need to compute the integrals

aq C
/ A(Ta L07L07L0>Li; )dC
F

a2
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and

ay C
/ A(Tu L07L07Li7Li; )dC
F

a2

for ¢ € {1,2}. Fortunately, one can verify quite routinely that

a, C aq C
/A(r7 L07L0aL07L1; )dC: / A(Ta L07L07L07L2; )dC
F a2 r a2
and
aq C aq C
/A(Ta L07LU7L17L1; )dC: / A<T7 L07L07L27L2; )dC,
F a2 4 a2

so only two integrals need be evaluated. One of these we already computed in the
example at the end of Section 5.1.2 and the other can be computed in a similar
manner. So now let us compute Z(s, ®, f)(1g) as we before. If ord(a;) > 0 for

i € {1,2}, we have
Zewtsot 1. 0)06) = [ [ arPlal el
O\{0} JO\{0}

2 1 ay C
X / MA(Ta LOv L07 L07 L17
F

~—

(¢—1)
a2
1 ay C
—MA(T‘, L[):LO;LlaLl; )dCdX&l ang.
(¢—1) .
2
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By evaluating the innermost integrals we see this expression becomes

/ / janPlaa] arasl
O\{0} JO\{0}

+1 B —2r
ﬁ (Wo(r Lo, Lo) + (1 — ¢ 1)1 z —-Wo(r, Lo, Ll))
+1 _ —2r
_q((qq_ 1)) (Wo(T’, L07L0) + (1 —q 1)1 z QTWO(T, Lo, L1)) d*ay d*ay

¢ (WO(T, Lo, Lo)+ (1 —q~ )q—irero(T, Lo, L1)>

= — ) (5.14)
(1 —|@[?¢)(1 = |w|~q)
If ord(a;) < 0 and ord(az) > 0, we have
Zatsotrepie) = [ [ ol ol r
F\O JO\{0}
2 1 aq c
X/MA(TaL();LO)L(LLI; )
r o (@—1) a0
1 ay C
—MA(T‘,L[),L(],LMLD )dCdxalang.
(¢—1)
a2
Evaluating this we see find,
/ / szl | o
F\<9 O\{0}
D (Wt Lo Lo) + (1 — ¢ — L Wo(r Lo, L)
(q—l) o\”; Lo, Lo q T o\, Lo, L1
q(q + 1) 11— q7(2r+1) X X
— Wo(r, Lo, L1)d”a, d
-1 1—g°2 o(r, Lo, L1) d*ay d*az
q(¢® +1) Sy 4
——= | Wy(r, Lo, L 1-— Wo(r, Lo, L
[ (q_1> O(Ta 0, 0)+( q )1_q_2r 0<r7 0, 1)
11— —(2r+1) -2 —r

(¢q—1) 1—qg*
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Next, we have ord(a;) > 0 and ord(az) < 0, which yields

Zec(sot 10 0000) = [ [ jaPlaal ol ol
O\{0} JF\O
2 1 aq C
X/MA(T7L07L07LO7L1; )
F (q—l)
a2
1 a; ¢
_q((q +1))A(T’7 Lo, L(), Lla Ll) )dCanl dXCLQ.
q—

az

This evaluates to

Lo Pl el
O\{0} JF\O

q +1 1 — q —(2r+1)
((]—1)) ( 1 — g o W(T LOaLl)

gg+1)1 =g @Y
(¢—1) 1-g
_g—(2rt1) -
¢ (5L Wolr, Lo, L) ) g

1—¢q

Wo(T, L(], Ll) dX aq dXCLQ

- (5.16)
(1 —|wlPg )1 — |wlg™")
Finally, we have the case that ord(a;) < 0 for ¢ € {1,2}. Here we find
Z_ _(so+m2, f)(le) / / lay|*az| a1 " |ag| "
F\O
2 1 a; C
X / MA(Ta L07L07L07L1; )
r (@—1)
a2
1 ay C
—MA(T, Lo,L(),Ll,Ll; )dCdXCh ang.
(¢—1) .
2
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Evaluating this we see find,

/ / anPlaz] a7 as|
o Jrmo

1)1 — (2r+1)
q(¢* +1)1—q" Wl Lo, 1)

(¢—1) 1-gq7

1 l—q
_algt1) q " Wo(r, Ly, Ly) + —q_QWO(Ta Lo, Ly) | d™ay d™ay
(¢—1) =g
2 + _(2T+1) + 1 —
{q(q ) —q W (7" Lo,Ll) _ M(q 1[/1/0(r7 Ly, L1)

(¢ — ) 1—g2 (¢—1)
T (1l-2")(|wlg™")
gl LO’“)} 0= = 20— =l (5.17)

1

While these terms are fairly complicated, we can use Mathematica to sum them and

simplify the result. Consequently, we find that

] (L+g )L —g ")
Z(T‘ ~3 0} f)(lg) = (1 — q_q(r_1)>(1 il q_(7”+2))-

If we multiply the numerator and denominator by (1 — ¢~ "), we have the following

theorem.

Theorem 5.1.1. Let 7 = L(v2Star,,1), then for the “good” test vector f and

“good” section { Py, 1, }52, described above we get
1 1—g?)(1—g ")
Z(r—=,9 1 =
e R (e (s TR GE)
(r,v Y L(r, 1px ) L(r, v?)
RS

Notice that as polynomials in C[g™"],

deg(L(r,m,re) ') = deg(¢(2r) ' ¢(r + 1))

as was mentioned in a previous section.

Note that this example is by no means the most complicated case of the
doubling integral. For several representations with a 1-dimensional space invariant
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under the long-root parahoric, we actually need to break Z(sq+r, ®, f) into six cases
depending on whether ord(a;) < 0, = 0 or > 0. Except in the spherical case, which
can be computed by hand, computation of the L-factors was aided by Mathematica.
In particular, the various terms akin to Zy 1(so + 7, ®, f)(1¢) were computed by

hand and then summed and simplified using Mathematica.

5.2 An unresolved case

We would now like to say a few words about a the case of the doubling integral
which is still unresolved. If one refers to our table containing the various dimensions
of parahoric invariance, we see that there are two representations of Sp,(F') with
a one-dimensional space of Iy-fixed vectors which are not fixed under any larger

parahoric. They are the square-integrable representations of Spy(F):
e Stgp,, the Steinberg representation for Spy(F), and
o ([, vE], 1)ng, a constituent of Indgw(uﬁ ®&).

In both cases, we can show that the space of Iwahori-fixed vectors is spanned by f

with

The identical situation exists for the representations

N

((cvSt), vt ® o(sv

)

for /S;);(F ). The difficulty in resolving this case comes with computing the doubling
integral for our choice of {®, ,}.
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As with the other cases, we would like to apply our interpolation trick to a

product of good lattices. Recall that we have,

¢so+7“ - AOP?]?@[Q ® (pgi%)@Lél)

where L' are all good lattices. Moreover, we would like our ® is be fixed under
i(lp x {1}), but not i(I x {1}) for any larger parahoric I O Iy. In order to prevent

invariance of the latter type, L' and L? must satisfy the following conditions:
1. vol(L') # vol(L?) and
2. (LY# # (L7), for i,j € {1,2}.

One consequence of these requirements is that one must use the quadratic space
(M5 (F), kdet) to find a sufficient supply of lattices. Notice that the quadratic space
(B~ (F'),kN(z)) simply does not have enough good lattices to satisfy the condition

above.
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Now let us consider the various good lattices in My(F'). In particular, we have

the following self dual lattices.

r y
L, = MO)= | z,y,z,w e O
Z w
.
r wly
L, = | z,y,z,w € O
wz W
\
(
wlr oy
L3 = |x7yasz€0
z  ww
\
(
ol w‘ly
L, = | z,y,z,w € O
wz  ww
\

If we normalize the additive Haar measure on Ms(F') so that the volume of the self

dual lattices are one, then we also have the following good lattices with volume ¢~ *:

Lij = Lz ij

where ¢ < j and ¢+ j # 5. Notice that L5 is the same as the previously defined L.

Finally, we have a minimal good lattice given by

T Y
L00:L1QL4:L20L3: \x,y,z,we@
Wz ww
In order for @, to have the desired invariance properties, we must choose L' = Ly

and L? = L;; for any lattice with vol(L;;) = ¢~

Thus we need to compute I(f, pr,o0,,)(®). While computing this, we need

to evaluate summations such as

fwap) Y quv(ni(a))charo(Q(w1))Pry, (1) P10 (x2)

acO/P
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and
f(wga)q®charo (21, 22)v ) @L,, (21)charo(Q(22)) PLy (22).

While these are somewhat manageable, they do produce some problematic terms.

For instance, we get several functions similar to

PL12®L1s (fﬂ) :

Because of such terms, computing the doubling integral would involve us evaluate

the integral

/F/S (F)//2¢L@L'($)¢L12@L13(—x “oe Y (tr(—=b[Q(x)])) dx dbdc.

It is here that we finally find where our method stalls. Let us define a function on

7@ = [ [ ] @ g HQE) drdvde. (513

Notice that our method computes

a2
as long as n* € H(J;\GLa(F)/J;) where J; € {J, J} and J C GLy(F) is the Iwahori-

subgroup. Unfortunately, n* does not have the proper right-invariance. Notice that
VOl(ng) = VOl(ng)

and
Lo N Lyg & {L12, L3}
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Therefore, ¢r,,a1,, () is not right-invariant for either J or J.

Ultimately, there is no reason to believe that our doubling method fails for
these representations. In fact, we have not even established that our choices for
{®Psy+r} are the wrong ones. What can be said is that the current methods and
results used to compute the doubling integral are not sufficiently general so as to let
us compute Z(so + r, ®, f) for in this case.

Because, the conditions on f are very rigid in this case, there seems to be
just two ways to resolve this difficulty. First, one might generalize the intermediate
computations so that they apply to n*. However, even if one were to generalize the
necessary results, this method seems to require too much brute force. In particular,
evaluating I(f, ¢)(x) in this case produces a linear combination with several dozen
terms. Another avenue that one might attempt is finding a different set of candidates
for @, 4,. Ideally, it would be somekind of refinement of the present interpolation
method that would either reduce to or simplify our interpolation method for the

cases where we have already established the ”good test vectors”.
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Table 5.1: Computing I(f,¢)(x) for various ¢.

Vol(Iy) " I(f,¢)

¥
Lo (@), | [f(1) + af(wa) + af (wp) + ¢ f(wap) + ¢* f(wsa) + ¢* f(Wapa)
i€{1,2} +¢* f(wgap) + ¢* f (Wapap)lPren (2)
[f(1) + af (wa) = f(ws) + af (wap) — af (wga) + ¢° f(Waga)
YLodLo ~4f(Wgap) — ¢ f(Wapap)l¢LowLo
+[f(wg) = f(wap) + af (Wpa) — ¢f (Wapa)(PLowL: + PLowL,)
+Hf (wap) + af (waga) + ¢f (Wpag) + P f(Wapap)l(PLi6L, + PLoL,)
[af (wa) + ¢ f(wap) — af (Wpa) — ¢ f(wpap)lPLow Lo
+f(1) = f(wa) + af(wp) — af(wap)lpLeeL,
vrooL, | tlaf(wga) = ¢f (Waga) + @ f(Wap) — ¢ f(wagap)lPLooL,
+f(wa) + af(wap) + af (wpa) + ¢*f (Wapa)
+¢* f(wpap) + ¢ f (Wapap)lrLi6L,
+af (Wapa) + ¢ f(Wapap)PLo0L,
PLrdLra | [f(1) +af(wa) = f(wp) — qf(wap) — qf (wpa)

—¢* f(Waga) + af (Wgap) + @ f(WaBap)PL e Lra
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"o8ed JXou UO panuUII0D d[qE],

(29)omMeO+ (z9)omMeO+ (z9)0mMeO+ (z9)omeO+ (29)0mMeO+ (r'9)0meDH+
ﬁ " " n " n (2707707 )Y
(z°0)o0m (2°0)o0m (2°0)o0m (2°0)o0m (2°0)o0m (2°0)o0m
(2'0)oM%D+ (2°0)0M%D+ (r'0)ome+ | (2°0)°M%D+
ﬁ " (*'0)oM'D (‘o) MO | (0707t 0T )Y
(0‘0)om (0‘0)om (0‘0)om (0‘0)om
(z'0)mzo+ | (2'0)2M%D+
(2°0)°M™O (*'0)°m™O (2°0)°m™ (2°0)°m™O (st P OO )Y
(0‘0)om (0°0)9m
(z'0)omeH+ | (2'0)oMeO+ (r'0)omeO+ | (2'0)°MeO+
(#'0)°m™D " (2°0)0M"D (=g o707 0T )y
(0‘0)om (0‘0)om (0‘0)om (0‘0)om
(x)OmMTO ()0 LD (*%)onto (x%)omntH (*%)onto (x9)OMTD | (-7 R T T )Y
0 < (év)pio 0 = (%p)pio 0 > (¢vn)pio 0 < (%p)pio 0 = (¢n)pio 0 > (%»)pio
_ _ o A M:\NB\\NA\N :N QV/\
0< A:uvwho 0< ?@VEO 0< ?BEO 0> AHSEO 0> ?SEO 0> AHSEO

*sao199e] Aressadeu 1oy 2p v [ Surnduwoy :z'g o[quy,
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o, |N~| A, |U| (s ¢ ¢ ¢ [4 [4 4 4
el = s =T (10T )M = (9o FErmm gy 5 f {pagiro) o
(C)omen+
(L2)omen+ (L 2)omen+ (La)omen+ (C2)omeD+
(CromG-b—1)+ ” (£90M™D (-sbq g0 )y
(C0)om (2°0)o0m (0°0)°m (z‘0)om
(C0opm b
(29)0omED+ (29)0mMeD+ (29)OMTD+
(r9)0mTD (9)0mMD (t90m™H (- g PO )Y
(2°0)o0m (z°0)o0m (2°0)o0m
(L )omeD+ (C)mMeO+ | (C9M%D+ | (C)meo+ | (Comeo+ | (F9)omeo+
“ ﬁ n A (-fqeog o a)y
(C0)om (0‘0)om (z‘0)om (C0)om (0‘0)°m (2°0)o0m
0 < (%p)pio 0 = (%n)pio 0 > (¢p)p10o 0 < (%p)pio 0 = (¢n)p10 0 > (%p)pio
_ _ _ A M:\NB\\NA\N ‘T QV/\
0 < (*p)po 0<(mpio | og<(wpo | o> (w)po | 0> ()po | 0> (')pio

*S90119e] ATeSS909u

I10J &c/\u@ Surnndwo)) :7'¢ 9[qe],
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Appendix A

Computing Weil Indices

Because we are working the Weil representation, there is a question of com-
puting various Weil indices for characters of second degree. However, since these
computations are less critical than some of the others in the thesis, we included Weil
index calculations as well as some related computations in this appendix rather than
the main section of the text. To perform these calculations, we largely follow the
works of Rao [31] and Kudla [18] with some supporting definitions from Serre [34].
For this section, v is a fixed continuous character of (F, +) for a local field F.. Note
that for the purposes of this section, finite fields will have the discrete topology in

order that they be locally compact abelian groups. For any a € F', define

V() = Y(ax).
Let X be a vector space over F' with non-degenerate symmetric bilinear form
(+,-)x. Further, let X* = Homp (X, F) be the dual vector space and [z, z*| = 2*(z)
be the canonical pairing. Since (-,-)x is non-degenerate, we have an isomorphism

0: X — X* such that
(z,y)x = [z, o(y)]-
Let dx and dx* denote the Haar measures on X and X* that are dual with respect

to Fourier transform defined using ¢ o [, -]. In particular, for f € S(X),

Ff(x") 2=/X¢([ﬂc,x*])f(x)dx.
14
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We also have a similar transform F* on S(X*). Moreover, if 1) is a tempered distri-

bution on S(X), we define the Fourier transform Fn as
< f,Fn>=<Ff,n>.

Finally, for Q(z) = 1(z,z), we get a character of second degree ¢q(z) = ¥(Q()).

Notice that it is called a character of second degree because it satisfies

b0z +y)oo(x) 'ooy) " = v((x,y)x)

and 9((z,y)x) is a bicharacter of X. Because ¢ is valued {|z| = 1}, we can define

a tempered distribution ¢gdx on S(X) via

< foogte >= [ f@)o(a)is

Analogously, we have a quadratic form on X* given by

with which we can define a character of second degree ¢¢g- and distribution gbéldm*
on S(X*). Finally, we see that ¢odx and qbg)}d.?c* are related by Fourier transform

in the following way:
Flpodr) = ()| 2 ¢gda”.
Here v(1) is called the Weil index of ¢ and || is a constant such that
F Ff(x) = lolf(—x).

Rao uses the following notation

v() = Weil index of: z — l/)(l’g),
7(¥a)
(@ 9) D)
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The main theorem regarding y(a, 1) is the following (see [31]).

Theorem A.0.1. y(ac? ¥) = v(a,?) and the function a — v(a,v) is a character

of second degree on F*/(F*)* with

(ab, )y(a, )" y(b,¥) " = (a,b)r
where (a,b)p is the Hilbert symbol of F.

Recall that for a,b € F*

1 if3(z,2,y) € F?(2,z,y) # (0,0,0), with 2% — ax® — by* =0
(a>b>F =

—1 otherwise
Further, recall that for a quadratic space (V, @) and orthogonal basis {ej, es, ..., €,}

such that a; = (e;, e;)y. Then the Hasse invariant of (V) Q) is given by

Q) = [ [ (@, a))r.

i<j
Given the theorem, the next corollary is a routine computation by the defini-

tions.
Corollary A.0.1. We have the following identities:
1. y(a, ) = (a,b)py(a, ¥).
2. y(=L ) =)
3. y(a,¥)* = (=1,a)r = (a,a)F.
4. (@, ¥) =1 and y(¢)* = 1.

So let us summarize Rao’s formulas for v(a, ) for the various local fields F'.
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Proposition A.0.1. 1. For F =C,

(W) = (a,b)r = €(Q) = 1
for all choices of character v, quadratic form Q) and all a,b € C*.

2. For F =R

-1 ifa,b<0
<a7b)F:

1 otherwise

For 1(t) = exp(2nty/—1), then

The next result will deal with the case of finite fields.
Proposition A.0.2. Let F be a finite field with char # 2. Then
1. y(a,v) = (%), where (%) is the Legendre symbol for F.
2. a v 7y(a,) is a homomorphism and (a,b)r = 1 for all a,b € F*.
3. €(Q) =1 for any quadratic space (V,Q).

4. If F, is the prime subfield of F' and [F :F,| =n and ¢ =1 o tr, then

Ye(Y') =y, ()"
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5. If 1 is the character t — exp(%t‘TF) on I, then

lifp=1 mod4
Y1) = :
v—1lifp=3 mod 4

Finally, we come to the case that F' is a p-adic field with residue characteristic
different from 2. For an additive character v, let ord()) be the largest integer m
such that v is trivial on w ™. Futhermore, let « represent a parity function defined

for both characters and elements of F'* in the following way:

(

Lif ord(¢)is odd

0if ord(¢)) is even
\
(

lif ord(a)is odd

0if ord(a)is even
\

So with this, we have the following result.

Proposition A.0.3. Let I’ be a p-adic local field with residue characteristic # 2
and let F, be its residue field. For a fived character 1, let m = ord(y)) Then we can

define a character ¥ on O/P by
Y(x +P) = h(w ™).

This is a non-trivial character on F, and

Furthermore,

o) = [(1) 3,0)] ™

q

ord(a)

where a = @ u and [u] is image of w under the isomorphism O/P ~F,.
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We notice that computing the Weil indices in the p-adic case, reduces to the
computation in the finite field case.
Finally, because it is a factor in many of our calculations, we will include a

formula for (-, )p with F' a p-adic field. The formula comes from[34].

Proposition A.0.4. Let F' be a p-adic local field with p # 2. For a,b € F, let

a = wu, b =w’v with u,v € O*. Then we have

oo () (5) ()

It is worth noting that (-,-)p is trivial on O* x O*, which is a case that

frequently appears in our applications.
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Appendix B

Tables of Results

In this Appendix, we compile much of data relevant to this thesis. Tables
B.1 and B.2 contain all of the irreducible constituents 7 of the unramified principal
series of Spy(F') along with the inducing data for 7 is a constituent of the induced
representation. Much of this data along with the conditions for 7 to be tempered or
L? was distilled from the work of Sally and Tadi¢ [33]. The dimension of the para-
horic invariants in Table B.1 and the Jacquet modules in Tables B.3 and B.4 were
computed by the author. The Weil-Deligne data to which each constituent (in Table
B.1) maps are contained in Tables B.5 and B.6. Table B.7 outlines all of the choices
of “good test vectors” used to compute Z(sg + r, P, f). In this table, the column
for f refers to the Iwahori fixed vectors from Table 4.3 and the quadratic spaces V
refer the spaces listed in Table 4.5. Finally, Table B.8 contains the computed values

for
L(s,m rg)

where C(q) € C(q2).

Tables B.9 and B.10 contain data regarding the constituents of the principal
series for both é});(F ) and SOs(F'). It is arranged so that representations that
correspond via our bijection appear in the identical rows in their respective tables.

The reducibility points of SO5(F') were described in Jantzen [12] and [13]. The
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reducibility points for éi);(F) were derived by the author using Tadié’s criteria.
All dimensions of parahoric invariants as well as all Jacquet modules (in Tables
B.11-B.14) were computed by the author. Finally, Tables B.15-B.16 (resp. Tables
B.17-B.18) are the analogs to Tables B.5-B.6 for SO5(F") (resp. to Tables B.7-B.8
for Spy(F)).
For the tables pertaining to Sp,(F') we fix the following notation:

Py: Borel Subgroup Py = MyNy with My = GL;(F)?

Iy: Iwahori Subgroup

P,: Siegel Parabolic Subgroup P, = M,N, with M, = GLy(F)

I,,: Siegel Parahoric Subgroup

Ps: Long Root Parabolic Subgroup P = MsNs with Mg = GL; (F) x Sp, (F)

I3: Long Root Parahoric Subgroup

K = 8Sp,(0).

mdy " (e) = T} @ 77
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Table B.1: Constituents of Unramified Principal Series for

Sp,(F) and the Dimension of Parahoric Invariants

Representation Constituents Iy | 1,
I Indl,cg;m (x1 ® x2) (irreducible) 8| 4
a Indgm (xvz @ xv=2) Indga (xStcL,) 411
II
b | x & {2, vrac¢} with ¢2 =1 Indga (x1gL,) 4 | 3
a €]
a | Indp (x®v) Indp, (x ® Stsp,) | 4 | 2
11
b | x & {v=2,¢} with ¢2 =1 Indf, (x® lsp,) | 4 | 2
Ind§, (x ® €), € = |- |Fea d§, (x ® T¢ 4 2
v a | Indg (x®§), §=1-| ndp, (x ® 1)
b | x & {cv*!} with ¢2 =1 Indgﬁ (x®T¢) 4| 2
a Stsp2 1 0
b L(v?, Stsp, ) 3] 2
v Indgw (1?2 @)
¢ L(v2Star,, 1) 301
d Tgp, 11
a o(v2 Star,) 311
b L(vzStar,, 1) 1] 0
VI Ind%, (v ® Lpx)
¢ oc(vzlaL,) 1]1
d L(V, ]1F>< 5 1) 3 2
a olv® Tg) 2 11
b | Indf, (v ® &) o(v@TYE) 211
VII |
¢ | &= |mea L(v, T}) 2 11
d L(v,T}) 2 |1

Table continued on next page.
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Table B.1: Constituents of Unramified Principal Series for

Sp,(F) and the Dimension of Parahoric Invariants

Representation Constituents Iy | I | Ip
a 5([67 Vg]a 1)T§2 1 0 0
b G 6([£a V€]7 1)T§1 1 0 1
Indp, (V€ ®¢) ;
VIIT | ¢ i L(vz&Star,, 1)* 2 1 1
£=1 |
d L(vg, Tg) 1 1 0
e L(v¢, T}) 1] 1] 1

* denotes a representation having multiplicity 2 in Ind% (VE®E)
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Table B.2: Tempered and L? Representations for Sp,(F)

Representation Constituents Tempered | L?
I IndIG;w (x1 ® x2) (irreducible) Xi unitary
a Indgw (xvz @ yv=2) Indga (xStcr,) X unitary
11
b | x & {rts, vFic) with 2 =1 Indga (xlaL,)
a Indgw (x®v) Indgﬁ (x ® Stgp,) | x unitary
I
b | x € {v*2,¢} with¢? =1 Indgﬁ (x ®1gp,)
a | IndF (x®§), &= |Psa Ind, (x ® T2) X unitary
v
b | x & {svT!} with¢2 =1 Indgﬁ (x®T¢) X unitary
a Stsp, . .
b L(V2, Stspl)
\% Indgw (1?2 @)
C L(V%StGLQ,l)
d Isp,
a O’(l/% StGL2 ) [
b L(v2Stcr,, 1)
VI Ind%, (v ® Lpx)
c o(vilar,) o
d L(l/7 ]].Fx y 1)
a O'(V ® TEQ) °
b Indgw r®§) J(V®T£1) .
VII /
c | =] |m L(v. T¢)
d L(v, Tgl)

Table continued on next page.
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Table B.2: Tempered and L? Representations for Sp,(F)

Representation Constituents Tempered | L?
a 5([£a 1/5], :l)TE2 b hd
b . a([€, Vﬁ],l)Tg . °

Indp (€ ® £) )

VIII » L(v2€Star,, 1)

£= |

d L(ve, T2)
L(vE,T¢)
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Table B.3: Jacquet Modules-Sp, (F')-Siegel Parabolic

Representation

. (m) € R(My)

Ind§™ (1 ® x2) + Ind3" (1 ® x5 ')

I Indgm (x1 ® x2) (irreducible)
+IndE" (7 @ x2) + Ind5 (' @)
. xStar, + x ' Star,
IndPa (XStGLQ) . )
—&—IndgL2 (xvz @ x~lv2)
11
G xlcL, + x 'lar,
Indz (xlcL,) ) )
—|—Ind%Lz (xv™z®@x v 2)
Indgﬁ (x ® Stsp,) IndgLz (x®v)+ IndgLQ (x'®v)
111
Indga (x ® 1gp,) IndgL2 (x@v1)+ IndgLQ (x tevh
. Ind3, (x ® T7) md$™ (y ® €) + mdG™2 (y ' @ ¢€)
Ind@, (x ® TY) Ind3" (x ® €) + Ind3™ (x ' ®¢)
Stst I/%StGL2
L(v?, Stsp,) V3 laL, + IndgL2 (vov?)
A%
L(V%StGLQ, 1) y*%StGLQ + Indng (1/2 ® 1/71)
]lsp2 V_%]lGLg
U(V%StGL2) 2-V%StGL2 +V%]]-GL2
L(V%STEGL27 1) V_%StGLQ
VI
O'(V%]l(;LQ) l/%]l(;,L2
L(I/,]].Fx,l) 2'1/7%]]{;[12 +V7%StGL2
U(V®T§2) md§™2 (v ® €)
o(veT}) md$2 (v ® €)
VII
L(v,T3) mdS™2 (-1 @ ¢)
L(v,T}) mdS™2 (1@ ¢)

Table continued on next page.

160




Table B.3: Jacquet Modules-Sp, (F')-Siegel Parabolic

VIII

Representation TIC’;@ (m) € R(M,,)
o([€, vE€], 72 vi¢Star,
o([& €l Dry vi¢Star,

L(v2€Star,, 1)

V%f]lGLg + l/_%gst(;[,z

L(v€,T¢)

_1
v=2{laL,

L(ve, T})

_1
v=2&lgL,
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Table B.4: Jacquet Modules-Sp,(F')-Long Root Parabolic

Representation rgB (m) € R(Mp)
X1 ® Ind (vo) + x7 ' @ IndP (x2)
I Indgm (x1 ® x2) (irreducible)
- Sp,
X2 ® Ind3 (x1) + x5 ' © Ind i (1)
vz ® IndSBpl (xv—2)
a | Ind§ (xStar,) 1 1
vz @ Ind%pl (xv2)
II
T Ind%p1 (xv?)
b IndIGga (X]IGLg) . 5 .
+x vz @ Indgt (xv2)
X ® Stsp, + X7 @ Stsp,
a Indgﬁ (x ® Stsp,)
+re® IndSBpl (x)
11
G X @ Lsp, +x 7" ® Lsp,
b | Indp, (x ® Lsp, ) <
+r @ Indy" ()
X@T¢+x" ' @TF
a IndIGgﬂ (x® Tg)
+€ @ Ind " (x)
v
. XOTH+ x0T}
b | Ind7, (x ® Tg)
+€ @ Ind " (x)
a Stsp2 2 Stspl
v b | L(v?, Stsp,) V2 @ Stgp, + v @ Ind P (12)
¢ | L(v?StaL,,1) @ lgy, vt ® Ind%pl (v?)
d ]1Sp2 v ]lspl

Table continued on next page.
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Table B.4: Jacquet Modules-Sp,(F')-Long Root Parabolic

Representation

rg, () € R(Mp)

U(V%StGLQ)

]].F>< (9 StSpl +v ®Indg(]].p><)

L(v2Stap,, 1) Lpx ® Lsp,

VI
O(V%]]‘GLQ) ]IFX ® StSpl
L(I/, ]].Fx,l) ]]-FX ®]]-Sp1 +V71®IHdSBp1(]].F><)
0(1/®T£2) V®T§+§®Stspl
o(veT) v T} +&® Stsp,

VII -
L(v,T¢) v @TZ +E® 1y,
L(v,T}) v T +E® 1y,
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For tables for Sp,(F), we have the following notation:

Py=DMyNy My~ (F*)?2xC'cG  Ij={k\k).|ke I}
P,=M.N, M,~GLy(F)xC'CcG I*=/{kXk)]L|keIl}
By =MsNg Mg~F* xSp,(F)CG If={[kAk)]|keIs}

K ={[kAB)|z [k € K}

For results pertaining to SO5(F’), we have the following notation:

Py: Borel Subgroup Py = MjNj with Mj = GL(F)?
Ij: Twahori Subgroup

P/: Siegel Parabolic Subgroup P/, = M/ N/, with M/, = GLy(F)
I!,: Siegel Parahoric Subgroup

Pj: Short Root Parabolic Subgroup — Pj = MjNj with Mj = GL1(F) x S03(F)

@

I b: Short Root Parahoric Subgroup

K' = S05(0).
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Table B.9: Constituents of Unramified Principal Series for SAp/Q(F) and the Dimension

of Parahoric Invariants

Representation Constituents Iy I I | K
IX Ind%((xl ® x2)") (irreducible) 814141
N a Ind%((xué ® xvz)) Indga((xStGLg)’) 4111210
b | x¢{s s} Indga((xllGLQ)’) 4 131211
. a Ind%((X ® vz Indgﬁ(x ® 7(sv2)) 4121110
b | x & {svte, s} Ind]G;ﬁ (x ® m(sr2)) 412131
a ((sStaw,) vz @m(svz)) |10 1] 0
ar b | Ind§ ((sv2 @ w2)) | T((sStar,) s svi@r(sv)) | 3 | 1| 1] 0
c H<(§1GL2)/,§V%®T(§I/%)) 17110] 0
d H((GILGL2)I,§V%®7T(§V%)) 312121
a ((svStar,),svi@r(svz)) | 1[0 [ 0] 0
- b Ind%((w%@gyé)/) ((svStar,) sve@m(svz)) | 3 | 1 [ 2] 0
c ((svla,) sv2@7(crz)) |3 21| 0
d I((svlar,) sv2@m(evz)) |1 1] 1] 1

Note: ¢* = 1 and ¢ is unramified.
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Table B.10: Constituents of Unramified Principal Series for SO5(F) and the Dimension

of Parahoric Invariants

Representation Constituents Iy | I | I | K’
IX Indgé (x1 ® x2) (irreducible) 8141411
< a Ind% (xvz @ xv~2) Indg; (xStcrL,) 4111210
b|x¢{swt}2=1 Indg(a (xlgr,) 4 | 31| 2 1
- a Ind% (x ®cv2) Ind% (x®¢Stso,) | 412|110
b | x & {owFz, ot} =1 Ind% (x®cslgo,) | 4] 2] 3|1
a o(sv? ®<lgo,) 1]0]1]0
b | mdf (sv? @cv3) o(svi®cStso,) | 3| 1] 1] 0
XII
cl|¢?=1 L(svz,¢Sts0,) 1711010
d L(svz,quz) 3121211
a ¢Stsos 1101010
b | md$ (cv? @ cv3) L(svStar,. 1) 301120
XIII ’
c|s?=1 L(sv?,¢Stgo,) 312|110
d L(Cl/%,gl/%) 1 1 1 1
Note: ¢2 =1 and ¢ is unramified.
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Table B.11: Jacquet Modules-Sp,(F)-Siegel Parabolic

Representation

rg () € R(Ma)

Ind3™ (x1 ® x2)’ + Ind§5™ (x1 ® x5 )’

IX Ind% (1 ® 2)) (irreducible)
+IndEH (X @ x2)' + IndF2 (' @ x5 1)
a / (xStaL,) + (x 'Star,)
Ind? ((xStcr,)) ) )
JrInd%L2 (xv2 @ x " 1v2)
X
& / (xTor,) + (x 'ar,)
Ind7 ((xLcr.)') ) )
—|—IndgL2 (xv 2@x tv72)

- Indgﬁ (X X T(§I/%)) Indng (X ® gz/%)/ + IndgL2 (Xfl ® gzj%)/
md§, (x ® w(cv})) Ind5™ (x ® ov=2)' + Ind "™ (x " @ cv 2
I((sStaL,)', sve ® m(sv)) (sStar,)’
M((sStar,),svz @ 7(sv?)) (¢Star,) + Ind5™ (sv> @)

XII
((slaL,),svs ® 7(sv®)) (slcL,)

M((sTar, ) ovt ® n(or)) (clow,) + nd§ (vt @ )

H((guStGLz)’,gzx% ® T(CV%)) (svStar,)’

I((svStar,)’, e W(CV%)) (sv=1Star,) + IndgLz (Cl/% ® qy’%)’
XIII

(svlcr,) +Ind3™ (svz @ qv=3)

(v 2 Lar,)
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Table B.12: Jacquet Modules-Sp,(F)-Long Root Parabolic

Representation

rgijB (1) € R(Mp)

X1 ® IndP (xh) + X7 ! @ Ind3 (x4)

IX Ind% ((x1 ® x2)") (irreducible) . .
2 © Indy” (i) + x5 ' © Ind " ()
. vt @ Indi (v~ 2))
Indj ((xStcr,)’) ) —
+x vt @ Indi (w?))
X —
. ™3 @ Tndy” ((x))
md ((xLer.)) o
X E @ Ind (o))
5 ) X®T(vs) +x "t @r(sr?)
Indﬁﬁ (x ® 7(sv2)) N
+evT ® Ind%pl(x')
XI
. 1 x®@m(sv?) +x "t @m(cr?)
IndPB (x®@7(svz)) .
+7z @ IndSBpl(X/)
((sStar,),sv? @ m(sv?)) vz @ m(cr?)
((sStar,) s sv? @ T(sw?)) wr@m(w?)+2 e @r(crz)
XII
((sler,), sv? @ T(sv?)) Wt @ T(wE)
((slar,)',sv% @ m(sv)) wTE@7(swE) +2- v @m(sv)
((svStaL, ), sv? @ T(sv?)) i @71(sw?)
((svStaL, ), sv? @ m(svz)) w2 @m(svE) +ovT ® Indjsgpl ((sv2))
XIIT

3

i ® T(gl/%) i @ Ind]SBpl ((sv2)")

N

)

3
w2 @m(sy
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Table B.13: Jacquet Modules-SO;(F)-Siegel Parabolic

Representation

() € ROML)

dS™ (x1 @ x2) + d3™2 (x1 @ x5 )

IX Ind% (x1 ® x2) (irreducible)
+Ind3 (i @ xo) + Ind5™ (P @ x; )
o xStar, + X 'Star,
IndP(; (XStGLQ) L )
+Ind§™2 (xvr @ x~'v3)

X

o xlar, + x 'lar,

—|—IndgLZ (xv7z® X_lu_%)

. Indg; (x ® <Stso,) Ind$™ (x ® qv2) + IndGH2 (y ! @ cv?)
Ind%) (x @ sTso,) mdS" (y ® cv=%) + IndS"2 (y L @ v %)
o(sv? ®<lso,) ¢Star,
o(sv? ® ¢Stso,) ¢Star, + Ind§k (svz @ qu2)

XII
L(sv?,sSts0,) slgr,

L(sv3,qv3) lgr, + Ind§™ (v 2 @ v 7)

sStso, svStaL,

L(svStar,, 1) sv1Star, + IndgL2 (gy% ®crz)
XIII

L(sv?,sStso,)

svlgr, + Ind3™ (cvz @ qv3)

[N

L(Q/%,Q/

)

_1
SV 2 ]]‘GL2
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Table B.14: Jacquet Modules-SO5(F)-Short Root Parabolic

Representation r% (m) € R(Mp)
o X1 @Ind3” (xo) + x7 ' © Ind3? (x2)
X Indpé (x1 ® x2) (irreducible)
txz ® IndE (1) + xz ' © Ind” (xa)
/ xv? @ Indp> (xv~2)
a Indg& (xStcL,) 1 )
+x vz @ Ind}? (xv?)
X
@ xv™2 @ Ind> (xv?)
b | Indp, (xlaL,) ) )
v IndSBO3 (xv~—2)
, X ® ¢Stso, + X! ®Stso,
a Indgé (x ® ¢<Stso,) .
+5r2 ® IndSBO3 (x)
XI
o X ®slso, + X! ®<lso,
b IIldP//i (X ® g:[]-SO;;) X
+5r72 ® IndeBO3 (x)
a|o(rr® <lso,) I ¢lso,
b | o(sv? @ <Stso,) sv? @clgo, + 2 v @Stso,
XII
¢ | L(sv?,<Stso,) 73 ® ¢Stso,
d L(w%,gu%) I ® ¢Stso, +2- W slso,
a | ¢Stso, U/% ® ¢Stso,
b | L(cvStar,, 1) % @clso, + ov* @ Ind3? (153)
XIII
¢ | L(sv?,¢Stso,) U2 ®¢Stso, +ov? @ Ind3 O (sv?)
d L(gug,gy%) Wi slso,
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Table B.15: Weil-Deligne data and conjectural L-values—SO;(F) case

e
|
= — o e
o | o S |
™ = I r a
-~ Y o —
< € v — ol -~
- — || & - ~ \ N
&/ [ ~ @ — —~ hY
I S~— — — — 'q
~ i —~ > 3 . . e e e v —~
Py hY —ley N ~ |“ | | | | cr; oley
i 7 = KA N N A A N
& So= ] S| v A VN A e S
= P . ~ - - . — Vs
Q -~ -~ = i~ @ @ @ i) =1 @ | A -~
45 <) » o v—«\g o N — : : a ~— N x
A I I I RS Y A A s
« _ . = -~ — e e o B * el o —
2 Sl 2 4w N O N S| x| x| ™
S =] D I Y A A BV vl - S
>z N A S A « o o - » | o -~
@ o 2| 2 @ =z o
~ N = NS 3 3 N 3 AN N
ool ST S| IR SR o =
= S == A AR
. —~ i A 2
& i o & ~ v
. > 3 = &
o ~ ~
S~—"
~
Z o ~— o - o ~m ~m ~ < o ~10 ~w© -~ o
—
—
E’ = N
oy —
= N = 8 8
B i B e oy
‘ S~—
=5 > e 2 l:
-~ |
o~ Py -~ &
A ~ -
2l G v B =
B - T . 8
:/ N ‘:_/ \: ml\:\l
—
— g | | k{ 2
g N > =< — v
S e = = 8 T
U ~— B B =l ~—
o ~— ~ | e
el
< T 3 vy v
—~ &
: - - -
B S s = =
= = B 8 8
= B = - o
bo ~— S~—"
& i o0 <z <z
= Q . <1o] o0
T’ = kS = )
ap =) o)
=
o]
< el o] Q0 < e} (&} o) [ el o el
—
— = —
a s o ! v

178




I— 0 0 0 I— 0 0 0
0 0 0 0 0 0 0 0
T 0 0 I 0 0O 0
0 T 0 0 0 T O 0

I- 0 0 0 0 0O 0
0 0 0 0 0 0O 0

=N =N

0 0 0 1.0 0 0 0
T T 0 0 0 0O 0

(D)%ds 103 sioyerado juajodfiu juessial Jo a[qe],

91°d °l98L

179



o8ed 9xXoU UO ponuIjuod d[qe],

1=10) IQVIh0y © MTOVI we A | Of
(c(1+D)2) / (;-(Pnoad) = 2o | "TE™1dLn @ 19T |y, A | 4
(c(1+D)g) / (1—(9n)10ab) = 2p | "1E™TdLy @ ™TO™ I | wp, A | 4 e
(1+0)/ (~(")1oab) = 35 1OVIA8) @ IOV | ) | S
1=09 MI®YIA0H @ MI®VId wg /| of
(T14D)/ (1_(9)108h) = 11 ISOTATLY @ 10T ws A | VY X
1=10) IQVIh0y © MOV we A | Of
3 + S\ AH\AS.JB\VS =01y 5@532@ ® T®°Th wg A Sx X
1=09 5@5&0@ ® "IV wg A o% XI
HR =3 w | of
(1‘x‘s)7 Surpndwo)) I0J SI103129A 9S8, POOD) :11°q O[qeL

180



G O[qRL, 09G=++ ‘€' O[(B], 00G=x

1=10) I8VIh0y © MOV we A | Of
(1+b)/ (;_(°)1oab) = 9D TOYTher) @ MO wed | ¢S
(@+02)/ (;-(nwoah) =9 | TR @ TS| e | O =
- - - N\u
th@ =0 w | W
(1‘x‘s)7 Surpndwo)) I0J SI103129A 9S8, POOD) :11°q O[qeL

181



(v +52)5( + 52)3 (2 asAX S +9) (5 a5AX S 4 5)T (254X E 4 5)7(asAX S +5)7 I
(5)5(z +52)9 (5 aSAXS +8)T(eSAX S +5)7 (254X S +5)7 b/(1—b)
(T +5s2)9 Am\:u\,Xnm +wvmlm:u>xrm+wv@ b/(1 —b) X
(v +52)2(z +52)9 (2_aSAX L 4 6)T (254X S 4 5)7 I
(35 +5)7(g +52)) (2_aSAX S 4 8)T (254X S +5)7 /T
(¢ +52)9 o(2a5AX % 4 5)7 b/(1—Db) -
(z+52)9 J(5AX S +5)7 b/(1—b)
(v +52)5( + 52)3 (e_mAXE + ) (1 XAX S +9)T(ea5AX L +8)T(XAX G + )7 I
(>'s)7(z +52)9 (215°% 4+ 8)7 (2 XAXE 4+ 5)7(2aXAX S 4 5)7 b/(1 —b) .
(¥ +52)9(c +52)9 AW\AH\X\,X%+$N$\:\X>Xnm+wv@$\:x>x%+$N$:X>X%+mv@ 1
(¢ +52)9 (1 XeaaX S 4+ 5)7(XeaAX § 45)7 P/ (1 —D)z) :
(v +52)3(c +52)2 ([ XAXE 4 8)7(IXAXE + )T (BXAX S + )T (IXAX S +5)7 I XI
(s)®p (Fatets)T (0)o

Ar@mmm 10} si030ej-7 pomdwo)) QT ¢ I[R],

182



1]

2]

[11]

[12]

Bibliography

Jeffrey Adams. Lifting of characters on orthogonal and metaplectic
groups. Duke Math. J. 92 (1998), no. 1, 129-178.

I.N. Bernstein, A.V. Zelevinsky. Representations of the group GL(n, F),
where F' is a local non-archimedean field. Uspekhi Mat. Nauk 31 (1976),
5-70.

Armand Borel. Automorphic L-functions. Automorphic forms, representa-
tions and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corval-
lis, Ore., 1977), Part 2, pp. 27-61, Proc. Sympos. Pure Math., XXXIII, Amer.
Math. Soc., Providence, RI, 1979.

Daniel Bump. Automorphic Forms and Representations. Cambridge Studies in
Advanced Mathematics 55, Cambridge University Press, 1998.

William Casselman. The unramified principal series of p-padic groups. 1.
The spherical function. Compositio Mathematica 40 (1980), no. 3, 387-406.

William Casselman. Introduction to the theory of admissible represen-
tations of p-adic reductive groups, preprint.

Stephen Gelbart. Automorphic Forms on Adele Groups. Annals of Mathematics
Studies 83, Princeton University Press, 1975.

Stephen Gelbart, Ilya Piatetski-Shapiro and Stephen Rallis. Explicit Con-
structions of Automorphic L-Functions. Lecture Notes in Mathematics
no. 1254. Springer-Verlag, Berlin Heidelberg, 1987.

Robert Gustafson. The degenerate principal series for Sp(2n). Memiors
of the American Mathematical Society 33 (1981), no. 248, vi+81 pp.

Michael Harris and Richard Taylor. The Geometry and Cohomology of Some
Simple Shimura Varieties. The Annals of Mathematical Studies 151, Princeton
University Press, 2001.

Y. Hironaka and F. Sato. Local Densities of representations of quadratic
forms over p-adic integers, J. Number Theory 83 (2002), 106-136.

Chris Jantzen. Degenerate principal series for orthogonal groups. Jour-
nal fiir die Reine und Angewandte Mathematik 441 (1993), 61-98.

183



[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[23]

[24]

Chris Jantzen. Some remarks on degenerate principal series. Pacific Jour-
nal of Mathematics, 186 (1998) no. 1, 67-87.

Yoshiyuki Kitaoka. A note on local densities of quadratic forms. Nagoya
Mathematical Journal, 92 (1983), 145-152.

Stephen S. Kudla. On the local theta-correspondence. Inventiones Math-
ematicae., 83 (1986), no. 2, 229-255.

Stephen S. Kudla. Splitting metaplectic covers of dual reductive pairs.
Israel Journal of Math., 87 (1994), no. 1-3, 361-401.

Stephen S. Kudla. The local Langlands correspondence: the non-
Archimedean case. Motives (Seattle, WA, 1991), Proceedings in Symposia
of Pure Math., 55, Part 2, AMS, Providence, RI, 1994, 365-391.

Stephen S. Kudla. On the Theta Correspondence. Lectures at European
School of Group Theory, Beilngries 1996.

Stephen S. Kudla. Central Derivatives of Eisenstein Series and Height
Pairings. Annals of Mathematics 146 (1997), no. 3, 545-646.

Stephen S. Kudla and Stephen Rallis. On the Weil-Siegel Formula. Journal
fiir die Reine und Angewandte Mathematik 391 (1988), 65-84.

Stephen S. Kudla and Stephen Rallis. Degenerate Principal Series and
Invariant Distributions. Israeli Journal of Mathematics 69 (1990), no. 1,
25-45.

Stephen S. Kudla, Michael Rapoport and Tonghai Yang. Modular Forms
and Special Cycles on Elliptic Curves. Annals of Mathematics Studies,
161. Princeton University Press, 2006.

Stephen S. Kudla, Michael Rapoport and Tonghai Yang. Derivatives of
Eisenstein series and Faltings heights, Compos. Math., 140 (2004), 887-
951.

Erez M. Lapid and Stephen Rallis. On the local factors of representations
of classical groups. Automorphic representations, L-functions and applica-
tions: progress and prospects, 309-359. Ohio State University Mathematical
Research Institute Publications, de Gruyter, Berlin, 2005.

184



[25]

[20]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

George Luszting. Some examples of square integrable representations
of semisimple p-adic groups. Transactions of the American Mathematical
Society 277 (1983), no. 2, 623-653.

Colette Moeglin, Marie-France Vignéras and Jean-Loup Waldspurger. Corre-
spondance de Howe sur un corps p-adique. Lecture Notes in Mathematics
no. 1291. Springer-Verlag, Berlin Heidelberg, 1988.

Ilya Piatetski-Shapiro and Stephen Rallis. e-factors of representations of
classical groups, Proc. Symp. Nat. Acad. Sci. 83 ((186), 4589-4593.

Ilya Piatetski-Shapiro and Stephen Rallis. Rankin triple L-functions. Com-
positio Math., 64 (1987), 333-399.

Dipendra Prasad. On the local Howe duality correspondence. IMRN, No.
11 (1993), 279-287.

Dipendra Prasad. Weil Representation, Howe Duality and the Theta
Correspondence. Theta functions:from the classical to the modern, 105-127,
CRM Proc. Lecture Notes, 1, Amer. Math. Soc., Providence, RI, 1993.

R Ranga Rao. On Some Explicit Formulas in the Theory of Weil Rep-
resentation. Pacific Journal of Math 157 (1993) no. 2, 335-371.

Brooks Roberts, Ralf Schmidt. Tables for Representations of GSp(4). Ava-
iable at http://www.math.ou.edu/ rschmidt/.

Paul J. Sally, Jr. and Marko Tadi¢. Induced Representations and Classi-
fications for GSp(2, F') and Sp(2, F'). Mémoires de le Société Mathématique
de France. Nouvelle Série, 52 (1993), 75-133.

Jean-Pierre Serre. A Course in Arithmetic. Graduate Texts in Mathematics 7,
Springer-Verlag, New York, 1973.

G. Shimura. Arithmetic Theory of Automorphic Functions. Publications of the
Mathematical Society of Japan, 11. Iwanami Shoten, Publishers and Princeton
University Press, 1971.

Marko Tadi¢. Parabolically Induced Representations and Unitarizabil-
ity for Sp(2, F'). Preprint (1998).

Marko Tadi¢. Representations of p-adic Symplectic Groups. Compositio
Math., 90 (1994), 123-181.

185



[38]

[39]

[42]

Marko Tadi¢. Representations of Classical p-adic Groups. Representa-
tions of Lie groups and quantum groups, Pitman Research Notes in Mathemat-
ics Series 311, Longman Sci. Tech., Harlow, 1994.

John Tate. Number theoretic background. Automorphic forms, representa-
tions and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corval-
lis, Ore., 1977), Part 2, pp. 3-26, Proc. Sympos. Pure Math., XXXIII, Amer.
Math. Soc., Providence, RI, 1979.

J.-L. Waldspurger. Représentation métaplectic et conjectures de Howe.
Séminaire Bourbaki, Vol. 1986/87. Astérisque No. 142-153 (1987), 3, 85-99
(1988)

J.-L. Waldspurger. Démonstration d’une conjecture de dualité de Howe
dans le cas p-adique, p # 2. Festschrift in honor of I.1. Piatetski-Shapiro on
the occasion of his siztieth birthday, Part I (Ramat Aviv, 1989), 267-324, Israel
Math. Conf. Proc., 2, Weizmann, Jerusalem, 1990.

Tonghai Yang. An Explicit Formula For Local Densities of Quadratic
Forms. J. Number Theory 72 (1998), No. 2, 309-356.

186



