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One of the central goals of this thesis is to verify the local Langlands corre-

spondence for the rank two symplectic group Sp2(F ), where F is a p-adic local field

with p 6= 2. This correspondence seeks to parameterize admissible representations

of various matrix groups over F with representations of the Weil-Deligne group of

F (denoted W ′
F ). This correspondence should include an equality of certain local

factors, one being the local L-factors attached to both representations of both the

matrix group and the Weil group.

We will restrict our attention to constituents of the unramified principal series

of Sp2(F ). In particular, we employ some criteria of Lusztig to assign these rep-

resentations Weil-Deligne data. While computing the L-factor for representations

of the Weil-Deligne group is well known and understood, we require a method for

defining the local L-factor for representations of the matrix group.

Our method for defining L-factors for representations of Sp2(F ) is a modifi-

cation of the doubling integral of Piatetski-Shapiro and Rallis [8]. While Piatetski-



Shapiro and Rallis formulate a definition of L-factor via this doubling method, we

seek to realize the Weil-Deligne L-factor as an application of our modified integral

evaluated on certain “good test vectors”. Such choices will rely on a wide range of

machinery, including intertwining operators, the Weil representation and studying

local densities of quadratic form. We tie this wide range of material together, in

great detail, through the course of the thesis.

Finally, this method of defining L-factors can be extended in a natural way

to representations of the metaplectic cover of Sp2(F ). While the Local Langlands

correspondence does not apply to this group, we are still able to produce Weil-

Deligne data and L-factors for these representations by using Lusztig’s criteria on

constituents of the unramified principal series of SO5(F ). In particular, we demon-

strate a bijection between constituents of the genuine unramified principal series of

S̃p2(F ) and the unramified principal series of SO5(F ) in such a way that the doubling

L-factor for a representation on the metaplectic group matches the Weil-Deligne L-

factor for the corresponding representation on the special orthogonal group.



COMPUTING LOCAL L-FACTORS FOR THE UNRAMIFIED
PRINCIPAL SERIES OF Sp2(F ) AND ITS METAPLECTIC

COVER

by

Christian Alexander Zorn

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor Stephen S. Kudla, Chair/Advisor
Professor Jeffrey D. Adams
Professor Thomas J. Haines
Professor Lawrence C. Washington
Professor David Mount, Dean’s Representative



c© Copyright by
Christian Alexander Zorn

2007



Acknowledgments

I would like to take this opportunity to acknowledge some of the outstanding

people that have left such a lasting impression on me over the course of my graduate

school career. All of these people helped make my experience at the University of

Maryland one of the most worthwhile periods of my life.

First, and foremost, I would like to thank my advisor, Professor Stephen Kudla.

He has excelled as a teacher and as a mentor. I have appreciated the opportunity to

work on such an outstanding problem with him over this past few years. Moreover,

I am very grateful for the various opportunities that Steve helped open for me. For

instance, Steve has always been very generous with his financial support so that I

could travel to various meetings and conferences that I feel were essential for my

development as a mathematician.

Second, I would like to thank the rest of the faculty in the Mathematics De-

partment at the University of Maryland. In particular, I owe a special mention to

Professors Larry Washington, Tom Haines and Jeff Adams. They were always gen-

erous with their time and expertise. I truly appreciate them letting me discuss both

problems related to my thesis as well as issues related to the job search. Finally,

I would like to thank my final committee member, Professor David Mount in the

Computer Science Department for agreeing to be my Dean’s representative.

Third, I would like to acknowledge Professor Jim Cogdell at the Ohio State

University Mathematics Department. I appreciate both your comments on the rough

draft of my thesis as well as your assistance in my being offered employment in

Columbus.

ii



Fourth, I should mention my family’s support. I would like to express my

endless gratitude to my future bride, Colleen. She has shown a great deal of patience

when my commitment to graduate school takes precedent over our spending time

together. I am also deeply grateful for her willingness to move away from an area

where she is already established so that I can further pursue my career. Next,

my mother, father and stepmother have always been a great source of strength for

me throughout this endeavor. I especially appreciate my parents being receptive

to helping me navigate frustrations and placing my successes in proper context.

Finally, my brothers, their families and my best friend, Bryan, have been a constant

source of encouragement through these years.

Finally, I would like to mention all of my friends at the University of Maryland,

especially those from the Mathematics Department. I owe a particularly special

acknowledgment to my friend, Eric Errthum. Eric and I have been friends and

officemates since we arrived in the program. We have had several shared triumphs

and frustrations; I think that the last three semesters would have been especially

unbearable without his help. Thank you much Eric and wherever I end up, I hope

it is an easy trip to Winona.

It has been an eventful five years and those that know me, know that I can

be very forgetful. As such, I would also like to say apologize to anyone that I have

overlooked and extend my most genuine appreciation.

I offer a very sincere thank you.

iii



Table of Contents

List of Tables vi

1 Introduction 1
1.1 The Thesis Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 An Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 General Representation/Representation Theory of Sp2(F ) 15
2.1 Representation Theory of p-adic Groups . . . . . . . . . . . . . . . . 15

2.1.1 Induction, Jacquet functors and Frobenius reciprocity . . . . . 16
2.1.2 Some results regarding contragradient and unitarizability . . . 19
2.1.3 Iwahori factorization and the dimension of Iwahori invariants . 22

2.2 Reducibility of Principal Series for Sp2(F ) . . . . . . . . . . . . . . . 24
2.2.1 Some general reducibility results of Tadić . . . . . . . . . . . . 25
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Chapter 1

Introduction

1.1 The Thesis Problem

One goal of the Langlands program is generalizing the results of local class

field theory. For instance, let F be a p-adic field and let

WF ⊂ Gal(F̄ /F ),

be its Weil group. It is a well known fact from local class field theory that we have

a reciprocity isomorphism

ArtF : F× →Wab
F .

So characters of the group F× are identified with characters on WF . Furthermore,

there exists a uniformizer $ ∈ F and a Frobenius element Frq ∈ WF such that

ArtF ($) = Frq,

where Frq is the image of Frq in Wab
F . Consequently, if

χv : F× → C×

and

σq : Wab
F → C×

are corresponding characters, then we have an equality of local Tate factors

(1− χv($)q−s)−1 = (1− σq(Frq)q
−s)−1.

1



In this thesis, we seek to demonstrate a generalization of these results to certain

representations of G = Sp2(F ), the rank two symplectic group. In particular, we

will be working with constituents of the unramified principal series. While we will

eventually discuss the local Langlands correspondence in some greater generality,

we ultimately seek to prove a particular case of that very general conjecture. In

particular, for π a constituent of the unramified principal series of Sp2(F ), we will

define an L-factor L(s, π, rst) as the result of applying a modified doubling integral

(see Chapter 4, [22] and [8]) on a particular set of “good test vectors” (see Tables

B.7-B.8). We then compare this local factor to one arising from a representation of

the Weil-Deligne group W ′
F (see Chapter 2). In particular, one might state the first

goal of this thesis as follows.

Theorem 1.1.1. Let π be a constituent of the unramified principal series of G =

Sp2(F ) (see Table B.1), then there exists an admissible representation

ρ′ = (ρ,N) : W ′
F → LG0 = SO5(C),

determined via some criteria of Lusztig (see Chapter 2 and [25]), satisfying the

following property: Let rst : SO5(F ) → GL5(C) be the obvious inclusion, so that

rst ◦ ρ′ : W ′
F → GL5(C)

is a Weil-Deligne representation, then

L(s, π, rst) = L(s, rst ◦ ρ′).

Note that Tables B.5 and B.6, give the description of the Weil-Deligne repre-

sentations that we associate to the various π by Lusztig’s criteria. While we will

2



explain this in greater detail in Section 2.3.3, it can be summarized as following

(with π and ρ′ as in the theorem above):

1. Let π′ be the spherical representation parameterized by ρ. Then π and π′ are

constituents of the same induced representation.

2. If π is spherical, then N = 0. Otherwise, Lusztig’s method determines the

N according to whether π is a tempered representation or induced from a

tempered representation on the Levi factor of a proper parabolic subgroup.

Further, we will occasionally refer to the set of representations mapping to a fixed

ρ′ = (ρ,N) under Lusztig’s criteria as the L-packet defined by ρ′; the equality of

L-factors from our theorem provides some evidence to support this definition of an

L-packet.

As we will eventually show, computing the factor L(s, rst ◦ρ′) can be done in a

completely general way and offers us a set of L-values that conjecturally match the

L-factors we compute for constituents of the unramified principal series of G. While

computing L-factors on the “Galois” side of the correspondence can be done in a

very general setting, there is no known general method for defining L(s, π, rst) for ar-

bitrary matrix groups. There are various techniques that require specific conditions.

Some require conditions on the actual matrix group G, others place conditions on

the representation π.

For the purpose of this thesis, we employ a variant of the doubling integral

of Piatetski-Shapiro and Rallis to define the various the L-factor for an admissible

representation of G. This method uses a global Rankin-Selberg integral that can

3



be unwound as a product of local integrals. It puts no extra conditions on the

representation π, but it requires a group such as Sp2(F ) that is defined as preserving

an inner product.

Ultimately, one goal of this thesis is to realize the Weil-Deligne L-factors by

computing a slight variant of the doubling integral on some “good test vectors”. At

the various nonarchimedean local places F , Piatetski-Shapiro and Rallis generate

an ideal of the ring C[q−s], where q is the cardinality of the residue field of F ,

by computing the doubling integral over several large families of functions. The

normalized generator of this ideal defines the L-factor for the representation. Our

method seeks to find sufficient “good test vectors” that produce an L-factor in

the same fractional ideal that matches L-factor predicted by the local Langlands

correspondence, where we use Lusztig’s method for assigning L-homomorphisms to

unramified principal series representations of Sp2(F ).

The other results of this thesis concern genuine principal series representations

of S̃p2(F ), the metaplectic cover of Sp2(F ). With only the most minor adjustments,

we will produce local L-factors for certain constituents of the genuine principal series

of the metaplectic group. Although there is no local Langlands correspondence for

metaplectic group, we would still like to make sense of the L-factors. In this case,

we should be able to relate them to L-factors of certain representations of SO5(F ).

Before we continue, it is worth noting which covering group S̃pn(F ) we are

dealing with. Much of the literature is devoted to the 2-fold cover of Spn(F ) (which

we will denote S̃pn
(2)

(F )); however, our cover will be infinite. In fact, our covering

4



group satisfies the following exact sequence

1 → C1 → S̃pn(F )
τ→ Spn(F ) → 1

and realized as

S̃p2(F ) = Sp2(F )× C1

with

[g1, z1]L · [g2, z2]L = [g1g2, cL(g1, g2)z1z2]L.

Note that the cocycle we consider is not the typical Rao cocycle [31] that is used

to define the double cover. Instead we will employ the Leray cocycle (also defined

in [31]) which is valued in the eighth roots of unity. The advantage is that larger

cover offers more splitting of subgroups of Spn(F ) than the double cover. The Leray

cocycle also allows us to define parabolic induction on S̃pn(F ) in a manner more

analogous to parabolic induction on Spn(F ). For parabolic subgroups P = MN

contained in the Siegel parabolic, we show that there exists a splitting

P → S̃pn(F ) p 7→ [p, 1]L.

In particular, this splitting applies to the Borel subgroup P∅ ⊂ P . So for a repre-

sentation (σ, V ) of the Levi factor M , we can inflate to P and then extend this to

a homomorphism σ′ on P̃ = τ−1P via

σ′([p, z]L)v = zσ(p)v.

We can then induce this representation up to S̃p2(F ). Note that this is not quite the

same process used to define induced representations for the double cover of Sp2(F )

5



defined by the Rao cocycle. However, we will show that our construction relates

induced representations on the double cover in a natural way.

Let π̃ be a constituent of the genuine unramified principal series of S̃p2(F ).

As in the case of Sp2(F ), we will define an L-factor L(s, π̃, rst) as the result of

our doubling integral applied to certain “good test vectors.” However, the local

Langlands conjecture does not apply to covering groups like S̃pn(F ). Instead, we

will show demonstrate a bijection between constituents π̃ of the genuine unramified

principal series of S̃p2(F ) and constituents π of the unramified principal series of the

split group SO5(F ). Under this bijection, the doubling L-factor L(s, π̃, rst) matches

the Weil-Deligne L-factor L(s, rst ◦ρ′) attached to the Weil-Deligne data ρ′ to which

π maps by Lusztig’s criteria. In particular, we would like to show the following

result.

Theorem 1.1.2. There exists a bijection between constituents π̃ of IndG̃
P̃∅

((χ1⊗χ2)
′)

with

χi : F× → C×

unramified quasi-characters (see Table B.9) and constituents π of

Ind
SO5(F )

P ′∅
(χ1 ⊗ χ2)

(see Table B.10; note P ′
∅ is a fixed Borel subgroup) with the following property. For

π 7→ ρ′ = (ρ,N)

given by Lusztig’s criteria [25], then

L(s, π̃, rst) = L(s, rst ◦ ρ′)

6



(see Tables B.15-B.18).

As a future project, one might ask if this bijection could also be realized using

the theta correspondence on the dual reductive pair (S̃p2(F ), SO5(F )).

Now having described the main results, we will outline the content of the

thesis. Also note that while much of this thesis can be applied to extensions of Qp

for arbitrary p, there are also large portions that require p 6= 2. Consequently, we

will just enforce the condition that p 6= 2 throughout the thesis. This is especially

necessary in much of Chapters 4 and 5, which contain the essential results building

toward our main theorems.

It is also worth mentioning that the doubling method introduced in [22] does

include the p = 2 case. In fact, computing the p = 2 largely motivated this mod-

ified doubling integral of Kudla, Rapoport and Yang. However, the p = 2 case is

more complicated than the p 6= 2 in [22]. Thus, one could reasonably assume that

extending the results of this thesis to p = 2 is possible, but likely more complicated

than the p 6= 2 case.

1.2 An Outline of the Thesis

The next chapter will discuss some representation theory of general p-adic

groups as well as some representation theory specific to Spn(F ). While we won’t

mention metaplectic covers in this chapter, much of the machinery we introduce will

be applicable to metaplectic groups with little or no modification. In particular, we

will describe parabolic induction, Jacquet modules, Frobenius reciprocity as well as

7



results particular to unitarizable representations. This material will be crucial later

when we develop various methods for ascertaining the explicit values of Iwahori-

fixed vectors in principal series representations. The next section of this chapter

deals with reducibility points of principal series representations of Sp2(F ). Much

of this material can also be found in [37] and [33]. In particular, Sally and Tadić

determine the reducibility points of both the principal series of GSp2(F ) and Sp2(F ).

The final section of the next chapter will explain the local Langlands conjecture as

it applies to split p-adic groups. In particular, we will discuss Lusztig’s criteria

for assigning principal series representations to L-packets and how to compute the

L-factor associated to each packet.

The subsequent chapter will discuss the metaplectic cover of Spn(F ). We will

define these covering groups and discuss genuine representations for these groups. In

particular, we will discuss the relationship of our definition for parabolic induction

to the one used for the double cover defined by the Rao cocycle. This is impor-

tant because of a conjectured correspondence between representations of S̃pn
(2)

(F )

and SO2n+1(F ). We would like to use Lusztig’s criteria for finding conjectural L-

values for representations applied to SO5(F ) and then prove that such L-factors

are identical those on defined by doubling on the corresponding representations of

S̃p2(F ).

Another section of this chapter explains the Weil representation (ωV , S(V n))

on S̃pn(F ). Aside from being an important tool for producing liftings between repre-

sentations of various groups, we also employ this representation in our construction

of the doubling integral. In particular, this representation allows us to recast the

8



question of choosing functions in a certain induced representation to that of selecting

appropriate smooth functions on a quadratic vector space.

Chapter 4 explains the method used to compute local L-factors on Sp2(F )

and its metaplectic cover. We explain the classical doubling method of Piatetski-

Shapiro and Rallis from [8] and then give a detailed explanation of the variant of

Kudla, Rapoport and Yang [22]. Ultimately, our method integrates a function from

our constituent on Sp2(F ) against a test vector from an induced representation

on Sp4(F ). Notice that this construction computes L-factors for representations on

Sp2(F ) by using the symplectic group of double rank; hence the name of the method.

The variant in [22] actually defines an operator on the given representation. So for

π an irreducible constituent of the unramified principal series of Sp2(F ), we can

compute L(s, π, rst), as defined in [8], via the following steps.

1. Find a parahoric subgroup JG with

dimC(πJG) = 1.

2. Choose a family of function {Φs}Re(s)>>0 on Sp4(F ) that has a related invari-

ance property.

3. For the correct choice of {Φs}, the doubling integral

Z(s,Φ, f) ∈ πJG .

4. In particular, we should have

Z(s,Φ, f) =
L(s, π, rst)

dΦ(s)
f

9



where dΦ(s)−1 ∈ C[q−s].

As was mentioned above, we will employ a interpolation method to transfer the

problem of selecting a Φs to that of selecting a Schwartz function on a quadratic

vector space.

Because our computation relies on the explicit values for various Iwahori-fixed

vectors, we devote one section of this chapter to several methods for ascertaining

such values. One method relies on the vanishing of standard intertwining operators

on the full induced representations. In particular, we will derive relations that are

satisfied by the Iwahori invariants of a given representation. Ideally, we should find

enough relations to determine the explicit values on the set of Iwahori invariants.

This technique works very well for regular inducing data. For irregular data, we

derive some techniques involving exactness of parabolic induction as well as inner

products on unitarizable subquotients in order to derive similar relations as above.

In both cases, we leverage explicit information regarding the Iwahori invariance of

the inducing data in order to determine information about the Iwahori invariance

of the constituents on the larger group.

The last section of this chapter deals with the topic of local densities of

quadratic forms. In particular, we explore the work of Tonghai Yang [42] that

computes local densities of arbitrary quadratic forms in low rank cases. In order

to compute the local doubling integral, we spend a great deal of effort reducing the

doubling integral to a linear combination of Whittaker functions. These Whittaker

functions are closely related to local densities of quadratic forms. Unfortunately, the
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results of Yang are not quite general enough to apply to these Whittaker functions,

so we also spend some effort reducing arbitrary Whittaker functions to terms that

can be computed using Yang [42].

The final chapter computes some local L-factors using the doubling integral

and the other results that we develop throughout the thesis. This section is very

detailed and explicitly escorts the reader through the entire calculation for several

representations. In particular, we compute the local L-factor in the spherical case

on both the linear and metaplectic group. For these representations, the calcula-

tions are still sufficiently simple to be computed by hand. We also demonstrate a

calculation for one ramified representation of the linear group. The ramified cases

are much more computationally intensive and require some help from Mathematica.

This thesis also contains two appendices. The first is simply a compilation

of material needed to compute the various Weil indexes that are ubiquitous in the

study of Weil representations. The second appendix is a table that summarizes all

the results outlined above. There are also several tables that contain data about

the unramified principal series of Sp2(F ) as well as similar data for the relevant

representations on S̃p2(F ) and SO5(F ).

So in order to establish our theorem, we have the following steps:

For Sp2(F ), we must:

1. Determine all admissible representations π having an Iwahori-fixed vector.

2. Associate such representations to L-packets ρ′ = (ρ,N).

3. Compare the doubling L-factor L(s, π, rst) with the Galois L-factor

11



L(s, rst ◦ ρ′).

For S̃p2(F ), we must:

1. Determine all admissible representations π̃ having an Iwahori-fixed vector.

2. Associate such a representation to an admissible π of SO5(F ) having an

Iwahori-fixed vector.

3. Associate the various π to L-packets ρ′ = (ρ,N).

4. Compare the doubling L-factor L(s, π̃, rst) with the Galois L-factor

L(s, rst ◦ ρ′).

12



Notation

The following notation holds throughout the thesis:

N1 =


n1(c) =



1 c

1

1

−c 1


| c ∈ F


,

N2 =

n2(b) =

 I b

I

 | b ∈ Sym2(F )


A =

m(a) =

 a

ta−1

 | a ∈ GL2(F )


and

diag(a1, a2, . . . , an) =



a1

a2

. . .

an


.

Finally bold letters denote the image under the splitting map

Pα ↪→ S̃p2(F ).

For instance, m(a) = [m(a), 1]L.
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Let k be any field with char(k) 6= 2. For our purposes, the standard parabolic

subgroups of G = Sp2(k) will be subgroups P ⊃ P∅. Moreover, P∅ is a Borel

subgroup with

P∅ = M∅N∅

where

M∅ ' (k×)2

is the diagonal torus and

N1, N2 ⊂ N∅.

The standard parabolic subgroups of interest are:

• (Siegel Parabolic) Pα = MαNα with

Mα ' GL2(k) and Nα ' Sym2(k).

• (Long Root Parabolic) Pβ = MβNβ with

Mβ ' k× × Sp1(k) and Mβ ' H(k2)

where H(k2) is the Heisenberg group associated to the quadratic space

(k2, Q(x, y) = 2xy).

Let F and O be as in the introduction. Further, set K = Sp2(O), then a

standard parahoric subgroup will be either the subgroup K or the full universe

image of one of the standard parabolic subgroups under the map

K → GL(O/P).
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Chapter 2

General Representation/Representation Theory of Sp2(F )

2.1 Representation Theory of p-adic Groups

In this first chapter, we will explore some general representation theory that

applies to all manner of p-adic topological group. We will then discuss results

that are more applicable to arbitrary symplectic groups Spn(F ) and finally we will

specialize all our results to the group Sp2(F ). While some of the results discussed

in this section are well known, we will apply them toward the following goals.

1. Determine the reducibility points of the unramified principal series of Sp2(F ).

The results are contained in Table B.1.

2. Begin building techniques for computing the explicit values of Iwahori-fixed

vectors and the dimension of the Iwahori invariants of various representa-

tions. The three main constructs applied here are the standard intertwining

operators, inner products for unitarizable representations and the exactness

of parabolic induction. These techniques should apply to fairly general p-adic

groups.

3. Describe the local Langlands conjecture for split p-adic groups. Applied to

Sp2(F ) this allows us to produce conjecture L-factors that we will later com-

pute on representations of Sp2(F ).
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Finally, we begin with some very basic representation theory for general p-adic

groups.

2.1.1 Induction, Jacquet functors and Frobenius reciprocity

Let us recall some of the basic facts from the representation theory of p-

adic groups and give some context as to how they will be used in this thesis. For

instance, let G = G(F ) be the p-adic points of an algebraic group and P ⊂ G be

any parabolic subgroup with Levi decomposition MN . Then for any admissible

representation (σ,W ) of the group M , we define the induced representation

IndGP (σ) =

f : g → W |
f(mng) = δP (m)

1
2σ(m)f(g) ∀m ∈M,n ∈ N, g ∈ G

∃K compact open, f(gk) = f(g) ∀k ∈ K, g ∈ G

 ,

where δP : P → C× is the modulus character of P . G acts on this space via right

translation; such a construction is called (normalized) smooth induction. So for the

purpose of this thesis, all induction is assumed to be normalized. This has the benefit

that inducing from unitary data results in a unitary representation. Furthermore,

for a representation (π, V ) of the group G, we consider the set

V (N) = spanC{π(n)v − v | v ∈ V, n ∈ N}

and notice the quotient VN = V/V (N) is a representation of the group M via the

action

m · (v + V (N)) = δP (m)−
1
2π(m)v + V (N).

We call rGP the (normalized) Jacquet functor with respect to P and rGP (π) the (nor-

malized) Jacquet modules for π with respect to P . It is known that both con-
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structions respect admissibility. Thus, let R(G) is the Grothendieck group of the

category of smooth finite-length representations of G. This is essentially the free

abelian group of the set of finite-length representations of G. We notice that the

functors for parabolic induction IndGP and the Jacquet functor rGP lift to obvious

maps on the Grothendieck groups R(G) and R(M). Further, R(G) has a natural

partial ordering π1 ≤ π2 if m(τ, π1) ≤ m(τ, π2) for all smooth irreducible τ , where

m(τ, π) is the multiplicity of τ in π. Additionally, parabolic induction and the

Jacquet functor satisfy the following adjointness property.

Theorem 2.1.1 (Frobenius Reciprocity). Let π ∈ R(G) and σ ∈ R(M), then

we have

HomG(π, IndGP (σ)) = HomM(rGP (π), σ).

Proof. See [2].

While this appears to be a categorical statement regarding two adjoint func-

tors, we will use it in some explicit computations. Moreover, let G = Sp2(F ) and

P = P∅, a Borel subgroup with M∅ = (F×)2. The irreducible representations of M∅

are parameterized by pairs of quasicharacters χi : F× → C×. In fact, we have

χ1 ⊗ χ2 : M∅ → C× χ1 ⊗ χ2(

 a1

a2

) = χ1(a1)χ2(a2).

Furthermore, we define an action of the Weyl group WG = WSp2
on these pairs by

χ1 ⊗ χ2 ◦ w(

 a1

a2

) = χ1 ⊗ χ2(w

 a1

a2

w−1).
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In the case of Sp2(F ), WG =< wα, wβ > where wα (resp. wβ) corresponds to the

short (resp. long) root in the Dynkin diagram for Sp2(F ). On M∅ we have that

χ1 ⊗ χ2 ◦ wα = χ2 ⊗ χ1

χ1 ⊗ χ2 ◦ wβ = χ1 ⊗ χ−1
2

It is elementary to show that

rGP (IndGP∅(χ1 ⊗ χ2)) =
∑
w∈WG

χ1 ⊗ χ2 ◦ w ∈ R(M∅).

So for any irreducible constituent π of IndGP∅(χ1⊗ χ2), Frobenius Reciprocity deter-

mines for which IndGP∅(χ1 ⊗ χ2 ◦ w) our data π appears as a submodule. In fact, if

χ1 ⊗ χ2 is regular (i.e., χ1 ⊗ χ2 ◦ w 6= χ1 ⊗ χ2 for any w ∈ WG), then

dimC(HomG[π, IndGP∅(χ1 ⊗ χ2 ◦ w)]) = dimC(HomM∅ [r
G
P∅

(π), χ1 ⊗ χ2 ◦ w])

=


1 if χ1 ⊗ χ2 ◦ w ≤ rGP∅(π)

0 if χ1 ⊗ χ2 ◦ w 6≤ rGP∅(π).

Moreover, since π was taken to be irreducible, we know that any non-zero element

of Hom[π, IndGP∅(χ1 ⊗ χ2 ◦ w)] is an embedding. In fact, Frobenius Reciprocity tells

us that

HomG(IndGP∅(χ1 ⊗ χ2), IndGP∅(χ1 ⊗ χ2 ◦ w))

is one dimensional for regular χ1 ⊗ χ2. In particular, we will show that this one

dimensional space is spanned by a standard intertwining integral over a certain

subgroup of the unipotent radical N∅. We will define this useful operator in a later

section.
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2.1.2 Some results regarding contragradient and unitarizability

Most of the machinery that we have discussed works in a great deal of gener-

ality, but is particularly effective when our inducing data is regular. We now discuss

some additional tools that are quite useful in several of the cases that the inducing

data is irregular. For Sp2(F ), most reducible representations coming from irregular

data will have certain unitarizable constituents. We begin with a brief sketch of

results pertaining to unitarizability.

Let (π, V ) be an admissible representation of G = G(F ) and let (π∗, V ∗) be the

(smooth) contragradient. Thus these are the smooth vectors in the space of linear

functionals on V . One can show that for (π, V ) admissible, that (π∗, V ∗) is admis-

sible as well [2], [6]. Moreover, we have the following properties of contragradients

[6].

1. The functor π 7→ π∗ is a exact and contravariant.

2. (π∗)∗ = π.

3. For P ⊂ G a parabolic subgroup with P = MN and (σ, Vσ) an admissible

representation of M , we have

IndGP (σ∗) = IndGP (σ)∗.

The third property actually follows from the following result in [4] and [38].

Lemma 2.1.1. Let G be a p-adic group and P = MN a parabolic subgroup. Further,

let C∞(P\G; δP ) be the set of smooth, complex valued functions on G such that

f(pg) = δP (p)f(g)
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where δP is the modulus character of P . Then there exists a G-invariant linear

functional on C∞(P\G; δP ) given by

f 7→
∫
K

f(k)dk.

So we see that for f ∈ IndGP (σ) and f ∗ ∈ IndGP (σ∗) that the function

Ψf,f∗(g) =< f(g), f∗(g) >

belongs to C∞(P\G; δP ) and

<< f, f∗ >>=

∫
K

< f(k), f∗(k) > dk

is non-degenerate pairing on IndGP (σ)×IndGP (σ∗). Now that we have considered some

general theory regarding contragradients, let us examine the unitarizability of two

kinds of representation that are useful in this thesis.

First, let us suppose that P = MN is a parabolic subgroup of G and that

(σ, Vσ) is a unitary representation of M with non-degenerate inner product < ·, · >σ.

This inner product gives us a natural isomorphism between (σ, Vσ) and (σ∗, V ∗
σ ) in

the usual way. Moreover, for f, f ′ ∈ IndGP (σ)

Ψf,f ′(g) =< f(g), f ′(g) >σ∈ C∞(P\G; δp).

Therefore,

<< f, f ′ >>=

∫
K

< f(k), f ′(k) >σ dk

is a non-degenerate Hermitian form on IndGP (σ). In particular, if P = B is a Borel

for G and {χi}ni=1 are unitary characters, then

IndGB(χ1, χ2, . . . , χn)
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is unitary with inner product

<< f, f ′ >>=

∫
K

f(k)f ′(k)dk.

Such a representation is completely reducible. For instance, let ξ : F× → C1 be the

unique unramified character of order 2. For G = Sp1(F ) ' SL2(F ) and B the upper

triangular Borel,

IndGB(ξ) = T 1
ξ ⊕ T 2

ξ

with T 1
ξ the spherical constituent. So we see that for unitary inducing data (σ, Vσ),

the resulting induced representation is also unitary and we have an explicit formula

for an inner product on this space that is derived from the inducing data.

The second type of representation of interest in this section are the square-

integrable representations. Let (π, V ) be a representation and (π∗, V ∗) its contra-

gradient. A matrix coefficient is a function of the form

cv,v∗(g) :=< π(g)v, v∗ >

for v ∈ V and v∗ ∈ V ∗. An irreducible representation (π, V ) is called square-

integrable if the following two criteria hold:

• π|Z(G) acts via a unitary character, where Z(G) is the center of G (i.e., has a

unitary central character).

• All the matrix coefficients belong to L2(Z\G) (all matrix coefficients are

square-integrable mod center).

An important representation of this type is the Steinberg representation of a
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group G. For the groups we are interested in, this representation is the unique

square-integrable subquotient of IndGB(δ
1
2
B), where B is a Borel subgroup of G.

In general, irreducible square-integrable representations are unitarizable. In

particular, they admit the following G-invariant inner product. Let (π, V ) be an

irreducible square-integrable representation and (π∗, V ∗) its contragredient. Further,

fix a v∗0 ∈ V ∗, then we get the following non-degenerate Hermitian inner product on

V

<< u, v >>:=

∫
Z\G

< π(g)u, v∗0 > < π(g)v, v∗0 >dg.

The square-integrability ensures that this definition makes sense.

While the examples above do not exhaust the unitarizable representations

of G, they do include the cases of unitarizable representations that are needed

for us to compute the explicit values of our Iwahori invariants for representations

induced from irregular data. In nearly all these cases, our representations will have

unitarizable inducing data. Thus the inducing data will have a non-degenerate inner

product that we can extend to the induced representation as described above.

2.1.3 Iwahori factorization and the dimension of Iwahori invariants

As was suggested in the introduction, we also require a method of computing

the dimesion of vectors fixed by various standard parahoric subgroups. Finding an

upper bound for these dimensions is trivial. Let G = G(F ) be an arbitrary p-adic

group as above, P ⊂ G a parabolic subgroup with Levi decomposition P = MN
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and J ⊂ G a parahoric subgroup. Then for a representation (σ, V ) on M ,

dimC(IndGP (σ)J) ≤ #(P\G/J).

So for π ⊂ IndGP (σ), then dimC(πJ) ≤ #(P\G/J). Now we will study the various

Jacquet modules will determine a lower bound on these dimensions. In the case of

Sp2(F ), we will show that this suffices to determine the exact dimensions. For this

section, we follow the notes of Casselman [5].

Let (π, V ) be a representation of a p-adic group G. We begin by defining an

Iwahori factorization for a compact open subgroup of G with respect to a parabolic

subgroup P = MN . While Casselman has a more precise definition, for our purposes

a compact open subgroup K0 of G has an Iwahori factorization with respect to

the parabolic subgroup P = MN if

K0 = (K0 ∩ N̄)(K0 ∩M)(K0 ∩N)

along with a condition pertaining to conjugating K0 ∩ N̄ and K0 ∩ N by a subset

of the center of M (see [5]). If K0 has an Iwahori factorization with respect to the

parabolic P , then Casselman shows that

πK0 → rGP (π)(K0∩M)

is surjective under the natural projection of V onto its Jacquet module VN . For

G = Sp2(F ), one can easily verify that each of our standard parahoric subgroups

I∗ ⊂ K (∗ ∈ {∅, α, β}) has an Iwahori factorization with respect to the corresponding

parabolic subgroup P∗ = M∗N∗. Consequently, we find that

IndGP∅(χ1 ⊗ χ2)
I∗ → rGP∗(IndGP∅(χ1 ⊗ χ2))

M∗(O).

23



is surjective. So IndGP∅(χ1 ⊗ χ2) has at least as many I∗-fixed vectors as there are

spherical representation in rGP∗(IndGP∅(χ1⊗χ2)). Moreover, we have computed all the

applicable Jacquet modules and find that there are #(P∅\G/I∗) such vectors. Thus

our map

IndGP∅(χ1 ⊗ χ2)
I∗ → rGP∗(IndGP∅(χ1 ⊗ χ2))

M∗(O)

is a vector space isomorphism. Therefore for any constituent π of the unramified

principal series of Sp2(F ),

dimC(πI∗) = dimC(rGP∗(π)M∗(O)).

Thus knowing all the Jacquet modules with respect to the standard parabolic sub-

groups is sufficient for determining the dimensions of parahoric invariants. It is

interesting to note that for Sp2(F ), every constituent π of the unramified principal

series has a parahoric I∗ with dimC(πI∗) = 1.

2.2 Reducibility of Principal Series for Sp2(F )

In the previous sections, we developed some of the basic tools in the study

of p-adic groups. However, we have yet to discuss the reducibility points of the

their induced representations. Consequently, this section will be devoted to the

reducibility points for principal series representations of p-adic groups. First, we will

discuss some general results that offer a partial solution to finding such reducibility

points [37]. Moreover, the reducibility points for the unramified principal series of

Sp2(F ) are known. So we will summarize the work of Paul Sally, Jr. and Marko

Tadić [33].
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2.2.1 Some general reducibility results of Tadić

We now aim to describe some general reducibility and irreducibility criteria

determined by Marko Tadić [37]. Also note that we will follow Tadić’s notation in

this section as well. In particular, let G = G(F ) be the p-adic points of an algebraic

group. As in the previous sections, R(G) will denote the Grothendieck group of G.

Tadić has the following reducibility criteria for representations of p-adic groups G :

Suppose P0 = M0N0 and P = MN are standard parabolic subgroups of G.

Further, suppose σ is a smooth representation of M0 and π, Π smooth finite-length

representations of G. Finally, suppose that

1. IndGP0
(σ) ≤ Π, π ≤ Π.

2. rGP (IndGP0
(σ)) + rGP (π) 6= rGP (Π).

3. rGP (IndGP0
(σ)) 6≤ rGP (π).

Then, IndGP0
(σ) is reducible.

As a concrete application of this criteria, let G = Sp2(F ) and let us consider

the representations IndGPα
(ν

3
2StGL2) and IndGPβ

(ν2⊗StSp1
). Here ν denotes the qua-

sicharacter ν(a) = |a| for a ∈ F×. Finally, let Π = IndGP∅(ν
2⊗ν). First, by exactness

of induction, we see that

IndGPβ
(ν2 ⊗ StSp1

) ⊂ IndGPβ
(ν2 ⊗ Ind

Sp1(F )
B (ν)) = IndGP∅(ν

2 ⊗ ν)

and

IndGPα
(ν

3
2StGL2) ⊂ IndGPα

(ν
3
2 Ind

GL2(F )
B (ν

1
2 ⊗ ν−

1
2 )) = IndGP∅(ν

2 ⊗ ν).
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Thus criterion (1) holds. Next we see that

rGP∅(IndGP∅(ν
2 ⊗ ν)) = ν2 ⊗ ν + ν2 ⊗ ν−1 + ν−1 ⊗ ν2 + ν−1 ⊗ ν−2

+ν−2 ⊗ ν−1 + ν−2 ⊗ ν + ν ⊗ ν−2 + ν ⊗ ν2

rGP∅(IndGPα
(ν

3
2StGL2)) = ν2 ⊗ ν + ν2 ⊗ ν−1 + ν−1 ⊗ ν2 + ν−1 ⊗ ν−2

rGP∅(IndGPβ
(ν2 ⊗ StSp1

)) = ν2 ⊗ ν + ν ⊗ ν2 + ν ⊗ ν−2 + ν−2 ⊗ ν.

So verifying criteria (2) and (3) are routine. Further notice that for our choices

above, either representation induced from the maximal parabolic subgroups Pα or

Pβ can function as the π or IndGP0
(σ) in Tadić’s criteria. Thus we conclude that both

representations are reducible. In particular, StSp2
is a submodule for both and their

quotients are two inequivalent Langlands quotients.

Tadić also has a methodology for ascertaining the irreducibility of various

representations through the use of Jacquet modules. In particular, Tadić shows

that given σ, an irreducible representation of M0, one can derive criteria regarding

the various Jacquet modules for IndGP0
(σ). Let IndGP0

(σ) = π1 + π2 with πi > 0 in

R(G). For any standard parabolic subgroup P = MN , let

Ti,P = rGP (πi) ∈ R(M),

then the following must hold (see [37]):

1. Ti,P ≥ 0 and T1,P 6= 0 if and only if T2,P 6= 0.

2. T1,P + T2,P = rGP (IndGP0
(σ)).

3. rM1
P2∩M1

(Ti,P1) = Ti,P2 for P1 ⊃ P2.
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So the representation IndGP0
(σ) is irreducible if there is no parabolic P such that

we write rGP (IndGPO
(σ)) as a sum S1,P + S2,P with the Si,P conforming to the above

criteria.

For a concrete example of this, let us consider the representation IndGPβ
(χ ⊗

StSp1
) where χ 6∈ {ξ, ν±1, ν±2 | ξ2 = 1}. Here ν and ξ are quasicharacters on F×

with

ν(a) = |a| and ξ(a) = |a|
πi

log q .

The Jacquet modules with respect to the standard parabolic subgroups are listed

below. In particular, the center column contains the Jacquet module for our example

with respect to the Borel subgroup P∅. The lines in the diagram match a represen-

tation on a larger Levi component τ with rMM∩P∅(τ). We choose to draw these lines

to help illustrate how criterion (3) of Tadić’s irreducibility criteria creates some rigid

requirements that will actually force our representation to be irreducible.

rGPα
rGP∅ rGPβ

Ind
GL2(F )
B (χ⊗ ν) χ⊗ ν χ⊗ StSp1

ν ⊗ χ ν ⊗ Ind
Sp1(F )
B (χ)

Ind
GL2(F )
B (χ−1 ⊗ ν) ν ⊗ χ−1

χ−1 ⊗ ν χ−1 ⊗ StSp1

..................................................................................................... .....................................................................................................
........................................................................................................................

.....................................................................................................

.....................................................................................................
..................

..................
..................

..................
..................

..................
............

........................................................................................................................
.....................................................................................................

So let us suppose that IndGPβ
(χ ⊗ StSp1

) = π1 + π2. We will show that either

π1 or π2 must be the whole representation and so our original representation is

irreducible. Now suppose that rGP∅(π1) > 0 in R(G). Without loss of generality, let
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rGP∅(π1) ≥ χ⊗ ν. Since rGP∅(π1) ≥ χ⊗ ν, then

rGPα
(π1) ≥ Ind

GL2(F )
B (χ⊗ ν).

However, criterion (3) tells us that

rGP∅(π1) ≥ χ⊗ ν + ν ⊗ χ.

Similarly, we see that

rGPβ
(π1) ≥ χ⊗ StSp1

+ ν ⊗ Ind
Sp1(F )
B (χ) and rGP∅(π1) ≥ χ⊗ ν + ν ⊗ χ+ ν ⊗ χ−1.

and

rGPα
(π1) ≥ Ind

GL2(F )
B (χ⊗ ν) + Ind

GL2(F )
B (χ−1 ⊗ ν).

Thus we know that rGPα
(π1) ≥ rGPα

(IndGPβ
(χ⊗StSp1

)). So π1 is our entire representa-

tion. Notice that criterion (3) forces π1 to contain all the available submodules of

rGP (IndGPβ
(χ⊗ StSp1

)). This ensures that

π1 = IndGPβ
(χ⊗ StSp1

)

is irreducible.

It is also worth noting that if χ ∈ {ν±2, ξ | ξ2 = 1}, IndGPβ
(χ ⊗ StSp1

) is

reducible (thus we wouldn’t expect Tadić’s irreducibility criteria to hold). When

χ = ν±1 the representation is still irreducible, however we need more sophisticated

machinery to establish this. Notice that in such a case, the data is irregular. As

with material in previous sections, Tadić’s various criteria are most useful when the

inducing data is regular. To resolve the remainder of the cases, Sally and Tadić

derive the reducibility points for the unramified principal series of GSp2(F ) and

deduce the reducibility points for Sp2(F ) from these.
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2.2.2 Some results of Sally and Tadić

Next we mention some of results of Sally and Tadić in [33]. In this paper, Sally

and Tadić determine the reducibility points for representations of the principal series

of GSp2(F ) and Sp2(F ). Much of the paper proves reducibility results for GSp2(F )

and then leverages them to derive similar results for Sp2(F ). In particular, they use

the following defintions and results for GSpn(F ) and Spn(F ).

Definition 2.2.1. Let (F×)∼ denote the set of quasi-characters of F×. For π ∈

R(GSpn(F )) define

XSpn
(π) = {χ ∈ (F×)∼ |χπ = π in R(GSpn(F ))}.

Here χπ represents the twist of π by a quasicharacter χ composed with the similitude

character GSpn(F ) → F×. Sally and Tadić then state that for π ∈ R(GSpn(F )),

dimC(EndSpn(F )(π|Spn(F ))) = #XSpn
(π). (2.1)

To see an example of the utility of these statements, let us consider the case

when n = 1. Thus GSp1(F ) ' GL2(F ) and Sp1(F ) ' SL2(F ). Let B (resp. B′) be

the upper triangular Borel subgroup of GL2(F ) (resp. SL2(F )). Then we have that

Ind
GL2(F )
B (χ1 ⊗ χ2)|SL2(F ) ' Ind

SL2(F )
B′ (χ1χ

−1
2 )

as representations of SL2(F ). One direction of this isomorphism is obvious. In

particular, we have

f −→ f |SL2(F ).

29



Furthermore, for any f ′ ∈ Ind
SL2(F )
B′ (χ1χ

−1
2 ), we define

f(g) := χ2(det(g))|det(g)|−
1
2f ′(

 1

det(g)−1

 g).

One can verify that f ∈ Ind
GL2(F )
B (χ1⊗χ2) and its restriction to SL2(F ) is obviously

f ′. Finally, we note that both maps are SL2(F ) intertwining maps and are inverse

bijections of each other.

So now, let us consider the representation π = Ind
GL2(F )
B (ξ ⊗ 1F×), where

ξ2 = 1 and ξ 6= 1. It is known that this representation is irreducible. Moreover, by

the previous paragraph, we see that

Ind
GL2(F )
B (ξ ⊗ 1F×)|SL2(F ) ' Ind

SL2(F )
B′ (ξ).

Notice that

XSL2(π) = {1F× , ξ}

so

dimC(EndSL2(F )(π|SL2)) = 2.

This fact, along with some elementary arguments, brings us to the conclusion

Ind
SL2(F )
B′ (ξ) is completely reducible (see [38]). In fact,

Ind
SL2(F )
B′ (ξ) = T 1

ξ ⊕ T 2
ξ

where T 1
ξ is spherical.

Using similar results, as well as the previously mentioned reducibility criteria,

Sally and Tadić give a complete list of reducibility points for the principal series of

GSp2(F ) and Sp2(F ). The results for the unramified principal series of Sp2(F ) is

included in Tables B.1-B.4 in Appendix B.
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2.3 Representations of the Weil-Deligne Group

The last section of this chapter seeks to explain a conjectured correspondence

between representations on p-adic algebraic groups and related Galois representa-

tions. For G = F×, such results are a well-understood part of local class field theory.

One goal of the Langlands Program is to generalize this to the non-abelian setting.

There are several formulations that depend on various properties of the p-adic group

in question. In our case, we are working with Sp2(F ), a split p-adic group. Thus we

shall use the formulation of the local Langlands correspondence that is commensu-

rate with the split p-adic case. In particular, a more general case involves an action

of Gal(F̄ /F ) that is trivial for split groups.

2.3.1 Basic definitions

Let us begin with some of the basic definitions. Consider the exact sequence,

1 → IF → Gal(F̄ /F ) → Gal(F̄q/Fq) → 1,

where Fq is identified with O/P and Z ⊂ Gal(F̄q/Fq) ' Ẑ. We let WF be the inverse

image of Z in Gal(F̄ /F ) and we let Frq ∈ WF be an element that maps to 1 ∈ Z.

We call WF the Weil group of F and Frq is referred to as a Frobenius element

of WF .

There is a more general group W ′
F called the Weil-Deligne group associated

to F ; however for our purposes, we don’t need much of the extra structure. Futher

details can be found in the Corvallis proceedings [39] and [3]. For our applications,

one could largely treat W ′
F as the aforementioned WF .
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2.3.2 Generalizing local class field theory

According to local class field theory, there is a reciprocity isomorphism

F× ' Wab
F with $ ↔ Frq.

Quasicharacters χv of F× correspond to homomorphisms

σq : Wab
F → C×

by composition with the reciprocity map. Moreover, there is an equality of local

factors

(1− χv($)q−s)−1 = (1− σq(Frq)q
−s)−1.

It is these results that one would hope to generalize to arbitrary p-adic groups.

In particular, we will now describe the local Langlands correspondence for split p-

adic groups.

For such a group G, a complex Weil-Deligne representation of W ′
F is a pair

ρ′ = (ρ,N) where ρ is a continuous homomorphism

ρ : W ′
F → GL(V )

(here V is a C-vector space) along with a nilpotent endomorphism N ∈ End(V )

such that

ρ(Frq)Nρ(Frq)
−1 = |$|N. (2.2)

Such a representation (ρ,N) is called admissible if ρ is semi-simple as a represen-

tation on W ′
F . Two such representations (ρ1, N1) and (ρ2, N2) are called equivalent

if there exists a g0 ∈ GL(V ) with

Inn(g0) ◦ ρ1 = ρ2 and N2 = g0N1g
−1
0
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where Inn(g0)(x) = g0xg
−1
0 is the inner automorphism defined by g0.

As with representations of G, Weil-Deligne representations have L-factors at-

tached to them. We can then define the following functions

L(s, ρ′) = L(s, ρ,N) := det(1− q−sρ(Frq)|V IF
N

)−1

where VN = ker(N) and V IF are the ρ(IF ) invariant vectors in V .

Furthermore, for a split p-adic group G, there exists a complex group LG0,

called the Langlands dual group, associated to G. In the case of G = Sp2(F ),

LG0 = SO5(C). Let us suppose we have a pair ρ′ = (ρ,N) as above such that

ρ : W ′
F → LG0

and N ∈ Lie(LG0) is a nilpotent operator satisfying Equation 2.2. Then any repre-

sentation

r : LG0 → GL(V ),

with V a C vector space, give us a Weil-Deligne representation

r ◦ ρ′ : W ′
F → GL(V ).

For instance, Sp2(F ) has the map

rst : SO5(C) → GL5(C)

as the obvious inclusion. So given any pair ρ′ = (ρ,N) with

(ρ,N) : W ′
F → LG0

we can compose this map with rst to yield a Weil-Deligne representation rst ◦ ρ′.
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Let AF (G) denote the isomorphism classes of admissible representations of

G and let GF (G) denote the equivalence classes of admissible representations of

W ′
F → LG0. The Local Langlands Conjecture seeks to partition the set AF (G) via

elements of GF (G). In particular, let ρ′ = (ρ,N) ∈ GF (G), then it is conjectured

that there exists Πρ′ ⊂ AF (G) with several properties that include the following:

• Πρ′1
∩ Πρ′2

= ∅, if ρ′1 6= ρ′2. Such a Πρ′ is called an L-packet.

• AF (G) =
⋃
ρ′∈GF (G) Πρ′ .

• ∀π ∈ Πρ′ and map

r : LG0 → GL(V ),

(V a C-vector space). We have,

L(s, π, r) = L(s, r ◦ ρ′),

in the cases where the local factor L(s, π, r) is defined.

It is worth noting that this correspondence is known in some cases. Most

notably, Harris and Taylor proved it for GLn(F ) [10]. Also note that forG = Sp2(F ),

we are interested in (ρ,N) where ρ has the form

ρ : W ′
F → LG0 = SO5(C)

and r = rst, where rst maps SO5(C) into GL5(C) as an inclusion.

2.3.3 Lusztig’s criteria for choosing ρ′

While this correspondence is not known in general, Lusztig gives some criteria

for how one might choose a pair ρ′ = (ρ,N) that parameterize constituents of the
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unramified principal series of various p-adic groups [25]. For such a π, his criteria

can be described as follows:

For a split p-adic group G with Borel subgroup B and π a constituent of the

unramified principal series of G, there exists a set of unramified quasi-characters

{χi} such that π is a constituent of IndGB(χ1, χ2, . . . , χn). Notice that the induced

representation has a spherical constituent. Thus ρ(Frq) should be the Satake pa-

rameter of this spherical representation and ρ|IF
= 1. This is clearly a semisimple

representation of W ′
F .

Since the Satake parameter is a equivalence class of semisimple matrices, we

desire to fix a particular representative for our calculations. Since the χi are un-

ramified, χi = | · |si for some si ∈ C. Furthermore, because the quasicharacter

| · |s is (2πi)/ log q periodic as a function of s, we can restrict our si to the strip

0 ≤ Im(s) < (2πi)/ log q. So define an ordering on this strip as follows:

z1 > z2 if


Re(z1) > Re(z2) or

Re(z1) = Re(z2) and Im(z1) > Im(z2)

.

One may thing of this as a kind of dictionary ordering. So by convention, we will

our representative of the Satake parameter with si ≥ sj for i < j. For example, in

the case of Sp2(F ), our unramified principal series representations are induced from

two characters χ1 = | · |s1 and χ2 = | · |s2 . Our convention dictates that s1 ≥ s2 and

the representative of the Satake parameter we use in our computations will be

diag(|$|s1 , |$|s2 , 1, |$|−s1 , |$|−s2).

While this convention is certainly not needed for one to obtain L-factors that match
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those in this thesis, it does allow the reader to more easily follow our intermediate

steps.

According to Lusztig [25], choosing N reduces to the case that π is tempered.

If π is not tempered, then it will be the Langland’s quotient of some representation

induced from the twist of a tempered representation of a proper parabolic subgroup’s

Levi factor. Once we have a method of selection for tempered representations, we

can choose the appropriate nilpotent operator on the Levi factor and then take the

corresponding N in Lie(LG0). When π is tempered, we look at the set of all N

satisfying

ρ(Frq)Nρ(Frq)
−1 = |$|N.

This set will have unique open orbit under the action of W ′
F . Choosing any element

from that orbit will function as our N . Using these criteria, we have found pairs

(ρ,N) corresponding to all representations of interest. The results are summarized

in Table B.5 in Appendix B. This table will also include the various local L-factors

L(s, rst ◦ ρ′) = det(1− (rsr ◦ ρ)(Frq)|V IF
N

q−s)−1.

In our case, the action of IF is trivial, so VN = V IF
N .

2.3.4 An example

Now that we have described the computations on the Galois side of correspon-

dence, let us compute an example relevant to this thesis. In particular, we will apply

our calculations and Lusztig’s criteria for the representation

IndGP∅(ν
2 ⊗ ν).
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This representation has four irreducible subquotients: StG, L(ν2, StSp1
), L(ν

3
2StGL2)

and 1G. We know that StG is tempered (in fact, square-integrable) and the Lang-

lands quotients are induced from twists of Steinberg representations on the Levi

factors of the maximal parabolic subgroups. By our criteria, ρ(Frq) should corre-

spond the the Satake parameter of the spherical constituent. In particular,

ρ(IF ) = 1SO5 and ρ(Frq) = diag(|$|2, |$|1, 1, |$|−2, |$|−1) ∈ LSp2 = SO5(C).

Now the set of nilpotent matrices in so5(C) = Lie(SO5(C)) that satisfy the desired

property when conjugated by ρ(Frq) are given by

N(x, y) = {



0 x 0 0 0

0 0 y 0 0

0 0 0 0 −y

0 0 0 0 0

0 0 0 −x 0


| x, y ∈ C}.

The open orbit of the space under the conjugation action of LG0 is clearly the

subset of N(x, y) with x, y 6= 0. So we take the representative with x = y = 1 (call

this matrix N3); thus (ρ,N3) should be the data corresponding to the Steinberg

representation StG. Furthermore, 1G is spherical, so it corresponds to the data (ρ, 0).

So finally, we come to the Langlands quotients. The representation L(ν
3
2StGL2) is

the unique irreducible quotient of IndGPα
(ν

3
2StGL2). It is induced from the twist of

a tempered representation of Mα, the Levi factor for Pα. As a representation of
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GL2(F ), StGL2 corresponds to the Weil-Deligne representation with

ρ(IF ) = 1 ρ(Frq) =

 |$| 12

|$|− 1
2

 N =

 0 1

0 0


where LGL0

2 = GL2(C). Moreover, SO5 has a standard parabolic subgroup with Levi

factor isomorphic to GL2, so we choose the subset of N(x, y) that exponentiates into

that Levi factor. Our N will be a representative of that subset. In particular, we

choose x = 1 and y = 0 (call this element N1) and this finally specifies the pair

(ρ,N1). The other Langlands quotient is done similarly, when we note that it is

a quotient of a representation induced from the parabolic F× × Sp1(F ) and the

Langlands dual to this group is C× × SO3(C) which is the Levi factor into which

N(0, y) exponentiates.
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Chapter 3

Basic Theory Surrounding S̃pn(F )

We will also demonstrate that the method for defining L-factors offered in this

thesis actually generalizes to covering groups of Spn(F ) called metaplectic covers.

We will now discuss one construction of the metaplectic group. However, it is

worth mentioning that our method is not the only way to realize these topological

covering group. For instance, [18] refers to a somewhat different construction that

relies on the Stone-von Neumann Theorem regarding Hiesenberg groups and

the uniqueness of their representations having a given central character.

3.1 The Weil Representation and the Metaplectic Group

In this section section, we will describe the metaplectic cover S̃pn(F ) of the

symplectic group Spn(F ). We are interested in this group for two reasons. First, it

is a p-adic (topological) group in its own right. In fact, we will discuss its parabolic

subgroups, the genuine principal series representations of this group and define the

local L-factor for most of these representations. Second, the metaplectic group is

the natural group on which to define the Weil representation.

The Weil representation is a very important object in the study of representa-

tion theory for several deep reasons. For instance, it is used to define theta liftings

between representations forming a dual reductive pair. In fact, we will use some of
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these theta lifts in order to relate certain genuine principal series representations of

S̃p2(F ) to constituents of the principal series for SO5(F ). Additionally, our doubling

integral will require an auxiliary computation that proceeds directly from the Weil

representation.

3.1.1 The metaplectic cover of Spn(F )

Now we will construct the metaplectic cover of Spn(F ). Let G = Sp(V ), where

V = F 2n has a basis e1, . . . , en, f1, . . . , fn and symplectic form given by

< ei, ej >=< fi, fj >= 0 and < ei, fj >= δij

for all i, j. Then V has a complete polarization V = X+Y where X = spanC{ei}ni=1

and Y = spanC{fi}ni=1 are maximal isotropic subspaces. We then define P = PY to

be the stabilizer of Y in G, where G acts on V via right multiplication. Notice that

PY is precisely our upper triangular Siegel parabolic. Further, let K = Spn(O) and

define

wj =



In−j

Ij

In−j

−Ij


for 0 ≤ j ≤ n. We notice that these represent distinct elements of the Weyl group

WG of G. Furthermore, w0 = IG and wn represents the long Weyl group element in

G.
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The metaplectic extension G̃ of G satisfies the following exact sequence

1 → C1 → G̃→ G→ 1.

There exists an obvious section G→ G̃ so that G̃ is realized as the set

G̃ ' G× C1

with multiplication given by

[g1, z1]L · [g2, z2]L = [g1g2, cL(g1, g2)z1z2]L.

In this notation, the cL(·, ·) is the Leray cocycle, which we describe below. For each

g =

 a b

c d

 ∈ G, define an operator on the Schwartz space S(X) = S(F n) by

r(g)ϕ(x) =

∫
Fn/ker(c)

ψ(
1

2
(xa, xb) + (xb, yc) +

1

2
(yc, yd))ϕ(xa+ yc)dg(y),

where x, y ∈ F n are row vectors and (x, y) = xty. Furthermore, the measure is

normalized to ensure that r(g) is a unitary operator. While these operators do not

define a representation of G, they do define a projective representation of G on

S(F n) where

r(g1)r(g2) = cL(g1, g2)r(g1, g2).

Notice that this defines a representation of the covering group G̃ on S(F n) by

[g.z]L · ϕ(x) = zr(g)ϕ(x).

A theorem of Rao [31] also shows that

cL(g1, g2) = γ(ψ ◦ q(g1, g2)),
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where

q(g1, g2) = Leray(Y g1, Y, Y g
−1
2 ).

Here Leray(Y1, Y2, Y3) denotes the Leray invariant attached to the triple of isotropic

subspaces (Y1, Y2, Y3) and γ(ψ◦q) is the Weil index of the character of second degree

ψ ◦ q (see [31]).

The Leray cocycle is trivial on G× P and P ×G. This fact will be sufficient

for most of the computations in this thesis. However, the cocycle is not trivial on

K ×K, so it must be modified for use in the global setting. Kudla, Rapoport and

Yang define such a modification in [22]. It is very elementary to show

r(m(a))ϕ(x) = |det(a)|
1
2ϕ(xa),

r(n2(b))ϕ(x) = ψ(
1

2
(x, xb))ϕ(x) and

r(wn)ϕ(x) =

∫
Fn

ψ((x, y))ϕ(y)dy.

We also note that the various r(wj) are the partial Fourier transforms for the last j

coordinates of X.

It is also worth mentioning that the typical definition of covering groups for

G rely on a different cocyle cR(·, ·) called the Rao cocycle. For this thesis, let

S̃pn
∗
(F ) denote the metaplectic cover

1 → C1 → S̃pn
∗
(F ) → Spn(F ) → 1

defined using the Rao coordinates. It is worth noting that because the Rao cocycle

is valued in {±1}, that we have a character

S̃pn
∗
(F ) → C1 [g, z]R 7→ z2
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with kernel S̃pn
(2)

(F ), the unique double cover of Spn(F ). Furthermore, one can

verify that the double cover is the commutator subgroup of S̃pn
∗
(F ). Even though

the double cover has fewer splitting than the circle cover, the double cover is the

group that appears most often in the literature. In particular, we will mention some

conjectures regarding a correspondence between representations of S̃pn
(2)

(F ) and

representations of odd special orthogonal groups. Consequently, we will use one

section to discuss this conjecture.

3.1.2 Some splittings of the metaplectic cover

We would also like to consider splittings for subgroups of G into G̃. We will

see that properties of these splittings are important the parabolic subgroups and

intertwining operators on the metaplectic group. Furthermore, in this section, it is

important that p 6= 2. First, if we let P = PY ⊂ Spn(F ) be the Siegel parabolic

subgroup, the the map P ↪→ S̃pn(F ) given by

p 7→ [p, 1]L

is a splitting of P . This a simple consequence of the cocycle being trivial on P ×P .

However, there is an additional splitting that will be useful. If we consider the

projective representation (r, S(F n)) of Spn(F ) above and consider ϕ0 ∈ S(F n) to

be the characteristic function of On ⊂ F n, then we define a function λ on K by

r(k)ϕ0 = λ(k)−1ϕ0.

By this definition, we notice that

cL(k1, k2) = λ(k1k2)λ(k1)
−1λ(k2)

−1.
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Thus we get the splitting of K ↪→ G̃,

k 7→ [k, λ(k)]L.

Finally, we would like to explicitly compute the value of λ(k) for a particular

choice of k. This computation becomes important when we consider the intertwining

operators on the metaplectic group. For G = Sp2(F ) and Pα = MαNα the Siegel

parabolic subgroup, let

n(a) ∈ Nα ' Sym2(F )

that corresponds to the matrix 0 0

0 a

 ∈ Sym2(F ).

Further let n̄(a) = wnn(a)w−1
n , where wn is the long Weyl group element. Notice

that n(a) ∈ Mβ the Levi factor of the Long Root parabolic Pβ. Let us consider

λ(n̄(a)). First, we realize that

cL(n̄(a), wn) = λ(n̄(a)wn)λ(wn)
−1λ(n̄(a))−1.

However, λ(wn) = 1 can be easily verified by the definition. Also

λ(n̄(a)wn) = λ(wnn(a)) = cL(wn, n(a))λ(wn)λ(n(a)) = 1.

So we see that λ(n̄(a)) = cL(n̄(a), wn)
−1. Moreover, we know that

cL(n̄(a), wn) = γ(ψ ◦ q(n̄(a), wn))
−1

where q(n̄(a), wn) is the Leray invariant of the triple (Y n̄(a), Y, Y w−1
n ) of isotropic

subspaces. This we compute using [31] and find that

q(n̄(a), wn)(x) = −1

2
ax2.
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Moreover, Rao’s appendix gives us the means to compute the Weil index of ψ ◦

q(n̄(a), wn)(x). In particular,

γ(ψ ◦ q(n̄(a), wn)(x)) = γ(ψ− 1
2
a ◦ x2) = γ(−1

2
a, ψ ◦ x2)γ(ψ ◦ x2) (3.1)

Finally, Proposition A.11 of [31] tells that

γ(ψ ◦ x2) = 1

for our choice of additive character and for a = u$ord(a),

γ(−1

2
a, ψ ◦ x2) =


1 if ord(a) is even(

u
$

)
F
· θ if ord(a) is odd

where
( ·
$

)
F

is the Legendre symbol for F and θ is a fourth root of unity depending

only on ψ. So we see equation 3.1 becomes

γ(ψ ◦ q(n̄(a), wn)(x)) =


1 if ord(a) is even(

u
$

)
F
· θ if ord(a) is odd

. (3.2)

3.1.3 Parabolic subgroups of S̃pn(F )

We now explore one of the more important aspects the splittings we have just

discussed. In particular, by using the Leray coordinates for S̃pn(F ) and obtaining

the splitting of the Siegel parabolic, there will be a very natural structure relating

the parabolic subgroups of G and G̃. In particular, let P be the Siegel parabolic of

Spn(F ). Then for any P ′ ⊆ P , we have the splitting map

P ′ → S̃p2(F ) p 7→ [p, 1]L
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discussed previously. Now let Q = MN be an arbitrary parabolic of Spn(F ). Then

M ' GLn1(F )×GLn2(F )× · · · ×GLnr(F )× Spm(F )

with m+
∑r

i=1 ni = n. Notice that the subgroup

A ' GLn1(F )×GLn2(F )× · · · ×GLnr(F )× {1Spm
}

is contained in the Siegel parabolic subgroup. So again we get a splitting

A→ S̃pn(F ) a 7→ [a, 1]L.

If we let τn : S̃pn(F ) → Spn(F ) be the natural projection map, we see that the

inverse image of M in S̃pn(F ) is given by

τ−1
n (M) = M̃ ' GLn1(F )×GLn2(F )× · · · ×GLnr(F )× S̃pm(F )

as groups. Furthermore if m = 0, we will define

S̃p0(F ) = C1,

in order to keep our notation consistent. So

Q̃ ' M̃N

where N is identified with its image under the splitting n 7→ [n, 1]L. Moreover, one

can easily see that for parabolic subgroups

Q′ ⊂ Q ⊂ Spn(F ),

then

Q̃′ ⊂ Q̃ ⊂ S̃pn(F )
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in the obvious way. So for our purposes, a parabolic subgroup Q̃ of S̃pn(F ) will be

a subgroup of the form described above having a Levi decomposition

Q̃ ' M̃N.

3.1.4 Genuine principal series of metaplectic group

Now that we have discussed the parabolic subgroups for the metaplectic group,

let us look at parabolic induction in this context. Let

P̃ = M̃N

be a parabolic subgroup of G̃ with

M̃ ' GLn1(F )×GLn2(F )× · · · ×GLnr(F )× S̃pm(F ).

Let (πi, Vi) be a representation of GLni
(F ) and let (σ, V ) be a genuine representation

of S̃pm(F ). Then we can define (normalized) induction in the usual way

Ind
gSpn(F )eP (π1 ⊗ π2 ⊗ · · · ⊗ πr ⊗ σ)

with δ eP = δP . If m ≥ 1, one can routinely verify that this gives a genuine represen-

tation of S̃pn(F ). If m = 0, then we define the representation

σ0 : S̃p0(F ) → C1 σ0(z) = z.

So for P̃ = M̃N with

M̃ ' GLn1(F )×GLn2(F )× · · · ×GLnr(F )× S̃p0(F )

and Π =
⊗r

i=1 πi,

Ind
gSpn(F )eP (Π⊗ σ0)
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consists of locally constant functions satisfying

f([p, z]Lg
′) = zδP (p)

1
2 Π(p)f(g′).

For ease of notation, in the case that m = 0, we will denote the representation

(
r⊗
i=1

πr)
′ := (

r⊗
i=1

πi)⊗ σ0.

Let B be the Borel subgroup of Sp1(F ), then we have the following exact sequence

of representations

1 → τ(ςν
1
2 ) → Ind

gSp1(F )eB (ςν
1
2 ⊗ σ0) = Ind

gSp1(F )eB ((ςν
1
2 )′) → π(ςν

1
2 ) → 1

(see [22]).

It is also worth noting that using the Leray cocycle, we have the same transi-

tivity of induction that was discussed for the linear group in the previous chapter.

In particular, if P̃ ′ = M̃ ′N ′ and P̃ = M̃N are parabolic subgroups with P̃ ′ ⊂ P̃ ,

then P̃ ′ ∩ M̃ is a parabolic subgroup of M̃ . Consequently, we can extend all our re-

sults regarding Jacquet modules as well as Tadić’s reducibility (resp. irreducibility)

criteria to the metaplectic group in the obvious way. In fact, the table of reducibility

points for the genuine principal series of S̃p2(F ) (Table B.9) is derived from these

very results.

3.2 The Weil representation

Now that we have defined the metaplectic cover of G, we would also like to

define the Weil representation of G̃ associated to a quadratic space. Let (V,Q) be
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a quadratic vector space over F . We define the Weil representation (ωV , S(V n)) of

G̃ associated to (V,Q) as follows

ωV ([g, z]L)ϕ(x) = χV (x(g))(zγ(η)j(g))•γ(η ◦ V )−j(g)rV (g)ϕ(x) (3.3)

where

• =


0 if dimF (V ) is even

1 if dimF (V ) is odd.

Before we define the multitude of factors arising from this definition. Note

that if dimF (V ) is even, then ωV is trivial on {[1, z]L | z ∈ C1}, so the representa-

tion factors through the group G. This follows from the fact that (zγ(η)j(g)) is the

only factor in (3.3) containing z. Moreover, if dimF (V ) is odd, then the Weil rep-

resentation is genuine. We now define the various terms above. Let m = dimF (V ),

then

χV (t) = (t, (−1)
m(m−1)

2 det(V ))F

where det(V ) is the determinant of the matrix of the bilinear form on V and (·, ·)F

is the Hilbert symbol of F . In order to define x(g), we note that

G =
⋃

0≤j≤n

PYwjPY

is a disjoint union. So for g ∈ G, g = p1wjp2 where wj is uniquely determined. Thus

x(g) = x(p1wjp2) := det(p1p2|Y ) mod (F×)2.

If addition, if

g =

 a b

c d

 ,
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then j(g) = rank(c). One can show that for g ∈ PYwiPY , j(g) = i. So we see that

{PYwjPY }nj=0 partitions G according the the rank of the lower left block.

Next, we define η = ψ 1
2

(i.e., η(t) = ψ(1
2
t)). As before, γ denotes the Weil

index. In particular, γ(η) is simply the Weil index of the character of second degree

η ◦Q. Furthermore, Kudla defines

γ(η ◦ V ) := γ(det(V ), η)γ(η)mε(V )

in [18]. Here ε(V ) is the Hasse invariant of the quadratic space V and γ(det(V ), η)

is the relative Weil index and is computed by Rao in [31]. Ultimately, all the Weil

index computations and definitions can be found in [31].

Finally, if g =

 a b

c d

 let

rV (g)ϕ(x) =

∫
V n/Ker(c)

ψ(tr

(
1

2
(xa, xb) + (xb, yc) +

1

2
(yc, yd)

)
)ϕ(xa+ yc)dg(y)

where x, y ∈ V n, (x, y) = [(xi, yj)V ]i,j and (xi, yj)V is inner product defined using

Q. Moreover, dg(y) is normalized so that rV (g) is unitary.

3.3 Liftings Between Representations of S̃p2(F ) and SO5(F )

While we have the Local Langlands Correspondence to give us conjectural L-

factors L(s, rst ◦ ρ′) for representations of Sp2(F ), this conjecture does not apply

to the metaplectic group S̃p2(F ). However, we shall see that there may still be a

method for us to compute conjectural L-factors for constituents of genuine principal

series representations of S̃p2(F ). Ultimately, they should correspond to L-factors
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of the unramified principal series of SO5(F ). We can then compute conjectural L-

factors for these using Lusztig’s criteria. The connection between these groups will

come from the local theta correspondence between S̃p2(F ) and SO5(F ).

3.3.1 Conjectural L-values S̃p2(F ) and SO5(F )

We now give only a brief sketch of the local theta correspondence and cite

some sources for this material. Two subgroups G,G′ ⊂ Sp(V ), are called a dual

reductive pair if

1. CSp(V )(G) = G′ and CSp(V )(G) = G′ where CSp(V )(G) denotes the centralizer

of the subgroup G in Sp(V ).

2. The actions of G and G′ on V are completely reducible.

The theory of local theta lifts and Howe duality predict that given a dual

reductive pair (G,G′), there exists a bijection of certain subsets of admissible rep-

resentations of G and G′. In [15], Kudla proves results along these lines for the

dual pair (O(V ), Sp(W )) with V and W arbitrary. The paper futher proves the

compatibility of the theta correspondence with parabolic induction. The metaplec-

tic group can also form half of a dual reductive pair (along with certain orthogonal

and special orthogonal groups). Some general results regarding theta lifts on dual

pairs of this form appear in the work of Mœglin, Vignéras and Waldspurger [26].

Moreover, Waldspurger studies the case of (S̃L2

(2)
, SO3) in great detail [40] and [41].

In this thesis, we can compute the various reducibility points for genuine prin-

cipal series representations Ind
eGeP∅((χ1 ⊗ χ2)

′). In particular, we use the Tadić’s
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criteria for both irreducibility and reducibility to derive the results in Table B.10.

For instance, consider the representation

Ind
eGeP∅((ςν 3

2 ⊗ ςν
1
2 )′)

where ς2 = 1 is unramified. We notice that this representation satisfies the following

two exact sequences

1 → Ind
eGePα

((ςνStGL2)
′) → Ind

eGeP∅((ςν 3
2 ⊗ ςν

1
2 )′) → Ind

eGePα
((ςν1GL2)

′) → 1

and

1 → Ind
eGePβ

(ςν
3
2 ⊗ τ(ςν

1
2 )) → Ind

eGeP∅((ςν 3
2 ⊗ ςν

1
2 )′) → Ind

eGePβ
(ςν

3
2 ⊗ π(ςν

1
2 )) → 1.

Each representation induced from the Siegel parabolic shares a constituent with a

representation induced from the long root parabolic. Using Tadić’s irreducibility

criteria, we see that the shared constituents are irreducible. A similar argument

works for

Ind
eGeP∅((ςν 1

2 ⊗ ςν−
1
2 )′),

except that we need to consider some results regarding unitarizability and complete

reducibility. In particular,

Ind
eGeP∅((ςν 1

2 ⊗ ςν−
1
2 )′)

has unitarizable subquotients

Ind
eGePα

((ςStGL2)
′)

and

Ind
eGePα

((ς1GL2)
′).
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These representations are completely reducible. Moreover, Frobenius reciprocity

shows us that for either of these representations (denoted as π̃)

dimC
[
Hom eG(π̃, π̃)

]
≤ 2,

so both may have at most two inequivalent irreducible constituents. At this point,

our argument is identical to the previous example. The irreducible constituents are

shared by one of the unitarizable representations induced from the Siegel parabolic

and a representation induced from the long root parabolic found in the exact se-

quence

1 → Ind
eGePβ

(ςν
1
2 ⊗ τ(ςν−

1
2 )) → Ind

eGeP∅((ςν 1
2 ⊗ ςν−

1
2 )′) → Ind

eGePβ
(ςν

1
2 ⊗ π(ςν−

1
2 )) → 1.

Note that τ(ςν−
1
2 ) ' π(ςν

1
2 ) and π(ςν−

1
2 ) ' τ(ςν

1
2 ).

Ultimately, Tables B.10 and B.11 outline a bijection between constituents of

Ind
eGeP∅((χ1 ⊗ χ2)

′)

and constituents of

Ind
SO5(F )

P ′∅
(χ1 ⊗ χ2)

where P ′
∅ is a fixed Borel subgroup of SO5(F ). In particular, the representation on a

given line of Table B.10 corresponds to the representation on the exact same line in

Table B.11. Note that our data regarding the reducibility of the principal series of

SO5(F ) comes from the work of Jantzen [12]. As we will eventually prove, there is an

equality of L-factors for representations that correspond according to this bijection.

In particular, the doubling L-factor of a constituent π̃ for S̃p2(F ) matches to the
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Weil-Deligne L-factor for the data ρ′ in the image of the corresponding constituent

π for SO5(F ). Again, we are using Lusztig’s criteria to specify the map

π 7→ ρ′.

In the future, one might ascertain whether or not our bijection is consistent with the

local theta correspondence on the dual pair (S̃p2(F ), SO5(F )). Finally, we would

like to relate representations of G̃ to representations of the double cover G̃(2), since

it is the double cover that appears most frequently in the literature.

3.3.2 Relating representations of G̃ and G̃(2).

The relevant theta correspondence results are often formulated for the dual

pair (S̃pn
(2)

(F ),O2n+1(F )). However, the double cover of the symplectic group is

naturally defined using the Rao cocycle. Consequently, the representation theory

is defined in a slightly different way. One can consult [1] for a fuller explanation.

Ultimately, we will take principal series representations of S̃pn(F ) relate them to

representations of S̃pn
∗
(F ) and then restrict those to the double cover. This relates

a representation on the Leray cover to a representation for which the conjectural

liftings with SO5(F ) makes sense.

So now let us relate certain induced representations of S̃pn
∗
(F ) to those of

S̃pn(F ). Let us specialize to the case that we are inducing from a parabolic subgroup

contained in the Siegel parabolic. Let P be a parabolic subgroup of Spn(F ) that is

contained in the Siegel parabolic. Further we let P̃ (resp. P̃ ∗) be the inverse image
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of P in S̃pn(F ) (resp. S̃pn
∗
(F )). Adams employs a character

χ∗ : P̃ ∗ → C1 χ∗([g, z]R) := γ(det(g), η)z

where γ is the Weil index discussed in the previous sections. So for a representation

(π, V ) of P , we get a representation of P̃ ∗ on V given by

(χ∗π)([p, z]R)v := χ∗([p, z]R)π(p)v = zγ(det(p), η)π(p)v.

We would like to show that this is identical to the representation (π′, V ) on P̃ given

by

π′([p, z]L)v := zπ(p)v.

To see this, we notice that the Leray and Rao coordinates are related as follows

[g, z]R = [g, zβ(g)]L

where

β(g) := γ(x(g), η)−1γ(η)−j(g)

which are described in detail in the Section 3.2. We also note that for p ∈ P

x(p) = det(p) and j(p) = 0.

Thus,

β(p) = γ(det(p), η)−1.

So finally we see that

χ∗([p, zβ(p)−1]R) = zβ(p)−1γ(det(p), η) = z.
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Therefore, the representations χ∗π and π′ are the identical representations viewed

under different coordinates. As a result, we see that

Ind
gSpn(F )eP (π′)

and

Ind
gSpn

∗
(F )eP ∗ (χ∗π)

are also the same representation viewed in different coordinates. Because of this

and using the results of Kudla [15], we feel justified in relating constituents of

IndG̃eP∅((χ1 ⊗ χ2)
′)

with those of

Ind
SO5(F )

P ′∅
(χ1 ⊗ χ2).

The next chapter will discuss a method for computing L-factors for represen-

tations of certain p-adic (topological) groups. In particular, we will use a method

that does not depend on the existence of Whittaker models (i.e., the representation

being generic) so the method will apply to all of the representations discussed in

this and the previous chapter.
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Chapter 4

Building the Doubling Integral

In this chapter, we are going to build all the necessary machinery to pro-

duce local L-factors for constituents of the unramified principal series of Sp2(F ) and

S̃p2(F ). Much of this chapter applies to more general groups; however, we will con-

centrate mostly on our rank two cases. We begin by describing the main method for

defining analytic L-factors for the standard representation rst, the doubling integral.

4.1 Computing L(s, π, rst) for π a representation of Sp2(F )

While there is a very general method for defining L-factors attached to Weil-

Deligne representations of W ′
F , the same cannot be said regarding admissible repre-

sentations of reductive p-adic groups. While there are several methods for defining

such analytic L-factors, they all require some extra conditions whether they be

on the group or on the representations themselves. For instance, Godement and

Jacquet produces a method for determining the analytic L-factors for representa-

tions of GLn. On the other hand, the Langlands-Shahidi method that work for more

general groups but requires the representation to be generic (i.e., have a non-zero

Whittaker functional).

In this section, our main tool for defining L-factors for representations of

Sp2(F ) will be the doubling method of Piatetski-Shapiro and Rallis [8]. Moreover,
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we shall see that this same method works to define L-factors for representations

of S̃p2(F ). To briefly summarize, the doubling integral gives a way of defining the

L-factor of a representation as the normalized generator of some fractional ideal

produced via these integrals. Moreover, the L-factor attached to spherical repre-

sentations of more general p-adic groups are defined via their Satake parameter. In

the spherical case, the L-factor provided by the Satake parameter can be realized

by evaluating the doubling integral at certain ”good test vectors”.

4.1.1 The doubling method of Piatetski-Shapiro and Rallis

We will now explain the doubling method of Piatetski-Shapiro and Rallis [8].

This Rankin-Selberg type integral is constructed globally but unwinds as a product

of local integrals for factorizable global data. Our main goal is the study of these

local integrals for constituents of the unramified principal series of G = Sp2(F ) and

G̃.

In order to motivate and explain the doubling integral, we begin by explaining

this method as it pertains to the symplectic groups Spn; one should also note that

this method can be generalized to classical groups defined as preserving an inner

product. For this section, k will be a number field and kv will be its completion

with respect to the place v. Also, A will be the ring of adeles over k. Finally, for

any group G defined over k and for any k-algebra R, we let GR denote the R points

of G.

Let G = Sp(V ) where V is an 2n-dimensional symplectic vector space over k

58



with skew-symmetric form < ·, · >V . We now define a new vector space W = V ⊕V

and endow it with the following symplectic inner form

<< (v1, v2), (v
′
1, v

′
2) >>W :=< v1, v

′
1 >V − < v2, v

′
2 >V .

Thus we find an obvious map i0 : G × G ↪→ H = Sp(W ) by considering the action

of G×G on W given by

(v1, v2) · (g1, g2) := (v1g1, v2g2).

Moreover, since we defined the inner form on W as the difference of the inner forms

from V , we notice that the space V d = {(v, v) ∈ W | v ∈ V } is isotropic. In fact,

V d is a maximal isotropic subspace of W . So let PH ⊂ H be the subgroup that fixes

the V d, then PH\H becomes the variety of maximal isotropic subspaces of W .

We now consider the G×G orbits of X = PH\H. Piatetski-Shapiro and Rallis

define such an orbit X ′ to be negligible if ∃x′ ∈ X ′ such that the its stabilizer

R′ in G × G contains the unipotent radical N ′ of a proper parabolic subgroup

P ′ ⊂ G×G with N ′ normal in G×G. If we let x0 be the identity coset PH and X0

its orbit, we see that its stabilizer is PH ∩ (G × G) = {(g, g) ∈ G × G | g ∈ G} =:

Gd. Finally, Piatetski-Shapiro and Rallis prove that the action above satisfies the

following conditions:

1. The stabilizer of x0 is Gd.

2. All orbits X ′ 6= X0 are negligible.

Piatetski-Shapiro and Rallis call X0 the main orbit for reasons that will become

readily apparent.
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Let δ∗P : PH,k → k× be the modulus character of PH and let χ : Ik/k
× → C×

be any quasicharacter such that χ ◦ δ∗P is trivial on Gd
A. Next let

Φs ∈ IndHA
PH,A

(|det|sχ ◦ δ∗P ) =: I(s, χ),

where the induction is taken to be normalized. To this Φs, we can associate the

Eisenstein series

EΦ(h; s) =
∑

γ∈PH,k\Hk

Φs(γh)

wherever this sum is absolutely convergent (for Re(s) >> 0). Furthermore, let π be

an irreducible cuspidal automorphic representation of G and π∨ its contragredient.

For f ∈ π and f ′ ∈ π∨ we may finally define

Z(s, χ,Φ, f, f ′) =

∫
(G×G)k\(G×G)A

EΦ(i0(g1, g2); s)f(g1)f
′(g2)dg1dg2.

Because π and π∨ are cuspidal, this integral converges; further, it inherits the ana-

lytic properties of EΦ. Perhaps the most important property of this integral is the

following identity

∫
(G×G)k\(G×G)A

EΦ(i0(g1, g2); s)f(g1)f
′(g2)dg1dg2 =

=

∫
GA

Φs(i0(g, 1)) < π(g)f, f ′ >Pet dg

where < ·, · >Pet is the Peterson inner product. The proof of this can be found

in [8], but it boils down to a interchanging the summation in the Eisenstein series

with the integral. In doing this, we obtain a finite sum of integrals indexed by the

orbits. The domain of integration of each term becomes Rγ
k\(G × G)A, where Rγ

is the stabilizer of Pγ ∈ P\H. Because f and f ′ were chosen to be cuspidal, the
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integrals corresponding to the negligible orbits vanish and only the integral over

the main orbit persists. Some more elementary manipulations yields the equation

above. Finally, because χ = ⊗χv and < ·, · >Pet= ⊗v < ·, · >v factor as a product of

local terms, if we choose Φs = ⊗vΦv,s, f = ⊗vfv and f ′ = ⊗vf
′
v to be factorizable,

then

Z(s, χ,Φ, f, f ′) =
⊗
v

Z(s, χv,Φv, fv, f
′
v)

=
⊗
v

∫
Gkv

Φv,s(i0(gv, 1)) < πv(gv)fv, f
′
v >v dgv.

We now consider the local case of the doubling integral for a nonarchimedean

place v. In the original work by Piatetski-Shapiro and Rallis, they suggest com-

puting their doubling integral over a family of good sections {Φv,s}. The corre-

sponding family {Z(s, χv,Φv, fv, f
′
v)} generates a fractional ideal in the polynomial

ring C[q−s]. The normalized generator of this ideal defines the L-factor associated

to πv under the standard map rst on the dual group. Let us consider the following

definitions with KH = Hkv ∩ GL4n(O), (resp. KG = Gkv ∩ GL2n(O)) a maximal

compact subgroup of Hkv (resp. Gkv).

Definition 4.1.1. A section Φv,s is called standard if its restriction to KH is

independent of s.

Definition 4.1.2. The family of good sections consists of

1. C[qs, q−s]· standard sections.

2. I∗wn
(s, χ)C[qs, q−s] · standard sections, where I∗wn

(s, χ) is a normalized standard

intertwining operator defined using the long Weyl group element wn (see [20]
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for the definition of I∗wn
(s, χ)).

3. Sections of the form

dv,H(s, χ) · Φ0
v,s ∗ µs

where µs ∈ H(Hkv , KH)[qs, q−s]. In this notation, H(Hkv , KH) is the Hecke

algebra with respect to KH , Φ0
v,s is the KH-invariant function with Φ0

v,s(1H) =

1. Furthermore, dv,H(s, χ) is a normalizing factor that we will address below.

In the various works [27] and [28], Piatetski-Shapiro and Rallis prove the fol-

lowing proposition.

Proposition 4.1.1. Let πv be an irreducible admissible representation of Gkv and

π∨v its contragredient. Let fv ∈ πv and f ′v ∈ π∨v .

1. For any good section Φv,s, Z(s, χv,Φv, fv, f
′
v) is a rational function in q−s.

2. There exists fv ∈ πv, f ′v ∈ π∨v and there is a good section Φv,s with

Z(s, χv,Φv, fv, f
′
v) = 1.

3. The set

Z(s, πv, χv) = {Z(s, χv,Φv, fv, f
′
v) | fv ∈ πv, f ′v ∈ π∨v , Φv,s ∈ good sections}

is a fractional ideal for C[qs, q−s], with generator P (q−s)−1, for a unique poly-

nomial P (x) ∈ C[x] with P (0) = 1.

Notice that the proposition indicates that one might be able to find “good”

test vectors f and f ′ as well as a “good” section that computes L(s, πv, rst) exactly.
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In our variant of the doubling method, we seek to use “good test vectors” to realize

the Weil-Deligne L-factor L(s, rst ◦ ρ′) for πv in the ideal Z(s, πv, χv). Because

we restrict ourselves to the case that πv is a constituent of the unramified principal

series, we will choose fv ∈ πv to be fixed by one of our standard parahoric subgroups.

As a consequence, we will require our section {Φv,s} to have a related invariance

property. However, we will see that the most natural choices of good section actually

require a further normalization before they compute L(s, rst ◦ρ′) exactly. Let us see

an example of this that will also explain the dv,H(s) from Definition 4.1.2.

Suppose that πv and π∨v are spherical. In this case, choose fv ∈ πv (resp.

f ′v ∈ π∨v ) to be the normalized spherical function with fv(1G) = 1 (resp. f ′v(1G) = 1).

Also, choose the section Φ0
v,s spherical with Φ0

s,v(1H) = 1. With these rather natural

choices, one might presume that Z(s, χv,Φv, fv, f
′
v) would exactly match the L-factor

defined using the Satake parameter. However, this is not the case, instead

Z(s, χv,Φv, fv, f
′
v) =

L(s, χv, πv, rst)

dH,v(s)

where L(s, χv, πv, rst) matches the L-factor provided by the Satake parameter and

dH,v(s) = L(s+
1

2
(n+ 1), χv)

n
2
−1∏
i=0

L(2s+ 2i+ 1, χ2
v).

Similar formulas exist for the different classical groups. So for a cuspidal represen-

tation π = ⊗vπv of GA we define

dSH(s) =
∏
v 6∈S

dH,v(s)

where S is the finite set of places such that if v is nonarchimedean and πv is un-

ramified then v 6∈ S. Consequently, we call dH(s) the normalizing factor of our
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Eisenstein series.

For arbitrary places v, with πv possibly ramified, we will construct the Φv,s

having a certain desired invariance property. Using such sections, our doubling

integral will yield a rational function

L(s, χv, πv, rst)

dΦ,v(s)

where dΦ,v(s)
−1 ∈ C[q−s] and deg(L(s, χv, πv, rst)

−1) = deg(dΦ,v(s)
−1) as polyno-

mials in C[q−s]. Notice that this agrees with the spherical case mentioned above.

While this equality of degrees may not hold for general representations π, it certainly

seems to apply toward constituents of the unramified principal series.

Finally, while we will not use this fact in this thesis, it is worth mentioning that

this doubling construction yields a functional equation. The following proposition

is due to Piatetski-Shapiro and Rallis as well as Lapid and Rallis (see [8], [27], [28]

and [24]).

Proposition 4.1.2. Let π be an irreducible admissible representation of GA. Then

dim(HomGA×GA [IndHA
PH,A

(|det|sχ ◦ δP ), π ⊗ π∨])

is at most one for all but finitely many s. Thus there exists a factor ΓGA(s, π, χ)

such that

Z(−s, χ−1, Iw0(s, χ)Φ, f, f ′) = ΓGA(s, π, χ)Z(s, χ,Φ, f, f ′)

for all f ∈ π, f ′ ∈ π∨ and Φs a good section.
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4.1.2 The variant of Kudla, Rapoport and Yang

Now the doubling method that we will employ is similar to the one described

above. Unlike the Piatetski and Rallis version of the doubling integral, this method

will involve computing an integral for specific “good” test vectors in order to explic-

itly compute the our local L-factors. We also make some other alterations that will

allow our doubling integral to be more easily computed.

One alteration to the method involves the embedding of G×G into H. This

altered embedding will be more natural for applying the doubling method to the

metaplectic covers of G and H. After we discuss the alterations made to the original

embeddings, we will explain their extensions to G̃× G̃ in H̃.

We now return to our original notation, so F is a p-adic local field of odd

residue characteristic. In particular, we are only considering local theory, so we

drop the v subscript for the remainder of the thesis. Also, we will need to define the

analogous embeddings and maps more explicitly for our applications. In our case,

we have the following embedding of G×G into H

i0(g1, g2) :=



a1 b1

a2 b2

c1 d1

c2 d2


,

where gi =

 ai bi

ci di

 blockwise. For a particular choice of basis, this agrees with

the embedding described above. Also notice that for the projective representation
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(r, S(X)) in Section 2.2.1 , we have

r(i0(g1, g2)) = r(g1)⊗ r(g2)

where S(F n) ⊗ S(F n) ↪→ S(F 2n) in the canonical way. Futhermore, if we let V =

V1 + V2 according to the embedding i0, then Y ∩ V = Y ∩ V1 + Y ∩ V2 and we see

that the Leray cocycle is compatible with i0. So consequently, we see that i0 lifts to

a map

i0 : G̃× G̃→ H̃ i0([g1, z1]L, [g2, z2]L) = [i0(g1, g2), z1z2]L.

Next we modify this embedding via

i(g1, g2) := i0(g1, g
∨
2 ).

where

g∨ :=

 In

−In

 g

 In

−In

 .

With this twisted embedding, we will also use a different representative for our main

orbit. In our case, we represent the main orbit with the coset PHδ such that

δ :=



1

1

−1 1

1 1


=



1

1

−1

1


m

 1 −1

1

 .

This δ also conjugatesGd into our standard Siegel parabolic. In particular, δi(g, g) =
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p(g)δ, where

p(g) =



d c −c

b a −b

a −b

−c d


.

Notice that this relations shows us that PHδ is stabilized by

Gd = {i(g, g) | g ∈ G},

which justifies our claiming that it is in our main orbit. Moreover, the altered

embedding also extends to the metaplectic case in the obvious way. In particular,

we would like to show that this map has a lift to G̃.

Lemma 4.1.1. The map ∨ : G → G has a lift to ∨ : G̃ → G̃, given in Leray

coordinates by

[g, z]∨L := [g∨, z−1]L.

Proof. The proof reduces to showing that cL(g∨1 , g
∨
2 ) = cL(g1, g1)

−1. But notice that

r(g∨)ϕ(x) =

∫
Fn/ker(−c)

ψ

(
−1

2
(xa, xb) + (xb, yc)− 1

2
(yc, yd)

)
ϕ(xa− yc)dg(y)

=

∫
Fn/ker(c)

ψ

(
−1

2
(xa, xb)− (xb, yc)− 1

2
(yc, yd)

)
ϕ(xa+ yc)dg(y)

= r(g)ϕ(x)

where we simply perform the transformation y 7→ −y. Our result follows when we

realize that since cL(g1, g2) is unimodular, so conjugation is the same as inversion.
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Consequently, we see that i : G×G→ H, lifts to

i : G̃× G̃→ H̃ i([g1, z1]L, [g2, z2]) := i0([g1, z1]L, [g2, z2]
∨
L) = [i(g1, g2), z1z

−1
2 ]L.

Also, if we consider the λ defined in Section 3.1.2, we have the following facts.

λ(k∨) = λ(k)−1

and

λH(i0(k1, k2)) = λG(k1)λG(k2)

where we use the subscript to distinguish the various λ. Putting all this together,

we realize that i is consistent with the splittings

KG 7→ S̃p2(F ) and KH 7→ S̃p4(F ).

Our modified doubling integral also uses some slightly different data. Instead

of integrating our section {Φs} against two functions f ∈ π and f ′ ∈ π∨ to obtain a

function of s, we integrate against a single function f ∈ π. The doubling integral will

thus define another function Z(s,Φ, f) ∈ π. For our local integrals, the ultimate

strategy will be to choose Φs is such a way that Z(s,Φ, f) will have invariance

properties of similar to those of the original f .

Now let σ be an admissible representation (resp. genuine admissible represen-

tation) of G = Sp2(F ) (resp. G̃ = S̃p2(F )). Further, let χ be a character of the

Siegel parabolic PH and let I(s, χ) denoted the representation induced from χ|det|s

(resp. (χ|det|s)′) on PH (resp. P̃H) to H = Sp4(F ) (resp. H̃ = S̃p4(F )). Then for

f ∈ σ and Φs ∈ I(s, χ), we define the local doubling integral

Z(s,Φ, f)(g′0) =

∫
Sp2(F )

Φs(δ
′i(g′0, g

′))σ(g′)fdg (4.1)
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where δ′, g′ are any elements projecting to δ ∈ Sp4(F ) and g ∈ Sp2(F ) respectively.

Notice that the integrand is independent of the choice of g′ over g. For sufficiently

large Re(s), the integral converges absolutely and

Z(s,Φ, f) ∈ σ.

The main result in [22] that motivates this variant of the doubling method is

the following (see Lemma 4.1 in [22]):

Lemma 4.1.2. (i) For any choice of δ′ ∈ H̃ with image δ and g′ ∈ G̃,

δ′i(g′, g′) = p(g′)δ′

where p(g′) ∈ P̃H satisfying χ(p(g′)) = 1. In particular, for g′0, g
′
1 and g′2 ∈ G̃,

Φs(δ
′i(g′0g

′
1, g

′
0g
′
2)) = Φs(δ

′i(g′1, g
′
2)).

(ii) For g′ ∈ G̃,

Z(s, R(i(1, g′))Φ, σ(g′)f) = Z(s,Φ, f)

and

σ(g′)Z(s,Φ, f) = Z(s, R(i(g′, 1))Φ, f).

Here R denotes right multiplication.

In particular, we have the following important corollary from [22].

Corollary 4.1.1. Suppose there exists a subgroup A ⊂ G′ such that

R(i(a, 1))Φs = Φs, ∀a ∈ A.
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Then

Z(s,Φ, f) ∈ σA.

In particular, if σA = 0, then Z(s,Φ, f) = 0 for all f ∈ σ.

Perhaps equally important, if there exist a subgroup A ⊂ G′ such that

dimC(σA) = 1

and

R(i(a, 1))Φs = Φs, ∀a ∈ A,

then

Z(s,Φ, f) = ∆(s,Φ, σ)f

for all f ∈ σA. Ultimately, our goal will be to make good choices for Φs and f so

that ∆(s,Φ, σ) = L(s, rst ◦ ρ′) for the Weil-Deligne representation rst ◦ ρ′ where

σ 7→ ρ′ = (ρ,N)

via Lusztig’s criteria.

Finally, this version of the doubling integral will employ an interpolation

method to construct Φs. In particular, we will take the Weil representation of Sp4(F )

on a space of Schwartz functions and define a map from this space to I(s, χV ). Ul-

timately, our choice of Φs will actually amount to a choice of Schwartz function.

4.1.3 The interpolation method

We will now describe an interpolation method used to construct the sections

Φs. It is worth noting that this method is valid for our calculations on both the
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linear and metaplectic groups. For G = Spn(F ), consider the following map

λV : S(V n) → IndH̃gPH
(χV | · |s0) ϕ 7→ λV (ϕ)([g, z]L) := ωV ([g, z]L)ϕ(0)

where s0 = dimF (V )−(n+1)
2

. This interpolation trick also respects the various splittings

that defined above. For instance, we have the following lemma (see [22]).

Lemma 4.1.3.

ωV ([g∨, z−1]L)ϕ̄(x) = ωV ([g, z]L)ϕ(x)

Proof. For our choice of additive character, χV (x(g))(γ(η)j(g))•γ(η◦V )−j(g) ∈ {±1},

so we need only verify that

rV (g∨)ϕ̄(x) = rV (g)ϕ(x).

However, this follows from nearly the same argument as the proof of Lemma 4.1.1.

Consequently, we have that for ϕ1 ⊗ ϕ̄2(x) ∈ S(V n)⊗ S(V n) ↪→ S(V 2n),

ωV (i([g1, z1]L, [g2, z2]L))[ϕ1 ⊗ ϕ̄2](x) = (ωV ([g1, z1]L)ϕ1)⊗ (ωV ([g2, z1]L)ϕ2)(x).

The Weil representation also has the following property for V = V1 ⊕ V2 (an

orthogonal sum) with mi := dimF (Vi).

Lemma 4.1.4. The Weil representation ωV of G̃ on S(V n) ' S(V n
1 ) ⊗ S(V n

2 ) is

given by

ωV (g′) = ωV1(g
′)⊗ ωV2(g

′) ·


ζ(g′)−1 m1m2 is odd

1 otherwise

where ζ : G̃→ C1 is a character defined in [22].
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Proof. See [22].

Ultimately, we will create a family of functions {Φs0+r}∞r=0 using our interpo-

lation method while extending our vectorspace V by adjoining hyperplanes (F 2, Q0)

where Q0(x, y) = 2xy. Since a product of hyperplanes is even dimensional, the

previous lemma says that Weil representation factors as a tensor product according

to Weil representations on V and the hyperplanes. Let Vr,r denote the orthogonal

sum of r hyperplanes and let

Vr = V ⊕ Vr,r.

For any ϕ = ⊗n
i=1ϕi ∈

n⊗
i=1

S(V ) ↪→ S(V n), we define ϕ(r) as

ϕ(r) =
n⊗
i=1

(ϕi ⊗ ϕr0)

where ϕr0 ∈ S(Vr,r) is the characteristic function of O2r ∈ Vr,r. We now define the

function Φs0+r as

Φs0+r = λ(ϕ
(r)
1 ⊗ ϕ

(r)
2 ) ∈ I(s0 + r, χV )

where ϕi ∈ S(V n).

For our purposes, the ϕi will be characteristic functions of various good lat-

tices L having the property

$(L#) ⊂ L ⊂ L#

where L# is the dual lattice to L via the bilinear from on the quadratic space (V,Q).

It is worth noting that the choice of the various lattices matters much less than their

relatively position to each other. Consider the following example.
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Example 4.1.1. Let (V,Q) = (M2(F ), κdet) with κ ∈ O× and let

L1 = M2(O)

L2 = diag($−1, 1)M2(O)diag($, 1).

Consider the functions,

λ(ϕLi⊕Li
).

One can easily verify that both functions are spherical vectors in the appropriate

induced representation. So we see that

λ(ϕL1⊕L1) = cλ(ϕL2⊕L2)

and a routine calculation shows that c = 1.

It is worth noting that L2 is the image of L1 under an element of O(V ). As

such, there is a natural action of O(V ) on S(V n) and that

λ : S(V n) → I(s0, χV )

is O(V ) invariant. See [18] for a more detailed discussion of this action and how it

relates to the dual pair (O(V ), Sp(W )).

More generally, we desire that λ(ϕL(r)⊕(L′)(r)) be I∅-fixed. This is achieved if

$L′ ⊆ L ⊆ L′. (4.2)

Notice that this requirement involves only to the relative position of the lattices.

Again, this comes from the O(V ) invariance of λ. Once we know that λ(ϕ) is Iwahori-

fixed, then the function becomes determined by its values on representatives of the
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Weyl group WG = WSp2
. For our chosen generators wα and wβ, we see that

λ(ϕL⊕L′)(wα) = [ωV (wα)ϕL⊕L′ ](0) = ϕL′⊕L(0) = 1

and

λ(ϕL⊕L′)(wβ) = [ωV (wβ)ϕL⊕L′ ](0) = ϕL(0)ϕ̂L′(0) = q−m2

where m2 is characterized by our choosing the Haar measure on V that is self-dual

with respect to ψ ◦ (·, ·).

4.2 Explicit Values for Iwahori Fixed Vectors

Previously, we mentioned needing some general methods for computing explicit

values of Iwahori-fixed vectors; now let us describe these methods in further detail.

First, the Iwasawa decomposition for split p-adic groups says that for any split p-adic

group G,

G = BK

where B = MN is a Borel subgroup with Levi factor M and unipotent radical N

and K an appropriate choice for a maximal compact subgroup of G. In practice, K

will be the O-points of the group defining G. We can further decompose K as

K =
∏
w∈WG

N(O)wJ

where N(O) = N ∩ K, J is an Iwahori subgroup having an Iwahori factorization

with respect to (B,M). Thus,

G =
∏
w∈WG

BwJ
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so f ∈ IndGB(χ1, χ2, . . . , χn)
J is determined by its values on representatives of the

finite set of Weyl group elements representing double cosets

B\G/J.

Thus in the next section, we will use some of our general representation theory in

order to compute the various values of Iwahori-fixed vectors on Weyl group elements.

In particular, if f is an Iwahori-fixed vector in a representation π, we will use

the vanishing of certain standard intertwining operators to find various relations

amongst the elements of {f(w)}w∈WG
.

Recall that for regular χ1 ⊗ χ2,

dimCHomG(IndGP∅(χ1 ⊗ χ2), IndGP∅((χ1 ⊗ χ2) ◦ w)) = 1.

We also notice that the intertwining operator

Iw : IndGP∅(χ1 ⊗ χ2) → IndGP∅(χ1 ⊗ χ2 ◦ w) (Iwf)(g) :=

∫
Nw

f(wng)dn,

where Nw = N∅ ∩ w−1N∅w gives a basis for this space as long as the integral

converges. However, even when the integral does not converge, we can still make

some sense out of this construction.

Suppose IndGP∅(χ1 ⊗ χ2) is such a representation where Iw does not converge.

Let us consider the family of representations {IndGP∅(χ1ν
s⊗χ2ν

s)}s∈C (recall ν(x) =

|x|). It is known that the family of intertwining maps Iw(s) varies analytically

in the domain where the Iw(s) converge. Thus these intertwining maps can be

meromorphically extended beyond the domain of convergence. Thus we see that
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the intertwining maps of interest are either given as an integral or the meromorphic

continuation of an integral.

4.2.1 Constituents of induced representation with regular data

Let us start with some general results. For this section, let G = G(F ) be the

p-adic points of a split group. Let B be a fixed Borel subgroup of G with B = MN ,

M ' (F×)n its Levi factor and N its unipotent radical. Further, let K = G(O)

a maximal compact subgroup. Finally, we let J ⊂ K be an Iwahori subgroup in

K having an Iwahori factorization with respect to (B,M) and let WG be the Weyl

group of G.

Now suppose that (π, V ) is an irreducible constituent of the unramified prin-

cipal series of G, then there exists and unramified characters {χi}ni=1 such that

π ↪→ IndGB(χ1, χ2, . . . , χn). Moreover, let rGP represent the Jacquet functor with re-

spect to the parabolic subgroup P with Levi factor MP . Recall from Section 2.1.1

that both the induction and Jacquet functors are normalized to respect unitariz-

ability. Frobenius reciprocity tells us that for π an admissible representation of G

and σ an admissible representation of MP ,

HomG(π, IndGP (σ)) ' HomMP
(rGP (π), σ).

If we specialize to the case that π is irreducible and P = B, then we find

HomG(π, IndGB((χ1, χ2, . . . , χn) ◦ w)) ' HomM(rGB(π), (χ1, χ2, . . . , χn) ◦ w).

Recalling the definition of the intertwining operators that we previously intro-

duced, we can now give a methodology for computing the explicit values of Iwahori-
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fixed vectors of a given irreducible constituent π of the unramified principal series

for G.

1. Use Frobenius Reciprocity to find inducing data (χ1, χ2, . . . , χn) with π ↪→

IndGB(χ1, χ2, . . . , χn). Notice that this inducing data need not be unique. More-

over, the explicit values of the Iwahori fixed vectors may depend on this choice

of inducing data.

2. Find an element w of the Weyl group WG such that

(χ1, χ2, . . . , χn) ◦ w 6≤ rGB(π) ∈ R(M).

Then Frobenius Reciprocity establishes that π is not a submodule of

IndGB((χ1, χ2, . . . , χn) ◦ w).

Note that if no such w exists, then this intertwining method cannot be em-

ployed.

3. Compute the standard intertwining operator

Iw : IndGB(χ1, χ2, . . . , χn) → IndGB((χ1, χ2, . . . , χn) ◦ w)

for an arbitrary Iwahori fixed vector

f ∈ IndGB(χ1, χ2, . . . , χn)
J .

4. Use fact that Iw(f) = 0 for f ∈ π to find relations amongst the {f(w)}w∈WG
.

Since |WG| = 8 for G = Sp2(F ), we would need 8− dimC(πI∅) relations to explicitly

determine the set of Iwahori fixed vectors in a given π. For our purposes, the
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standard intertwining operators are sufficient for determining Iwahori fixed vectors

when the inducing data is regular; however more tools will be needed to deal with

irregular characters. However, we first compute an example.

4.2.2 An example involving Sp2(F )

Let G = Sp2(F ). We will need the various parabolic subgroups described

earlier. Let us consider the representation IndGP∅(ν
2 ⊗ ν). As we see in our ta-

ble of constituents, this representation has an irreducible subquotient StSp2
with

rGP∅(St2) = ν2⊗ν. Frobenius Reciprocity then tells us two crucial facts. First, StSp2

is an irreducible submodule of IndGP∅(ν
2 ⊗ ν). Second, is is not an irreducible sub-

module of any IndGP∅((ν
2 ⊗ ν) ◦ w) for any non-trivial w. Thus, this representation

is in the kernel of any nontrivial standard intertwining operator. So we consider the

following operators Iwα and Iwβ
:

Iwj
f(g) =

∫
Nwj

f(wjng)dn.

It is clear that if f is fixed by the Iwahori subgroup that Iwj
f will be as well.

Furthermore, because Iwj
f ∈ IndGP∅((ν

2⊗ν)◦wj), we see that Iwj
f ≡ 0 for f ∈ StSp2

.

So let us derive some relations on the f(w) for our Iwahori fixed vector f . First, let

wj = wα, then for w with `(w) < `(wαw) we have

0 = Iwαf(w) =

∫
Nwα

f(wαnw)dn =

∫
F

f(wαm

 1 x

1

w)dx

=

∫
O
f(wαw)dx+

∫
F\O

f(m

 x−1

x

w)dx.
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Notice that for w with `(w) < `(wαw), we have w−1Nwαw ⊂ N , so the first integral

follows. The second integral comes from the equality

wαm

 1 x

1

 = m

 1 x−1

1

m

 x−1

x

m

 1

−x−1 1


along with the fact that f is an Iwahori fixed vector. Furthermore, if we normalize

dx to so that O has measure 1, then we find

0 = f(wαw) +
∞∑
j=1

∫
P−j\P−j+1

|x|−1|x|−1f(w)dx

= f(wαw) +
∞∑
j=1

q−2jqj(1− q−1)f(w) = f(wαw) + q−1f(w).

Similarly, one does nearly the identical calculation for w with `(w) > `(wαw) except

that one replaces the O with P and the summation then begins with j = 0. This

adjustment is necessary since for w satisfying `(w) > `(wαw), w−1Nwαw ⊂ N̄ .

However, after this slight alteration, we see that

0 = q−1f(wαw) + f(w).

We can also perform a similar calculation with the Weyl group element wβ.

In this case, we find that,

0 = Iwβ
f(w) =

∫
N

wβ

f(wβnw)dn =

∫
F

f(wβn2

 0 0

0 x

w)dx

=

∫
O
f(wβw)dx+

∫
F\O

f(m

 1 0

0 x−1

w)dx.

Analogously to the previous case, we notice that if `(w) < `(wβw), then w−1Nwβw ⊂
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N . We also have the decomposition

wβn2

 0 0

0 x

 = n2

 0 0

0 x−1

m

 1 0

0 x−1

n2

 0 0

0 −x−1

 .

Combining these with f being Iwahori invariant yields,

0 = f(wβw) +
∞∑
j=1

∫
P−j\P−j+1

|x|−1|x|−1f(w)dx

= f(wβw) +
∞∑
j=1

q−2jqj(1− q−1)f(w) = f(wβw) + q−1f(w).

Furthermore, one can verify as above that for `(w) > `(wβw) we get

0 = q−1f(wβw) + f(w).

Now we consider all of the relations that we have just formulated. We notice

that f(w) = −q−1f(w′) for w,w′ ∈ WG with `(w) = `(w′) − 1. Consequently, we

have the following proposition.

Proposition 4.2.1. Let StG be the Steinberg representation of Sp2(F ) and let f ∈

StI∅ such that f(1G) = 1. Then we see that

f(w) = (−q−1)`(w)

for our chosen Weyl group representatives w ∈ WG.

4.2.3 Iw for `(w) > 1 and analytically continuing Iw(s)

There a couple of points worth noting about this technique. First, for rep-

resentations π with rGP∅(π) having multiple submodules, it might be necessary to
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compute Iwf for `(w) > 1. In this case, take a reduced expression for w in terms of

wα and wβ and compose the various Iwα and Iwβ
according to this decomposition.

Thus one can use a sequence of calculations that are nearly identical to the ones

above. Second, for some representations, it may be necessary to take an analytic

continuation of the standard intertwining operator. For instance, consider the repre-

sentation IndGP∅(ν
−2 ⊗ ν−1). This representation contains the trivial representation

of Sp2(F ) as a submodule. In particular, 1G ⊂ Ind(ν−2 ⊗ ν−1) is spherical with

rGP∅(1G) = ν−2 ⊗ ν−1. When we try to follow the computations above we find

0 = Iwβ
f(w) =

∫
Nβ

f(wβnw)dn =

∫
F

f(wβn2

 0 0

0 x

w)dx

=

∫
O
f(wβw)dx+

∫
F\O

f(m

 1

x−1

w)dx

= f(wβw) +
∞∑
j=1

∫
P−j\P−j+1

|x||x|−1f(w)dx.

Clearly the integral above does not converge, so instead we need to use the analytic

continuation of this intertwining operator. To compute this, let us consider the

family of intertwining operators on the representation IndGP∅(ν
2s ⊗ νs) as above.
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Thus we have,

Iwβ
(s)f(w) =

∫
Nβ

f(wβnw)dn =

∫
F

f(wβn2

 0 0

0 x

w)dx

=

∫
O
f(wβw)dx+

∫
F\O

f(m

 1

x−1

w)dx

= f(wβw) +
∞∑
j=1

∫
P−j\P−j+1

|x|−s|x|−1f(w)dx

= f(wβw) +
∞∑
j=1

q−sj(1− q−1)f(w)

= f(wβw) +
q−s

1− q−s
(1− q−1)f(w).

Now if we consider Iwβ
(s)f(w) to be a function of the complex variable s, then

the rational function that we have just derived is the analytic continuation of the

integral expression for Iwβ
(s)f(w). This rational function has a well defined value

as s approaches −1. In fact, as s→ −1 we see that

0 = f(wβw)− f(w).

Notice that at s = −1, we have the analytic continuation of the standard intertwin-

ing operator

IndGP∅(ν
−2 ⊗ ν−1) → IndGP∅(ν

−2 ⊗ ν),

which vanishes for 1Sp2
. So we get exactly the relation that we would expect from

the spherical vector. A similar technique also works for Iwαf(w). Finally, we see

that using the various compositions and analytic continuations, we can compute

almost any of the standard intertwining operators evaluated on our set of Weyl

group representatives.
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4.2.4 Intertwining operators on S̃p2(F )

There is also one alteration worth mentioning when we attempt to employ these

techniques for the metaplectic group S̃p2(F ). First, we realize that the definition of

the intertwining operators are completely analogous to those on the linear group.

In fact,

Iwf([g, z]L) :=

∫
Nw

f([w, 1]L[n, 1]L[g, z]L)dn.

Notice that n → [n, 1]L is a splitting of N ↪→ S̃p2(F ). As we saw in a previous

section, we also have a splitting K → S̃p2(F ) given by [k, λ(k)]L. If we choose f to

be fixed by I∅ → S̃p2(F ), then we can attempt to emulate the procedure described

above. In the case of Iwα , the above procedure proceeds without modification. This

occurs because of the decomposition

[wα, 1]L[m

 1 x

1

 , 1]L

= [m

 1 −x−1

1

 , 1]L[m

 x−1

x

 , 1]L[m

 1

−x−1 1

 , 1]L.

In this case, all the elements involved belong to P̃α on which the Leray cocycle is

trivial. However, the same is not true when we consider the intertwining map Iwβ
.

In that case, we have the following matrix decomposition

[wβ, 1]L[n2

 0 0

0 x

, 1]L

=[n2

 0 0

0 x−1

, 1]L[m

 1

x−1

, λ(n̄(x−1))]L[n2

 0 0

0 −x−1

, λ(n̄(x−1))]L
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where

n̄(a) = n2

 0 0

0 a

 .

Because f belongs to a genuine principal series representation, we see that

f([wβ, 1]L[n2

 0 0

0 x

 , 1]L) = λ(n̄(x−1))f([m

 1

x−1

 , 1]L).

It is important to notice that because our inducing data is unramified

f([m

 1

x−1

 , 1]L)

is constant on the set Pj \ Pj+1 for any j. So let us consider the integral

∫
P−j\P−j+1

λ(n̄(x−1))dx

for j ≥ 1. Using Equation 3.2, we see that

∫
P−j\P−j+1

λ(n̄(x−1))dx =


∫
P−j\P−j+1 1dx if j is even

θ
∫
P−j\P−j+1

(
x−1

$

)
F
dx if j is odd

.

In the case that j is odd, we can transform x 7→ $−jx and get

q−jθ

∫
O×

(
x−1

$

)
F

dx,

which is the integral of a ramified character over the group of units of O; therefore,

it vanishes. What we have shown is that when computing Iwβ
(f), we will still get

a sum of integrals over P−j \ P−j+1, as in the linear group case, except that the

integral vanishes for all odd j.
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4.2.5 Techniques for irregular inducing data

The techniques we employ above are sufficient to determine the explicit values

of Iwahori fixed vectors when π is a constituent of a representation induced from

regular data. However, this may no longer be the case when our representation is

induced from irregular data. Fortunately for both Sp2(F ) and its metaplectic cover,

most reducible principal series representations induced from irregular data will have

certain unitarizable constituents. We can exploit this extra structure in order to

compute the explicit values of the Iwahori fixed vectors.

First, let us suppose that our inducing data is not regular without any other

conditions on the constituents. For Sp2(F ) and S̃p2(F ) such representations will

have constituents that are induced from representations on the maximal parabolic

subgroups. In these cases, we can use the exactness of parabolic induction as well as

knowledge of Iwahori invariance in the inducing data to derive the necessary results.

We see above that for a larger parabolic subgroup P , Frobenius Reciprocity

still allows us to determine representations into which π embeds. Let P = MPNP

and Q = MQNQ be parabolic subgroups with Q ⊂ P and Q ∩MP = MQ. Further,

consider the following exact sequence of MP representations

0 → σ1 → π → σ2 → 0.

The exactness of parabolic induction tells us that

0 → IndGP (σ1) → IndGP (π) → IndGP (σ2) → 0

is also exact. Furthermore, if π = IndMP
Q∩MP

(τ) for (τ, V ) a representation ofMQ, then

there is a natural isomorphism between IndGP (IndMP
Q∩MP

(τ)) and IndGQ(τ). Moreover,
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we can use this isomorphism to understand the Iwahori invariants of IndGP (σ1). Let

us compute an example for G = Sp2(F ). For this, we consider the representations

χ⊗ Ind
Sp1(F )
B (ξ) = (χ⊗ T 2

ξ )⊕ (χ⊗ T 1
ξ )

of F× × Sp1(F ). Now Pβ is a parabolic of G with Levi factor isomorphic to F× ×

Sp1(F ), so by the exactness of induction, we get a direct sum of representations on

G

IndGPβ
(χ⊗ Ind

Sp1(F )
B (ξ)) = IndGPβ

(χ⊗ T 2
ξ )⊕ IndGPβ

(χ⊗ T 1
ξ ).

It is worth noting that for P ∈ {P∅, Pα},

rGP (IndGPβ
(χ⊗ T 1

ξ )) = rGP (IndGPβ
(χ⊗ T 2

ξ ))

so using our techniques with intertwining operators would not seem very fruitful in

this case. However, there is a natural isomorphism

Λ : IndGPβ
(χ⊗ Ind

Sp1(F )
B (ξ)) → IndGP∅(χ⊗ ξ) f → (Λf),

where (Λf)(g) = [f(g)](1F××Sp1(F )). Now let us consider the double coset space

Pβ\G/I∅. It is clear that

G =
⋃

w∈WG
`(wβw)>`(w)

PβwI∅

is a disjoint union. Let us define the set Wβ = {w ∈ WG | `(wβw) > `(w)}. Since

|Wβ| = 4, we see that

dimC[IndGPβ
(χ⊗ T jξ )

I∅ ] = 4× dimC[(χ⊗ T jχ)
O××I ]

where I is the Iwahori subgroup of Sp1(F ) corresponding to the upper triangular

Borel. In fact, let φj be the Iwahori-fixed vector of χ ⊗ T jξ with φj(1Sp1
) = 1. We
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define the functions f jw ∈ IndGPβ
(χ ⊗ T jξ ) with supp(f jw) ⊂ PβwI∅ and f jw(w) = φj.

Then one can show that (Λf jw) ∈ IndGPβ
(χ⊗T jξ )I∅ . Moreover, this construction yields

all the Iwahori-fixed vectors in IndGPβ
(χ⊗T jξ ). This is clear because it produces four

1-dimensional spaces of Iwahori fixed vectors having pairwise disjoint support.

Now let us examine the case where our representation in induced from unita-

rizable data. For example, consider π = IndGPβ
(1F× ⊗ StSp1

) ⊂ IndGP∅(1F× ⊗ ν). As

before, induction is normalized so π is unitarizable. Consequently, π is completely

reducible. In fact,

π = σ(ν
1
21GL2)⊕ σ(ν

1
2StGL2)

where

rGP∅(σ(ν
1
21GL2)) = 1F× ⊗ ν

rGP∅(σ(ν
1
2StGL2)) = 1F× ⊗ ν + 2 · ν ⊗ 1F× .

Notice that we can use the intertwining operator Iwβ
as above to find that

both constituents have Iwahori-fixed vectors satisfying

f(wβw) =


−q−1f(w) if `(wβw) > `(w)

−qf(w) if `(wβw) < `(w)

.

Moreover, the intertwining operator Iwα can be applied to σ(ν
1
21GL2) to show that

it has an Iwahori fixed vector satisfying

f(wαw) = f(w).

Consequently, we see that the representation σ(ν
1
21GL2) has a one dimensional space
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of Iwahori-fixed vectors spanned by f0 with

f0(1G) = f0(wα) = 1

f0(wβ) = f0(wαβ) = f0(wβα) = f0(wαβα) = −q−1

f0(wβαβ) = f0(wαβαβ) = q−2.

Alternatively, for w ∈ WG such that `(wβw) > `(w) define fw ∈ IndGPβ
(1F×⊗StSp1

)I∅

with

supp(fw) ⊂ PβwI∅

and

fw(w) = φ

where φ is the unique Iwahori-fixed vector in StSp1
⊂ Ind

Sp1(F )
B (ν) with φ(1Sp1

) = 1.

Then we see that

f0 = fw0 + fwα − q−1fwαβ
− q−1fwαβα

Though note that Iwα need not vanish on the representation σ(ν
1
2StGL2). So

we would like to use the inner product on the representation IndGPβ
(1F× ⊗ StSp1

) in

order to find the explicit values of Iwahori fixed vectors in σ(ν
1
2StGL2).

In this case, we notice that dimC(IndGPβ
(1F× ⊗ StSp1

)I∅) = 4 and

IndGPβ
(1F× ⊗ StSp1

)I∅ = σ(ν
1
21GL2)

I∅ ⊕ σ(ν
1
2StGL2)

I∅ .

Moreover this is an orthogonal direct sum with respect to a non-degenerate inner

product on the induced representation. To define this inner-product, notice that

the square-integrability of StSp1
affords us an non-degenerate positive-definite inner
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product < ·, · >Sp1
with

< φ, φ >Sp1
= 1.

Then the inner product on IndGPβ
(1F× ⊗ StSp1

) is defined by

<< f1, f2 >>=

∫
K

< f1(k), f2(k) >Sp1
dk.

Thus for any f ∈ σ(ν
1
2StGL2)

I∅ and f0 as above, we have

0 =<< f, f0 >>=

∫
K

< f(k), f0(k) >Sp1
dk.

From previous arguments, we see that f must be of the form

f = λ0fw0 + λαfwα + λαβfwαβ
+ λαβαfwαβα

with λi ∈ C. When we compute << f, f0 >>, we find

0 = λ0 + qλα − qλαβ − q2λαβα.

This relation proves sufficient to determine the Iwahori invariants of σ(ν
1
2StGL2).

Moreover, using the the two methods outlined in this section, we are able to com-

pute the explicit values of our Iwahori invariants for constituents of representations

induced from irregular data.

4.2.6 Tables of Parahoric Invariants

The following pages contain several tables summarizing our computations of

the explicit values for Iwahori-fixed vectors. Table 4.1 lists the various irreducible

constituents π of the unramified principal series for Sp2(F ) as well as which induced

representation IndGP∅(χ1⊗χ2) we embedded π into in order to compute the values of
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the parahoric invariant vectors. It is worth noting that while the dimension of the

parahoric invariant vectors is independent of the embedding, the actual values of the

vectors depend on which induced representation we use to realize π as a submodule.

As such, Table 4.1 outlines these realizations for representations of Sp2(F ). Table

4.2 contains the same information for the group S̃p2(F ). Finally, Table 4.3 gives the

explicit values of all the Iwahori-fixed vectors stemming from Tables 4.1 and 4.2. In

this table, each row contains the data for a different Iwahori-fixed vector. Notice

that the last column lists which constituents from Tables B.1 and B.9 contain the

vector whose data is described in a given row.
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Table 4.1: Realizing our constituents as submodules-Sp2(F )

case

Constituent Representation

I IndG
P∅

(χ1 ⊗ χ2) (irreducible) IndG
P∅

(χ1 ⊗ χ2)

a IndG
Pα

(χStGL2) IndG
P∅

(χν
1
2 ⊗ χ−1ν

1
2 )

II
b IndG

Pα
(χ1GL2) IndG

P∅
(χν

1
2 ⊗ χν−

1
2 )

a IndG
Pβ

(χ⊗ StSp1
) IndG

P∅
(ν ⊗ χ)

III
b IndG

Pβ
(χ⊗ 1Sp1

) IndG
P∅

(χ⊗ ν)

a IndG
Pβ

(χ⊗ T 2
ξ ) IndG

P∅
(ξ ⊗ χ)

IV
b IndG

Pβ
(χ⊗ T 1

ξ ) IndG
P∅

(χ⊗ ξ)

a StSp2
IndG

P∅
(ν2 ⊗ ν)

b L(ν2, StSp1
) IndG

P∅
(ν ⊗ ν2)

V
c L(ν

3
2 StGL2 , 1) IndG

P∅
(ν2 ⊗ ν−1)

d 1Sp2
IndG

P∅
(ν−2 ⊗ ν−1)

a σ(ν
1
2 StGL2) IndG

P∅
(1F× ⊗ ν)

b L(ν
1
2 StGL2 , 1) IndG

P∅
(1F× ⊗ ν−1)

VI
c σ(ν

1
21GL2) IndG

P∅
(1F× ⊗ ν)

d L(ν,1F× , 1) IndG
P∅

(1F× ⊗ ν−1)

a σ(ν ⊗ T 2
ξ ) IndG

P∅
(ν ⊗ ξ)

b σ(ν ⊗ T 1
ξ ) IndG

P∅
(ν ⊗ ξ)

VII
c L(ν, T 2

ξ ) IndG
P∅

(ν−1 ⊗ ξ)

d L(ν, T 1
ξ ) IndG

P∅
(ν−1 ⊗ ξ)

Table continued on nextpage.
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Table 4.1: Realizing our constituents as submodules-Sp2(F )

case

Constituent Representation

a δ([ξ, νξ], 1)T 2
ξ

IndG
P∅

(ξν ⊗ ξ)

b δ([ξ, νξ], 1)T 1
ξ

IndG
P∅

(ξν ⊗ ξ)

VIII c L(ν
1
2 ξStGL2 , 1) IndG

P∅
(ξ ⊗ ξν)

d L(νξ, T 2
ξ ) IndG

P∅
(ξν−1 ⊗ ξ)

e L(νξ, T 1
ξ ) IndG

P∅
(ξν−1 ⊗ ξ)
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Table 4.2: Realizing representations as submodules-S̃p2(F ) case

Constituent Representation

IX IndG̃
P̃∅

((χ1 ⊗ χ2)′) IndG̃
P̃∅

((χ1 ⊗ χ2)′)

a IndG̃
P̃α

((χStGL2)
′) IndG̃

P̃∅
((χν

1
2 ⊗ χ−1ν

1
2 )′)

X
b IndG̃

P̃α
((χ1GL2)

′) IndG̃
P̃∅

((χν
1
2 ⊗ χν−

1
2 )′)

a IndG̃
P̃β

(χ⊗ τ(ςν
1
2 )) IndG̃

P̃∅
((ςν

1
2 ⊗ χ)′)

XI
b IndG̃

P̃β
(χ⊗ π(ςν

1
2 )) IndG̃

P̃∅
((χ⊗ ςν

1
2 )′)

a Π((ςStGL2)
′, ςν

1
2 ⊗ π(ςν

1
2 )) IndG̃

P̃∅
((ςν

1
2 ⊗ ςν−

1
2 )′)

b Π((ςStGL2)
′, ςν

1
2 ⊗ τ(ςν

1
2 )) IndG̃

P̃∅
((ςν

1
2 ⊗ ςν−

1
2 )′)

XII
c Π((ς1GL2)

′, ςν
1
2 ⊗ τ(ςν

1
2 )) IndG̃

P̃∅
((ςν−

1
2 ⊗ ςν

1
2 )′)

d Π((ς1GL2)
′, ςν

1
2 ⊗ π(ςν

1
2 )) IndG̃

P̃∅
((ςν−

1
2 ⊗ ςν

1
2 )′)

a Π((ςνStGL2)
′, ςν

3
2 ⊗ τ(ςν

1
2 )) IndG̃

P̃∅
((ςν

3
2 ⊗ ςν

1
2 )′)

b Π((ςνStGL2)
′, ςν

3
2 ⊗ π(ςν

1
2 )) IndG̃

P̃∅
((ςν

3
2 ⊗ ςν−

1
2 )′)

XIII
c Π((ςν1GL2)

′, ςν
3
2 ⊗ τ(ςν

1
2 )) IndG̃

P̃∅
((ςν

1
2 ⊗ ςν

3
2 )′)

d Π((ςν1GL2)
′, ςν

3
2 ⊗ π(ςν

1
2 )) IndG̃

P̃∅
((ςν−

3
2 ⊗ ςν−

1
2 )′)
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4.3 Local Densities of Quadratic Forms

As we have seen in the first section, the interpolation method used to construct

Φs0+r requires choosing a quadratic space (V,Q). Eventually, we reduce our doubling

calculation to a combination of Whittaker functions that are closely related to the

local densities of the quadratic space (V,Q). In fact, by some results of Yang [42],

there exists completely general formulas for local densities of quadratic forms in

various low rank cases. In particular, the cases needed for the doubling integral for

Sp2(F ) and S̃p2(F ) are completely computable via [42].

4.3.1 The work of Yang

As we compute Z(s,Φ, f)(g′0), we will find that our doubling method eventually

requires us to compute integrals of the form

W0(r, L, L
′) =

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L⊕L′(x)ψ(−tr(b[Q(x)]))dx db

where L and L′ ⊂ V are good lattices. We will further reduce such calculations to

a weighted average of integrals where L = L′. Such an integral is closely related to

one of the form

αQ(T, S) = W (T, S) :=

∫
Symn(F )

∫
nL

i=1
L

ψ(tr(b[Q(x)])ψ(−tr(Tb))dx db.

In this case, S and T are symmetric matrices of degree m and n respectively. More-

over, (V,Q) is the quadratic vector space with V = Fm and Q(x) = txSx. The

matrix T has no analog in our integral.

While there are some general formulas to compute αQ(T, S) for any choice of
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T and S given by Hironaka and Sato [11], these are so complicated as to be compu-

tationally unusable. Some of the most general computationally useful formulas are

provided by Yang [42], where he gives general formulas in the case that S is arbitrary

and T ∈ F or T ∈ Sym2(F ). The formula for n = 2 are vastly more complicated

that when n = 1, thus it would seem that the generalizing Yang’s results to higher

dimensional T would also provide unusable results in sufficiently high dimension.

Yang also formulates his result in a particularly useful way for our application.

Let V,Q, S be as before. Then as before, we can adjoin r hyperplanes to form the

quadratic space Vr; in this case, we will denote the new matrix of the quadratic form

as Sr. Yang then provides a formula for the integral

α(q−r, T, S) = W (T, Sr) =

∫
Symn(F )

∫
nL

i=1
L(r)

ψ(tr(b[Q(x)])ψ(−tr(Tb))dx db

when n ∈ {1, 2} and where α(q−r, T, S) is polynomial in q−r. In the case that n = 2,

Yang’s expression is a linear combination of 12 different polynomial terms of various

complexity. However, we will show that for r >> 0 and T → 0, nine of these terms

vanish and the others become convergent geometric series in q−r (realized as rational

functions). In fact, for r >> 0 they simplify in such a way that

W0(r, L, L) = lim
T→0

α(X,T, S)

is easily computed by hand. We will now derive the necessary formulas using Yang’s

results and notation in [42]. Let

S = diag(εi$
li)mi=1
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with li ≤ lj when i < j be the matrix of the quadratic form on V . Further, let

T =

 α1$
a1

α2$
a2


where the αi ∈ O×. The following essential quantities are defined by Yang [42]. For

k ≥ 0 an integer, we have

L(k, 1) = {1 ≤ i ≤ m : li − k < 0 is odd }

l(k, 1) = #L(k, 1)

d(k) = k +
1

2

∑
li<k

(li − k)

v(k) =

(
−1

$

)[
l(k,1)

2
]

F

∏
i∈L(k,1)

( εi
$

)
F

δ±(k) =
1± (−1)l(k,1)

2
.

Yang then proves the following equation

α(q−r, T, S) = R0(X) +R1(X) +R2(X)

with

R0(X) = 1, R1(X) =
4∑
i=1

I1,i, R2(X) = (1− q−1)
8∑
i=1

I2,i + q−1I2,6

and X = q−r. The individual Ij,k are defined as polynomials in X using the quanti-

ties defined above. While many of these terms have complicated formulas, one can

see that in most cases Ij,k → 0 with T → 0. For an example, consider one such term

I2,2 =

((α1

$

)
F

1
√
q
δ−(a1 + 1)− 1

q2
δ+(a1 + 1)

)
×

∑
0<k≤a1

v(a1 + 1)v(k)δ+(k)qa1+1+d(a1+1)+d(k)Xa1+1+k.
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Notice that the leading coefficient is at most 1 and the summation is at most

a1∑
k=1

qa1+1+d(a1+1)+d(k)Xa1+1+k.

. If we let µ = 1
2

m∑
i=1

li, then for a sufficiently large j, we have

d(j)−
(
1− m

2

)
j = µ.

Let us choose a T sufficiently close to 0 so that a1 > li for all i. Then we have

a1∑
k=1

qa1+1+d(a1+1)+d(k)Xa1+1+k = qa1+1+d(a1+1)Xa1+1

a1∑
k=1

qd(k)Xk

= qµ+(2−m
2 )(a1+1)Xa1+1

a1∑
k=1

qd(k)Xk

We now want to consider what happens as T → 0 or alternatively when ai →∞ for

both a1 and a2. First notice that

a1∑
k=1

qd(k)Xk

differs from

qµ
a1∑
k=1

(q1−m
2 X)k

by only a finite number of terms. Moreover, since X = q−r, we see that

qµ
a1∑
k=1

(q1−m
2 X)k

becomes a convergent geometric series as a1 →∞ as long as 1−m/2− r < 0 which

holds in our cases. Furthermore, we see that

qµ+(2−m
2 )(a1+1)Xa1+1 = (qµ)(q2−m

2 X)a1+1

which vansishes as ai →∞ as long as 2−m/2− r < 0. Consequently, lim
T→∞

I2,2 = 0

as long as 2−m/2 − r < 0. Note that this slightly more stringent restriction on r
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and m is still satisfied by our Whittaker functions. In fact, all the vanishing terms

in α(X,T, S) are treated similarly. Either they can be written as a polynomial in

X times a convergent rational function or else the term is simply a monomial in

X, which obviously vanishes as T → 0. Ultimately, we have the following three

non-vanishing terms as T → 0:

I1,1 = (1− q−2)
∑

0<k≤a1

v(k)δ+(k)qk+d(k)Xk,

I2,1 = (1− q−2)
∑

0<k2<k1≤a1

v(k1)v(k2)δ
+(k1)δ

+(k2)q
k1+d(k1)+d(k2)Xk1+k2 ,

and

I2,8 =
∑

0<k≤a1

(δ+(k) + q−1δ−(k))qk+2d(k)X2k.

As before, T → 0 implies that a1 →∞ and our three terms above are dominated by

convergent geometric series. Let us now compute a concrete example that we will

use for the doubling integral with spherical representations. In both the linear and

metaplectic cases, we will be interested in computing

W0(r, L1, L1) =

∫
Sym2(F )

∫
L

(r)
1 ⊕L(r)

1

ψ(−tr(b[Q(x)]))dx db

for

L1 = O4 (resp. L1 = O5)

where

Sl = diag(2κ,−2κ, 2κ,−2κ) (resp. Sm = diag(2κ, 2κ,−2κ, 2κ,−2κ))

is the matrix for the quadratic form in the linear (resp. metaplectic) case and

κ ∈ O×. Given these matrices, we can compute all of the auxiliary quantities above

(see Table 4.4).
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So we substitute these quantities into our formulas and produce the rational

functions in Table 4.5. By summing and simplifying all these terms, we find that

W0(r, L1, L1) =
(1− q−(2r+2))(1− q−(r+2))

(1− q−(2r+1))(1− q−r)
=

ζ(2r + 1)ζ(r)

ζ(2r + 2)ζ(r + 2)

in the linear case and

W0(r, L1, L1) =
1− q−(2r+4)

1− q−(2r+1)
=
ζ(2r + 1)

ζ(2r + 4)

in the metaplectic case.

Similar calculations yield all the local densities needed for our doubling inte-

grals. However, to use Yang’s formula, one must write the matrix of our quadratic

form as if the desired lattice L ' Odim(V ). For instance, if V = M2(F ), Q(X) =

κdet(X) and L0 = L1 ∩ L2 from Example 4.1.1, then we see that L0 ' O4 with

respect to the matrix S = diag(2κ,−2κ, 2$κ,−2$κ). To compute W0(r, L0, L0), we

apply Yang’s formula to this matrix. We summarize all the necessary local density

calculations in the Tables 4.4 and 4.5. Table 4.6 summarizes all of the quadratic

spaces that will be relevant to the thesis. Notice that in this table B−(F ) represents

the division quaternion algebra with

i2 = ε and j2 = $

where ε ∈ O× such that
(
ε
$

)
F

= −1. Table 4.7 computes

W0(r, L, L)

for all the relevant lattices.
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4.3.2 Some lemmas for computing W0(r, L, L
′).

Now that we have computed the various values for W0(r, L, L), we need to

consider how to compute the analogous result for W0(r, L, L
′) where the L and L′

are the various lattices mentioned in the previous section and found in Table 4.6.

In particular, we have

W0(r, L, L
′) =

∫
Sym2(F )

∫
L(r)⊕(L′)(r)

ψ(tr(b[Q(x)]))dx db.

We will see that for lattices L, L′ and L ∩ L′ = L′′, W0(r, L, L
′) is a weighted

average of W0(r, L
∗, L∗) for L∗ ∈ {L,L′, L′′}. In particular, we have the following

proposition.

Proposition 4.3.1. Let L1, L2 be the self-dual lattices from Table 4.6 and L0 =

L1 ∩ L2. Then

W0(r, L1, L2) = W0(r, L0, L1) +W0(r, L0, L2)−W0(r, L0, L0).

Proof. Let

L(r) =
∑
a∈O/P

[a] + L
(r)
0 and L

(r)
2 =

∑
c∈O/P

[c] + L
(r)
0 ,

where

[a] =

 0 0

a 0


(r)

and

[c] =

 0 c$−1

0 0


(r)

.
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Note that for M ∈ Li, M
(r) denotes expanding M by a zero vector in Vr,r so that

M (r) lies in L
(r)
i . Then we find,

W0(r, L1, L2) =

∫
Sym2(F )

∫
L

(r)
1 ⊕L(r)

2

ψ(tr(b[Q(x)]))dx db

=
∑

a,b∈O/P

∫
Sym2(F )

∫
[a]+L

(r)
0 ⊕[c]+L

(r)
0

ψ(tr(b[Q(x)]))dx db.

Next, we would like to show that for every a, c 6∈ P , then

Wa,c :=

∫
Sym2(F )

∫
[a]+L

(r)
0 ⊕[c]+L

(r)
0

ψ(tr(b[Q(x)]))dx db

vanishes. Notice that [Q(x)] is a 2× 2 matrix whose i, jth entry is given by (xi, xj)V

where (·, ·)V denotes the inner product on our quadratic space Vr. In our case,

x1 = [a] + x′1 and x2 = [c] + x′2 where x′i ∈ L
(r)
0 . Thus,

(xi, xj)V =


([a], [a])V + 2([a], x′1)V + (x′1, x

′
1)V if i = j = 1

([a], [c])V + ([a], x′2)V + ([c], x′1)V + (x′1, x
′
2)V if i 6= j

([c], [c])V + 2([c], x′2)V + (x′2, x
′
2)V if i = j = 2

Notice that for the terms above, only ([a], [c])V ∈ F \O. If we set d = ([a], [c])V , we

have that

[Q(x)] =

 d

d

 +X

where X ∈ Sym2(O). Let

w =

 0 1

1 0

 ,

then [Q(x)] = dw +X. So we substitute this into our integral to get

Wa,c =

∫
Sym2(F )

∫
[a]+L

(r)
0 ⊕[c]+L

(r)
0

ψ(tr(bdw))ψ(tr(bX))dx db
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So finally, we perform the translation b→ b+tw where t ∈ O× such that ψ(2dt) 6= 1.

Such a t exists because ψ is our standard additive character that is trivial on O but

not on P−1. So we have

Wa,c = ψ(2td)

∫
Sym2(F )

∫
[a]+L

(r)
0 ⊕[c]+L

(r)
0

ψ(tr(bdw))ψ(tr(bX))ψ(tr(twX))dx db.

Notice, though, that twX ∈ Sym2(O) so ψ(tr(twX)) = 1. Therefore we see that

Wa,c = ψ(2td)Wa,c

if a, c 6∈ P . So

Wa,c =

∫
Sym2(F )

∫
[a]+L

(r)
0 ⊕[c]+L

(r)
0

ψ(tr(b[Q(x)]))dx db = 0.

Since these terms vanish we find that

W0(r, L1, L2) =
∑
a∈O/P

∫
Sym2(F )

∫
[a]+L

(r)
0 ⊕L(r)

0

ψ(tr(b[Q(x)]))dx db

+
∑

[c]∈O/P

∫
Sym2(F )

∫
L

(r)
0 ⊕[c]+L

(r)
0

ψ(tr(b[Q(x)]))dx db

−
∫

Sym2(F )

∫
L

(r)
0 ⊕L(r)

0

ψ(tr(b[Q(x)]))dx db.

So we are reduced to the case that L ⊂ L′ or vice versa. We will show that the

quantityW0(r, L, L
′) is a weighted average of the termsW0(r, L, L) andW0(r, L

′, L′).

In particular, we have the following lemma.

Lemma 4.3.1. Let L ⊂ L′ ⊂ V be lattices lattices from Table 4.6 such that one of

the following holds:
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1. V = Vs, L = L0 and L′ ∈ {L1, L2, L
#
0 }

2. V = Vs, L ∈ {L1, L2} and L′ = L#
0 .

3. V = Vra, L = Lra and L′ = L#
ra.

Then we have,

W0(r, L, L
′) =

1

q + 1
(qW0(r, L, L) +W0(r, L

′, L′)) . (4.3)

Proof. To prove this statement, we appeal to some results of Yang’s [42]. In par-

ticular, Proposition 5.1 in [42] states that for f a locally-constant bounded function

on Sym2(F ) such that f ∈ L1(Sym2(F )). Then∫
Sym2(F )

f(b)db =
∑
α∈Z

q−3α

(
1

2(1− (−1
$

)F q−1)

∫
GL2(O)

f(qα btb)db

+
1

2(1 + (−1
$

)F q−1)

∫
GL2(O)

f(qαbdiag(1, u) tb)db

)
+

1

4

∑
α1<α2
ui∈{1,u}

q−2α1−α2

∫
GL2(O)

f(bdiag(u1q
α1 , u2q

α2) tb)db

where u ∈ O× with
(
u
$

)
F

= −1. Ultimately, we will apply this Theorem in a manner

similar to that in Yang [42]. For our purposes,

f(b) =

∫
L(r)⊕(L′)(r)

ψ(−tr(b[Q(x)]))dx,

whereas Yang uses a similar function twisted by a ψ(Tb) with T a symmetric matrix.

So to derive our formula, we want to compute the following integral

Λ(L,L′; t1, t2) =

∫
GL2(O)

∫
L(r)⊕(L′)(r)

ψ(−tr(bdiag(t1, t2)
tb[Q(x)]))dx db.

We will carefully prove (4.3) in the case [L′ : L] = q. For now, let L′ =∑
a∈O/P

ax+ L.

105



Next, we will decompose K = GL2(O) into left cosets of the standard Iwahori

subgroup J (the inverse image of the upper triangular matrices in GL2(O/P)). In

particular,

K = J ∪
⋃

c∈O/P

n(c)wJ

where w =

 1

1

 and n(c) =

 1 c

1

.

Next we notice that

(L(r) ⊕ (L′)(r)) · b = L(r) ⊕ (L′)(r)

for b ∈ J . So we can then rewrite the integral according to our decomposition. This

yields,

Λ(L,L′; t1, t2) =

∫
J

∫
L(r)⊕(L′)(r)

ψ(−tr(bdiag(t1, t2)
tb[Q(x)]))dx db

+
∑
c∈O/P

∫
n(c)wJ

∫
L(r)⊕(L′)(r)

ψ(−tr(bdiag(t1, t2)
tb[Q(x)]))dx db.

Now, we have already shown that the inner most integral is invariant under trans-

formation by J so we can integrate it out of our expression which yields,

Λ(L,L′; t1, t2) = vol(J)

(∫
L(r)⊕(L′)(r)

ψ(−tr(diag(t1, t2)[Q(x)]))dx

+
∑

a,c∈O/P

∫
L(r)⊕ax+L(r)

ψ(−tr(wn(c)diag(t1, t2)n−(c)w[Q(x)]))dx

 .

Next we note that x → x · w interchanges the lattices and the transformation

x→ xn(−c) translates the lattices. Thus our expression becomes,

Λ(L,L′; t1, t2) = vol(J)

∫
L(r)⊕(L′)(r)

ψ(−tr(diag(t1, t2)[Q(x)]))dx (4.4)

+ vol(J)
∑
a,c∈O

∫
ax+L(r)⊕acx+L(r)

ψ(−tr(diag(t1, t2)[Q(x)]))dx.
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By a simple reordering how we sum the integrals in (4.4), we realize that

Λ(L,L′; t1, t2) = vol(J)

(
q

∫
L(r)⊕L(r)

ψ(−tr(diag(t1, t2)[Q(x)]))dx

+

∫
L′(r)⊕L′(r)

ψ(−tr(diag(t1, t2)[Q(x)]))dx

)
(4.5)

When [L′ : L] > q, we find that the argument above doesn’t quite follow as simply.

For the general case, we need to add several integrals, having the same integrand

as in (4.5), but with domains of integration of the form y1 + L(r) ⊕ y2 + L(r) where

y1 − cy2 6∈ L(r) for any c ∈ O/P . However, these terms are essentially the Wa,c in

Proposition 4.3.1 which vanish.

So we have reduced our problem of an integral over L(r)⊕ (L′)(r) to a problem

involving a weighted average of (L∗)(r) ⊕ (L∗)(r). Further we notice that for any

b ∈ GL2(O), we have (L∗)(r) ⊕ (L∗)(r) · b = (L∗)(r) ⊕ (L∗)(r). Therefore,

∫
(L∗)(r)⊕(L∗)(r)

ψ(−tr(diag(t1, t2)[Q(x · b)]))dx

=

∫
(L∗)(r)⊕(L∗)(r)

ψ(−tr(diag(t1, t2)[Q(x)]))dx

for all b ∈ GL2(O). Finally, we see that

∫
(L∗)(r)⊕(L∗)(r)

ψ(−tr(diag(t1, t2)[Q(x)]))dx

= vol(GL2(O))−1

∫
GL2(O)

∫
(L∗)(r)⊕(L∗)(r)

ψ(−tr(bdiag(t1, t2)
tb[Q(x)]))dxdb

and

Λ(L,L′; t1, t2) =
vol(J)

vol(GL2(O))
(qΛ(L,L; t1, t2) + Λ(L′, L′; t1, t2)) .

Finally, we realize that

vol(J) = (q + 1)−1vol(GL2(O)),
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so we ultimately find

W0(r, L, L
′) =

1

q + 1
(qW0(r, L, L) +W0(r, L

′, L′)).

Finally, it is worth noting that the expression for W0(r, L, L
′) is invariant

under the transformations x→ xw and b→ wbw. This sequence of transformations

exchange the lattices so we have that W0(r, L, L
′) = W0(r, L

′, L). So by combining

Proposition 4.3.1 and the Lemma 4.3.1, we get the following corollary.

Corollary 4.3.1. Let L,L′ and L′′ = L ∩ L′ be lattices from Table 4.6. Then we

have

W0(r, L, L
′) =

1

q + 1
((q − 1)W0(r, L

′′, L′′) +W0(r, L, L) +W0(r, L
′, L′)).

Proof. Simply substitute the formula from Lemma 4.3.1 into the formula from

Proposition 4.3.1.
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Table 4.4: Intermediate computations for the Whittaker functions in spherical case.

Sl Sm

L(k, 1) =


∅ if k even

{1, 2, 3, 4} if k odd

=


∅ if k even

{1, 2, 3, 4, 5} if k odd

l(k, 1) =


0 if k even

4 if k odd

=


0 if k even

5 if k odd

d(k) = −k = −3
2
k

v(k) = 1 =


1 if k even(
2κ
$

)
if k odd

δ+(k) = 1 =


1 if k even

0 if k odd

δ−(k) = 0 =


0 if k even

1 if k odd

Table 4.5: Rational functions used to compute W0(r, L, L), spherical case

Sl Sm

I1,1 = (1−q−2)X
1−X = (1−q−2)q−1X2

1−q−1X2

I2,1 = (1−q−2)q−1X3

(1−X)(1−q−1X2)
= (1−q−2)q−5X6

(1−q−1X2)(1−q−4X4)

I2,8 = q−1X2

1−q−1X2 = q−3X2+q−4X4

1−q−4X4
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Table 4.6: Relevant quadratic spaces

Sp2(F ) S̃p2(F )

(V s, Q) V sl =(M2(F ), κdet)
V sm = (F 5, Q(x0, . . . , x4))

Q(x) = κ(x2
0 − x1x2 − x3x4)

L1 M2(O) O5

L2

 1

$

M2(O)

 1

$−1

 O ⊕$−1O ⊕$O ⊕O2

L0 L1 ∩ L2 L1 ∩ L2

(V ra, Q) V ral =(B−(F ), κN)
V ram = (F 5, Q(x0, . . . , x4))

Q(x)=κ(εx2
0+$x

2
1−ε$x3

2−x3x4)

Lra B−(O) O5

Table 4.7: Local densities required for the doubling integrals.

Sp2(F ) S̃p2(F )

W0(r, L1, L1)
(1−q−(2r+2))(1−q−(r+2))

(1−q−(2r+1))(1−q−r)
1−q−(2r+4)

1−q−(2r+1)

W0(r, L0, L0)
1
q2

(1−q−(r+1))(1+q−(r−1)−q−r+q−(2r−1)−2q−(2r+1))

(1−q−(2r+1))(1−q−r)
1
q2

1+q−2r−2q−(2r+2)

1−q−(2r+1)

W0(r, Lra, Lra)
1
q2

(1+q−(r+1))(1−q−(r−1))

1−q−(2r+1)
1
q2

1−q−2r

1−q−(2r+1)
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Chapter 5

The Main Calculation

Now that we have set up the necessary machinery, we are ready to compute

L-factors. Note that because the formulas in this section essentially encompass both

the linear and metaplectic group cases simultaneously, G (resp. H) will be used to

denote either Sp2(F ) or S̃p2(F ) (resp. Sp4(F ) or S̃p4(F )). We will also suppress the

tilde notation from the various parabolic subgroups.

Let f ∈ IndGP∅((χ1 ⊗ χ2)
′). Then for any {Φs}Re(s)>>0 with

Φs ∈ IndHPH
((χV | · |s)′) = I(s, χV ),

we have the doubling integral [22]

Z(s,Φ, f)(g′0) =

∫
Sp2(F )

Φs(δ
′i(g′0, g

′))f(g′) dg

Using the Iwasawa decomposition G = P∅K with N∅ = N2N1 (see Notation page),

we get the following decomposition of the doubling integral,

Z(s,Φ, f)(g′0) =

∫
K

∫
(F×)2

∫
F

∫
Sym2(F )

Φs(δ
′i(g′0,n2(b)m

 a1 c

a2

 k′))

×f(n2(b)m

 a1 c

a2

 k′)db dc d×a dk. (5.1)

where g′ ∈ G is any element projecting onto g ∈ Sp2(F ).
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5.1 Constructing Φs0+r

Next we employ our interpolation method to construct our Φs0+r. Let V be

one of the quadratic spaces listed in Table 4.6. Thus our interpolation method will

produce a vector in IndHPH
(χV | · |s0+r) where

s0 =


−1

2
if G = Sp2(F )

0 if G = S̃p2(F )

.

So for ϕi ∈ S(V 2), we have

Φs0+r = λV (ϕ
(r)
1 ⊗ ϕ

(r)
2 ).

Lemma 5.1.1. Suppose that Φs0+r = λV (ϕ
(r)
1 ⊗ ϕ

(r)
2 ), then

Φs0+r(δ
′i(g′0, g

′)) = γ(Vr)

∫
V 2

r

ωVr(g
′
0)ϕ

(r)
1 (x) · ωVr(g

′)ϕ
(r)
2 (−x)dx

where δ and γ are defined in section 4.1.2.

Proof. Let α =

 I −I

I

. We have already seen that

Φs0+r(δ
′i(g′0, g

′)) = ωVr ([w1, 1]L[m(α), 1]Li(g
′
0, g

′)) (ϕ
(r)
1 ⊗ ϕ

(r)
2 )(0)

= ωVr([w1, 1]L[m(α), 1]L)(ωVr(g
′
0)ϕ

(r)
1 ⊗ ωVr(g

′)ϕ
(r)
2 )(0).

Letting φ1 = ωVr(g
′
0)ϕ

(r)
1 and φ2 = ωVr(g

′)ϕ
(r)
2 , we get

ωVr([w1, 1]L[m(α), 1]L)(φ1 ⊗ φ2)(0) = γ(Vr)

∫
Vr

ωVr(m(α))(φ1 ⊗ φ2)(x, 0)dx

= γ(Vr)

∫
Vr

φ1(x)φ2(−x)dx

Substituting the ϕi back into the equation gives us our result.
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It is also worth noting that

χVr(x) := (x, (−1)
(m+2r)(m+2r−1)

2 det(Vr))

where m = dimF (Vr). However, a routine calcultion shows that

(−1)
(m+2r)(m+2r−1)

2 det(Vr) = (−1)
m(m−1)

2 det(V )

so χVr = χV . Lastly, by another elementary calculation, we see that

χV (x) =


1 if G = Sp2(F )

(x, 2κ)F if G = S̃p2(F )

.

We now substitute this into our integral which yields

Z(s0 + r,Φ, f)(g′0) =

∫
K

∫
(F×)2

∫
F

∫
Sym2(F )

∫
V 2

r

ωVr(g
′
0)ϕ

(r)
1 (x)

×ωVr(n2(b)m

 a1 c

a2

 k′)ϕ
(r)
2 (x)dx

×f(n2(b)m

 a1 c

a2

 k′)db dc d×a dk

=

∫
K

∫
(F×)2

∫
F

∫
Sym2(F )

∫
V 2

r

ωVr(g
′
0)ϕ

(r)
1 (x)

×ωVr(n2(b)m

 a1 c

a2

 k′)ϕ
(r)
2 (x) dx (5.2)

×|a1|−4|a2|−3f(m(diag(a1, a2))n1(c)n2(b)k
′)db dc d×a dk

where the factor |a1|−4|a2|−3 comes from the transformations

n2(b) 7→ m

 a1 c

a2

n2(b)m

 a1 c

a2


−1
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and c 7→ ca1. Next, we use the fact that f ∈ IndGP∅((χ1 ⊗ χ2)
′) and compute the

Weil representation to arrive at

Z(s0 + r,Φ, f)(g′0)

=

∫
(F×)2

χV (a1a2)χ1(a1)χ2(a2)|a1a2|−2|a1a2|
5+2s0+2r

2

×
∫
F

∫
Sym2(F )

∫
V 2

r

ωVr(g0)ϕ
(r)
1 (x)

×
∫
K

f(k)[ωVr(k)ϕ
(r)
2 ](−x

 a1 c

a2

)dk

×ψ(−tr(b[Q(x)]))dx db dc d×a

=

∫
(F×)2

χV χ1(a1)χV χ2(a2)|a1a2|r+
1
2
+s0

∫
F

∫
Sym2(F )

∫
V 2

r

ωVr(g0)ϕ
(r)
1 (x)

×I(f, ϕ(r)
2 )(−x

 a1 c

a2

)ψ(−tr(b[Q(x)]))dx db dc d×a

(5.3)

Note that, in practice g0 = 1Sp2
.

In this final expression we have

I(f, ϕ(r))(x) :=

∫
K

f(k)ωVr(k)ϕ
(r)(x)dk.

This calculates the action of f averaged over K on ϕ(r)(x) and turns out to be one of

the critical computations in our method. It is also worth noting that I(f, ϕ(r))(x) ∈

S(V 2
r ); moreover, we will eventually show that I(f, ϕ(r))(x) = I(f, ϕ)(r)(x). So we

see our method of augmenting the dimension of V is very natural with respect to

our interpolation method.
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5.1.1 Choosing the characteristic functions

At this point, we must make a choice for our functions ϕi. As has been stated

previously, we will be interested in characteristic functions of lattices L ⊕ L′ ⊂ V 2

where L∗ ⊂ V are good latices (as defined in Section 4.1.3). In particular, we will

return to the quadratic spaces (and notation) from Table 4.6. The next step in

our calculation is to compute I(f, ϕ)(x), when we take ϕ as above and f to be an

Iwahori fixed vector. So let us define

ϕL⊕L′(x) := charL⊕L′(x)

with L and L′ good lattices. We see that ϕL⊕L′(x) is I∅-invariant (resp. I∅-invariant)

if L ⊂ L′ (resp. L′ ⊂ L).

Let us now consider the calculations I(f, ϕ)(x) for ϕ(x) ∈ S(V 2). After that,

we will show that

I(f, ϕ(r))(x) = I(f, ϕ)(r)(x).

In order to compute our doubling integrals, we will primarily be interested in com-

puting I(f, ϕ) for the following characteristic functions: ϕLi⊕Li
, ϕL0⊕Li

and ϕLra⊕Lra

with i ∈ {1, 2}. A routine computation shows that the characteristic function for

each product of lattices is invariant under I∅ via the Weil representation. We will

see that this allows us to write our integral as a finite sum. In particular, we have

that

Sp2(O) =
⋃

w∈WSp2

N∅(O)wI∅

where WSp2
is the Weyl group of Sp2 and N∅ is the unipotent radical of P∅ = N∅M∅.

115



However, we can refine this decomposition even more. Let us define some subgroups

of N∅ that depend on the various elements of WG = WSp2
.

Let WG now denote a fixed set of Weyl group representatives that we shall

explicitly describe below. Then for each w ∈ WG, let Inn(w) : G → G such that

Inn(w)(g) := wgw−1. Also let N̄∅ be the opposite unipotent subgroup of N∅ (alter-

natively, N̄∅ = Inn(wαβαβ)N∅ for the long Weyl group element wαβαβ ∈ WG). Thus

for any w ∈ WG, we define Nw := {n ∈ N∅|Inn(w)(n) ∈ N̄∅}. This gives us our first

refinement of

Sp2(O) =
⋃

w∈WG

Nw(O)wI∅.

We also notice that for n ∈ Nw($), Inn(w)(n) ∈ I∅. Therefore,

Sp2(O) =
⋃

w∈WG

(Nw(O)/Nw($))wI∅,

a finite union of cosets of Iφ.

So if we choose a Haar measure on Sp2(F ), in particular so K = Sp2(O) has

measure one, our integral becomes

I(f, ϕ)(x) = vol(I∅)
∑
w∈WG

f(w)
∑

n∈Nw(O)/Nw($)

(ωV (nw)ϕ)(x).

Consequently, we need only compute the action of certain Weyl group elements on

the factorizable function ϕL⊕L′(x) = ϕL(x1) ⊗ ϕL′(x2) via the Weil representation.

We now consider this calculation for a factorizable ϕ = ϕ1 ⊗ ϕ2 ∈ S(V 2). To do
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this, let

wα =



1

1

1

1


wβ =



1

1

1

−1


.

Via some very simple calculations we see that

rV (wα)ϕ(x) = |det(

 0 1

1 0

)|
m
2 ϕ(x

 0 1

1 0

) = ϕ2(x1)⊗ ϕ1(x2)

rV (wβ)ϕ(x) =

∫
V

ψ(tr[
1

2
(x

 1 0

0 0

 , x

 0 0

0 1

)

+ (x

 0 0

0 1

 , y

 0 0

0 −1

)+
1

2
(y

 0 0

0 −1

 , y

 1 0

0 0

)])

× ϕ(x

 1 0

0 0

 + y

 0 0

0 −1

)dy2

=

∫
V

ψ((x2,−y2))ϕ1(x1)⊗ ϕ2(−y2)dy2

= ϕ1(x1)⊗
(∫

V

ψ((x2,−y2))ϕ2(−y2)dy2

)
= ϕ1(x1)⊗ ϕ̂2(x2).

So ultimately we see that

ωV ([wα, 1]L)ϕ(x) = χV (x(wα))γ(η ◦ V )−j(wα)ϕ2 ⊗ ϕ1(x) (5.4)

ωV ([wβ, 1]L)ϕ(x) = χV (x(wβ))γ(η ◦ V )−j(wβ)ϕ1 ⊗ ϕ̂2(x) (5.5)

using our expression for ωV ([g, z]L)ϕ(x). Also, from Section 3.2, we have

x(wα) = x(wβ) = 1,
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j(wα) = 0, j(wβ) = 1

and

γ(η ◦ V ) = γ(det(V ), η)γ(η)4ε(V ) =


1 if V ∈ {V sl , V sm}

−1 if V ∈ {V ral , V ram}
.

We would also like to compute the action of ωV (n2(b)) on a function ϕ(x)

for n2(b) ∈ N2(O). Notice that because N2 is an abelian subgroup of G, we can

compute this action individually for each variable b11, b12 = b21 and b22. Also notice

that for x(n2(b)) = 1 and j(n2(b)) = 0, thus ωV (n2(b))ϕ(x) = rV (n2(b))ϕ(x). So

we compute each individually (with x = (x1, x2)). For b11,

rV (n2

 b11 0

0 0

)ϕ(x) = ψ

1

2
tr(x, x

 b11 0

0 0

)

ϕ(x)

= ψ(
b11
2
Q(x1))ϕ(x1, x2).

Thus ∑
b11∈O/P

ψ(
b11

2
Q(x1))ϕ(x1, x2) = qchO(Q(x1))ϕ(x). (5.6)

Notice that rV (n2

 0 0

0 b22

)ϕ(x) is handled almost identically yielding the fol-

lowing results

rV (n2

 0 0

0 b22

)ϕ(x) = ψ(
b22
2
Q(x2))ϕ(x1, x2)

∑
b22∈O/P

ψ(
b22
2
Q(x2))ϕ(x1, x2) = qchO(Q(x2))ϕ(x). (5.7)
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Finally, in the case where b12 = b21, we find

rV (n2

 0 b12

b12 0

)ϕ(x) = ψ

1

2
tr(x, x

 0 b12

b12 0

)

ϕ(x)

= ψ(b12(x1, x2))ϕ(x1, x2).

Thus, ∑
b12∈O/P

ψ(b12(x1, x2))ϕ(x1, x2) = qchO((x1, x2))ϕ(x). (5.8)

Thus if we apply equations (5.6)− (5.8) for a function ϕL⊕L′(x) for L and L′ lattices

in V , we get the following proposition.

Proposition 5.1.1. Let L and L′ be lattices in V and let ϕ(x) = ϕL⊕L′(x), then we

have the following:

∑
b11∈O/P

ψ(
b11
2
Q(x1))ϕL⊕L′(x) = qϕ(L∩L#)⊕L′(x)

∑
b22∈O/P

ψ(
b22
2
Q(x2))ϕL⊕L′(x) = qϕL⊕(L′∩(L′)#)(x)∑

b12∈O/P

ψ(b12(x1, x2))ϕL⊕L′(x) = qϕL⊕(L′∩L#)(x) + qϕ(L∩(L′)#)⊕L′(x)

−qϕ(L∩(L′)#)⊕(L′∩L#)(x).

Also note that ωV (n1(a))ϕ(x) = ϕ1(x1)⊗ϕ2(x2 + ax1). Although the formula

for ∑
a∈O/P

ωV (n1(a))ϕ(x)

doesn’t generally simplify in any particularly nice way, there are two cases that do

have simple expressions. They occur when ϕ = ϕL⊕L′ and L and L′ are good lattices
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with L ⊆ L′ or L′ ⊂ L and [L : L′] = q. In these cases,

∑
a∈O/P

ϕL(x1)⊗ ϕL′(x2 + ax1)=


qϕL⊕L′(x) if L ⊆ L′ qϕL⊕L(x) + ϕL′⊕L′(x)

−ϕL′⊕L(x)

 if [L : L′] = q.
(5.9)

It is worth noting that in order to extend our doubling method to more exotic

representations, we would need to find another reasonable simplification when L′ ⊂

L and [L : L′] = qn with n > 1. Those sums involve much more complicated terms.

Using our formulas for the Weil representation on the necessary factorizable

functions, we include a table at the end of the chapter compiling the various I(f, ϕ)

needed in this thesis (see Table 5.1).

There is another important property of I(f, ϕ)(x) that we use over the course

of our calculation. Recall that we defined

Vr = V + Vr,r

where Vr,r is the orthogonal direct product of r copies of the space (F 2, Q) with

Q(x, y) = 2xy (i.e., Vr,r is the orthogonal direct sum of r hyperplanes). Then, for

ϕ(r) = ϕ⊗ ϕ0
r, we would like to show the following proposition.

Proposition 5.1.2.

I(f, ϕ(r))(x) = I(f, ϕ)(r)(x).

Proof. Notice that ωVr(g) = ωV (g)⊗ ωVr,r(g) and the simple calculation

I(f, ϕ(r))(x, xr) =

∫
K

f(k)ωVr(k)ϕ
(r)(x, xr)dk

=

∫
K

f(k)ωV (k)ϕ(x)⊗ ωVr,r(k)ϕ
0
r(xr)dk

=

∫
K

f(k)ωV (k)ϕ(x)⊗ ϕ0
r(xr)dk = I(f, ϕ)(x)(r).
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Notice that ϕ0
r is a K-invariant characteristic function.

Finally, we notice that by (5.4), (5.5), (5.9) along with Propositions 5.1.1, we

have the following lemma.

Lemma 5.1.2. Let L and L′ be lattices in V with L ⊂ L′ or [L : L′] = q and ϕL⊕L′

as above, then

I(f, ϕL⊕L′)(x)

is a linear combination of functions ϕLi⊕Lj
(x) with Li and Lj lattices in V .

5.1.2 Reduction of Whittaker functions to local densities

By Lemma 5.1.2, it now suffices for us to compute the integral of the form∫
(F×)2

χV χ1(a1)χV χ2(a2)|a1a2|r+
1
2
+s0

∫
F

∫
Sym2(F )

∫
V 2

r

ϕ
(r)

L1⊕L2(x)

×ϕ(r)

L3⊕L4(−xm

 a1 c

a2

)ψ(−tr(b[Q(x)]))dx db dc d×a (5.10)

where Li are all good lattices. If fact we can define a function on GL2(F )

Λ(L1, L2, L3, L4; g) :=

∫
Sym2(F )

∫
V 2

r

ϕL1⊕L2(x)ϕL3⊕L4(−xg)ψ(−tr(b[Q(x)]))dx db.

Substituting this expression into (5.10) yields

∫
(F×)2

χ1(a1)χ2(a2)|a1a2|r+
1
2
+s0

∫
F

Λ(L1, L2, L3, L4;

 a1 c

a2

)dc d×a. (5.11)

There are two important properties of Λ(L1, L2, L3, L4; g) worth noting. First, if

g =

 a1

a2

 ,
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then Λ(L1,L2,L3,L4; g) is easily computable. Second, Λ(L1, L2, L3, L4; g) is both

right and left invariant with respect to compact open subgroups that depend on the

relationships between the lattices. We seek to make both statements explicit and,

as a consequence, will establish the connection between our doubling integral and

the local densities defined by Yang in [42].

Proposition 5.1.3. Let {Li}4
i=1 be good lattices. Then we have

Λ(L1,L2,L3,L4;

 a1

a2

) =



W0(r, L
1, L2)

if L1 ⊕ L2 ⊂ a−1
1 L3 ⊕ a−1

2 L4

|a1|−(2r+1)W0(r, L
3, L2)

if a−1
1 L3 ⊕ L2 ⊂ L1 ⊕ a−1

2 L4

|a2|−(2r+1)W0(r, L
1, L3)

if L1 ⊕ a−1
2 L4 ⊂ a−1

1 L3 ⊕ L2

|a1a2|−(2r+1)W0(r, L
3, L4)

if a−1
1 L3 ⊕ a−1

2 L4 ⊂ L1 ⊕ L2

where

W0(r, L, L
′) :=

∫
Sym2(F )

∫
L⊕L′

ψ(−tr(b[Q(x)]))dx db.

Proof. The proof is nearly transparent. We notice that

ϕL1⊕L2(x)ϕL3⊕L4(x

 a1

a2

) = (ϕL1(x1)⊗ ϕL2(x2)) (ϕL3(x1a1)⊗ ϕL4(x2a2))

= [ϕL1(x1)ϕL3(x1a1)]⊗ [ϕL2(x2)ϕL4(x2a2)]

= [ϕL1(x1)ϕa−1
1 L3(x1)]⊗ [ϕL2(x2)ϕa−1

2 L4(x2)]

So we see that the conditions on the lattices simply determine which characteristic

122



function dominates in each pair. Moreover, for any pair where either a−1
1 L3 or a−1

2 L4

dominates, then we make the appropriate transfromations xi 7→ xia
−1
i and

b 7→

 a∗1

a∗2

 b

 a∗1

a∗2


where a∗i = ai when we transform the xi as above and a∗i = 1 otherwise.

So to compute the integral

∫
F

Λ(L1, L2, L3, L4;

 a1 c

a2

)dc

we will use the invariance properties of Λ(L1, L2, L3, L4; g) to reduce our calculation

to the previous one. In particular, if L1 ⊂ L2, then we see that

∫
Sym2(F )

∫
V 2

r

ϕL1⊕L2(x)ϕL3⊕L4(−xkg)ψ(−tr(b[Q(x)])) dx db

=

∫
Sym2(F )

∫
V 2

r

ϕL1⊕L2(xk−1)ϕL3⊕L4(−xg)ψ(−tr(b[Q(xk−1)])) dx db

=

∫
Sym2(F )

∫
V 2

r

ϕL1⊕L2(x)ϕL3⊕L4(−xg)ψ(−tr(b[Q(x)])) dx db

for all k ∈ J where J is the standard Iwahori subgroup of GL2(F ). Notice we perform

the transforms x 7→ xk−1 and b 7→ k−1btk, which both preserve the measure. Thus

Λ(L1, L2, L3, L4; g) is left J-invariant. Similarly, one can show that for L2 ⊂ L1, then

Λ(L1, L2, L3, L4; g) is left J̄-invariant, where J̄ is the opposite Iwahori (i.e., J̄ = tJ).

Identical conditions on L3 and L4 gives Λ(L1, L2, L3, L4; g) right-invariance under J

or J̄ .

Finally, we consider the double coset space J1\GL2(F )/J2 with Ji ∈ {J, J̄}.

We can now show that any upper triangular matrix in GL2(F ) belongs to a double
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coset represented by a diagonal matrix or a matrix having only entries on the anti-

diagonal. In particular, we have the following proposition.

Proposition 5.1.4.

 a1 c

a2

 ∈



J

 a1

a2

 J if ∃i, ord(c) ≥ ord(ai)

J

 c

−c−1a1a2

 J if ∀i, ord(c) < ord(ai)

Proof. If ord(a1) ≤ ord(c), then we have a1 c

a2

 =

 a1

a2


 1 ca−1

1

1

 .

Similarly, if ord(a2) ≤ ord(c), then we find, a1 c

a2

 =

 1 ca−1
2

1


 a1

a2

 .

Finally, if ord(ai) > ord(c) for both i = 1 or 2, then we find, a1 c

a2

 =

 1

c−1a2 1


 c

−c−1a1a2


 1

c−1a1 1

 .

We get nearly identical results if we have left or right J̄ invariance. In fact,

only the conditions on ord(ai) and ord(c) shift by ±1.
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These previous two propositions finally allow us to compute the integral

∫
F

Λ(L1, L2, L3, L4;

 a1 c

a2

)dc =

∫
F

∫
Sym2(F )

∫
V 2

r

ϕ
(r)

L1⊕L2(x)ϕ
(r)

L3⊕L4(−x

 a1 c

a2

)ψ(−tr(b[Q(x)]))dx db dc.

For the sake of completeness, we will compute one example; the rest follow with

only minor adjustments.

Let V ∈ {V sl , V sm} and let L1 = L2 = L3 = L
(r)
0 and L4 = L

(r)
1 (see Table

4.6). In this case, we break our integral into four pieces according to whether

ord(ai) ≥ 0 or ord(ai) < 0. First, let ord(ai) ≥ 0 for both i = 1 and i = 2, then let

Pβ = a1O ∪ a2O. Using the results of Propositions 5.1.3 and 5.1.4, we have

∫
F

Λ(r, L0, L0, L0, L1;

 a1 c

a2

)dc

=

∫
F

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 a1 c

a2

)ψ(−tr(b[Q(x)]))dx db dc

=

∫
Pβ

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 a1

a2

)ψ(−tr(b[Q(x)]))dx db dc

+

∫
F\Pβ

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 c

−c−1a1a2

)

×ψ(−tr(b[Q(x)]))dx db dc.

In the second integral we make the substitution x 7→ x · w−1. Then we follow

this with the substitution b 7→ wbw−1 and notice that ϕ
L

(r)
0 ⊕L(r)

0
is invariant via right
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translation by w, we get

∫
F

Λ(r, L0, L0, L0, L1;

 a1 c

a2

)dc

=

∫
Pβ

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 a1

a2

)ψ(−tr(b[Q(x)]))dx db dc

+

∫
F\Pβ

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 c−1a1a2

c

)

×ψ(−tr(b[Q(x)]))dx db dc

=

∫
Pβ

W0(r, L0, L0)dc+

∫
O\Pβ

W0(r, L0, L0)dc+

∫
F\O

|c|−(2r+2+2s0)W0(r, L0, L1)dc

where the W0(r, Li, Lj) is a Whittaker function that we evaluate using Yang’s work

[42]. The extra factor of |c|−(2r+2+2s0) comes from the substitutions x2 7→ c−1x2 and

b 7→ diag(1, c)bdiag(1, c). So ultimately we find,

∫
F

Λ(r,L0,L0,L0,L1;

a1 c

a2

)dc = W0(r,L0,L0)+
(1− q−1)q−(2r+1+2s0)

1− q−(2r+1+2s0)
W0(r,L0,L1)

for ai ∈ O for both i. The other three cases are evaluated in a similar fashion using

the similar substitutions as above. We will compute those cases with less detail than

before.

Next let ord(a1) < 0 and ord(a2) ≥ 0. Furthermore, let P−α1 = a1O. In this

case,
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∫
F

Λ(r, L0, L0, L0, L1;

 a1 c

a2

)dc

=

∫
P−α1

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 a1

a2

)ψ(−tr(b[Q(x)]))dx db dc

+

∫
F\P−α1

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 c

−c−1a1a2

)

×ψ(−tr(b[Q(x)]))dx db dc

= q−(2r+2+2s0)α1

∫
P−α1

W0(r, L0, L0)dc+

∫
F\P−α1

|c|−(2r+2+2s0)W0(r, L0, L1)dc

= q−(2r+1+2s0)α1W0(r, L0, L0)+q
−(2r+1+2s0)α1

(1− q−1)q−(2r+1+2s0)

1− q−(2r+1+2s0)
W0(r, L0, L1)

= q−(2r+1+2s0)α1

(
W0(r, L0, L0) + (1− q−1)

q−(2r+1+2s0)

1− q−(2r+1+2s0)
W0(r, L0, L1)

)
.

Now let ord(a1) ≥ 0 and ord(a2) < 0. As above, let P−α2 = a2O. We will see

this case is quite similar to the previous case. In particular,
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∫
F

Λ(r, L0, L0, L0, L1;

 a1 c

a2

)dc

=

∫
P−α2

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 a1

a2

)ψ(−tr(b[Q(x)]))dx db dc

+

∫
F\P−α2

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 c

−c−1a1a2

)

×ψ(−tr(b[Q(x)]))dx db dc

= q−(2r+2+2s0)α2

∫
P−α2

W0(r, L0, L1)dc+

∫
F\P−α2

|c|−(2r+2+2s0)W0(r, L0, L1)dc

= q−(2r+1+2s0)α2W0(r, L0, L1)+q
−(2r+1+2s0)α2

(1− q−1)q−(2r+1+2s0)

1− q−(2r+1+2s0)
W0(r, L0, L1)

= q−(2r+1+2s0)α2
1− q−(2r+2+2s0)

1− q−(2r+1+2s0)
W0(r, L0, L1).

Finally, let ord(ai) < 0 for both i. As in the first case, we let Pβ = a1O∪ a2O

and P−αi = aiO. So we evaluate our integral,
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∫
F

Λ(r, L0, L0, L0, L1;

 a1 c

a2

)dc

=

∫
Pβ

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 a1

a2

)ψ(−tr(b[Q(x)]))dx db dc

+

∫
F\Pβ

∫
Sym2(F )

∫
V 2

r

ϕ
(r)
L0⊕L0

(x)ϕ
(r)
L0⊕L1

(−x

 c

−c−1a1a2

)

×ψ(−tr(b[Q(x)]))dx db dc

= q−(2r+2+2s0)(α1+α2)

∫
Pβ

W0(r, L0, L1)dc

+

∫
P−α1−α2\Pβ

|c|−(2r+2+2s0)|c−1a1a2|−(2r+1)W0(r, L0, L1)dc

+

∫
F\P−α1−α2

|c|−(2r+2+2s0)W0(r, L0, L1)dc

= q−(2r+2+2s0)(α1+α2)

∫
P−α1−α2

W0(r, L0, L1)dc+

∫
F\P−α1−α2

|c|−(2r+2+2s0)W0(r, L0, L1)dc

= q−(2r+1+2s0)(α1+α2) 1− q−(2r+2+2s0)

1− q−(2r+1+2s0)
W0(r, L0, L1).

We include Table 5.2 at the end of the chapter to summarize all of the com-

putations of ∫
F

Λ(r, L, L′, L′′, L′′′;

 a1 c

a2

) dc

needed in this thesis.
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5.1.3 Examples of doubling integrals for spherical representations

Until now we have evaluated all of the individual steps in the calculation with-

out considering the overall picture. We now use our previous results to compute a

few doubling integrals to achieve some local L-factors. The author originally com-

puted the spherical case by hand and the others followed later using Mathematica;

so let us start with the spherical case. We will follow the calculation for a represen-

tation of the linear group Sp2(F ) and then mention which slight modifications are

needed in the metaplectic case.

Let π = IndGP∅(χ1 ⊗ χ2) be irreducible. Because π is spherical, we choose our

Iwahori-fixed vector to be the spherical vector f normalized so f(1G) = 1. Next we

choose our {Φs0+r}. In order to match the invariance properties of f , we want Φs0+r

to be invariant under i(K × {1G}). Consequently, we choose Φs0+r as

Φs0+r(g) = λ(ϕ
(r)
L1⊕L1

⊗ ϕ
(r)
L1⊕L1

)(g).

Recall that L1 = M2×2(O) ⊂ V sl , where V sl has dimension 4. As one might expect,

since ϕ
(r)
L1⊕L1

(x) is K-invariant under the Weil representation, we find that

I(f, ϕ
(r)
L1⊕L1

)(x) = ϕ
(r)
L1⊕L1

(x).

Furthermore, for Λ(g) := Λ(r, L1, L1, L1, L1; g), following the example from Section

5.1.2, one can easily verify that

∫
F

Λ(

 a1 c

a2

)dc = |a1|−2rι(a1)|a2|−2rι(a2) 1− q−(2r+1)

1− q−2r
W0(r, L1, L1)
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where

ι(a) =


0 if a ∈ O

1 if a ∈ F \ O
.

Substituting these into (5.11) , we see that

Z(r − 1

2
,Φ, f)(1G)

=
1− q−(2r+1)

1− q−2r
W0(r, L1, L1)

∫
(F×)2

χ1(a1)χ2(a2)|a1|r−2rι(a1)|a2|r−2rι(a2) d×a.

This integral breaks up according to whether the ai are in O or not. So we get four

integrals,

Z(r − 1

2
,Φ, f)(1G)

=
1− q−(2r+1)

1− q−2r
W0(r, L1, L1)

∫
O\{0}

∫
O\{0}

χ1(a1)χ2(a2)|a1|r|a2|r d×a1 d
×a2

+
1− q−(2r+1)

1− q−2r
W0(r, L1, L1)

∫
O\{0}

∫
F\O

χ1(a1)χ2(a2)|a1|r|a2|−r d×a1 d
×a2

+
1− q−(2r+1)

1− q−2r
W0(r, L1, L1)

∫
F\O

∫
O\{0}

χ1(a1)χ2(a2)|a1|−r|a2|r d×a1 d
×a2

+
1− q−(2r+1)

1− q−2r
W0(r, L1, L1)

∫
F\O

∫
F\O

χ1(a1)χ2(a2)|a1|−r|a2|−r d×a1 d
×a2.

So finally, with both Haar measures d×ai normalized so that O× has measure 1 and

both χj being unramified, we see that

Z(r − 1

2
,Φ, f)(1G) =

1

1− χ1($)q−r
1

1− χ2($)q−r
1− q−(2r+1)

1− q−2r
W0(r, L1, L1)

+
χ−1

1 ($)q−r

1− χ−1
1 ($)q−r

1

1− χ2($)q−r
1− q−(2r+1)

1− q−2r
W0(r, L1, L1)

+
1

1− χ1($)q−r
χ−1

2 ($)q−r

1− χ−1
2 ($)q−r

1− q−(2r+1)

1− q−2r
W0(r, L1, L1)

+
χ−1

1 ($)q−r

1− χ−1
1 ($)q−r

χ−1
2 ($)q−r

1− χ−1
2 ($)q−r

1− q−(2r+1)

1− q−2r
W0(r, L1, L1).
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This simplifies to

Z(r − 1

2
,Φ, f)(1G) =

L(r, χ1)L(r, χ2)L(r, χ−1
1 )L(r, χ−1

2 )

ζ(2r + 1)ζ(2r)
W0(r, L1, L1)

in an elementary way. Finally, using our previous calculations for the local density

term, we make the substitution

W0(r, L1, L1) =
ζ(2r + 1)ζ(r)

ζ(2r + 2)ζ(r + 2)

and we finally arrive at the following proposition.

Proposition 5.1.5. Let π be a spherical constituent of IndGP∅(χ1 ⊗ χ2). For the

choices of “good test vectors” outlined above, we have

Z(r − 1

2
,Φ, f)(1G) =

L(r, χ1)L(r, χ2)L(r,1F×)L(r, χ−1
1 )L(r, χ−1

2 )

ζ(2r + 2)ζ(2r)ζ(r + 2)
. (5.12)

There are two points worth noticing about this particular result. First,

L(r, χ1)L(r, χ2)L(r,1F×)L(r, χ−1
1 )L(r, χ−1

2 )

is exactly the factor defined by the Satake parameter for a spherical representation

of Sp2(F ). Second, the extra term ζ(2r + 2)ζ(2r)ζ(r + 2) is predicted by Piatetski-

Shapiro and Rallis coming from the normalizing factor for the Eisenstein series in

their original work on the doubling integral [8].

From Section 4.1, we saw that the normalizing factor of the spherical Eisenstein

series had the following terms at the unramified places,

dH,v(s) = L(s+
2n+ 1

2
, χ)

n−1∏
i=0

L(2s+ 2i+ 1, χ2).
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In our case n = 2, and χ = χV = 1. Finally substituting s = r − 1
2
, we see that

dH,v(r −
1

2
) = L(r + 2,1F×)

1∏
i=0

L(2r − 1 + 2i+ 1,1F×) = ζ(r + 2)ζ(2r)ζ(2r + 2),

which conforms to our doubling result.

One of the truly outstanding aspects of this doubling calculation is the sim-

plicity in with which one can modify the integral to work for genuine principal series

representations of S̃p2(F ). In this case, let π̃ = IndG̃fP∅((χ1 ⊗ χ2)
′) be a irreducible

genuine principal series representation of G̃. So for f ∈ π̃,

f([

 a1 c

a2

 , z]Lg̃) = zχ1(a1)χ2(a2)|a1|2|a2|f(g̃).

The only change in setting up the integral in this case involves the quadratic space

V . In this case, V = V sm ' F 5 and

Qsm(xo, x1, x2, x3, x4) = κ(x2
0 + x1x4 − x2x3).

So (V sm , Qsm) is an analog to (V sl , Qsl
) that we used above. Furthermore, let

L1 = O5. This change in the quadratic vector space has three effects on our doubling

calculation. First, because Vr is now one dimension larger than previously, we have

a shift r 7→ r + 1
2
. Second, we now have

W0(r, L1, L1) =
ζ(2r + 1)

ζ(2r + 4)
.

Third, note that in the metaplectic case

χV (x) = (x, 2κ)F
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with κ ∈ O×, so χV is unramified but possibly nontrivial. Besides those adjustments,

the calculation is identical with the spherical case for Sp2(F ). Thus ultimately we

find have the following proposition.

Proposition 5.1.6. Let π̃ be a spherical constituent of Ind
eGeP∅((χ1 ⊗ χ2)

′). For the

choices of “good” test vectors outlined above, we have

Z(r,Φ, f)([1G, 1]L) =
L(r+ 1

2
, χV χ1)L(r+ 1

2
, χV χ2)L(r+ 1

2
, χV χ

−1
1 )L(r+ 1

2
, χV χ

−1
2 )

ζ(2r + 4)ζ(2r + 2)
.

(5.13)

It is worth remarking that due to a cancellation, the numerator and denom-

inator are one degree less than the Sp2(F ) case. In fact, the results resembles the

L-factor defined by the Satake parameter for a spherical representation of SO5(F ).

5.1.4 An example with a ramified representation

Next, let us consider an example of a non-spherical representation of Sp2(F )

to illustrate how the calculation changes when a representation has a unique vector

fixed by a smaller compact open subgroup. Consider the representation

π = L(ν
3
2StGL2 , 1) ⊂ IndGP∅(ν

2 ⊗ ν−1).

We see that dimC(πIα) = 1 and, for the given embedding of π into IndGP∅(ν
2 ⊗ ν−1),

πIα is spanned by the vector f with

f(1G) = f(wα) = f(wβ) = f(wβα) = 1

f(wαβ) = f(wαβα) = f(wβαβ) = f(wαβαβ) = −q−2.
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Because we want to produce a doubling integral Z(s,Φ, f) that is also Iα-invariant,

we have two appropriate choices of characteristic functions to use in our interpolation

method. They are

ϕra(x) = ϕLra⊕Lra(x) and ϕ0(x) = ϕL0⊕L0(x).

Using (5.4)− (5.9), one can show

Lemma 5.1.3. Let ϕ0 and ϕra be as above. Then,

I(f, ϕra)(x) = 0

I(f, ϕ0)(x) = R1(q)(ϕL0⊕L1(x) + ϕL0⊕L2(x))−R2(q)(ϕL1⊕L1(x) + ϕL2⊕L2(x))

where Ri(q) non-zero rational functions in C(q).

Thus we see that only one choice of lattice functions afford us the desired

invariance properties while not vanishing. So we let

Φs0+r = λ(ϕ
(r)
L0⊕L0

⊗ ϑϕ
(r)
L0⊕L0

)

with

ϑ =
q3

2vol(I∅)(q2 − 1)
.

Now that we have selected {Φs0+r}, the computation proceeds in a similar way

as the spherical case. As before, we will divide the doubling integral Z(s0 + r,Φ, f)

in (5.11) into four parts depending on whether ai ∈ O or ai ∈ F \ O. There is one

slight difference. For π, we need to compute the integrals

∫
F

Λ(r, L0, L0, L0, Li;

 a1 c

a2

)dc
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and ∫
F

Λ(r, L0, L0, Li, Li;

 a1 c

a2

)dc

for i ∈ {1, 2}. Fortunately, one can verify quite routinely that

∫
F

Λ(r, L0, L0, L0, L1;

 a1 c

a2

)dc =

∫
F

Λ(r, L0, L0, L0, L2;

 a1 c

a2

)dc

and

∫
F

Λ(r, L0, L0, L1, L1;

 a1 c

a2

)dc =

∫
F

Λ(r, L0, L0, L2, L2;

 a1 c

a2

)dc,

so only two integrals need be evaluated. One of these we already computed in the

example at the end of Section 5.1.2 and the other can be computed in a similar

manner. So now let us compute Z(s,Φ, f)(1G) as we before. If ord(ai) ≥ 0 for

i ∈ {1, 2}, we have

Z+,+(s0 + r,Φ, f)(1G) =

∫
O\{0}

∫
O\{0}

|a1|2|a2|−1|a1a2|r

×
∫
F

q(q2 + 1)

(q − 1)
Λ(r, L0, L0, L0, L1;

 a1 c

a2

)

−q(q + 1)

(q − 1)
Λ(r, L0, L0, L1, L1;

 a1 c

a2

)dc d×a1 d
×a2.
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By evaluating the innermost integrals we see this expression becomes

∫
O\{0}

∫
O\{0}

|a1|2|a2|−1|a1a2|r

×q(q
2 + 1)

(q − 1)

(
W0(r, L0, L0) + (1− q−1)

q−2r

1− q−2r
W0(r, L0, L1)

)
−q(q + 1)

(q − 1)

(
W0(r, L0, L0) + (1− q−1)

q−2r

1− q−2r
W0(r, L0, L1)

)
d×a1 d

×a2

=
q2

(
W0(r, L0, L0) + (1− q−1) q−2r

1−q−2rW0(r, L0, L1)
)

(1− |$|2q−r)(1− |$|−1q−r)
. (5.14)

If ord(a1) < 0 and ord(a2) ≥ 0, we have

Z−,+(s0 + r,Φ, f)(1G) =

∫
F\O

∫
O\{0}

|a1|2|a2|−1|a1|−r|a2|r

×
∫
F

q(q2 + 1)

(q − 1)
Λ(r, L0, L0, L0, L1;

 a1 c

a2

)

−q(q + 1)

(q − 1)
Λ(r, L0, L0, L1, L1;

 a1 c

a2

)dc d×a1 d
×a2.

Evaluating this we see find,

∫
F\O

∫
O\{0}

|a1|2|a2|−1|a1|−r|a2|r

×q(q
2 + 1)

(q − 1)

(
W0(r, L0, L0) + (1− q−1)

q−2r

1− q−2r
W0(r, L0, L1)

)
−q(q + 1)

(q − 1)

1− q−(2r+1)

1− q−2r
W0(r, L0, L1) d

×a1 d
×a2

=

[
q(q2 + 1)

(q − 1)

(
W0(r, L0, L0) + (1− q−1)

q−2r

1− q−2r
W0(r, L0, L1)

)
−q(q + 1)

(q − 1)

1− q−(2r+1)

1− q−2r
W0(r, L0, L1)

]
|$|−2q−r

(1− |$|−2q−r)(1− |$|−1q−r)
.(5.15)
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Next, we have ord(a1) ≥ 0 and ord(a2) < 0, which yields

Z+,−(s0 + r,Φ, f)(1G) =

∫
O\{0}

∫
F\O

|a1|2|a2|−1|a1|r|a2|−r

×
∫
F

q(q2 + 1)

(q − 1)
Λ(r, L0, L0, L0, L1;

 a1 c

a2

)

−q(q + 1)

(q − 1)
Λ(r, L0, L0, L1, L1;

 a1 c

a2

)dc d×a1 d
×a2.

This evaluates to

∫
O\{0}

∫
F\O

|a1|2|a2|−1|a1|r|a2|−r

×q(q
2 + 1)

(q − 1)

(
1− q−(2r+1)

1− q−2r
W0(r, L0, L1)

)
−q(q + 1)

(q − 1)

1− q−(2r+1)

1− q−2r
W0(r, L0, L1) d

×a1 d
×a2

=
q2

(
1−q−(2r+1)

1−q−2r W0(r, L0, L1)
)
|$|q−r

(1− |$|2q−r)(1− |$|q−r)
. (5.16)

Finally, we have the case that ord(ai) < 0 for i ∈ {1, 2}. Here we find

Z−,−(s0 + r,Φ, f)(1G) =

∫
F\O

∫
F\O

|a1|2|a2|−1|a1|−r|a2|−r

×
∫
F

q(q2 + 1)

(q − 1)
Λ(r, L0, L0, L0, L1;

 a1 c

a2

)

−q(q + 1)

(q − 1)
Λ(r, L0, L0, L1, L1;

 a1 c

a2

)dc d×a1 d
×a2.
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Evaluating this we see find,∫
F\O

∫
F\O

|a1|2|a2|−1|a1|−r|a2|−r

×q(q
2 + 1)

(q − 1)

1− q−(2r+1)

1− q−2r
W0(r, L0, L1)

−q(q + 1)

(q − 1)

(
q−1W0(r, L1, L1) +

1− q−1

1− q−2r
W0(r, L0, L1)

)
d×a1 d

×a2

=

[
q(q2 + 1)

(q − 1)

1− q−(2r+1)

1− q−2r
W0(r, L0, L1)−

q(q + 1)

(q − 1)
(q−1W0(r, L1, L1)

+
1− q−1

1− q−2r
W0(r, L0, L1))

]
(|$|−2q−r)(|$|q−r)

(1− |$|−2q−r)(1− |$|q−r)
. (5.17)

While these terms are fairly complicated, we can use Mathematica to sum them and

simplify the result. Consequently, we find that

Z(r − 1

2
,Φ, f)(1G) =

(1 + q−r)(1− q−(r+1))

(1− q−(r−1))(1− q−(r+2))
.

If we multiply the numerator and denominator by (1− q−r), we have the following

theorem.

Theorem 5.1.1. Let π = L(ν
3
2StGL2 , 1), then for the “good” test vector f and

“good” section {Φs0+r}∞r=1 described above we get

Z(r − 1

2
,Φ, f)(1G) =

(1− q−2r)(1− q−(r+1))

(1− q−(r−1))(1− q−r)(1− q−(r+2))

=
(r, ν−1)L(r,1F×)L(r, ν2)

ζ(2r)ζ(r + 1)
.

Notice that as polynomials in C[q−r],

deg(L(r, π, rst)
−1) = deg(ζ(2r)−1ζ(r + 1)−1)

as was mentioned in a previous section.

Note that this example is by no means the most complicated case of the

doubling integral. For several representations with a 1-dimensional space invariant
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under the long-root parahoric, we actually need to break Z(s0+r,Φ, f) into six cases

depending on whether ord(ai) < 0, = 0 or > 0. Except in the spherical case, which

can be computed by hand, computation of the L-factors was aided by Mathematica.

In particular, the various terms akin to Z±,±(s0 + r,Φ, f)(1G) were computed by

hand and then summed and simplified using Mathematica.

5.2 An unresolved case

We would now like to say a few words about a the case of the doubling integral

which is still unresolved. If one refers to our table containing the various dimensions

of parahoric invariance, we see that there are two representations of Sp2(F ) with

a one-dimensional space of I∅-fixed vectors which are not fixed under any larger

parahoric. They are the square-integrable representations of Sp2(F ):

• StSp2
, the Steinberg representation for Sp2(F ), and

• δ([ξ, νξ], 1)T 2
ξ
, a constituent of IndGP∅(νξ ⊗ ξ).

In both cases, we can show that the space of Iwahori-fixed vectors is spanned by f

with

f(w) = (−1

q
)`(w).

The identical situation exists for the representations

Π((ςνSt)′, ςν
3
2 ⊗ σ(ςν

1
2 ))

for S̃p2(F ). The difficulty in resolving this case comes with computing the doubling

integral for our choice of {Φs0+r}.
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As with the other cases, we would like to apply our interpolation trick to a

product of good lattices. Recall that we have,

Φs0+r = λ(ϕ
(r)

L1⊕L2 ⊗ ϕ
(r)

L3⊕L4)

where Li are all good lattices. Moreover, we would like our Φ is be fixed under

i(I∅ × {1}), but not i(I × {1}) for any larger parahoric I ⊃ I∅. In order to prevent

invariance of the latter type, L1 and L2 must satisfy the following conditions:

1. vol(L1) 6= vol(L2) and

2. (Li)# 6= (Lj), for i, j ∈ {1, 2}.

One consequence of these requirements is that one must use the quadratic space

(M2(F ), κdet) to find a sufficient supply of lattices. Notice that the quadratic space

(B−(F ), κN(x)) simply does not have enough good lattices to satisfy the condition

above.
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Now let us consider the various good lattices in M2(F ). In particular, we have

the following self dual lattices.

L1 = M2(O) =


 x y

z w

 | x, y, z, w ∈ O


L2 =


 x $−1y

$z w

 | x, y, z, w ∈ O


L3 =


 $−1x y

z $w

 | x, y, z, w ∈ O


L4 =


 $−1x $−1y

$z $w

 | x, y, z, w ∈ O


If we normalize the additive Haar measure on M2(F ) so that the volume of the self

dual lattices are one, then we also have the following good lattices with volume q−1:

Lij = Li ∩ Lj

where i < j and i+ j 6= 5. Notice that L12 is the same as the previously defined L0.

Finally, we have a minimal good lattice given by

L00 = L1 ∩ L4 = L2 ∩ L3 =


 x y

$z $w

 | x, y, z, w ∈ O

 .

In order for Φs0+r to have the desired invariance properties, we must choose L1 = L00

and L2 = Lij for any lattice with vol(Lij) = q−1.

Thus we need to compute I(f, ϕL00⊗L12)(x). While computing this, we need

to evaluate summations such as

f(wαβ)
∑
a∈O/P

qωV (n1(a))charO(Q(x1))ϕ̂L12(x1)ϕL00(x2)
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and

f(wβα)q
2charO((x1, x2)V )ϕL12(x1)charO(Q(x2))ϕ̂L00(x2).

While these are somewhat manageable, they do produce some problematic terms.

For instance, we get several functions similar to

ϕL12⊕L13(x).

Because of such terms, computing the doubling integral would involve us evaluate

the integral

∫
F

∫
Sym2(F )

∫
V 2

r

ϕL⊕L′(x)ϕL12⊕L13(−x

 a1 c

a2

)ψ(tr(−b[Q(x)])) dx db dc.

It is here that we finally find where our method stalls. Let us define a function on

GL2(F ) by

η∗(g) :=

∫
F

∫
Sym2(F )

∫
V 2

r

ϕL⊕L′(x)ϕL12⊕L13(−xg))ψ(tr(−b[Q(x)])) dx db dc. (5.18)

Notice that our method computes

η∗

 a1 c

a2


as long as η∗ ∈ H(J1\GL2(F )/J2) where Ji ∈ {J, J̄} and J ⊂ GL2(F ) is the Iwahori-

subgroup. Unfortunately, η∗ does not have the proper right-invariance. Notice that

vol(L12) = vol(L13)

and

L12 ∩ L13 6∈ {L12, L13}.
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Therefore, ϕL12⊕L13(x) is not right-invariant for either J or J̄ .

Ultimately, there is no reason to believe that our doubling method fails for

these representations. In fact, we have not even established that our choices for

{Φs0+r} are the wrong ones. What can be said is that the current methods and

results used to compute the doubling integral are not sufficiently general so as to let

us compute Z(s0 + r,Φ, f) for in this case.

Because, the conditions on f are very rigid in this case, there seems to be

just two ways to resolve this difficulty. First, one might generalize the intermediate

computations so that they apply to η∗. However, even if one were to generalize the

necessary results, this method seems to require too much brute force. In particular,

evaluating I(f, ϕ)(x) in this case produces a linear combination with several dozen

terms. Another avenue that one might attempt is finding a different set of candidates

for Φs0+r. Ideally, it would be somekind of refinement of the present interpolation

method that would either reduce to or simplify our interpolation method for the

cases where we have already established the ”good test vectors”.
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Table 5.1: Computing I(f, ϕ)(x) for various ϕ.

ϕ Vol(I∅)−1I(f, ϕ)

ϕLi⊕Li(x), [f(1) + qf(wα) + qf(wβ) + q2f(wαβ) + q2f(wβα) + q3f(wαβα)

i ∈ {1, 2} +q3f(wβαβ) + q4f(wαβαβ)]ϕLi⊕Li(x)

[f(1) + qf(wα)− f(wβ) + qf(wαβ)− qf(wβα) + q2f(wαβα)

ϕL0⊕L0 −qf(wβαβ)− q2f(wαβαβ)]ϕL0⊕L0

+[f(wβ)− f(wαβ) + qf(wβα)− qf(wαβα)](ϕL0⊕L1 + ϕL0⊕L2)

+[f(wαβ) + qf(wαβα) + qf(wβαβ) + q2f(wαβαβ)](ϕL1⊕L1 + ϕL2⊕L2)

[qf(wα) + q2f(wαβ)− qf(wβα)− q2f(wβαβ)]ϕL0⊕L0

+[f(1)− f(wα) + qf(wβ)− qf(wαβ)]ϕL0⊕L1

ϕL0⊕L1 +[qf(wβα)− qf(wαβα) + q2f(wβαβ)− q2f(wαβαβ)]ϕL0⊕L2

+[f(wα) + qf(wαβ) + qf(wβα) + q2f(wαβα)

+q2f(wβαβ) + q3f(wαβαβ)]ϕL1⊕L1

+[qf(wαβα) + q2f(wαβαβ)]ϕL2⊕L2

ϕLra⊕Lra [f(1) + qf(wα)− f(wβ)− qf(wαβ)− qf(wβα)

−q2f(wαβα) + qf(wβαβ) + q2f(wαβαβ)]ϕLra⊕Lra
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Appendix A

Computing Weil Indices

Because we are working the Weil representation, there is a question of com-

puting various Weil indices for characters of second degree. However, since these

computations are less critical than some of the others in the thesis, we included Weil

index calculations as well as some related computations in this appendix rather than

the main section of the text. To perform these calculations, we largely follow the

works of Rao [31] and Kudla [18] with some supporting definitions from Serre [34].

For this section, ψ is a fixed continuous character of (F,+) for a local field F . Note

that for the purposes of this section, finite fields will have the discrete topology in

order that they be locally compact abelian groups. For any a ∈ F , define

ψa(x) := ψ(ax).

Let X be a vector space over F with non-degenerate symmetric bilinear form

(·, ·)X . Further, let X∗ = HomF (X,F ) be the dual vector space and [x, x∗] = x∗(x)

be the canonical pairing. Since (·, ·)X is non-degenerate, we have an isomorphism

% : X → X∗ such that

(x, y)X = [x, %(y)].

Let dx and dx∗ denote the Haar measures on X and X∗ that are dual with respect

to Fourier transform defined using ψ ◦ [·, ·]. In particular, for f ∈ S(X),

Ff(x∗) :=

∫
X

ψ([x, x∗])f(x)dx.
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We also have a similar transform F∗ on S(X∗). Moreover, if η is a tempered distri-

bution on S(X), we define the Fourier transform Fη as

< f,Fη >=< Ff, η > .

Finally, for Q(x) = 1
2
(x, x), we get a character of second degree φQ(x) = ψ(Q(x)).

Notice that it is called a character of second degree because it satisfies

φQ(x+ y)φQ(x)−1φQ(y)−1 = ψ((x, y)X)

and ψ((x, y)X) is a bicharacter of X. Because φQ is valued {|z| = 1}, we can define

a tempered distribution φQdx on S(X) via

< f, φQdx >=

∫
X

f(x)φQ(x)dx.

Analogously, we have a quadratic form on X∗ given by

Q∗(x∗) = ψ(
1

2
[%−1(x∗), x∗])

with which we can define a character of second degree φQ∗ and distribution φ−1
Q∗dx

∗

on S(X∗). Finally, we see that φQdx and φ−1
Q∗dx

∗ are related by Fourier transform

in the following way:

F(φQdx) = γ(ψ)|%|−
1
2φ−1

Q∗dx
∗.

Here γ(ψ) is called the Weil index of ψ and |%| is a constant such that

F∗Ff(x) = |%|f(−x).

Rao uses the following notation

γ(ψ) = Weil index of: x→ ψ(x2),

γ(a, ψ) =
γ(ψa)

γ(ψ)
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The main theorem regarding γ(a, ψ) is the following (see [31]).

Theorem A.0.1. γ(ac2, ψ) = γ(a, ψ) and the function a → γ(a, ψ) is a character

of second degree on F×/(F×)2 with

γ(ab, ψ)γ(a, ψ)−1γ(b, ψ)−1 = (a, b)F

where (a, b)F is the Hilbert symbol of F .

Recall that for a, b ∈ F×

(a, b)F =


1 if ∃(z, x, y) ∈ F 3 (z, x, y) 6= (0, 0, 0), with z2 − ax2 − by2 = 0

−1 otherwise

.

Further, recall that for a quadratic space (V,Q) and orthogonal basis {e1, e2, . . . , en}

such that ai = (ei, ei)V . Then the Hasse invariant of (V,Q) is given by

ε(Q) :=
∏
i<j

(ai, aj)F .

Given the theorem, the next corollary is a routine computation by the defini-

tions.

Corollary A.0.1. We have the following identities:

1. γ(a, ψb) = (a, b)Fγ(a, ψ).

2. γ(−1, ψ) = γ(ψ)−2.

3. γ(a, ψ)2 = (−1, a)F = (a, a)F .

4. γ(a, ψ)4 = 1 and γ(ψ)8 = 1.

So let us summarize Rao’s formulas for γ(a, ψ) for the various local fields F .
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Proposition A.0.1. 1. For F = C,

γ(ψ) = (a, b)F = ε(Q) = 1

for all choices of character ψ, quadratic form Q and all a, b ∈ C×.

2. For F = R

(a, b)F =


−1 if a, b < 0

1 otherwise

For ψ(t) = exp(2πt
√
−1), then

γ(ψa) = ψ(
sign(a)

8
).

Finally, if Q has quadratic form of signature (a, b), then

ε(Q) = (−1)
b(b−1)

2 .

The next result will deal with the case of finite fields.

Proposition A.0.2. Let F be a finite field with char 6= 2. Then

1. γ(a, ψ) =
(
a
F

)
, where

( ·
F

)
is the Legendre symbol for F .

2. a 7→ γ(a, ψ) is a homomorphism and (a, b)F = 1 for all a, b ∈ F×.

3. ε(Q) = 1 for any quadratic space (V,Q).

4. If Fp is the prime subfield of F and [F : Fp] = n and ψ′ = ψ ◦ tr, then

γF (ψ′) = γFp(ψ)n.
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5. If ψ is the character t 7→ exp(2πt
√
−1

p
) on Fp, then

γ(ψ) =


1 if p ≡ 1 mod 4

√
−1 if p ≡ 3 mod 4

.

Finally, we come to the case that F is a p-adic field with residue characteristic

different from 2. For an additive character ψ, let ord(ψ) be the largest integer m

such that ψ is trivial on $−mO. Futhermore, let ι represent a parity function defined

for both characters and elements of F× in the following way:

ι(ψ) :=


1 if ord(ψ) is odd

0 if ord(ψ) is even

ι(a) :=


1 if ord(a) is odd

0 if ord(a) is even

.

So with this, we have the following result.

Proposition A.0.3. Let F be a p-adic local field with residue characteristic 6= 2

and let Fq be its residue field. For a fixed character ψ, let m = ord(ψ) Then we can

define a character ψ̃ on O/P by

ψ̃(x+ P) := ψ($−(m+1)x).

This is a non-trivial character on Fq and

γF (ψ) = γFq(ψ̃)ι(ψ).

Furthermore,

γF (a, ψ) =

[(
[u]

Fq

)
γFq(ψ̃)

]ι(a)
where a = $ord(a)u and [u] is image of u under the isomorphism O/P ' Fq.
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We notice that computing the Weil indices in the p-adic case, reduces to the

computation in the finite field case.

Finally, because it is a factor in many of our calculations, we will include a

formula for (·, ·)F with F a p-adic field. The formula comes from[34].

Proposition A.0.4. Let F be a p-adic local field with p 6= 2. For a, b ∈ F , let

a = $αu, b = $βv with u, v ∈ O×. Then we have

(a, b)F =

(
−1

Fq

)αβ (
[u]

Fq

)β (
[v]

Fq

)α

.

It is worth noting that (·, ·)F is trivial on O× × O×, which is a case that

frequently appears in our applications.
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Appendix B

Tables of Results

In this Appendix, we compile much of data relevant to this thesis. Tables

B.1 and B.2 contain all of the irreducible constituents π of the unramified principal

series of Sp2(F ) along with the inducing data for π is a constituent of the induced

representation. Much of this data along with the conditions for π to be tempered or

L2 was distilled from the work of Sally and Tadić [33]. The dimension of the para-

horic invariants in Table B.1 and the Jacquet modules in Tables B.3 and B.4 were

computed by the author. The Weil-Deligne data to which each constituent (in Table

B.1) maps are contained in Tables B.5 and B.6. Table B.7 outlines all of the choices

of “good test vectors” used to compute Z(s0 + r,Φ, f). In this table, the column

for f refers to the Iwahori fixed vectors from Table 4.3 and the quadratic spaces V

refer the spaces listed in Table 4.5. Finally, Table B.8 contains the computed values

for

Z(s, φ, f) = C(q)
L(s, π, rst)

dΦ(s)

where C(q) ∈ C(q
1
2 ).

Tables B.9 and B.10 contain data regarding the constituents of the principal

series for both S̃p2(F ) and SO5(F ). It is arranged so that representations that

correspond via our bijection appear in the identical rows in their respective tables.

The reducibility points of SO5(F ) were described in Jantzen [12] and [13]. The
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reducibility points for S̃p2(F ) were derived by the author using Tadić’s criteria.

All dimensions of parahoric invariants as well as all Jacquet modules (in Tables

B.11-B.14) were computed by the author. Finally, Tables B.15-B.16 (resp. Tables

B.17-B.18) are the analogs to Tables B.5-B.6 for SO5(F ) (resp. to Tables B.7-B.8

for S̃p2(F )).

For the tables pertaining to Sp2(F ) we fix the following notation:

P∅: Borel Subgroup P∅ = M∅N∅ with M∅ ∼= GL1(F )2

I∅: Iwahori Subgroup

Pα: Siegel Parabolic Subgroup Pα = MαNα with Mα
∼= GL2(F )

Iα: Siegel Parahoric Subgroup

Pβ : Long Root Parabolic Subgroup Pβ = MβNβ with Mβ
∼= GL1(F )× Sp1(F )

Iβ : Long Root Parahoric Subgroup

K = Sp2(O).

IndSp1(F )
B (ξ) = T 1

ξ ⊕ T 2
ξ
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Table B.1: Constituents of Unramified Principal Series for

Sp2(F ) and the Dimension of Parahoric Invariants

Representation Constituents I∅ Iα Iβ K

I IndG
P∅

(χ1 ⊗ χ2) (irreducible) 8 4 4 1

a IndG
P∅

(χν
1
2 ⊗ χν−

1
2 ) IndG

Pα
(χStGL2) 4 1 2 0

II
b χ 6∈ {ν± 3

2 , ν±
1
2 ς} with ς2 = 1 IndG

Pα
(χ1GL2) 4 3 2 1

a IndG
P∅

(χ⊗ ν) IndG
Pβ

(χ⊗ StSp1
) 4 2 1 0

III
b χ 6∈ {ν±2, ς} with ς2 = 1 IndG

Pβ
(χ⊗ 1Sp1

) 4 2 3 1

a IndG
P∅

(χ⊗ ξ), ξ = | · |
πi

log q IndG
Pβ

(χ⊗ T 2
ξ ) 4 2 1 0

IV
b χ 6∈ {ςν±1} with ς2 = 1 IndG

Pβ
(χ⊗ T 1

ξ ) 4 2 3 1

a StSp2
1 0 0 0

b L(ν2, StSp1
) 3 2 1 0

V
c

IndG
P∅

(ν2 ⊗ ν)
L(ν

3
2 StGL2 , 1) 3 1 2 0

d 1Sp2
1 1 1 1

a σ(ν
1
2 StGL2) 3 1 1 0

b L(ν
1
2 StGL2 , 1) 1 0 1 0

VI
c

IndG
P∅

(ν ⊗ 1F×)
σ(ν

1
21GL2) 1 1 0 0

d L(ν,1F× , 1) 3 2 2 1

a σ(ν ⊗ T 2
ξ ) 2 1 0 0

b IndG
P∅

(ν ⊗ ξ) σ(ν ⊗ T 1
ξ ) 2 1 1 0

VII
c ξ = | · |

πi
log q L(ν, T 2

ξ ) 2 1 1 0

d L(ν, T 1
ξ ) 2 1 2 1

Table continued on next page.
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Table B.1: Constituents of Unramified Principal Series for

Sp2(F ) and the Dimension of Parahoric Invariants

Representation Constituents I∅ Iα Iβ K

a δ([ξ, νξ], 1)T 2
ξ

1 0 0 0

b δ([ξ, νξ], 1)T 1
ξ

1 0 1 0

VIII c
IndG

P∅
(νξ ⊗ ξ)

L(ν
1
2 ξStGL2 , 1)* 2 1 1 0

d
ξ = | · |

πi
log q

L(νξ, T 2
ξ ) 1 1 0 0

e L(νξ, T 1
ξ ) 1 1 1 1

* denotes a representation having multiplicity 2 in IndG
P∅

(νξ ⊗ ξ)
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Table B.2: Tempered and L2 Representations for Sp2(F )

Representation Constituents Tempered L2

I IndG
P∅

(χ1 ⊗ χ2) (irreducible) χi unitary

a IndG
P∅

(χν
1
2 ⊗ χν−

1
2 ) IndG

Pα
(χStGL2) χ unitary

II
b χ 6∈ {ν± 3

2 , ν±
1
2 ς} with ς2 = 1 IndG

Pα
(χ1GL2)

a IndG
P∅

(χ⊗ ν) IndG
Pβ

(χ⊗ StSp1
) χ unitary

III
b χ 6∈ {ν±2, ς} with ς2 = 1 IndG

Pβ
(χ⊗ 1Sp1

)

a IndG
P∅

(χ⊗ ξ), ξ = | · |
πi

log q IndG
Pβ

(χ⊗ T 2
ξ ) χ unitary

IV
b χ 6∈ {ςν±1} with ς2 = 1 IndG

Pβ
(χ⊗ T 1

ξ ) χ unitary

a StSp2
• •

b L(ν2, StSp1
)

V
c

IndG
P∅

(ν2 ⊗ ν)
L(ν

3
2 StGL2 , 1)

d 1Sp2

a σ(ν
1
2 StGL2) •

b L(ν
1
2 StGL2 , 1)

VI
c

IndG
P∅

(ν ⊗ 1F×)
σ(ν

1
21GL2) •

d L(ν,1F× , 1)

a σ(ν ⊗ T 2
ξ ) •

b IndG
P∅

(ν ⊗ ξ) σ(ν ⊗ T 1
ξ ) •

VII
c ξ = | · |

πi
log q L(ν, T 2

ξ )

d L(ν, T 1
ξ )

Table continued on next page.
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Table B.2: Tempered and L2 Representations for Sp2(F )

Representation Constituents Tempered L2

a δ([ξ, νξ], 1)T 2
ξ

• •

b δ([ξ, νξ], 1)T 1
ξ

• •

VIII c
IndG

P∅
(νξ ⊗ ξ)

L(ν
1
2 ξStGL2 , 1)

d
ξ = | · |

πi
log q

L(νξ, T 2
ξ )

e L(νξ, T 1
ξ )

159



Table B.3: Jacquet Modules-Sp2(F )-Siegel Parabolic

Representation rG
Pα

(π) ∈ R(Mα) #

IndGL2
B (χ1 ⊗ χ2) + IndGL2

B (χ1 ⊗ χ−1
2 )

I IndG
P∅

(χ1 ⊗ χ2) (irreducible)
+IndGL2

B (χ−1
1 ⊗ χ2) + IndGL2

B (χ−1
1 ⊗ χ−1

2 )
4

χStGL2 + χ−1StGL2

a IndG
Pα

(χStGL2)
+IndGL2

B (χν
1
2 ⊗ χ−1ν

1
2 )

3

II
χ1GL2 + χ−1

1GL2

b IndG
Pα

(χ1GL2)
+IndGL2

B (χν−
1
2 ⊗ χ−1ν−

1
2 )

3

a IndG
Pβ

(χ⊗ StSp1
) IndGL2

B (χ⊗ ν) + IndGL2
B (χ−1 ⊗ ν) 2

III
b IndG

Pβ
(χ⊗ 1Sp1

) IndGL2
B (χ⊗ ν−1) + IndGL2

B (χ−1 ⊗ ν−1) 2

a IndG
Pβ

(χ⊗ T 2
ξ ) IndGL2

B (χ⊗ ξ) + IndGL2
B (χ−1 ⊗ ξ) 2

IV
b IndG

Pβ
(χ⊗ T 1

ξ ) IndGL2
B (χ⊗ ξ) + IndGL2

B (χ−1 ⊗ ξ) 2

a StSp2
ν

3
2 StGL2 1

b L(ν2, StSp1
) ν

3
21GL2 + IndGL2

B (ν ⊗ ν−2) 2
V

c L(ν
3
2 StGL2 , 1) ν−

3
2 StGL2 + IndGL2

B (ν2 ⊗ ν−1) 2

d 1Sp2
ν−

3
21GL2 1

a σ(ν
1
2 StGL2) 2 · ν 1

2 StGL2 + ν
1
21GL2 3

b L(ν
1
2 StGL2 , 1) ν−

1
2 StGL2 1

VI
c σ(ν

1
21GL2) ν

1
21GL2 1

d L(ν,1F× , 1) 2 · ν− 1
21GL2 + ν−

1
2 StGL2 3

a σ(ν ⊗ T 2
ξ ) IndGL2

B (ν ⊗ ξ) 1

b σ(ν ⊗ T 1
ξ ) IndGL2

B (ν ⊗ ξ) 1
VII

c L(ν, T 2
ξ ) IndGL2

B (ν−1 ⊗ ξ) 1

d L(ν, T 1
ξ ) IndGL2

B (ν−1 ⊗ ξ) 1

Table continued on next page.
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Table B.3: Jacquet Modules-Sp2(F )-Siegel Parabolic

Representation rG
Pα

(π) ∈ R(Mα) #

a δ([ξ, νξ], 1)T 2
ξ

ν
1
2 ξStGL2 1

b δ([ξ, νξ], 1)T 1
ξ

ν
1
2 ξStGL2 1

VIII c L(ν
1
2 ξStGL2 , 1) ν

1
2 ξ1GL2 + ν−

1
2 ξStGL2 2

d L(νξ, T 2
ξ ) ν−

1
2 ξ1GL2 1

e L(νξ, T 1
ξ ) ν−

1
2 ξ1GL2 1
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Table B.4: Jacquet Modules-Sp2(F )-Long Root Parabolic

Representation rG
Pβ

(π) ∈ R(Mβ) #

χ1 ⊗ IndSp1
B (χ2) + χ−1

1 ⊗ IndSp1
B (χ2)

I IndG
P∅

(χ1 ⊗ χ2) (irreducible)
χ2 ⊗ IndSp1

B (χ1) + χ−1
2 ⊗ IndSp1

B (χ1)
4

χν
1
2 ⊗ IndSp1

B (χν−
1
2 )

a IndG
Pα

(χStGL2)
+χ−1ν

1
2 ⊗ IndSp1

B (χν
1
2 )

2

II
χν−

1
2 ⊗ IndSp1

B (χν
1
2 )

b IndG
Pα

(χ1GL2)
+χ−1ν−

1
2 ⊗ IndSp1

B (χν−
1
2 )

2

χ⊗ StSp1
+ χ−1 ⊗ StSp1

a IndG
Pβ

(χ⊗ StSp1
)

+ν ⊗ IndSp1
B (χ)

3

III
χ⊗ 1Sp1

+ χ−1 ⊗ 1Sp1

b IndG
Pβ

(χ⊗ 1Sp1
)

+ν−1 ⊗ IndSp1
B (χ)

3

χ⊗ T 2
ξ + χ−1 ⊗ T 2

ξ
a IndG

Pβ
(χ⊗ T 2

ξ )
+ξ ⊗ IndSp1

B (χ)
3

IV
χ⊗ T 1

ξ + χ−1 ⊗ T 1
ξ

b IndG
Pβ

(χ⊗ T 1
ξ )

+ξ ⊗ IndSp1
B (χ)

3

a StSp2
ν2 ⊗ StSp1

1

b L(ν2, StSp1
) ν−2 ⊗ StSp1

+ ν ⊗ IndSp1
B (ν2) 2

V
c L(ν

3
2 StGL2 , 1) ν2 ⊗ 1Sp1

+ ν−1 ⊗ IndSp1
B (ν2) 2

d 1Sp2
ν−2 ⊗ 1Sp1

1

Table continued on next page.
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Table B.4: Jacquet Modules-Sp2(F )-Long Root Parabolic

Representation rG
Pβ

(π) ∈ R(Mβ) #

a σ(ν
1
2 StGL2) 1F× ⊗ StSp1

+ ν ⊗ IndG
B(1F×) 2

b L(ν
1
2 StGL2 , 1) 1F× ⊗ 1Sp1

1
VI

c σ(ν
1
21GL2) 1F× ⊗ StSp1

1

d L(ν,1F× , 1) 1F× ⊗ 1Sp1
+ ν−1 ⊗ IndSp1

B (1F×) 2

a σ(ν ⊗ T 2
ξ ) ν ⊗ T 2

ξ + ξ ⊗ StSp1
2

b σ(ν ⊗ T 1
ξ ) ν ⊗ T 1

ξ + ξ ⊗ StSp1
2

VII
c L(ν, T 2

ξ ) ν−1 ⊗ T 2
ξ + ξ ⊗ 1Sp1

2

d L(ν, T 1
ξ ) ν−1 ⊗ T 1

ξ + ξ ⊗ 1Sp1
2

a δ([ξ, νξ], 1)T 2
ξ

νξ ⊗ T 2
ξ 1

b δ([ξ, νξ], 1)T 1
ξ

νξ ⊗ T 1
ξ 1

VIII c L(ν
1
2 ξStGL2 , 1) ξ ⊗ IndSp1

B (νξ) 1

d L(νξ, T 2
ξ ) ν−1ξ ⊗ T 2

ξ 1

e L(νξ, T 1
ξ ) ν−1ξ ⊗ T 1

ξ 1
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For tables for S̃p2(F ), we have the following notation:

P̃∅ = M̃∅N∅ M̃∅ ' (F×)2 × C1 ⊂ G̃ I∗∅ = {[k, λ(k)]L | k ∈ I∅}

P̃α = M̃αNα M̃α ' GL2(F )× C1 ⊂ G̃ I∗α = {[k, λ(k)]L | k ∈ Iα}

P̃β = M̃βNβ M̃β ' F× × S̃p1(F ) ⊂ G̃ I∗β = {[k, λ(k)]L | k ∈ Iβ}

K∗ = {[k, λ(k)]L | k ∈ K}

For results pertaining to SO5(F ), we have the following notation:

P ′
∅: Borel Subgroup P ′

∅ = M ′
∅N

′
∅ with M ′

∅
∼= GL1(F )2

I ′∅: Iwahori Subgroup

P ′
α: Siegel Parabolic Subgroup P ′

α = M ′
αN ′

α with M ′
α
∼= GL2(F )

I ′α: Siegel Parahoric Subgroup

P ′
β : Short Root Parabolic Subgroup P ′

β = M ′
βN ′

β with M ′
β
∼= GL1(F )× S03(F )

I ′β : Short Root Parahoric Subgroup

K ′ = SO5(O).
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Table B.9: Constituents of Unramified Principal Series for S̃p2(F ) and the Dimension

of Parahoric Invariants

Representation Constituents I∗∅ I∗α I∗β K∗

IX IndG̃
P̃∅

((χ1 ⊗ χ2)
′) (irreducible) 8 4 4 1

a IndG̃
P̃∅

((χν
1
2 ⊗ χν−

1
2 )′) IndG̃

P̃α
((χStGL2)

′) 4 1 2 0
X

b χ 6∈ {ς, ςν±1} IndG̃
P̃α

((χ1GL2)
′) 4 3 2 1

a IndG̃
P̃∅

((χ⊗ ςν
1
2 )′) IndG̃

P̃β
(χ⊗ τ(ςν

1
2 )) 4 2 1 0

XI

b χ 6∈ {ςν± 1
2 , ςν±

3
2} IndG̃

P̃β
(χ⊗ π(ςν

1
2 )) 4 2 3 1

a Π((ςStGL2)
′, ςν

1
2⊗π(ςν

1
2 )) 1 0 1 0

b IndG̃
P̃∅

((ςν
1
2 ⊗ ςν−

1
2 )′) Π((ςStGL2)

′, ςν
1
2⊗τ(ςν 1

2 )) 3 1 1 0
XII

c Π((ς1GL2)
′, ςν

1
2⊗τ(ςν 1

2 )) 1 1 0 0

d Π((ς1GL2)
′, ςν

1
2⊗π(ςν

1
2 )) 3 2 2 1

a Π((ςνStGL2)
′, ςν

3
2⊗τ(ςν 1

2 )) 1 0 0 0

b IndG̃
P̃∅

((ςν
3
2⊗ςν 1

2 )′) Π((ςνStGL2)
′, ςν

3
2⊗π(ςν

1
2 )) 3 1 2 0

XIII

c Π((ςν1GL2)
′, ςν

3
2⊗τ(ςν 1

2 )) 3 2 1 0

d Π((ςν1GL2)
′, ςν

3
2⊗π(ςν

1
2 )) 1 1 1 1

Note: ς2 = 1 and ς is unramified.

172



Table B.10: Constituents of Unramified Principal Series for SO5(F ) and the Dimension

of Parahoric Invariants

Representation Constituents I ′∅ I ′α I ′β K ′

IX IndG′

P ′
∅
(χ1 ⊗ χ2) (irreducible) 8 4 4 1

a IndG′

P ′
∅
(χν

1
2 ⊗ χν−

1
2 ) IndG′

P ′
α
(χStGL2) 4 1 2 0

X
b χ 6∈ {ς, ςν±1} ς2 = 1 IndG′

P ′
α
(χ1GL2) 4 3 2 1

a IndG′

P ′
∅
(χ⊗ ςν

1
2 ) IndG′

P ′
β
(χ⊗ ςStSO3) 4 2 1 0

XI
b χ 6∈ {ςν± 1

2 , ςν±
3
2 } ς2 = 1 IndG′

P ′
β
(χ⊗ ς1SO3) 4 2 3 1

a σ(ςν
1
2 ⊗ ς1SO3) 1 0 1 0

b IndG′

P ′
∅
(ςν

1
2 ⊗ ςν−

1
2 ) σ(ςν

1
2 ⊗ ςStSO3) 3 1 1 0

XII
c ς2 = 1 L(ςν

1
2 , ςStSO3) 1 1 0 0

d L(ςν
1
2 , ςν

1
2 ) 3 2 2 1

a ςStSO5 1 0 0 0

b IndG′

P ′
∅
(ςν

3
2 ⊗ ςν

1
2 ) L(ςνStGL2 , 1) 3 1 2 0

XIII
c ς2 = 1 L(ςν

3
2 , ςStS03) 3 2 1 0

d L(ςν
3
2 , ςν

1
2 ) 1 1 1 1

Note: ς2 = 1 and ς is unramified.
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Table B.11: Jacquet Modules-S̃p2(F )-Siegel Parabolic

Representation rG̃
P̃α

(π) ∈ R(M̃α) #

IndGL2
B (χ1 ⊗ χ2)′ + IndGL2

B (χ1 ⊗ χ−1
2 )′

IX IndG̃
P̃∅

((χ1 ⊗ χ2)′) (irreducible)
+IndGL2

B (χ−1
1 ⊗ χ2)′ + IndGL2

B (χ−1
1 ⊗ χ−1

2 )′
4

(χStGL2)
′ + (χ−1StGL2)

′

a IndG̃
P̃α

((χStGL2)
′)

+IndGL2
B (χν

1
2 ⊗ χ−1ν

1
2 )′

3

X
(χ1GL2)

′ + (χ−1
1GL2)

′

b IndG̃
P̃α

((χ1GL2)
′)

+IndGL2
B (χν−

1
2 ⊗ χ−1ν−

1
2 )′

3

a IndG̃
P̃β

(χ⊗ τ(ςν
1
2 )) IndGL2

B (χ⊗ ςν
1
2 )′ + IndGL2

B (χ−1 ⊗ ςν
1
2 )′ 2

XI
b IndG̃

P̃β
(χ⊗ π(ςν

1
2 )) IndGL2

B (χ⊗ ςν−
1
2 )′ + IndGL2

B (χ−1 ⊗ ςν−
1
2 )′ 2

a Π((ςStGL2)
′, ςν

1
2 ⊗ π(ςν

1
2 )) (ςStGL2)

′ 1

b Π((ςStGL2)
′, ςν

1
2 ⊗ τ(ςν

1
2 )) (ςStGL2)

′ + IndGL2
B (ςν

1
2 ⊗ ςν

1
2 )′ 2

XII
c Π((ς1GL2)

′, ςν
1
2 ⊗ τ(ςν

1
2 )) (ς1GL2)

′ 1

d Π((ς1GL2)
′, ςν

1
2 ⊗ π(ςν

1
2 )) (ς1GL2)

′ + IndGL2
B (ςν−

1
2 ⊗ ςν−

1
2 ) 2

a Π((ςνStGL2)
′, ςν

3
2 ⊗ τ(ςν

1
2 )) (ςνStGL2)

′ 1

b Π((ςνStGL2)
′, ςν

3
2 ⊗ π(ςν

1
2 )) (ςν−1StGL2)

′ + IndGL2
B (ςν

3
2 ⊗ ςν−

1
2 )′ 2

XIII
c Π((ςν1GL2)

′, ςν
3
2 ⊗ τ(ςν

1
2 )) (ςν1GL2)

′ + IndGL2
B (ςν

1
2 ⊗ ςν−

3
2 )′ 2

d Π((ςν1GL2)
′, ςν

3
2 ⊗ π(ςν

1
2 )) (ςν−

1
21GL2)

′ 1
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Table B.12: Jacquet Modules-S̃p2(F )-Long Root Parabolic

Representation rG̃
P̃β

(π) ∈ R(M̃β) #

χ1 ⊗ Ind
gSp1
B (χ′2) + χ−1

1 ⊗ Ind
gSp1
B (χ′2)

IX IndG̃
P̃∅

((χ1 ⊗ χ2)′) (irreducible)
+χ2 ⊗ Ind

gSp1
B (χ′1) + χ−1

2 ⊗ Ind
gSp1
B (χ′1)

4

χν
1
2 ⊗ Ind

gSp1
B ((χν−

1
2 )′)

a IndG̃
P̃α

((χStGL2)
′)

+χ−1ν
1
2 ⊗ Ind

gSp1
B ((χν

1
2 )′)

2

X
χν−

1
2 ⊗ Ind

gSp1
B ((χν

1
2 )′)

b IndG̃
P̃α

((χ1GL2)
′)

+χ−1ν−
1
2 ⊗ Ind

gSp1
B ((χν−

1
2 )′)

2

χ⊗ τ(ςν
1
2 ) + χ−1 ⊗ τ(ςν

1
2 )

a IndG̃
P̃β

(χ⊗ τ(ςν
1
2 ))

+ςν
1
2 ⊗ Ind

gSp1
B (χ′)

3

XI
χ⊗ π(ςν

1
2 ) + χ−1 ⊗ π(ςν

1
2 )

b IndG̃
P̃β

(χ⊗ π(ςν
1
2 ))

+ςν−
1
2 ⊗ Ind

gSp1
B (χ′)

3

a Π((ςStGL2)
′, ςν

1
2 ⊗ π(ςν

1
2 )) ςν

1
2 ⊗ π(ςν

1
2 ) 1

b Π((ςStGL2)
′, ςν

1
2 ⊗ τ(ςν

1
2 )) ςν

1
2 ⊗ π(ςν

1
2 ) + 2 · ςν 1

2 ⊗ τ(ςν
1
2 ) 3

XII
c Π((ς1GL2)

′, ςν
1
2 ⊗ τ(ςν

1
2 )) ςν−

1
2 ⊗ τ(ςν

1
2 ) 1

d Π((ς1GL2)
′, ςν

1
2 ⊗ π(ςν

1
2 )) ςν−

1
2 ⊗ τ(ςν

1
2 ) + 2 · ςν− 1

2 ⊗ π(ςν
1
2 ) 3

a Π((ςνStGL2)
′, ςν

3
2 ⊗ τ(ςν

1
2 )) ςν

3
2 ⊗ τ(ςν

1
2 ) 1

b Π((ςνStGL2)
′, ςν

3
2 ⊗ π(ςν

1
2 )) ςν

3
2 ⊗ π(ςν

1
2 ) + ςν

1
2 ⊗ Ind

gSp1
B ((ςν

3
2 )′) 2

XIII
c Π((ςν1GL2)

′, ςν
3
2 ⊗ τ(ςν

1
2 )) ςν−

3
2 ⊗ τ(ςν

1
2 ) + ςν

1
2 ⊗ Ind

gSp1
B ((ςν

3
2 )′) 2

d Π((ςν1GL2)
′, ςν

3
2 ⊗ π(ςν

1
2 )) ςν−

3
2 ⊗ π(ςν

1
2 ) 1
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Table B.13: Jacquet Modules-SO5(F )-Siegel Parabolic

Representation rG′

P ′
α
(π) ∈ R(M ′

α) #

IndGL2
B (χ1 ⊗ χ2) + IndGL2

B (χ1 ⊗ χ−1
2 )

IX IndG′

P ′
∅
(χ1 ⊗ χ2) (irreducible)

+IndGL2
B (χ−1

1 ⊗ χ2) + IndGL2
B (χ−1

1 ⊗ χ−1
2 )

4

χStGL2 + χ−1StGL2

a IndG′

P ′
α
(χStGL2)

+IndGL2
B (χν

1
2 ⊗ χ−1ν

1
2 )

3

X
χ1GL2 + χ−1

1GL2

b IndG′

P ′
α
(χ1GL2)

+IndGL2
B (χν−

1
2 ⊗ χ−1ν−

1
2 )

3

a IndG′

P ′
β
(χ⊗ ςStS03) IndGL2

B (χ⊗ ςν
1
2 ) + IndGL2

B (χ−1 ⊗ ςν
1
2 ) 2

XI
b IndG′

P ′
β
(χ⊗ ς1S03) IndGL2

B (χ⊗ ςν−
1
2 ) + IndGL2

B (χ−1 ⊗ ςν−
1
2 ) 2

a σ(ςν
1
2 ⊗ ς1SO3) ςStGL2 1

b σ(ςν
1
2 ⊗ ςStSO3) ςStGL2 + IndGL2

B (ςν
1
2 ⊗ ςν

1
2 ) 2

XII
c L(ςν

1
2 , ςStSO3) ς1GL2 1

d L(ςν
1
2 , ςν

1
2 ) ς1GL2 + IndGL2

B (ςν−
1
2 ⊗ ςν−

1
2 ) 2

a ςStSO5 ςνStGL2 1

b L(ςνStGL2 , 1) ςν−1StGL2 + IndGL2
B (ςν

3
2 ⊗ ςν−

1
2 ) 2

XIII
c L(ςν

3
2 , ςStSO3) ςν1GL2 + IndGL2

B (ςν
1
2 ⊗ ςν−

3
2 ) 2

d L(ςν
3
2 , ςν

1
2 ) ςν−

1
21GL2 1
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Table B.14: Jacquet Modules-SO5(F )-Short Root Parabolic

Representation rG′

P ′
β
(π) ∈ R(M ′

β) #

χ1 ⊗ IndSO3
B (χ2) + χ−1

1 ⊗ IndSO3
B (χ2)

IX IndG′

P ′
∅
(χ1 ⊗ χ2) (irreducible)

+χ2 ⊗ IndSO3
B (χ1) + χ−1

2 ⊗ IndSO3
B (χ1)

4

χν
1
2 ⊗ IndSO3

B (χν−
1
2 )

a IndG′

P ′
α
(χStGL2)

+χ−1ν
1
2 ⊗ IndSO3

B (χν
1
2 )

2

X
χν−

1
2 ⊗ IndSO3

B (χν
1
2 )

b IndG′

P ′
α
(χ1GL2)

+χ−1ν−
1
2 ⊗ IndSO3

B (χν−
1
2 )

2

χ⊗ ςStSO3 + χ−1 ⊗ ςStSO3

a IndG′

P ′
β
(χ⊗ ςStSO3)

+ςν
1
2 ⊗ IndSO3

B (χ)
3

XI
χ⊗ ς1SO3 + χ−1 ⊗ ς1SO3

b IndG′

P ′
β
(χ⊗ ς1SO3)

+ςν−
1
2 ⊗ IndSO3

B (χ)
3

a σ(ςν
1
2 ⊗ ς1SO3) ςν

1
2 ⊗ ς1SO3 1

b σ(ςν
1
2 ⊗ ςStSO3) ςν

1
2 ⊗ ς1SO3 + 2 · ςν 1

2 ⊗ ςStSO3 3
XII

c L(ςν
1
2 , ςStSO3) ςν−

1
2 ⊗ ςStSO3 1

d L(ςν
1
2 , ςν

1
2 ) ςν−

1
2 ⊗ ςStSO3 + 2 · ςν− 1

2 ⊗ ς1SO3 3

a ςStSO5 ςν
3
2 ⊗ ςStSO3 1

b L(ςνStGL2 , 1) ςν
3
2 ⊗ ς1SO3 + ςν

1
2 ⊗ IndSO3

B (νς 3
2 ) 2

XIII
c L(ςν

3
2 , ςStSO3) ςν−

3
2 ⊗ ςStSO3 + ςν

1
2 ⊗ IndSO3

B (ςν
3
2 ) 2

d L(ςν
3
2 , ςν

1
2 ) ςν−

3
2 ⊗ ς1SO3 1
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