
ALGORITHMS FOR STRUCTURED TOTAL LEAST SQUARESPROBLEMS WITH APPLICATIONS TO BLIND IMAGEDEBLURRING �ANOOP KALSIy AND DIANNE P. O'LEARYzAbstrat. Mastronardi, Lemmerling, and van Hu�el presented an algorithm for solving a totalleast squares problem when the matrix and its perturbations are Toeplitz. A Toeplitz matrix isa speial kind of matrix with small displaement rank. Here we generalize the fast algorithm toany matrix with small displaement rank. In partiular, we show how to eÆiently onstrut thegenerators whenever M has small displaement rank and show that in many important ases theCholesky fatorization of the matrix MTM an also be determined fast. We further extend thisproblem to Tikhonov regularization of ill-posed problems and illustrate the use of the algorithm onan image deblurring problem.Key words. Displaement rank, blok Toeplitz matrix, total least squares, strutured totalleast squares, errors in variables method, image deblurring, Tikhonov regularization.Running Title: Fast Strutured Total Least Squares1. Introdution. In [4℄, Mastronardi, Lemmerling, and Van Hu�el present analgorithm for solving fast strutured total least squares problems of the formminE;�;x� E � �2F(1.1)subjet to the onstraints (A+E)x = y + �with A 2 Rm�n a given Toeplitz matrix and y 2 Rm�1 a given vetor. They inludeone additional onstraint: E is a Toeplitz matrix. They produed a fast algorithmfor solving this strutured total least squares problem (STLS) and showed that thesolution was a better estimator than the solution to the total least squares problemwithout the Toeplitz onstraint.In this work, we onsider the same problem (1.1), but under the onstraint that Aand E have small displaement rank relative to some matries Z1 and Z2. Choosingthese two matries to be shift-down matries and the rank to be two gives the Toeplitzonstraint onsidered by [4℄, but we will be interested in other ases as well.We also onsider fast solution of the problem under the additional onstraint thatthe norm of the solution vetor x is spei�ed. Note that this problem was posedin Pruessner and O'Leary [7℄. This orresponds to a Tikhonov regularization of ourstrutured total least squares problem and results in a fast solution algorithm for theproblem onsidered in [5, 6, 7℄.The ore of the algorithm in [4℄, based on a more general algorithm of [8℄, relies ontwo results: the representation of the generators for the matrix MTM that appearsin the normal equations when A is Toeplitz, and then a fast fatorization of a matrixderived from these generators. So we begin in Setion 2 with a review of the problemformulation from [4, 8℄, and in Setion 3, we derive the generators for MTM when A�This work was partially supported by the National Siene Foundation under Grant CCR-0204084.y Mathematis Department, University of Maryland, College Park, MD 20742 (kalsi�s.umd.edu).zDept. of Computer Siene and Institute for Advaned Computer Studies, University of Mary-land, College Park, MD 20742 (oleary�s.umd.edu).1



is any matrix of small displaement rank. In Setion 4 we show that it is inexpensiveto form a Cholesky fatorization of MTM whenever Z1 and Z2 are lower triangularmatries. Setion 6 onerns the generalization of this algorithm when a regularizationonstraint is to be applied. We show that in one formulation of suh problems, thedisplaement rank of MTM is lower than expeted. In Setion 6, we apply this resultto an important speial ase, image deblurring, and in Setion 7 we present somenumerial results.2. Problem Formulation. Suppose that the matrix E an be spei�ed by pparameters �1; : : : ; �p. For example, if E is a Toeplitz matrix, thenE = 2664 �n �n�1 : : : �1�n+1 �n : : : �2: : : : : : : : : : : :�m+n�1 �m+n�2 : : : �m 3775 ;and p = m+ n+ 1. We rewrite our problem asmin�;�;x� �� �22(2.1)where � = (A+E)x� y :Following [4℄, we have replaed the term kEk2F by �T�, equivalent exept for salingof the entries �2i .We de�ne the matrix X 2 Rm�p by the equationX� = Ex :For example, if E is Toeplitz, then p = m+ n� 1 andX = 2664 xn xn�1 : : : x1 0 : : : : : : 00 xn xn�1 : : : x1 0 : : : 0: : : : : : : : : : : : : : : : : : : : : : : :0 : : : 0 xn xn�1 : : : : : : x1 3775Following [8℄, we form a quadrati approximation to (2.1) by using linear approx-imations �+�� and x+�x, resulting in� � (A+ (E +�E))(x +�x)� y� (A+E)x+X��+ (A+E)�x� yso that � �� �22 = � X A+EI 0 � � ���x �+ � (A+E)x� y� �22If we minimize this with respet to �� and �x, then we an form a new approximation� = �+��x = x+�x2



to the solution of (2.1) and then repeat the proedure until onvergene. As noted by[8℄, this is a Gauss-Newton algorithm applied to (2.1) and although it is not guaranteedto onverge to the global solution, it will at least �nd a loal one.Therefore, the main omputational task is to solve linear least squares problemsof the form min��;�xM � ���x �+ � (A+E)x� y� �22(2.2)where M = � X A+EI 0 � :One way is to aomplish this is to solve the normal equations, the optimality ondi-tions for this problem, and that involves solving the linear systemMTM � ���x � = �MT � (A+E)x� y� �(2.3)We now derive the tools neessary to do this eÆiently.3. Generators for MTM . Our �rst tool is the derivation of a generator for thematrix MTM when M has low displaement rank.3.1. The Displaement Rank of MTM . Suppose that M has low displae-ment rank relative to the matries Z1 2 R(m+p)�(m+p) and Z2 2 R(n+p)�(n+p), whihmeans that if we de�ne N �M � Z1MZT2 ;then rank(N) = �1, whih is small relative to n+ p.Suppose ~Z = Z1 +Wis an orthogonal matrix ( ~ZT ~Z = I), where W has rank �2, also assumed to besmall. For example, if E is Toeplitz, let Z1 be the shift-down matrix with ones onits subdiagonal and zeros elsewhere, and then W is the matrix with a one in the lastposition of row 1.Then MTM also has low displaement rank relative to Z2, as we an see fromthe identityMTM � Z2MTMZT2 =MTM � Z2MT ~ZT ~ZMZT2=MTM � (M �N �WMZT2 )T (M �N �WMZT2 )= (N +WMZT2 )T (M �N �WMZT2 ) +MT (N +WMZT2 )Theorem 3.1. If the rank of N � M � Z1MZT2 is �1 and if the orthogonalmatrix ~Z is equal to Z1 +W where W has rank �2, thenMTM � Z2MTMZT2 = �NTN +NT (M �WMZT2 ) + (MT � (WMZT2 )T )N�(WMZT2 )T (WMZT2 ) +MT (WMZT2 ) + (WMZT2 )TMhas rank at most 2(�1 + �2).Proof. The equation in the statement of the theorem is a regrouping of the termsin the previous equation. The rank of N +WMZT2 is at most the rank of N plus therank of W , so the rank of the sum in that equation is at most 2(�1 + �2).3



3.2. Deriving the Generators for the Toeplitz Example. For our Toeplitzexample, we have W = e1eTm+p :Sine M �Z1MZT2 is nonzero only in rows 1 and m+ 1 and in olumns 1 and p+1,then N =M � Z1MZT2 = e1rT1 � em+1rTm + em+1eT1 + peTp+1where rT1 = eT1M;rTm = eTm+1Z1MZT2 ;p =Mep+1 �m1;p+1e1 :Note that eT1 p = eTm+1p = 0.We ompute WMZT2 = e1eTm+pMZT2 = e1eTp+1 ;and, sine eT1M = rT1 ;eTm+1M = eT1 ;it is then lear from Theorem 3.1 that MTM � Z2MTMZT2 is the sum of outerproduts of various vetors with only 5 di�erent vetors: rT1 ; rTm; eT1 ; eTp+1, and TpM ,so the rank is 5.It is useful to write the displaement in symmetri form. To do this for theToeplitz example, we ompute eah of the terms in the Theorem:�NTN = �r1rT1 � rmrTm � e1eT1�(Tp p)ep+1eTp+1 + rmeT1 + e1rTmNT (M �WMZT2 )+(MT � (WMZT2 )T )N = 2r1rT1 � rmeT1 + 2e1eT1 + ep+1TpM�r1eTp+1 � e1rTm +MT peTp+1 � ep+1rT1�(WMZT2 )T (WMZT2 ) = ep+1eTp+1MT (WMZT2 ) + (WMZT2 )TM = r1eTp+1 + ep+1rT1Adding these terms together, we obtainMTM � Z2MTMZT2 = e1eT1 + r1rT1 � rmrTm(1� Tp p)ep+1eTp+1+ep+1TpM +MT peTp+1= e1eT1 + r1rT1 � rmrTm �MT p(MT p)T =2+(ep+1 +MT p=)(ep+1 +MT p=)Twhere 2 = (1� Tp p). 4



4. Determining a Cholesky Fatorization from the Generators. We nowknow how to determine � vetors gi so thatMTM � Z2MTMZT2 = �Xi=1 sigigTiwhere si equals plus or minus 1. When Z1 and Z2 are shift-down matries, it hasbeen shown [4, 1, 3℄ that this implies thatMTM = �Xi=1 siLiLTi= � L1 : : : L� �S 264 LT1...LT� 375where S = diag(si) and Li is the lower triangular Toeplitz matrix with �rst row equalto gTi . We now generalize this result somewhat.Theorem 4.1. If Z1 is nilpotent, thenA� Z1AZT2 = ghTif and only if A = L1(g)LT2 (h)where Li(x) = � x Zix : : : Zn+p�1i x � :Proof. Suppose A = L1(g)LT2 (h). Observe thatL1(g)LT2 (h) = � g Z1g : : : Zn+p�11 g �26664 hThTZT2...hT (ZT2 )n+p�1 37775= n+p�1Xj=0 Zj1ghTZj2and Z1L1(g)LT2 (h)ZT2 = n+p�1Xj=0 Zj+11 ghTZj+12so, sine Zn+p1 = 0, we onlude thatL1(g)LT2 (h)� Z1L1(g)LT2 (h)ZT2 = ghT :To prove the onverse, suppose A� Z1AZT2 = ghT . Then, sineghT = L1(g)LT2 (h)� Z1L1(g)LT2 (h)ZT2 ;5



we onlude that if E = A� L1(g)LT2 (h), thenE = Z1EZT2 :Now sine Z1 is nilpotent, Zp1 = 0 for some p � n. Therefore, Zp�11 E = Zp1EZT2 = 0,and working bakward in powers of Z1, we see that Z01E = Z1EZT2 = 0, so A =L1(g)LT2 (h).The following orollary an be proved by �nite indution.Corollary 4.2. If Z1 is nilpotent, thenA� Z1AZT2 = �Xi=1 gihTiif and only if A = �Xi=1 L1(gi)LT2 (hi) :In order to solve our least squares problem, we wish to determine a Choleskyfatorization MTM = LLT ;so we need to redue the matrix 264 LT1...LT� 375to upper triangular form.If Z1 and Z2 are shift-down matries, then [4℄ shows how to do this redution fast.Using our orollary, we see that this an be done fast whenever Z1 and Z2 are lowertriangular matries. We present the algorithm for this slightly more general ase.The algorithm proeeds by olumns, putting zeros below the main diagonal. Notethat
L̂ � 264 LT1...LT� 375 = 266666666666664

hT1hT1 ZT2: : :hT1 (ZT2 )n+p...hT�hT� ZT2: : :hT� (ZT2 )n+p
377777777777775Suppose we determine a rotation between the �rst row hT1 and row n+ p+ 1, whihontains hT2 , to zero the �rst element of hT2 . The same rotation between hT1 (ZT2 )jand hT2 (ZT2 )j (j = 1; : : : ;m + p � 1) also zeroes the �rst element of hT2 (ZT2 )j sineZT2 is upper triangular. Therefore, by introduing one zero into our matrix, we have6



impliitly introdued m+ p� 1 more, so we an put zeroes below the main diagonalin olumn 1 by using only �� 1 rotations, independent of the size of m+ p.We then use the resulting seond row, equal to the �rst row postmultiplied byZT2 , to zero the seond element of row n + p + 1. Again this impliitly introduesadditional zeros, m+ p� 2 of them, and we omplete the operations on olumn 2 byusing �� 1 rotations.If we repeat this for eah olumn, we aomplish our redution.Let G be the matrix whose rows are gTi . We an thus redue L̂ to upper triangularform just by operating on the matrix G.We design our algorithm to use Givens rotations as often as possible, minimizingthe number of hyperboli rotations in order to preserve stability. We setsi = � 1 if gi = hi;�1 if gi = �hi;so that A = �Xi=1 siL1(gi)LT2 (gi) :A Givens rotation an be used between row i and row j whenever si and sj have thesame sign; if they have di�erent signs, then we must use a hyperboli rotation. We'llassume that we have ordered the generators so that the �rst �̂ rows of G have si = 1and the remaining ones have si = �1.Algorithm Redue(G)1For j = 1; : : : ; n+ p,For i = 2; : : : ; �̂,If gij is nonzero, thenzero it by a Givens rotation between row1 and row i;end forFor i = �̂+ 2; : : : ; �,If gij is nonzero, thenzero it by a Givens rotation between row�̂+ 1 and row i;end forIf g�̂+1;j is nonzero, thenzero it by a stabilized hyperboli rotation betweenrow 1 and row �̂+ 1;Then the jth row of LT is gT1 , the �rst row of the urrentG matrix.Replae the �rst row of G by gT1 ZT2 to form the pivot rowfor the next value of j.end forThe ost of this redution is at most O(�(n+ p)2), ignoring sparsity, plus the ost ofthe multipliations by Z2. Without exploiting the struture of L̂ the ost would be1There is an analogous algorithm, FTriang, in [4℄, for the speial ase in whih A is Toeplitz,but it has some typographial errors. In the statement following \if i<m", g3 on the left-hand sideshould be g4. In 12 plaes on p. 552, \m+n" should be \mn1". Also, the numbering of the phasesof the omputation is o� by one ompared with the desription in the paper (\Initialization" shouldbe \Phase 1", et.) 7



O(�(n + p)3). One the fators LLT are omputed, they an then be used to solve(2.3).5. Regularized Solutions. In many deblurring problems and other disretizedproblems involving integral equations of the �rst kind, the matrixA is so ill-onditionedthat noise in the observations y is magni�ed in solving the STLS problem and a mean-ingful solution annot be obtained.In this ase it is neessary to add a regularization onstraint to the problem. Oneommon regularization onstraint is to restrit the size of the solution, or some lineartransformation of the solution: kCxk � uwhere u is a given salar and C is ommonly hosen to be the identity matrix ora di�erene operator. If C has low displaement rank relative to Z1 and Z2, thenour algorithm an be easily modi�ed to inorporate regularization. In this ase, ourproblem (2.1) an be reformulated asmin�;�;x24 ���Cx 3522(5.1)where � = (A+E)x�y and �, the regularization parameter, is the Lagrange multiplierfor the new onstraint. Using a derivation similar to that above, the linearization of(5.1) results in the following problem to be solved at eah step of the iteration:min��;�x24 X A+EI 00 �C 35� ���x �+0� ���Cx 1Ap :Thus, our new M matrix is the old matrix M augmented by the extra rows [0; �C℄,and the only hange neessary in the algorithm is to �nd the generators of this matrixrather than the old one.The displaement struture of this matrix is greatly simpli�ed if C is upper tri-angular and Z2 is the shift-down matrix. As noted before, W is zero exept for a onein the last position of the �rst row, and thus WM is zero exept for a � in the lastposition of the �rst row. Therefore, WMZT2 = 0, so, applying Theorem 3.1, we havethe following result.Theorem 5.1. If C is upper triangular and Z2 is the shift-down matrix, thenMTM � Z2MTMZT2 = (M �N=2)NT +N(M �N=2)Tand has rank 2�1, where �1 is the rank of N .Using the identityabT + baT = 12(a+ b)(a+ b)T � 12(a� b)(a� b)T ;we an easily symmetrize the generators. 8



6. Appliation to Image Deblurring. Consider the problem of deblurringimages whose point-spread funtion is spatially invariant. In this ase, we have mea-sured a set of values 26664 y11 y12 : : : y1my21 y22 : : : y2m... ... ... ...ym1 ym2 : : : ymm 37775and want to reonstrut an image26664 x11 x12 : : : x1nx21 x22 : : : x2n... ... ... ...xn1 xn2 : : : xnn 37775when the matrix A is blok Toeplitz with Toeplitz bloks.Let us order the pixels by rows to reate a one-dimensional vetor of unknowns:x = [x11; x12; : : : ; x1n; : : : ; xn1; xn2; : : : ; xnn℄T ;and similarly, we reate a vetor y of observations.For de�niteness, we'll assume that the blurring funtion averages the p2 = 9nearest neighbors of eah pixel, and that m = n+ p � 1. In this ase, the matrix Ahas three blok diagonals, eah with three diagonals:A = 26666666664
T1T2 T1T3 T2 T1. . . . . . . . .T3 T2 T1T3 T2T3

37777777775 ;
Tj = 26666666664

tj1tj2 tj1tj3 tj2 tj1. . . . . . . . .tj3 tj2 tj1tj3 tj2tj3
37777777775 ; j = 1; 2; 3:The dimension of A is m2 � n2, and the dimension of Tj is m� n.The matrix E has the same struture as A, but with entries �ji, and the relationX� = Ex holds if we de�neX = 26666666664

X1 0 0X2 X1 0X3 X2 X1... ... ...Xn Xn�1 Xn�20 Xn Xn�10 0 Xn
377777777759



with Xj = 26666666664
xj1 0 0xj2 xj1 0xj3 xj2 xj1... ... ...xjn xj;n�1 xj;n�20 xjn xj;n�10 0 xjn

37777777775The matrix X has dimension m2 � p2, with Xj of dimension m� p.The displaement rank of the resultingM = 24 X A+EI 00 �I 35(with C = I) is 2m, sine the matrix M � Z1MZ2 has nonzeros in rows 1;m +1; : : : ;m2 + 1, and in olumns 1; p + 1; : : : ; p2 + 1 and then every nth olumn afterthat. Using Theorem 5.1, we see that MTM has displaement rank 4m.The bulk of the work in the algorithm is in fatoring MTM using its generators.Fatorization requires O((n2 + p2)2) rotations, with O(n2 + p2) multipliations eah.Thus the work is proportional to the number of pixels raised to the 2:5 power. Itis possible to save work by refatoring MTM less frequently and using an iterativemethod, preonditioned by the most reent fatorization, to ompute the diretion.Fu and Barlow have also developed an iterative method for solving this system [2℄.7. Numerial Results. We demonstrate the RSTLS algorithm on a small imagedeblurring problem.Figure 7.1 shows the original and blurred image. The point-spread funtion wasGaussian with p = 5. The noise added to eah element of the blurred image andthe point spread funtion was normally distributed with mean zero and standarddeviation � = 0:05.We ompare 5 algorithms:� RSTLS, with � = 3�. The iteration was terminated when the norm of thehange in the image was less than :001.� Tikhonov regularization, with the same value of �.� Trunated SVD, dropping singular values smaller than 3�.� Trunation based on the `1 norm, ensuring that omponents of the answerare no greater than greater than 2 in absolute value.� TLS approximated by the Lanzos algorithm. The iteration was terminatedwhen the norm of the omputed image grew larger than the norm of the trueimage.The results of the algorithms are shown in Figures 7.1 and 7.2. Lanzos took 41iterations, while RSTLS took 78 ostlier iterations.Figures 7.3 and 7.4 show the results for a lower noise level: � = 0:01. Lanzostook 78 iterations, while RSTLS took 10.The 2-norm of the relative error in the omputed images for both noise levels aretabulated in Table 7. The relative errors agree with the \eye-norm" errors measuredby human judgement of the images: RSTLS produes the best result, with the TLSalgorithm produing the seond best. 10
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Fig. 7.1. Original image, blurred image, and results of algorithms when noise level is � = 0:05.
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Fig. 7.2. Original image, image, and results of algorithms when noise level is � = 0:05.11
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Fig. 7.3. Original image, blurred image, and results of algorithms when noise level is � = 0:01.
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Fig. 7.4. Original image, blurred image, and Results of algorithms when noise level is � = 0:01.12
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