
ALGORITHMS FOR STRUCTURED TOTAL LEAST SQUARESPROBLEMS WITH APPLICATIONS TO BLIND IMAGEDEBLURRING �ANOOP KALSIy AND DIANNE P. O'LEARYzAbstra
t. Mastronardi, Lemmerling, and van Hu�el presented an algorithm for solving a totalleast squares problem when the matrix and its perturbations are Toeplitz. A Toeplitz matrix isa spe
ial kind of matrix with small displa
ement rank. Here we generalize the fast algorithm toany matrix with small displa
ement rank. In parti
ular, we show how to eÆ
iently 
onstru
t thegenerators whenever M has small displa
ement rank and show that in many important 
ases theCholesky fa
torization of the matrix MTM 
an also be determined fast. We further extend thisproblem to Tikhonov regularization of ill-posed problems and illustrate the use of the algorithm onan image deblurring problem.Key words. Displa
ement rank, blo
k Toeplitz matrix, total least squares, stru
tured totalleast squares, errors in variables method, image deblurring, Tikhonov regularization.Running Title: Fast Stru
tured Total Least Squares1. Introdu
tion. In [4℄, Mastronardi, Lemmerling, and Van Hu�el present analgorithm for solving fast stru
tured total least squares problems of the formminE;�;x

� E � �

2F(1.1)subje
t to the 
onstraints (A+E)x = y + �with A 2 Rm�n a given Toeplitz matrix and y 2 Rm�1 a given ve
tor. They in
ludeone additional 
onstraint: E is a Toeplitz matrix. They produ
ed a fast algorithmfor solving this stru
tured total least squares problem (STLS) and showed that thesolution was a better estimator than the solution to the total least squares problemwithout the Toeplitz 
onstraint.In this work, we 
onsider the same problem (1.1), but under the 
onstraint that Aand E have small displa
ement rank relative to some matri
es Z1 and Z2. Choosingthese two matri
es to be shift-down matri
es and the rank to be two gives the Toeplitz
onstraint 
onsidered by [4℄, but we will be interested in other 
ases as well.We also 
onsider fast solution of the problem under the additional 
onstraint thatthe norm of the solution ve
tor x is spe
i�ed. Note that this problem was posedin Pruessner and O'Leary [7℄. This 
orresponds to a Tikhonov regularization of ourstru
tured total least squares problem and results in a fast solution algorithm for theproblem 
onsidered in [5, 6, 7℄.The 
ore of the algorithm in [4℄, based on a more general algorithm of [8℄, relies ontwo results: the representation of the generators for the matrix MTM that appearsin the normal equations when A is Toeplitz, and then a fast fa
torization of a matrixderived from these generators. So we begin in Se
tion 2 with a review of the problemformulation from [4, 8℄, and in Se
tion 3, we derive the generators for MTM when A�This work was partially supported by the National S
ien
e Foundation under Grant CCR-0204084.y Mathemati
s Department, University of Maryland, College Park, MD 20742 (kalsi�
s.umd.edu).zDept. of Computer S
ien
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is any matrix of small displa
ement rank. In Se
tion 4 we show that it is inexpensiveto form a Cholesky fa
torization of MTM whenever Z1 and Z2 are lower triangularmatri
es. Se
tion 6 
on
erns the generalization of this algorithm when a regularization
onstraint is to be applied. We show that in one formulation of su
h problems, thedispla
ement rank of MTM is lower than expe
ted. In Se
tion 6, we apply this resultto an important spe
ial 
ase, image deblurring, and in Se
tion 7 we present somenumeri
al results.2. Problem Formulation. Suppose that the matrix E 
an be spe
i�ed by pparameters �1; : : : ; �p. For example, if E is a Toeplitz matrix, thenE = 2664 �n �n�1 : : : �1�n+1 �n : : : �2: : : : : : : : : : : :�m+n�1 �m+n�2 : : : �m 3775 ;and p = m+ n+ 1. We rewrite our problem asmin�;�;x



� �� �



22(2.1)where � = (A+E)x� y :Following [4℄, we have repla
ed the term kEk2F by �T�, equivalent ex
ept for s
alingof the entries �2i .We de�ne the matrix X 2 Rm�p by the equationX� = Ex :For example, if E is Toeplitz, then p = m+ n� 1 andX = 2664 xn xn�1 : : : x1 0 : : : : : : 00 xn xn�1 : : : x1 0 : : : 0: : : : : : : : : : : : : : : : : : : : : : : :0 : : : 0 xn xn�1 : : : : : : x1 3775Following [8℄, we form a quadrati
 approximation to (2.1) by using linear approx-imations �+�� and x+�x, resulting in� � (A+ (E +�E))(x +�x)� y� (A+E)x+X��+ (A+E)�x� yso that 



� �� �



22 = 



� X A+EI 0 � � ���x �+ � (A+E)x� y� �



22If we minimize this with respe
t to �� and �x, then we 
an form a new approximation� = �+��x = x+�x2



to the solution of (2.1) and then repeat the pro
edure until 
onvergen
e. As noted by[8℄, this is a Gauss-Newton algorithm applied to (2.1) and although it is not guaranteedto 
onverge to the global solution, it will at least �nd a lo
al one.Therefore, the main 
omputational task is to solve linear least squares problemsof the form min��;�x



M � ���x �+ � (A+E)x� y� �



22(2.2)where M = � X A+EI 0 � :One way is to a

omplish this is to solve the normal equations, the optimality 
ondi-tions for this problem, and that involves solving the linear systemMTM � ���x � = �MT � (A+E)x� y� �(2.3)We now derive the tools ne
essary to do this eÆ
iently.3. Generators for MTM . Our �rst tool is the derivation of a generator for thematrix MTM when M has low displa
ement rank.3.1. The Displa
ement Rank of MTM . Suppose that M has low displa
e-ment rank relative to the matri
es Z1 2 R(m+p)�(m+p) and Z2 2 R(n+p)�(n+p), whi
hmeans that if we de�ne N �M � Z1MZT2 ;then rank(N) = �1, whi
h is small relative to n+ p.Suppose ~Z = Z1 +Wis an orthogonal matrix ( ~ZT ~Z = I), where W has rank �2, also assumed to besmall. For example, if E is Toeplitz, let Z1 be the shift-down matrix with ones onits subdiagonal and zeros elsewhere, and then W is the matrix with a one in the lastposition of row 1.Then MTM also has low displa
ement rank relative to Z2, as we 
an see fromthe identityMTM � Z2MTMZT2 =MTM � Z2MT ~ZT ~ZMZT2=MTM � (M �N �WMZT2 )T (M �N �WMZT2 )= (N +WMZT2 )T (M �N �WMZT2 ) +MT (N +WMZT2 )Theorem 3.1. If the rank of N � M � Z1MZT2 is �1 and if the orthogonalmatrix ~Z is equal to Z1 +W where W has rank �2, thenMTM � Z2MTMZT2 = �NTN +NT (M �WMZT2 ) + (MT � (WMZT2 )T )N�(WMZT2 )T (WMZT2 ) +MT (WMZT2 ) + (WMZT2 )TMhas rank at most 2(�1 + �2).Proof. The equation in the statement of the theorem is a regrouping of the termsin the previous equation. The rank of N +WMZT2 is at most the rank of N plus therank of W , so the rank of the sum in that equation is at most 2(�1 + �2).3



3.2. Deriving the Generators for the Toeplitz Example. For our Toeplitzexample, we have W = e1eTm+p :Sin
e M �Z1MZT2 is nonzero only in rows 1 and m+ 1 and in 
olumns 1 and p+1,then N =M � Z1MZT2 = e1rT1 � em+1rTm + em+1eT1 + 
peTp+1where rT1 = eT1M;rTm = eTm+1Z1MZT2 ;
p =Mep+1 �m1;p+1e1 :Note that eT1 
p = eTm+1
p = 0.We 
ompute WMZT2 = e1eTm+pMZT2 = e1eTp+1 ;and, sin
e eT1M = rT1 ;eTm+1M = eT1 ;it is then 
lear from Theorem 3.1 that MTM � Z2MTMZT2 is the sum of outerprodu
ts of various ve
tors with only 5 di�erent ve
tors: rT1 ; rTm; eT1 ; eTp+1, and 
TpM ,so the rank is 5.It is useful to write the displa
ement in symmetri
 form. To do this for theToeplitz example, we 
ompute ea
h of the terms in the Theorem:�NTN = �r1rT1 � rmrTm � e1eT1�(
Tp 
p)ep+1eTp+1 + rmeT1 + e1rTmNT (M �WMZT2 )+(MT � (WMZT2 )T )N = 2r1rT1 � rmeT1 + 2e1eT1 + ep+1
TpM�r1eTp+1 � e1rTm +MT 
peTp+1 � ep+1rT1�(WMZT2 )T (WMZT2 ) = ep+1eTp+1MT (WMZT2 ) + (WMZT2 )TM = r1eTp+1 + ep+1rT1Adding these terms together, we obtainMTM � Z2MTMZT2 = e1eT1 + r1rT1 � rmrTm(1� 
Tp 
p)ep+1eTp+1+ep+1
TpM +MT 
peTp+1= e1eT1 + r1rT1 � rmrTm �MT 
p(MT 
p)T =
2+(
ep+1 +MT 
p=
)(
ep+1 +MT 
p=
)Twhere 
2 = (1� 
Tp 
p). 4



4. Determining a Cholesky Fa
torization from the Generators. We nowknow how to determine � ve
tors gi so thatMTM � Z2MTMZT2 = �Xi=1 sigigTiwhere si equals plus or minus 1. When Z1 and Z2 are shift-down matri
es, it hasbeen shown [4, 1, 3℄ that this implies thatMTM = �Xi=1 siLiLTi= � L1 : : : L� �S 264 LT1...LT� 375where S = diag(si) and Li is the lower triangular Toeplitz matrix with �rst row equalto gTi . We now generalize this result somewhat.Theorem 4.1. If Z1 is nilpotent, thenA� Z1AZT2 = ghTif and only if A = L1(g)LT2 (h)where Li(x) = � x Zix : : : Zn+p�1i x � :Proof. Suppose A = L1(g)LT2 (h). Observe thatL1(g)LT2 (h) = � g Z1g : : : Zn+p�11 g �26664 hThTZT2...hT (ZT2 )n+p�1 37775= n+p�1Xj=0 Zj1ghTZj2and Z1L1(g)LT2 (h)ZT2 = n+p�1Xj=0 Zj+11 ghTZj+12so, sin
e Zn+p1 = 0, we 
on
lude thatL1(g)LT2 (h)� Z1L1(g)LT2 (h)ZT2 = ghT :To prove the 
onverse, suppose A� Z1AZT2 = ghT . Then, sin
eghT = L1(g)LT2 (h)� Z1L1(g)LT2 (h)ZT2 ;5



we 
on
lude that if E = A� L1(g)LT2 (h), thenE = Z1EZT2 :Now sin
e Z1 is nilpotent, Zp1 = 0 for some p � n. Therefore, Zp�11 E = Zp1EZT2 = 0,and working ba
kward in powers of Z1, we see that Z01E = Z1EZT2 = 0, so A =L1(g)LT2 (h).The following 
orollary 
an be proved by �nite indu
tion.Corollary 4.2. If Z1 is nilpotent, thenA� Z1AZT2 = �Xi=1 gihTiif and only if A = �Xi=1 L1(gi)LT2 (hi) :In order to solve our least squares problem, we wish to determine a Choleskyfa
torization MTM = LLT ;so we need to redu
e the matrix 264 LT1...LT� 375to upper triangular form.If Z1 and Z2 are shift-down matri
es, then [4℄ shows how to do this redu
tion fast.Using our 
orollary, we see that this 
an be done fast whenever Z1 and Z2 are lowertriangular matri
es. We present the algorithm for this slightly more general 
ase.The algorithm pro
eeds by 
olumns, putting zeros below the main diagonal. Notethat
L̂ � 264 LT1...LT� 375 = 266666666666664

hT1hT1 ZT2: : :hT1 (ZT2 )n+p...hT�hT� ZT2: : :hT� (ZT2 )n+p
377777777777775Suppose we determine a rotation between the �rst row hT1 and row n+ p+ 1, whi
h
ontains hT2 , to zero the �rst element of hT2 . The same rotation between hT1 (ZT2 )jand hT2 (ZT2 )j (j = 1; : : : ;m + p � 1) also zeroes the �rst element of hT2 (ZT2 )j sin
eZT2 is upper triangular. Therefore, by introdu
ing one zero into our matrix, we have6



impli
itly introdu
ed m+ p� 1 more, so we 
an put zeroes below the main diagonalin 
olumn 1 by using only �� 1 rotations, independent of the size of m+ p.We then use the resulting se
ond row, equal to the �rst row postmultiplied byZT2 , to zero the se
ond element of row n + p + 1. Again this impli
itly introdu
esadditional zeros, m+ p� 2 of them, and we 
omplete the operations on 
olumn 2 byusing �� 1 rotations.If we repeat this for ea
h 
olumn, we a

omplish our redu
tion.Let G be the matrix whose rows are gTi . We 
an thus redu
e L̂ to upper triangularform just by operating on the matrix G.We design our algorithm to use Givens rotations as often as possible, minimizingthe number of hyperboli
 rotations in order to preserve stability. We setsi = � 1 if gi = hi;�1 if gi = �hi;so that A = �Xi=1 siL1(gi)LT2 (gi) :A Givens rotation 
an be used between row i and row j whenever si and sj have thesame sign; if they have di�erent signs, then we must use a hyperboli
 rotation. We'llassume that we have ordered the generators so that the �rst �̂ rows of G have si = 1and the remaining ones have si = �1.Algorithm Redu
e(G)1For j = 1; : : : ; n+ p,For i = 2; : : : ; �̂,If gij is nonzero, thenzero it by a Givens rotation between row1 and row i;end forFor i = �̂+ 2; : : : ; �,If gij is nonzero, thenzero it by a Givens rotation between row�̂+ 1 and row i;end forIf g�̂+1;j is nonzero, thenzero it by a stabilized hyperboli
 rotation betweenrow 1 and row �̂+ 1;Then the jth row of LT is gT1 , the �rst row of the 
urrentG matrix.Repla
e the �rst row of G by gT1 ZT2 to form the pivot rowfor the next value of j.end forThe 
ost of this redu
tion is at most O(�(n+ p)2), ignoring sparsity, plus the 
ost ofthe multipli
ations by Z2. Without exploiting the stru
ture of L̂ the 
ost would be1There is an analogous algorithm, FTriang, in [4℄, for the spe
ial 
ase in whi
h A is Toeplitz,but it has some typographi
al errors. In the statement following \if i<m", g3 on the left-hand sideshould be g4. In 12 pla
es on p. 552, \m+n" should be \mn1". Also, the numbering of the phasesof the 
omputation is o� by one 
ompared with the des
ription in the paper (\Initialization" shouldbe \Phase 1", et
.) 7



O(�(n + p)3). On
e the fa
tors LLT are 
omputed, they 
an then be used to solve(2.3).5. Regularized Solutions. In many deblurring problems and other dis
retizedproblems involving integral equations of the �rst kind, the matrixA is so ill-
onditionedthat noise in the observations y is magni�ed in solving the STLS problem and a mean-ingful solution 
annot be obtained.In this 
ase it is ne
essary to add a regularization 
onstraint to the problem. One
ommon regularization 
onstraint is to restri
t the size of the solution, or some lineartransformation of the solution: kCxk � uwhere u is a given s
alar and C is 
ommonly 
hosen to be the identity matrix ora di�eren
e operator. If C has low displa
ement rank relative to Z1 and Z2, thenour algorithm 
an be easily modi�ed to in
orporate regularization. In this 
ase, ourproblem (2.1) 
an be reformulated asmin�;�;x





24 ���Cx 35





22(5.1)where � = (A+E)x�y and �, the regularization parameter, is the Lagrange multiplierfor the new 
onstraint. Using a derivation similar to that above, the linearization of(5.1) results in the following problem to be solved at ea
h step of the iteration:min��;�x





24 X A+EI 00 �C 35� ���x �+0� ���Cx 1A





p :Thus, our new M matrix is the old matrix M augmented by the extra rows [0; �C℄,and the only 
hange ne
essary in the algorithm is to �nd the generators of this matrixrather than the old one.The displa
ement stru
ture of this matrix is greatly simpli�ed if C is upper tri-angular and Z2 is the shift-down matrix. As noted before, W is zero ex
ept for a onein the last position of the �rst row, and thus WM is zero ex
ept for a � in the lastposition of the �rst row. Therefore, WMZT2 = 0, so, applying Theorem 3.1, we havethe following result.Theorem 5.1. If C is upper triangular and Z2 is the shift-down matrix, thenMTM � Z2MTMZT2 = (M �N=2)NT +N(M �N=2)Tand has rank 2�1, where �1 is the rank of N .Using the identityabT + baT = 12(a+ b)(a+ b)T � 12(a� b)(a� b)T ;we 
an easily symmetrize the generators. 8



6. Appli
ation to Image Deblurring. Consider the problem of deblurringimages whose point-spread fun
tion is spatially invariant. In this 
ase, we have mea-sured a set of values 26664 y11 y12 : : : y1my21 y22 : : : y2m... ... ... ...ym1 ym2 : : : ymm 37775and want to re
onstru
t an image26664 x11 x12 : : : x1nx21 x22 : : : x2n... ... ... ...xn1 xn2 : : : xnn 37775when the matrix A is blo
k Toeplitz with Toeplitz blo
ks.Let us order the pixels by rows to 
reate a one-dimensional ve
tor of unknowns:x = [x11; x12; : : : ; x1n; : : : ; xn1; xn2; : : : ; xnn℄T ;and similarly, we 
reate a ve
tor y of observations.For de�niteness, we'll assume that the blurring fun
tion averages the p2 = 9nearest neighbors of ea
h pixel, and that m = n+ p � 1. In this 
ase, the matrix Ahas three blo
k diagonals, ea
h with three diagonals:A = 26666666664
T1T2 T1T3 T2 T1. . . . . . . . .T3 T2 T1T3 T2T3

37777777775 ;
Tj = 26666666664

tj1tj2 tj1tj3 tj2 tj1. . . . . . . . .tj3 tj2 tj1tj3 tj2tj3
37777777775 ; j = 1; 2; 3:The dimension of A is m2 � n2, and the dimension of Tj is m� n.The matrix E has the same stru
ture as A, but with entries �ji, and the relationX� = Ex holds if we de�neX = 26666666664

X1 0 0X2 X1 0X3 X2 X1... ... ...Xn Xn�1 Xn�20 Xn Xn�10 0 Xn
377777777759



with Xj = 26666666664
xj1 0 0xj2 xj1 0xj3 xj2 xj1... ... ...xjn xj;n�1 xj;n�20 xjn xj;n�10 0 xjn

37777777775The matrix X has dimension m2 � p2, with Xj of dimension m� p.The displa
ement rank of the resultingM = 24 X A+EI 00 �I 35(with C = I) is 2m, sin
e the matrix M � Z1MZ2 has nonzeros in rows 1;m +1; : : : ;m2 + 1, and in 
olumns 1; p + 1; : : : ; p2 + 1 and then every nth 
olumn afterthat. Using Theorem 5.1, we see that MTM has displa
ement rank 4m.The bulk of the work in the algorithm is in fa
toring MTM using its generators.Fa
torization requires O((n2 + p2)2) rotations, with O(n2 + p2) multipli
ations ea
h.Thus the work is proportional to the number of pixels raised to the 2:5 power. Itis possible to save work by refa
toring MTM less frequently and using an iterativemethod, pre
onditioned by the most re
ent fa
torization, to 
ompute the dire
tion.Fu and Barlow have also developed an iterative method for solving this system [2℄.7. Numeri
al Results. We demonstrate the RSTLS algorithm on a small imagedeblurring problem.Figure 7.1 shows the original and blurred image. The point-spread fun
tion wasGaussian with p = 5. The noise added to ea
h element of the blurred image andthe point spread fun
tion was normally distributed with mean zero and standarddeviation � = 0:05.We 
ompare 5 algorithms:� RSTLS, with � = 3�. The iteration was terminated when the norm of the
hange in the image was less than :001.� Tikhonov regularization, with the same value of �.� Trun
ated SVD, dropping singular values smaller than 3�.� Trun
ation based on the `1 norm, ensuring that 
omponents of the answerare no greater than greater than 2 in absolute value.� TLS approximated by the Lan
zos algorithm. The iteration was terminatedwhen the norm of the 
omputed image grew larger than the norm of the trueimage.The results of the algorithms are shown in Figures 7.1 and 7.2. Lan
zos took 41iterations, while RSTLS took 78 
ostlier iterations.Figures 7.3 and 7.4 show the results for a lower noise level: � = 0:01. Lan
zostook 78 iterations, while RSTLS took 10.The 2-norm of the relative error in the 
omputed images for both noise levels aretabulated in Table 7. The relative errors agree with the \eye-norm" errors measuredby human judgement of the images: RSTLS produ
es the best result, with the TLSalgorithm produ
ing the se
ond best. 10
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Fig. 7.1. Original image, blurred image, and results of algorithms when noise level is � = 0:05.
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Fig. 7.2. Original image, image, and results of algorithms when noise level is � = 0:05.11
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Fig. 7.3. Original image, blurred image, and results of algorithms when noise level is � = 0:01.
5 10 15 20

5

10

15

20
Original Image

5 10 15 20

5

10

15

20
Lanczos TLS reconstructed image

5 10 15 20

5

10

15

20
l−infinity reconstructed image

5 10 15 20

5

10

15

20
RSTLS reconstructed image

Fig. 7.4. Original image, blurred image, and Results of algorithms when noise level is � = 0:01.12



Algorithm � = :05 � = :01`1 0.675 0.131TSVD 0.417 0.152Tikhonov 0.395 0.237Lan
zos TLS 0.369 0.133RSTLS 0.292 0.113Table 7.1Relative error in the re
onstru
ted images.8. Con
lusions. We have derive the generators forMTM whenM is any matrixof small displa
ement rank. We have shown that it is inexpensive to form a Choleskyfa
torization of MTM whenever Z1 and Z2 are lower triangular matri
es, and wehave generalized this algorithm when a regularization 
onstraint is to be applied. Wehave shown that the algorithm 
an be applied to deblurring of small images. Futurework will fo
us on using the displa
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