ALGORITHMS FOR STRUCTURED TOTAL LEAST SQUARES
PROBLEMS WITH APPLICATIONS TO BLIND IMAGE
DEBLURRING *
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Abstract. Mastronardi, Lemmerling, and van Huffel presented an algorithm for solving a total
least squares problem when the matrix and its perturbations are Toeplitz. A Toeplitz matrix is
a special kind of matrix with small displacement rank. Here we generalize the fast algorithm to
any matrix with small displacement rank. In particular, we show how to efficiently construct the
generators whenever M has small displacement rank and show that in many important cases the
Cholesky factorization of the matrix M1 M can also be determined fast. We further extend this
problem to Tikhonov regularization of ill-posed problems and illustrate the use of the algorithm on
an image deblurring problem.
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1. Introduction. In [4], Mastronardi, Lemmerling, and Van Huffel present an
algorithm for solving fast structured total least squares problems of the form

. 2

(1.1) min [[E 8 ]|,
subject to the constraints

(A+E)xc=y+p

with A € R™*" a given Toeplitz matrix and y € R™*! a given vector. They include
one additional constraint: E is a Toeplitz matrix. They produced a fast algorithm
for solving this structured total least squares problem (STLS) and showed that the
solution was a better estimator than the solution to the total least squares problem
without the Toeplitz constraint.

In this work, we consider the same problem (1.1), but under the constraint that A
and E have small displacement rank relative to some matrices Z; and Z,. Choosing
these two matrices to be shift-down matrices and the rank to be two gives the Toeplitz
constraint considered by [4], but we will be interested in other cases as well.

We also consider fast solution of the problem under the additional constraint that
the norm of the solution vector z is specified. Note that this problem was posed
in Pruessner and O’Leary [7]. This corresponds to a Tikhonov regularization of our
structured total least squares problem and results in a fast solution algorithm for the
problem considered in [5, 6, 7].

The core of the algorithm in [4], based on a more general algorithm of [8], relies on
two results: the representation of the generators for the matrix M7 M that appears
in the normal equations when A is Toeplitz, and then a fast factorization of a matrix
derived from these generators. So we begin in Section 2 with a review of the problem
formulation from [4, 8], and in Section 3, we derive the generators for M7 M when A
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is any matrix of small displacement rank. In Section 4 we show that it is inexpensive
to form a Cholesky factorization of M” M whenever Z; and Z» are lower triangular
matrices. Section 6 concerns the generalization of this algorithm when a regularization
constraint is to be applied. We show that in one formulation of such problems, the
displacement rank of M7 M is lower than expected. In Section 6, we apply this result
to an important special case, image deblurring, and in Section 7 we present some
numerical results.

2. Problem Formulation. Suppose that the matrix E can be specified by p

parameters aq,...,a,. For example, if E is a Toeplitz matrix, then
(67%) Up—1 ...
_ Q41 (7% ... Qp
E= ;
Um4n—-1 CEmin—2 .- Qmp

and p =m + n + 1. We rewrite our problem as
B
o)

f=A+E)r—y.

2
(2.1) min

o,B,x

2

where

Following [4], we have replaced the term || E||% by al«a, equivalent except for scaling

of the entries o?.

We define the matrix X € R™*P by the equation
Xa=FEzx.

For example, if E is Toeplitz, then p = m +n — 1 and

Tp Tp—1 .. T 0 .. ... 0
Y = 0 Ty  LTpe1l  --- T 0o ... 0
0 0 Ty Tpol ove o.. Tl

Following [8], we form a quadratic approximation to (2.1) by using linear approx-
imations a + Aa and x + Az, resulting in

Br(A+(E+AE)(z+Az)—y
R(A+E)z+XAa+(A+E)Az—y

so that

N F A b iy

Il

If we minimize this with respect to A« and Az, then we can form a new approximation

2

a=a+ Aa
r=x+ Az
2



to the solution of (2.1) and then repeat the procedure until convergence. As noted by
[8], this is a Gauss-Newton algorithm applied to (2.1) and although it is not guaranteed
to converge to the global solution, it will at least find a local one.
Therefore, the main computational task is to solve linear least squares problems
of the form
M[ Aa } . { (A+E)x —y } ?

(2.2) min

Aa, Az Az Q@

2
where

M:{X A+E]_

1 0

One way is to accomplish this is to solve the normal equations, the optimality condi-
tions for this problem, and that involves solving the linear system

(2:3) MTMMZ“ } :_MT{ (A+§)w—y}

We now derive the tools necessary to do this efficiently.

3. Generators for M7 M. Our first tool is the derivation of a generator for the
matrix MT M when M has low displacement rank.

3.1. The Displacement Rank of M7 M. Suppose that M has low displace-
ment rank relative to the matrices Z; € R(mT»)x(m+p) and z, ¢ R(+P)*x(n+p)  which
means that if we define

N=M-2ZMZ],

then rank(N) = p;, which is small relative to n + p.
Suppose

Z=I+W

is an orthogonal matrix (Z7Z = I), where W has rank py, also assumed to be
small. For example, if E is Toeplitz, let Z; be the shift-down matrix with ones on
its subdiagonal and zeros elsewhere, and then W is the matrix with a one in the last
position of row 1.

Then MTM also has low displacement rank relative to Z», as we can see from
the identity

MM - Zo,M*"MzZY = MTM — Z,MTZT ZM ZT
=M"M - (M -N-WMZHT'(M - N-WMZY)
=(N+WMZHT(M - N-wWMZz])+ MY (N + WM Z})
THEOREM 3.1. If the rank of N = M — ZiMZT is py and if the orthogonal
matriz Z s equal to Z1 + W where W has rank py, then
M*M - ZoM*MZE = -NT'N + NV (M - WMZE) + (MY — (WM ZHT)N
—WMzNHYTWwmzIy + MT WMz + WMz M
has rank at most 2(p1 + p2).
Proof. The equation in the statement of the theorem is a regrouping of the terms

in the previous equation. The rank of N + WM Z1 is at most the rank of N plus the
rank of W, so the rank of the sum in that equation is at most 2(p; + p2). O
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3.2. Deriving the Generators for the Toeplitz Example. For our Toeplitz
example, we have

_ T
W = €1€m4p -

Since M — Z; M Z] is nonzero only in rows 1 and m + 1 and in columns 1 and p + 1,
then

T T T T T
N=M-Z1MZ;, =e1ri —emt1Tp + em+1€1 + Cp€piq

where
’I‘f = elTM,
T _ T T
T = €mi1Z1M Zy |

Cp = M€p+1 — my,pti1€1 -

Note that ef¢, = el ¢, = 0.
We compute

T T T T
WMZ, =eien, ,MZ;, =eie,,

and, since

eir’M = rlT ,
T T
emt1M =€,
it is then clear from Theorem 3.1 that MTM — ZyMTMZI is the sum of outer
products of various vectors with only 5 different vectors: r{, 7k ef,el,,, and ¢l M,
so the rank is 5.

It is useful to write the displacement in symmetric form. To do this for the
Toeplitz example, we compute each of the terms in the Theorem:
—-NTN = —rlri‘r’ — rmrg,; — ele{
—(cgcp)ep_i_le;_l +rmel +erl
NT(M -wMZz])
+HMT - (WMZHT)N = 2rr] —riel +2eel + epHcZM
—rleZ’H —erh + MTcpeZ+1 - ep+1T1T
—(WMZE)Y (WMZE) = eprrely,

MT(WMZy)+ (WMZ{)"M =riel, +eprar]
Adding these terms together, we obtain
MTM — ZoMTMZY = erel + el —rprl (1 - cgcp)ep+1eg+1
—}—ep“cZM + MTcpe;_1
= ele{ + TlrlT — rmr,?l — MTcp(MTcp)T/v2
+(vepsr + MUey/7)(vepra + MUy /1)t

where 72 = (1 - ¢f'cp).



4. Determining a Cholesky Factorization from the Generators. We now
know how to determine p vectors g; so that

P
M™M - Z,M"MZ] = sigig!
i=1
where s; equals plus or minus 1. When Z; and Z, are shift-down matrices, it has

been shown [4, 1, 3] that this implies that

p
MTM = Z siLi ¥

i=1

where S = diag(s;) and L; is the lower triangular Toeplitz matrix with first row equal
to g1'. We now generalize this result somewhat.
THEOREM 4.1. If Z; is nilpotent, then

A—7,AZY = gn*
if and only if
A= Li(g)Ly (h)
where

Li)=[2 Zax ... Z'"" 'z ].

Proof. Suppose A = Ly(g)L% (h). Observe that

hT
W' Z¥
Li(9)Lz (W) =[g Zg Z1 g | :
W (2] e
n+p—1
= > Zg'Z
=0
and
n+p—1
ZiLi(g)Ly (W Zy = Y Z{Ttgh"Zi™
=0

s0, since Z]""? = 0, we conclude that
Li(9)L3 (h) = Z1Ly(9) Ly (h) Zy = gh'" .
To prove the converse, suppose A — Z; AZT = gh™. Then, since

gh® = Li(9)L3 (h) — Z1 Ly (g) L] (h) Z3
5



we conclude that if E = A — Ly(g)LI (R), then
E=2EZ}.

Now since Z; is nilpotent, Z¥ = 0 for some p < n. Therefore, Z' 'E = ZPEZ] =0,
and working backward in powers of Z1, we see that Z)E = Z1EZ] =0, s0 A =
Li(g)LE (k). O

The following corollary can be proved by finite induction.

COROLLARY 4.2. If Zy is nilpotent, then

p
A—7,AZT = Zgihg’
i=1
if and only if

p

A= "Li(gi) L3 (h) -

i=1

In order to solve our least squares problem, we wish to determine a Cholesky
factorization

MTM =LLT,
so we need to reduce the matrix
L{
T
Ly
to upper triangular form.
If Z, and Z, are shift-down matrices, then [4] shows how to do this reduction fast.
Using our corollary, we see that this can be done fast whenever Z; and Z, are lower
triangular matrices. We present the algorithm for this slightly more general case.

The algorithm proceeds by columns, putting zeros below the main diagonal. Note
that

AT -
h z3
L hi(ZF)"+e
L=| : | =
T T
Lp h% ,
hp VA
A

Suppose we determine a rotation between the first row h{ and row n + p + 1, which
contains hi to zero the first element of hY. The same rotation between hI(Z])J
and hi(Z¥) (j = 1,...,m + p — 1) also zeroes the first element of hi'(Z})J since
Z¥ is upper triangular. Therefore, by introducing one zero into our matrix, we have
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implicitly introduced m + p — 1 more, so we can put zeroes below the main diagonal
in column 1 by using only p — 1 rotations, independent of the size of m + p.

We then use the resulting second row, equal to the first row postmultiplied by
Z¥ | to zero the second element of row n + p + 1. Again this implicitly introduces
additional zeros, m + p — 2 of them, and we complete the operations on column 2 by
using p — 1 rotations.

If we repeat this for each column, we accomplish our reduction.

Let G be the matrix whose rows are g} . We can thus reduce L to upper triangular
form just by operating on the matrix G.

We design our algorithm to use Givens rotations as often as possible, minimizing
the number of hyperbolic rotations in order to preserve stability. We set

o 1 ifg =h,
TE -1 ifgi=—hs,

so that

A= Z siL1(gi) L3 (9:) -

i=1

A Givens rotation can be used between row i and row j whenever s; and s; have the
same sign; if they have different signs, then we must use a hyperbolic rotation. We’ll
assume that we have ordered the generators so that the first p rows of G have s; =1
and the remaining ones have s; = —1.
Algorithm Reduce(G)!
Forj=1,...,n+p,
Fori=2,...,p,
If g;; is nonzero, then
zero it by a Givens rotation between row
1 and row i;
end for
Fori=p+2,...,p,
If g;; is nonzero, then
zero it by a Givens rotation between row
p+ 1 and row i;
end for
If g541,; is nonzero, then
zero it by a stabilized hyperbolic rotation between
row 1 and row p + 1;
Then the jth row of LT is gf, the first row of the current
G matrix.
Replace the first row of G by g{ Z4 to form the pivot row
for the next value of j.
end for
The cost of this reduction is at most O(p(n + p)?), ignoring sparsity, plus the cost of
the multiplications by Z>. Without exploiting the structure of L the cost would be

! There is an analogous algorithm, FTriang, in [4], for the special case in which A is Toeplitz,
but it has some typographical errors. In the statement following “if i<m”, g3 on the left-hand side
should be g4. In 12 places on p. 552, “m+n” should be “mnl”. Also, the numbering of the phases
of the computation is off by one compared with the description in the paper (“Initialization” should
be “Phase 17, etc.)



O(p(n + p)®). Once the factors LLT are computed, they can then be used to solve
(2.3).

5. Regularized Solutions. In many deblurring problems and other discretized
problems involving integral equations of the first kind, the matrix A is so ill-conditionedfi
that noise in the observations y is magnified in solving the STLS problem and a mean-
ingful solution cannot be obtained.

In this case it is necessary to add a regularization constraint to the problem. One
common regularization constraint is to restrict the size of the solution, or some linear
transformation of the solution:

1Cz]] <u

where u is a given scalar and C' is commonly chosen to be the identity matrix or
a difference operator. If C has low displacement rank relative to Z; and Z», then
our algorithm can be easily modified to incorporate regularization. In this case, our
problem (2.1) can be reformulated as

2

B
(5.1) min «
B ACz

2

where 8 = (A+E)xz—y and A, the regularization parameter, is the Lagrange multiplier
for the new constraint. Using a derivation similar to that above, the linearization of
(5.1) results in the following problem to be solved at each step of the iteration:

‘ X A+E Aa B
min I 0 Az + a
dase |l g A\C ACz

p

Thus, our new M matrix is the old matrix M augmented by the extra rows [0, AC],
and the only change necessary in the algorithm is to find the generators of this matrix
rather than the old one.

The displacement structure of this matrix is greatly simplified if C' is upper tri-
angular and Zs is the shift-down matrix. As noted before, W is zero except for a one
in the last position of the first row, and thus W M is zero except for a A in the last
position of the first row. Therefore, WM ZI = 0, so, applying Theorem 3.1, we have
the following result.

THEOREM 5.1. If C' is upper triangular and Zs is the shift-down matriz, then

MTM — ZoMTMZT = (M — N/2)NT + N(M — N/2)T

and has rank 2py, where py is the rank of N.
Using the identity

ab” + bal = %(a-l—b)(a-l—b)T - %(a— B)(a—b)7,

we can easily symmetrize the generators.



6. Application to Image Deblurring. Consider the problem of deblurring
images whose point-spread function is spatially invariant. In this case, we have mea-
sured a set of values

Y11 Y2 .- Yim
Y21 Y22 .. Yom
Ymi Ym2 --- Ymm

and want to reconstruct an image

T11 19 ... Tin
21 oo ... T2n
Tnl Tp2 oo Tpn

when the matrix A is block Toeplitz with Toeplitz blocks.
Let us order the pixels by rows to create a one-dimensional vector of unknowns:
]T

m:[3311;3712;"';ml’ru-'';mnl;w’rﬂ;-"7wnn ’

and similarly, we create a vector y of observations.

For definiteness, we’ll assume that the blurring function averages the p> = 9
nearest neighbors of each pixel, and that m = n + p — 1. In this case, the matrix A
has three block diagonals, each with three diagonals:

T, W
T, T
s Ty, 1T
A = T . )
T, T, T
s T
. T3 -
_ tjl -
tj2 t]l
tjg tj2 t]l
tjg tj2 tjl
tjg tj2
L E

The dimension of A is m? x n?, and the dimension of T} is m x n.

The matrix E has the same structure as A, but with entries ;, and the relation
Xa = Ex holds if we define

X 0 0
Xy X 0
X3 X X

Xn X —1 Xn72
0
0




with

Tj1 0 0
Zj2 Tj1 0
Cﬂjg 213]'2 ZL"]'l

LTjn Tjn—-1 LTjn-—2
0 Tjn Tjn—1
0 0 iL”jn

The matrix X has dimension m? x p?, with X of dimension m x p.
The displacement rank of the resulting

X A+E
M=]1 0
0 Al

(with C' = I) is 2m, since the matrix M — Z; M Z, has nonzeros in rows 1,m +
1,...,m?+ 1, and in columns 1,p + 1,...,p?> + 1 and then every nth column after
that. Using Theorem 5.1, we see that M7 M has displacement rank 4m.

The bulk of the work in the algorithm is in factoring M T M using its generators.
Factorization requires O((n? + p?)?) rotations, with O(n? + p?) multiplications each.
Thus the work is proportional to the number of pixels raised to the 2.5 power. It
is possible to save work by refactoring M” M less frequently and using an iterative
method, preconditioned by the most recent factorization, to compute the direction.
Fu and Barlow have also developed an iterative method for solving this system [2].

7. Numerical Results. We demonstrate the RSTLS algorithm on a small image
deblurring problem.

Figure 7.1 shows the original and blurred image. The point-spread function was
Gaussian with p = 5. The noise added to each element of the blurred image and
the point spread function was normally distributed with mean zero and standard
deviation o = 0.05.

We compare 5 algorithms:

e RSTLS, with A = 30. The iteration was terminated when the norm of the
change in the image was less than .001.

e Tikhonov regularization, with the same value of .

e Truncated SVD, dropping singular values smaller than 3o.

e Truncation based on the £, norm, ensuring that components of the answer
are no greater than greater than 2 in absolute value.

e TLS approximated by the Lanczos algorithm. The iteration was terminated
when the norm of the computed image grew larger than the norm of the true
image.

The results of the algorithms are shown in Figures 7.1 and 7.2. Lanczos took 41
iterations, while RSTLS took 78 costlier iterations.

Figures 7.3 and 7.4 show the results for a lower noise level: ¢ = 0.01. Lanczos
took 78 iterations, while RSTLS took 10.

The 2-norm of the relative error in the computed images for both noise levels are
tabulated in Table 7. The relative errors agree with the “eye-norm” errors measured
by human judgement of the images: RSTLS produces the best result, with the TLS
algorithm producing the second best.
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Original Image Blurred Image
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Tikhonov reconstructed image Trunc. SVD reconstructed image
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Fic. 7.1. Original image, blurred image, and results of algorithms when noise level is o = 0.05.

Original Image Lanczos TLS reconstructed image
2 1]
15
10
5
5 10 15 20 5 10 15 20
I-infinity reconstructed image RSTLS reconstructed image
20 | 20 ]
I ]
15 15
10 ] 10 N
] ] Il
5 a8 5
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Fic. 7.2. Original image, image, and results of algorithms when noise level is ¢ = 0.05.

11



Original Image Blurred Image
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F1a. 7.3. Original image, blurred image, and results of algorithms when noise level is 0 = 0.01.

Original Image Lanczos TLS reconstructed image
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5 10 15 20 5 10 15 20

Fic. 7.4. Original image, blurred image, and Results of algorithms when noise level is o = 0.01.
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Algorithm c=.05|0=.01

l 0.675 0.131

TSVD 0.417 0.152

Tikhonov 0.395 0.237

Lanczos TLS 0.369 0.133

RSTLS 0.292 0.113
TABLE 7.1

Relative error in the reconstructed images.

8. Conclusions. We have derive the generators for M7 M when M is any matrix
of small displacement rank. We have shown that it is inexpensive to form a Cholesky
factorization of MTM whenever Z; and Z, are lower triangular matrices, and we
have generalized this algorithm when a regularization constraint is to be applied. We
have shown that the algorithm can be applied to deblurring of small images. Future
work will focus on using the displacement rank results to speed up the ¢, and ¢;
algorithms of [7].
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