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Abstract

A class of nonlinear constrained dynamic systems is studied. We first characterize
the constrained submanifold and the constrained dynamics without using the vector
relative degree. Applying the nonlinear feedback and exact linearization techniques
to constrained systems, we discuss several control problems for the constrained dy-
namics such as asymptotically stabilization, asymptotically tracking reference outputs.
Our results for the control of constrained nonlinear systems extend previous results,

which is based on linear approximation and linear feedback.
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1. Introduction

There has been considerable research on constrained dynamic systems (CDS), in which the
interaction between the environment and the system is essential. In recent years, nonlinear
CDS have become an important area in the study of CDS. Zero-output constrained dynamics
or clamped dynamics are introduced for control systems [1][2]. Nonlinear descriptor systems
defined by singular implicit differential equations in which constraint relations are not explicit
are studied [3]. Stabilizability, controllability and other control problems are discussed for
constrained mechanical systems (CMS) such as constrained Hamiltonian systems [4], holonomic
systems [5], and classical nonholonomic systems [6][7]. Applications are found in the control
system design of a robot manipulator during execution of tasks characterized by physical contact
between the manipulator and the environment [8][9]. More recently, controller design based on
linear approximation is addressed for a class of nonlinear CDS in which the relative degree vector
is well defined and input variables are separated as constraint inputs and control inputs [10].

In this paper we will investigate a class of nonlinear CDS defined by differential algebraic
equations. The goal of this paper is to extend previous results on dynamics and control problems
for nonlinear CDS. First, we will characterize the constrained dynamics for nonlinear CDS
without using the relative degree vector. Second, we will develop special techniques to solve
control problems for constrained systems such as stabilization, tracking, etc., based on nonlinear
feedback and input-output exact linearization. Finally, we return to applications in robotics.
We will develop a new control scheme for the tracking problem of a robot manipulator with
end-effector moving along a constraint surface — a problem for which there is no natural
decomposition into constraint inputs and control inputs, and for which control by approximate

linearization has significant limitations.

2. Dynamics of Constrained Nonlinear Systems

Consider a class of nonlinear CDS defined by the following differential algebraic equations:

m
= f(z)+ Zgj(x)u)', ze U CR" system equation, (2.12)
=1

zi=ki(z)=0,7=1,..,1, constraint relations, (2.1b)

yi = hi(z), 1=1,...,p, output functions, (2.1¢)



where f(z) and g;(x) are smooth vector fields, k;(x) and h;(z) smooth functions. For conve-
nience we set G(z) = [g1(2), -, gm(2)] » k(2) = [k1(2), oo, i (@)] 7> h(2) = [B1(2), -, hpl(2)]
and u = [ul,...,um]T. Suppose that for all z € U, gi(z),...,gm(z) are linearly independent
vector fields, {dk;(z),...,dk)(z)} and {dhi(z), ..., dhp(z)} are each linearly independent sets of
covector fields, and m = [ + p. In this model there is no need to separate input variables into

constraint inputs and control inputs.

We are interested in characterizing the dynamics of (2.1a) which satisfy the constraint
relations (2.1b). It is natural to consider the following problem:

Find proper sets of initial state z° and inputs v such that the corresponding dynamics

(2%, u,t) of (1.1a) satisfy the constraints ki(z (2%, u,t)) =0, 1 < ¢ < 1, for all time.

This problem is the same as the problem of zeroing the output if k;(z) are regarded as
output functions . Thus we can use the same approach as that in the theory of zero dynamics
or clamped dynamics [1][2]. Differentiate the constraint relations (1.1b) and suppose that input

variables explicitly appear after r; times differentiation of the i constraint relation, 1 < i < [:
dzi/dt = Lfki(m) =0,
, ‘ ‘ (2.2)
"z /at =D = [ ki(2) = 0,
dliz;/dt" = L? ki(z) + Lg, L;‘_lki(m)ul + -+ LgmL;‘_lki(x)um = 0.
0

Thus, necessary conditions for the dynamics z (z°, u,t) of (2.1a) to satisfy the constraint (2.1b)

are
ki(z) = Lyki(z) = = L} hi(2) = 0, i = 1,...,1, (2.3)
and
b(z) + A(z)u =0
™ T T
where b(z) = [Lf ki(z), ..., LY} kl(:v)] ) (2.4)
Aw) = o) = | Lo, 1 Hile)]
Therefore we say that CDS (2.1) has the constraint relative degree vector [ry,...,r;| on U if

the functions Lg]l;;k,-(:c) =0,1<j7<m 0<p<r;—2 forall z € U and the matrix
A() = laig (@) = |Lo, L kif)| has full row rank for all = € U'. The submanifold
Xm

C*:{xEU]L;ki(x)zm1§i§l,0§p§ri—1} @.5)



is called constraint submanifold. If nonlinear CDS (2.1) has the relative degree vector [rq, ..., 7],
it is not difficult to see that sufficient conditions for dynamics z (2%, u,t) to satisfy the constraint

relations (2.1b) are also that the initial state satisfies (2.3) and the inputs satisfy (2.4) [1].

Note that A(x) has full row rank for all x € U. The solutions of (2.4) can be written as
u=—Al@)b(x) + (1 - A’f(x)A(x))a, i€ R™ 2.6)

where Af(z) = AT(:z:)(A(:c)AT(ac))—1 is the pseudo-inverse of A(x). In (2.6) u is expressed as

a feedback law and the closed loop equation is
i = (J(2) = G@)AN@)(2)) + G) (1 - A@)A@) )i = f@) + Gy @)

Since the vector field f(z) + G(z)t is tangent to C* for all & € R™, it follows that for any
20 € C*, the dynamics generated by the vector field f(z)+ G(z)i stay in C* for all time, which
is called the constrained dynamics. In other words, constraint relations (1.1b) are imposed by
the feedback (2.6).

Remark: Since A(x) has full row rank, we can rearrange inputs ' = [wT,v7],w € Rlve
R™=! such that A(z) = [A;(z), A2(z)], where A;(z) has linearly independent column vectors.
In order to impose the constraint, the inputs can be chosen as w = — A7 (z)(b(z) + Az(z)v).
But the linear independently column vectors in A(z) might change as « varies in U. Therefore
the feedback (2.6) can impose the constraint in a larger region. Using the terminology of [10],
the partition into control inputs and constraint inputs can change as ¢ varies. By avoiding such a

partition, the control law (2.6) imposes the constraints without being sensitive to such changes.

Now we can develop the state space description for the constrained dynamics of (2.1) under
. . . . T

the assumption that the relative degree vector [rq,...,r;] exists. Letting ¢ = [¢],...,¢!]
where (! = ki(z),Ch = Lski(z), ...,C}:l = L;i_lk,'(m), 1 <7 <[, there exists a smooth vector
function n = [¢1(2), ..., pu_r(2)]" = ¢(z), 7 =71 + ...+ 1y, such that (¢,n) = ®(z) is a local
coordinate transformation near z°. Then in ((,5) coordinates the constraint submanifold C* is

{(¢,n) € R*|¢ = 0} and (2.7) becomes

¢ = N¢, N a nilpotent block matriz
(2.8)

0= Lid(@)la=at(cm) + Led(@)le=a-1(¢n)T



Note that the matrix (I — Af(2)A(z)) has constant rank (m —1) and g;(2),..., gm(z) are
linearly independent. By a state-dependent change of basis in the input space, we may assume
G(z)i = G (z)v, where v € R™! for z near 2. Therefore the reduced state space equation

for the constrained dynamics is

m—I
= f*(n)+ z; g;(n)vj, n € R"™", n near the origin 2.9)
]:

y: = hi(n), i=1,...,p

where f*(ﬂ) = Lf¢(x)lx=®—3(0,n)a [gf(ﬂ),-'-,g,t,_z(ﬁ)] = Lél(ﬁ(x)lx:@“l(o,n)a h:(ﬂ) =
hi(w)lx::q)-l(o’n). It can be shown that the reduced state space equation (2.9) is unique up

to a transformation group of diffeomorphisms on C* and state feedback.

Now we discuss a more general problem: How can the constrained dynamics of CDS (2.1) be
determined without the using the relative degree vector? We want to extend the preceding results
to a class of CDS in which the relative degree vectors do not exist. For convenience we introduce
some definitions from nonlinear control theory [1][2]. A smooth connected submanifold M of U
is said to be controlled invariant in U if there exists a smooth feedback u : M — R™ such that
the vector field of the closed loop system f(z) = f(z) + G(z)u is tangent to M for all = € M.
A submanifold C' of U is said to be a constraint nulling submanifold if it is controlled invariant
and the constraint functions £;(x) are zero on C. The maximal constraint nulling submanifold

is called the constraint submanifold, denoted as C*.

According to the theory of zero dynamics or clamped dynamics, we can modify the Hirschorn
structure algorithm to calculate the explicit expression for C* and the feedback u(z) which

makes f(:c) tangent to C* [2].
Constraint Submanifold Algorithm:
Step 0 : Cy = {z € Ulk(z) =0}
Stepi: C; = {z € Ci—1|f(=) € span{gi1(x), ..., gm(z)} + TpCi=1}

If every ' is a smooth submanifold with constant dimension this algorithm will terminate

because {Cy; 1 = 1,2,...} is a sequence of nested submanifolds and dim Co = n — /.



Let k°(z) = k(z) and so = . Then C; is the set of = in Cy such that there exists u which
makes f(z) + G(z)u € TyCy or equivalently

(dk(z), f(z) + G(z)u) = Lk (z) + Lk (z)u =0 (2.10)

has solution for u. Suppose that the matrix Lk°(z) has constant rank ro on Cy. Then there is
a smooth matrix Do(z) € R(*°~")%% such that Dy(z )L(;ko( ) =0, Vz € Cy. Letting ©°(z) =
Do(z)L k() gives Cy = {z € U|k%(z) = 0,¢°(z) = 0}. Suppose [dkO( ) ,d(po(m)T] has
constant rank (sop + s1) and the first s; rows of goo have linearly independent differentials.
There exists a constant matrix Sy such that Spp? selects the first s; rows of ¢°. Letting
K(o)T = [ko(x)T 50¢°(x)T} gives Cy = {o € U|k'(z) = 0} and s; < 50 — ro.

Given C; = {z € Ulki(z) =0} = {2z € U|ki~!(z) = 0,Si—19¢'"1(z) = 0}, Ciy; is the
subset of C; such that <dk'(m),f(:c) +G(2)u) = Lik'(z) + Lgk’(m)u = 0 is solvable for wu.

Assume that L k() has constant rank r; on C;. Then there is a smooth matrix D;(x) such that

. Di—1(2) 0 Lgk'™Y(z)
Di(z)Lek(z) = S =0, eecy @.11)
Pici(z) Qi—a(z) | | LaSi19' ™ (2)
Therefore we can obtain Cjyq = {z € Ulk'(z) = 0,¢'(z) =0} where ¢ = P Lk +

Qi—1LpSic1pt L If [dki(x)-r,dgoi(x)-r} has constant rank (s1 4 -+ si+ siy1) and the first
si+1 Tows of ' have linearly independent differentials, we can find a constant matrix S; such
that S;* selects the first s; 41 rows of i, Letting ki+!(z)" = [ki(x)T, Sipt(z) " |, then Cipy
can be written as Cip1 = {z € UJk"*!(z) = 0}.

If the algorithm terminates at step i*, C;» = {& € U[k* (z) = 0} is the constraint subman-

ifold and the input variables must satisfy the equation
Lik' (z) + Lok' (z)u = 0. (2.12)

Moreover the smooth solutions u(z) of the equation (2.12) keep the vector fields f(z) =
f(z) + G(z)u(z) tangent to C*.

Suppose that in equation (2.12) Lgk' () has constant rank and L k% () € Im(Lgk' (2)).
So the solutions of (2.12) can be written as u(z) = @(z) + R(z)v, where @(z) is the minimal
norm solution which is a smooth vector function on /, and R(x)v, v € R™ !, is a vector in

the null space of Lgk' (z). The column vectors of R(x) are a basis of the null space which
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are smooth at least locally for each € C*. Thus u(z) can be expressed as a feedback law

and the closed loop equation is

& = f(z) + G(z)v, f(z) = f(z) + G(a)i(z), G(z) = G(z)R(z) (2.13)
If the initial state ° is on the constraint submanifold C*, the dynamics of the closed loop system
(2.13) stay on C* for all time. We call it the constrained dynamics. 1t is not difficult to derive
the reduced state space equation for the constrained dynamics. For the details of the above

geometric approach we refer to [1][2].

3. Control of Constrained Nonlinear Systems

We have shown that the constrained dynamics of CDS (2.1) can be characterized by the
reduced state space equation (2.9) which is affine nonlinear. There have been various control
techniques to deal with this kind of system. However if we apply these techniques directly to
(2.9) we need to perform the transformation z = ®(z) to obtain the local coordinate expression
for f*,¢%,...,9%,_; and C*, which is extremely difficult for practical problems because in general
partial differential equations must be solved to compute new coordinates. In this section we will
show how to develop control schemes for CDS based on the original system equation and

constraint relations, —i.e. on (f, G, k, h) instead of (f*,G*, h*)

A. Input-output Linearization and Nonlinear Zeros

A new technique, input-output exact linearization, has been developed for the analysis and
the design of nonlinear control systems such as asymptotic stabilization, tracking, noninteracting
control, etc. [1]. This technique uses nonlinear feedback to achieve the exact cancellation of the
effects of nonlinearities on input-output behavior. In the same way that the transmission zeros
are crucial in linear systems, the notion of “nonlinear zeros” is fundamental for this approach.
“Nonlinear zeros”, or zero dynamics, are internal dynamics of a system when its inputs and
initial state are chosen to make output functions identically zero. We are interested in analyzing
“nonlinear zeros” of the constrained dynamics of CDS (2.1) in terms of (f, G, k, k) instead of
(f*,G*,h*). We also want to find the feedback to linearize the input-output behavior of the
constrained dynamics while avoiding the computation of Z = ®(x). Throughout this section we

assume that CDS (2.1) satisfies:



(Al) Both the constraint relative degree vector [, ...,r§] with respect to (f,G, k) and

the output relative degree vector [ri’ y s rg] with respect to (f, G, h) exist.

(A2) [A%(z)T A°(z)'] € R™X™is nonsingular where A° is the decoupling matrix for

(f,G, k) and A° is the decoupling matrix for (f,G,h).

There are a large class of physical systems which satisfy (A;) and (A). However these
assumptions can be relaxed. Under assumptions (A;) and (Aj) there is a coordinate change

T = ((,&n) = ®(z) to transform (1.1a) into
G =¢
G =G

(L = L k() + (Lgl L;f“lkl(x))ul bt (LgmL;f“lkl(x))um

df = ;’ckl(a:) + (Lg1 L}’C_lkl(:v)) ug + -+ (LgmL;’C~1kl(x))um
&g=4 3.1)
6=6

€ = Liih(z) + (LglL}f*lhl(x))ul oot (Lo T ()

€, = L} hyl(z) + (Lgl L;?“lh,,(x))ul bt (Lgij,?‘lh,,(x))um

M = Lydi(x) + (Lg, di(2))ur + -+ + (Lg,, i(2))tm, i =1,..m — 7 = r°
where r® = r{+...+rf and r® = r{+...4+r9. Constraint relations (1.1b) become ({ =0, ..., ({ =0
and output functions become y; = f%, o Up = &Y. (3.1) is called the Normal Form . 1t is easy
to see that the input-output behavior of the constrained dynamics can be exact linearized by
o) (-1
A°(x) v b°(x)
with A€ A% b° b° defined by (3.4). The “nonlinear zeros” of the constrained dynamics can
be described by

u=a(z) =

& = f(z) + G(2)i*, =€ C*N Z*, (3.3)

7



where C* = {m € UlLski(2) =0,1 Si<LOS p<ri— 1}, 7* = {z € UlLShi(z) = 0,1 <

1 <1,0 < p<r?—1}, and input ¢* satisfies equations
) p i P q

[o4 [ C T
F(x) + A()u=0,  A°= [LgJL}f”lk,-] b = [L}lkl,...,L;t k,] . (3.4a)

Ixm

b(2) + A°(2)u =0,  A°= [Lg]L;;Q_lh,-] b = [L}i’hl,...,L}?hp]T. (3.4b)

pxXm

Since the row vectors of A¢ and A? are linearly independent, to solve equation (3.4) we can either

solve u from (3.4a) first or solve u* from (3.4b) first. Thus we have the following conclusion:

Suppose a nonlinear CDS satisfies assumptions (Al) and (A2). The operations of calcu-
lating “nonlinear zeros” and imposing constraints commute. l.e., the zero dynamics of

the constrained dynamics is the same as the constrained dynamics of the zero dynamics.

B. Feedback Stabilization

We now discuss the stabilization problem of CDS (2.1). We introduce stabilizability concepts
for the constrained dynamics first: ¢ is said to be an equilibrium point (solution) of the
constrained dynamics of CDS (2.1) if n°® = ¢(z¢) is an equilibrium point of the reduced state
space equation (2.9), which is equivalent to saying that f (z°) + G(2°)i = 0 for some it € R™.
An equilibrium point z¢ of the constrained dynamics is said to be locally asymptotically stable
provided that there exists a neighborhood V of z¢ on C* such that Vz° € V, the solution
#(2°,¢,0) of equation (2.7) remains in C* and approaches z¢ as ¢ — oo. The constrained
dynamics of CDS (2.1) is said to be locally asymptotically stabilizable to an equilibrium point
z® € C* if there exists a smooth feedback o : R* — R™ with a(2¢) = 0 such thatVz® € V C C*
for some open neighborhood V of z¢ on C*, the solution (2", ¢)of the closed-loop system
& = f(z) + G(z)a(z) remains in C* for all time and approaches z° as t — oo. It is equivalent

to saying that the reduced state space equation (2.9) can be stabilized to n® = ¢(z¢).

One of the widely used techniques to solve the stabilization problem is to design feedback
based on the linear approximation. To apply this technique, we need to find the linear
approximation of the reduced state space equation (2.9). It is well known that the linear
approximation of zero dynamics coincides with the zero dynamics of the linear approximation
of the original system [1]. By the similarity between the constrained dynamics and the zero
dynamics, the linear approximation of constrained dynamics can be obtained without computing

the nonlinear transformation n = ¢(z). For the calculation details we refer to [11].



However in many situations using linear feedback cannot achieve the stabilization task
because the linear approximation has uncontrollable modes associated with eigenvalues on the
imaginary axis. This is called the critical case. Another approach to solve the stabilization
problem is the input-output exact linearization, which can deal with the critical case. According

to the Normal Form (3.1) we can choose v in the linearization feedback (3.2) as
v=[n(z),..w@)], il Z —yi1 I ki(z), 7} € R, (3.5)

where 7; are chosen such that polynomials I';(s) = s 7};?_13’?“1 +-eo 4 fyé, 1 << p,are
Hurwitz. Then in ((,£,n) coordinates the closed-loop equation can be decomposed into three
parts: (1) C = N( with N a nilpotent block matrix, (2) 5 = I'¢ with I' a companion block
matrix, (3) ) = L, #(2)le=s-1(¢,c) With f(2) = f(z) + G(z)a(z). Note that h(z*) = 0
and ¢(z) in the coordinate change can be chosen such that ¢(z¢) = 0. Thus ®(z¢) = (0,0,0)
and ®(z°) = (0,¢£%9°) for all 2° € C*. It is easy to see that the dynamics of the first part
is identically zero for any 2% € C*, which means that the closed-loop dynamics remain in C*
for all time. The dynamics of the second part approaches £ = 0 as ¢ — oo. The dynamics of
the third part also approaches 7 = 0 provided that ) = f*(n) = L f(x)qﬁ(:c)lz:q,-l(o,oyn) is locally
asymptotically stable at n = 0. This condition is equivalent to the asymptotic stability of the

“nonlinear zeros”. Therefore we have the following conclusion:

Suppose x° is an equilibrium point of the constrained dynamics of CDS (2.1) with h(z¢) =

If the constrained system satisfies assumptions (Al) and (A2) and the “nonlinear
zeros” defined by (3.3) are asymptotically stable at x¢, then the constrained dynamics
can be locally asymptotically stabilized by a nonlinear feedback in the form of (3.2) with
v satisfying (3.5).

C. Output Tracking

Now we consider the output tracking problem. Given a nonlinear CDS (2.1) and a reference
output 4(t) = [71(¢), ..., gp(t)]T, find a smooth feedback u = u(z,t) such that (a) the constraint
relations (1.1b) are imposed, (b) the real outputs of the system converge asymptotically to the

reference output, i.e., ||y(t) — §(t)|| = ||r(z(2®, u(x,1),1)) —3@)|| = o.



In order to achieve the output tracking task we can use the feedback in the form of (3.2) with

v =[1(2s8), s @, O], vile, ) = 5 Z% 1( I ki) — g9V ))_ (3.6)

Then we have the similar decompostion for the closed loop dynamics in ((, &, n) coordinates as

that in Section B. The first and the third part have the same form. The second part becomes

=6,
& =6,
€l = 97 Zv, (g -9 "), (37

0

ﬁp — (5 Z,y] l(fp G0t ))

Let the output error vector be e(t) = y(t) — g(¢). According to (3.7), the components of the

error vector satisfy the following linear differential equations
egri)(t) + 'y:‘?_legr"_l)(t) o hei(t) =0, i=1,..,p. (3.8)

If 7; are chosen such that polynomials T;(s) = s™ + fﬁ?_ls’?”l +o 4, 1L <5 < p,
are Hurwitz, then the component of the error vector e;(¢) = y;(¢t) — 9:(t) — 0, 1 <7 < p.
Therefore by using this feedback the asymptotic tracking problem can be solved. Obviously we
are also concerned about the internal behavior of the constrained dynamics when using feedback

(3.6) to solve tracking problem. We need to check the third part of the decomposed system:
n=f* (5 (t),n) for the stability at n = 0

Remark. This result can be extended to the problem of tracking the output of a reference linear

system.

4. Application to Robotic Contour Following Problem

Now we apply our theoretical framework for CDS to a typical control problem in robotics

— the robotic contour following problem. The robotic contour following problem is to control

10



the motion of the robot manipulator while the end-effector of the manipulator maintains contact
with a rigid unilateral surface. There are two essential aspects of the robotic contour following
problem: (1) the constraint between the end-effector and the surface is actively imposed by the
robot manipulator system instead of some external forces; (2) the contact force applied by the
end-effector to the constraint surface is under control. In addition to the satisfaction of these
requirements, we also want to control the manipulator to perform more complicated tasks such
as tracking a moving object on the constraint surface, regulating the end-effector to a desired
position, etc.

We consider a three revolute joint manipulator with end-effector moving along the horizontal
coordinate plane. Suppose that there are two output functions which are the coordinate functions
of the plane. (For more general constraint surfaces it is also reasonable to assume that output
functions are the coordinate functions on the constraint surface since these functions can be

observed easily.) Then this contour following problem can be characterized by the Lagrangian

formulation [9]:

f=w

&= MY F+\s)+ M s

z3 = ha(8) = 0 4.1)
z1 = hi(6)

22 = hy(0)

where 0 = [0; 6 03]T is the joint angle vector; 7 is the joint torque vector; M is the
inertia matrix; F' consists of the Coriolis term, centrifugal term, gravitational term, and payload
term; [z1  Z2 .1,‘3]T = [h1(0) ho(0) hg(&)]T is the transformation from joint coordinates
to Cartesian coordinates; J'(8) = [Ji(8) Ja(8) J3(8)] € R**3 is the transpose of the
manipulator Jacobian; A is the Lagrangian multiplier; AJ3(#) is the vector of joint torques
associated with the contact force vector [0 0 A]'.

For all regular kinematic configurations the constraint relative degree is 2, the output relative
degree vectoris [2 2], and the constraint submanifold is C* = {(0,w)|A3(f) = 0, Jy (0w = 0}.

Moreover the decoupling matrices A¢ and A° have linearly independent row vectors because these

11



vectors are the row vectors of the nonsingular matrix J(8) M ~1(6). Using the coordinate change
& o= h(0),& = JT(O)w, & = ha(8),& = J; (0)w, (1 = h3(h),( = J3 (f)w, (4.1) can be

transformed into the Normal Form

&i=16
€ = w' [0%h1/06%)w + JTM™Y(F + \J3) + Jf M~ 7
f.s ={4 42)
& = w' [0%h2/00%)w + J) M7Y(F + \J3) + Jy M~i7
G =20
G = w ' [0%h3/00%)w + J§ M™Y(F + \J3) + J3 M~
In order to maintain the constraint and contact force, the joint torque vector must satisfy
IM™ i 4 b+ JM Y (F 4+ M) =[vy vy 0] =v s

b=1[bi by b3]", bi(0,0) =w" [0%hi/06%w, i = 1,2,3.

Forany v = [v; v 0]T with continuous function components, (4.3) has a unique solution
7= —(F(0,w) + AJ3(0)) + M(0)J 1 (0)(v — b(8,w)). (4.4)

Using this feedback we can achieve the following goals: (a) The constraint relation is imposed
by joint actuator; (b) the desired contact force is maintained; (c) the input-output behavior of
the constrained dynamics is linearized and decoupled because i, = v1, &2 = v9. Moreover we

can achieve more complicated tasks by proper choice of v and vs.

Regulation:  One of the important tasks in robotics is to regulate the end-effector of the
robot manipulator to a desired position in the constraint surface while keeping proper contact
force. Suppose that we want to regulate the end-effector of the manipulator system (4.1) to
(29,29) = (Rh1(0°),h2(68°)). Assume that 6 is an equilibrium configuration of (4.1), i.e.,

F(6°,0) + AJJ (0°) = 0. Choose
vi = =1 (0w = (hi(0) —a7), i = 1,2, (4.5)

with 7;— € R such that I'"(s) = s? + s+, ¢ = 1,2, are Hurwitz polynomials. It is easy to see

that the feedback (4.4) and (4.5) impose the constraint, maintain the contact force, stabilize the

12



constrained dynamics, and drive the end-effector to the desired position from any initial position

on the constraint surface, i.e. 1(t) — 29, z2(t) — 23 as t — oo,

Tracking: Now we consider the problem of tracking a moving object on the constraint surface
while keeping proper contact force. Assume that the position of the moving object can be
observed as [zf(¢) z£(¢) 0]". This problem is the output tracking problem discussed in

Section 3. Choosing

v = #R(t) — i (J,T(a)w - :i;f(t)) — (hi(a) - w{f(t)), i=1,2, (4.6)
with 7;: € R such that T*(s) = s? + 9is + 4%, i = 1,2, are Hurwitz polynomials, then feedback
(4.4) and (4.6) solve this tracking problem.

Remark: Our control scheme is different from the previous schemes in the literature [12][9][8].
It has following advantages: (1) The feedback scheme (4.4) is valid for all regular configurations
of the robot manipulator, which is not the case with the linear approximation approach. (2)
There is no separation of input variables. It is impossible to separate joint torques as control
inputs and constraint inputs even for the task of imposing the constraint and maintaining the
contact force. (3) It is easy to implement. The calculation of (4.4), (4.5) and (4.6) only requires
evaluation of the manipulator Jacobian, the inertia matrix, and the coordinate transformation, all

of which can be computed in real-time.

5. Conclusion

Constrained nonlinear systems can model a large class of physical phenomena which
cannot be handled by regular state space systems. Our theoretical work concerns two aspects
of constrained nonlinear systems: (1) Characterization of the dynamic behavior under the
constraints: We determine the constraint submanifold and the constrained dynamics without
requiring partition into constraint and control input variables and without requiring the existence
of vector relative degree. (2) Control of the constrained dynamics: We use nonlinear feedback
and exact linearization techniques for the nonlinear CDS so that improved results can be obtained
compared to controller design via linear approximation and linear feedback. The application to
the robotic contour following problem illustrates the advantages of our extended model and new

control scheme for nonlinear CDS.
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