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Abstract

We present fast and efficient parallel algorithms for several prob-
lems related to wiring a set of pins on a module to a set of pads lying
on the boundary of a chip. The one-layer model is used to perform
the wiring. Our basic mode! of parallel processing is the CREW-
PRAM model which is characterized by the presence of an unlimited
number processors sharing the main memory. Concurrent reads are
allowed while concurrent writes are not. All our algorithms use O(n)
processors, where n is the input length. Our algorithms have fast
implementations on other parallel models such as the mesh or the
hypercube.

1Supported in part by NSA Contract No. MDA-904-85H-0015, NSF Grant No. DCR-
86-00378 and by the Systems Research Center Contract No. OIR-85-00108.



1 Introduction

We consider the problem of connecting a set of pins on a module to a set
of pads lying on the boundary of a chip. This problem has been addressed
in the sequential context by Baker and Pinter ([BP]). The boundary of the
module is assumed to be an arbitrary rectilinear polygon and the chip is
assumed to be a rectangle containing the module. The module pins and
the chip pads are fixed. Our goal is to find out whether a one-layer routing
exists within the given area and if it does to determine the wiring of such
a routing. We also address the problem of changing a given wiring so that
the resulting wiring is of minimum length.

The above problems are considered in the CREW-PRAM model, which
is characterized by the presence of an unlimited number of processors which
can access a shared memory unit. Concurrent read is allowed while concur-
rent write is not. We are aiming for fast algorithms that are also efficient,
i.e., the number of processors is O(n) if the input is of length n. In the rest
of the paper, we assume that the reader is familiar with some of the basic
parallel techniques such as path doubling, parallel prefix, and the Euler
tour technique. As we will mention in the last section, our algorithms can
be mapped efficiently into fixed-interconnection parallel architectures such
as the array architecture.

The known algorithms to solve the above problems seem to be inher-
ently sequential. We develop new algorithms that possess fast and efficient
parallel implementations in addition to their suitability for serial imple-
mentations.

The rest of the paper is organized as follows. Several basic definitions
and basic strategies for river routing problems will be introduced in the
next section. Section 3 will contain a new algorithm for routability testing,
while the following section will show how to obtain a minimal length wiring
from an arbitrary wiring. The last section mentions the suitability of these
algorithms on different parallel architectures.



2 Preliminaries

The general class of river routing problems can be viewed as the planar
interconnection of two ordered sequences of terminals. The simplest version
assumes that the two ordered sequences belong to two parallel rows forming
a channel. An understanding of the solution to this case is essential to the
understanding of the methods used to solve several less restricted versions.
Therefore a review of the basic river routing strategy is in order.

Let {N; =< b;,t; >} be a set of nets, where b; belongs to the bottom
row and ¢; belongs to the top row of a channel. The rows of the channel are
assumed to be horizontal. b; and t; will also denote the horizontal integer
displacements of these terminals relative to an arbitrary origin. Nj; is a
right net if b; < t;. If b; > t;, then N; is called a left net. Otherwise, it is
a vertical net. The given set of nets can be decomposed into maximal left,
right or vertical blocks. Each of these blocks can be routed independently.
A greedy algorithm can be used to route each such block. For example, a
right block can be wired by wiring its leftmost net as close to the upper row
as possible and then wiring the next leftmost net as close to the upper row
while avoiding the wires of the previous net, and so on. The charactersistic
bend points introduced in [CJ] are those bendpoints closest to one row,
say the bottom row. For example, A;;, By, As and Byg; are charactersitic
bend points induced by nets Ny and Ng in Figure 1.

We now turn to the main problem of this paper. An instance is given
by a triplet < M,¥, N >, where M is an arbitrary rectilinear polygon
representing a module, ¥ is a rectangle representing a frame (assuming a
horizontal bottom edge), and XN is a set of two-terminal nets such that one
terminal is on M and the other is on ¥. We assume that ¥ contains M
and that each boundary segment of M is parallel to a frame edge. We are
supposed to determine a one-layer routing of N whenever it exists. We
borrow some definitions from [BP). A spoke is a line segment perpendicular
to a frame edge and which extends from the frame edge to the closest
module edge. It is shown in [BP] that if a wiring exists, then there is
a routing such that no wire crosses any spoke more than twice and that
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Figure 1: A River Routing Example

all crossings of a spoke are in the same direction. If the crossings of one
spoke for one net are specified, then the crossings of any other net are
uniquely defined. Therefore in the rest of this paper we will assume that
such information is provided as part of the input since there are five such
possibilities and the algorithm could be run on each one of these separately.

The routing strategy used in [BP] consists of combining the outputs
generated by two greedy algorithms. One algorithm (greedy-in) begins at
the module terminals and routes as close to the module boundaries as
possible. The other (greedy-out) begins at the frame terminals and stays as
close to the frame edges as possible.

Let n be the length of the input (number of nets and boundary segments
of the module). The algorithm presented in [BP} runs in time O(n?) and
finds a detailed routing of all the nets whenever such a routing exists. This
algorithm is optimal since the number of bend points in the detailed routing
could be f}(n?). We address three problems in the parallel context:

e Given an instance of our problem, can we route all nets within the
space provided?

e Given an instance of our problem, determine a detailed routing of all
nets whenever such a routing exists.



e Given a preliminary routing for an instance of our problem, derive a
routing with the minimum total wire length.

We will present fast parallel algorithms for all the three problems. Our
algorithms are efficient in the sense that the product time x number of
processors is within some power of log n factor of the best possible sequential
algorithm. As a byproduct, we obtain a new 6(n) serial algorithm for the
first problem. We present this algorithm in the next section.

3 Routability Testing

Consider the set of nets whose frame terminals are on the bottom frame
edge. We will first examine the possibility of routing these nets within the
space provided. Recall that we are assuming that the crossings of each net
at a given spoke are given as a part of the input. Since we cannot route
all the nets fast with a linear number of processors, we have to extract
enough information about the wiring of certain critical nets to perform the
routability testing. We accomplish this by decomposing the nets into groups
such that the routability testing can be done by examining the “contours”
of these groups. Before presenting a more formal description of our overall
strategy we introduce the following definitions.

Let the module-bottom line be the gridline parallel to the bottom frame
edge and which passes through points on the module boundary closest
to the bottom frame edge. This line will be partitioned into segments,
say A;B,;,A:B;,...,A;B;, by the module boundary. Figure 2 shows an
example whose module-bottom line goes through A,B;, A:B; and AsBs.
The bottom boundary consists of the set module segments from A, to B, in
a couterclockwise direction. We define the type of a net < a,b >, ¢ € M,
be ¥, as follows.

e Type 1if the direction of the wiring from a to b is clockwise and a is
not on the bottom boundary of the module. Nets Ny, N3, N3, N¢, Ns
and N, in Figure 2 are type 1 nets?.

2From pow on, we will use the notation N; =< ay, b; >.
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Figure 2: Illustration of Different Types of Nets

e Type 2if a is on the bottom boundary between B; and A;4,, for some
7, such that the distance (number of module edges) between a and
A, is greater than or equal the distance between a and B;. Nets
Ng, N;; and N;; in Figure 2 are of type 2.

o Type 8 if the direction of the wiring is counterclockwise and a is not
on the bottom boundary of the module. Nets N5, Nyj¢ and Nyy in
Figure 2 are type 3 nets.

o Type 4 same as type 2 but distance is less than. In Figure 2, nets Ny
and N, are of type 4.

e Type 5 if none of the above, i.e., a is on some segment A;B; of the
module-bottom line. Nets Ny, N3 and N, are type 5 nets.



A consecutive set § of nets (with one terminal on the bottom frame edge)
consists of nets of the same type such that there is no net of a different type
whose module terminal lies between two terminals of nets in S. A group is
a consecutive set of nets § such that either (1) the convex corner C closest
to the bottom frame edge has the property that all convex corners between
C and any terminal in § (counterclockwise direction for types 1 and 2,
otherwise clockwise) are above the 45 degree diagonal drawn through C and
the diagonal has a positive slope (relative to the bottom frame edge) for
types 1 and 2 and negative slope otherwise, or (2) all the terminals of § are
on the same module segment. For example, the groups of Figure 2 are given
by: G, = {NnNz,Ns,NuNs,Ne}, G; = {N'l}, Gy = {Ns}, Gy = {Nxo},
Gs = {N11, N1}, G = {Nis, N1e, N17}, G7 = {Ng} and Gg = {Nys, N1}

We are ready to give an outline of our routability testing algorithm.
Algorithm Routability Testing

1. Partition the nets with one terminal on the bottom frame edge into
groups and identify the corresponding corners and diagonals.

2. Determine the outer contour of each group as well as the intersec-
tion points (intermediate terminals) of the routing with the corresponding
diagonal assuming a greedy strategy as close to the module as possible
(greedy-in).

3. Move the intermediate points vertically to a horizontal line L such that
the separation distance is enough to solve the corresponding river routing
problem. Find the characteristic bend points of nets corresponding to the
induced river routing problem.

4. Determine if there is any intersection between the wirings of any two
different nets or between the wiring of any net and the module or frame
boundary.

Notice that if we use the above strategy to produce a detasled routing,
then the wiring obtained will in general be different than the one generated
by the method of [BP].



In the rest of this section we will present fast and efficient parallel al-
gorithms to perform each of the steps outlined in the routability strategy.

It is not hard to see that step 1 can be easily done in time O(logn)
time on a CREW-PRAM with O(n) processors. The details will be left to
the reader. Let G; be a group of nets with a 45 degree diagonal. Each net
of this group has one terminal on the module boundary and another on
the bottom frame edge. Assume that these nets are of type 1 or 2. Similar
definitions and algorithms can be developed for the other types of nets. Let
N =< a,b > be a net of this group such that a is furthest from the corner
of this group. Then N is called the representative net of G;. In Figure 2,
Ny, Ny, Ng, Ny, Ny; and Nyq are the representative nets of G;, Gz, Gs,
G, Gs and Gg respectively. Notice that the wiring of a representative net
will determine the contour of the wirings of all nets in G; obtained by a
greedy-in strategy. Our next goal is to show how to determine this contour
and the intermediate terminals (i.e., points of intersections of the wiring
with the diagonal).

Each convex corner lying between two terminals of two nets in a group
G may introduce a corner in the wiring of a certain net. If the wiring of
a certain net intersects the diagonal of the group before such a corner is
introduced, we say that the intersection takes place near that corner. For
example, Nets N; and N, intersect the diagonal near E in Figure 3.

Algorithm Intermediate Terminals

Input: Corners of module boundary, module terminals of a group of nets
(type 1 or 2), and the corner and the diagonal of the group.

Output: The intermediate terminal of each net in the group.

1. Rank each terminal of the group according to its order counterclock-
wise around the boundary. Call the corresponding rank of a net sequence
number.

2. Calculate the distance between each convex corner and the diagonal of
the group. For each convex corner C, determine an integer k such that
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Figure 3: Determination of Intermediate Terminals

each net with sequence number > k intersects the diagonal near C. k will

be called the bounding value of C.

3. For each net N, determine the closest convex corner @ with bounding
value less than or equal its sequence number. Q is called the bounding point
of N. From this information, determine the intermediate terminals of all
the nets in the group.

Figure 3 shows the lists obtained by the above algorithm for a group of
type 1 nets.

Lemmal: The above algorithm correctly determines the intermediate ter-
minals of all the nets in the group. It can be implemented to run on the
CREW-PRAM in O(log n) parallel time with O(n) processors.

Proof: The correctness of the algorithm is easy to establish and will be left
to the reader. As for the time complexity, it can be estimated as follows.

Step 1 can be done by sorting and a paralle! prefix computation.

Step 2 requires few constant time operations.

Step 3 can be done as follows:

e sort corners countercloskwise and rank them.

A



e sort corners and terminals in increasing order with sequence number
or bounding value as the primary key and the ranks obtained from 1
as secondary key.

o For each terminal, find the predecessor which has the maximum rank.

Finding the contour of each group routed by a greedy-in strategy can
be done by using the methods of [CJ].

We can now move all the intermediate terminals vertically to a hori-
zontal line L (parallel to the bottom frame edge) such that the separation
distance is enough to solve the corresponding river routing problem. By
the method developed in [CJ], we can find the characteristic bend points as
well as the separation needed. This gives enough information to complete
the routability testing (Step 4 of Algorithm Routability Testing).

Lemma2: If the given problem is routable, then the intersection of wiring
of each net produced by the greedy-in and the greedy-out strategies is
a point below the intermediate terminal of the net and has the same x-
coordinate as the intermediate terminal.

Proof Sketch: If the intersection is above the intermediate terminal, then
there exists a net N whose greedy-out wiring intersects a corner C before
intersecting the wiring generated by the greedy-in strategy. Therefore the
given instance is unroutable.

The information obtained above about the wiring of each net can be
generated regardless of whether the given instance routable or not. As a
matter of fact, a routing exists if and only if there is no intersection between
the wirings of any two different nets or between the wiring of a net and the
module or the boundary frame. We now discuss how to test for such an
intersection.

For each frame edge, the nets whose terminals are the extreme terminals
on that edge are called boundary nets. There are eight such nets which can
be partitioned into four adjacent pairs. For example, the right boundary
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Figure 4: Case 1. Intersections

net of the bottom frame edge is adjacent to the bottom boundary net of
the right frame edge.

For a given placement, the nets may be unroutable because: (i) the
area between module boundary and frame edge is not enough, or (ii) the
area between module edges is not enough. Case (i) can be detected by the
following intersections:

1. Intersection between (a) wiring generated by greedy-out strategy of
those nets with one terminal in a fixed frame edge and (b) module
boundary or wiring generated by greedy-in strategy of those nets with
one terminal in another frame edge. See Figure 4 for an example.

2. Intersection between the wiring generated by greedy-in strategy and
frame boundary. See figure 5 for an example.

3. Intersection between the wiring of adjacent boundary nets. See Fig-
ure 6 for an example.

Each of the cases above will be reduced to testing the intesection be-
tween two set of line segments. Consider the case of the wiring generated
by the greedy-out strategy applied to those nets with one terminal on the
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bottom frame edge. Similar arguments can be used for all the other cases.
Let S; be the set of horizontal segments given by:

1. All horizontal segments between two characteristic bend points of
each net.

2. All horizontal wire segments of vertical blocks.

3. All the horizontal wire segments of the right most net of each left
block.

4. All the horizontal wire segments of the left most net of each right
block.

Let S; be the set of all vertical wiring segments generated by a greedy-in
strategy of the outermost net with no terminal on the bottom frame edge
and all the vertical line segments of the module boundary.

Lemma$8: Case 1 intersection occurs if and only if there exists an inter-
section between S; and S;. The number of line segments involved is O(n)
and hence the testing can be done in time O(log? n) on the CREW-PRAM
with O(n) processors.

Proof: From the river routing algorithms described in [CJ], we know that
the number of line segments in S, is less than 2n. Moreover, it is obvious
that the number of line segments in S; is less than 2n. Therefore the total
number of line segments involved is O(n). Intersection can be determined
by the methods of [MS] with corresponding time complexity of O(log? n).

Similarily for case 2, define S; as the set of all the wire segments of
the representative nets of the groups and S; as the set consisting of the
four frame edges. Again it can be checked that case 2 intersections can be
detected by determining whether or not S; and S; intersect. We leave the
third case to the reader.

We now address the problem of whether there is enough area to do the
wiring between the module edges. Let < a;,b; > and < g;,b; > be extreme
nets (an extreme net of a group is a net whose module terminal is the first
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or last when the terminals are sorted in a clockwise direction ) of two groups
G, and G| such that a; and a; are adjacent along the module boundary.
This pair of nets is called a test pair. Figure 7 shows how to use such test
pairs.

Lemma4: The intersection between the wirings generated by the greedy-in
strategy can be tested by examining the intersection of test pairs The total
number of line segments involved is O(n) and hence this can be done in
O(log? n) time on the CREW-PRAM with O(n) processors.

The intersection between a greedy-in wiring and a module segment can
be easily determined by the method of ({MS]). Therefore we have the fol-
lowing.

Theoreml: Given an instance of the routability testing problem, we can
test whether a solution exists in O(log? n) time with O(n) processors on a
CREW-PRAM, where n is the length of the input.

Notice that the above strategy for routability testing can be used to
obtain a detailed routing in O(log? n) parallel time. However, the number
of processors required is O(n?) since 1(n?) bend points may have to be
determined.

13
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4 Minimizing Wire Length

Suppose that in addition to the input < M, ¥, N >, a wiring of all the nets
in N is also provided. Our problem is to modify the given wiring in such
a way that the total wire length is minimized. The strategy of deleting
empty U’s outlined in [BP] minimizes the total wire length. In this section,
we will develop a fast and efficient parallel algorithm which minimizes the
total wire length.

A U-Wire is a sequence of three successive segments resulting from
two successive 90 degree turn clockwise or counterclockwise. A U-wire is
reducsble (empty in the terminology of [BP]) if the line segment one unit
from the base is not occupied by another wire or module edge, or is occupied
by the base of a reducible U-wire. It is shown in [BP] that a routing with
no reducible U’s achieves the minimum total wire length. However their
algorithm is inherently sequential.

It is clear that shapes more complicated than reducible U’s have to be
considered if a fast parallel algorithm is desired. We will assign types to
each segment of the given module and wiring as follows. Trace the mod-
ule boundary clockwise starting from an arbitrary point. Each horizontal
segment traversed from left to right is of type 1, otherwise it is of type
2. A vertical segment is of type I if it is traversed top down; otherwise,
it is of type 2. We now extend this classification to each segment of the
wiring. If we traverse a wire from its module terminal to its frame pad,
then a horizontal segment is of type 1 if it is traversed from left to right,
otherwise it is of type 2. We can similarily extend the definition to verti-
cal segments. A horizontal well is a maximal consecutive sequence of wire
segments e, €2, ..., &, such that e; and ¢, are horizontal with nonempty ver-
tical projections, and e, es, .., €2:+1 are of one type (for some t) and the rest
of the horizontal segments are of the other type. Notice that we can have
left horizontal wells (Figure 8(a)) and right horizontal wells (Figure 8(b)).
In a similar fashion, we can define vertical wells. Given a net N with a
well W, an obstacle of W is a set S of consecutive module segments or wire
segments of a net of different type such that S lies inside W. For example,
in Figure 2 net N;; has a vertical well with a set of module segments as an
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obstacle while net N;; has a horizontal well with a set of wire segments as
an obstacle.

We can shrink wells whenever possible as follows. Let W be a horizontal
well with intial segment e; = (B;, A;) and last segment e; = (B2, A;) with
(say) the x-coordinate of B, less than or equal the x-coordinate of B;. In
addition, suppose there is no obstacle inside W. Then we can apply the
transformation shown in Figure 9 to shorten W. If W has an obstacle inside
it, then we find a maximal set of wells with the same obstacle and apply
the transformation shown in Figure 10 . We now show the following.

Lemmab: Suppose there are k reducible wells for a given wiring. Then
after applying the transformations described above, the number of reducible
wells will be < %

Proof: At most one well will be created between two previous wells after
the reduction step.

It follows from the above lemma that if n is the number of wire segments
given as input then after log n iterations of the above transformations, no
reducible wells will remain and therefore the resulting wiring is as short as
possible.

15
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Figure 9: Transformation of Wells with no Obstacles

Figure 10: Transformation of Wells with an Obstacle



Theorem2: Given an intial wiring, we can change this wiring so that the
resulting wiring is of minimum total length in time O(log?n) with O(n)
processors on the CREW-PRAM model, where n is the length of the input.

Proof: The algorithm consists of identifying horizontal and vertical wells
and reducing them whenever possible. This process has to be repeated
O(log n) times as implied by the previous lemma. Since there will be no re-
ducible U-wires, the resulting wiring is of minimum length. What remains
to be shown is that each iteration can be implemented in O(logn) time
with O(n) processors, where n is the input length. One can verrify that
determining the types of the segments takes O(log n) parallel time by using
essentially sorting and that identifying the wells can be done in O(logn)
parallel time by using path doubling and few other constant time opera-
tions. Once the wells are identified, applying the above transformations
can be done with few simple operations in O(1) time.

5 Other Parallel Models

A careful look at the algorithms presented in the previous sections will re-
veal that the basic operations used are sorting, path doubling (or shorcut-
ting), prefix computations and few other simple operations. Each of these
operations can be implemented efficiently on a mesh-connected processor
or on the hypercube. For example, testing whether a given instance of our
problem is routable can be done on the mesh in O(y/n) time and on the
hypercube in O(log® n) time, where n is the length of the input. On the
other hand, the algorithm presented in the previous section uses O(logn)
iterations. However, the size of the relevant data involved decreases by a
factor of 2 after each iteration and hence has an O(y/n) implementation on
the mesh.
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