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Notes of general nomenclature.

• Non-bolded, non-calligraphic characters denote scalar-valued parameters.

• Bolded, non-calligraphic characters denote vector-valued parameters.

• Calligraphic characters denote tensor-valued parameters.

• Uppercase characters denote parameters in the Lagrangian configuration.

• Lowercase characters denote parameters in the Eulerian configuration. (See
section 3.1.1)

• Characters with an overhead dot (ȧ, ȧ, Ȧ) denote the material derivative of
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which have undergone a coordinate rotation.
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Chapter 1: Introduction

1.1 Motivation

Descriptions of high viscosity fluid-fluid mixing have gone through several evolutions,

beginning with early Lagrangian kinematical studies and later with application of

continuum mechanics principles. Due to viscous considerations, flow is constrained

to the laminar regime. Most recently, chaotic mixing techniques have been introduced

to achieve a greater degree of mixing than previously possible in the laminar regime.

Movement of fluid elements in laminar flow is along streamlines. The most efficient

types of mixing induce controlled fluid-fluid interface reorientation along streamlines,

thereby enhancing interface growth rates. Alternatively, they induce streamline hop-

ping, which produces similar enhancements in growth rate by a different mechanism.

These phenomena have led to a number of different mixing machine designs including

batch mixers, single-screw extruders and twin-screw extruders, all of which attempt

to fluid elements both in the field and with respect to the field. In industry, the anal-

ysis of mixing regard mixing machines as black boxes. Mixing in these black boxes is

usually described by the observable output, which can be expressed with bulk mate-

rial properties or material property distribution. While this is suited to these types

of machines due to difficulty of actively sampling local mixing mid-process, the ac-

tual physics of the mixing in time remain unexplored. Indeed, industry has generally

relied on trial and error in the generation of new mixing geometries and process.

In distributive laminar mixing, chaotic or not, improvements to mixing are achieved

by repeatedly altering the relationship between the fluid-fluid interface and the ve-

locity field in order to maximize interface deformation. In early experiments focused

on exploring this phenomenon, reorientation was artificially induced by cutting, ro-

tating, and replacing these interface elements by hand. In this case, reorientation is

a discrete phenomenon, and the mechanisms leading to improved interface stretching
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in continuous flow fields are effectively hidden. Recently, with the development of

easily available, high capability, and relatively low cost computing systems, scientists

and engineers have been able to calculate velocity fields for a wide variety of mixing

domains, allowing for the exploration of fluid transport phenomena without the use

of complicated and costly laboratory experiments. However, the ability to generate

mixing domain velocity fields does not guarantee an understanding of mixing, and

therefore more investigation is required. Indeed, a combination of the kinematical

approach (which is rooted in the Lagrangian specification) and the continuum me-

chanics approach is needed to fully explore mixing. Using the continuum mechanics

approach, velocity fields and relevant mixing related properties can be calculated for

the mixing domain. However, the application of continuum mechanics does not lend

itself easily to the study of the deformation of material particles in the Eulerian do-

main. Therefore, a combination of these approaches for the study of mixing must be

used to explore mixing in complex continuous domains.

In this work, the objective was to develop new measures to be applied to the

general continuous laminar mixing domain to examine mixing and mixing potential

as a function of properties of the underlying velocity field. Further, the work centered

mixing on the study of the rate-of-deformation tensor, a commonly used velocity field

for the description of the local deformation of a material interface in a fluid field.

Furthermore, the comparison of mixing utilized the most relevant coordinate system,

the rate-of-deformation tensor eigenvectors (also denoted as the principal directions).

These measures were applied to a number of flow fields including pure shear, pure

extensional, mixed shear-extensional, and in spatially variant flows (defined as any

region in the velocity field where the rate-of-deformation tensor material derivative

is non-zero).
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1.2 Study

This study sought to derive new measures for the study of distributive laminar mixing.

The derivation and demonstration of these measures was done with several goals in

mind.

• Derive new measures incorporating the effects of changes in fluid interface rela-

tive to the flow field as, well as changes in eigenvectors of the rate of deformation

tensor D into the study of interfacial reorientation in distributive laminar mix-

ing.

• Relate these new measures to existing mixing measures to demonstrate that

existing and new knowledge could be gained from their application.

• Apply these measures to a series of 2D flow field models to explore their effec-

tiveness in identifying flow field characteristics for optimum mixing.

• Identify any new phenomenon that were illuminated through the application of

these measures.

1.3 Organization of Thesis

This thesis is presented in six chapters. Chapter 2 presents a semi-chronological

review of the background literature on laminar mixing theory, including developments

in the kinematic study of flow, the application of continuum mechanics to flow studies,

and developments in chaotic flows.

Chapter 3 begins with a review of continuum mechanics, which will serve as the

foundation for the theoretical analysis of mixing in this work, with a special focus

on the eigenvalue/eigenvector decomposition of the rate-of-deformation tensor D as

well as measures of mixing which have been derived by other authors. Following

this, theoretical development for the twirl tensor T and orientation factors will be

discussed. These parameters are the main theoretical contribution of this work.

3



Chapter 4 presents the flow field models used to demonstrate the functionality of

the newly derived measures in the idealized flow field models. Procedures used for

attaining velocity field solutions are discussed. Fluid-fluid interface tracking within

the flow field domains is also discussed.

Chapter 5 reports on the application of the new measures applied to fundamental

stretching regimes. Interface stretching, stretching rate, orientation, principal direc-

tion orientation, velocity orientation, twirl magnitude, first interface/velocity orienta-

tion factor, and second interface/velocity orientation factor are studied in these flow

field models.

Chapter 6 summarizes conclusions drawn from the theoretical and numerical work

in previous chapters. A discussion is presented on the effectiveness of these new

theoretical measures for describing distributive laminar mixing and possible future

directions for this work.
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Chapter 2: Background

This chapter presents a semi-chronological development of the measurement and char-

acterization of distributive mixing. First, definitions for mixing are presented, fol-

lowed by the developments for kinematical measures of mixing and a brief review of

the contributions of continuum mechanics to mixing. A more detailed exploration of

continuum mechanics follows in Chapter 3. Finally, a discussion on chaotic advection

in mixing, which has proven to be the most effective type of mixing in the laminar

flow regime, is discussed.

2.1 Mixing

Tadmor and Gogos present a good description of the two mixing types in Principles

of Polymer Mixing [28]. The first type of mixing, termed distributive (also laminar-

or extensive-) mixing, refers to mixing accomplished by the spatial distribution of a

minor component into a major, both of which lack cohesive character. Ideal mixing

in the distributive type leads to a homogeneous spatial distribution of the minor

component (in this case a fluid with equivalent properties to the major component) in

the major component to scales at which molecular diffusion has relevance. The second

type of mixing, termed dispersive (or intensive) mixing, involves the reduction in size

of the minor component immersed in the major component. In dispersive mixing,

the shared boundary between major and minor components has cohesive character.

Cohesive character arises in the mixing of solid agglomerates, non-compatible fluid

species, and gaseous bubbles in the major component. The cohesive character take

the form of van der Waals forces, elastic properties, or surface tensions. Furthermore,

while the mechanisms for distributive and dispersive mixing differ, the end result of

both types converges to the complete homogenous spatial distribution of the smallest

possible units of the minor component in the major component.
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Figure 2.1: Illustration of Distributive and Dispersive Mixing [28]

2.2 Kinematics

The core of this study focuses exclusively on distributive mixing. Descriptions and

characterization schemes for the quality of distributive mixing have been proposed by

a number of authors. The first author to do this for distributive mixing was Brothman

[3], who recognized the relationship between the area shared between two immiscible

fluid species and the quality of mixing. Spencer and Wiley [27] then advanced this

model to a two-parameter metric based on the shared intermaterial (interface area)

area between fluid components as well as the the distribution of the intermaterial

area in the mixing domain. An alternate approach proposed by Danckwerts [7] clas-

sifies distributive growth with a related two-parameter metric based on the intensity

of segregation and the scale of segregation. The former parameter, the intensity of

segregation, is a measure of the deviance of local volumetric ratio of major and minor

components to the global volumetric ratio. The latter parameter, the scale of segrega-

tion, is a measure of the striation thickness, which is inversely related to intermaterial

area. In both cases, both a measure of the shared area and distribution of the area

play critical roles in expressing mixing quality. These measures retain significance
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in a variety of mixing fields including both deterministic and chaotic mixing and are

therefore the preferred definition for mixing in this work.

Early kinematical descriptions of mixing were proposed by Spencer and Wiley [27]

and later by Lewis Erwin. The first studies of laminar flow were based on interface

area growth in simple shear. Spencer and Wiley considered the deformation of an

interface element in simple shear. As stated before, the improvement in mixing de-

pended on the creation of interface area and the improvement of the area distribution

of the mixing domain. In this study, Spencer and Wiley found interfacial area growth

to be a function of the magnitude of the shearing rate and the initial orientation of

the interface. It was determined that in a deterministic flow field (a mixing domain

in which deformation can be exactly calculated at any time with an initial state),

knowledge of the initial state and shearing rate is sufficient to exactly calculate the

deformed state at any time t later. Spencer and Wiley found a simple expression for

area growth under strain:

A

Ai
=

√
1− 2 (γ̇t)n1n2 + (γ̇t)2 n2

1 (2.2.1)

where final interfacial area A is a function of initial area Ai, strain rate γ̇, imparted

strain γ̇t, and the normal area orientation n = {n1, n2, n3}. In general, for mixing

processes involving polymers or other high viscosity fluids, high imparted shear γ is

preferred to improve the generation and distribution of intermaterial area. Under

these conditions (2.2.1) reduces to:

A

Ai
= (γ̇t)n1 (2.2.2)

Equation (2.2.2) shows that intermaterial area growth in simple shear flow is

approximately linear with respect to time t for large imparted strain γ̇t, resulting

in a linear relationship between imparted shear and interface area growth. For a

period of about 25 years, the field of mixing assumed that material stretching was
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limited by the imparted shear. Therefore, the task of an engineer was to improve γ̇t

by seeking higher shear rates γ̇ to keep production time and mixer size reasonable.

Mohr, Saxson, and Jepson published several papers on the topic of high viscosity

mixing using simple shear [18, 19]. While Spencer and Wiley were able to calculate

exactly interface growth in simple shear, most other types of flow become quickly

intractable, and only with the advent of high power computational fluid dynamics has

the analytical calculation of mixing parameters in these domains become possible.

Later, in the late 1970’s, Lewis Erwin [10] defined an upper bound for the increase

in the length of an interface in shear flow for large deformations and showed the

importance of the orientation of the interface with respect to the principal directions

of the deformation tensor [8]. In this work, Erwin derived an equation for the growth

of interface surface area with respect to an arbitrary three-dimensional local shear of

finite magnitude.

Af
Ai

=

√
cos2 β1
λ21

+
cos2 β2
λ22

+
cos2 β3
λ23

(2.2.3)

where the direction cosine terms cos2 βi represent the relative projection between

the components of the vector normal to the material area and the principal directions

of the strain tensor, and λ terms represent the magnitude of the principal extension

ratios (eigenvalues of the rate of deformation tensor), a function of the local shear.

The most intriguing result of this work showed that a mixer which optimized interface

orientation with respect to the principal triad at all times would impart maximum

possible interface growth, and that this growth would exhibit an exponential rate, the

bounding rate for streamline mixing. He went on to explore several classes of flow

including shear flow, pure extensional flow, and plane extensional flow, and found

that in the case of pure extension, interface stretching was maximized, although

in practice these stretching rates can rarely be realized. Erwin [9] also explored the

effect of forced interfacial reorientation relative to a fixed shear flow. This experiment

revealed that the ratio of the area A to initial area Ai was a function of both shearing
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rate γ̇ and the number of reorientations N .

A

Ai
=

[
γ̇t

N

]N
(2.2.4)

Furthermore, in extensional flows, with a large number of reorientations and good

choice in initial orientation, the growth rate of the interface can asymptotically ap-

proach an exponential value, resulting in a higher than linear rate typically found in

shear flows. This property is the reason for the paddles, fins, vanes, etc. in batch

mixers and the various geometries of mixing elements found in ram-type extruders.

Many interfacial growth measurement schemes rely on the kinematical approach

to measure mixing by the study of the interface growth history with respect to time.

While this technique can describe changes in fluid interfaces in time, it fails to ex-

plore the underlying mechanisms that induce these deformations. Ultimately this

technique is limited in its ability to explain observed mixing phenomenon and cannot

be effectively used for the generation of new mixing geometries.

2.3 Continuum Mechanics

Ottino, Ranz and Macasko [23, 24] proposed the first application of continuum me-

chanics to describe fluid-fluid mixing. This framework provides the mathematical

foundation necessary to describe the mechanisms by which fluid deformation is in-

duced. A more complete description of continuum mechanics is introduced in Chapter

3. In the continuum mechanics framework, Ottino, Ranz, and Macasko derived an

expression for mixing efficiency eL by noting an upper bound on the instantaneous

normalized rate of stretching of the rate of deformation tensor D and the unit interface

orientation vector m.

ξ =
dṡ

ds
= m · D ·m ≤

√
D : D (2.3.1)

The mixing efficiency eL is therefore a ratio of the instantaneous normalized
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stretching rate to the maximum instantaneous normalized stretching rate.

eL =
ξ√
D : D

(2.3.2)

This measure of the efficiency of mixing was used by Ottino and Chella [4, 5, 20]

to evaluate different classes of cavity flow.

With the development of powerful numerical techniques and computing hard-

ware, the study of mixing with numerical simulation using computation fluid dynam-

ics (CFD) produced a number of insights into fluid deformation in flows otherwise

unachievable by experimental means. Furthermore, numerical modeling of mixing

processes has provided a low cost and time efficient method for exploring the ef-

fects of design and processing conditions on mixing performance without the need

for complex experimental setups. However, while the numerical domain may allow

improvement over ”guess and check” methods, there are still limitations on accuracy

and the potential for computational artifacts generated that must be considered when

using CFD.

2.4 Chaos

The concept of chaotic mixing was introduced by Hassan Aref [1]. In his 1984 pub-

lication, Aref reports on complex stretching patterns leading to greater than ex-

pected mixing using two co-rotating periodically blinking vortices (or more formally

a piecewise-constant stirring motion) in a circular cavity. In this experiment, the flow

field was assumed to be steady state at all times. The fluid was assumed to instan-

taneously achieved state during vortex switching. Aref found that in this flow field

model, the phenomenon denoted chaotic advection, produced a stochastic response

in the Lagrangian sense through discontinuous growth resulting from the stream-

line hopping that occurs during vortex switching for certain combinations of vortex

blinking frequency and vortex amplitude. Vortex switching refers to the periodic
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activation/de-activation of the two vortices in the flow. Spencer and Wiley had

previously described this chaotic quality as a result of a randomizing factor, which

changed an arbitrary fluid parcel configuring with respect to the streamlines, that

can produce greater mixing than typically found in deterministic mixing.

Chien, Rising, and Ottino [6] went on to examine chaotic mixing of lines and

area elements in several classes of cavity flow. (These types of cavity flows were

previously studied by Chella and Ottino [5].) In their work, the authors presented

an experimental apparatus to produce approximately 2D cavity flow driven by wall

motion over a range of Reynolds numbers and cavity aspect ratios for steady and

periodic flows. They experimented with a number of steady flows (single moving wall

(Type I), two opposing walls moving with same velocities (Type II), two opposing

walls with opposite velocities (Type III)) and found three distinct streamline patterns.

A fourth condition was also explored that had alternating motion on two opposing

walls, which was verified to produce chaotic advection. Again, chaotic deformation

was found to be very sensitive to the frequency of wall velocity reversal, wall velocity

amplitude, material location and orientation, and cavity geometry. Ultimately, it was

found that periodic cavity flow (f > 0) was a more efficient mixer than steady cavity

flows (f = 0). Leong and Ottino [15] went on to develop an experimental apparatus

to physically demonstrate these cavity flows.

Ottino [20] in particular found that all 2D chaotic mixers involved two building

blocks, hyperbolic points and elliptic points. In flow, fluid elements are attracted

towards hyperbolic point when approaching from one direction and repelled when

approaching from another direction. Fluid elements circulate about elliptic points.

Using these building blocks, all two dimensional chaotic flow can be characterized.

Movement of fluid parcels in fluid flows with these points is the indicator of chaos.

For example, in an arbitrary velocity field configuration, the fluid parcel will have a

trajectory towards, away, or rotating about a point, and have a completely different
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trajectory in a different velocity field configuration due to changes in the periodic

conditions, leading to chaotic advection. Ottino [21] provides a comprehensive review

of chaos and the connections to turbulent mixing.
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Chapter 3: Theory

3.1 Continuum Mechanics

In previous works, the understanding of mixing has been progressed in two ways,

first from the kinematical description and later with the application of continuum

mechanics. The kinematical approach for the description of mixing, discussed in

more detail in Chapter 2, defines material stretching as a function of the stretching

history of a Lagrangian particle. The latter approach applies continuum mechanics

principles to explore the mechanisms of mixing using Eulerian flow field properties,

which can be used to quantify how and why mixing is occurring but cannot easily

describe the mixing itself. This approach has become increasingly popular with the

development of computational fluid dynamics (CFD) techniques. In this work, the

analysis of mixing is conducted using the principal directions (or more formally the

eigenvectors) of relevant continuum mechanics parameters and how these mechanisms

act on a intermaterial interface in the flow. First, a framework will be presented on

the parameters and definitions for the continuum mechanics used in this work. Next,

the expression and meaning for the new parameter ”twirl” will be introduced. Finally,

new measures are derived for expressing material deformation in a continuous flow

field.

The continuum mechanics principles used follow those given in Nonlinear Solid

Mechanics: A Continuum Approach for Engineering [14], Introduction to the Me-

chanics of a Continuous Media [16], Mixing and Compounding of Polymers [17], and

Incompressible Flow [25].

3.1.1 Coordinate Descriptions

Within fluid mechanics, a continuum of fluid can be described using a number of

different coordinate systems. In this thesis, only two coordinate systems will be used.
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The first coordinate system is the Eulerian description, which describes fluid motion

in space and time relative to a origin at an arbitrary spatial position. All other

positions are described relative to that position by the vector x and time t, where

x = {x1, x2, x3}. The second coordinate system of interest is the Lagrangian system.

This coordinate system fixes a coordinate system to an arbitrary particle moving in

the continuum and describes all other positions relative to this reference state by the

vector X and time t, where X = {X1, X2, X3}. In general, lower case characters

refer to parameters in the Eulerian description and upper case characters refer to

parameters in the Lagrangian description. An analogy to relate these coordinate

systems is to image ones self at a theme park, an observer waiting in line watching

a roller coaster is in the Eulerian coordinate description where as an observer on the

roller coaster looking out is in the Lagrangian coordinate description.

Because both Eulerian and Lagrangian coordinate systems are in the same contin-

uum, it is necessary to relate one to the other in order to relate properties described

in the Eulerian system to a particular particle in the Lagrangian system. If both

coordinate systems are of the cartesian type, then they can be related as follows:

dx = F · dX (3.1.1)

Choose X to represent the initial (or undeformed) Lagrangian coordinate at t0 =

0, then the deformation gradient tensor F transforms the material vector dX into a

deformed spatial vector dx at some later time (t > 0) at the Eulerian coordinate x.

Conversely, this expression can be rewritten to express the transformation from the

deformed state dx to the undeformed state dX as follows:

dX = F−1 · dx (3.1.2)

Figure 3.1 is a representation of the transformation from the undeformed La-

grangian state dX (X, t0) to the deformed Eulerian state dx (x, t0 + ∆t).
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Figure 3.1: Lagrangian to Eulerian Coordinate Transformation

3.1.2 Material Derivative

Depending on the coordinate system used in the definition of a given parameter,

it is preferred to perform some operations in the Lagrangian configuration, while

for others, in the Eulerian configuration. An operation used extensively in future

discussion is the material derivative of a spatial quantity. This operation relates the

material and local time derivatives. The material derivative, for a Eulerian scalar-

valued parameter a, vector-valued parameter a, and tensor-valued parameter A are

defined as follows:

ȧ =
Da

Dt
=
∂a

∂t
+ (u · ∇) a (3.1.3)

ȧ =
Da

Dt
=
∂a

∂t
+ (u · ∇)a (3.1.4)

Ȧ =
DA
Dt

=
∂A
∂t

+ (u · ∇)A (3.1.5)

Note that (u · ∇)a is a vector and (u · ∇)A is a tensor because the operator u ·∇

is scalar and operates on each terms of a and A independently.
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3.1.3 Flow Descriptions

In general, it is easier to express a fluid velocity field in the Eulerian system rather

than the Lagrangian system. An example is the velocity fields obtained through

solutions to the Naiver-Stokes equations which is a function of the spatial velocity

field u = u (x, t), where u = {u1, u2, u3}.

Furthermore, while the velocity field u is sufficient to describe the movement

of a fluid parcel in a flow domain, it is not sufficient on its own to describe the

local deformation of that fluid parcel. To express the mechanisms for local fluid

deformation, the local gradient of the velocity is also needed. This is expressed using

the velocity gradient tensor L, which is defined as follows:

L = ∇⊗ u (3.1.6)

The velocity gradient tensor can be decomposed into the sum of its symmetric

and skew-symmetric components, the rate of deformation tensor D (also known as

the strain rate tensor or strain tensor) and the vorticity tensor W (also known as the

rotation tensor) respectively.

L = D +W (3.1.7)

The rate of deformation tensor D is the mechanism for deformation and stretching.

The vorticity tensor W is the mechanism for rotation. Formally, D and W are

expressed as:

D =
L+ LT

2
(3.1.8)

W =
L − LT

2
(3.1.9)

In the 2D case, the form of the rate of deformation tensor D can be simplified using

dilatation. Dilatation e is equivalently zero for all flows because fluids are considered

to be incompressible. Using the definition provided by Malvern, e ≡ tr (D). Under

incompressibility, the on-diagonal elements (also known as the unit strains) of D are
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found to be related by D11 = −D22. By the definition of the rate of deformation

tensor D, the off diagonal terms (also known as the shear strains) are related by

D12 = D21.

3.1.4 Interface Growth

The growth of a fluid-fluid interface is approximated using an infinitesimal element of

the interface represented by the material vector dx = dsp which is locally tangent to

the fluid-fluid interface at all points along the interface. ds and p are the magnitude

and unit orientation of dx respectively. The square rate of change of the length can

be described as follows:

d

dt

(
ds2
)

= 2dx · D · dx (3.1.10)

This can be expressed in the alternate form:

ξ =
dṡ

ds
= p · D · p (3.1.11)

Note that ξ is the interface stretching rate scaled by the interface stretch. It is

important to note that this expression is valid only for small deformations. In the

interest of improving mixing by increasing stretch, it is potentially better to express

stretching in Lagrangian coordinate description. Said differently, the Lagrangian

description expresses the deformation history of a fluid parcel while the Eulerian

description expresses the strain history of a local region. However, the assumption

is made that dx is infinitesimally small, such that even under a large stretch ds, the

interface is still infinitesimally small and only dependent on the local strain conditions.

The material derivative of the material vector dx is:

dẋ = (D +W) · dx (3.1.12)
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The material derivative of the unit material vector p is:

ṗ = (D +W) · p− dṡ

ds
p (3.1.13)

Note that temporal derivates of dx and p in (3.1.12) and (3.1.13) are not included

because of the steady state assumption. While the fluid can still accelerate spatially,

the fluid velocity at a particular point does not change with respect to time. In future

work using transient flow field models, the inclusion of temporally dependent terms

is necessary.

3.1.5 Principal Directions of D

As stated before, the rate of deformation tensor is the means of describing for stretch-

ing and deformation in a fluid. Since D is a 3D, symmetric, real valued tensor, it

possess three real valued eigenvalue/eigenvector pairs, also known as the principal val-

ues and principal directions. λi are the eigenvalues of D, and di are the corresponding

eigenvectors. These eigenvector-eigenvalue pairs are defined by the following defini-

tion:

D · di = λidi (3.1.14)

Note that eigenvalues λ1, λ2, and λ3 and corresponding eigenvectors d1, d2, and d3

are ordered from largest to smallest (λ1 > λ2 > λ3). After solving for the eigenvalue-

vector pairs using (3.1.14), the rate of deformation tensor can be diagonalized using

a rotation tensor A composed of the three eigenvectors such that A = {d1,d2,d3}.

Rotation of the rate of deformation tensor D by the rotation tensor A yields:

D′ = A−1 · D · A (3.1.15)

Since D is real and symmetric, D′ will be diagonal with elements equal to the
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three eigenvalues in the principal coordinates.

D′ =


λ1 0 0

0 λ2 0

0 0 λ3

 (3.1.16)

Under this configuration, interface stretching will resemble extensional stretching.

In the extensional stretching regime, any interface parallel to one of the eigenvector

experiences the greatest amount of growth (at an exponential rate) relative to other

nearby orientations. As a result of the ordering of eigenvector values, an interface

parallel to d1 grows at a larger rate than d2 will grows at a greater rate than d3. All

other orientations experience a stretch rate between zero and exponential. [10]

The incompressible continuity equation (∇ · u = 0), implicitly states that the

summation of eigenvalues must be zero.

λ1 + λ2 + λ3 = 0 (3.1.17)

At this point, special consideration will be given to the 2D case. In 2D, the

third eigenvalue and its corresponding eigenvector are λ3 = 0 and d3 = {0, 0, 0}. In

the 2D case, (3.1.17) proves to be very useful. Application of the conversation of

mass relationship using (3.1.17) reveals that λ1 = −λ2. In this case, we find that

the normalized stretching rate is bounded between λ1 < ξ < λ2. Furthermore, the

maximum stretching rate ε̇, which is equivalent to λ1, is a function of the magnitude

of D.

ε̇ =

√
D : D

2
(3.1.18)

Returning to the generalized 3D case, the normalized rate of infinitesimal line

growth ξ, given in (3.1.11), is shown to be bounded by the Cauchy-Schwartz inequal-

ity.

ξ =
dṡ

ds
≤
√
D : D (3.1.19)
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Maximum material vector stretching (ξ = λ1) occurs when the vector is parallel to

d1 at a rate of λ1. Minimum stretching occurs when the orientation is parallel to d3, at

a rate of λ3. Again, the order of the eigenvalues is chosen such that λ3 < λ2 < λ1. Two

measures have been proposed by Ottino and Chella [22], and Ottino respectively to

measure the efficiency of material stretching using the normalized material stretching

rate ξ of a material vector and the rate of deformation tensor magnitude
√
D : D

eL =
ξ√
D : D

(3.1.20)

Ottino and Chella also defined a second measure to measure efficiency by com-

paring the ratio of normalized stretching rate ξ by the maximum eigenvalue λ1. This

proved necessary because the eL is always less than one, so the meaning of efficiency

becomes somewhat lost.

ηL =
ξ

λ1
(3.1.21)

These two expressions of stretching efficiency are functions of the alignment be-

tween material vector and maximum principal direction. The line stretch efficiency

eL, proposed by Ottino, is found to always be less than the Cauchy-Schwartz inequal-

ity unless all eigenvalues are equivalently zero (λ1 = λ2 = λ3 = 0), and is therefore

not useful for the indication of optimal stretching. Alternatively, the latter parameter

ηL, proposed by Ottino and Chella, is bounded by the largest eigenvector and not the

magnitude of D and therefore indicates optimal stretching (ξ = λ1) when ηL = 1. In

the 2D case, these measures are related as follows:

ηL
eL

=
√

2 (3.1.22)

3.2 Material Derivative of di

Previous authors have developed expressions for the rate of change of the unit material

vector p. The derivation of this term is shown earlier in this chapter in equation
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(3.1.13). In order to examine changes in the relative relationship between the material

vector p and the maximum eigenvector d1, both the rate of change of the material

vector ṗ and the rate of change of the maximum eigenvector, denoted by ḋ1 are

needed. Later in this chapter, expressions will be derived that utilize the rate of

change ṗ projected onto d1 and the rate of change ḋ1 projected onto p. In the

literature, little attention has been given to the material derivative of the rate of

deformation tensor D eigenvectors. Earlier authors [24] have incorrectly defined the

rate of change of the the eigenvectors ḋi as follows:

ḋi =W · di i = 1, 2, 3 (3.2.1)

Consideration of a fluid element on a streamline in uniform shear readily shows

this relationship does not hold. In uniform shear, the eigenvectors of D remain fixed

at all times, 45◦ to the shearing direction [2]. However, for a non-zero shearing

rate, vorticity is also non-zero. Therefore, (3.2.1) would indicate a constant non-zero

rotation of the eigenvector set {d1,d2,d3} through space. Therefore, there is need

for a new parameter to properly describe the rotation of the eigenvectors di. This

tensor-valued parameter will be denoted as the twirl tensor T . The twirl tensor is

skew-symmetric. It should be noted that this tensor has a symmetric counterpart,

but this will not be discussed in this thesis. The twirl tensor is then defined as the

mapping of the eigenvector di to its material derivative ḋi.

ḋi = T · di i = 1, 2, 3 (3.2.2)

Building off the work by Guo and Liang [12, 13] for the derivation of the material

derivative of the 3D deformation tensor eigenvectors, a new 2D tensor for the expres-

sion of the rotation of the rate-of-deformation eigenvectors has been derived. The

step-by-step derivation of the twirl tensor can be found in Appendix A. Presented

below is a brief discussion detailing the major steps required to to find the value of

21



twirl. Starting an expression for the deformation tensor:

D =
∑
a,b

λaδabda ⊗ db (3.2.3)

Denote the rate of deformation tensor material derivative and twirl tensor:

Ḋ =
∑
a,b

Ḋabda ⊗ db (3.2.4)

T =
∑
a,b

Tabda ⊗ db (3.2.5)

Application of a identity shown in the appendix to these definitions then yields:

Tab =
Ḋab − λ̇aδab
λb − λa

(3.2.6)

Following more manipulation and simplification of expression (3.2.6) yields the

final form of twirl tensor T , which is a function of the rate-of-deformation tensor D,

the material derivative of the rate-of-deformation tensor Ḋ, and the maximum local

stretching rate ε̇ (under the assumptions λ1 = ε̇ and λ2 = −ε̇).

T =
Ḋ · D − D · Ḋ

4ε̇2
(3.2.7)

The twirl tensor is a spatial tensor that can be calculated at all points where the

rate-of-deformation tensor is defined and non-zero. A new term, spatial variance,

is used to describe regions in which the magnitude of twirl is non zero. Regions in

which the magnitude of twirl is non zero are critical to improved material stretching.

First, regions of spatial variance can generate rapid changes in the rate of interface

stretching with little change in the interface orientation, resulting in regions of greater-

than-linear growth rates in continuous velocity fields. Second, spatial variance allows

for the transition of interface rotation behavior from shear-like to extensional-like

behavior in continuous flow fields, resulting in a change in the equilibrium behavior

of a material interface. Interestingly, following a similar procedure used to derive
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(3.2.7), the rate of change of the maximum normalized stretching rate is shown to

take the following form (for the 2D incompressible case where λ1 = −λ2 = ε̇):

ε̈ =
Ḋ : D

2ε̇2
(3.2.8)

Given (3.1.13) and (3.2.7), new measures relating material orientation to the eigen-

vectors of the rate of deformation tensor can be derived.

3.3 Equilibrium Orientations

In any given flow, there can exist orientations along which a material vector does not

rotate. This orientation is defined by angle θ, which is the angle between the material

vector and the positive horizontal axis. These are called equilibrium orientations.

The concept of these orientations is described in Charles L. Tuckers chapter [17].

In this work, two types of equilibrium orientations are defined; stable equilibrium

orientations and unstable equilibrium orientations. As a material element approaches

stable equilibrium, a material vector asymptotically approaches this orientation as

time goes to infinity. Alternatively, an unstable equilibrium orientation has a zero

rotation rate (as does the stable equilibrium orientation as a material element fully

aligns) but is not an orientation to which a material element will asymptotically

approach. To determine stable and unstable equilibrium orientations, θ̈ is needed.

Numerous authors have shown the equilibrium orientation in simple shear flow

is parallel to the shearing direction, which results in poor material stretching. In

extensional flow, the equilibrium orientation is parallel to the maximum eigenvector

orientation. Equilibrium orientations are found by solving the material derivative of

a unit material vector for the angle at which it will not rotate. To do this, begin by
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defining the material vector with components S = sin (θ (t)) and C = cos (θ (t)).

p =

 C

S

 (3.3.1)

Then expand the material derivative of the material vector (3.1.13) into its com-

ponent form using (3.3.1): −θ̇Sθ̇C
 =

 D11C +D12S +W12S − (D11C
2 + 2D12CS +D22S

2)C

D12C +D22S +W21C − (D11C
2 + 2D12CS +D22S

2)S

 (3.3.2)

Multiplication of −θ̇S by −S, θ̇C by C, substituting D22 = −D11, and W21 =

−W12 yields. θ̇S2

θ̇C2

 =

 −D11CS −D12S
2 −W12S

2 + (D11C
2 + 2D12CS −D11S

2)CS

D12C
2 −D11CS −W12C

2 − (D11C
2 + 2D12CS −D11S

2)CS


(3.3.3)

Adding these two equations yields:

θ̇ = −2D11CS +D12

(
1− 2S2

)
−W12 (3.3.4)

Expanding this equation in terms of the unit strain and shear strain yields:

θ̇ = −2ε̇CS − γ̇xS2 + γ̇yC
2 (3.3.5)

where ε̇ is the unit strain equivalent to D11, γ̇x is the shear strain in the x direction

equivalent to D12, and γ̇y is the shear strain in the y direction equivalent to D21.

This general equation can be simplified in the presence of several simple stretching

regimes. In simple shear with velocity in the horizontal direction, ε̇ = 0, γ̇x = γ̇,

γ̇y = 0. Under these conditions, (3.3.5) reduces to:

θ̇ = −γ̇ sin2 (θ) (3.3.6)
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In this flow regime, it can be shown that the interface dx is not rotating when

the material vector is at θ = 0◦ or θ = 180◦ (parallel or anti-parallel to the velocity

orientation). However, depending on the initial angle θ of the material vector p,

only one of these orientations is stable, and the other is unstable. Along a stable

orientation, the rotation due to vorticiy and the rate of deformation tensor are in

balance. Conversely, at the unstable orientation, rotation due to vorticity and rotation

due to the rate of deformation tensor are not in balance. Alternatively, in extensional

flow, ε̇ = ε̇, γ̇x = γ̇y = 0. (3.3.5) then reduces to:

θ̇ = −2ε̇ sin (θ) cos (θ) = −ε̇ sin (2θ) (3.3.7)

In the extensional flow regime, the interface experiences zero rotation at the four

locations, θ = 0◦, θ = 90◦, θ = 180◦, and θ = 270◦. Again, not all of these orientations

are stable.

One final consideration of the equilibrium orientation expressions is during a flow

situation where both normal strain and shear strain are considered. The general

equation takes the form:

θ̇ = −ε̇ sin (2θ)− γ̇x sin2 (θ) + γ̇y cos2 (θ) (3.3.8)

This situation arises when a material element is traveling along a curved stream-

line. Solving this expression for θ̇ = 0 provides the equilibrium orientations for a

general 2D incompressible flow. However, not all combinations of arbitrarily chosen

{ε̇, γ̇x, γ̇y} will produce equilibrium orientations. As shown before, for simple flow

conditions, some terms can be neglected, which aids in finding equilibrium positions.

One example of a situation under which no equilibrium position exists is a point vor-

tex where the velocity profile is given by u = −yî + xĵ. Under this velocity profile,

horizontal shear strain is γ̇x = −1 and vertical shear strain is γ̇y = 1. (3.3.8) then

becomes θ̇ = 1.
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3.4 Orientation Factor

This focus of this work is to explore the stretching of a fluid-fluid interface element in

continuous velocity fields using the eigenvectors of the rate of deformation tensor D.

In order to explore this relationship, expressions for the relation of material stretching

of a material vector in terms of the eigenvectors of D are necessary. These expressions

are derived in terms of the material vector p, the maximum eigenvector d1, the rate

of deformation tensor D, the vorticity tensor W , and the new tensor twirl T , which

was derived earlier.

As discussed in previous sections, available kinematic measures are not sufficient

to express mechanisms of deformation across the entirety of the velocity field do-

main. Alternatively, continuum mechanics measures can describe the mechanisms of

deformation across the velocity field domain but are not sufficient to describe the

deformation of a fluid element within the velocity field. Therefore, measures must

be developed that use the only relevant coordinate system available, the eigenvectors

{d1,d2,d3} of the rate-of-deformation tensor D, as a coordinate system to explore

mixing as a function of these parameters along streamlines. Two sets of measures

are derived in this coordinate system. The first set of expressions, the interface ori-

entation factor measures, which are denoted by Op and Ȯp, study changes of the

fluid-fluid interface element p as a function of the local velocity field. Substitution of

these measure into previously discussed kinematical measure provides additional in-

sight into the driving mechanisms behind deformation in these measures, shifting the

perspective from an arbitrary spatial coordinate system to a more physically relevant

coordinate system. This permits the analysis of a variety of incompressible laminar

regime flows, provided that the flow fields being studied remain continuous in space

and in time.

The second set of expressions, the velocity orientation factor measures denoted by
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Ȯu and Ȯu, study the shear-equilibrium behavior of an interface. Expressed differ-

ently, the velocity orientation factor measures illustrate interface behavior as if the

interface is parallel to the velocity (or shearing direction in a pure shear flow). These

measures are useful for exploring interface stretching as a function of the mixing

potential of the velocity field in a shear alignment, the alignment that in commonly

found at long times in flows with non-zero shearing. These measures can be especially

useful in cases where the behavior of an arbitrarily aligned interface is not useful and

the potential of a velocity field for interface stretching is still needed.

The first measure of each set, denoted as the first interface orientation factor Op

and the first velocity orientation factor Ou, are functions of the respective material

orientation and the maximum eigenvector d1. In the general case, the first orientation

factor is defined as the inner product of the maximum eigenvector d1 and an arbitrary

material vector φ. This expression is:

O (φ) = φ · d1 (3.4.1)

At a fundamental level, the first orientation factor Oφ illuminates the relative

spatial relationship between the maximum eigenvector d1 and an arbitrary material

vector φ. With this relationship, the rate of material stretching relative to the maxi-

mum rate of material stretching can be directly demonstrated. The first specific form

of the first orientation factor is the the first interface orientation factor Op, which is

derived by substituting φ = p into (3.4.1),

Op = O (p) = p · d1 (3.4.2)

(3.4.2) relates the relative spatial relationship of the material vector p, which

represents a infinitesimal element along a fluid-fluid interface, and the maximum

stretching orientation. Using the orthogonality property of the principal directions

(d1 · d2 = 0), the value of the first interface orientation can be used to express the
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stretching present in the fluid field. When the material vector is parallel (Op = 1) or

anti-parallel (Op = −1) to the maximum eigenvector d1, the material experiences the

maximum possible local stretching. When the interface is perpendicular (Op = 0) to

the maximum eigenvector (parallel to the minimum eigenvector), the material vector

experiences the maximum possible local contraction. Note that the value of the first

interface orientation factor is always bound by −1 ≤ Op ≤ 1.

There is opportunity to express established stretching expressions as a function of

the first interface orientation factor. Shown below is a common line stretch expression

used by a number of authors:

dṡ

ds
= p · D · p = ε̇ (1− 2Op) (3.4.3)

Using the first interface orientation factor, the instantaneous local stretch equation

can be expressed as a function of the alignment between the principal directions and

the interface element, expressing stretching as a function of the alignment between

material and principal directions.

Another measure, defined as the mixing efficiency (eL), was originally put forth

by Ottino [23, 24] as a natural bound on local mixing. Ottino found that the local

instantaneous rate of stretch for viscous fluids is related to the local viscous dissipa-

tion.

eL =
p · D · p√
D : D

= (1− 2Op) (3.4.4)

This relationship holds for both Newtonian and power law fluids, but becomes

more complicated for fluids with other constitutive equations. Mixing efficiency was

then used by Chella and Ottino [4, 5, 22] to describe the efficiency of intermaterial

stretching in a variety of mixing domains for the identification of good and bad mixing.

By substituting in the first material orientation factor, the measure can be reduced to

a function of the spatial relationship between interface and eigenvector orientation.

The second specific form of the first general orientation measure, denoted as the
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first velocity orientation factor (Ou), is defined by substituting the unit velocity ori-

entation u into (3.4.1).

Ou = O (u) = u · d1 (3.4.5)

Unlike the first interface orientation factor, the first velocity orientation factor

is entirely a function of spatial parameters. In one respect, this measure can be

seen as an expression for the potential mixing available in a flow at a particular

point. As discussed, in simple deterministic flows, a material element converges to

the stable equilibrium orientation. In both extensional and shear stretching regimes,

this corresponds to the velocity orientation. Therefore, in these flows, the first velocity

orientation factor immediate shows the potential for long time stretching in the local

regime. Even in complex flows where stable equilibrium orientations do not lie parallel

to the velocity orientation or do not exist, the material parallel or asymptotically

approaching parallel to the velocity gives some indication to the imparted stretch for

material elements which have converged to a shear-like orientation. This allows for an

exploration of stretching potential independent of knowledge of the material element.

The first interface and first velocity orientation factor measures provide insight

about the relationship between interface/velocity orientation relative to the maxi-

mum eigenvector of the rate of deformation tensor. However, it is also necessary to

understand how these values are changing during material deformation in order to

characterize changes in stretching regime and possible sources of material reorienta-

tion during flow. Again, a focus of this thesis is to identify reorientation phenomena

in continuous flow fields where artificial reorientation due to piecewise continuous ve-

locity fields are not an option and not physically realistic. Two more measures can be

defined which express the rate of change of the first interface and first velocity orienta-

tion factors, which will be noted the second interface and second velocity orientation

factors. Derivation begins with the material derivative of the first general orientation

factor with the substitution of (3.1.13) and (3.2.7) for φ̇ and ḋ respectively.

29



Ȯ (φ) = d1 · φ̇+ ḋ1 · φ (3.4.6)

Ȯ (φ) = d1 · [D − (φ · D · φ) I +W ] · φ+ φ · T · d1 (3.4.7)

The above expression makes use of the first principal direction d1, the rate of

deformation tensor D, the vorticity tensor W , the twirl tensor T and the identity

tensor I. The magnitude of the second orientation factor has contributions from two

sources; the change in the vector of interest (the local interface orientation or the

unit velocity orientation) projected onto the first principal direction and the change

in the principal direction projected onto the local material interface orientation. The

latter of these terms includes twirl, generating a wealth of information on the effects

of spatially varying (non-zero twirl) velocity fields on interface growth. As the sum of

these two relative motions, the second orientation factor expresses the rate of change

of the first orientation factor, allowing for the characterization of regions of rapid

stretching rate change. With this, deformation mechanisms present in a velocity field

can now be characterized with the addition of twirl, indicating regions of potentially

rapid interface stretching rate change with little observable effect in local interface

orientation

Two specific forms of the second orientation factor are of interest, the second

interface orientation factor (Ȯp) and the second velocity orientation factor (Ȯu). The

second interface orientation factor is derived through the substitution of the unit

interface orientation p into (3.4.7). Note that this expression has been condensed

from the form presented above.

Ȯp = d1 · [D − (p · D · p) I +W − T ] · p (3.4.8)

Similarly, the second velocity orientation factor is derived through the substitution
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of the local unit velocity orientation u into(3.4.7).

Ȯu = d1 · [D − (u · D · u) I +W − T ] · u (3.4.9)

While the first orientation factor measures ((3.4.2) and (3.4.5) respectively) pro-

vide insight into the spatial relationship between the interface and the principal di-

rections, the true effectiveness of twirl becomes apparent using the second orientation

factor measures. In a spatially varying velocity field (velocity fields with non-trivial

twirl), there is potential for the principal directions to change without significant

change in the orientation of the velocity, resulting in a change in stretching regime

without a change in interface rotation (assuming the interface has already converged

to some well behaved orientation), resulting in different growth regimes for little ap-

parent change in stretching. Using these measures, these changes can be explored in

a variety of velocity fields.
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Chapter 4: Numerical Modeling

The application and subsequent analysis of the orientation factor measures derived

earlier was done computationally. Computational fluid dynamics (CFD) presents an

opportunity to study these measures in new flow field models and operating condi-

tions through rapid implementation of new code. Using these results, the effectiveness

of these measures for the description of mixing mechanisms can be evaluated. Nu-

merical modeling of material deformation was accomplished in two stages. First, a

steady state velocity field was generated for the flow field model. The technique used

to generate the velocity field solutions varies between flow field models. Velocity

field solutions were validated against the literature. Once an acceptable solution was

generated which satisfied literature comparisons and convergence criteria (when ap-

plicable), an interface-tracking scheme was applied to simulate material deformation

in the velocity field. Velocity field solution techniques are discussed in this chapter.

The results of material deformation in these velocity fields is discussed in the following

chapter.

All code and numerical modeling was done in MATLAB 2012a. In general, gen-

erated data was exported to separate files for later use.

Flow field models were chosen because of the wide range of material stretching

regimes they collectively contain. Three flow field models were chosen to cover the

spectrum of deterministic laminar stretching regimes, the Couette channel, the diverg-

ing channel, and the lid driven cavity. The flow field models contain pure shearing,

pure extensional and mixed shear-extensional, and pure extensional, non-spatially

variant mixed shear-extensional, and spatially variant mixed shear-extensional re-

spectively. Again, spatial variance refers to regions of space where ||T || 6= 0 along a

streamline. The study of spatial variance is important because of the potential for

rapid material vector orientation change with little change in the principal directions,
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or alternatively little change in the material vector orientation with rapid changes in

the principal directions.

In each flow field model, continuous stretching (in time and space) is studied.

While experiments on discontinuous stretching have been performed in the past

[9, 8, 10, 11] and are informative regarding the nature of interfacial reorientation,

they do not adequately reflect the mechanisms found in real world (continuous) mix-

ing operations. The following flow field models are constrained to two dimensions.

Fluid species are incompressible, immiscible, with homogeneously distributed mate-

rial properties throughout the domain enclosed by the velocity field. Fluid viscosity

is assumed high, with a correspondingly low Reynolds number. All velocity fields are

assumed to be steady state. All solid boundaries are considered impermeable and are

therefore assumed to have no-slip conditions.

4.1 Velocity Field Solution Generation

4.1.1 Couette Channel

The Couette channel flow field model was one of the first models studied for mixing.

However, continuous interface orientation in this flow field model is poor and therefore

not used in mainstream industrial mixing applications.

Flow in the Couette channel is constrained by two non-permeable boundaries at

the top and bottom of the channel. The vertical spatial coordinate is bounded with

0 < y < H, where H is the channel height and y is the vertical height in the channel.

The vertical spatial origin (y = 0) is fixed at the bottom boundary. Position in the

horizontal direction in the channel is arbitrary because all points along a streamline

in the down channel or up-channel direction appear identical to a Lagrangian particle

traveling on a streamline. Therefore the horizontal location of material element does

not need to be defined for deformation analysis. The top wall has a constant non-zero
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velocity of u (x,H) = {U0, 0} in the rightward direction (down channel). The bottom

wall is fixed, u (x, 0) = {0, 0}. The geometry of the flow field model is shown below.

Figure 4.1: Couette Flow Model

The velocity profile generated in this can be found exactly as:

u (x, y) =

{
U0y

H
, 0

}
(4.1.1)

Note that all streamlines are in the down channel direction, also known as the

shearing direction, as a result of the velocity profile.

In the couette channel, the rate of deformation tensor, the vorticity tensor, and

the twirl tensor can be given in closed form.

D =

 0 γ̇

γ̇ 0

 (4.1.2)

W =

 0 γ̇

−γ̇ 0

 (4.1.3)

T =

 0 0

0 0

 (4.1.4)
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4.1.2 Diverging Channel

Material stretching in the diverging channel flow field model is much preferable to the

pure shear stretching present in the Couette channel, but is very difficult to produce

in real world applications. The diverging channel uses a polar (r − θ) coordinate

system, with the origin (r = 0) located at the intersection of the two boundary walls.

There is an angle of 2α between the channel boundaries, where α is defined as the

divergence angle. The flow field model geometry is shown below.

Figure 4.2: Diverging Channel Flow Field Model

The velocity profile for a fixed value of r is calculated using a third order non-linear

differential equation produce by simplifying the Navier-Stokes equation. To derive the

most useful form of this expression, several substitutions are required. First, define

the scaled velocity parameter F (θ), which is a function of the channel radius as the

radial velocity ur and radial displacement r.

F (θ) = ur (r, θ) r (4.1.5)

The Navier-Stokes equation can then be expressed in terms of F (θ):

F ′′′ +
2

ν
FF ′ + 4F ′ = 0 (4.1.6)

Second, introduce the non-dimensional scaled velocity parameter G (θ) which
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scales the F parameter by its centerline value F0 = F (θ).

G (θ) =
F (θ)

F0

=
urr

F0

(4.1.7)

Substitution of G (θ) into (4.1.6) reduces the Navier-Stokes equations to the fol-

lowing form:

G′′′ +
2ρα2F0

µ
GG′ + 4α2G′ = 0 (4.1.8)

The above expressions are functions of the dynamic fluid viscosity µ, fluid density

ρ, the scaled centerline velocity parameter f0, and divergence angle α. The G (θ) field

profile was solved using the ODE45 package in MATLAB. The velocity profile can be

found by reversing the substitutions used to generated the dimensionless equation.

u =

{
GF0

r
, 0

}
(4.1.9)

Note that the velocity is zero in the angular direction, and all streamlines radiate

from the origin in the radial direction.

G (θ) =
F (θ)

F0

=
urr

F0

(4.1.10)

Figure 4.3 is a sample F (θ) profile generated for a set of operating parameters

{F0, α, µ, ρ} = {0.1, 5◦, 10, 1000}. Note that the choice of simulation parameters was

made to ensure that the velocity profile remained approximately parabolic.
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Figure 4.3: Diverging Channel Sample Velocity Profile

More information concerning the velocity profile solution in the diverging channel

can be found in [29].

4.1.3 Lid Driven Cavity

The last 2D velocity field presented was the lid driven cavity flow, an approximation

of the commonly used single screw extruder (SSE) used extensively in the polymer

processing industry. The driven cavity is a well-explored CFD problem with a number

of well-known solution techniques and was one of the first cavity models to demon-

strate chaotic advection [6]. More information concerning this flow field model can

be found in [26]. Transformation between SSE and driven cavity places a coordinate

system attached to the screw of the SSE such that the stationary boundary walls in

the velocity field (left, bottom, and right) are the sides (flights) of the screw and the

moving boundary wall (top) represents the extruder barrel surface. In the 3D case,

the top wall would move diagonally with velocity components in the down-channel

(depth) direction and horizontally (a result of the moving screw). In the 2D case,

the down channel component is neglected such that the top boundary speed is in the
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horizontal direction with a value of u = {U0, 0}.

The cavity chosen has a height H = 1 and width ArH = 15, where Ar is the

aspect ratio (ratio of channel height to width) of the cavity. Figure 4.4 is a diagram

of the lid driven cavity flow field model with streamlines.

Figure 4.4: High Aspect Ratio Lid Driven Cavity Flow Field Model

The velocity field for the 2D lid driven cavity flow field model is obtained using the

stream-vorticity formulation of the Navier-Stokes equation and vorticity equation to

solve for the stream function ψ and vorticity ω in the cavity. This approach reduces

meshing considerations immensely with respect to the pressure-velocity formation

which requires two staggered meshes. Note that the fluid is incompressible and that

fluid viscosity and density are constant throughout the velocity field domain. Further-

more, Re << 1 due to the highly viscous nature of the polymers typically processed

in these machines. The equations (4.1.11) and (4.1.12) are the stream-vorticity form

of the Naiver-Stokes and vorticity equations which need to be solved.

∂ω

∂x

∂ψ

∂y
− ∂ψ

∂x

∂ω

∂y
=

1

Re

(
∂2ω

∂x2
+
∂2ω

∂y2

)
(4.1.11)

∂2ψ

∂x2
+
∂2ψ

∂y2
= −ω (4.1.12)
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Reynolds number for this flow field model is defined as:

Re =
ρU0ArH

µ
(4.1.13)

Where ρ is the fluid density, µ is kinematical fluid viscosity, H is the cavity height,

Ar is the cavity aspect ratio, and U0 is the top wall velocity. The velocity field in

the cavity is considered to be fully developed. For this reason, transient terms were

neglected in this formulation.

The fully developed stream-vorticity formulation of the driven cavity problem was

solved analytically using a second order accurate finite difference scheme. Figure 4.5

shows the second order stencil patterns for the first and second derivatives in the î

and ĵ directions. First order derivatives are approximated using a first order, second

order accurate, central difference. An example of a first derivative in the x direc-

tion by a second order finite difference approximation is shown below in Equation

(4.1.14). Second order derivatives are approximated using a second order, second

order accurate, central difference. An example of a second derivative in the x direc-

tion by a second order finite difference approximation is shown below in Equation

(4.1.15). Figure 4.5 are the stencils used for this scheme. Nodal spacing sp is equal

in the vertical and horizontal directions, producing a square meshing. Therefore the

distance between nodes in the vertical and horizontal directions is δ = sp. Nodes are

categorized into two groups, boundary nodes and interior nodes. Interior nodes are

solved using the cross stencil. Boundary nodes require a separate solution technique

which incorporate boundary conditions along the walls.
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Figure 4.5: Central Finite Difference Stencil (in Nodal Coordinates)

∂φ

∂x
=
φ (x+ sp, y)− φ (x− sp, y)

2sp
(4.1.14)

∂2φ

∂x2
=
φ (x+ sp, y)− 2φ (x, y) + φ (x+ sp, y)

s2p
(4.1.15)

A three step iterative procedure is used to solve the stream function and vorticity

fields until both fields have satisfied predefined convergence criteria. First, vorticity

ω is solved at all interior nodes using the stream-vorticity relationship expressed in

(4.1.12). Second, the stream function ψ is solved at all interior nodes using the

Navier-Stokes equation in (4.1.11). Finally, the boundary conditions for ω and ψ are

updated along all walls using the modified finite difference patterns. This iterative

scheme is repeated until solution convergence criteria have been met. In general, the

solution for a node at (x, y) will use nodal values for nodes at (x− δ, y), (x+ δ, y),

(x, y − δ), and (x, y + δ).

Velocity vector u can then be extracted from ψ using the vector potential definition

for velocity:

u = ∇× ψ =

{
∂ψ

∂y
,−∂ψ

∂y

}
(4.1.16)

Boundary values for both ψ and ω are required for all four boundary walls. ψ is
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identically zero along all four boundaries. ω must be calculated from (4.1.12) at the

start of each solution iteration using a phantom node approach for ψ. The following

process is used to specify the ω value along the left boundary. A similar process will

be used to specify the velocity at the top, right, and bottom boundaries. A solution

can be derived by solving the first order centered finite difference expansion in terms

of ψ (0− δ, y), which is outside of the domain.

ψ (0− δ, y) = ψ (0 + δ, y)− u1 (0, y) δ (4.1.17)

Equation (4.1.12) is then expanded in the horizontal direction. Note that the

vertical terms are dropped because ψ is identically zero along all boundaries.

ω (0, y) = −
(
ψ (0 + δ, y)− 2ψ (0, y) + ψ (0− δ, y)

δ2

)
(4.1.18)

Using ψ (0, y) = 0, u1 (0, y) = 0, and substituting (4.1.17) into (4.1.18) yields:

ω (0, y) = −ψ (0 + δ, y)

δ2
(4.1.19)

Similar boundary conditions are found for the right and bottom boundaries:

ω (ArH, y) = −ψ (ArH − δ, y)

δ2
(4.1.20)

ω (x, 0) = −ψ (x, 0 + δ)

δ2
(4.1.21)

Application of the ω boundary node calculation technique on the moving boundary

(top) incorporating wall speed U0 yields:

ω (x,H) = −ψ (x,H − δ) + 2U0δ

δ2
(4.1.22)

An over-relaxation scheme with relaxation parameter R was implemented along

the boundaries. Due to the low Reynolds number, a relaxation parameter of R = 1

was chosen. For a different set of operational parameters (or with the inclusion of

a time dependent terms),a relaxation parameter of R < 1 may be required. The
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implementation of this scheme to the left boundary is shown below.

ω (0, y) = ω (0, y) +R

(
−ψ (0 + δ, y)

δ2
− ω (0, y)

)
(4.1.23)

A final note on boundary nodes is that the wall velocity of the top-left corner

boundary node can be specified as both u (0, y) = {0, 0} and u (x, h) = {U0, 0}, as

a result of the left and top wall boundary conditions. The wall velocity at the top-

right corner can be specified in a similar way. Therefore, ω can be defined in two

different ways depending on the value of horizontal velocity chosen at these points.

This will result in a singularity at these two nodes, which is not conducive to a proper

simulation. However, in the case where an interior node solution technique is used,

the value at these nodes can be ignored because the finite difference stencil never uses

these corner values.

Solution convergence (using stream function values) is checked by two methods.

First, the infinity norm of the full vorticity field is compared every 50 iterations for

solution convergence/divergence as the scheme progresses. Sufficiently small nodal

spacing is used to guarantee accurate solution generation near the wall. Second, the

high-iteration solution is compared to the analytical solution at Re = 0 for a high

aspect ratio lid driven cavity to Tadmor and Gogos [28] who found an exact velocity

profile given by.

u (y) =
y

H

(
3y

H
− 2

)
(4.1.24)

This proves to be a valid comparison due to the low Reynolds number used in

this flow field model. Figure 4.6 is a sample centerline velocity comparison using

the operating parameter set {Re, H,Ar, U0, sp} = {0.001, 1, 15, 1, 0.005} compared

against Tadmor and Gogos exact solution.
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Figure 4.6: Lid Driven Cavity Centerline Velocity Profile Comparison

For the chosen mesh and operating parameters, the centerline velocity profile

generated using in-house model and the Re = 0 exact solution provided by Tadmor

and Gogos align very closely.

4.2 Interface Tracking

4.2.1 Couette and Diverging Channel

Interface deformation within the Couette channel model and diverging channel model

can be easily calculated as a function of the velocity field and its gradients. Defor-

mation along these streamlines is not subject to spatial variance. Therefore, the

calculation of deformation in these flow field models is easily calculable.

4.2.2 Lid Driven Cavity

As stated earlier, in the 2D case, a fluid-fluid interface can be approximated at a point

along the interface by an material vector dx which is tangent to the interface at that

point. The tracking of this material vector as it travels about the flow field allows for

43



local deformation calculation at that instant. dx has magnitude ds and orientation

p. Movement of material vectors in the velocity domain are along streamlines. This

is a result of the deterministic nature of steady state continuous laminar flow.

Forward time stepping of the interface is accomplished using the 2-D 4th order

Runge-Kutta scheme with a sufficiently small time step to step the interface forward

in the horizontal and vertical directions in the cavity. The forward stepping scheme

applied to the horizontal direction.

xn+1 = xn + 1
6
δt (k1 + 2k2 + 2k3 + k4) (4.2.1)

tn+1 = tn + δt (4.2.2)

k1 = u (tn, xn) (4.2.3)

k2 = u
(
tn + 1

2
δt, xn + 1

2
δtk1

)
(4.2.4)

k3 = u
(
tn + 1

2
δt, xn + 1

2
δtk2

)
(4.2.5)

k4 = u (tn + δt, xn + δtk3) (4.2.6)

Deformation of the interface in time is accomplished by expanding (3.1.12) using

the first-order forward finite difference approximation. Time step δt is chosen to

ensure that the total percent difference between initial stream value ψ (t = 0) and

final stream value ψ (t = tf ) is less than 0.5% over the time interval of the simulation.

For each simulation, a runtime of 1000s was chosen to ensure that data are well within

this streamline divergence requirement. A time step value of δt = 0.005 was found to

easily satisfy the criteria.

dxn+1 − dxn
δt

=

(
Ln+1 + Ln

2

)
· dxn (4.2.7)

The error associated with the first order forward finite difference approximation

was found to be negligible in these simulations. In general, only the first 100 or less

seconds of as simulation are presented in the following chapter, with the exception of
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the semi-infinite divergent channel, which presents the first 150 seconds.
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Chapter 5: Results

Application of the first and second orientation factor expressions to material defor-

mation in continuous flow field models (specific models are discussed in Chapter 4)

are presented. This chapter seeks to present information about material stretching,

stretching rates (normalized and maximum normalized), and orientation factor mea-

sures characterize the behavior of these measures in the range of material stretching

regimes chosen (shear, extensional, mixed, spatially variant), relate orientation factor

results to phenomenon described in existing literature, and to characterize new phe-

nomena. Results are presented for the Couette channel, diverging channel, and finally

the lid driven cavity. This order was chosen because of the increasing complexity of

stretching regimes and because results from the Couette channel and diverging chan-

nel are necessary to characterize behavior observed in the lid driven cavity. Results

from these simulations indicate that the orientation factor measures provide a basis

for intuitive and physically grounded exploration for material stretching in continuous

velocity fields.

5.1 Semi-Infinite Couette Channel

Couette channel flow, or more generally simple shear flow, has been studied by nu-

merous authors and is perhaps the most studied flow in early deterministic laminar

mixing literature. Erwin and Ng [11] used this flow model for the demonstration of

discontinuous interfacial reorientation and the effects on stretching achievable through

reorientation. In a steady shear flow, it is well known that a material vector asymptot-

ically converges to the shearing direction (the stable equilibrium orientation), which

is parallel to the velocity orientation, resulting in linear material stretching at long

times. In the Couette channel, the value of the rate of deformation tensor components

are constant and equivalent at all times and locations in the domain. Consequently,
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the magnitude of twirl is identically trivial at all points in the velocity field and is

therefore neglected in the formulation of the second interface orientation factor. This

reduces the form of Ȯp to the material derivative of the material vector p because

twirl is a zero tensor. Simplification to this reduced form of Ȯp was used by Spencer

and Wiley, and Erwin in their shear growth expressions. Furthermore, the second

velocity orientation factor Ȯu reduces to zero due to the absence of change in velocity

orientation and eigenvector orientations along any streamline.

Each figure shows 15 seconds of simulation for each material vector. The Z was

chosen to collect sufficient data to comprehensively demonstrate material stretching

in a shear stretching regime. Comparison of channels with different wall velocities

showed that run time scales linearly with wall speed U0 and inversely with shear rate

γ̇.

U0

γ̇
trun =

U2
0

H
trun = 15 (5.1.1)

Four material elements were simulated in this flow field model, uniquely defined by

their initial orientation with respect to the shearing direction. Note that all stream-

lines experience equivalent shearing rates. The orientations were 0◦, 45◦, 90◦, and

135◦, or given in their component forms, p1 = {1.000, 0.000}, p2 = {0.707, 0.707},

p3 = {0.000, 1.000}, and p4 = {−0.707, 0.707}
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Figure 5.1: Couette Channel First Interface Orientation Factor vs. Time

Figure 5.1 shows the first interface orientation factor plotted against time. Ma-

terial vector rotation under shear deformation becomes immediately apparent under

inspection of this parameter. In time, each material vector rotates towards the sta-

ble equilibrium orientation, asymptotically approaching this orientation as t → ∞.

Material vector dx1, with an initial orientation parallel to the stable equilibrium ori-

entation at Op = 0.707, does not rotate in time. This is because there is no velocity

gradient acting on this material element. Material vectors dx2, dx3, and dx4 rotate

towards the stable equilibrium orientation over time.

It can be shown that for an appropriate time shift, i.e. shifting first interface

orientation factor curves such that Op (t = 0) = 1.000, each material vector rotation

history is identical. Note that each interface instantaneously aligns with the max-

imum eigenvector orientation (Op = 1.000) before asymptotically approaching the

stable equilibrium orientation. Note that only dx4, with an initial angle of 135◦,

passes the minimum eigenvector orientation (Op = −1.000), during which the in-
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terface is experiencing maximum contraction. Note that dx3 and dx4 pass the zero

growth orientation (Op = 0.000) between the minimum and maximum eigenvector

orientations after which all material deformation is positive stretch.

Figure 5.2: Couette Channel Second Interface Orientation Factor vs. Time

Again, in Figure 5.2, it can be shown that with an appropriate time shift, the

value of the second interface orientation factor for each material vector is found to

follow the same curve towards the stable equilibrium orientation at Ȯp = 0.000. For

each material vector, at the moment of alignment with the maximum eigenvector

orientation, the value of second interface orientation factor undergoes a sign change,

indicating that relative to the maximum principal direction, the interface is moving

away, whereas before the instantaneous alignment of these orientations, each interface

is moving towards the maximum eigenvector orientation. Furthermore, the highest

rate of change of the interface orientation factor, with a value of Ȯp = 0.400, occurs

at the unstable equilibrium orientation which bisects the maximum and minimum

eigenvector orientations and is perpendicular to the shearing direction.
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Figure 5.3: Couette Channel First Velocity Orientation Factor vs. Time

Figure 5.3 shows that the first velocity orientation factor remains identically equal

to Ou = 0.707, corresponding to the stable equilibrium orientation, at all times along

any streamline. This value is characteristic of a pure shear stretching regime.
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Figure 5.4: Couette Channel Second Velocity Orientation Factor vs. Time

Figure 5.4 shows that the second velocity orientation factor remains identically

zero at all times along the streamline. This is consistent with the first velocity orien-

tation factor.

An additional set of simulations was performed imposing involving artificial reori-

entation. After the run time the interface, with known stretch, was adjusted back to

its initial orientation, and was allowed to grow again. This was an idealized numerical

reproduction of Lewis Erwin’s experiment on artificial reorientation. Results show

that the first interface orientation factor in time was identical for each run time, but

the resulting stretch improves with each run because the material elements passed

the maximum eigenvector with each successive reorientation. However, at the instant

the orientation was reset, the second interface orientation factor becomes infinity due

to the instantaneous change in orientation of the interface element. As a result, the

ineffectiveness of the orientation factor measure in spatially/temporally discontinuous

flows becomes apparent.
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5.2 Semi-Infinite Diverging Channel

The divergent channel provides the opportunity to explore two additional laminar

stretching regimes, pure-extensional stretching and mixed shear-extensional stretch-

ing. Using these regimes and the shear stretching regime from the previous section as

quantifiers, the velocity field domain can be divided into three sub-domains based on

stretching regime. First, along the center streamline (θ = 0), shear terms in the rate-

of-deformation tensor are zero, resulting in a purely extensional flow. In this regime,

an interface rotates rapidly to a stable equilibrium orientation which is perpendicular

to the velocity orientation. In the second subdomain, defined from 0 < θ < β, where

β is the critical angle at which the extensional rate and the shear rate are equiva-

lent, the extensional terms dominate the shear terms, resulting in an similar stable

equilibrium orientation compared to the centerline stable equilibrium orientation con-

figuration (perpendicular to the velocity orientation). The final subdomain, defined

from β < θ < α, where α is the angle between the centerline and channel wall, the

shear deformation dominates extensional deformation. In this sub-domain, interfa-

cial rotation is observed to act in a more shear-like manner, despite the presence of

extensional terms in the rate-of-deformation tensor.

As with the Couette channel, there is zero spatial variance along any streamlines.

However, there is spatial variance across streamlines. Because of this, the twirl tensor

is non-zero. As a result, different streamlines will produce a non-trivial values for the

first velocity orientation factor and a trivial value for the second velocity orientation

factor. The values found for the first velocity orientation factor will be discussed later

in this section.

Interfaces in the semi-infinite diverging channel are defined by three parameters;

displacement from the source in the radial direction denoted by r, angular displace-

ment from centerline denoted by θ, and material orientation with respect to the radial
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direction (parallel to the streamline) denoted by p. Each interface has identical radial

displacement and initial orientation with respect to streamline. In ascending order,

the tracer interfaces have angular displacements of θ = 0◦, θ = 1◦, θ = 2◦, and

θ = 4◦. The first material interface is located along the centerline, which is unique

with zero vorticity and therefore will impart pure extensional stretching to a tracer

located along this streamline. The second material interface resides within the ex-

tensional dominated subdomain of the channel while the third and fourth interfaces

reside within the shear-dominated subdomain, although the third material interface

only deviates slightly from the pure extensional orientation at equilibrium. Interfaces

with negative angular displacement will also be included as a function of symmetry

and the effects of vorticity in the channel.

Figure 5.5: Diverging Channel Material Vector Position (Radial) vs. Time

Note that the displacement for the 0◦ and 1◦ material vectors is nearly equivalent

and difficult to visually distinguish in Figure 5.6 although the 0◦ material vector does

have a higher displacement than the 1◦ material vector. As the angular displacement
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from the centerline increases, the fluid velocity along that streamline relative to the

fluid velocity on the centerline decrease. Therefore, material vector displacement in

time decreases as the angular displacement increases.

Figure 5.6: Diverging Channel Material Stretch vs. Time

Note that the 0◦ and 1◦ streamline material vectors stretch in a very similar

fashion and are difficult to distinguish in Figure 5.6. The initial orientation of the

each interface is unfavorable relative to the maximum eigenvector of D, resulting

in a decrease in material stretch before rotation into a favorable orientation. The

material vectors along the 0◦ and 1◦ are transported away from the source point most

rapidly and are not located on streamlines with good deformation characteristics,

resulting in lower pure-extensional deformation for the 0◦ streamline and lower mixed

shear-extensional deformation for the 1◦ streamline when compared to streamlines

with higher angular displacement from centerline. These material vectors reach their

minimum material stretch of ds1 = ds2 = 0.444 at t = 48.70, which can be seen in

5.6. The 1◦ streamline material vector reaches its minimum stretch of ds3 = 0.688 at

54



t = 11.80. The 4◦ streamline material vector reaches a minimum stretch of ds4 = 0.950

at t = 2.10. Note that at the minimum stretch point, the material vector then

orients into a favorable stretching orientation and begins to stretch. At t = 150s, the

material vectors have acquired stretches of ds1 = 0.560, ds2 = 0.566, ds3 = 1.760,

and ds4 = 6.272, respectively. It is interesting to note that the most stretch acquired

along the 2◦ and 4◦ streamlines.

Figure 5.7: Diverging Channel First Interface Orientation Factor vs. Time

The interface orientation factor shows the path to equilibrium position of each

interface. Unlike the Couette channel, the final orientation factor value is a function

of both rate and extension rate. The first streamline has zero vorticity and is an

example of a purely extension stretching regime. Streamlines two, three, and four

have both extension rate and shear rate terms, with the shear rate increasing as

a linear function of angular displacement θ. For all streamlines with an angular

displacement θ > 0, the final orientation factor value is negative, indicating alignment

towards the second principal direction. At negative angular displacements, the value
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of vorticity is opposite, resulting in a positive equilibrium position in the direction

of the first principal direction. As the angular displacement θ increases, the final

orientation factor changes from alignment approximately along a principal direction

to an approximately shear stretching orientation. The long-time equilibrium position

of each interface, taken at t = 5000, are Op = 1.0000, Op = −0.9956, Op = −0.9758,

Op = −0.8402 respectively. To relate this back to mixing, recall that the stretch of a

material interface is proportional to an increase in the mixing in the cavity, so that

a long interface between two fluid bodies is indicative of greater mixing. Showing

the orientation of the material element that represents the interface is critical to

predicting regions of fast and slow stretching. The first interface orientation factor

provides this information. Again, the ideal case is a material element parallel to

the maximum eigenvector of the rate of defamation tensor, which is found along the

streamline.

Figure 5.8: Diverging Channel Second Interface Orientation Factor vs. Time

Figure 5.8 shows the rotational rate of the interface in the flow with time, which

56



is expressed by the second interface orientation factor. . As the displacement angle

θ increases, the rate of rotation increases. For the first three interfaces (θ = 0◦,

θ = 1◦, and θ = 2◦), the rate of change towards steady state remains positive at all

times, although at a decaying rate over time (which is a result of increasing radial

displacement from the source over time). The 4th interface however undergoes a

sign change much like interfaces with a large angular displacement from equilibrium

in the Couette channel, passing through the second principal direction to end at an

equilibrium orientation discussed in the Figure 5.7. The rate at which each interface

approaches equilibrium increases (resulting in a decreased time spent in a transient

state), which is again consistent with the increasing vorticity and relatively constant

extension rate as the displacement angle θ increases.

Figure 5.9: Diverging Channel First Velocity Orientation Factor vs. Time

Along each streamline, the value of the first velocity orientation factor remains

constant. Therefore, spatial variance is identically zero along an arbitrary streamline

in the diverging channel. However, the first velocity orientation factor will have
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different values for two different streamlines, resulting in from the change in the ratio

between the extensional and shearing terms in the velocity gradient. For the centerline

streamline, the first velocity orientation factor has a value of Ou = 0, which is the

characteristic value for pure-extensional flow. In the diverging channel, the maximum

eigenvector is perpendicular to the flow velocity. However, as the angle θ between the

centerline and the streamline increase, the value of the first velocity orientation factor

begins to change from Ou = 0 to Ou = −0.707 (very close to the boundary). Values

with angular displacements of −θ were found to range from Ou = 0 to Ou = 0.707.

There is not a discrete boundary between extensional and shear like effects. Instead,

the transition happens somewhat continuously over the angular width of the channel.

This effect was shown by Vincent and Agassant [30] for the inclusion of fiber fillers

into a high viscosity polymer matrix, where approximately extensional regime fiber

behavior was observed for angular displacements of 0 < θ < β, where β is defined

as the critical angle bounded by 0 < β < α, and approximately shear regime fiber

behavior was observed for angular displacements of β < θ < α.
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Figure 5.10: Diverging Channel Second Velocity Orientation Factor vs. Time

Examination of the second velocity orientation factor to the diverging channel

yields interesting results for mixing. As stated before, the twirl tensor changes because

the orientation of the eigenvectors of the rate of deformation tensor are different

between different streamlines. This phenomenon, while intriguing, does not appear

to effect material stretch along the streamlines.

5.3 Lid-Driven Cavity

Mixing in the 2D lid driven vacuity has been studied in depth. [4, 6, 22]

Two objectives were identified for mixing in the 2D driven cavity: characteriza-

tion of mixing in differing regions of the cavity and characterization of orientation

factor behavior in these regions. The lid driven cavity is the most complex flow field

presented investigated since it contains regions of pure-shear, pure-extensional, mixed

shear-extensional stretching as well as regions with spatial variance (||T || 6= 0) along

streamlines. In the regions of spatial variance, changes in both the orientation be-
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tween the material and eigenvectors as well as the eigenvectors relative to the material

are expected, both of which would lead to rapid changes in material stretching.

The lid driven cavity model is divided into four regions, the upward flight (left

corner), the downward flight (right corner), the upper steady shear flight (SSF) and

lower SSF. An illustration of these regions is shown in Figure 5.11

Figure 5.11: Lid Driven Cavity Regions

Fluid in the left corner moves upward and fluid in the right corner moves down-

ward. The upward and downward flights are defined within 1.5 cavity heights H of

the left and right walls respectively. This value was chosen so that only shear-like

behavior is found in the steady shear regions, and all non-shear like behavior is found

in the upward and downward flights. Similarly, using the centerline velocity profile

in Figure 4.6, fluid in the upper SSF (top 1/3 of the cavity) is moving in the right-

ward direction, in the direction of the moving boundary, while fluid in the lower SSF

(bottom 2/3 of the cavity) is moving to the left, against the motion of the moving

boundary. More formally, each region is bounded by the following dimensions:
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xmin xmax ymin ymax

Upward Flight 0.00 1.50 0.00 1.00

Upper Steady Shear Flight 1.50 13.50 0.67 1.00

Lower Steady Shear Flight 1.50 13.50 0.00 0.67

Downward Flight 13.50 15.00 0.00 1.00

Note that the upward and downward flights are chosen so that all spatial variance

is contained in these regions. Fluid deformation in the upper and lower steady shear

regions is pure shearing.

Material vector deformation was explored on two streamlines with initial spatial

coordinates x1 = {7.50, 0.45} and x1 = {7.50, 0.23}. Both interfaces have identical

initial orientations of p1 = p2 = {0, 1}, perpendicular to the streamline. The former

initial coordinate is denoted as the inner streamline after its position relative to the

wall and the zero velocity zone separating the upper and lower steady shear flights.

The latter initial coordinate is denoted as the outer streamline.

These two streamlines are chosen to best illustrate the effects of twirl on material

deformation in a case where the absolute magnitude of twirl magnitude is relatively

small (although still greater than zero) and where the absolute twirl magnitude is

relative large. Only two streamlines are necessary to adequately explore the differ-

ences between these two effects, because any other streamlines will exhibit similar

phenomenon. Material vector deformation was simulated for 300 seconds at a time

step length of δt = 0.005. However, only 70 seconds of each simulation are presented

in the following section. Past this time, material deformation repeats because the ma-

terial passes through the the channel again. Passage of the material vector through

the lower steady shear, upward flight, upper stead shear, and downward flight is pre-

sented. Subsequent travel around the cavity beyond the first circuit is stream value

versus stream value reference deviation testing. Symmetry is expected between the
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upward flight and the downward flight.

For each streamline, two sets of critical times are discussed. These times corre-

spond to the maximum twirl magnitude, termed the peak twirl time, and the max-

imum streamline curvature. Peak twirl ||T ||max corresponds to the time at which

||T || is maximum in the upward and downward flights. Peak streamline curvature

κmax corresponds to the maximum value of curvature κ in the upward and downward

flights. These critical times are of interest because of the potential for rapid changes

in the material stretching regime due to these reorientations. Streamline curvature is

defined as follows:

κ = det

(
∂x

∂t
⊗ ∂2x

∂t2

) ∣∣∣∣∣∣∣∣∂x∂t
∣∣∣∣∣∣∣∣−3 (5.3.1)

In the lower shear flight, both interfaces rapidly converge to the stable equilibrium

orientation (parallel to the shear/velocity and 45◦ to the principal directions). At

the transition from lower steady shear region to the upward flight, the value of Op

approximately converges to first velocity orientation factor. Similarly, the value of

second interface orientation factor approximately converges to the second velocity

orientation factor. Therefore, while both interface orientation factors and velocity

orientation factor figures are presented, they are approximately the same after a

small time.
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5.3.1 Inner Streamline (y0 = 0.45)

Figure 5.12: Lid Driven Cavity Interface Path for y0 = 0.45

The inner streamline is defined as the streamline along which the material elements

initial location is x0 = {7.50, 0.45} and initial orientation p0 = {0, 1}. The material

vector enters the upward flight at t = 20.40s. The material vector achieves peak

twirl value in the upward flight at t = 24.18s and maximum streamline curvature

at t = 25.25s. The interface leaves the upward flight and enters the upper steady

shear region at t = 28.30s and then into the downward flight at t = 54.96s. Finally,

the material vector transitions in the lower steady shear region at t = 62.58. A

material vector on the inner streamline completes a single loop of the cavity every

84.09 seconds. Note that transition is defined as the movement of the material vector

from one region to another (such as from the downward flight into the lower steady

shear region.
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Figure 5.13: Lid Driven Cavity Square Orientation Plot for p and d1 for y0 = 0.45

Before exploring the O and Ȯ values along the streamline, it is important to dis-

cuss the orientations of the maximum eigenvector orientation d1 and material vector

orientation p in order to explore changes in the orientation of the two parameters.

This is necessary because the second orientation factor makes no distinction between

rotations in the material vector or the eigenvectors. Figure 5.13 and Figure B.26

show the sign adjusted square orientation between the interface/velocity orientation

and the positive horizontal axis.

Θ (φ) = sgn (φ · x) (φ · x)2 (5.3.2)

A sign adjusted square orientation value of Θ = 1 corresponds to a direction

parallel to the positive reference direction x. A value of Θ = 0 is perpendicular to

the reference direction x. A value of Θ = −1 is anti-parallel to the reference direction

x, or alternatively parallel to −x.

In the lower steady shear region, the maximum eigenvector orientation remains
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constant at Θ = 0.5, consistent with a steady shear stretching regime (i.e. 45◦ to the

velocity orientation). Upon entering the upward flight region, the interface begins to

lose orientation (rotate away from the reference direction. The maximum value of

twirl is achieved at t = 24.18, illustrated by the transition from concave to convex

orientation curve. For the inner interface, observe that the principal direction does

not undergo a flip, with the maximum difference between the maximum and minimum

orientation value of Θ = 0.44. This indicates that the equilibrium orientation of the

eigenvector orientation does not change during the entirety of the corner traversal,

entering and departing the corner at the same shearing orientation. At the entrance

to the upper steady shear region, the maximum eigenvector again has an orientation

of Θ = 0.5 and maintains this orientation throughout the upper steady shear region.

Once the interface enters the downward flight, the principal directions undergo a

similar wobble about the Θ = 0.5 value, reaching a local minimum at the downward

flight maximum curvature time and a local maximum at the downward flight peak

twirl time. The principal direction orientation then returns to a value of Θ = 0.5

in the lower steady shear region, which is maintained throughout the region. Again,

the principal direction orientation remains equivalent at the entrance and exit of the

downward flight.

In the lower steady shear region, the interface begins with an orientation of Θ = 0,

corresponding to the initial orientation perpendicular to the streamline. The material

vector then begins to orient to the stable equilibrium orientation, parallel to the

velocity as a result of shearing. At the entry to the upward flight, the interface has

an orientation at approximately Θ = 1, which rapidly changes to Θ = −1 by the end

of the upward flight. The material maintains this orientation, which is parallel but

oriented in the opposite direction of the velocity in the upper steady shear region.

Upon entering the downward flight, the interface then follows the stable equilibrium

orientation, rotating most rapidly at the maximum streamline curvature. At the
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transition between downward flight and lower steady shear region, the interface has

assumed its asymptotically decaying orientation of approximately Θ = 1.

Figure 5.14: Lid Driven Cavity Material Stretch for y0 = 0.45

Figure 5.14 shows the material vector stretch on the inner streamline. Material

vector stretch in the lower steady shear region briefly has a greater than linear rate

as the material orients parallel to the maximum eigenvector d1. Shortly after, as the

material asymptotically approaches the stable equilibrium orientation, the material

vector continues to grow linearly in time in the lower steady shear region. Shortly

after the material vector enters the upward flight, the material vector achieves a

local maximum of stretch of ds = 14.61 before it becomes oriented unfavorably,

resulting in loss of stretch. The interface reaches a local minimum of ds = 8.11 before

becoming favorably orientated and beginning to regain stretch. Favorably refers to

an orientation which produces positive stretching, which produces better mixing. At

this time, the interface gains stretch at a greater than linear rate before returning

to a more linear rate. After transitioning into the upper steady shear region, the
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material vector resumes stretching at a linear rate, which remains approximately

constant throughout the entirely of the upper steady shear region. Note that the

apparent rate of growth appears greater in the upper steady shear region than in the

lower steady shear region due to the increased shearing rate γ̇. Upon entering the

downward flight, the material stretch reaches a peak of ds = 83.23 before becoming

unfavorably oriented and rapidly losing stretching, reaching a minimum of ds = 28.89,

1.69 seconds after the maximum stretch before becoming again favorably orientated

and beginning to regain stretch at a greater than linear rate. As the material vector

transitions into the lower steady shear region, it continues to gain stretch at a linear

rate, which again remains constant over the length of the lower steady shear region.

Figure 5.15: Lid Driven Cavity Normalized Material Stretching Rate for y0 = 0.45

In the lower steady shear region, the material vector is found to have the highest

normalized growth rate as it becomes parallel to the maximum eigenvector, and then

begins to decay asymptotically to ξ → 0 over time as the material vector asymp-

totically approaches the stable equilibrium orientation. In the upward flight, the
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material vector is found to experience a slight decrease in growth rate (transition-

ing into an unfavorable orientation relative to the eigenvectors) as it begins to turn

the corner. At the peak twirl time, the normalized growth rate is found to briefly

remain constant as the maximum eigenvector orientation and material vector rotate

concurrently. This is followed by a rapid decrease in normalized stretching rate. At

the peak streamline curvature time, the normalized stretching rapidly changes from

approximately ξ = −0.71 to ξ = 1.38, producing a rapid change in the normalized

stretching rate of the material in this time. As the material vector enters the upper

steady shear region, the normalized stretching rate asymptotically approaches zero

due to shear stretching, although the resulting stretch rate (note, not the normalized

stretch rate) is higher due to the greater shearing rate than the lower steady shear

region. Upon entering the downward flight, material stretching reaches a local min-

imum normalized stretching rate of ξ = −1.38, at the maximum curvature time and

a local maximum of ξ = 0.71 at the peak twirl time shortly after. The normalized

stretching rate then begins to asymptotically approach ξ → 0 as the material vector

transitions into the lower steady shear region.
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Figure 5.16: Lid Driven Cavity Maximum Normalized Material Stretching Rate for

y0 = 0.45

The maximum normalized stretching rate, shown above in Figure 5.16, remains

constant throughout the lower steady shear region at ε̇ = ±0.35. As the material

vector entered the upward flight, the rate begins to decrease, reaching a local minimum

of ε̇ = ±0.19, and then begins to rapidly increase after the material vector element

reaches peak twirl time. As the material vector is leaving the upward flight into the

upper steady shear region, the maximum normalized stretching rate converges to a

constant value of ε̇ = ±1.53, which remains constant throughout the upper steady

shear region. Upon entering the downward flight, the maximum normalized stretching

rate begins to decrease, reaching a minimum of ε̇ = ±0.19 before returning to the

lower steady shear region value of ε̇ = ±0.35, which remains constant throughout the

region.

For consistency purposes, the normalized stretching rate was found to be bounded

by the maximum normalized stretching rate at all times such that |ξ| ≤ ε̇. This check
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is necessary because a choice in time step δt that is too large can produce situations

in which |ξ| > ε̇ , which is physically impossible.

Figure 5.17: Lid Driven Cavity First Interface Orientation Factor for y0 = 0.45

At simulation initialization, the material vector begins with a first interface ori-

entation factor value of Op = 0.707 (Figure 5.17). Shortly after, the value goes to

Op = 1.000 as the material vector orients parallel to the maximum eigenvector before

returning to approximatelyOp = 0.707 (that is, rotating from 45◦ counter-clockwise to

45◦ clockwise of the maximum eigenvector orientation), which is maintained through-

out the upper steady shear region. At the entry to the upward flight at t = 20.40, the

first interface orientation factor begins to decrease, rapidly approaching a local saddle

point value of Op = 0.311 at the peak twirl time, which is a result of the concurrent

rotation between the maximum eigenvector and material vector orientations. After

this time, the first interface orientation factor begins to rapidly decrease, reaching the

maximum rate of change at the peak streamline time as a result of the rapid change

of the material vector orientation relative to the maximum eigenvector orientation,
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which can be readily seen in Figure 5.13. Shortly after, the first interface orientation

factor reaches a minimum value of Op = −1.000 before rapidly returning to the lower

steady shear region value of approximately Op = −0.707, which remains asymptot-

ically fixed as the interface travels throughout the upper steady shear region. This

value is consistent with the orientations observed in Figure 5.13, where the material

vector and maximum eigenvector are oriented in the positive direction in the lower

steady shear region and oriented in the opposite direction in the upper steady shear

region. Upon entering the downward flight, the interface readily rotates to a value of

Op = 1.000, reaching its most rapid change at the maximum curvature time. A local

first interface orientation factor saddle point is again reached at the peak twirl time.

Following this, the first interface orientation factor returns to the the lower steady

shear region value of Op = 0.707, which remains constant throughout the lower steady

shear region.

Figure 5.18: Lid Driven Cavity Second Interface Orientation Factor for y0 = 0.45

Material element rotation behavior is most easily demonstrated using the second
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interface orientation factor (Figure 5.18). In the lower steady shear region, the second

interface orientation factor converges to approximately zero in a manner consistent

with steady shear flow. Upon entering the upward flight, the second interface orienta-

tion factor becomes negative for a short time, reaching a local minimum of Ȯp = −0.3

before returning to a value of Ȯp = 0 at the peak twirl time (indicative of the con-

current rotation of the maximum eigenvector and rotation). Between the peak twirl

and peak curvature times, the value of Ȯp rapidly decreases to a minimum value of

Ȯp = −2.116 at the maximum curvature time. The second interface orientation factor

value then briefly returns to positive before decaying asymptotically to zero again as

the material vector enters and travels through the upper steady shear region. As the

material element enters the downward flight, the second interface orientation factor

reaches a maximum value of Ȯp = 2.116 at the peak curvature time and again reaches

a saddle point at the peak twirl time. Post exit into the lower steady shear region,

the second interface orientation factor again asymptotically converges to zero (as the

first interface orientation factor converges to Op = 0.707). This value is maintained

throughout the lower steady shear region.

72



Figure 5.19: Lid Driven Cavity First Velocity Orientation Factor for y0 = 0.45

Figure 5.19 shows that, in the lower steady shear flight, the first velocity ori-

entation factor remains constant throughout the zone at a value of Ou = −0.707,

consistent with behavior observed in steady shear. At the transition from the lower

steady shear region into the upward flight, the material element approximately con-

verges to the stable equilibrium orientation for shear, which results in approximately

equivalent behavior between the first interface orientation factor and the first velocity

orientation factor. This is maintained throughout the remainder of the simulation.
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Figure 5.20: Lid Driven Cavity Second Velocity Orientation Factor for y0 = 0.45

Figure 5.20 shows that, in the lower steady shear flight, the stable equilibrium

orientation does not change in time and therefore has a value of Ȯu = 0. At the

transition from the lower steady shear flight, the material element has approximately

converged to the stable equilibrium orientation for shear, so the second velocity ori-

entation factor approximately follows the second interface orientation factor. This

behavior is maintained throughout the reminder of the simulation.
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5.3.2 Outer Streamline (y0 = 0.23)

Figure 5.21: Lid Driven Cavity Interface Path for y0 = 0.23

Material traveling on the outer streamline is defined by material with an initial spatial

location of x0 = {7.50, 0.23} and initial orientation p0 = {0, 1}. The material element

p transitions between the lower steady shear region and the upward flight at t =

19.90s, achieving its peak twirl value and maximum streamline curvature at t = 25.79s

and t = 26.12s respectively and finally transitions from the upward flight into the

upper steady state region at t = 28.00s. Later, the material element transitions the

downward flight at t = 42.48s, achieving maximum streamline curvature at t = 46.33,

maximum twirl magnitude at t = 47.98s, and finally transitions into the lower steady

shear region at t = 50.54s. The material vector completes one loop of the cavity

in 70.45 seconds. Note that the outer streamline material vector travels around the

cavity at a higher speed than the inner streamline. Note that this results in a higher

shearing rate in both the lower and upper steady shear regions when compared to the
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Figure 5.22: Lid Driven Cavity Square Orientation Plot for p and d1 for y0 = 0.23

In the lower steady shear region, the maximum eigenvector orientation remains

fixed at Θ = −0.5, consistent with a steady shear stretching regime (Figure B.26). At

the entry to the upward flight, the maximum eigenvector begins rotating away from

the horizontal reference direction. At the peak twirl time, the maximum eigenvector

undergoes a rapid rotation, demonstrating a reorientation of the principal axis. At

this time, the material vector does not undergo any significant change in orientation.

Note that, unlike the transition through the upward flight on the inner streamline, the

maximum eigenvector undergoes a flip from Θ = −0.5 and Θ = 0.5. At the exit from

the upward flight, the maximum eigenvector has an orientation of Θ = 0.5, consistent

with steady shearing. This orientation remains fixed throughout the remainder of the

upper steady shear region. Upon transition into the downward flight, the orientation

of the maximum eigenvector begins to decay from Θ = 0.5 towards Θ = −1, rotating

most rapidly at the downward flight peak twirl time. Once the maximum eigenvector

orientation reaches Θ = −1, it begins a less rapid rotation towards Θ = −0.5 as it
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transitions into the lower steady shear region. This orientation is again maintained

throughout the region.

In the lower steady shear region, the material vector begins with an orientation

of Θ = 0. This corresponds to the initial orientation which is perpendicular to the

streamline. The material vector then begins to orient to the zero-rotation orienta-

tion at Θ = −1, parallel to the velocity orientation and in the opposite direction of

the reference direction as a result of shearing. At the entry to the upward flight,

the material vector begins to orient towards an orientation of Θ = 0, followed by

a very rapid rotation to Θ = −1 at the maximum streamline curvature time. At

the transition between the upward flight and upper steady shear region, the material

vector achieved an orientation of Θ = 1, parallel to both the velocity and refer-

ence direction, which remains constant throughout the upper steady shear region.

Upon entering the downward flight, the interface again follows the stable equilibrium

orientation and begins to rotate towards Θ = −1, reaching its maximum rotation

speed at the maximum streamline curvature time. At the transition into the lower

steady shear region, the material vector has asymptotically reached an orientation of

Θ = −1, which is maintained though out the lower steady shear region.
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Figure 5.23: Lid Driven Cavity Material Stretch for y0 = 0.23

The material stretch (Figure 5.23) rapidly converges to a steady shear growth

rate (linearly increasing in time) in the lower steady shear region. At the entry to

upward flight, the interface transitions into an unfavorable orientation (with a stretch

of ds = 13.30 prior to loss) and then transitions back into a favorable orientation,

losing a small amount of stretch in this period. At the peak twirl time, the material

vector rapidly loses a large amount of stretch as a result of rapidly changing deforma-

tion directions relative to the unchanged material. Shortly after, the material then

transitions into a favorable orientation and rapidly gains a large amount of stretch,

with a maximum stretch of ds = 49.07. Between this short period of rapid gain

and the exit from the upward flight into the upper steady shear region, the material

becomes unfavorably oriented. Throughout the upper steady shear region, the mate-

rial remains oriented unfavorably, losing stretch at an approximately linear rate. The

material contracts to approximately half of its stretch at the start of the upper steady

shear region before transitioning into the downward flight. The material continues to
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remain unfavorably oriented at the transition into the downward flight with a stretch

of ds = 26.49. Upon nearing the maximum curvature time, the material vector begins

to rapidly lose stretch, reaching a local minimum of ds = 8.72, followed by a short

gain and another period of loss, although at a slower rate than previously around

the peak twirl time. Upon exit from the downward flight into the lower steady shear

region, the interface has regained a favorable orientation and has begun to linearly

stretch.

Figure 5.24: Lid Driven Cavity Normalized Material Stretch Rate for y0 = 0.23

Normalized material stretch (Figure 5.3.2) shows similar trends to material stretch

in Figure 5.23. In the lower steady shear region, the interface reaches its maximum

local normalized stretch rate as it passes the maximum eigenvector direction. The

normalized stretching rate then begins to decay asymptotically ξ → 0 as the material

asymptotically approaches the stable equilibrium orientation. At the transition into

the upward flight, the normalized stretching begins to rapidly decrease, followed by a

period of rapid changes. In this period, the normalized stretching rate reaches a local
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minimum ξ = −1.98 and a local maximum of ξ = 4.11 at the peak twirl time and

peak curvature times respectively. These rapid, high magnitude regions of growth rate

produce the large increases in material stretch seen in Figure B.27. As the material

exits the upward flight, the normalized stretching rate becomes negative and again

begins asymptotically decaying to ξ → 0. This behavior is continued throughout

the upper steady shear region. Following transitioning into the downward flight, the

material vector again undergoes two rapid changes in growth rate at the maximum

streamline curvature and peak twirl times. At the transition from the downward

flight to the lower steady shear region, the interface resumes stretching again with a

positive, though asymptotically decaying, normalized stretching rate.

Figure 5.25: Lid Driven Maximum Normalized Material Stretching Rate for y0 = 0.23

The maximum normalized stretching rate, shown above in Figure 5.25, remains

constant throughout the lower steady shear region with a value of ε̇ = ±0.31. As

the material enters the upward flight, the rate ε̇ begins to increase followed by a

somewhat rapid decrease, reaching a local minimum of ε̇ = ±0.10, and then begins
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to rapidly increase after the material vector passes the peak twirl time. ε̇ reaches a

local maximum of ε̇ = ±4.21 before rapidly decreasing to a steady shear maximum

stretching rate. As the material vector is leaves the upward flight into the upper

steady shear region, the maximum normalized stretching rate converges to a constant

value of ε̇ = ±1.87, which remains constant throughout the upper steady shear region.

Once in the downward flight, the maximum normalized stretching rate rapidly reaches

a peak value of ε̇ = ±4.21 near the maximum streamline curvature time, followed by a

rapid decay to a local minimum of ε̇ = ±0.10, at the peak twirl time. This is followed

by a short rebound which then decreases to a constant value of ε̇ = ±0.31, which

remains constant throughout the lower steady shear region. Again, for consistency

purposes, the normalized stretching rate is found to be bounded by the maximum

normalized stretching rate so that |ξ| ≤ ε̇ at all times.

Figure 5.26: Lid Driven Cavity First Interface Orientation Factor for y0 = 0.23

At time t = 0, the material element begins with an orientation of p = {0, 1}, at

a first interface orientation factor value of Op = 0.707. (Figure 5.26) Shortly after,
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the material element aligns with the maximum eigenvector d1 (Op = 0.707) before

asymptotically converging to the stable equilibrium orientation at Op = 0.707. This

steady state shear value is maintained throughout the lower steady shear region. The

material element enters the upward flight approximately fully aligned to the shear

orientation at a value of Op ≈ 0.707. Change in the material element orientation from

the shearing orientation is observable as early as t = 20.50. At time t = 25.60, the

interface instantaneously aligns to Op = 1.000, followed by a transition to Op = 0.000

at t = 25.90 and another rapid transition back to Op = 1.000 at t = 26.20 . The first

and third change in this short period correspond to the peak twirl and peak curvature

times respectively. After this time, first interface orientation factor converges rapidly

Op → 0.707 which is maintained throughout the upper steady shear region. At the

transition to the downward flight, rapid changes are observed again, similar to the

changes found in the upward flight. At the exit into the lower steady shear region, the

material element has again already converged asymptotically to the stable equilibrium

orientation and remains so throughout the lower steady shear region.
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Figure 5.27: Lid Driven Cavity Second Interface Orientation Factor for y0 = 0.23

At simulation initialization, the value of the first interface orientation factor

rapidly converges to zero as a result of the asymptotic convergence of Op → 0.707. In

the upward flight region, as seen in Figure B.30, instantaneously extensional stretch-

ing regimes are achieved at t = 25.60, t = 25.90, t = 26.20. These three times

correspond to the local Ȯp extrema. At both the twirl and curvature peaks, the Ȯp

value can be seen rapidly changing, with a minimum peak second interface orientation

factor value of Ȯp = −9.004 and a maximum peak Ȯp value of 6.000 respectively. Note

that, at the time which corresponds to an unstable equilibrium orientation, there is

a slight redirection of the interface rotation followed by an extremely rapid change in

the opposite direction. This is a result of the rapid reorientation of the interface as

a result of acceleration in the velocity field. Upon entering the upper steady shear

region, the value of the first interface orientation factor converges asymptotically to

Ȯp → 0. As seen before in Figure 5.18, second interface orientation factor behavior in

the downward flight is a mirror of behavior in the upward flight. However, for the inner
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streamline, the values of the second interface orientation factor was opposite, whereas

second interface orientation factor values are equivalent between upward and down-

ward flights. This is very roughly related to the sign of shearing in the flow field, which

is opposite between the inner and outer streamlines, (sgn (W)inner ∝ −sgn (W)outer).

Figure 5.28: Lid Driven Cavity First Velocity Orientation Factor for y0 = 0.23

In the lower steady shear flight, the first velocity orientation factor Ou is in a stable

equilibrium orientation with a value of Ou = 0.7071. (Figure 5.28) This is consistent

with results shown in the Coutte channel. By the transition from the lower steady

shear region into upward flight, the material element orientation has approximately

converged to a stable equilibrium orientation. This results in nearly approximate

convergence of the first interface orientation factor to the first velocity orientation

factor. While the first velocity orientation factor values that are produced from this

simulation are approximately identical throughout the remainder of the simulation,

there is greater benefit to be had using this measure in fields in which the material

element is exposed to flow in which no stable equilibrium orientation exists for long

84



periods of time and the interface is free to rotate and stretch in a wider variety of

stretching regimes.

Figure 5.29: Lid Driven Cavity Second Velocity Orientation Factor for y0 = 0.23

In the lower steady shear flight, the stable equilibrium orientation does not change

in time, resulting in a second velocity orientation factor value of Ȯu = 0. (Figure

5.29) At the transition from the lower steady shear flight, the material element has

approximately converged to the stable equilibrium orientation, so the second velocity

orientation factor approximately follows the second interface orientation factor. This

remains true for the remainder of the simulation.

5.3.3 Twirl and Streamline Curvature Fields

Because both streamline curvature and twirl magnitude can be derived independently

of material path, it is beneficial to explore the absolute magnitudes of these two

parameters. Figure 5.30 shows the absolute magnitude of twirl. Figure 5.31 shows

the absolute magnitude of streamline curvature. Finally, Figure 5.32 overlays Figure
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5.31 onto Figure 5.31 for comparison. The values showed in these figures are calculated

at each node of the velocity field solution. Color was added between nodes through

interpolation.

Figure 5.30: Lid Driven Cavity Upward Flight Twirl Contour

Note in Figure 5.30, any magnitude of twirl greater than one is set equal to one

for presentation purposes.
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Figure 5.31: Lid Driven Cavity Upward Flight Streamline Curvature Contour

Note in Figure 5.30, any value of streamline curvature greater than one is set equal

to one for presentation purposes.
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Figure 5.32: Lid Driven Cavity Upward Flight Twirl and Streamline Curvature Com-

parison

Figure 5.32 above shows the overly of the absolute twirl tensor magnitude and the

absolute streamline curvature. This contour plot was created to show the most rapid

change in the eigenvector orientation (associated with high twirl magnitudes) and

rapid change in the material orientation (associated with high streamline curvature

values). There are two ridges indicating high values in the upward flight. Comparison

of Figure 5.30 to Figure 5.31 shows that the maximum twirl occurs separately and

prior to the maximum curvature zone. The reverse is true in the downward flight.

Because of this two rapid changes in orientation (associated with first the eigenvectors

and later with the material), significant improvements in stretching can be found at

these zones.
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Chapter 6: Conclusions

6.1 Conclusions

Two sets of measures were derived that give further insight into continuer laminar

mixing. The measures are divide into interface measures and shear-equilibrium (veloc-

ity) measures. These expressions compare material orientations against the maximum

rate of deformation tensor eigenvector d1, which are the mechanisms of a deforma-

tion in a flow, an indicator of the amount of stretching received by the material.

The former expressions, the interface orientation factors, compare the orientation of

a material interface element to the eigenvector. The latter expressions relate the

shear-equilibrium orientation, or more formally the orientations at which a mate-

rial vector does not deform in a shear field (parallel to the shearing direction) and

at which all other material orientations converge, to the maximum eigenvector d1.

These measures characterize a range of material stretching regimes including pure-

shear, pure-extensional, mixed shear-extensional, and spatially variant flows (where

||T || 6= 0, i.e. flows in which {d1,d2} rotate in space along streamlines). Analysis of

these measures in flow field models was accomplished using 2D simulations for the

Couette channel, the diverging channel, and the lid driven cavity flow field.

These new measures are named the first interface orientation factor Op, the sec-

ond interface orientation factor Ȯp, the first velocity orientation factor Ou, and the

second velocity orientation factor Ȯu. These measures were named with respect to

the orientation to be compared against d1 and the level of time dependence, that is

the second orientation factor is the material derivative of the first orientation factor.

The first interface orientation factor and first velocity orientation factors are defined

as:

Op = p · d1 (6.1.1)
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Ou = u · d1 (6.1.2)

First orientation factor measures Op and Ou relate the degree of alignment be-

tween the orientations of interest (p and u) and the maximum eigenvector d1 and

therefore the ratio of stretching to maximum possible stretching (locally) experienced

by a material in this orientation. With this definition, the ratio of the experienced

normalized stretching rate to the maximum normalized stretching rate is expressed

at any point in the material stretching history as a function of the Op. Furthermore,

Op can be substituted into several existing stretching efficiency measures, producing

simplified expressions as a function of Op which effectively further demonstrates the

relationship between material orientation and the eigenvectors of the deformation

tensor. Using these properties of Op, the kinematical simplifications presented by

Spencer and Wiley and Erwin can be expressed as a function of the mixing mecha-

nisms in the fluid.

Further information about a flow can also be gained by the application of the

first velocity orientation factor Ou, which is an expression of the long time material

orientation in a shear flow (parallel to the velocity and the shearing orientation) to

the maximum eigenvector d1, to a streamline. In the pure-shear case Ou = 0.7071,

which corresponds to a constant stretching rate dṡ = 0. In the pure-extensional case

Ou = 1.0000, which corresponds to a stretching rate of dṡ = ε̇ds. With these values for

reference, the ratio of shear to extensional deformation can be expressed, which is im-

portant for the characterization of material stretching along streamlines in diverging

and converging channels where there both shearing and extensional flow character

is present. Additionally, Ou can be used to test for changes in stretching regimes

through the observation of changes in the velocity-eigenvector orientation value along

a streamline. As expected, for a flow where a fluid element spends a significant

amount of time on a streamline with zero twirl (ḋ1 = 0), the first interface factor

converges to the value of the first velocity orientation factor (Op → Ou), illustrating
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why over long times pure-shear material stretching is poor and pure-extensional is

optimal for stretching. By extension, this property of Op and Ou demonstrates the

need for periodic reorientation of the intermaterial interface relative to the principal

directions to produce improved mixing.

The second orientation factor measures Ȯp and Ȯu, the material derivatives of Op

and Ou respectively, are defined as follows:

Ȯp = d1 · [D − (p · D · p) I +W − T ] · p (6.1.3)

Ȯu = d1 · [D − (u · D · u) I +W − T ] · u (6.1.4)

Note that the second orientation factor expressions are composed of the maximum

eigenvector d1, the rate of deformation tensor D, the vorticity tensor W , the new

tensor twirl T and the test orientation. Twirl T is an expression for the instantaneous

rate of change of the eigenvectors {d1,d2} in space. The tensor T , which is derived

in Section 3.2 and more thoroughly in Appendix A, is a function of the rate-of-

deformation tensor D, the material derivative of the rate-of-deformation Ḋ, and the

maximum normalized stretching rate ε̇.

T =
Ḋ · D − D · Ḋ

4ε̇2
(6.1.5)

In the case of discontinuous velocity fields, the velocity profile in a region can

change instantaneously. This infinite change invalidates assumptions about the pres-

ence of spatial variance. While this does preclude the application, or at least require

piecewise treatment, of the twirl tensor and, by extension, the orientation factor

measures to discrete flows like the twin blinking vortex flow used by Aref [1]for the

demonstration of chaotic advection, they can be readily applied to the transient so-

lutions for such fields. Second, the presence of non-zero spatial variance along a

streamline is indicative of change in the stretching regime, although the presence of

twirl does not indicate the initial or final stretching regime.
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Second orientation factors Ȯp and Ȯu express the rate at which the material

element and the velocity orientations are changing with respect to the maximum

eigenvector d1, which itself may be changing in space resulting from spatial variance.

In a flow, changes in maximum eigenvector orientation relative to the material vector

orientation can lead to higher than linear stretching rates. In these regions, where

||T || 6= 0, the resulting change in normalized stretching rate ξ and, therefore, changes

in the stretch ds can be large with greater twirl leading to potentially greater change.

The second interface orientation factor Op expresses the rate at which the interface

approaches or moves away from d1 towards its instantaneous velocity alignment. The

second velocity orientation factorOu expresses the rate at which the stable equilibrium

orientation changes in space relative to d1, illuminating changes in flow regime.

The application of these measures is best demonstrated in the lid driven cav-

ity simulation results presented in Section 5.3. On both streamlines, though more

prevalent along h0 = 0.23, two critical times were observed with rapid changes in

the interface/velocity-eigenvector spatial relationship. The latter of these occurred at

the maximum streamline curvature, at which the velocity orientation changes most

quickly and the eigenvector set less so. The former of these times occurred at the

peak twirl value, located well before the maximum streamline curvature, where the

fluid acceleration reaches its greatest change. This time was denoted as the peak twirl

time. At this time, the eigenvector set rotates rapidly with little observable change

in the interface. These phenomenon were observed on all streamlines in this cavity.

At both of these critical times, significant changes in the local scaled stretching rate

were observed. This is critical to improved mixing. At moments of rapid changes

in the eigenvectors, or the material relative to the eigenvectors, greater than linear

rates of stretching are found. By the definition of mixing proposed by Spencer and

Wiley, increases in intermaterial area generated by these greater than linear rates will

lead to improved mixing. By manipulating these regions, improved mixing can be
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produced in what was thought to ineffective mixing systems.

Expressions were derived for the evaluation of interface stretching (and therefore

mixing) in continuous laminar flows using the eigenvectors of the rate of deformation

tensor as a basis. Use of the eigenvectors greatly extends the understanding of mixing

phenomenon. The eigenvectors, which are calculated as a function of the rate of

deformation tensor, are the mechanisms for fluid deformation. Using the principal

directions, intuitive and new insights into the mixing in a cavity are demonstrated.

6.2 Recommendation for Future Work

Future work could be directed along several directions of the concepts presented.

First, derivation of the twirl tensor and the orientation factor measures assumes

that all transient terms, that is, any terms which are dependent on time, are zero

because all flow field models are steady state. However, this will rarely be the case in

realistic mixing situations. Therefore, the first step in future development of this work

will be to re-derive twirl and orientation factors to include transient terms. This allows

for transient flows, and more specifically, spatially and temporally continuous chaotic

flow field models to be explored. An exploration of chaotic flows could potentially

reveal additional phenomenon in chaotic flows that can be exploited to produce even

greater mixing.

Next, future work would progress in the three dimensional real, again with the

inclusion of transient terms. While the two dimensional flows examined in this study

are critical to investigating fundamental flow behavior, they do not fully explore area

deformation and some three dimensional mixing phenomenon. Expansion into three

dimensions open possibilities for the exploration of realistic mixing simulations. Fur-

thermore, the actual generation of the velocity field solutions is not important to

the study of twirl and orientation factors. Therefore, complex velocity field solutions

produced by other authors could be used, reducing research time by jumping im-
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mediately to analysis rather than the overhead time spent developing velocity fields.

Furthermore, very complex velocity fields could be used, such as a single screw, twin

screw, or Kinex twisted tape mixer, which are outside of available computational re-

sources to perform in house. Using the work in three dimensions, the fundamentals

of interface reorientation in realistic flows can be explored, shedding new light on real

mixing phenomenon.

Finally, a divergent path for future work considers investigating the form of twirl

which can be derived by removing assumptions about incompressibility, miscibility,

or other constitutive laws. This work could be pursed in both two dimensional and

three dimensional flows.
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Appendix A: Twirl Tensor Derivation

Consider the tensor T which is defined as the mapping of the eigenvectors of the

rate of deformation tensor to the material derivative of the eigenvectors of the rate

of deformation tensor.

ė1 = T · e1 (A.0.1)

Prior to the actual twirl tensor derivation, an identity used in its derivation will

be derived. Begin with the rate of deformation tensor D, its associated eigenvector-

eigenvalue pairs {di, λi}, and an arbitrary tensor A.

AD −DA =
∑
a,b

[∑
i

[Aai (da ⊗ di)λbδib (di ⊗ db)]

−
∑
i

[Aib (di ⊗ db)λaδai (da ⊗ di)]

]
(A.0.2)

AD −DA =
∑
a,b

[Aab (da ⊗ db)λbδbb (db ⊗ db)

− Aab (da ⊗ db)λaδaa (da ⊗ da)] (A.0.3)

AD −DA =
∑
a,b

[Aab [λb (db ⊗ db)− λa (da ⊗ da)] (da ⊗ db)] (A.0.4)

AD −DA =
∑
a,b

[Aab [λb − λa] (da ⊗ db)] (A.0.5)

To begin defining twirl, start with the following expressions for the rate of defor-

mation tensor D, the rate of deformation material derivative Ḋ, and the twirl tensor

T .

D =
∑
i

λidi ⊗ di =
∑
a,b

λaδabda ⊗ db (A.0.6)

Ḋ =
∑
a,b

Ḋabda ⊗ db (A.0.7)
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T =
∑
a,b

Tabda ⊗ db (A.0.8)

Furthermore, assume that the eigenvalues of the rate of deformation tensor assume

the form of λ1 = ε̇ and λ2 = −ε̇, where ε̇ =
√
D : D. To start the definition, begin by

taking the material derivative of the rate of deformation tensor definition.

Ḋ =
∑
i

λ̇idi ⊗ di + λiḋi ⊗ di + λidi ⊗ ḋi (A.0.9)

=
∑
i

λ̇idi ⊗ di + λi (T · di)⊗ di + λidi ⊗ (T · di) (A.0.10)

=
∑
i

λ̇idi ⊗ di + T · (λidi ⊗ di)− (λidi ⊗ di) · T (A.0.11)

= T · D − D · T +
∑
i

λ̇idi ⊗ di (A.0.12)

=
∑
a,b

λ̇aδabda ⊗ db + Tab (λb − λa) (da ⊗ db) (A.0.13)

=
∑
a,b

(
λ̇aδab + Tab (λb − λa)

)
(da ⊗ db) (A.0.14)

Substituting the alternative definition of the rate of deformation material deriva-

tive yields:

∑
a,b

Dabda ⊗ db =
∑
a,b

(
λ̇aδab + Tab (λb − λa)

)
(da ⊗ db) (A.0.15)

Removing the summations, eigenvector tensor product, and further equation ma-

nipulation yields:

Tab =
Ḋab − λ̇aδab
(λb − λa)

(A.0.16)

For the case of a = b, the numerator goes to zero (Ḋaa = λ̇a). In the case a 6= b,

the λ̇a term vanishes. Equation (A.0.16) can then be simplified and solved only for

the case where a 6= b. Multiplication of the numerator and denominator of equation
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(A.0.18) by λb − λa yields:

Tab =
Ḋab

λb − λa
λb − λa
λb − λa

(A.0.17)

=
1

(λb − λa)2
[
Ḋab (λb − λa)

]
(A.0.18)

Expanding equation (A.0.18) into its summation form yields:

∑
a6=b

Tabda ⊗ db =
∑
a6=b

1

(λb − λa)2
[
Ḋab (λb − λa)

]
da ⊗ db (A.0.19)

Substituting the eigenvalues of λ1 and λ2 yields:

∑
a6=b

Tabda ⊗ db =
1

4ε̇2

∑
a6=b

[
Ḋab (λb − λa)

]
da ⊗ db (A.0.20)

Finally, application of the identity (A.0.5) to (A.0.20) yields the final form of twirl

given below:

T =
Ḋ · D − D · Ḋ

4ε̇2
(A.0.21)
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Appendix B: Supplementary Figures

B.1 Diverging Channel with θ → α

Additional simulations using the diverging channel flow field model were conducted

to show material orientation behavior near the boundary.

Figure B.1: Diverging Channel First Interface Orientation Factor for Streamline An-

gle θ = 4.00◦, θ = 4.25◦, θ = 4.50◦, and θ = 4.75◦

Observe as θ → α, the equilibrium orientation value of the first interface orienta-

tion factor goes to a shear equilibrium value Op = 0.707. Note that the axis have been

modified from a typically diverging channel first interface orientation plot for presen-

tation quality. First interface orientation factor values at t = 104 was Op = −0.840,

Op = −0.810, Op = −0.777, and Op = −0.743 for θ = 4.00, θ = 4.25, θ = 4.50, and

θ = 4.75.
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B.2 Lid Driven Cavity Inner Streamline (y = 0.23)

B.2.1 Upward Flight

Figure B.2: Lid Driven Cavity Upward Flight Square Orientation Plot for p and d1

for y0 = 0.45

Figure B.3: Lid Driven Cavity Upward Flight Material Stretch for y0 = 0.45
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Figure B.4: Lid Driven Cavity Upward Flight Normalized Material Stretch Rate for

y0 = 0.45

Figure B.5: Lid Driven Cavity Upward Flight Maximum Normalized Material Stretch-

ing Rate for y0 = 0.45
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Figure B.6: Lid Driven Cavity Upward Flight First Interface Orientation Factor for

y0 = 0.45

Figure B.7: Lid Driven Cavity Upward Flight Second Interface Orientation Factor

for y0 = 0.45
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Figure B.8: Lid Driven Cavity Upward Flight First Velocity Orientation Factor for

y0 = 0.45

Figure B.9: Lid Driven Cavity Upward Flight Second Velocity Orientation Factor for

y0 = 0.45
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B.2.2 Downward Flight

Figure B.10: Lid Driven Cavity Downward Flight Square Orientation Plot for p and

d1 for y0 = 0.45

Figure B.11: Lid Driven Cavity Downward Flight Material Stretch for y0 = 0.45
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Figure B.12: Lid Driven Cavity Downward Flight Normalized Material Stretch Rate

for y0 = 0.45

Figure B.13: Lid Driven Cavity Downward Flight Maximum Normalized Material

Stretching Rate for y0 = 0.45
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Figure B.14: Lid Driven Cavity Downward Flight First Interface Orientation Factor

for y0 = 0.45

Figure B.15: Lid Driven Cavity Downward Flight Second Interface Orientation Factor

for y0 = 0.45
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Figure B.16: Lid Driven Cavity Downward Flight First Velocity Orientation Factor

for y0 = 0.45

Figure B.17: Lid Driven Cavity Downward Flight Second Velocity Orientation Factor

for y0 = 0.45
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B.3 Lid Driven Cavity Outer Streamline (y = 0.23)

B.3.1 Upward Flight

Figure B.18: Lid Driven Cavity Upward Flight Square Orientation Plot for p and d1

for y0 = 0.23

Figure B.19: Lid Driven Cavity Upward Flight Material Stretch for y0 = 0.23
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Figure B.20: Lid Driven Cavity Upward Flight Normalized Material Stretch Rate for

y0 = 0.23

Figure B.21: Lid Driven Cavity Upward Flight Maximum Normalized Material

Stretching Rate for y0 = 0.23
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Figure B.22: Lid Driven Cavity Upward Flight First Interface Orientation Factor for

y0 = 0.23

Figure B.23: Lid Driven Cavity Upward Flight Second Interface Orientation Factor

for y0 = 0.23
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Figure B.24: Lid Driven Cavity Upward Flight First Velocity Orientation Factor for

y0 = 0.23

Figure B.25: Lid Driven Cavity Upward Flight Second Velocity Orientation Factor

for y0 = 0.23
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B.3.2 Downward Flight

Figure B.26: Lid Driven Cavity Downward Flight Square Orientation Plot for p and

d1 for y0 = 0.23

Figure B.27: Lid Driven Cavity Downward Flight Material Stretch for y0 = 0.23
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Figure B.28: Lid Driven Cavity Downward Flight Normalized Material Stretch Rate

for y0 = 0.23

Figure B.29: Lid Driven Cavity Downward Flight Maximum Normalized Material

Stretching Rate for y0 = 0.23
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Figure B.30: Lid Driven Cavity Downward Flight First Interface Orientation Factor

for y0 = 0.23

Figure B.31: Lid Driven Cavity Downward Flight Second Interface Orientation Factor

for y0 = 0.23
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Figure B.32: Lid Driven Cavity Downward Flight First Velocity Orientation Factor

for y0 = 0.23

Figure B.33: Lid Driven Cavity Downward Flight Second Velocity Orientation Factor

for y0 = 0.23

114



Appendix C: Code

C.1 Couette Channel

C.1.1 Master Code

1 %
2 % Title: New Measures for the Study of Distributive Mixing
3 % in Continuous Creeping Flows
4 %
5 % Author: Jason Nixon
6 %
7 % Code: 2D Steady State Couette Channel Master Code
8 %
9

10 clc; clear; close all
11

12 global U h dt tmax
13

14 U=0.5; % Top wall velocity
15

16 h=1; % Channel heigh
17

18 dt=0.1; % Time step
19

20 tmax=15; % Run time
21

22 theta = [ 0 45 90 135 ]*pi/180; % Interface angles
23

24 Time=zeros(tmax/dt+1,numel(theta));
25 SquareOrientationInterface=zeros(tmax/dt+1,numel(theta));
26 MaterialStretch=zeros(tmax/dt+1,numel(theta));
27 FirstInterfaceOrientationFactor=zeros(tmax/dt+1,numel(theta));
28 FirstVelocityOrientationFactor=zeros(tmax/dt+1,numel(theta));
29 SecondInterfaceOrientationFactor=zeros(tmax/dt+1,numel(theta));
30 SecondVelocityOrientationFactor=zeros(tmax/dt+1,numel(theta));
31 MaximumNormalizedStretchingRate=zeros(tmax/dt+1,numel(theta));
32 NormalizedStretchingRate=zeros(tmax/dt+1,numel(theta));
33

34 for n=1:numel(theta)
35

36 [ Time(:,n),...
37 SquareOrientationInterface(:,n), ...
38 MaterialStretch(:,n), ...
39 FirstInterfaceOrientationFactor(:,n), ...
40 FirstVelocityOrientationFactor(:,n), ...
41 SecondInterfaceOrientationFactor(:,n), ...
42 SecondVelocityOrientationFactor(:,n), ...
43 MaximumNormalizedStretchingRate(:,n), ...
44 NormalizedStretchingRate(:,n) ] = ...
45 Flow1 CODE Routine 1(theta(n));
46
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47 end
48

49 dlmwrite('Flow1 DATA time', ...
50 Time,'precision','%15.13f')
51 dlmwrite('Flow1 DATA SquareOrientationInterface', ...
52 SquareOrientationInterface,'precision','%15.13f')
53 dlmwrite('Flow1 DATA MaterialStretch', ...
54 MaterialStretch,'precision','%15.13f')
55 dlmwrite('Flow1 DATA FirstInterfaceOrientationFactor', ...
56 FirstInterfaceOrientationFactor,'precision','%15.13f')
57 dlmwrite('Flow1 DATA SecondInterfaceOrientationFactor', ...
58 SecondInterfaceOrientationFactor,'precision','%15.13f')
59 dlmwrite('Flow1 DATA FirstVelocityOrientationFactor', ...
60 FirstVelocityOrientationFactor,'precision','%15.13f')
61 dlmwrite('Flow1 DATA SecondVelocityOrientationFactor', ...
62 SecondVelocityOrientationFactor,'precision','%15.13f')
63 dlmwrite('Flow1 DATA MaximumNormalizedStretchingRate', ...
64 MaximumNormalizedStretchingRate,'precision','%15.13f')
65 dlmwrite('Flow1 DATA NormalizedStretchingRate', ...
66 NormalizedStretchingRate,'precision','%15.13f')

C.1.2 Material Tracking Module

1 function [t,SOI,ds,IOF1,UOF1,IOF2,UOF2,MNSR,NSR] = ...
2 Flow1 CODE Routine 1(theta)
3

4 global U h dt tmax
5

6 ds(1)=1;
7

8 u=[1 ; 0];
9

10 G=U/h;
11

12 L=[0 G ; 0 0];
13

14 D=0.5*(L+L');
15

16 W=0.5*(L−L');
17

18 T=[0 0 ; 0 0];
19

20 [¬,¬,d1]=PD2v2(D);
21

22 MNSR(1)=sqrt(sum(sum(D.*D))/2);
23

24 dx(:,1)=[cos(theta) sin(theta)];
25

26 [ds(1),p,¬,SOI(1)]=vec prop(dx(:,1),[1 0]');
27

28 IOF1(1)=dot(p,d1);
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29

30 UOF1(1)=dot(u,d1);
31

32 IOF2(1)=d1'*(D+W−eye(2)*(p'*D*p)−T)*p;
33

34 UOF2(1)=d1'*(D+W−eye(2)*(u'*D*u)−T)*u;
35

36 NSR(1)=p'*D*p;
37

38 for n=2:tmax/dt+1
39

40 dx(:,n)=dt*L*dx(:,n−1)+dx(:,n−1);
41

42 [ds(n),p,¬,SOI(n)]=vec prop(dx(:,n),[1 0]');
43

44 IOF1(n)=dot(p,d1);
45

46 UOF1(n)=dot(u,d1);
47

48 IOF2(n)=d1'*(D+W−eye(2)*(p'*D*p)−T)*p;
49

50 UOF2(n)=d1'*(D+W−eye(2)*(u'*D*u)−T)*u;
51

52 MNSR(n)=sqrt(DDP(D,D)/2);
53

54 NSR(n)=MNSR(n)*(2*IOF1(n)ˆ2−1);
55

56 end
57

58 t=linspace(0,tmax,tmax/dt+1);
59

60 end

C.2 Diverging Channel

C.2.1 Master Code

1 %
2 % Title: New Measures for the Study of Distributive Mixing
3 % in Continuous Creeping Flows
4 %
5 % Author: Jason Nixon
6 %
7 % Code: 2D Steady State Diverging Channel Master Code
8 %
9

10 clc; clear; close all; format long
11

12 global N alpha F0 tmax dt init orient R0 ds0 Re
13

14 %Material Properties
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15 rho=1000; % Density
16

17 mu=10; % Kinematic viscosity
18

19 nu=mu/rho; % Dynamic viscosity
20

21 N=1001; % Number of divisions in time for solver
22

23 alpha=5*pi/180; % Channel divergence angle
24

25 F0=0.1; % Centerline F value
26

27 tmax=10000; % Runtime
28

29 dt=2; % Time step
30

31 ds0=1; % Initial interface magnitude
32

33 init orient=[10;1]; % Initial orientation
34

35 Re=F0*alpha/nu; % Reynolds number
36

37 R0=1; % Initial radial location
38

39 theta=[4.00 4.25 4.50 4.75]*pi/180; % Test angles
40

41 UOF1Profile=zeros(N,numel(theta));
42 FProfile=zeros(N,numel(theta));
43 MNSRProfile=zeros(N,numel(theta));
44 VorticityProfile=zeros(N,numel(theta));
45 TwirlProfile=zeros(N,numel(theta));
46 Time=zeros(tmax/dt+1,numel(theta));
47 SquareOrientationInterface=zeros(tmax/dt+1,numel(theta));
48 MaterialStretch=zeros(tmax/dt+1,numel(theta));
49 MaximumNormalizedStretchingRate=zeros(tmax/dt+1,numel(theta));
50 NormalizedStretchingRate=zeros(tmax/dt+1,numel(theta));
51 VorticityHistory=zeros(tmax/dt+1,numel(theta));
52 TwirlHistory=zeros(tmax/dt+1,numel(theta));
53 FirstInterfaceOrientationFactor=zeros(tmax/dt+1,numel(theta));
54 SecondInterfaceOrientationFactor=zeros(tmax/dt+1,numel(theta));
55 FirstVelocityOrientationFactor=zeros(tmax/dt+1,numel(theta));
56 SecondVelocityOrientationFactor=zeros(tmax/dt+1,numel(theta));
57 RadialDisplacement=zeros(tmax/dt+1,numel(theta));
58

59 for n=1:numel(theta)
60

61 [ Time(:,n), ...
62 UOF1Profile(:,n), ...
63 FProfile(:,n) , ...
64 MNSRProfile(:,n), ...
65 VorticityProfile(:,n), ...
66 TwirlProfile(:,n), ...
67 SquareOrientationInterface(:,n), ...
68 MaterialStretch(:,n), ...
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69 MaximumNormalizedStretchingRate(:,n), ...
70 NormalizedStretchingRate(:,n), ...
71 VorticityHistory(:,n),...
72 TwirlHistory(:,n),...
73 FirstInterfaceOrientationFactor(:,n),...
74 SecondInterfaceOrientationFactor(:,n),...
75 FirstVelocityOrientationFactor(:,n),...
76 SecondVelocityOrientationFactor(:,n),...
77 RadialDisplacement(:,n)] ...
78 =Flow2 CODE Routine 1(theta(n));
79

80 end
81

82 dlmwrite('Flow2 DATA UOF1Profile', ...
83 UOF1Profile,'precision','%15.13f')
84 dlmwrite('Flow2 DATA FProfile', ...
85 FProfile,'precision','%15.13f')
86 dlmwrite('Flow2 DATA MNSRProfile', ...
87 MNSRProfile,'precision','%15.13f')
88 dlmwrite('Flow2 DATA VorticityProfile', ...
89 VorticityProfile,'precision','%15.13f')
90 dlmwrite('Flow2 DATA TwirlProfile', ...
91 TwirlProfile,'precision','%15.13f')
92 dlmwrite('Flow2 DATA Time', ...
93 Time,'precision','%15.13f')
94 dlmwrite('Flow2 DATA SquareOrientationInterface', ...
95 SquareOrientationInterface,'precision','%15.13f')
96 dlmwrite('Flow2 DATA MaterialStretch', ...
97 MaterialStretch,'precision','%15.13f')
98 dlmwrite('Flow2 DATA FirstInterfaceOrientationFactor', ...
99 FirstInterfaceOrientationFactor,'precision','%15.13f')

100 dlmwrite('Flow2 DATA SecondInterfaceOrientationFactor', ...
101 SecondInterfaceOrientationFactor,'precision','%15.13f')
102 dlmwrite('Flow2 DATA FirstVelocityOrientationFactor', ...
103 FirstVelocityOrientationFactor,'precision','%15.13f')
104 dlmwrite('Flow2 DATA SecondVelocityOrientationFactor', ...
105 SecondVelocityOrientationFactor,'precision','%15.13f')
106 dlmwrite('Flow2 DATA MaximumNormalizedStretchingRate', ...
107 MaximumNormalizedStretchingRate,'precision','%15.13f')
108 dlmwrite('Flow2 DATA NormalizedStretchingRate', ...
109 NormalizedStretchingRate,'precision','%15.13f')
110 dlmwrite('Flow2 DATA VorticityHistory', ...
111 VorticityHistory,'precision','%15.13f')
112 dlmwrite('Flow2 DATA TwirlHistory', ...
113 TwirlHistory,'precision','%15.13f')
114 dlmwrite('Flow2 DATA RadialDisplacement', ...
115 RadialDisplacement,'precision','%15.13f')

C.2.2 Material Tracking Module

1 function [ Time,UOF1Profile,FProfile,MNSRProfile,VorticityProfile,...
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2 TwirlProfile,SOI,ds,MNSR,NSR,w,tw,IOF1,IOF2,UOF1,UOF2,R]...
3 = Flow2 CODE Routine 1(theta )
4

5 global N alpha F0 tmax dt init orient R0 ds0 Re
6

7 ds(1)=ds0;
8

9 R(1)=R0;
10

11 u=[1;0];
12

13 dx(:,1)=ds0*init orient/sqrt(dot(init orient,init orient));
14

15 aR=[0 ;
16 50;
17 100;
18 188;
19 300;
20 500;
21 800;
22 1400];
23

24 k=[−2.00508465;
25 −3.5394176;
26 −5.8691811;
27 −6.8802251;
28 −18.9682230;
29 −32.4654512;
30 −52.3003336;
31 −85.0484725];
32

33 K=interp1(aR,k,alpha*Re);
34

35 [¬,G]=ode45(@Flow2 CODE Routine 2,linspace(0,1,N),[1 0 K]);
36

37 Kc(1)=sign(K)*(abs(K)−mod(abs(K),1));
38

39 conv iter=10;
40

41 for n=1:conv iter
42 for j=1:11
43 off=((j−1)/5−1)/(10ˆn);
44 [¬,G]=ode45(@Flow2 CODE Routine 2,linspace(0,1,N),...
45 [1 0 Kc(n)+off]);
46 G range(j)=G(1001,1);
47 eta range(j)=Kc(n)+off;
48 end
49

50 Kc(n+1)=interp1(G range,eta range,min(0));
51

52 end
53

54 [¬,G]=ode45(@Flow2 CODE Routine 2,linspace(0,1,N),...
55 [1 0 Kc(conv iter+1)]);
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56

57 Kc(conv iter+1);
58

59 F=G*F0;
60

61 for n=1:N
62

63 f=F(n,1);
64

65 fp=F(n,2);
66

67 L=[−f 0 ; fp f];
68

69 D=0.5*(L+L');
70

71 W=0.5*(L−L');
72

73 DD=[2*fˆ2 −f*fp ; −f*fp −2*fˆ2];
74

75 [¬,¬,e1]=PD2v2(D);
76

77 T=(1/(4*(sum(sum(D.*D))/2)ˆ2))*(DD*D−D*DD);
78

79 MNSRProfile(n)=sqrt(sum(sum(D.*D))/2);
80

81 VorticityProfile(n)=DDP([0 −1 ; 1 0],W)/2;
82

83 TwirlProfile(n)=DDP([0 −1 ; 1 0],T)/2;
84

85 UOF1Profile(n)=dot(e1,u);
86

87 end
88

89 f=interp1(linspace(0,alpha,N),F(:,1),theta);
90

91 fp=interp1(linspace(0,alpha,N),F(:,2),theta);
92

93 fpp=interp1(linspace(0,alpha,N),F(:,3),theta);
94

95 for j=1:1000
96 valU(j)=f/j;
97 end
98

99 L=(1/R(1)ˆ2)*[−f 0 ; fp f];
100

101 D=0.5*(L+L');
102

103 W=0.5*(L−L');
104

105 DD=(1/R(1)ˆ4)*[2*fˆ2 −f*fp ; −f*fp −2*fˆ2];
106

107 T=(DD*D−D*DD)/(2*sum(sum(D.*D)));
108

109 MNSR(1)=sqrt(sum(sum(D.*D))/2);
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110

111 w(1)=sum(sum([0 −0.5 ; 0.5 0].*W));
112

113 tw(1)=sum(sum([0 −0.5 ; 0.5 0].*T));
114

115 [ds(1),p,¬,SOI(1)]=vec prop(dx(:,1),[1 0]);
116

117 [¬,¬,e1]=PD2v2(D);
118

119 u=[1 ; 0];
120

121 NSR(1)=p'*D*p;
122

123 IOF1(1)=dot(e1,p);
124

125 IOF2(1)=e1'*(D+W−eye(2)*(p'*D*p)−T)*p;
126

127 UOF1(1)=dot(e1,u);
128

129 UOF2(1)=e1'*(D+W−eye(2)*(u'*D*u)−T)*u;
130

131 for n=2:tmax/dt+1
132

133 Lp=L;
134

135 RK1=interp1(valU,R(n−1));
136

137 RK2=interp1(valU,R(n−1)+0.5*RK1);
138

139 RK3=interp1(valU,R(n−1)+0.5*RK2);
140

141 RK4=interp1(valU,R(n−1)+0.5*RK3);
142

143 R(n)=R(n−1)+dt*(RK1+2*RK2+2*RK3+RK4)/6;
144

145 L=(1/R(n)ˆ2)*[−f 0 ; fp f];
146

147 D=0.5*(L+L');
148

149 W=0.5*(L−L');
150

151 DD=(1/R(n)ˆ4)*[2*fˆ2 −f*fp ; −f*fp −2*fˆ2];
152

153 T=(DD*D−D*DD)/(2*sum(sum(D.*D)));
154

155 MNSR(n)=sqrt(sum(sum(D.*D))/2);
156

157 w(n)=sum(sum([0 −0.5 ; 0.5 0].*W));
158

159 tw(n)=sum(sum([0 −0.5 ; 0.5 0].*T));
160

161 NSR(n)=p'*D*p;
162

163 [¬,¬,e1]=PD2v2(D);
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164

165 [¬,¬,¬,SOP(n)]=vec prop(e1,[1 0]);
166

167 dx(:,n)=(dt*(L+Lp)/2)*dx(:,n−1)+dx(:,n−1);
168

169 [ds(n),p,¬,SOI(n)]=vec prop(dx(:,n),[1 0]);
170

171 u=[1 ; 0];
172

173 IOF1(n)=dot(e1,p);
174

175 IOF2(n)=e1'*(D+W−T−eye(2)*(p'*D*p))*p;
176

177 UOF1(n)=dot(e1,u);
178

179 UOF2(n)=e1'*(D+W−T−eye(2)*(u'*D*u))*u;
180

181 end
182

183 FProfile=F(:,1);
184

185 Time=linspace(0,tmax,tmax/dt+1);
186

187 end

C.2.3 ODE45 Equation Module

1 function [dy] = Flow2 CODE Routine 2(t,y)
2

3 global Re alpha
4

5 dy=zeros(3,1);
6

7 dy(1)=y(2);
8

9 dy(2)=y(3);
10

11 dy(3)=−4*alphaˆ2*y(2)−2*alpha*Re*y(1)*y(2);
12

13 end

C.3 Lid Driven Cavity

C.3.1 Master Code

1 %
2 % Title: New Measures for the Study of Distributive Mixing
3 % in Continuous Creeping Flows
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4 %
5 % Author: Jason Nixon
6 %
7 % Code: Lid Driven Cavity Material Tracking Module
8 %
9

10 clc; clear; close all; format long;
11

12 global FDParam PSI Ux Uy x0 tmax dt orient0
13

14 y0=[0.23 0.45];
15

16 x0=7.5;
17

18 tmax=80;
19

20 dt=0.05;
21

22 orient0=[ 0 ; 1 ];
23

24 FDParam=dlmread('Flow3 DATA FlowfieldParameters');
25

26 PSI=dlmread('Flow3 DATA StreamFunction');
27

28 Ux=dlmread('Flow3 DATA VelocityX');
29

30 Uy=dlmread('Flow3 DATA VelocityY');
31

32 Nt=tmax/dt+1;
33

34 Nr=numel(y0);
35

36 RunParameters=zeros(Nt,Nr);
37 StreamFunctionPercentError=zeros(Nt,Nr);
38 Time=zeros(Nt,Nr);
39 CoordinateX=zeros(Nt,Nr);
40 CoordinateY=zeros(Nt,Nr);
41 MagnitudeVelocity=zeros(Nt,Nr);
42 MagnitudeTwirl=zeros(Nt,Nr);
43 MaterialStretch=zeros(Nt,Nr);
44 SquareOrientationVelocity=zeros(Nt,Nr);
45 SquareOrientationInteface=zeros(Nt,Nr);
46 SquareOrientationEigenvector=zeros(Nt,Nr);
47 NormalizedStretchingRate=zeros(Nt,Nr);
48 MaximumNormalizedStretchingRate=zeros(Nt,Nr);
49 MaximumNormalizedStretchingRateDerivative=zeros(Nt,Nr);
50 FlowEfficiency=zeros(Nt,Nr);
51 LineEfficiency=zeros(Nt,Nr);
52 EfficiencyOfMixing=zeros(Nt,Nr);
53 FirstInterfaceOrientationFactor=zeros(Nt,Nr);
54 SecondInterfaceOrientationFactor=zeros(Nt,Nr);
55 FirstVelocityOrientationFactor=zeros(Nt,Nr);
56 SecondVelocityOrientationFactor=zeros(Nt,Nr);
57 StreamlineCurvature=zeros(Nt,Nr);
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58

59 for n=1:Nr
60

61 [ RunParameters,...
62 StreamFunctionPercentError(:,n),...
63 Time(:,n),...
64 CoordinateX(:,n),...
65 CoordinateY(:,n),...
66 MagnitudeVelocity(:,n),...
67 MagnitudeTwirl(:,n),...
68 MaterialStretch(:,n),...
69 SquareOrientationVelocity(:,n),...
70 SquareOrientationInteface(:,n),...
71 SquareOrientationEigenvector(:,n),...
72 NormalizedStretchingRate(:,n),...
73 MaximumNormalizedStretchingRate(:,n),...
74 MaximumNormalizedStretchingRateDerivative(:,n),...
75 FlowEfficiency(:,n),...
76 LineEfficiency(:,n),...
77 EfficiencyOfMixing(:,n),...
78 FirstInterfaceOrientationFactor(:,n),...
79 SecondInterfaceOrientationFactor(:,n),...
80 FirstVelocityOrientationFactor(:,n)...
81 SecondVelocityOrientationFactor(:,n),...
82 StreamlineCurvature(:,n)]=...
83 Flow3 CODE Routine 2(y0(n));
84

85 end
86

87 dlmwrite('Flow3 DATA RunParameters',...
88 RunParameters,'precision','%15.13f')
89 dlmwrite('Flow3 DATA StreamFunctionPercentError',...
90 StreamFunctionPercentError,'precision','%15.13f')
91 dlmwrite('Flow3 DATA Time',...
92 Time,'precision','%15.13f')
93 dlmwrite('Flow3 DATA CoordinateX',...
94 CoordinateX,'precision','%15.13f')
95 dlmwrite('Flow3 DATA CoordinateY',...
96 CoordinateY,'precision','%15.13f')
97 dlmwrite('Flow3 DATA MagnitudeVelocity',...
98 MagnitudeVelocity,'precision','%15.13f')
99 dlmwrite('Flow3 DATA MagnitudeTwirl',...

100 MagnitudeTwirl,'precision','%15.13f')
101 dlmwrite('Flow3 DATA MaterialStretch',...
102 MaterialStretch,'precision','%15.13f')
103 dlmwrite('Flow3 DATA SquareOrientationVelocity',...
104 SquareOrientationVelocity,'precision','%15.13f')
105 dlmwrite('Flow3 DATA SquareOrientationInteface',...
106 SquareOrientationInteface,'precision','%15.13f')
107 dlmwrite('Flow3 DATA SquareOrientationEigenvector',...
108 SquareOrientationEigenvector,'precision','%15.13f')
109 dlmwrite('Flow3 DATA NormalizedStretchingRate',...
110 NormalizedStretchingRate,'precision','%15.13f')
111 dlmwrite('Flow3 DATA MaximumNormalizedStretchingRate',...
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112 MaximumNormalizedStretchingRate,'precision','%15.13f')
113 dlmwrite('Flow3 DATA MaximumNormalizedStretchingRateDerivative',...
114 MaximumNormalizedStretchingRateDerivative,'precision','%15.13f')
115 dlmwrite('Flow3 DATA FlowEfficiency',...
116 FlowEfficiency,'precision','%15.13f')
117 dlmwrite('Flow3 DATA LineEfficiency',...
118 LineEfficiency,'precision','%15.13f')
119 dlmwrite('Flow3 DATA EfficiencyOfMixing',...
120 EfficiencyOfMixing,'precision','%15.13f')
121 dlmwrite('Flow3 DATA FirstInterfaceOrientationFactor',...
122 FirstInterfaceOrientationFactor,'precision','%15.13f')
123 dlmwrite('Flow3 DATA SecondInterfaceOrientationFactor',...
124 SecondInterfaceOrientationFactor,'precision','%15.13f')
125 dlmwrite('Flow3 DATA FirstVelocityOrientationFactor',...
126 FirstVelocityOrientationFactor,'precision','%15.13f')
127 dlmwrite('Flow3 DATA SecondVelocityOrientationFactor',...
128 SecondVelocityOrientationFactor,'precision','%15.13f')
129 dlmwrite('Flow3 DATA StreamlineCurvature',...
130 StreamlineCurvature,'precision','%15.13f')

C.3.2 Velocity Field Generation Module

1 %
2 % Title: New Measures for the Study of Distributive Mixing
3 % in Continuous Creeping Flows
4 %
5 % Author: Jason Nixon
6 %
7 % Code: 2D Steady State High Aspect Ratio Low Reynolds
8 % Number Lid Driven Cavity Velocity Solution
9 %

10

11 clc; clear; close all;
12

13 % Cavity Geometry
14 Dx1=15; % cavity length
15 Dx2=1; % cavity height
16 U=1; % top−wall speed
17

18 % Fluid Material Properties
19 Re=0.1; % reynolds number
20 rho=1000; % density
21 mu=10000; % dynamic viscosity
22

23 % Simulation Properties
24 sp=200; % divisions per unit length
25 iter run=65000; % number of iterations
26 R=1; % under−relaxation parameter
27

28 % Simulation Parameters
29 nx=Dx1*sp+1; % number of nodes in x1
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30 ny=Dx2*sp+1; % number of nodes in x2
31 h=1/sp; % mesh spacing
32 hs=hˆ2; % square mesh spacing
33

34 % Zero Matrix Definitions
35 psi=zeros(ny,nx);
36 omega=zeros(ny,nx);
37 u1=zeros(ny,nx);
38 u2=zeros(ny,nx);
39

40 for iter=1:iter run
41

42 %top and bottom boundary nodes
43 for i=2:(nx−1)
44 omega node b1=−2*psi(2,i)/hs;
45 omega(1,i)=omega(1,i)+R*(omega node b1−omega(1,i));
46 psi(1,i)=0;
47

48 omega node b3=−2*(psi(ny−1,i)+U*h)/hs;
49 omega(ny,i)=omega(ny,i)+R*(omega node b3−omega(ny,i));
50 psi(ny,i)=0;
51 end
52

53 %left and right boundary nodes
54 for j=2:(ny−1)
55 omega node b2=−2*psi(j,2)/hs;
56 omega(j,1)=omega(j,1)+R*(omega node b2−omega(j,1));
57 psi(j,1)=0;
58

59 omega node b4=−2*psi(j,nx−1)/hs;
60 omega(j,nx)=omega(j,nx)+R*(omega node b4−omega(j,nx));
61 psi(j,nx)=0;
62 end
63

64 %internal Nodes
65 for i=2:(nx−1)
66

67 for j=2:(ny−1)
68

69 A=omega(j,i−1);
70 B=omega(j−1,i);
71 C=omega(j,i);
72 D=omega(j+1,i);
73 E=omega(j,i+1);
74 F=psi(j,i−1);
75 G=psi(j−1,i);
76 H=psi(j,i);
77 I=psi(j+1,i);
78 J=psi(j,i+1);
79

80 %calculates the current−step nodal vorticity value
81 omega node i=(A+B+D+E+Re*((F−J)*(B−D)−(G−I)*(A−E))/4)/4;
82

83 %applies the vorticity value relaxation scheme
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84 omega(i,j)=C+R*(omega node i−C);
85

86 %calculates the current−step nodal stream value
87 psi node i=(F+G+I+J+hs*C)/4;
88

89 %applies stream value relaxation scheme
90 psi(j,i)=H+R*(psi node i−H);
91 end
92

93 end
94

95 end
96

97 % Assigns the top boundary velocity value
98 u1(ny,1:nx)=1;
99

100 % Calculates the interior nodal velocity values
101 for i=2:(nx−1)
102 for j=2:(ny−1)
103 F=psi(j,i−1);
104 G=psi(j−1,i);
105 I=psi(j+1,i);
106 J=psi(j,i+1);
107 u1(j,i)=(I−G)/(2*h);
108 u2(j,i)=−(J−F)/(2*h);
109 end
110 end
111

112 dlmwrite('Flow3 DATA FlowfieldParameters',...
113 [Dx1 Dx2 U sp Re rho mu],'precision','%8.6f')
114 dlmwrite('Flow3 DATA StreamFunction',...
115 psi,'precision','%8.6f')
116 dlmwrite('Flow3 DATA Vorticity',...
117 omega,'precision','%8.6f')
118 dlmwrite('Flow3 DATA VelocityX',...
119 u1,'precision','%8.6f')
120 dlmwrite('Flow3 DATA VelocityY',...
121 u2,'precision','%8.6f')

C.3.3 Material Tracking Module

1 function [paraRUN,SFPE,Time,X,Y,MagnitudeVelocity, ...
2 MagnitudeTwirl,ds,SOU,SOI,SOD,NSR,MNSR,MNSRD,eF,eL,eM...
3 IOF1,IOF2,UOF1,UOF2,K] = Flow3 CODE Routine 2(y0)
4

5 global FDParam PSI Ux Uy x0 tmax dt orient0
6

7 PaCL=FDParam(1); % specifies cavity length
8 PaCH=FDParam(2); % specifies cavity height
9 PaU=FDParam(3); % specifies Wall speed

10 PaSP=FDParam(4); % specifies node spacing parameter
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11 PaRN=FDParam(5); % specifies Reynold number
12 PaD=FDParam(6); % specifies fluid density
13 PaV=FDParam(7); % specifies fluid viscostiy
14

15 paraRUN=[PaCL PaCH PaU PaSP PaD PaV PaRN x0 y0 tmax dt];
16

17 nx=PaCL*PaSP+1;
18 ny=PaCH*PaSP+1;
19

20 [dU dx,dU dy]=gradient(Ux,1/PaSP);
21 [dV dx,dV dy]=gradient(Uy,1/PaSP);
22

23 D11f=dU dx;
24 D12f=0.5*(dU dy+dV dx);
25 D21f=0.5*(dV dx+dU dy);
26 D22f=dV dy;
27

28 [dD11f dx,dD11f dy]=gradient(D11f,1/PaSP);
29 [dD12f dx,dD12f dy]=gradient(D12f,1/PaSP);
30 [dD21f dx,dD21f dy]=gradient(D21f,1/PaSP);
31 [dD22f dx,dD22f dy]=gradient(D22f,1/PaSP);
32

33 X(2:tmax/dt+1)=0;
34 Y(2:tmax/dt+1)=0;
35 PSIc(tmax/dt+1)=0;
36 SFPE(tmax/dt+1)=0;
37 MagnitudeVelocity(tmax/dt+1)=0;
38 dx=zeros(2,tmax/dt+1);
39 ds(tmax/dt+1)=0;
40 NSR(tmax/dt+1)=0;
41 MNSR(tmax/dt+1)=0;
42 MNSRD(tmax/dt+1)=0;
43 SOU(tmax/dt+1)=0;
44 SOD(tmax/dt+1)=0;
45 SOI(tmax/dt+1)=0;
46 eM(tmax/dt+1)=0;
47 eF(tmax/dt+1)=0;
48 eL(tmax/dt+1)=0;
49 MagnitudeTwirl(tmax/dt+1)=0;
50 MagnitudeVorticity(tmax/dt+1)=0;
51 IOF1(tmax/dt+1)=0;
52 IOF2(tmax/dt+1)=0;
53 UOF1(tmax/dt+1)=0;
54 UOF2(tmax/dt+1)=0;
55

56 dx(:,1)=orient0;
57

58 X(1)=x0;
59

60 Y(1)=y0;
61

62 Xn=X(1)*(nx−1)/PaCL+1;
63

64 Yn=Y(1)*(ny−1)/PaCH+1;
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65

66 % Defines the velocity gradient components
67 L11=interp2(dU dx,Xn,Yn,'Spline');
68 L12=interp2(dU dy,Xn,Yn,'Spline');
69 L21=interp2(dV dx,Xn,Yn,'Spline');
70 L22=interp2(dV dy,Xn,Yn,'Spline');
71

72 L=[ L11 L12 ; L21 L22 ];
73

74 D=(L+L')/2;
75

76 W=(L−L')/2;
77

78 MNSR(1)=sqrt(sum(sum(D.*D))/2);
79

80 vecU=[interp2(Ux,Xn,Yn) interp2(Uy,Xn,Yn)];
81

82 MagnitudeVelocity(1)=sqrt(dot(vecU(:,1),vecU(:,1)));
83

84 ds(1)=sqrt(dot(dx(:,1),dx(:,1)));
85

86 p=dx(:,1)/ds(1);
87

88 MNSR(1)=sqrt(sum(sum(D.*D))/2);
89

90 NSR(1)=0;
91

92 eM(1)=NSR(1)/sqrt(sum(sum(D.*D)));
93

94 eL(1)=NSR(1)/MNSR(1);
95

96 eF(1)=eM(1)/eL(1);
97

98 [¬,¬,d1]=PD2v2(D);
99

100 PSIr=interp2(PSI,Xn,Yn);
101

102 PSIc(1)=interp2(PSI,Xn,Yn);
103

104 SFPE(1)=abs(2*(PSIr−PSIc(1))/(PSIr+PSIc(1)))*100;
105

106 u=vecU'/sqrt(dot(vecU,vecU));
107

108 IOF1(1)=dot(p,d1);
109

110 IOF2(1)=d1'*(D+W−(p'*D*p)*eye(2)−zeros(2))*p;
111

112 UOF1(1)=dot(u,d1);
113

114 UOF2(1)=d1'*(D+W−(u'*D*u)*eye(2)−zeros(2))*u;
115

116 for n=2:tmax/dt+1
117

118
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119 [ X(n),Y(n) ] = Flow3 CODE Routine 3(X(n−1),Y(n−1));
120

121 Xn=X(n)*(nx−1)/PaCL+1;
122

123 Yn=Y(n)*(ny−1)/PaCH+1;
124

125 PSIc(n)=interp2(PSI,Xn,Yn);
126

127 SFPE(n)=abs(2*(PSIr−PSIc(n))/(PSIr+PSIc(n)))*100;
128

129 vecU=[interp2(Ux,Xn,Yn) interp2(Uy,Xn,Yn)];
130

131 [MagnitudeVelocity(n),¬,¬,SOU(n)]=vec prop(vecU,[1;0]);
132

133 Lp=L;
134

135 L11=interp2(dU dx,Xn,Yn,'Spline');
136

137 L12=interp2(dU dy,Xn,Yn,'Spline');
138

139 L21=interp2(dV dx,Xn,Yn,'Spline');
140

141 L22=interp2(dV dy,Xn,Yn,'Spline');
142

143 L=[ L11 L12 ; L21 L22 ]; %defines the 2D velocity ...
gradient tensor

144

145 D=(L+L')/2; %defines the rate of deformation tensor
146

147 W=(L−L')/2; %defines the spin tensor
148

149 %defines the D gradient components in each axis
150 dD11 dx=interp2(dD11f dx,Xn,Yn,'Spline');
151 dD11 dy=interp2(dD11f dy,Xn,Yn,'Spline');
152 dD12 dx=interp2(dD12f dx,Xn,Yn,'Spline');
153 dD12 dy=interp2(dD12f dy,Xn,Yn,'Spline');
154 dD21 dx=interp2(dD21f dx,Xn,Yn,'Spline');
155 dD21 dy=interp2(dD21f dy,Xn,Yn,'Spline');
156 dD22 dx=interp2(dD22f dx,Xn,Yn,'Spline');
157 dD22 dy=interp2(dD22f dy,Xn,Yn,'Spline');
158

159 %defines the each element of the D dot array
160 D dot 11=vecU(1)*dD11 dx+vecU(2)*dD11 dy;
161 D dot 12=vecU(1)*dD12 dx+vecU(2)*dD12 dy;
162 D dot 21=vecU(1)*dD21 dx+vecU(2)*dD21 dy;
163 D dot 22=vecU(1)*dD22 dx+vecU(2)*dD22 dy;
164

165 %assembles the D dot tensor
166 D dot=[D dot 11 D dot 12 ; D dot 21 D dot 22];
167

168 TW=(D dot*D−D*D dot)/(2*sum(sum(D.*D)));
169

170 dx(:,n)=dt*((L+Lp)/2)*dx(:,n−1)+dx(:,n−1);
171
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172 [ds(n),p,¬,SOI(n)]=vec prop(dx(:,n),[1;0]);
173

174 [¬,¬,d1]=PD2v2(D);
175

176 [¬,¬,¬,SOD(n)]=vec prop(d1,[1;0]);
177

178 MNSR(n)=sqrt(sum(sum(D.*D))/2);
179

180 MNSRD(n)=sum(sum(D.*D dot))/(2*MNSR(n));
181

182 NSR(n)=2*(ds(n)−ds(n−1))/((ds(n)+ds(n−1))*dt);
183

184 MagnitudeTwirl(n)=sum(sum([0 −0.5 ; 0.5 0].*TW));
185

186 MagnitudeVorticity(n)=sum(sum([0 −0.5 ; 0.5 0].*W));
187

188 eM(n)=NSR(n)/sqrt(sum(sum(D.*D)));
189

190 eL(n)=NSR(n)/MNSR(n);
191

192 eF(n)=eM(n)/eL(n);
193

194 u=vecU'/sqrt(dot(vecU,vecU));
195

196 IOF1(n)=dot(p,d1);
197

198 IOF2(n)=d1'*(D+W−(p'*D*p)*eye(2)−TW)*p;
199

200 UOF1(n)=dot(u,d1);
201

202 UOF2(n)=d1'*(D+W−(u'*D*u)*eye(2)−TW)*u;
203

204 end
205

206 Time=linspace(0,tmax,tmax/dt+1);
207

208 K=Flow3 CODE Routine 4(X,Y);
209

210 end

C.3.4 Runge-Kutta Module

1 function [ Xp , Yp ] = Flow3 CODE Routine 3( X , Y )
2

3 global Ux Uy dt FDParam
4

5 S=FDParam(4);
6

7 K1=interp2(Ux,X*S+1,Y*S+1);
8

9 J1=interp2(Uy,X*S+1,Y*S+1);
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10

11 K2=interp2(Ux,(X+0.5*dt*K1)*S+1,(Y+0.5*dt*J1)*S+1);
12

13 J2=interp2(Uy,(X+0.5*dt*K1)*S+1,(Y+0.5*dt*J1)*S+1);
14

15 K3=interp2(Ux,(X+0.5*dt*K2)*S+1,(Y+0.5*dt*J2)*S+1);
16

17 J3=interp2(Uy,(X+0.5*dt*K2)*S+1,(Y+0.5*dt*J2)*S+1);
18

19 K4=interp2(Ux,(X+dt*K3)*S+1,(Y+dt*J3)*S+1);
20

21 J4=interp2(Uy,(X+dt*K3)*S+1,(Y+dt*J3)*S+1);
22

23 Xp=X+dt*(K1+2*K2+2*K3+K4)/6;
24

25 Yp=Y+dt*(J1+2*J2+2*J3+J4)/6;
26

27 end

C.3.5 Streamline Curvature Module

1 function [ K ] = Flow3 CODE Routine 4(X,Y)
2

3 global dt tmax
4

5 K=zeros(size(X));
6

7 A=gradient(X,dt);
8

9 B=gradient(Y,dt);
10

11 C=gradient(A,dt);
12

13 D=gradient(B,dt);
14

15 for j=1:tmax/dt+1
16

17 K(j)=abs(A(j)*D(j)−B(j)*C(j))/((A(j)ˆ2+B(j)ˆ2)ˆ(3/2));
18

19 end
20

21 end
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