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Abstract—This paper explores the idea of knowledge-based
security policies, which are used to decide whether to answer
queries over secret data based on an estimation of the querier’s
(possibly increased) knowledge given the results. Limiting
knowledge is the goal of existing information release poli-
cies that employ mechanisms such as noising, anonymization,
and redaction. Knowledge-based policies are more general:
they increase flexibility by not fixing the means to restrict
information flow. We enforce a knowledge-based policy by
explicitly tracking a model of a querier’s belief about secret
data, represented as a probability distribution, and denying any
query that could increase knowledge above a given threshold.
We implement query analysis and belief tracking via abstract
interpretation using a novel probabilistic polyhedral domain,
whose design permits trading off precision with performance
while ensuring estimates of a querier’s knowledge are sound.
Experiments with our implementation show that several useful
queries can be handled efficiently, and performance scales
far better than would more standard implementations of
probabilistic computation based on sampling.

I. INTRODUCTION

Facebook, Twitter, Flickr, and other successful on-line ser-
vices enable users to easily foster and maintain relationships
by sharing information with friends and fans. These services
store users’ personal information and use it to customize the
user experience and to generate revenue. For example, Face-
book third-party applications are granted access to a user’s
“basic” data (which includes name, profile picture, gender,
networks, user ID, and list of friends [1]) to implement
services like birthday announcements and horoscopes, while
Facebook selects ads based on age, gender, and even sexual
preference [2]. Unfortunately, once personal information is
collected, users have limited control over how it is used.
For example, Facebook’s EULA grants Facebook a non-
exclusive license to any content a user posts [3]. MySpace,
another social network site, has recently begun to sell its
users’ data [4].

Some researchers have proposed that, to keep tighter
control over their data, users could use a storage server
(e.g., running on their home network) that handles personal
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data requests, and only responds when a request is deemed
safe [5], [6]. The question is: which requests are safe? While
deferring to user-defined access control policies seems an
obvious approach, such policies are unnecessarily restrictive
when the goal is to maximize the customized personal
experience. To see why, consider two example applications:
a horoscope or “happy birthday” application that operates
on birth month and day, and a music recommendation
algorithm that considers birth year (age). Access control at
the granularity of the entire birth date could preclude both
of these applications, while choosing only to release birth
year or birth day precludes access to one application or the
other. But in fact the user may not care much about these
particular bits of information, but rather about what can be
deduced from them. For example, it has been reported that
zip code, birth date, and gender are sufficient information to
uniquely identify 63% of Americans in the 2000 U.S. census
[7]. So the user may be perfectly happy to reveal any one of
these bits of information in its entirety as long as a querier
gains no better than a 1/n chance to guess the entire group,
for some parameter n.

This paper explores the design and implementation for
enforcing what we call knowledge-based security policies. In
our model, a user U ’s agent responds to queries involving se-
cret data. For each querying principal Q, the agent maintains
a probability distribution over U ’s secret data, representing
Q’s belief of the data’s likely values. For example, to
mediate queries from a social networking site X , user U ’s
agent may model X’s otherwise uninformed knowledge of
U ’s birthday according to a likely demographic: the birth
month and day are uniformly distributed, while the birth
year is most likely between 1956 and 1992 [8]. Each querier
Q is also assigned a knowledge-based policy, expressed
as a set of thresholds, each applying to a different group
of (potentially overlapping) data. For example, U ’s policy
for X might be a threshold of 1/100 for the entire tuple
(birthdate, zipcode, gender), and 1/5 for just birth date. U ’s
agent refuses any queries that it determines could increase
Q’s ability to guess a secret above the assigned threshold. If
deemed safe, U ’s agent returns the query’s (exact) result and
updates Q’s modeled belief appropriately. (We touch upon
the risk of colluding queriers shortly.)

To implement our model, we need (1) an algorithm to
check whether answering a query could violate a knowledge-
based policy, (2) a method for revising a querier’s belief



according to the answer that is given, and (3) means to
implement (1) and (2) efficiently. We build on the work of
Clarkson et al. [9] (reviewed in Section III), which works out
the theoretical basis for (2). The main contributions of this
paper, therefore, in addition to the idea of knowledge-based
policies, are our solutions to problems (1) and (3).

Given a means to revise querier beliefs based on prior
answers, it seems obvious how to check that a query does
not reveal too much: U runs the query, tentatively revises
Q’s belief based on the result, and then responds with the
answer only if Q’s revised belief about the secrets does not
exceed the prescribed thresholds. Unfortunately, with this
approach the decision to deny depends on the actual secret,
so a rejection could leak information. We give an example
in the next section that shows how the entire secret could
be revealed. Therefore, we propose that a query should be
rejected if there exists any possible secret value that could
induce an output whereby the revised belief would exceed
the threshold. This idea is described in detail in Section IV.

To implement belief tracking and revision, our first
thought was to use languages for probabilistic computation
and conditioning, which provide the foundational elements
of the approach. Languages we know of—IBAL [10], Prob-
abilistic Scheme [11], and several other systems [12], [13],
[14]—are implemented using sampling. Unfortunately, we
found these implementations to be inadequate because they
either underestimate the querier’s knowledge when sampling
too little, or run too slowly when the state space is large.

Instead of using sampling, we have developed an imple-
mentation based on abstract interpretation. In Section V we
develop a novel abstract domain of probabilistic polyhedra,
which extends the standard convex polyhedron abstract
domain [15] with measures of probability. We represent
beliefs as a set of probabilistic (as developed in Section VI).
While some prior work has explored probabilistic abstract
interpretation [16], this work does not support belief revi-
sion, which is required to track how observation of out-
puts affects a querier’s belief. Support for revision requires
that we maintain both under- and over-approximations of
the querier’s belief, whereas [16] deals only with over-
approximation. We have developed an implementation of
our approach based on Parma [17] and LattE [18], which
we present in Section VII along with some experimental
measurements of its performance. We find that while the
performance of Probabilistic Scheme degrades significantly
as the input space grows, our implementation scales much
better, and can be orders of magnitude faster.

Knowledge-based policies aim to ensure that an attacker’s
knowledge of a secret does not increase much when learning
the result of a query. Much prior work aims to enforce
similar properties by tracking information leakage quantita-
tively [19], [20], [21], [22], [23]. Our approach is more pre-
cise (but also more resource-intensive) because it maintains
an on-line model of adversary knowledge. An alternative to

knowledge-based privacy is differential privacy [24] (DP),
which requires that a query over a database of individu-
als’ records produces roughly the same answer whether a
particular individual’s data is in the database or not—the
possible knowledge of the querier, and the impact of the
query’s result on it, need not be directly considered. As such,
DP avoids the danger of mismodeling a querier’s knowledge
and as a result inappropriately releasing information. DP also
ensures a high degree of compositionality, which provides
some assurance against collusion. However, DP applies once
an individual has released his personal data to a trusted
third party’s database, a release we are motivated to avoid.
Moreover, applying DP to queries over an individual’s data,
rather than a population, introduces so much noise that the
results are often useless. We discuss these issues along with
other related work in Section VIII.

The next section presents a technical overview of the
rest of the paper, whose main results are contained in
Sections III–VII, with further discussion and ideas for future
work in Sections VIII and IX.

II. OVERVIEW

Knowledge-based policies and beliefs. User Bob would
like to enforce a knowledge-based policy on his data so that
advertisers do not learn too much about him. Suppose Bob
considers his birthday of September 27, 1980 to be relatively
private; variable bday stores the calendar day (a number
between 0 and 364, which for Bob would be 270) and byear
stores the birth year (which would be 1980). To bday he
assigns a knowledge threshold td = 0.2 stating that he does
not want an advertiser to have better than a 20% likelihood
of guessing his birth day. To the pair (bday , byear) he
assigns a threshold tdy = 0.05, meaning he does not want
an advertiser to be able to guess the combination of birth
day and year together with better than a 5% likelihood.

Bob runs an agent program to answer queries about
his data on his behalf. This agent models an estimated
belief of queriers as a probability distribution δ, which
is conceptually a map from secret states to positive real
numbers representing probabilities (in range [0, 1]). Bob’s
secret state is the pair (bday =270, byear =1980). The agent
represents a distribution as a set of probabilistic polyhedra.
For now, we can think of a probabilistic polyhedron as a
standard convex polyhedron C with a probability mass m,
where the probability of each integer point contained in C
is m/#(C), where #(C) is the number of integer points
contained in the polyhedron C. Shortly we present a more
involved representation.

Initially, the agent might model an advertiser X’s belief
using the following rectangular polyhedron C, where each
point contained in it is considered equally likely (m = 1):

C = 0 ≤ bday < 365, 1956 ≤ byear < 1993
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Enforcing knowledge-based policies safely. Suppose X
wants to identify users whose birthday falls within the next
week, to promote a special offer. X sends Bob’s agent the
following program.
Example 1.

today := 260;
if bday ≥ today ∧ bday < (today + 7) then

output := True;

This program refers to Bob’s secret variable bday , and also
uses non-secret variables today , which represents the current
day and is here set to be 260, and output , which is set to
True if the user’s birthday is within the next seven days (we
assume output is initially False).

The agent must decide whether returning the result of run-
ning this program will potentially increase X’s knowledge
about Bob’s data above the prescribed threshold. We explain
how it makes this determination shortly, but for the present
we can see that answering the query is safe: the returned
output variable will be False which essentially teaches the
querier that Bob’s birthday is not within the next week,
which still leaves many possibilities. As such, the agent
revises his model of the querier’s belief to be the following
pair of rectangular polyhedra C1, C2, where again all points
in each are equally likely (m1 ≈ 0.726,m2 ≈ 0.274):

C1 = 0 ≤ bday < 260, 1956 ≤ byear < 1993
C2 = 267 ≤ bday < 365, 1956 ≤ byear < 1993

Ignoring byear , there are 358 possible values for bday and
each is equally likely. Thus the probability of any one is
1/358 ≈ 0.0028 ≤ td = 0.2.

Suppose the next day the same advertiser sends the same
program to Bob’s user agent, but with today set to 261.
Should the agent run the program? At first glance, doing so
seems OK. The program will return False, and the revised
belief will be the same as above but with constraint bday ≥
267 changed to bday ≥ 268, meaning there is still only a
1/357 = 0.0028 chance to guess bday .

But suppose Bob’s birth day was actually 267, rather than
270. The first query would have produced the same revised
belief as before, but since the second query would return
True (since bday = 267 < (261+7)), the querier can deduce
Bob’s birth day exactly: bday ≥ 267 (from the first query)
and bday < 268 (from the second query) together imply
that bday = 267! But the user agent is now stuck: it cannot
simply refuse to answer the query, because the querier knows
that with td = 0.2 (or indeed, any reasonable threshold) the
only good reason to refuse is when bday = 267. As such,
refusal essentially tells the querier the answer.

The lesson is that the decision to refuse a query must not
be based on the effect of running the query on the actual
secret, because then a refusal could leak information. In
Section IV we propose that an agent should reject a program
if there exists any possible secret that could cause a program
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Figure 1. Example 2: most precise revised beliefs

answer to increase querier knowledge above the threshold.
As such we would reject the second query regardless of
whether bday = 270 or bday = 267.

Full probabilistic polyhedra. Now suppose, having run
the first query and rejected the second, the user agent
receives the following program from X .

Example 2.

age := 2011− byear ;
if age = 20 ∨ ... ∨ age = 60 then

output := True;
pif 0.1 then output := True;

This program attempts to discover whether this year is a
“special” year for the given user, who thus deserves a special
offer. The program returns True if either the user’s age is
(or will be) an exact decade, or if the user wins the luck
of the draw (one chance in ten), as implemented by the
probabilistic if statement.

Running this program reveals nothing about bday ,
but does reveal something about byear . In particular, if
output = False then the querier knows that byear 6∈
{1991, 1981, 1971, 1961}, but all other years are equally
likely. We could represent this new knowledge, combined
with the knowledge gained from the first query, as shown
in Figure 1(a), where each shaded box is a polyhedron con-
taining equally likely points. On the other hand, if output =
True then either byear ∈ {1991, 1981, 1971, 1961} or the
user got lucky. We represent the querier’s knowledge in
this case as in Figure 1(b). Darker shading indicates higher
probability; thus, all years are still possible, though some
are much more likely than others. With the given threshold
of tdy = 0.05, the agent will permit the query; when
output = False, the likelihood of any point in the shaded re-
gion is 1/11814; when output = True, the points in the dark
bands are the most likely, with probability 5/13067. Since
both outcomes are possible with Bob’s byear = 1980, the
revised belief will depend on the result of the probabilistic
if statement.

This example illustrates a potential problem with the
simple representation of probabilistic polyhedra mentioned
earlier: when output = False we will jump from using two
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probabilistic polyhedra to ten, and when output = True we
jump to using eighteen. Allowing the number of polyhedra
to grow without bound will result in performance problems.
To address this concern, we need a way to abstract our
belief representation to be more concise. Section V shows
how to represent a probabilistic polyhedron P as a seven-
tuple, (C, smin, smax,pmin,pmax,mmin,mmax) where smin

and smax are lower and upper bounds on the number of
points with non-zero probability in the polyhedron C (called
the support points of C); the quantities pmin and pmax

are lower and upper bounds on the probability mass per
support point; and mmin and mmax give bounds on the total
probability mass. Thus, polyhedra modeled using the simpler
representation (C,m) given earlier are equivalent to ones in
the more involved representation with mmax = mmin = m,
pmax = pmin = m/#(C), and smax = smin = #(C).

With this representation, we could choose to collapse
the sets of polyhedron given in Figure 1. For example, we
could represent Figure 1(a) with two probabilistic polyhe-
dra P1 and P2 containing polyhedra C1 and C2 defined
above, respectively, essentially drawing a box around the
two groupings of smaller boxes in the figure. The other
parameters for P1 would be as follows:

pmin
1 = pmax

1 = 9/135050
smin
1 = smax

1 = 8580
mmin

1 = mmax
1 = 7722/13505

Notice that smin
1 = smax

2 = 8580 < #(C1) = 9620,
illustrating that the “bounding box” of the polyhedron covers
more area than is strictly necessary. In this representation the
probabilities may not be normalized, which improves both
performance and precision. For this example, P2 happens
to have mmin

2 = mmax
2 = 14553/67525 so we can see

mmax
1 + mmax

2 = (53163/67525) 6= 1.
If we consider the representation of Figure 1(b) in a

similar manner, using the same two polyhedra C1 and C2,
the other parameters for C1 are as follows:

pmin
1 = 1/135050 pmax

1 = 10/135050
smin
1 = 9620 smax

1 = 9620
mmin

1 = 26/185 mmax
1 = 26/185

In this case smin
1 = smax

1 = #(C1), meaning that all covered
points are possible, but pmin

1 6= pmax
1 as some points are

more probable than others (i.e., those in the darker band).
The key property of probabilistic polyhedra, and a main

technical contribution of this paper, is that this abstraction
can be used to make sound security policy decisions. To
accept a query, we must check that, for all possible outputs,
the querier’s revised, normalized belief of any of the possible
secrets is below the threshold t. In checking whether the
revised beliefs in our example are acceptable, the agent will
try to find the maximum probability the querier could ascribe
to a state, for each possible output. In the case output =
True, the most probable points are those in the dark bands,

Variables x ∈ Var
Integers n ∈ Z
Rationals q ∈ Q
Arith.ops aop ::= + | × | −
Rel .ops relop ::= ≤ | < | = | 6= | · · ·
Arith.exps E ::= x | n | E1 aop E2

Bool .exps B ::= E1 relop E2 |
B1 ∧ B2 | B1 ∨ B2 | ¬B

Statements S ::= skip | x := E |
if B then S1 else S2 |
pif q then S1 else S2 |
S1 ; S2 | while B do S

Figure 2. Core language syntax

which each have probability mass 10/135050 = pmax
1 (the

dark bands in P2 have the same probability). To find the
maximum normalized probability of these points, we divide
by the minimum possible total mass, as given by the lower
bounds in our abstraction. In our example, this results in
pmax

1 /(mmin
1 +mmin

2 ) = (10/135050)/(26/185+49/925) ≈
0.0004 ≤ td = 0.05.

As just shown, the bound on minimum total mass is
needed in order to soundly normalize distributions in our
abstraction. The maintenance of such lower bounds on
probability mass is a key component of our abstraction that
is missing from prior work. Each of the components of a
probabilistic polyhedron play a role in producing the lower
bound on total mass. While smin

1 , smax
1 ,pmin

1 , and mmax
1 do

not play a role in making the final policy decision, their
existence allows us to more accurately update belief during
the query evaluation that precedes the final policy check.
The choice of the number of probabilistic polyhedra to use
impacts both precision and performance, so choosing the
right number is a challenge. For the examples given in this
section, our implementation can often answer queries in a
few seconds; details are in Sections V–VII.

III. TRACKING BELIEFS

This section reviews Clarkson et al.’s method of revising a
querier’s belief of the possible valuations of secret variables
based on the result of a query involving those variables [9].

A. Core language

The programming language we use for queries is given in
Figure 2. A computation is defined by a statement S whose
standard semantics can be viewed as a relation between
states: given an input state σ, running the program will
produce an output state σ′. States are maps from variables
to integers:

σ, τ ∈ State def= Var→ Z

Sometimes we consider states with domains restricted to
a subset of variables V , in which case we write σV ∈
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StateV
def= V → Z. We may also project states to a set

of variables V :

σ � V
def= λx ∈ VarV . σ(x)

The language is essentially standard. We limit the form
of expressions to support our abstract interpretation-based
semantics (Section V). The semantics of the statement form
pif q then S1 else S2 is non-deterministic: the result is that
of S1 with probability q, and S2 with probability 1− q.

B. Probabilistic semantics for tracking beliefs

To enforce a knowledge-based policy, a user agent must be
able to estimate what a querier could learn from the output
of his query. To do this, the agent keeps a distribution δ that
represents the querier’s belief of the likely valuations of the
user’s secrets. More precisely, a distribution is a map from
states to positive real numbers, interpreted as probabilities
(in range [0, 1]).

δ ∈ Dist def= State→ R+

We sometimes focus our attention on distributions over states
of a fixed set of variables V , in which case we write δV ∈
DistV to mean StateV → R+. Projecting distributions onto
a set of variables is as follows:1

δ � V
def= λσV ∈ StateV .

∑
σ′|(σ′�V=σV )

δ(σ′)

The mass of a distribution, written ‖δ‖ is the sum of the
probabilities ascribed to states,

∑
σ δ(σ). A normalized dis-

tribution is one such that ‖δ‖ = 1. A normalized distribution
can be constructed by scaling a distribution according to its
mass:

normal(δ) def=
1
‖δ‖
· δ

The support of a distribution is the set of states which have
non-zero probability: support(δ) def= {σ | δ(σ) > 0}.

The agent evaluates a query in light of the querier’s initial
belief using a probabilistic semantics. Figure 3 defines a
semantic function [[·]] whereby [[S ]]δ = δ′ indicates that,
given an input distribution δ, the semantics of program S
is the output distribution δ′. The semantics is defined in
terms of operations on distributions, including assignment
δ [v → E] (used in the rule for v := E), conditioning δ|B
and addition δ1 + δ2 (used in the rule for if), and scaling
q · δ where q is a rational (used for pif). The semantics is
standard (cf. Clarkson et al. [9]). A brief review is given in
Appendix A.

1The notation
P
x|π ρ can be read ρ is the sum over all x such that

formula π is satisfied (where x is bound in ρ and π).

[[skip]]δ = δ
[[x := E ]]δ = δ [x→ E ]

[[if B then S1 else S2]]δ = [[S1]](δ|B) + [[S2]](δ|¬B)
[[pif q then S1 else S2]]δ = [[S1]](q · δ) + [[S2]]((1− q) · δ)

[[S1 ; S2]]δ = [[S2]]([[S1]]δ)
[[while B do S ]] = lfp [λf : Dist→ Dist. λδ.

f ([[S ]](δ|B)) + (δ|¬B)]

where

δ [x→ E ] def= λσ.
∑
τ | τ [x→[[E ]]τ ]=σ δ(τ)

δ1 + δ2
def= λσ. δ1(σ) + δ2(σ)

δ|B def= λσ. if [[B ]]σ then δ(σ) else 0
p · δ def= λσ. p · δ(σ)

Figure 3. Probabilistic semantics for the core language

C. Belief and security

Clarkson et al. [9] describe how a belief about possible
values of a secret, expressed as a probability distribution,
can be revised according to an experiment using the actual
secret. Such an experiment works as follows.

The values of the set of secret variables H are given by
the hidden state σH . The attacker’s initial belief as to the
possible values of σH is represented as a distribution δH .
A query is a program S that makes use of variables H and
possibly other, non-secret variables from a set L; the final
values of L, after running S, are made visible to the attacker.
Let σL be an arbitrary initial state of these variables such
that domain(σL) = L. Then we take the following steps:

Step 1. Evaluate S probabilistically using the attacker’s
belief about the secret to produce an output distribution δ′,
which amounts to the attacker’s prediction of the possible
output states. This is computed as δ′ = [[S]]δ, where δ, a
distribution over variables H]L, is defined as δ = δH× σ̇L.
Here, we make use of the distribution product operator and
point operator. That is, given δ1, δ2, which are distributions
over states having disjoint domains, the distribution product
is

δ1 × δ2
def= λ(σ1, σ2). δ1(σ1) · δ2(σ2)

where (σ1, σ2) is the “concatenation” of the two states,
which is itself a state and is well-defined because the two
states’ domains are disjoint. And, given a state σ, the point
distribution σ̇ is a distribution in which only σ is possible:

σ̇
def= λτ. if σ = τ then 1 else 0

Thus, the initial distribution δ is the attacker’s belief about
the secret variables combined with an arbitrary valuation of
the public variables.

Step 2. Using the actual secret σH , evaluate S “con-
cretely” to produce an output state σ̂L, in three steps. First,
we have δ̂′ = [[S]]δ̂, where δ̂ = σ̇H × σ̇L. Second, we have
σ̂ ∈ Γ(δ̂) where Γ is a sampling operator that produces a
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state σ from the domain of a distribution δ with probability
δ(σ)/‖δ‖. Finally, we extract the attacker-visible output of
the sampled state by projecting away the high variables:
σ̂L = σ̂ � L.

Step 3. Revise the attacker’s initial belief δH according to
the observed output σ̂L, yielding a new belief δ̂H = δ′|σ̂L �
H . Here, δ′ is conditioned on the output σ̂L, which yields
a new distribution, and this distribution is then projected to
the variables H . The conditioning operation is defined as
follows:

δ|σV
def= λσ. if σ � V = σV then δ(σ) else 0

Note that this protocol assumes that S always terminates
and does not modify the secret state. The latter assumption
can be eliminated by essentially making a copy of the state
before running the program, while eliminating the former de-
pends on the observer’s ability to detect nontermination [9].

IV. ENFORCING KNOWLEDGE-BASED POLICIES

When presented with a query over a user’s data σH , the
user’s agent should only answer the query if doing so will
not reveal too much information. More precisely, given a
query S, the agent will return the public output σL resulting
from running S on σH if the agent deems that from this
output the querier cannot guess the secret state σH beyond
some level of doubt, identified by a threshold t. If this
threshold could be exceeded, then the agent declines to run
S. We call this security check knowledge threshold security.

Definition 3 (Knowledge Threshold Security). Let δ′ =
[[S]]δ, where δ is the model of the querier’s initial be-
lief. Then query S is threshold secure iff for all σL ∈
support(δ′ � L) and all σ′H ∈ StateH we have
(normal((δ′|σL) � H))(σ′H) ≤ t for some threshold t.

This definition can be related to the experiment protocol
defined in Section III-C. First, δ′ in the definition is the same
as δ′ computed in the first step of the protocol. Step 2 in the
protocol produces a concrete output σ̂L based on executing
S on the actual secret σH , and Step 3 revises the querier’s
belief based on this output. Definition 3 generalizes these
two steps: instead of considering a single concrete output
based on the actual secret it considers all possible concrete
outputs, as given by support(δ′ � L), and ensures that the
revised belief in each case for all possible secret states must
assign probability no greater than t.

This definition considers a threshold for the whole secret
state σH . As described in Section II we can also enforce
thresholds over portions of a secret state. In particular, a
threshold that applies only to variables V ⊆ H requires that
all σ′V ∈ StateV result in (normal(δ′|σL � V ))(σ′V ) ≤ t.

The two “foralls” in the definition are critical for ensuring
security. The reason was shown by the first example in
Section II: If we used the flawed approach of just running
the experiment protocol and checking if δ̂H(σH) > t

then rejection depends on the value of the secret state and
could reveal information about it. The more general policy
∀σL ∈ support(δ′ � L). (normal(δ′|σL � H))(σH) ≤ t,
would sidestep the problem in the example, but this policy
could still reveal information because it, too, depends on
the actual secret σH . (An example illustrating the problem
in this case is given in Appendix B.) Definition 3 avoids
any inadvertent information leakage because rejection is not
based on the actual secret: if there exists any secret such
that a possible output would reveal too much, the query is
rejected. Definition 3 resembles, but is stronger than, min-
entropy, as the security decision is based on the most likely
secret from the attacker’s point of view [20]; further details
are given in Section VIII.

V. BELIEF REVISION VIA ABSTRACT INTERPRETATION

Consider how we might implement belief tracking and
revision to enforce the threshold security property given in
Definition 3. A natural choice would be to evaluate queries
using a probabilistic programming language with support
for conditioning; examples are IBAL [10], Probabilistic
Scheme [11], and several others [12], [13], [14]. In these
languages, probabilistic evaluation is achieved by enumer-
ating inputs (sampling). Probabilities are associated with
each input and tracked during execution. As more inputs are
enumerated, a more complete view of the output distribution
emerges. Unfortunately, to get an accurate estimate of the
revised distribution following an output observation, one
must enumerate the entire input space, which could be
quite large. If insufficient coverage is achieved, then the
threshold check in Definition 3 could either be unsound or
excessively conservative, depending in which direction an
implementation errs.

To avoid sampling, we have developed a new means to
perform probabilistic computation based on abstract inter-
pretation. In this approach, execution time depends on the
complexity of the query rather than the size of the input
space. In the next two sections, we present two abstract
domains. This section presents the first, denoted P, where an
abstract element is a single probabilistic polyhedron, which
is a convex polyhedron [15] with information about the
probabilities of its points. Because using a single polyhedron
will accumulate imprecision after multiple queries, in our
implementation we actually use a different domain, denoted
Pn (P), for which an abstract element consists of a set of
at most n probabilistic polyhedra (whose construction is
inspired by powersets of polyhedra [25], [26]). This domain,
described in the next section, allows us to retain precision
at the cost of increased execution time. By adjusting n, the
user can trade off efficiency and precision.

A. Polyhedra

We first review convex polyhedra, a common technique
for representing sets of program states. We use the meta-
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variables β, β1, β2, etc. to denote linear inequalities. We
write fv(β) to be the set of variables occurring in β;
we also extend this to sets, writing fv({β1, . . . , βn}) for
fv(β1) ∪ . . . ∪ fv(βn).

Definition 4. A convex polyhedron C = (B, V ) is a
set of linear inequalities B = {β1, . . . , βm}, interpreted
conjunctively, over dimensions V . We write C for the set
of all convex polyhedra. A polyhedron C represents a set of
states, denoted γC(C), as follows, where σ |= β indicates
that the state σ satisfies the inequality β.

γC((B, V )) def= {σ | domain(σ) = V , ∀β ∈ B. σ |= β}

Naturally we require that fv({β1, . . . , βn}) ⊆ V . We write
fv((B, V )) to denote the set of variables V of a polyhedron.

Given a state σ and an ordering on the variables in
domain(σ), we can view σ as a point in an N -dimensional
space, where N = |domain(σ)|. The set γC(C) can then
be viewed as the integer-valued lattice points in an N -
dimensional polyhedron. Due to this correspondence, we use
the words point and state interchangeably. We will some-
times write linear equalities x = f(~y) as an abbreviation for
the pair of inequalities x ≤ f(~y) and x ≥ f(~y).

Let C = (B, V ). Convex polyhedra support the following
operations.
• Polyhedron size, or #(C), is the number of integer points
in the polyhedron, i.e., |γC(C)|. We will always consider
bounded polyhedra when determining their size, ensuring
that #(C) is finite.
• Expression evaluation, 〈〈B〉〉C returns a convex polyhe-
dron containing at least the points in C that satisfy B .
• Expression count, C#B returns an upper bound on the
number of integer points in C that satisfy B . (It may be
more precise than #(〈〈B〉〉C).)
• Meet, C1 uC C2 is the convex polyhedron containing ex-
actly the set of points in the intersection of γC(C1), γC(C2).
• Join, C1 tC C2 is the smallest convex polyhedron
containing both γ(C1) and γ(C2).
• Comparison, C1 vC C2 is a partial order whereby
C1 vC C2 if and only if γ(C1) ⊆ γ(C2).
• Affine transform, C [x→ E ], where x ∈ fv(C), computes
an affine transformation of C. This scales the dimension
corresponding to x by the coefficient of x in E and shifts the
polyhedron. For example, ({x ≤ y, y = 2z}, V ) [y → z + y]
evaluates to ({x ≤ y − z, y − z = 2z}, V ).
• Forget, fx(C), projects away x. That is, fx(C) =
πfv(C)−{x}(C), where πV (C) is a polyhedron C ′ such that
γC(C ′) = {σ | σ′ ∈ γC(C) ∧ σ = σ′ � V }. So C ′ = fx(C)
implies x 6∈ fv(C ′).

We write isempty(C) iff γC(C) = ∅.

B. Probabilistic Polyhedra

We take this standard representation of sets of program
states and extend it to a representation for sets of distribu-

tions over program states. We define probabilistic polyhedra,
the core element of our abstract domain, as follows.

Definition 5. A probabilistic polyhedron P is a tuple
(C, smin, smax,pmin,pmax,mmin,mmax). We write P for the
set of probabilistic polyhedra. The quantities smin and smax

are lower and upper bounds on the number of support points
in the polyhedron C. The quantities pmin and pmax are lower
and upper bounds on the probability mass per support point.
The mmin and mmax components give bounds on the total
probability mass. Thus P represents the set of distributions
γP(P) defined below.

γP(P) def= {δ | support(δ) ⊆ γC(C) ∧
smin ≤ |support(δ)| ≤ smax ∧
mmin ≤ ‖δ‖ ≤ mmax∧
∀σ ∈ support(δ). pmin ≤ δ(σ) ≤ pmax}

We will write fv(P) def= fv(C) to denote the set of variables
used in the probabilistic polyhedron.

Note the set γP(P) is singleton exactly when smin =
smax = #(C) and pmin = pmax, and mmin = mmax. In such
a case γP(P) is the uniform distribution where each state in
γC(C) has probability pmin. Distributions represented by a
probabilistic polyhedron are not necessarily normalized (as
was true in Section III-B). In general, there is a relationship
between pmin, smin, and mmin, in that mmin ≥ pmin · smin

(and mmax ≤ pmax · smax), and the combination of the three
can yield more information than any two in isolation.

Our convention will be to use C1, smin
1 , smax

1 , etc. for the
components associated with probabilistic polyhedron P1 and
to use subscripts to name different probabilistic polyhedra.

Distributions are ordered point-wise [9]. That is, δ1 ≤ δ2
if and only if ∀σ. δ1(σ) ≤ δ2(σ). For our abstract domain,
we say that P1 vP P2 if and only if ∀δ1 ∈ γP(P1). ∃δ2 ∈
γP(P2). δ1 ≤ δ2. Testing P1 vP P2 mechanically is non-
trivial, but is unnecessary in our semantics. Rather, we
need to test whether a distribution represents only the zero
distribution 0Dist

def= λσ.0 in order to see that a fixed point for
evaluating 〈〈while B do S 〉〉P has been reached. Intuitively,
no further iterations of the loop need to be considered once
the probability mass flowing into the nth iteration is zero.
This condition can be detected as follows:
iszero(P)

def
=

smin = smax = 0 ∧mmin = 0 ≤ mmax

∨ mmin = mmax = 0 ∧ smin = 0 ≤ smax

∨ isempty(C) ∧ smin = 0 ≤ smax ∧mmin = 0 ≤ mmax

∨ pmin = pmax = 0 ∧ smin = 0 ≤ smax ∧mmin = 0 ≤ mmax

If iszero(P) holds, it is the case that γP(P) = {0Dist}. Note
that having a more conservative definition of this function
(which holds for fewer probabilistic polyhedra) would be
reasonable since it would simply mean our analysis would
terminate less often than it could, with no effect on security.
More details are given in Appendix D.
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In a standard abstract domain, termination of the fixed
point computation for loops is often ensured by use of a
widening operator. This allows abstract fixed points to be
computed in fewer iterations and also permits analysis of
loops that may not terminate. In our setting, non-termination
may reveal information about secret values. As such, we
would like to reject queries that may be non-terminating.

We enforce this by not introducing a widening operator.
Our abstract interpretation then has the property that it will
not terminate if a loop in the query may be non-terminating
(and, since it is an over-approximate analysis, it may also
fail to terminate even for some terminating computations).
We then reject all queries for which our analysis fails to
terminate. Loops do not play a major role in any of our
examples, and so this approach has proved sufficient so far.
We leave for future work the development of a widening
operator that soundly accounts for non-termination behavior.

Following standard abstract interpretation terminology, we
will refer to P (Dist) (sets of distributions) as the concrete
domain, P as the abstract domain, and γP : P → P (Dist)
as the concretization function for P.

C. Abstract Semantics for P
To support execution in the abstract domain just defined,

we need to provide abstract implementations of the basic
operations of assignment, conditioning, addition, and scaling
used in the concrete semantics given in Figure 3. We will
overload notation and use the same syntax for the abstract
operators as we did for the concrete operators.

As we present each operation, we will also state the
associated soundness theorem which shows that the abstract
operation is an over-approximation of the concrete operation.
Proofs are given in Appendix D. The abstract program
semantics is then exactly the semantics from Figure 3, but
making use of the abstract operations defined here, rather
than the operations on distributions defined in Section III-B.
We will write 〈〈S〉〉P to denote the result of executing S
using the abstract semantics. The main soundness theorem
we obtain is the following.

Theorem 6. For all P, δ, if δ ∈ γP(P) and 〈〈S〉〉P termi-
nates, then [[S]]δ terminates and [[S]]δ ∈ γP(〈〈S〉〉P).

When we say [[S]]δ terminates (or 〈〈S〉〉P terminates)
we mean that only a finite number of loop unrollings are
required to interpret the statement on a particular distribution
(or probabilistic polyhedron). The precise definitions of
termination can be found in Appendix D.

We now present the abstract operations.
1) Forget: We first describe the abstract forget operator

fy(P1), which is used in implementing assignment. When we
forget variable y, we collapse any states that are equivalent
up to the value of y into a single state. To do this correctly,
we must find an upper bound hmax

y and a lower bound hmin
y

on the number of points that share the same value of other

Figure 4. Example of a forget operation in the abstract domain P. In this
case, hmin

y = 1 and hmax
y = 3. Note that hmax

y is precise while hmin
y is

an under-approximation. If smin
1 = smax

1 = 9 then we have smin
2 = 3,

smax
2 = 4, pmin

2 = pmin
1 · 1, pmax

2 = pmax
2 · 4.

dimensions x (this may be visualized of as the min and max
height of C1 in the y dimension). Once these are obtained,
we have that fy(P1) def= P2 where the following hold of P2.

C2 = fy(C1)

pmin
2 = pmin

1 ·max
{

hmin
y − (#(C1)− smin

1 ), 1
}

pmax
2 = pmax

1 ·min
{

hmax
y , smax

1

}
smin
2 = dsmin

1 /hmax
y e mmin

2 = mmin
1

smax
2 = min {#(fy(C1)), smax

1 } mmax
2 = mmax

1

Figure 4 gives an example of a forget operation and
illustrates the quantities hmax

y and hmin
y . If C1 = (B1, V1),

the upper bound hmax
y can be found by maximizing y − y′

subject to the constraints B1 ∪ B1[y′/y], where y′ is a
fresh variable and B1[y′/y] represents the set of constraints
obtained by substituting y′ for y in B1. As our points
are integer-valued, this is an integer linear programming
problem (and can be solved by ILP solvers). A less precise
upper bound can be found by simply taking the extent of
the polyhedron C1 along y, which is given by #(πy(C1)).

For the lower bound, it is always sound to use hmin
y =

1, which is what our implementation does. A more precise
estimate can be obtained by finding the vertex with minimal
height along dimension y. Call this distance u. Since the
shape is convex, all other points will have y height greater
than or equal to u. We then find the smallest number of
integer points that can be covered by a line segment of length
u. This is given by due−1. This value can be taken as hmin

y .
Since the forget operator is related to projection, we

state soundness in terms of the projection operation on
distributions. Note that fv(δ) def= domain(domain(δ)), i.e.,
the domain of states to which δ assigns probability mass.

Lemma 7. If δ ∈ γP(P) then δ � (fv(δ)−{y}) ∈ γP(fy(P)).

We can define an abstract version of projection using forget:

Definition 8. Let f{x1,x2,...,xn}(P) = f{x2,...,xn}(fx1(P)).
Then P � V ′ = f(domain(P)−V ′)(P).
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That is, in order to project onto the set of variables V ′,
we forget all variables not in V ′.

2) Assignment: We have two cases for abstract assign-
ment. If x := E is invertible,2 the result of the assignment
P1 [x→ E] is the probabilistic polyhedron P2 such that
C2 = C1 [x→ E] and all other components are unchanged.

If the assignment is not invertible, then information about
the previous value of x is lost. In this case, we use the forget
operation to project onto the other variables and then add a
new constraint on x. Let P2 = fx(P1) where C2 = (B2, V2).
Then P1 [x→ E] is the probabilistic polyhedron P3 with
C3 = (B2 ∪ {x = E} , V2 ∪ {x}) and all other components
as in P2.

Lemma 9. If δ ∈ γP(P) then δ [v → E ] ∈ γP(P [v → E ]).

The soundness of assignment relies on the fact that
our language of expressions does not include division. An
invariant of our representation is that smax ≤ #(C). When
E contains only multiplication and addition the above rules
preserve this invariant; an E containing division would
violate it. Division would collapse multiple points to one
and so could be handled similarly to projection.

3) Plus: To soundly compute the effect of plus we need to
determine the minimum and maximum number of points in
the intersection that may be a support point for both P1 and
for P2. We refer to these counts as the pessimistic overlap
and optimistic overlap, respectively, and define them below.

Definition 10. Given two distributions δ1, δ2, we refer to
the set of states that are in the support of both δ1 and δ2 as
the overlap of δ1, δ2. The pessimistic overlap of P1 and P2,
denoted P1 / P2, is the cardinality of the smallest possible
overlap for any distributions δ1 ∈ γP(P1) and δ2 ∈ γP(P2).
The optimistic overlap P1 , P2 is the cardinality of
the largest possible overlap. Formally, we define these as
follows. n3

def= #(C1 uC C2), n1
def= #(C1) − n3, and

n2
def= #(C2)− n3. Then

P1 / P2
def= max

{
(smin

1 − n1) + (smin
2 − n2)− n3, 0

}
P1 , P2

def= min {smax
1 , smax

2 , n3}

We can now define abstract addition.

Definition 11. If not iszero(P1) and not iszero(P2)
then P1 + P2 is the probabilistic polyhedron P3 =

2See Appendix D for a precise definition of invertibility.

(C3, smin
3 , smax

3 ,pmin
3 ,pmax

3 ) defined as follows.

C3 = C1 tC C2

pmin
3 =

{
pmin

1 + pmin
2 if P1 / P2 = #(C3)

min
{

pmin
1 ,pmin

2

}
otherwise

pmax
3 =

{
pmax

1 + pmax
2 if P1 , P2 > 0

max {pmax
1 ,pmax

2 } otherwise

smin
3 = max

{
smin
1 + smin

2 − P1 , P2, 0
}

smax
3 = min {smax

1 + smax
2 − P1 / P2, #(C3)}

mmin
3 = mmin

1 + mmin
2 | mmax

3 = mmax
1 + mmax

2

If iszero(P1) then we define P1 + P2 as identical to P2;
if iszero(P2), the sum is defined as identical to P1.

Lemma 12. If δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then δ1 + δ2 ∈
γP(P1 + P2).

4) Product: When evaluating the product P3 = P1 ×
P2, we assume that the domains of P1 and P2 are disjoint,
i.e., C1 and C2 refer to disjoint sets of variables. If C1 =
(B1, V1) and C2 = (B2, V2), then the polyhedron C1 ×
C2

def= (B1 ∪B2, V1 ∪ V2) is the Cartesian product of C1

and C2 and contains all those states σ for which σ � V1 ∈
γC(C1) and σ � V2 ∈ γC(C2). Determining the remaining
components is straightforward since P1 and P2 are disjoint.

C3 = C1 × C2

pmin
3 = pmin

1 · pmin
2 pmax

3 = pmax
1 · pmax

2

smin
3 = smin

1 · smin
2 smax

3 = smax
1 · smax

2

mmin
3 = mmin

1 ·mmin
2 mmax

3 = mmax
1 ·mmax

2

Lemma 13. For all P1, P2 such that fv(P1)∩ fv(P2) = ∅, if
δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then δ1 × δ2 ∈ γP(P1 × P2).

In our examples we often find it useful to express uni-
formly distributed data directly, rather than encoding it using
pif. In particular, consider extending statements S to include
the statement form uniform x n1 n2 whose semantics is
to define variable x as having values uniformly distributed
between n1 and n2. Its semantics is as follows.

〈〈uniform x n1 n2〉〉P1 = fx(P1)× P2

Here, P2 has pmin
2 = pmax

2 = 1
n2−n1+1 , smin

2 =
smax
2 = n2 − n1 + 1, mmin

2 = mmax
2 = 1, and C2 =

({x ≥ n1, x ≤ n2} , {x}).
We will say that the abstract semantics correspond to the

concrete semantics of uniform defined similarly as follows.

[[uniform x n1 n2]]δ = (δ � fv(δ)− {x})× δ2

where δ2 = (λσ. if n1 ≤ σ(x) ≤ n2 then 1
n2−n1+1 else 0).

The soundness of the abstract semantics follows immedi-
ately from the soundness of forget and product.
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5) Conditioning: Distribution conditioning for proba-
bilistic polyhedra serves the same role as meet in the classic
domain of polyhedra in that each is used to perform ab-
stract evaluation of a conditional expression in its respective
domain.

Definition 14. Consider the probabilistic polyhedron P1 and
Boolean expression B . Let n, n be such that n = C1#B and
n = C1#(¬B). The value n is an over-approximation of the
number of points in C1 that satisfy the condition B and n is
an over-approximation of the number of points in C1 that do
not satisfy B . Then P1 | B is the probabilistic polyhedron
P2 defined as follows.

pmin
2 = pmin

1 smin
2 = max

˘
smin
1 − n, 0

¯
pmax

2 = pmax
1 smax

2 = min {smax
1 , n}

mmin
2 = max

˘
pmin

2 · smin
2 , mmin

1 − pmax
1 ·min {smax

1 , n}
¯

mmax
2 = min

˘
pmax

2 · smax
2 , mmax

1 − pmin
1 ·max

˘
smin
1 − n, 0

¯¯
C2 = 〈〈B〉〉C1

The maximal and minimal probability per point are un-
changed, as conditioning simply retains points from the
original distribution. To compute the minimal number of
points in P2, we assume that as many points as possible from
C1 fall in the region satisfying ¬B . The maximal number
of points is obtained by assuming that a maximal number
of points fall within the region satisfying B .

The total mass calculations are more complicated. There
are two possible approaches to computing mmin

2 and mmax
2 .

The bound mmin
2 can never be less than pmin

2 · smin
2 , and

so we can always safely choose this as the value of mmin
2 .

Similarly, we can always choose pmax
2 · smax

2 as the value
of mmax

2 . However, if mmin
1 and mmax

1 give good bounds
on total mass (i.e., mmin

1 is much higher than pmin
1 · smin

1

and dually for mmax
1 ), then it can be advantageous to reason

starting from these bounds.
We can obtain a sound value for mmin

2 by considering
the case where a maximal amount of mass from C1 fails to
satisfy B. To do this, we compute n = C1#¬B , which
provides an over-approximation of the number of points
within C1 but outside the area satisfying B. We bound n
by smax

1 and then assign each of these points maximal mass
pmax

1 , and subtract this from mmin
1 , the previous lower bound

on total mass.
By similar reasoning, we can compute mmax

2 by assuming
a minimal amount of mass m is removed by conditioning,
and subtracting m from mmax

1 . This m is given by consider-
ing an under-approximation of the number of points falling
outside the area of overlap between C1 and B and assigning
each point minimal mass as given by pmin

1 . This m is given
by max

(
smin
1 − n, 0

)
.

Figure 5 demonstrates the components that affect the
conditioning operation. The figure depicts the integer-valued
points present in two polyhedra—one representing C1 and
the other representing B (shaded). As the set of points in C1

Figure 5. Example of distribution conditioning in the abstract domain P.

satisfying B is convex, this region is precisely represented by
〈〈B〉〉C1. By contrast, the set of points in C1 that satisfy ¬B
is not convex, and thus 〈〈¬B〉〉C1 is an over-approximation.
The icons beside the main image indicate which shapes
correspond to which components and the numbers within
the icons give the total count of points within those shapes.

Suppose the components of P1 are as follows.

smin
1 = 19 pmin

1 = 0.01 mmin
1 = 0.85

smax
1 = 20 pmax

1 = 0.05 mmax
1 = 0.9

Then n = 4 and n = 16. Note that we have set n to be the
number of points in the non-shaded region of Figure 5. This
is more precise than the count given by #(〈〈B〉〉C), which
would yield 18. This demonstrates why it is worthwhile to
have a separate operation for counting points satisfying a
boolean expression. These values of n and n give us the
following for the first four numeric components of P2.

smin
2 = max(19− 16, 0) = 3 pmin

2 = 0.01
smax
2 = min(20, 4) = 4 pmax

2 = 0.05

For the mmin
2 and mmax

2 , we have the following for the
method of calculation based on pmin/max

2 and smin/max
2 .

mmin
2 = 0.01 · 3 = 0.03 mmax

2 = 0.05 · 4 = 0.2

For the method of computation based on mmin/max
1 , we have

mmin
2 = 0.85− 0.05 · 16 = 0.05

mmax
2 = 0.9− 0.01 · (19− 4) = 0.75

In this case, the calculation based on subtracting from
total mass provides a tighter estimate for mmin

2 , while the
method based on multiplying pmax

2 and smax
2 is better for

mmax
2 .

Lemma 15. If δ ∈ γP(P) then δ|B ∈ γP(P | B).

6) Scalar Product: The scalar product is straightforward,
as it just scales the mass per point and total mass.

Definition 16. Given a scalar p in [0, 1], we write p ·P1 for
the probabilistic polyhedron P2 specified below.

smin
2 = smin

1 pmin
2 = p · pmin

1

smax
2 = smax

1 pmax
2 = p · pmax

1

mmin
2 = p ·mmin

1 C2 = C1

mmax
2 = p ·mmax

1

Lemma 17. If δ1 ∈ γP(P1) then p · δ1 ∈ γP(p · P1).
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7) Normalization: If a probabilistic polyhedron P has
mmin = 1 and mmax = 1 then it represents a normal-
ized distribution. We define below an abstract counterpart
to distribution normalization, capable of transforming an
arbitrary probabilistic polyhedron into one containing only
normalized distributions.

Definition 18. Whenever mmin
1 > 0, we write normal(P1)

for the probabilistic polyhedron P2 specified below.

pmin
2 = pmin

1 /mmax
1 smin

2 = smin
1

pmax
2 = pmax

1 /mmin
1 smax

2 = smax
1

mmin
2 = mmax

2 = 1 C2 = C1

When mmin
1 = 0, we set pmax

2 = 1. Note that if P1 is the
zero distribution then normal(P1) is not defined.

Lemma 19. If δ1 ∈ γP(P1) and normal(δ1) is defined, then
normal(δ1) ∈ γP(normal(P1)).

D. Policy Evaluation

Here we show how to implement the threshold test given
as Definition 3 using probabilistic polyhedra. To make the
definition simpler, let us first introduce a bit of notation.

Notation 20. If P is a probabilistic polyhedron over vari-
ables V , and σ is a state over variables V ′ ⊆ V , then
P | σ def= P | B where B =

∧
x∈V ′ x = σ(x).

Definition 21. Given some probabilistic polyhedron P1 and
statement S where 〈〈S〉〉P1 terminates, let P2 = 〈〈S〉〉P1 and
P3 = P2 � L. If, for every σL ∈ γC(C3) with ¬iszero(P2 |
σL), we have P4 = normal((P2 | σL) � H) with pmax

4 ≤ t,
then we write tsecuret(S, P1).

The computation of P3 involves only abstract interpre-
tation and projection, which are computable using the op-
erations defined previously in this section. If we have a
small number of outputs (as for the binary outputs consid-
ered in our examples), we can enumerate them and check
¬iszero(P2 | σL) for each output σL. When this holds
(that is, the output is feasible), we compute P4, which again
simply involves the abstract operations defined previously.
The final threshold check is then performed by comparing
pmax

4 to the probability threshold t.
Now we state the main soundness theorem for abstract

interpretation using probabilistic polyhedra. This theorem
states that the abstract interpretation just described can be
used to soundly determine whether to accept a query.

Theorem 22. Let δ be an attacker’s initial belief. If δ ∈
γP(P1) and tsecuret(S, P1), then S is threshold secure for
threshold t when evaluated with initial belief δ.

VI. POWERSET OF PROBABILISTIC POLYHEDRA

This section presents the Pn (P) domain, an extension of
the P domain that abstractly represents a set of distributions
as at most n probabilistic polyhedra, elements of P.

Definition 23. A probabilistic (polyhedral) set ∆ is a
set of probabilistic polyhedra, or {Pi} with each Pi over
the same variables. We write Pn (P) for the domain of
probabilistic polyhedral powersets composed of no more
than n probabilistic polyhedra.

Each probabilistic polyhedron P is interpreted disjunc-
tively: it characterizes one of many possible distributions.
The probabilistic polyhedral set is interpreted additively. To
define this idea precisely, we first define a lifting of + to
sets of distributions. Let D1, D2 be two sets of distributions.
We then define addition as follows.

D1 +D2 = {δ1 + δ2 | δ1 ∈ D1 ∧ δ2 ∈ D2}

This operation is commutative and associative and thus we
can use

∑
for summations without ambiguity as to order

of operations. The concretization function for Pn (P) is then
defined as:

γPn(P)(∆) def=
∑
P∈∆

γP(P)

We can characterize the condition of ∆ containing only
the zero distribution, written iszero(∆), via the condition
that all of the member probabilistic polyhedra are zero.

iszero(∆) def=
∧
P∈∆

iszero(P)

A. Abstract Semantics for Pn (P)

With a few exceptions, the abstract implementations of
the basic operations for the powerset domain are extensions
of operations defined on the base probabilistic polyhedra
domain.

Theorem 24. For all δ, S,∆, if δ ∈ γPn(P)(∆) and
〈〈S〉〉∆ terminates, then [[S]]δ terminates and [[S]]δ ∈
γPn(P)(〈〈S〉〉∆).

Proof of this theorem is given in Appendix E.

Definition 25. The powerset simplification transforms a
set containing potentially more than n elements into one
containing no more than n, for n ≥ 1. The simplest approach
involves repeated use of abstract plus in the base domain P.

b{Pi}mi=1cn
def=
{

{Pi}mi=1 if m ≤ n
b{Pi}m−2

i=1 ∪ {Pm−1 + Pm}cn otherwise

Lemma 26. γPn(P)(∆) ⊆ γPn(P)(b∆cm) where m ≤ n.

Note that the order in which individual probabilistic
polyhedra are simplified has no effect on soundness but may
impact the precision of the resulting abstraction.

Many of the operations and lemmas for the powerset
domain are simple liftings of the corresponding operations
and lemmas for single probabilistic polyhedra. For these
operations (operations 1-5 given below), we simply list the
definition.

1) Forget: fy(∆) def= {fy(P) | P ∈ ∆}
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2) Project: ∆ � V
def= {P � V | P ∈ ∆}

3) Conditioning: ∆ | B def= {P | B | P ∈ ∆}
4) Assignment: ∆ [x→ E] def= {P [x→ E] | P ∈ ∆}
5) Scalar product: p ·∆ def= {p · P | P ∈ ∆}
6) Product: The product operation is only required for

the special uniform statement and only applies to the product
of a probabilistic set with a single probabilistic polyhedron.
∆ × P ′

def= {P × P ′ | P ∈ ∆} (where we assume that
fv(∆) ∩ P ′ = ∅).

7) Plus: The abstract plus operation involves simplifying
the combined contributions from two sets into one bounded
set: ∆1 + ∆2

def= b∆1 ∪ ∆2cn, whenever ¬iszero(∆1) and
¬iszero(∆2). Alternatively, if iszero(∆1) (or iszero(∆2))
then ∆1 + ∆2 is defined to be identical to ∆2 (or ∆1).

8) Normalization: Since in the Pn (P) domain, the
over(under) approximation of the total mass is not contained
in any single probabilistic polyhedron, the normalization
must scale each component of a set by the overall total. The
minimum (maximum) mass of a probabilistic polyhedra set
∆ = {P1, . . . , Pn} is defined as follows.

Mmin(∆) def=
∑n
i=1 mmin

i Mmax(∆) def=
∑n
i=1 mmax

i

Definition 27. The scaling of a probabilistic polyhedra P1

by minimal total mass m and maximal total mass m, written
normal(P)(m,m) is the probabilistic polyhedron P2 defined
as follows whenever m > 0.

pmin
2 = pmin

1 /m smin
2 = smin

1

pmax
2 = pmax

1 /m smax
2 = smax

1

mmin
2 = mmin

1 /m C2 = C1

mmax
2 = mmax

1 /m

Whenever m = 0 the resulting P2 is defined as above but
with pmax

2 = 1 and mmax
2 = 1.

Normalizing a set of probabilistic polyhedra can be de-
fined as follows

normal(∆) def=
{

normal(P)(Mmin(∆),Mmax(∆)) | P ∈ ∆
}

B. Policy Evaluation

Determining the bound on the probability of any state
represented by a single probabilistic polyhedron is as simple
as checking the pmax value in the normalized version of
the probabilistic polyhedron. In the domain of probabilistic
polyhedron sets, however, the situation is more complex, as
polyhedra may overlap and thus a state’s probability could
involve multiple probabilistic polyhedra. A simple estimate
of the bound can be computed by abstractly adding all the
probabilistic polyhedra in the set, and using the pmax value
of the result.

Lemma 28. If δ ∈ γPn(P)(∆) and P1 =
∑
P∈∆ P then

maxσ δ(σ) ≤ pmax
1 .

This approach has an unfortunate tendency to increase the
probability bound determined as one increases the bound

on the number of probabilistic polyhedra allowed. A more
complicated method, which is used in our implementation,
computes a partition of the polyhedra in the set into another
set of disjoint polyhedra and determines the maximum
probable point among the representatives of each region in
the partition. In order to present this method precisely we
begin with some definitions.

Definition 29. The (maximum) probability of a state σ
according to a probabilistic polyhedron P1, written Pmax

1 (σ),
is pmax

1 if P1 ∈ γC(C1) and 0 otherwise.

Pmax
1 (σ) =

{
pmax

1 if σ ∈ γC(C1)
0 otherwise

Likewise the (maximum) probability of σ according to a
probabilistic polyhedra set ∆ = {Pi}, written ∆max (σ), is
defined as follows.

∆max (σ) =
∑
i

Pmax
i (σ)

A mere application of the various definitions allows one
to conclude the following remark.

Remark 30. If δ ∈ γPn(P)(∆) then δ(σ) ≤ ∆max (σ) and
therefore maxσ δ(σ) ≤ maxσ ∆max (σ) for every σ.

Taking advantage of the domain, we will produce a
set of representative points {σi} with maxi ∆max (σi) =
maxσ ∆max (σ). To do this, we first need to define a linear
partition.

Definition 31. A poly partition of a set of polyhedra {Pi}
is another set of polyhedra {Li}, usually of larger size, with
the following properties.

1) γC(Li) ∩ γC(Lj) = ∅ for every i 6= j.
2) ∪iγC(Li) = ∪iγC(Pi)
3) For every i, j, either γC(Li) ⊆ γC(Pj) or γC(Li) ∩

γC(Pj) = ∅.
Any set {σi}, with σi ∈ γC(Li) for every i, will be called

a representative set of the partition.

We can now determine the maximal probability using
only representative points, one from each piece of the poly
partition.

Lemma 32. maxσ∈R ∆max (σ) = maxσ ∆max (σ) where L
is a poly partition of ∆ and R is a representative set of L.

Note that the set of representatives R is not unique and
the lemma holds for any such set.

We will write maxpp (∆) for maxσ ∆max (σ) to make
explicit the method with which this value can be computed
according to the lemma above.

Notation 33. If ∆ is a probabilistic polyhedron set over
variables V , and σ is a state over variables V ′ ⊆ V , then
∆ | σ def= ∆ | B where B =

∧
x∈V ′ x = σ(x).
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Figure 6. Query evaluation comparison

Definition 34. Given some probabilistic polyhedron ∆1 and
statement S where 〈〈S〉〉∆1 terminates, let ∆2 = 〈〈S〉〉∆1

and ∆3 = ∆2 � L = {P ′i}. If for every σL ∈ γP(C)({C ′i})
with ¬iszero(∆2 | σL) we have ∆4 = normal((∆2 | σL) �
H) and maxpp (∆4) ≤ t, then we write tsecuret(S,∆1).

Below we state the main soundness theorem for abstract
interpretation using probabilistic polyhedron sets. This theo-
rem states that the abstract interpretation just described can
be used to soundly determine whether to accept a query.

Theorem 35. Let δ be an attacker’s initial belief. If δ ∈
γPn(P)(∆) and tsecuret(S,∆), then S is threshold secure
for threshold t when evaluated with initial belief δ.

VII. IMPLEMENTATION AND EXPERIMENTS

We have implemented an interpreter for the core language
based on the probabilistic polyhedra powerset domain. The
base manipulations of polyhedra are done using the Parma
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Figure 7. LattE benchmarks

Polyhedra Library [17]. Size calculations are done using the
LattE lattice point counter [18]. LattE is also used for the
integer linear programming problem involved in the abstract
forget operation. The interpreter itself is written in OCaml.
We conducted several experiments on a Mac Pro with two
2.26 GHz quad-core Xeon processors using 16 GB of RAM
and running OS X v10.6.7. While many of the abstract oper-
ations distribute over the set of probabilistic polyhedra and
thus could be parallelized, our implementation is currently
single-threaded.

Figure 6(a) illustrates the result of running the query
given in Example 1 (Section II) using our implementation
and one using Probabilistic Scheme [11], which is capable
of sound probability estimation after partial enumeration.
Each × plots prob-scheme’s maximum probability value
(the y axis)—that is, the probability it assigns to the most
likely secret state—when given a varying amount of time
for sampling (the x axis). We can see the precision improves
steadily until it reaches the exact value of 1/259 at around
17 seconds. Each + plots our implementation’s maximum
probability value when given an increasing number of prob-
abilistic polyhedra; with a polyhedral bound of 2 (or more),
we obtain the exact value in less than 3 seconds. The timing
measurements are taken to be the medians of 12 runs.
The advantage of our approach is more evident in Figure
6(b) where we use the same program but allow byear to
span 1910 to 2010 rather than 1956 to 1992. In this case
prob-scheme makes little progress even after a minute, and
eventually runs out of memory. Our approach, however, is
unaffected by this larger state space and produces the exact
maximum belief in around 3 seconds when using only 2
probabilistic polyhedra.

Figure 6(c) shows the result of our implementation as-
sessing the special query (Example 2) with initial belief
matching that following the first birthday query. Each plot-
ted point is the number of polyhedra allowed. The result
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time [s]
SIQR (outliers)
max belief

prob-poly set size bound

query 1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 ∞
bday
1

2.0
0.6 (1)
1

2.4
0.6 (1)
0.00386

3.2
0.5 (1)
0.00386

3.2
1.1 (0)
0.00386

3.1
1.0 (0)
0.00386

3.4
0.8 (0)
0.00386

3.2
0.6 (2)
0.00386

3.4
0.7 (0)
0.00386

3.4
0.9 (0)
0.00386

3.7
0.8 (0)
0.00386

3.4
1.1 (0)
0.00386

3.4
1.2 (0)
0.00386

3.3
0.6 (3)
0.00386

3.6
0.9 (0)
0.00386

3.3
0.3 (4)
0.00386

3.1
0.8 (0)
0.00386

3.5
1.1 (0)
0.00386

bday
1+2

4.0
1.1 (0)
1

5.1
0.9 (0)
1

6.8
1.4 (0)
0.02703

6.3
1.8 (0)
0.02703

5.2
2.1 (0)
0.02703

7.0
2.1 (0)
0.02703

6.1
1.4 (0)
0.02703

7.4
1.2 (0)
0.02703

6.8
1.2 (0)
0.02703

7.9
1.3 (0)
0.02703

7.5
1.4 (0)
0.02703

7.0
1.2 (0)
0.02703

6.7
1.6 (0)
0.02703

8.2
1.4 (0)
0.02703

7.3
0.6 (3)
0.02703

6.7
1.7 (0)
0.02703

7.9
1.8 (0)
0.02703

bday
1+2+special

10.9
3.8 (0)
1

14.8
1.3 (3)
1

20.2
2.6 (3)
4.22e-4

18.8
4.9 (0)
4.22e-4

17.7
6.5 (0)
4.22e-4

26.3
7.7 (0)
4.22e-4

30.2
5.5 (0)
4.22e-4

28.3
4.1 (0)
8.06e-4

29.0
4.3 (0)
8.06e-4

32.7
4.9 (0)
8.06e-4

42.5
2.1 (4)
4.60e-4

51.4
2.5 (3)
4.60e-4

57.3
6.4 (2)
4.60e-4

65.4
2.1 (2)
4.60e-4

70.3
2.3 (3)
4.22e-4

67.3
8.8 (1)
3.84e-4

68.7
8.5 (2)
3.84e-4

bday large
1

2.6
1.2 (0)
1

3.2
0.8 (0)
0.00141

3.8
0.7 (1)
0.00141

3.3
0.9 (0)
0.00141

4.3
0.8 (0)
0.00141

3.3
1.2 (0)
0.00141

3.5
0.3 (5)
0.00141

3.3
0.4 (2)
0.00141

3.1
0.4 (5)
0.00141

3.5
1.1 (0)
0.00141

4.1
1.1 (0)
0.00141

3.5
0.6 (4)
0.00141

2.9
1.0 (0)
0.00141

3.3
0.4 (2)
0.00141

2.3
0.9 (0)
0.00141

3.9
0.6 (0)
0.00141

3.9
0.8 (0)
0.00141

bday large
1+2

5.0
1.6 (0)
1

7.2
1.5 (0)
1

9.1
0.5 (4)
0.00990

7.6
1.5 (0)
0.00990

8.6
0.7 (3)
0.00990

6.7
2.1 (0)
0.00990

6.9
1.0 (2)
0.00990

7.8
1.0 (2)
0.00990

7.6
1.3 (0)
0.00990

6.9
2.0 (0)
0.00990

8.1
1.2 (2)
0.00990

7.4
1.3 (0)
0.00990

5.7
2.1 (0)
0.00990

7.2
0.8 (2)
0.00990

6.6
2.0 (0)
0.00990

7.3
1.0 (0)
0.00990

7.1
1.5 (0)
0.00990

bday large
1+2+special

13.2
2.9 (0)
0.00130

17.8
0.9 (2)
3.57e-4

24.1
0.9 (4)
2.11e-4

24.0
2.1 (2)
2.11e-4

27.6
1.6 (2)
2.11e-4

27.6
4.7 (0)
2.11e-4

32.8
2.4 (2)
2.11e-4

31.6
1.9 (2)
4.03e-4

34.5
2.2 (2)
4.03e-4

35.5
4.3 (2)
4.03e-4

49.0
2.2 (2)
2.30e-4

53.3
3.4 (3)
4.03e-4

60.0
8.5 (0)
2.30e-4

72.4
3.1 (2)
2.30e-4

79.4
3.9 (2)
2.30e-4

84.5
3.3 (2)
2.30e-4

87.8
4.7 (2)
1.92e-4

pizza 387.4
26.5 (2)
1

191.0
14.5 (2)
1

161.8
6.9 (2)
1

160.2
7.4 (2)
8.66e-10

311.3
15.3 (3)
4.95e-10

200.9
12.1 (3)
1.50e-10

149.6
6.1 (2)
1.50e-10

151.7
9.0 (2)
1.37e-10

6080.1
7.7 (1)
1.37e-10

166.2
16.8 (2)
1.37e-10

221.5
7.0 (2)
6.00e-11

219.8
4.1 (2)
6.00e-11

257.1
7.4 (2)
6.00e-11

306.2
13.8 (3)
6.00e-11

345.1
16.9 (4)
6.00e-11

391.3
6.2 (2)
6.00e-11

374.9
11.2 (3)
6.00e-11

photo 6.8
1.8 (0)
1

4.8
1.0 (0)
0.14286

6.6
2.1 (0)
0.14286

7.7
2.4 (0)
0.14286

7.9
0.9 (1)
0.14286

10.3
1.3 (2)
0.14286

9.3
1.3 (1)
0.14286

7.9
2.2 (0)
0.14286

11.0
1.6 (2)
0.14286

8.8
3.2 (0)
0.14286

11.4
1.3 (3)
0.14286

8.3
3.3 (0)
0.14286

10.2
1.8 (0)
0.14286

10.7
0.9 (2)
0.14286

8.7
1.5 (0)
0.14286

10.4
0.6 (1)
0.14286

11.2
1.1 (1)
0.14286

travel 214.8
7.1 (0)
1

21.4
0.8 (3)
1

34.9
4.1 (2)
1

33.7
6.9 (0)
1

59.6
8.8 (0)
1

46.8
6.6 (0)
0.01111

74.8
1.8 (4)
0.01111

62.0
3.6 (3)
0.00556

77.5
11.4 (0)
0.00556

72.9
5.7 (2)
0.00139

139.2
5.9 (3)
0.00123

133.2
8.0 (3)
0.00101

149.4
22.5 (0)
5.05e-4

163.3
14.0 (2)
5.05e-4

170.2
6.3 (3)
5.05e-4

163.0
15.1 (2)
5.05e-4

235.5
28.1 (2)
5.05e-4

Table I
QUERY EVALUATION BENCHMARKS

demonstrates that more complex queries, specifically ones
with many disjunctions in their conditionals, not only slow
our approach, but also reduce the precision of the maximum
probability value. The example requires 36 polyhedra for
exact calculations though as little as 3 produce probabili-
ties near exact. Note that the precision does not increase
monotonically with the number of polyhedra—in some cases
more polyhedra leads to a less precise result. We conjecture
that the occasional worsening of the precision with increase
in the number of allowable polyhedra is due to an overly
simple means of deciding which polyhedra to merge when
performing abstract simplification; we plan to investigate this
issue in future work.

Table I tabulates details for the example programs along
three other queries we developed based on advertising
scenarios; these queries are described in the Appendix C.
In each box is the wall clock time for processing (median
of 12 runs), the running time’s semi-interquartile range
(SIQR), the number of outliers, which are defined to be
the points 3 × SIQR below the first quartile or above the
third, and the max belief computed (smaller being more
accurate). Obvious trends are that running time goes up
and max belief goes down as the number of polyhedra
increase, by and large. There are exceptions to running time
trend, and most are close to the SIQR and so possibly not
statistically significant. The most striking exception is the

running time for poly-size 9 of the “pizza” query. This
extreme outlier is due to a single invocation of LattE on
the largest set of constraints among all the benchmarks
performed in the table. We have no good explanation of
how this complex polyhedron arose. The only exceptions to
monotonic decrease in max belief are the “special queries”,
as already discussed.

Investigating the running time results further, we discov-
ered that for nearly all benchmarks, 95% or more of the
running time is spent in the LattE counting tool. The LattE
tool exhibits super-exponential running time in terms of the
number of constraints (see Figure 7) over the polyhedra that
occur when evaluating the various queries in Table I. As
such, overall running time is susceptible to the complexity of
the polyhedra involved, even when they are few in number.
The merging operation, while used to keep the number of
probabilistic polyhedra below the required bound, also tends
to produce more complex polyhedra. These observations
suggest a great deal of performance improvement can be
gained by simplifying the polyhedra if they become too
complex.

VIII. DISCUSSION AND RELATED WORK

Prior work aimed at controlling access to users’ private
data has focused on access control policies. For example,
Persona [6] users can store personal data on distributed
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storage servers that use attribute-based encryption; only
those parties that have the attribute keys for particular data
items may see them. Our approach relaxes the access control
model to offer more fine-grained information release policies
by directly modeling an attacker’s belief.

Others have considered how an adversary’s knowledge
of private data might be informed by a program’s output.
Clark, Hunt, and Malacaria [27] define a static analysis
that bounds the secret information a straight-line program
can leak in terms of equivalence relations between the
inputs and outputs. Backes et al. [21] automate the syn-
thesis of such equivalence relations and quantify leakage
by computing the exact size of equivalence classes. Köpf
and Rybalchenko [22] extend this approach, improving its
scalability by using sampling to identify equivalence classes
and using under- and over-approximation to obtain bounds
on their size. Mu and Clark [28] present a similar analysis
that uses over-approximation only. In all cases, the inferred
equivalence classes can be used to compute entropy-based
metrics of information leakage.

We differ from this work in two main ways. First, we
implement a different security criterion. The most closely
related metric is vulnerability V as proposed by Smith [20],
which can be defined using our notation as follows:3

Definition 36. Let δ′ = [[S]]δ, where δ is the model of the
querier’s initial belief, and let δX

def= normal(δ � X). Then
query S is vulnerability threshold secure iff for

V =
∑

σL∈support(δ′L)

δ′L(σL) · max
σH∈StateH

(δ′|σL)H(σH)

we have V ≤ t for some threshold t.

The above definition is an expectation over all possible
outputs σL, so unlikely outputs have less influence. Our no-
tion of threshold security (Definition 3) is stronger because
it considers each output individually: if any output, however
unlikely, would increase knowledge beyond the threshold,
the query would be rejected. For example, recall the query
from Example 1 where the secret data bday is (assumed
by the querier to be) uniformly distributed; call this query
Q1. According to Definition 36, the minimum acceptable
threshold t ≥ V = 2/365 ≈ 0.005, whereas according to
Definition 3, the minimum threshold is t ≥ 1/7 ≈ 0.143
which corresponds the equivalence class 260 ≤ bday < 267.

The other main difference is that we keep an on-line
model of knowledge according to prior, actual query results,
which increases our precision. To see the benefit consider
performing query Q1 followed by a query Q2 which uses
the code from Example 1 but has today = 265. With our
system and bday = 270 the answer to Q1 is False and
with the revised belief the query Q2 will be accepted as
below threshold td = 0.2. If instead we had to model this

3Smith actually proposes min entropy, which is −log V .

pair of queries statically they would be rejected because
(under the assumption of uniformity) the pair of outputs
True,True is possible and implies bday ∈ {265, 266} which
would require td ≥ 0.5. Our approach also inherits from
the belief-based approach the ability to model a querier
who is misinformed or incorrect, which can arise following
the result of a probabilistic query (more on this below) or
because of a change to the secret data between queries [9].
On the other hand, these advantages of our approach come
at the cost of maintaining on-line belief models.

Our proposed abstract domains P and Pn (P) are useful
beyond the application of belief-based threshold security;
e.g., they could be used to model uncertainty off-line (as
in the above work) rather than beliefs on-line, with the
advantage that they are not limited to uniform distributions
(as required by [21], [22]). Prior work on probabilistic
abstract interpretation is insufficient for this purpose. For
example, Monniaux [29] gives an abstract interpretation
for probabilistic programs based on over-approximating
probabilities. That work contains no treatment of distribu-
tion conditioning and normalization, which are crucial for
belief-based information flow analysis. The use of under-
approximations, needed to soundly handle normalization, is
unique to our approach.

McCamant and Ernst’s FLOWCHECK tool [19] measures
the information released by a particular execution. However,
it measures information release in terms of channel capacity,
rather than remaining uncertainty which is more appropriate
for our setting. For example, FLOWCHECK would report
a query that tries to guess a user’s birthday leaks one bit
regardless of whether the guess was successful, whereas
the belief-based model (and the other models mentioned
above) would consider a failing guess to convey very little
information (much less than a bit), and a successful guess
conveying quite a lot (much more than a bit).

To avoid reasoning directly about an adversary’s knowl-
edge, Dwork and colleagues proposed differential pri-
vacy [24]: a differentially private query over a database of
individuals’ records is a randomized function that produces
roughly the same answer whether a particular individual’s
data is in the database or not. Thus, if the database curator
is trustworthy, there is little reason for an individual to not
supply his data. However, we prefer users to control access
to their data as they like, rather than have to trust a curator.

In any case, it is difficult to see how to effectively adapt
differential privacy, which was conceived for queries over
many records, to queries over an individual’s record, as in
our setting. To see why, consider the birthday query from
Example 1. Bob’s birthday being/not being in the query
range influences the output of the query only by 1 (assuming
yes/no is 1/0). One could add an appropriate amount of
(Laplacian) noise to the query answer to hide what the true
answer was and make the query differentially private. How-
ever, this noise would be so large compared to the original
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range {0, 1} that the query becomes essentially useless—
the user would be receiving a birthday announcement most
days.4 By contrast, our approach permits answering queries
exactly if the release of information is below the threshold.
Moreover, there is no limit on the number of queries as
long the information release remains bounded; differential
privacy, in general, must impose an artificial limit (termed
the privacy budget) because it does not reason about the
information released.

Nevertheless, differential privacy is appealing, and it
would be fruitful to consider how to apply its best attributes
to our setting. Rastogi and Suciu [23] propose a property
called adversarial privacy that suggests a way forward. Like
our approach, adversarial privacy is defined in terms of a
change in attacker knowledge. Roughly: a query’s output
on any database may increase an attacker’s a priori belief
δ(σ) about any state σ by at most ε for all δ ∈ D for
some D ∈ P (Dist). Rastogi and Suciu show that, for a
certain class D, adversarial privacy and differential privacy
are equivalent, and by relaxing the choice of D one can
smoothly trade off utility for privacy. We can take the
reverse tack: by modeling a (larger) set of beliefs we can
favor privacy over utility. Our abstractions P and Pn (P)
already model sets of distributions, rather than a single
distribution, so it remains interesting future work to exploit
this representation toward increasing privacy.

Another important open question for our work is means
to handle collusion. Following our motivating example in
the Introduction, the user’s privacy would be thwarted if he
shared only his birth day with querier X and only his birth
year with Y but then X and Y shared their information.
A simple approach to preventing this would be to model
adversary knowledge globally, effectively assuming that all
queriers share their query results; doing so would prevent ei-
ther X’s or Y ’s query (whichever was last). This approach is
akin to having a global privacy budget in differential privacy
and, as there, obviously harms utility. Dealing with collusion
is more problematic when using probabilistic queries, e.g.,
Example 2. This is because highly improbable results make a
querier more uncertain, so combining querier knowledge can
misrepresent individual queriers’ beliefs. Roughly speaking,
querier X could perform a query Q that misinforms the
modeled global belief, but since querier Y ’s actual belief is
not changed by the result of Q (since he did not actually see
its result), he could submit Q′ and learn more than allowed
by the threshold. Disallowing probabilistic queries solves
this problem but harms expressiveness. Another option is to
more actively track a set of beliefs, as hinted at above.

4By our calculations, with privacy parameter ε = 0.1 recommended
by Dwork [24], the probability the query returns the correct result is
approximately 0.5249.

IX. CONCLUSION

This paper has explored the idea of knowledge-based
security policies: given a query over some secret data, that
query should only be answered if doing so will not increase
the querier’s knowledge above a fixed threshold. We enforce
knowledge-based policies by explicitly tracking a model
of a querier’s belief about secret data, represented as a
probability distribution, and we deny any query that could
increase knowledge above the threshold. Our denial criterion
is independent of the actual secret, so denial does not
leak information. We implement query analysis and belief
tracking via abstract interpretation using novel domains
of probabilistic polyhedra and powersets of probabilistic
polyhedra. Compared to typical approaches to implementing
belief revision, our implementation using this domain is
more efficient and scales better.
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APPENDIX A.
CONCRETE PROBABILISTIC SEMANTICS

Here we briefly explain the concrete probabilistic seman-
tics given in Figure 3. More details can be found in Clarkson
et al. [9].

The semantics of skip is straightforward: it is the identity
on distributions. The semantics of sequences S1 ; S2 is also
straightforward: the distribution that results from executing
S1 with δ is given as input to S2 to produce the result.

The semantics of assignment is δ [x→ E ], which is
defined as follows:

δ [x→ E ] def= λσ.
∑

τ | τ [x→[[E ]]τ ]=σ

δ(τ)

In words, the result of substituting an expression E for x
is a distribution where state σ is given a probability that is
the sum of the probabilities of all states τ that are equal
to σ when x is mapped to the distribution on E in τ .
For implementation purposes, it will be useful to consider
separately the case where assignment is invertible.

When x→ E is an invertible transformation, the formula
for assignment can be simplified to the following, where
x→ E ′ is the inverse of x→ E .

δ [x→ E ] def= λσ. δ(σ [x→ [[E ′]]σ])

When x → E is not invertible, the original definition is
equivalent to a projection followed by an assignment. Let
V ′ = domain(δ) − {x} and let δ′ = δ � V ′. Then we have
the following for a non-invertible assignment.

δ [x→ E ] def= λσ. if σ(x) = [[E]]σ then δ′(σ � V ′) else 0

In the appendix, we show that this definition by cases is
equivalent to the original definition (Theorem 56).
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The semantics for conditionals makes use of two operators
on distributions which we now define. First, given distribu-
tions δ1 and δ2 we define the distribution sum as follows:

δ1 + δ2
def= λσ. δ1(σ) + δ2(σ)

In words, the probability mass for a given state σ of the
summed distribution is just the sum of the masses from the
input distributions for σ. Second, given a distribution δ and a
boolean expression B , we define the distribution conditioned
on B to be

δ|B def= λσ. if [[B ]]σ then δ(σ) else 0

In short, the resulting distribution retains only the probability
mass from δ for states σ in which B holds.

With these two operators, the semantics of conditionals
can be stated simply: the resulting distribution is the sum of
the distributions of the two branches, where the first branch’s
distribution is conditioned on B being true, while the second
branch’s distribution is conditioned on B being false.

The semantics for probabilistic conditionals like that of
conditionals but makes use of distribution scaling, which is
defined as follows: given δ and some scalar p in [0, 1], we
have

p · δ def= λσ. p · δ(σ)

In short, the probability ascribed to each state is just the
probability ascribed to that state by δ but multiplied by p.
For probabilistic conditionals, we sum the distributions of
the two branches, scaling them according to the odds q and
1− q.

The semantics of a single iteration of a while loop is
essentially that of if B then S else skip and the semantics of
the entire loop is the fixed point of a function that composes
the distributions produced by each iteration. That such a
fixed point exists is proved by Clarkson et al. [9].

Finally, the semantics of uniform x n1 n2, introduced in
Section V is given as

[[uniform x n1 n2]]δ = (δ � V − {x})× δ′

Where V is the set of variables of δ, and δ′ is defined as
follows.

δ′ = λσ. if n1 ≤ σ(x) ≤ n2 then
1

n2 − n1 + 1
else 0

APPENDIX B.
ALTERNATIVE (FLAWED) THRESHOLD SECURITY POLICY

As an alternative to Definition 3, suppose we used the
following instead:

∀σL ∈ support(δ′ � L). (normal(δ′|σL � H))(σH) ≤ t

Here is an example that illustrates why this definition is not
safe, as it could underestimate the information a querier can
learn.

Suppose Bob’s threshold for his birth year byear is
t = 0.05. He models a social networking site X as believing
his age is more likely between 20 and 40 than between 40
and 60, e.g., 1971 ≤ byear < 1991 with probability 0.6
(thus, 0.03 per possibility) and 1951 ≤ byear < 1971 with
probability 0.4 (thus, 0.02 per possibility). If user Bob was
born in 1965, then X’s believes his is actual birth year not
as likely a more recent year, say 1975; in any case X does
not currently believe any possibility above Bob’s threshold.
Now suppose X submits program S that determines whether
Bob’s birth year is even. The revised belief will include only
even (when output = True) or odd (when output = False)
birthdays, increasing the likelihood of years in the range
[1971, 1991) to be 0.06 per point, and the likelihood of
years in the range [1951, 1971) to be 0.04 per point. Bob’s
birthday is 1965, and its probability 0.04 is less than t, so
according to the flawed definition the agent would respond to
this query. But if this query result is returned, X will see that
there are ten possibilities of birth year that are above Bob’s
threshold. X can deduce that none of these possibilities is
Bob’s actual birth year, or else the query would have been
rejected. Excluding these possibilities, he knows that Bob’s
birth year is one of ten possibilities between 1951 and 1971
ascribing to each a probability 0.1 which exceeds Bob’s
threshold of 0.05.

APPENDIX C.
EXAMPLE QUERIES

We provide here the queries and prebeliefs we used for
the experiments in Section VII. The queries are described
as functions from some set of inputs to some set of outputs.
The exact syntax is as follows.

querydef queryname in1 · · · inn → out1 · · · outm :
querybody

To specify a query invocation we use the following syntax.

query queryname :
in1 := val1;
· · ·
inn := valn

Each experiment must also specify the values of the
secrets being queried, and the querier’s prebelief. Each spec-
ification is a merely a program that sets the values of these
variables. For the actual secret values this program begins
with the declaration secret; the resulting state of executing
program is taken to be the secret state. The program to set
the prebelief begins belief and has the same format; note
that this program will use pif or uniform x n1 n2 to give
secrets different possible values with different probabilities.

We now give the content of the queries used in the
experiments.
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1) Birthday: For the small stateset size birthday experi-
ments we used the following secret and prebelief.

secret :
s bday := 270 ;
s byear := 1980

belief :
uniform s bday 0 364 ;
uniform s byear 1956 1992

The two queries used were as follows.

querydef bday : c day → output

if s bday ≥ c day ∧ c day + 7 > s bday then
output := 1

else
output := 0

querydef spec : c year → output

age := c year − s byear ;
if age = 10 ∨ age = 20 ∨ age = 30 ∨ age = 40 ∨ age = 50 then

output temp := 1
else

output temp := 0 ;
pif 1/10 then

output := 1
else

output := output temp

The statistics shown include the time spent processing this
initial setup as well as the following sequences of queries.
• A single bday query alone.

query bday :

c day := 260

• Two bday queries.

query bday :

c day := 261

• Two bday queries followed by a spec query.

query spec :

c year := 2011

2) Birthday (large): For the larger statespace birthday ex-
ample we used the following secret and prebelief generators.

secret :
s bday := 270 ;
s byear := 1980

belief :
uniform s bday 0 364 ;
uniform s byear 1910 2010

The queries used were identical to the ones for the smaller
statespace birthday example.

3) Pizza: The pizza example is slightly more compli-
cated, especially in the construction of the prebelief. This ex-
ample models a targeted Facebook advertisement for a local
pizza shop. There are four relevant secret values. The level
of school currently being attended by the Facebook user is
given by s_in_school_type, which is an integer ranging
from 0 (not in school) to 6 (Ph.D. program). Birth year
is as before and s_address_lat and s_address_long
give the latitude and longitude of the user’s home address
(represented as decimal degrees scaled by a factor of 106

and converted to an integer).
The initial belief models the fact that each subsequent

level of education is less likely and also captures the
correlation between current educational level and age. For
example, a user is given an approximately 0.05 chance of
currently being an undergraduate in college, and college
attendees are assumed to be born no later than 1985 (whereas
elementary school students may be born as late as 2002).

rendering latex
secret :

s in school type := 4 ;
s birth year := 1983 ;
s address lat := 39003178 ;
s address long := −76958199

belief :
pif 4/24 then

uniform s in school type 1 1 ;
uniform s birth year 1998 2002

else
pif 3/19 then

uniform s in school type 2 2 ;
uniform s birth year 1990 1998

else
pif 2/15 then

uniform s in school type 3 3 ;
uniform s birth year 1985 1992

else
pif 1/12 then

uniform s in school type 4 4 ;
uniform s birth year 1980 1985

else
uniform s in school type 0 0 ;
uniform s birth year 1900 1985 ;

uniform s address lat 38867884 39103178 ;
uniform s address long −77058199 − 76825926

The query itself targets the pizza advertisement at users
who are either 1) in college, 2) aged 18 to 28, or 3) close to
the pizza shop (within a square region that is 2.5 miles on
each side and centered on the pizza shop). If any of these
conditions are satisfied, then the query returns 1, indicating
that the ad can be displayed. The full text of the query is
given below.

querydef pizza : → output
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if s in school type ≥ 4 then
in school := 1

else
in school := 0 ;

age := 2010− s birth year ;
if age ≥ 18 ∧ age ≤ 28 then

age criteria := 1
else

age criteria := 0 ;
lr lat := 38967884 ;
ul lat := 39003178 ;
lr long := −76958199 ;
ul long := −76925926 ;
if s address lat ≤ ul lat ∧

s address lat ≥ lr lat ∧
s address long ≥ lr long ∧
s address long ≤ ul long then
in box := 1

else
in box := 0 ;

if (in school = 1 ∨ age criteria = 1) ∧
in box = 1 then
output := 1

else
output := 0

4) Photo: The photo query is a direct encoding of
a case study that Facebook includes on their advertising
information page [30]. The advertisement was for CM
Photographics, and targets offers for wedding photography
packages at women between the ages of 24 and 30 who
list in their profiles that they are engaged. The secret state
consists of birth year, as before, gender (0 indicates male, 1
indicates female), and “relationship status,” which can take
on a value from 0 to 9. Each of these relationship status
values indicates one of the status choices permitted by the
Facebook software. The example below involves only four
of these values, which are given below.

0 No answer
1 Single
2 In a relationship
3 Engaged

The secret state and prebelief are as follows.

secret :
s birth year := 1983 ;
s gender := 0 ;
s relationship status := 0

belief :
uniform s birth year 1900 2010 ;
uniform s gender 0 1 ;
uniform s relationship status 0 3

The query itself is the following.

querydef cm advert : → output

age := 2010− s birth year ;
if age ≥ 24 ∧ age ≤ 30 then

age sat := 1
else

age sat := 0 ;
if s gender = 1 ∧

s relationship status = 3 ∧
age sat = 1 then
output := 1

else
output := 0

5) Travel: This example is another Facebook advertising
case study [31]. It is based on an ad campaign run by
Britain’s national tourism agency, VisitBritain. The cam-
paign targeted English-speaking Facebook users currently
residing in countries with strong ties to the United Kingdom.
They further filtered by showing the advertisement only to
college graduates who were at least 21 years of age.

We modeled this using four secret values: country, birth
year, highest completed education level, and primary lan-
guage. As with other categorical data, we represent language
and country using an enumeration. We ranked countries by
number of Facebook users as reported by socialbakers.com.
This resulted in the US being country number 1 and the
UK being country 3. To populate the list of countries with
“strong connections” to the UK, we took a list of former
British colonies. For the language attribute, we consider a
50-element enumeration where 0 indicates “no answer” and
1 indicates “English” (other values appear in the prebelief
but are not used in the query).

secret :
country := 1 ;
birth year := 1983 ;
completed school type := 4 ;
language := 5

belief :
uniform country 1 200 ;
uniform birth year 1900 2011 ;
uniform language 1 50 ;
uniform completed school type 0 5

querydef travel : → output
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if country = 1 ∨ country = 3 ∨
country = 8 ∨ country = 10 ∨
country = 18 then
main country := 1

else
main country := 0 ;

if country = 169 ∨ country = 197 ∨
country = 194 ∨ country = 170 ∨
country = 206 ∨ country = 183 ∨
country = 188 then
island := 1

else
island := 0 ;

age := 2010− birth year ;
if language = 1 ∧

(main country = 1 ∨ island = 1) ∧
age ≥ 21 ∧
completed school type ≥ 4 then
output := 1

else
output := 0

APPENDIX D.
SOUNDNESS PROOFS FOR P

A. Projection

The proof of projection relies heavily on splitting up the
support of a distribution into equivalence classes based on
the states they project to. We will have σ, σ′ ∈ support(δ)
belonging to the same equivalence class iff σ � V = σ′ � V .
The details are formalized in the following definition.

Definition 37. Equivalence classes under projection.
• [σV ]Vδ is an equivalence class of elements of support(δ)

that project to σV (when projected to variables V ).
Formally, [σV ]Vδ

def= {σ ∈ support(δ) | σ � V = σV }.
• [σV ]

V

δ is a subset of support(δ) that project
to anything but σV or formally [σV ]

V

δ
def=

{σ ∈ support(δ) | σ � V 6= σV }.
• [σV ]VC is a subset of γC(C) that project to σV

(when projected to variables V ). Formally, [σV ]VC
def=

{σ ∈ γC(C) | σ � V = σV }.
• [σV ]

V

C is a subset of γC(C) that project to anything but

σV or formally [σV ]
V

C
def= {σ ∈ γC(C) | σ � V 6= σV }.

Remark 38. Let V ⊆ V ′ ⊆ fv(δ), σ ∈ support(δ), and
σV , σ

′
V ∈ support(δ � V ).

(i) (σ � V ′) � V = σ � V

The sets of
{

[σV ]Vδ
}
σV ∈support(δ�V )

form a partition of

support(δ), equivalently the following two claims.

(ii) support(δ) =
⋃
σV ∈support(δ�V ) [σV ]Vδ

(iii) [σV ]Vδ ∩ [σ′V ]Vδ = ∅ whenever σV 6= σ′V
Likewise, for any σV ∈ support(δ � V ), the sets of{

[σV ′ ]
V ′

δ

}
σV ′∈[σV ]V

δ�V ′
form a partition of [σV ]Vδ , implying

also the following claim.
(iv) [σV ]Vδ =

⋃
σV ′∈[σV ]V

δ�V ′
[σV ′ ]

V ′

δ

The equivalence classes in terms of the concrete support
sets as related to the abstract support sets are expressed in
the following manner.

(v) [σV ]Vδ ⊆ [σV ]VC and [σV ]
V

δ ⊆ [σV ]
V

C whenever
support(δ) ⊆ γC(C)

Finally, the concrete projection operation can be rewritten
in terms of the equivalence classes, a fact we will repeatedly
use in the proofs to follow without explicitly stating it.

(vi) δ � V = λσV .
∑
σ∈[σV ]Vδ

δ(σ)

Proof: All of these are merely expansions of the various
definitions involved. Note that the two parts of Remark
38 (v) are not contradictory as [σV ]Vδ and [σV ]

V

δ are not
set complements of each other when viewed as subsets
of γC(C), though they are complements when viewed as
subsets of support(δ).

Lemma 39 (Conservation of Mass). If V ⊆ fv(δ) then
‖δ‖ = ‖δ � V ‖.

Proof: Let us consider the terms of the projected mass
sum.

‖δ � V ‖ =
∑

σV ∈support(δ�V )

 ∑
σ∈[σV ]Vδ

δ(σ)


=

∑
σ∈support(δ)

δ(σ)

= ‖δ‖

The terms in the double sum are the same as those in the
single sum as all terms of the first are accounted for in the
second due to Remark 38 (ii) and none are double counted
due to Remark 38 (iii).

Definition 40. Concrete forget can be defined in terms of
a projection to all but one variable. That is, fx(δ) def= δ �
fv(δ)− {x}. Also, fx1,··· ,xn(δ) def= fx2,··· ,xn(fx1(δ)).

The correspondence between repeated concrete forget and
a projection involving removal of more than one variable will
be demonstrated shortly.

Lemma 41 (Order of Projection). If V ⊆ V ′ ⊆ fv(δ) then
(δ � V ′) � V = δ � V .

Proof: Let σV ∈ δ � V .

((δ � V ′) � V ) (σV ) =
∑

σV ′∈[σV ]V
δ�V ′

 ∑
σ∈[σV ′ ]

V ′
δ

δ(σ)

 (1)

=
∑

σ∈
S
σ
V ′∈[σV ]Vδ�V ′

δ(σ) (2)

=
∑

σ∈[σV ]Vδ

δ(σ) (3)

= (σ � V ) (σV ) (4)
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The collapse of the double sums on (1) to (2) is due to
the correspondence between the terms of the double sum
and the single sum due to Remark 38 (ii) and Remark 38
(iii). The equality of the union of equivalence classes, (2) to
(3) is due to Remark 38 (iv).

Corollary 42. δ � V = fx1,··· ,xn(δ) where fv(δ) − V =
{x1, · · · , xn}.

Proof: Let us show this by induction on the size of
V

def= fv(δ)−V . When
∣∣V ∣∣ = 0 or

∣∣V ∣∣ = 1, the claim holds
vacuously or by definition of concrete forget, respectively.

Let us assume the claim for
∣∣V ∣∣ = m−1 < n and consider

the case when
∣∣V ∣∣ = m ≤ n.

δ � V = (δ � V ∪ {x1}) � V [ by Lemma 41 ]
= fx1(δ) � V

= fx2,··· ,xm(fx1(δ)) [ by induction ]
= fx1,··· ,xm(δ)

Thus, by induction, the claim holds for m = n.

Remark 43 (Counting Variations). Two simple counting
arguments are required for the further proofs.
(i) If m objects are distributed fully into two bins, with one

of the bins having space for no more than a objects,
then the other must have at least m− a objects in it.

(ii) If m objects are to be packed into bins of sizes
a1, · · · , an, with

∑
i ai ≥ m, the least number of bins

that can be used to fit all m objects is greater or equal
to dm/a∗e where a∗ ≥ maxi ai.

Proof: Part (i) is immediate. For part (ii), consider some
optimal set of bins used to pack the m objects. This set of
bins would also let one pack m items assuming each bin had
space for exactly a∗ objects as this is an upper bound on the
size of each bin. Thus the space of solutions to the original
packing problem is a subset of the space of solutions to the
altered packing problem where all bins are increased to fit
a∗ items. Thus the solution for the original cannot use fewer
bins than the optimal solution for the altered problem. For
this alternate problem, the minimum number of bins used to
pack all m items is exactly dm/a∗e by a generalization of
the pigeonhole principle.

Lemma 7 (Soundness of Forget). If δ ∈ γP(P) then fy(δ) ∈
γP(fy(P)).

Proof: Let δ ∈ γP(P ), V = fv(δ)− {y}, and δ2 = δ �
V . By assumption δ has the following properties.

support(δ) ⊆ γC(C) (5)

smin ≤ |support(δ)| ≤ smax (6)

mmin ≤ ‖δ‖ ≤ mmax (7)

∀σ ∈ support(δ) . pmin ≤ δ(σ) ≤ pmax (8)

Let P2 = fy(P). P2 thus has the following properties.

C2 = fy(C) (9)

pmin
2 = pmin ·max

{
hmin
y −

(
#(C)− smin

)
, 1
}

(10)

pmax
2 = pmax ·min

{
hmax
y , smax

}
(11)

smin
2 = dsmin/hmax

y e (12)

smax
2 = min {#(C2), smax} (13)

mmin
2 = mmin (14)

mmax
2 = mmax (15)

The quantities hmin
y and hmax

y are defined to exhibit the
following properties.

hmin
y ≤ min

σV ∈γC(C2)

∣∣∣[σV ]VC
∣∣∣ (16)

hmax
y ≥ max

σV ∈γC(C2)

∣∣∣[σV ]VC
∣∣∣ (17)

To show that δ2 ∈ γP(fy(P)) we need to show the
following.

support(δ2) ⊆ γC(C2) (18)

smin
2 ≤ |support(δ2)| ≤ smax

2 (19)

mmin
2 ≤ ‖δ2‖ ≤ mmax

2 (20)

∀σV ∈ support(δ2) . pmin
2 ≤ δ2(σV ) ≤ pmax

2 (21)

Let us show each of these in turn.
Claim (18) – Support. Let σV ∈ support(δ2). Thus
δ2(σV ) =

∑
σ∈[σV ]Vδ

δ(σ) > 0 so there exists σ ∈ [σV ]Vδ
with δ(σ) > 0. So σ ∈ support(δ). Therefore, by (5),
σ ∈ γC(C), therefore σV ∈ γC(C2) by definition of
polyhedron forget. Therefore support(δ2) ⊆ γC(C2).

Claim (19) Support points. First let us show the follow-
ing claim.

max
σV ∈support(δ2)

∣∣∣[σV ]Vδ
∣∣∣ ≤ hmax

y (22)

By construction of hmax
y , we have hmax

y ≥
maxσV ∈γC(C2)

∣∣∣[σV ]VC
∣∣∣. Now, support(δ2) ⊆ γC(C2)

by (18). Also for any σV ∈ support(δ2), we have
[σV ]Vδ ⊆ [σV ]VC by Remark 38 (v). Therefore

maxσV ∈γC(C2)

∣∣∣[σV ]VC
∣∣∣ ≥ maxσV ∈support(δ2)

∣∣∣[σV ]VC
∣∣∣ ≥

maxσV ∈support(δ)

∣∣∣[σV ]Vδ
∣∣∣. Thus concluding hmax

y ≥

maxσV ∈support(δ2)

∣∣∣[σV ]Vδ
∣∣∣.

Consider the elements of support(δ) as they map via
state projection to elements of support(δ2). Let us view
the elements of the later as bins, with the elements of
the former as objects to pack into the bins. By (22),
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we know no bin has more than hmax
y objects, thus we

can apply Remark 43 to conclude there are at least
d|support(δ)| /hmax

y e non-empty bins, or in other words,
|support(δ2)| ≥ d|support(δ)| /hmax

y e. This is itself at
least as large as dsmin/hmax

y e = smin
2 by (6). Therefore

|support(δ2)| ≥ smin
2 .

For the other side of the inequality, note that the number
of bins used, or |support(δ2)| cannot exceed |support(δ)| ≤
smax itself. It also cannot exceed |γC(C2)| = #(C2)
given (18). Therefore support(δ2) ≤ min {#(C2), smax},
concluding requirement (19).

Claim (20) Mass. This requirement holds trivially due to
Lemma 39 and assumption (7).

Claim (21) Probability. Let us first show the following
claim.

min
σV ∈support(δ2)

∣∣∣[σV ]Vδ
∣∣∣ ≥ hmin

y + smin −#(C) (23)

Let σV ∈ support(δ2). Let us consider the size of [σV ]
V

δ .

∣∣∣[σV ]
V

δ

∣∣∣ ≤ ∣∣∣[σV ]
V

C

∣∣∣ [ by Remark 38 (v) ]

= #(C)−
∣∣∣[σV ]VC

∣∣∣
≤ #(C)− min

τV ∈γC(C2)

∣∣∣[τV ]VC
∣∣∣

≤ #(C)− hmin
y [ by (16) ]

Let us view now the elements of support(δ) as map-
ping (via projection) into two bins, [σV ]Vδ and [σV ]

V

δ .
By the argument above, we know the second bin cannot
hold more than #(C) − hmin

y elements, thus, by Remark
43 (i), it must be the case that the first bin contains at
least |support(δ)| −

(
#(C)− hmin

y

)
elements. This itself

is no smaller than smin − #(C) + hmin
y by (6). Therefore∣∣∣[σV ]Vδ

∣∣∣ ≥ smin −#(C) + hmin
y and thus claim (23) holds.

Consider now σV ∈ support(δ2). By (8) and the concrete
projection definition, it must be the case that δ2(σV ) =∑
σ∈[σV ]Vδ

δ(σ) ≥ pmin. Also,

δ2(σV ) =
∑

σ∈[σV ]Vδ

δ(σ)

≥
∑

σ∈[σV ]Vδ

pmin [ by (8) ]

=
∣∣∣[σV ]Vδ

∣∣∣ · pmin

≥
(
hmin
y + smin −#(C)

)
· pmin [ by (23) ]

Therefore, δ2(σV ) ≥ pmin·min
{

1,hmin
y + smin −#(C)

}
= pmin

2 , concluding one inequality of the last condition.
For the other inequality, let us once more consider a

general σV ∈ support(δ2).

δ2(σV ) =
∑

σ∈[σV ]Vδ

δ(σ)

≤
∑

σ∈[σV ]Vδ

pmax [ by (8) ]

=
∣∣∣[σV ]Vδ

∣∣∣ · pmax

≤ hmax
y · pmax [ by (22) ]

Since [σV ]Vδ ⊆ support(δ), we have
∣∣∣[σV ]Vδ

∣∣∣ ≤
|support(δ)| ≤ smax (by (6)). Thus we can also bound
δ2(σV ) by smax · pmax. Therefore, δ2(σV ) ≤ pmax ·
min

{
hmax
y , smax

}
, completing the last claim.

Lemma 44 (Soundness of Projection). If δ ∈ γP(P) then
δ � V ∈ γP(P � V ).

Proof: Let us show this by induction on the size of
V

def= fv(δ) − V . When
∣∣V ∣∣ = 0 there is no projection to

be done, when
∣∣V ∣∣ = 1, the claim holds by Lemma 7. Let

us assume the claim holds for
∣∣V ∣∣ = n− 1 and look at the

case where
∣∣V ∣∣ = n.

Let us write V = {x1, · · · , xn}. Thus δ � V =
fx1,··· ,xn(δ) by Corollary 42. By definition of for-
get, we also have fx1,··· ,xn(δ) = fx2,··· ,xn(fx1(δ)) and
fx1,··· ,xn(P) = fx2,··· ,xn(fx1(P)). By Lemma 7, we know
that fx1(δ) ∈ γP(fx1(P)), therefore, by induction, δ � V =
fx2,··· ,xn(fx1(δ)) ∈ fx2,··· ,xn(fx1(P)) = P � V .

B. Assignment

We begin with some useful notation.

Notation 45. Let σ be a state, E be an expression, x be a
variable, S ⊆ State, V ⊆ Var.
• σ [x→ E] def= σ [x→ [[E]]σ]
• S [x→ E] def= {σ [x→ E] | σ ∈ S}.
• S � V

def= {σ � V | σ ∈ S}

Definition 46. A state σ is feasible for x → E iff σ ∈
State [x→ E]. We will say that σ is merely feasible if the
assignment is clear from the context.

Definition 47. tx→E is the function from State to feasible
states (for x→ E) defined by tx→E : σ 7→ σ [x→ E]

Definition 48. The inverted equivalence class for σ under
assignment x → E is the set of states that map to σ. We
define two varieties, one over all possible states and one for
just the states in the support of a distribution.
• 〈σ〉x→E def= {τ | τ [x→ E] = σ}
• 〈σ〉x→Eδ

def= {τ ∈ support(δ) | τ [x→ E] = σ}

Note that σ is feasible iff 〈σ〉x→E 6= ∅.

Definition 49. An assignment x→ E is invertible iff tx→E
is invertible. We will denote t−1

x→E as the inverse of tx→E , if
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it is invertible. The invertability of tx→E is characterized by
the existence of the inverse, having the property, that for ev-
ery σ ∈ State, we have t−1

x→E (tx→E (σ)) = σ. Equivalently,
for every feasible state σ, tx→E

(
t−1
x→E (σ)

)
= σ.

We can also characterize invertability via inverted equiv-
alence classes. x→ E is invertible iff for every feasible σ,∣∣〈σ〉x→E∣∣ = 1.

We will say E is invertible if the variable is clear from
the context.

Note that since tx→E only changes the x component of a
state, the inverse, t−1

x→E , also only changes the x component,
if the inverse exists. This doesn’t mean, however, that the
inverse can be represented by an assignment of some E′

to x. Furthermore, since our language for expressions lacks
division and non-integer constants, no assignment’s inverse
can be represented by an assignment.

Definition 50. The expression E is integer linear iff E =
n1 × x1 + · · · + nm × xm, where ni are integer constants,
and xi are variables. We assume that all the variables in a
given context are present. We will generally use xi and ni
to refer to the contents of a integer linear expression.

From now on, we will assume all expressions E are
integer linear. Programs containing non-linear expressions
are just not handled by our system at this stage and linear
expressions not fully specified are equivalent to integer linear
expressions with ni = 0 for variables unused in the original
expression.

Lemma 51. x1 → E is non-invertible iff n1 = 0. In other
words, x1 → E is non-invertible iff E doesn’t depend on
x1.

Proof: (⇒) Assume otherwise. Thus E is non-invertible
but n1 6= 0. So we have a feasible state σ with

∣∣〈σ〉x1→E
∣∣ 6=

1. Since feasible states have non empty inverted equivalence
sets, it must be that

∣∣〈σ〉x1→E
∣∣ ≥ 2. So let τ, τ ′ ∈ 〈σ〉x1→E

with τ 6= τ ′. So τ [x1 → E] = τ ′ [x1 → E] = σ. Since
assignment to x1 doesn’t change the state other than in its
value of x1, τ and τ ′ can only differ in their value for x1.

But since τ and τ ′ are identical after the assignment, we
have,

τ [x1 → E] (x1) = n1τ(x1) + n2τ(x2) + · · ·+ nmτ(xm)
= n1τ(x1) + n2τ

′(x2) + · · ·+ nmτ
′(xm)

= n1τ
′(x1) + n2τ

′(x2) + · · ·+ nmτ
′(xm)

= τ ′ [x1 → E] (x1)

Canceling out the common τ ′(xi) terms, we have
n1τ(x1) = n1τ

′(x1) and since n1 6= 0, we conclude
τ(x1) = τ ′(x1), contradicting τ 6= τ ′.

(⇐) Let σ be a feasible state and let τ ∈ 〈σ〉x1→E .
Let τ ′ = τ [x1 → τ(x1) + 1]. Since E doesn’t depend on
x1, we have [[E]]τ = [[E]]τ ′ and therefore τ ′ [x1 → E] =

τ [x1 → E] = σ and so we have τ, τ ′ ∈ 〈σ〉x1→E with
τ 6= τ ′, therefore E is non-invertible.

Lemma 52. Assume x→ E is non-invertible. σ is feasible
iff σ [x→ E] = σ.

Proof: (⇒) Let σ be feasible. Thus σ = τ [x→ E] for
some τ ∈ State. Since E doesn’t depend on x by Lemma
51, we have (τ [x→ E]) [x→ E] = τ [x→ E] = σ. So
σ [x→ E] = σ.

(⇐) Assume σ [x→ E] = σ. Thus σ ∈ State [x→ E] by
definition.

Lemma 53. Assume x → E is non-invertible. Let δ be a
distribution with x ∈ fv(δ) and let V = fv(δ)− {x}. If σ is
feasible, then 〈σ〉x→Eδ = [σ � V ]Vδ .

Proof: Let τ ∈ 〈σ〉x→Eδ . So τ [x→ E] = σ and
τ ∈ support(δ). But the assignment only changes x, thus
τ � V = σ � V , therefore τ ∈ [σ � V ]Vδ . Thus 〈σ〉x→Eδ ⊆
[σ � V ]Vδ .

Let τ ∈ [σ � V ]Vδ . So τ ∈ support(δ) and τ � V =
σ � V . Since E doesn’t depend on x, we have τ [x→ E] =
σ [x→ E] = σ; the second equality follows from Lemma 52
as σ is feasible by assumption. So τ ∈ 〈σ〉x→Eδ . Therefore
[σ � V ]Vδ ⊆ 〈σ〉x→Eδ .

Remark 54. Assume x→ E is invertible. For every feasible
σ, we have 〈σ〉x→E =

{
t−1
x→E(σ)

}
.

Proof: Invertability tells us that 〈σ〉x→E has only one
element. The function t−1

x→E , given the feasible σ, produces
an element of 〈σ〉x→E , as

(
t−1
x→E(σ)

)
[x→ E] = σ.

Definition 55. We define an alternate means of assignment,
δ〈x→ E〉. Let V = fv(δ)− {x}.
• If x→ E is invertible, then

δ〈x→ E〉 = λσ. if σ is feasible

then δ
(
t−1
x→E(σ)

)
else 0

• If x→ E is not invertible, then

δ〈x→ E〉 = λσ. if σ is feasible
then δ � V (σ � V )
else 0

Lemma 56. For any δ, δ [x→ E] = δ〈x→ E〉.

Proof: Let δ′ = δ [x→ E] and δ′′ = δ〈x→ E〉.

δ′(σ) =
∑

τ | τ [x→E]=σ

δ(τ)

=
∑

τ∈〈σ〉x→Eδ

δ(τ)

Case 1: x→ E is invertible
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If σ is feasible, 〈σ〉x→E has only one element, σ−1 =
t−1
x→E(σ), by Remark 54. So δ′(σ) = δ(σ−1) = δ′′(σ). Note

that when σ−1 is not in support(δ) then δ′(σ) = 0 = δ′′(σ).
If σ is not feasible then 〈σ〉x→E = ∅ so δ′(σ) = 0 =

δ′′(σ).
Case 2: x→ E is non-invertible
If σ is feasible, then by Lemma 53 we have 〈σ〉x→Eδ =

[σ � V ]Vδ .

δ′(σ) =
∑

τ∈〈σ〉x→Eδ

δ(τ)

=
∑

τ∈[σ�V ]Vδ

δ(τ)

= (δ � V ) (σ � V )
= δ′′(σ)

If σ is not feasible then 〈σ〉x→Eδ = ∅ so δ′(σ) = 0 =
δ′′(σ).

Lemma 57. Assume x→ E is invertible, then support(δ) ={
t−1
x→E(σ) | σ ∈ support(δ〈x→ E〉)

}
.

Proof: Let δ2 = δ〈x → E〉. Let τ ∈ support(δ). So
σ

def= τ [x→ E] ∈ support(δ2) and t−1
x→E(σ) = τ . So τ ∈{

t−1
x→E(σ) | σ ∈ support(δ2)

}
.

Let τ ∈
{
t−1
x→E(σ) | σ ∈ support(δ2)

}
. So τ = t−1

x→E(σ)
for some σ ∈ support(δ2). So there exists τ ′ ∈
support(δ) such that τ ′ [x→ E] = σ. But t−1

x→E(σ) =
t−1
x→E(tx→E(τ ′)) = τ ′ so τ ′ = τ as τ = t−1

x→E(σ). So
τ ∈ support(δ).

Lemma 9 (Soundness of Assignment). If δ ∈ γP(P) then
δ [x→ E] ∈ γP(P [x→ E]).

Proof: Let V = fv(δ) − {x}. By assumption, we have
the following.

support(δ) ⊆ γC(C) (24)

smin ≤ |support(δ)| ≤ smax (25)

mmin ≤ ‖δ‖ ≤ mmax (26)

∀σ ∈ support(δ) . pmin ≤ δ(σ) ≤ pmax (27)

Let P2 = P [x→ E] and δ2 = δ [x→ E] = δ〈x → E〉.
Lemma 56 lets us use δ [x→ E] or δ〈x→ E〉 interchange-
ably.

We consider two cases. Case 1: x→ E is invertible
In this case, P2 is defined with C2 = C [x→ E] and

all other parameters as in P. Thus we need to show the
following.

support(δ2) ⊆ γC(C2) (28)

smin = smin
2 ≤ |support(δ2)| ≤ smax

2 = smax (29)

mmin = mmin
2 ≤ ‖δ2‖ ≤ mmax

2 = mmax (30)

∀σ ∈ support(δ2) . pmin = pmin
2 ≤ δ2(σ) ≤ pmax

2 = pmax

(31)

Claim (28) Support. By definition, γC(C2) =
{σ [x→ E] | σ ∈ γC(C)}. Let τ ∈ support(δ2),
so we have σ ∈ support(δ) ⊆ γC(C) with
σ [x→ E] = τ . So τ ∈ γC(C2). So τ ∈ γC(C2) and
thus support(δ2) ⊆ γC(C2).

Claim (29) Support points. By Lemma 57 we have
support(δ) =

{
t−1
x→E(σ) | σ ∈ support(δ2)

}
. Inverse func-

tions are necessarily injective over their domain, and
since support(δ2) are all feasible (thus in the domain of
the inverse), we have

∣∣{t−1
x→E(σ) | σ ∈ support(δ2)

}∣∣ =
|support(δ2)|. So |support(δ)| = |support(δ2)|. This, to-
gether with (25), completes the claim.

Claim (30) Mass. Note again that support(δ2) ⊆
State [x→ E]. That is, all possible states are feasible. So
we can write:

‖δ2‖ =
∑

σ∈support(δ2)

δ2(σ)

=
∑

σ∈support(δ2)

δ(t−1
x→E(σ)) [ by defn. of δ2 ]

=
∑

τ∈support(δ)

δ(τ) [ by Lemma 57 ]

= ‖δ‖

The above, together with (26), completes this claim.

Claim (31) Probability. Since support(δ2) are feasible,
we have, for every σ ∈ support(δ2), δ2(σ) = δ(t−1

x→E(σ)).
But also, t−1

x→E(σ) ∈ support(δ). Taking this, and (27), com-
pletes this claim, and soundness in the invertible case.

Case 2: x → E is non-invertible In this case, P2

is defined via the forget operation. If P1 = fx(P) and
C1 = (B1, V1), then P2 = P [x→ E] has C2 = (B1 ∪
{x = E} , V1 ∪ {x}), and all other parameters as in P1.

We need to show the following four claims.

support(δ2) ⊆ γC(C2) (32)

smin
1 = smin

2 ≤ |support(δ2)| ≤ smax
2 = smax

1 (33)

mmin
1 = mmin

2 ≤ ‖δ2‖ ≤ mmax
2 = mmax

1 (34)

∀σ ∈ support(δ2) . pmin
1 = pmin

2 ≤ δ2(σ) ≤ pmax
2 = pmax

1

(35)

Recall the definition of δ2:

δ〈x→ E〉 = λσ. if σ is feasible
then δ � V (σ � V )
else 0

Claim (32) Support. Let σ ∈ support(δ2). So σ � V ∈
support(δ � V ). so there exists τ ∈ support(δ) ⊆ γC(C)

25



with τ � V = σ � V . So τ � V ∈ γC(fx(C)) = γC(C1).
So τ ∈ γC((B1, V1 ∪ {x})) as the add dimension operation
leaves x unconstrained. The non-constraint of x also tells us
that σ ∈ γC((B1, V1 ∪ {x})) as we have σ � V = τ � V .

Since σ ∈ support(δ2), σ is feasible so σ satisfies the x =
E constraint as σ = τ [x→ E] for some τ . Thus, overall,
we have σ ∈ γC((B1∪{x = E} , V1∪{x})) = γC(C2).

Claim (33) Support points. Let δ1 = δ � V = fx(δ). By
soundness of forget (Lemma 7), we have the following.

smin
1 = smin

2 ≤ |support(δ1)| ≤ smax
2 = smax

1

All we need to show, then, is the following.

|support(δ1)| = |support(δ2)| (36)

Let us show this by establishing a bijection f between the
two sets. Let us define f : support(δ1) → support(δ2) via
f : σV 7→ σV ∪ {x = [[E]]σV }.

To show f is injective, let σV , σ′V be such that f(σV ) =
f(σ′V ). Since f does not change any part of the state other
than adding x, it must be that σV = σ′V .

To show that f is surjective, consider σ ∈ support(δ2).
So σ is feasible, so σ [x→ E] = σ by Lemma 52. Also
σ � V ∈ support(σV ), considering the definition of σ2. Since
E doesn’t depend on x, we can write [[E]]σ = [[E]]σ � V ,
therefore f(σ � V ) = σ � V ∪ {x = [[E]]σ � V } =
σ [x→ E] = σ.

Since f is injective and surjective, it is a bijection and
thus |support(δ1)| = |support(δ2)|.

Claim (34) Mass. Let δ1 = δ � V = fx(δ). Let us show
the following claim.

LHS = support(δ1) = {σ � V | σ ∈ support(δ2)} = RHS
(37)

Let σV ∈ support(δ1). So there exists σ ∈ support(δ)
with σ � V = σV . So σ [x→ E] ∈ support(δ2). But the
assignment doesn’t change anything but x, so it must be
that (σ [x→ E]) � V = σ � V , therefore σV = σ � V ∈
{τ � V | τ ∈ support(δ2)}. Thus LHS ⊆ RHS.

On the other side, let σ ∈ support(δ2), so σ = τ [x→ E]
for some τ ∈ support(δ), by the original definition of
distribution assignment. So τ � V ∈ support(δ1). But
(τ [x→ E]) � V = τ � V as the assignment doesn’t
change anything but x. So σ � V = (τ [x→ E]) � V =
τ [x→ E] ∈ support(δ1), concluding that RHS ⊆ LHS,
and thus LHS = RHS.

Note that this, together with (36), show that not only are
the sets equal, but also no two elements of support(δ2)
can map, via projection to V , to the same element of
support(δ1).

By soundness of forget (Lemma 7), we have the following.

mmin
1 = mmin

2 ≤ ‖δ1‖ ≤ mmax
2 = mmax

1

Again, we proceed to show that ‖δ1‖ = ‖δ2‖.

‖δ1‖ =
∑

σV ∈support(δ1)

δ1(σV )

=
∑

σ∈support(δ2)

δ1(σ � V ) [ by (36) and (37) ]

=
∑

σ∈support(δ2)

δ2(σ) [ by defn. of δ2 ]

= ‖δ2‖

Claim (35) Probability. Let σ ∈ support(δ2). So σ is
feasible, so δ2(σ) = (δ � V ) (σ � V ) > 0. Therefore σ �
V ∈ support(δ � V ). Thus, by soundness of forget (Lemma
7), we have pmin

2 = pmin
1 ≤ (δ � V ) (σ � V ) ≤ pmax

1 =
pmax

2 , concluding the claim and the lemma.

C. Plus

Definition 58. Let overlap(δ1, δ2) = support(δ1) ∩
support(δ2).

Lemma 59. If δ1 ∈ γP(P1) and δ2 ∈ γP(P2) then P1 /
P2 ≤ |overlap(δ1, δ2)| ≤ P1 , P2.

Proof: We first note that for any sets A,B, it is the
case that |A ∪B| = |A| + |B| − |A ∩B| (often called the
“inclusion-exclusion principle”). Rearranging the equation
we also have |A ∩B| = |A|+ |B| − |A ∪B|.

We will make use of this formula with A = support(δ1),
B = support(δ2).

Lower Bound: We first show the lower bound. Expand-
ing the definitions of P1 / P2 and overlap(δ1, δ2), this
reduces to showing the following.

max((smin
1 − n1) + (smin

2 − n2)− n3, 0)
≤ |support(δ1) ∩ support(δ2)|

Clearly we have 0 ≤ |support(δ1) ∩ support(δ2)|, so it
remains to show that the following holds.

(smin
1 − n1) + (smin

2 − n2)− n3

≤ |support(δ1) ∩ support(δ2)|

Expanding the definitions of n1, n2 from Definition 10,
we obtain

(smin
1 − (#(C1)− n3)) + (smin

2 − (#(C2)− n3))− n3

≤ |support(δ1) ∩ support(δ2)|

and rearranging yields the following.

smin
1 + smin

2 − (#(C1) + #(C2)− n3)
≤ |support(δ1) ∩ support(δ2)|
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This follows from the rearranged inclusion-exclusion
principle provided we can show smin

1 ≤ |support(δ1)|,
smin
2 ≤ |support(δ2)|, and #(C1) + #(C2) − n3 ≥
|support(δ1) ∪ support(δ2)|. The first two follow directly
from our assumptions that δ1 ∈ γP(P1) and δ2 ∈ γP(P2).
For the third condition, we reason as follows.

We have from our assumptions that γC(C1) ⊇ support(δ1)
and γC(C2) ⊇ support(δ2). Thus, we have

γC(C1) ∪ γC(C2) ⊇ support(δ1) ∪ support(δ2)

and finally

|γC(C1) ∪ γC(C2)| ≥ |support(δ1) ∪ support(δ2)|

Utilizing the inclusion-exclusion principle, we have

|γC(C1)|+ |γC(C2)| − |γC(C1) ∩ γC(C2)|
≥ |support(δ1) ∪ support(δ2)|

Since we have |γC(C)| = #(C), we can rewrite this to the
following.

#(C1) + #(C2)− |γC(C1) ∩ γC(C2)|
≥ |support(δ1) ∪ support(δ2)|

It remains to show that |γC(C1) ∩ γC(C2)| = n3. We
have that γC(C1 uC C2) = γC(C1) ∩ γC(C2) (that is,
uC is precise). This allows us to complete the final step,
concluding that n3, which is defined as #(C1 uC C2) is
equal to |γC(C1) ∩ γC(C2)|.

Upper Bound: We next show that the upper bound
holds. Our goal is to show the following.

P1 , P2 ≥ |overlap(δ1, δ2)|

Expanding our definitions yields the following formula.

min(smax
1 , smax

2 , n3) ≥ |support(δ1) ∩ support(δ2)|

We first note that the following holds.

|support(δ1) ∩ support(δ2)| ≤ |support(δ1)| ≤ smax
1

Thus smax
1 is a sound upper bound. Similarly, we have

|support(δ1) ∩ support(δ2)| ≤ |support(δ2)| ≤ smax
2

which shows that smax
2 is a sound upper bound. Finally, we

note that our assumptions give us support(δ1) ⊆ γC(C1) and
support(δ1) ⊆ γC(C1). Thus we have the following.

support(δ1) ∩ support(δ2) ⊆ γC(C1) ∩ γC(C2)

We showed previously that n3 = |γC(C1) ∩ γC(C2)|. Thus
we have

|support(δ1) ∩ support(δ2)| ≤ n3

which shows that n3 is a sound upper bound.
Since all of smax

1 , smax
2 , and n3 are sound upper bounds,

their minimum is also a sound upper bound.

Lemma 60.

|support(δ1 + δ2)| =
|support(δ1)|+ |support(δ2)| − |overlap(δ1, δ2)|

Proof: First we note that support(δ1 + δ2) = {σ |
δ1(σ)+δ2(σ) > 0}. Since the range of δ1 and δ2 is [0, 1], we
have that δ1(σ) + δ2(σ) > 0 if and only if either δ1(σ) > 0
or δ2(σ) > 0. Thus, we have σ ∈ support(δ1 + δ2) if and
only if σ ∈ support(δ1) or σ ∈ support(δ2), which implies
support(δ1 + δ2) = support(δ1) ∪ support(δ2).

Next, we note that for any sets A,B we have |A ∪B| =
|A| + |B| − |A ∩B|. Utilizing this statement with A =
support(δ1) and B = support(δ2) completes the proof.

Lemma 12 (Soundness of Plus). If δ1 ∈ γP(P1) and δ2 ∈
γP(P2) then δ1 + δ2 ∈ γP(P1 + P2).

Proof: Suppose δ1 ∈ γP(P1) and δ2 ∈ γP(P2). Then
we have the following.

support(δ1) ⊆ γC(C1) (38)

smin
1 ≤ |support(δ1)| ≤ smax

1 (39)

mmin
1 ≤ ‖δ1‖ ≤ mmax

1 (40)

∀σ ∈ support(δ1). pmin
1 ≤ δ1(σ) ≤ pmax

1 (41)

and

support(δ2) ⊆ γC(C2) (42)

smin
2 ≤ |support(δ2)| ≤ smax

2 (43)

mmin
2 ≤ ‖δ2‖ ≤ mmax

2 (44)

∀σ ∈ support(δ2). pmin
2 ≤ δ2(σ) ≤ pmax

2 (45)

The definition of abstract plus has special cases when
either of the arguments are zero, that is, if iszero(P1) or
iszero(P2). Without the loss of generality, let us assume
iszero(P2) and thus by definition P1 + P2 = P1. Since
γP(P2) = {0Dist}, where 0Dist is the distribution assigning
probability of 0 to every state. Therefore δ2 = 0Dist and
thus δ1 + δ2 = δ1. But we already have δ1 ∈ γP(P1) by
assumption, hence we are done in this case.

In the case when not iszero(P1) and not iszero(P2) we
must show the following.

support(δ1 + δ2) ⊆ γC(C1 tC C2) (46)

max
{

smin
1 + smin

2 − P1 , P2, 0
}
≤ |support(δ1 + δ2)|

(47)
|support(δ1 + δ2)| ≤ min {smax

1 + smax
2 − P1 / P2,#(C3)}

(48)

mmin
1 + mmin

2 ≤ ‖δ1 + δ2‖ ≤ mmax
1 + mmax

2 (49)

We also must show the conditions on pmin and pmax for the
sum.

Condition (46) follows from (38) and (42) and the fact
that tC over-approximates union. The key step is noting
that support(δ1 + δ2) = support(δ1)∪ support(δ2). To show
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this we consider some σ ∈ support(δ1 + δ2). We have that
(δ1 + δ2)(σ) > 0 which, expanding the definition of +,
yields δ1(σ) + δ2(σ) > 0. Since the range of δ1 and δ2 is
[0, 1], this implies that either δ1(σ) > 0 or δ2(σ) > 0 and
thus σ ∈ support(δ1) or σ ∈ support(δ2).

Conditions (47) and (48) follow from (39) and (43) and
Lemmas 59 and 60. We have smin

1 ≤ |support(δ1)| from
(39) and smin

2 ≤ |support(δ2)| from (43). Monotonicity of
addition then gives us

smin
1 + smin

2 ≤ |support(δ1)|+ |support(δ2)|

From Lemma 59 we have |overlap(δ1, δ2)| ≤ P1 , P2 and
thus

−P1 , P2 ≤ − |overlap(δ1, δ2)|

Combining with the above yields

smin
1 + smin

2 − P1 , P2 ≤
|support(δ1)|+ |support(δ2)| − |overlap(δ1, δ2)|

We can then rewrite the right-hand side according to Lemma
60 to obtain

smin
1 + smin

2 − P1 , P2 ≤ |support(δ1 + δ2)|

which is condition (47).
Condition (48) follows the same reasoning. We have

|support(δ1)| + |support(δ2)| ≤ smax
1 + smax

2 by (39) and
(43). We then apply Lemma 59 and 60 to obtain condition
(48).

For Condition (49), note that

‖δ1 + δ2‖ =
∑
σ

(
δ1(σ) + δ2(σ)

)
=
∑
σ

δ1(σ) +
∑
σ

δ2(σ)

This is then equivalent to ‖δ1‖+ ‖δ2‖. We have shown that
‖δ1 + δ2‖ = ‖δ1‖+ ‖δ2‖. Condition (49) then follows from
monotonicity of addition applied to (40) and (44)

We now consider the pmin and pmax conditions. Let P3 =
P1 + P2 and δ3 = δ1 + δ2. We must show.

∀σ ∈ support(δ3) . pmin
3 ≤ δ3(σ) ≤ pmax

3

The values pmin
3 and pmax

3 are defined by cases and we
consider these cases separately. In one case, we have that
pmin of the sum is min(pmin

1 ,pmin
2 ). This is always a sound

choice. To see why, suppose σ ∈ support(δ1 + δ2). Then
σ ∈ support(δ1) or σ ∈ support(δ2). If σ ∈ support(δ1),
then (δ1 +δ2)(σ) = δ1(σ)+δ2(σ) is at least pmin

1 . Similarly,
if σ ∈ support(δ2) then (δ1 + δ2)(σ) ≥ δ2(σ).

Similarly, the value pmax
1 +pmax

2 is always a sound choice
for pmax

3 . Consider σ ∈ support(δ3). Then σ ∈ support(δ1)
or σ ∈ support(δ2). If σ ∈ support(δ1) and σ 6∈ support(δ2),
then we have

δ3(σ) = δ1(σ) + δ2(σ) = δ1(σ)

By (41) we then have δ3(σ) ≤ pmax
1 and thus δ3(σ) ≤

pmax
1 + pmax

2 as desired.

Similarly, if σ 6∈ support(δ1) and σ ∈ support(δ2) then
by (45) we have

δ3(σ) = δ2(σ) ≤ pmax
2 ≤ pmax

1 + pmax
2

Finally, if σ ∈ support(δ1) and σ ∈ support(δ2) then by
(41) we have δ1(σ) ≤ pmax

1 . By (45) we have δ2(σ) ≤ pmax
2 .

Combining these we have δ1(σ) + δ2(σ) ≤ pmax
1 + pmax

2

which is equivalent to δ3(σ) ≤ pmax
3 as desired.

Next we consider the P1 / P2 = #(C3) case for pmin
3 .

We must show that pmin
1 + pmin

2 is a sound lower bound
on δ3(σ) for σ ∈ support(δ3). We have by Lemma 59 that
P1 / P2 ≤ |overlap(δ1, δ2)|. Since P1 / P2 = #(C3)
and #(C3) ≥ |overlap(δ1, δ2)|, we have that #(C3) =
|overlap(δ1, δ2)|. Expanding the definition of overlap(δ1, δ2)
yields

|support(δ1) ∩ support(δ2)| = #(C3) (50)

We have from (46) that support(δ1 + δ2) ⊆ γC(C3) and
from the proof of (46) we have that support(δ1 + δ2) =
support(δ1) ∪ support(δ2). Combining these yields

|support(δ1) ∪ support(δ2)| ≤ #(C3)

Combining this with (50) yields

|support(δ1) ∪ support(δ2)| ≤ |support(δ1) ∩ support(δ2)|

For any sets A,B, we have that |A ∪B| ≥ |A ∩B| and thus
the above inequality implies the following.

|support(δ1) ∪ support(δ2)| = |support(δ1) ∩ support(δ2)|

The fact that the size of the intersection and the size of the
union of support(δ1) and support(δ2) is identical implies
that support(δ1) = support(δ2). This implies that for all σ,
we have σ ∈ support(δ1) if and only if σ ∈ support(δ2).

Now consider σ ∈ support(δ3). We have σ ∈ support(δ1)
or σ ∈ support(δ2), as before, but now we can strengthen
this to σ ∈ support(δ1) and σ ∈ support(δ2). By (41) we
have pmin

1 ≤ δ1(σ) and by (45) we have pmin
2 ≤ δ2(σ).

Thus we have

pmin
1 + pmin

2 ≤ δ1(σ) + δ2(σ)

which was our goal.
Finally we consider the P1 , P2 = 0 case for pmax

3

(the “otherwise” case in Definition 11). Consider a σ ∈
support(δ3). We must show that δ3(σ) ≤ max(pmax

1 ,pmax
2 ).

We have that either σ ∈ support(δ1) or σ ∈ support(δ2). We
cannot have both since P1 , P2 = 0 which, by Lemma 59
implies that |overlap(δ1, δ2)| = 0. If σ ∈ support(δ1) then
by (41) we have δ1(σ) ≤ pmax

1 . We have σ 6∈ support(δ2)
and thus δ2(σ) = 0. Thus we reason that

δ1(σ) + δ2(σ) = δ1(σ) ≤ pmax
1 ≤ max(pmax

1 ,pmax
2 )

Similarly, if σ ∈ support(δ2) then we apply (45) to obtain

δ1(σ) + δ2(σ) = δ2(σ) ≤ pmax
2 ≤ max(pmax

1 ,pmax
2 )
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D. Product

Lemma 13 (Soundness of Product). If δ1 ∈ γP(P1) and
δ2 ∈ γP(P2) then δ1 × δ2 ∈ γP(P1 × P2).

Proof: By assumption, we have the following for i =
1, 2.

support(δi) ⊆ γC(Ci) (51)

smin
i ≤ |support(δi)| ≤ smax

i (52)

mmin
i ≤ ‖δi‖ ≤ mmax

i (53)

∀σ ∈ support(δi) . pmin
i ≤ δ(σi) ≤ pmax

i (54)

Let δ3 = δ1× δ2 and P3 = P1×P2. Recall the definition
of P3.

C3 = C1 × C2

pmin
3 = pmin

1 · pmin
2 pmax

3 = pmax
1 · pmax

2

smin
3 = smin

1 · smin
2 smax

3 = smax
1 · smax

2

mmin
3 = mmin

1 ·mmin
2 mmax

3 = mmax
1 ·mmax

2

We must show the following four claims.

support(δ3) ⊆ γC(C3) (55)

smin
3 ≤ |support(δ3)| ≤ smax

3 (56)

mmin
3 ≤ ‖δ3‖ ≤ mmax

3 (57)

∀σ ∈ support(δ3) . pmin
3 ≤ δ3(σ) ≤ pmax

3 (58)

Also, recall the definition of concrete product.

δ1 × δ2 = λ(σ1, σ2). δ1(σ1) · δ2(σ2)

Let V1 = fv(δ1) and V2 = fv(δ2).
Claim (55) – Support. Let σ = (σ1, σ2) ∈ support(δ3).

Thus it must be that δ1(σ1) > 0 and δ2(σ2) > 0, thus, by
(51), σ1 ∈ support(δ1) ⊆ γC(C1) and σ2 ∈ support(δ2) ⊆
γC(C2), therefore σ ∈ γC(δ3).

Claim (56) – Support points. Using (52) we get the
following.

smin
1 · smin

2 ≤ |support(δ1)| · |support(δ2)| ≤ smax
1 · smax

2

Likewise, the size of support(δ3) can be equated as
follows.

|support(δ3)| =
∣∣∣∣{(σ1, σ2)

∣∣∣∣ σ1 ∈ support(δ1),
σ2 ∈ support(δ2)

}∣∣∣∣
= |support(δ1)| · |support(δ2)|

This completes the claim as smin
3 = smin

1 ·smin
2 and smax

3 =
smax
1 · smax

2 .

Claim (57) – Mass.

‖δ3‖ =
∑

σ∈support(δ3)

δ(σ)

=
∑

(σ1,σ2)∈support(δ3)

δ1(σ1) · δ2(σ2)

=
∑

σ1∈support(δ1)

 ∑
σ2∈support(δ2)

δ1(σ1) · δ2(σ2)


=

∑
σ1∈support(δ1)

δ1(σ1)
∑

σ2∈support(δ2)

δ2(σ2)

=
∑

σ1∈support(δ1)

δ1(σ1) · ‖δ2‖

= ‖δ1‖ · ‖δ2‖

Likewise, by (53), we have the following.

mmin
1 ·mmin

2 ≤ ‖δ1‖ · ‖δ2‖ ≤ mmax
1 ·mmax

2

This completes the claim as mmin
3 = mmin

1 · mmin
2 and

mmax
3 = mmax

1 ·mmax
2 .

Claim (58) – Probability. Let σ = (σ1, σ2) ∈
support(δ3). Thus σ1 ∈ support(δ1) and σ2 ∈ support(δ2).
Also, δ3 (σ) = δ1(σ1) · δ2(σ2). By (54), we have pmin

1 ≤
δ1(σ1) ≤ pmax

1 and pmin
2 ≤ δ2(σ2) ≤ pmax

2 . Therefore

pmin
3 = pmin

1 · pmin
2 ≤ δ3(σ) ≤ pmax

1 · pmax
2 = pmax

3

This completes the claim and the proof.

E. Conditioning

Definition 61. Given a set of states S and a boolean
expression B , let S|B be the subset of S that satisfy the
condition B and S|B be the subset of S that do not satisfy
the condition. Formally,

S|B def= {σ ∈ S | [[B ]]σ = true }
S|B def= {σ ∈ S | [[B ]]σ = false }

Lemma 15 (Soundness of Conditioning). If δ ∈ γP(P) then
δ|B ∈ γP(P | B).

Proof: Let δ2 = δ|B. Recall the definition of the
conditional distribution:

δ|B = λσ. if [[B ]]σ then δ(σ) else 0

Let P2 = P | B. The construction of P2 produces the
following parameters.

pmin
2 = pmin smin

2 = max
{

smin − n, 0
}

pmax
2 = pmax smax

2 = min {smax, n}
mmin

2 = max
{

pmin
2 · smin

2 , mmin − pmax ·min {smax, n}
}

mmax
2 = min

{
pmax

2 · smax
2 , mmax − pmin ·max

{
smin − n, 0

}}
C2 = 〈〈B〉〉C
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The quantities n and n are defined in such a way that
n over-approximates the number of support points of δ
that satisfy B , whereas n over-approximates the number of
support points of δ that do not satisfy B . Also, 〈〈B〉〉C is
defined to contain at least the points in C that satisfy B .
Making these properties precise gives us the following.

|support(δ)|B | ≤ n (59)∣∣support(δ)|B
∣∣ ≤ n (60)

γC(C)|B ⊆ γC(〈〈B〉〉C) (61)

By assumption we have the following.

support(δ) ⊆ γC(C) (62)

smin ≤ |support(δ)| ≤ smax (63)

mmin ≤ ‖δ‖ ≤ mmax (64)

∀σ ∈ support(δ) . pmin ≤ δ(σ) ≤ pmax (65)

We need to show the following four claims.

support(δ2) ⊆ γC(C2) (66)

smin
2 ≤ |support(δ2)| ≤ smax

2 (67)

mmin
2 ≤ ‖δ2‖ ≤ mmax

2 (68)

∀σ ∈ support(δ2) . pmin
2 ≤ δ2(σ) ≤ pmax

2 (69)

Claim (66) – Support. Let σ ∈ support(δ2). Thus it
must be that σ ∈ support(δ) and [[B ]]σ = true . By
(62), we have σ ∈ γC(C), therefore σ ∈ γC(C2) as
{σ ∈ γC(C) | [[B ]]σ = true } ⊆ γC(C2) by construction of
C2.

Claim (67) – Support points. Let us write support(δ) as
a union of two disjoint sets.

support(δ) = support(δ)|B ∪ support(δ)|B

Given the disjointness of the two, we also have the
following.

|support(δ)| = |support(δ)|B |+
∣∣support(δ)|B

∣∣
Now note that support(δ2) = support(δ)|B . Thus we can

write |support(δ2)| = |support(δ)| −
∣∣support(δ)|B

∣∣. We
can therefore estimate the size of the support of δ2 in the
following manner.

|support(δ2)| = |support(δ)| −
∣∣support(δ)|B

∣∣
≤ |support(δ)|
≤ smax [ by (63) ]

Therefore, using (59) and the above, we have
|support(δ2)| ≤ min {smax, n} = smax

2 .
Going in the other direction, we can write as follows.

|support(δ2)| = |support(δ)| −
∣∣support(δ)|B

∣∣
≥ smin −

∣∣support(δ)|B
∣∣ [ by (63) ]

≥ smin − n [ by (60) ]

Since all sets are trivially of size at least 0, we have
|support(δ2)| ≥ max

{
smin − n, 0

}
= smin

2 .

Claim (69) – Probability. Note that we will show the
probability claim before the mass as we will use the truth
of the probability claim in the mass arguments.

Let σ ∈ support(δ2). By definition of δ2, we have δ2(σ) =
δ(σ). Thus σ ∈ support(δ) so by (65) we have:

pmin
2 = pmin ≤ δ(σ) = δ2(σ) ≤ pmax = pmax

2

Claim (68) – Mass. Let us first show the following bound
on the size of support(δ)|B .

max
{

smin − n, 0
}
≤
∣∣support(δ)|B

∣∣ ≤ min {smax, n}
(70)

Since |support(δ)| = |support(δ)|B |+
∣∣support(δ)|B

∣∣, we
can say

∣∣support(δ)|B
∣∣ = |support(δ)|− |support(δ)|B | and

continue to the bound in the following manner.∣∣support(δ)|B
∣∣ = |support(δ)| − |support(δ)|B |
≥ smin − |support(δ)|B | [ by (63) ]

≥ smin − n [ by (59) ]

Therefore
∣∣support(δ)|B

∣∣ ≥ max
{

smin − n, 0
}

as
claimed. For the other end of the inequality, note that we
have

∣∣support(δ)|B
∣∣ ≤ |support(δ)| ≤ smax by (63). Also,

by (60),
∣∣support(δ)|B

∣∣ ≤ n. Therefore
∣∣support(δ)|B

∣∣ ≤
max {smax, n}, completing our bound.

Now, let us write ‖δ‖ in two parts.

‖δ‖ =
∑

σ∈support(δ)

δ(σ)

=
∑

σ∈support(δ)|B

δ(σ) +
∑

σ∈support(δ)|B

δ(σ)

= ‖δ2‖+
∑

σ∈support(δ)|B

δ(σ)

Therefore ‖δ2‖ = ‖δ‖ −
∑
σ∈support(δ)|B δ(σ).

‖δ2‖ = ‖δ‖ −
∑

σ∈support(δ)|B

δ(σ)

≤ mmax −
∑

σ∈support(δ)|B

δ(σ) [ by (64) ]

≤ mmax −
∑

σ∈support(δ)|B

pmin [ by (65) ]

= mmax −
∣∣support(δ)|B

∣∣ · pmin

≤ mmax −max
{

smin − n, 0
}
· pmin [ by (70) ]
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Also, we can bound the mass using our other already
proven conditions.

‖δ2‖ =
∑

σ∈support(δ2)

δ2(σ)

≤
∑

σ∈support(δ2)

pmax
2 [ by (69) ]

= |support(δ2)| · pmax
2

≤ smax
2 · pmax

2 [ by (67) ]

Combining the bounds, we have half of our probability
condition.

‖δ2‖ ≤ mmax
2

= min
{

pmax
2 · smax

2 ,mmax − pmin ·max
{

smin − n, 0
}}

For the other half, we proceed similarly.

‖δ2‖ = ‖δ‖ −
∑

σ∈support(δ)|B

δ(σ)

≥ mmin −
∑

σ∈support(δ)|B

δ(σ) [ by (64) ]

≥ mmin −
∑

σ∈support(δ)|B

pmax [ by (65) ]

= mmin −
∣∣support(δ)|B

∣∣ · pmax

≥ mmin −min {smax, n} · pmax [ by (70) ]

And likewise another bound using our other conditions.

‖δ2‖ =
∑

σ∈support(δ2)

δ2(σ)

≥
∑

σ∈support(δ2)

pmin
2 [ by (69) ]

= |support(δ2)| · pmin
2

≥ smin
2 · pmin

2 [ by (67) ]

Combining the two bounds, we have the final element of
our proof.

‖δ2‖ ≥ mmin
2

= max
{

pmin
2 · smin

2 ,mmin − pmax ·min {smax, n}
}

F. Scalar product

Lemma 17. If δ1 ∈ γP(P1) then p · δ1 ∈ γP(p · P1).

Proof: By assumption we have the following.

support(δ1) ⊆ γC(C1)

smin
1 ≤ |support(δ1)| ≤ smax

1

mmin
1 ≤ ‖δ1‖ ≤ mmax

1

∀σ ∈ support(δ1) . pmin
1 ≤ δ1(σ) ≤ pmax

1

Let δ2 = p ·δ1 and P2 = p ·P1. Let us assume that p 6= 0.
In this case we need to show the following.

support(δ1) = support(δ2) ⊆ γC(C2) = γC(C1)

smin
1 = smin

2 ≤ |support(δ2)| = |support(δ2)| ≤ smax
2 = smax

1

p ·mmin
1 = mmin

2 ≤ ‖δ1‖ ≤ mmax
2 = p ·mmax

1

∀σ ∈ support(δ2) .

p · pmin
1 = pmin

2 ≤ δ2(σ) ≤ pmax
2 = p · pmax

1

The first two conditions are trivially satisfied given the
lack of change in the various parameters. For the mass
condition, note that ‖δ2‖ =

∑
σ δ2(σ) =

∑
σ p · δ1(σ) =

p · ‖δ1‖. The probability condition is also trivially satisfied
as δ2(σ) = p · δ1(σ).

In the case that p = 0, the abstract scalar product is
defined with smin

2 = smax
2 = pmin

2 = pmax
2 = mmin

2 =
mmax

2 = 0 and C2 = ∅C . In this case note that support(δ2) =
∅ = γC(∅C), and thus the conditions hold trivially.

G. Uniform

Lemma 62 (Soundness of Uniform). If δ ∈ γP(P) and S =
uniform x n1 n2 then [[S]]δ ∈ γP(〈〈S〉〉P).

Proof: Recall the semantics of the statement.

[[uniform x n1 n2]]δ = (δ � fv(δ)− {x})× δ2

The distribution δ2 is defined as follows.

δ2 = λσ. if n1 ≤ σ(x) ≤ n2 then
1

n2 − n1 + 1
else 0

The abstract semantics are similar.

〈〈uniform x n1 n2〉〉P = (fx(P))× P2

Here P2 is defined with pmin
2 = pmax

2 = 1
n2−n1+1 ,

smin
2 = smax

2 = n2 − n1 + 1, mmin
2 = mmax

2 = 1, and
C2 = ({x ≥ n1, x ≤ n2} , {x}).

By construction, we have δ2 ∈ P2 thus the lemma
follows from Lemma 7 (Soundness of Forget) and Lemma
13 (Soundness of Product).

H. While loops

Definition 63. First we have some preliminary definitions.
Given some set of variables, we have the following, where
each distribution or state in each statement is understood to
be defined over the same set of variables.
• Two distributions are ordered, or δ1 ≤ δ2 iff for every

state σ, δ1(σ) ≤ δ2(σ).
• Two probabilistic polyhedra are ordered, or P1 vP P2

iff for every δ1 ∈ γP(P1), there exists δ2 ∈ γP(P2) with
δ1 ≤ δ2.

• The zero distribution δ is the unique distribution with
δ(σ) = 0 for every σ. We will use 0Dist to refer to this
distribution.
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• A zero probabilistic polyhedron P, or iszero(P1) is one
whose concretization contains only the zero distribu-
tion, that is γP(P) = {0Dist}.

Lemma 64. Let Pi be consistent probabilistic polyhedra,
that is, γP(Pi) 6= ∅. Then, P1 + P2 vP P1 iff iszero(P2).

Proof: In the forward direction, we have P1+P2 vP P1.
Now, let us consider a P2 with not iszero(P2). Thus there
is δ2 ∈ γP(P2) with ‖δ2‖ > 0. Let δ1 ∈ γP(P1) be the
distribution in γP(P1) maximizing mass, that is ‖δ1‖ ≥ ‖δ′1‖
for every δ′1 ∈ γP(P1). By Lemma 12, δ1+δ2 ∈ γP(P1+P2)
and by the definition of P1 +P2 vP P1, there must be δ3 ∈
γP(P1) with δ1 + δ2 ≤ δ3. Thus ‖δ3‖ ≥ ‖δ1 + δ2‖ = ‖δ1‖+
‖δ2‖ > ‖δ1‖. This contradicts that δ1 was mass maximizing
in γP(P1).

In the backward direction, our definition of abstract plus
makes P1 + P2 identical to P1. Thus P1 + P2 = P1 vP P1.

Definition 65. Given a statement S = while B do S′, a
distribution δ and a probabilistic polyhedron P, let us define
a few useful items.
• ω(f) def= λδ. f([[S′]](δ|B)) + δ|¬B
• δ1

def= δ
• δi+1

def= [[S′]](δi|B)
• ∆n

def=
∑n
i=1 (δi|¬B)

• ⊥Dist is the function that takes in any distribution and
produces the zero distribution 0Dist, that is ⊥Dist(δ) =
0Dist.

Similarly we have the abstract versions of the definitions.
• Ω(F ) def= λP. F (〈〈S′〉〉 (P | B)) + P | ¬B
• P1

def= P
• Pi+1

def= 〈〈S′〉〉 (Pi | B)
• Φn

def=
∑n
i=1 (Pi | ¬B)

• ⊥P is a function that takes in any probabilistic polyhe-
dron and produces a zero probabilistic polyhedron, that
is iszero(⊥P(P)) for every P.

The semantics of while loops are defined as such:

[[S]] = [[while B do S′]] = lfp(ω)

〈〈S〉〉 = 〈〈while B do S′〉〉 = lfp(Ω)

While such definitions are of theoretical interest, they
are not particularly useful for implementations, given our
lack of a widening operator. Thus, our security checks
will always be conditioned on termination of the abstract
interpretation, defined below. We show that termination of
the abstract interpretation implies termination of all corre-
sponding concrete executions. This is crucial, as our concrete
semantics (due to Clarkson et al. [9]) assumes termination
to avoid leaks. To make this termination condition explicit,
we provide an alternate concrete semantics for terminating
while loops and show that this gives results equivalent to
those of the original semantics.

Definition 66. The termination of [[S]]δ is defined as follows.
• If S is an elementary statement (assignment, skip,

uniform), then [[S]]δ terminates.
• If S is a sequence, if statement, or a probabilistic

choice statement, then [[S]]δ terminates iff the various
evaluations steps to evaluate S terminate. This depends
on the statement type, for S = S1 ; S2, for example, it
means that [[S1]]δ terminates and so does [[S2]]([[S1]]δ).

• If S = while B do S1 is a while statement, then [[S]]δ
terminates iff there exists n with δn = 0Dist and the
evaluation steps as per definition of δi terminate for all
i up to n.

The termination of 〈〈S〉〉P is framed similarly, except in
the while case, we require the existence of n with iszero(Pn)
and the termination of the abstract evaluations as in the
definitions of Pi for all i up to n.

The ∆i and Φi capture exactly the concrete and abstract
values when termination is assumed.

ω1(⊥Dist)(δ) = δ|¬B
= ∆1

ω2(⊥Dist)(δ) = ([[S′]](δ|B)) |¬B + δ|¬B
= δ2|¬B + δ1|¬B
= ∆2

ωi(⊥Dist)(δ) = ωi−1(⊥Dist)([[S′]]δ|B) + δ|¬B
= ∆i−1 + δ|¬B
= ∆i

Likewise Ωi(⊥P)(P) = Φi.

Definition 67. Terminating semantics of while loops are as
follows.

[[while B do S1]]δ = ∆n

Where n is the least index with δn = 0Dist. Likewise for the
abstract case.

〈〈while B do S1〉〉P = Φn

Where n is the least index with iszero(Pn).

Lemma 68. If [[while B do S1]]δ is terminating, then ∆n =
(lfp(ω)) (δ), noting that lfp(ω) is the original semantics of
a while loop.

Proof: As noted in [16], the evaluation of a while loop
on a distribution is equal to an infinite sum:

[[S]]δ =
∞∑
i=1

δi|¬B

By the termination assumption we have an n with δn =
0Dist. Now, since δi+1 = [[S′]]δi|B hence the mass of δi+1
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cannot exceed the mass of δi, it is the case that if δn = 0Dist,
then δi = 0Dist for every i ≥ n. Thus the infinite sum above
can be shortened.

[[S]]δ =
∞∑
i=1

δi|¬B

=
n∑
i=1

δi|¬B + 0Dist

= ∆n

Remark 69 (Nature of Termination). If 〈〈S〉〉P terminates,
then so must the evaluation of all of its components as de-
fined by the semantics. This is immediate from the definition
of termination.

I. Soundness of Abstraction

Theorem 6. For all P, δ, if δ ∈ γP(P) and 〈〈S〉〉P termi-
nates, then [[S]]δ terminates and [[S]]δ ∈ γP(〈〈S〉〉P).

Proof: Let us show this by structural induction on S.
As base cases we have the following.
• S = skip. In this case we have [[S]]δ = δ and 〈〈S〉〉P =
P. Termination is not an issue and the claim holds by
assumption.

• S = x := E. Here non-termination is also not a
possibility given non-recursive definition of assignment.
Also, by Lemma 9 (Soundness of Assignment) we have
[[S]]δ ∈ γP(〈〈S〉〉P).

• S = uniform x n1 n2. Again, there is no termination
issues and the claim follows from Lemma 62 (Sound-
ness of Uniform).

Let us thus assume the claim for sub-statements of S and
show it for S itself. Note that the inductive assumption is
general for all δ, P with δ ∈ γP(P). S has several cases.
• S = S1 ; S2. By the termination remark, we know
〈〈S1〉〉P terminates and thus by induction [[S1]]δ termi-
nates and is in γP(〈〈S1〉〉P). We then apply induction
once more with S2 to find that [[S2]]([[S1]]δ) = [[S]]δ
terminates and is in γP(〈〈S2〉〉 (〈〈S1〉〉P)) = γP(〈〈S〉〉P).

• S = if B then S1 else S2. By the termination re-
mark, we know that 〈〈S1〉〉 (P | B) and 〈〈S2〉〉 (P | ¬B)
terminate. By Lemma 15 (Soundness of Conditional)
we have δ|B ∈ γP(P | B) and δ|¬B ∈ γP(P | ¬B).
We thus apply induction to both sub-statements to con-
clude that [[S1]](δ|B) and [[S2]](δ|¬B) both terminate
and are in γP(〈〈S1〉〉 (P | B)) and γP(〈〈S2〉〉 (P | ¬B))
respectively. Finally we apply Lemma 12 (Soundness
of Plus) to conclude [[S]]δ = [[S1]](δ|B)+[[S2]](δ|¬B) ∈
γP(〈〈S1〉〉 (P | B) + 〈〈S2〉〉 (P | ¬B)) = γP(〈〈S〉〉P).

• S = pif p then S1 else S2. This case is identical to
the previous except we use Lemma 17 (Soundness of
Scalar Product) in place of Lemma 15 (Soundness of
Conditional).

• S = while B do S1.
For this last case we must first show a claim. For every δ′,
P ′ with δ′ ∈ γP(P ′), and every i we have the following.

δ′i ∈ γP(P ′i ) (71)
∆′i ∈ γP(Φ′i) (72)

Let us show this claim by induction on i. As the base case
we have δ′1 = δ′ and ∆′1 = δ′1|¬B = δ′|¬B . Also P ′1 = P ′

and Φ′1 = P ′1 | ¬B = P ′ | ¬B . By assumption we had
δ′ ∈ γP(P ′) so the first part of our claim holds trivially. For
the other we apply Lemma 15 (Soundness of Conditional)
to conclude ∆′1 ∈ γP(Φ′1).

Let us assume the claim holds for all i < n and show that
it holds for n.

We have, by definition, δ′n = [[S1]]
(
δ′n−1|B

)
and P ′n =

〈〈S1〉〉
(
P ′n−1 | B

)
. By the (inner) induction assumption, we

have δ′n−1 ∈ γP(P ′n−1) so by Lemma 15 we have δ′n−1|B ∈
γP(P ′n−1 | B). Since 〈〈S〉〉P terminates, then so must
〈〈S1〉〉P ′n−1 | B by the termination remark. Thus, by the
(outer) induction hypothesis, we know that [[S1]]

(
δ′n−1|B

)
=

δ′n ∈ γP(〈〈S1〉〉
(
P ′n−1 | B

)
) = γP(P ′n).

For the second part of the claim, we have ∆′n = ∆′n−1 +
δ′n|¬B and Φ′n = Φ′n−1 + P ′n | ¬B . By (inner) induction
we know ∆′n−1 ∈ γP(Φ′n−1). By the first part of the claim
above we know δ′n ∈ γP(P ′n) so by Lemma 15 (Soundness
of Conditional) we have δ′n|¬B ∈ γP(P ′n | ¬B). Now we
apply Lemma 12 (Soundness of Plus) to conclude ∆′n =
∆′n−1 +δ′n|¬B ∈ γP(Φ′n−1 +P ′n | ¬B) = γP(Φ′n), finishing
the claim.

Now, since 〈〈S〉〉P ′ terminates, it must be that 〈〈S〉〉P ′ =
Φ′n for some n, according to the terminating semantics.
Furthermore we have the following, also by definition of
termination.

iszero(P ′n | ¬B) (73)

This is the case since iszero(P ′n) and the fact that the
conditioning operation preserves iszero(·).

Therefore by (71) we can conclude that δn = 0Dist as
γC(Pn) = {0Dist}. Therefore [[S]]δ terminates and by Lemma
68 we have [[S]]δ = ∆n. The issue of whether n is the least
index with δn = 0Dist is irrelevant as if it were not, the larger
sum includes only additional 0Dist terms. By (72), we have
∆n ∈ γP(Φn) and we are done as Φn = 〈〈S〉〉P according
to the terminating semantics.

J. Normalization

Lemma 19. If δ1 ∈ γP(P1) then normal(δ1) ∈
γP(normal(P1)).
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Proof: By assumption we have the following.

support(δ1) ⊆ γC(C1)

smin
1 ≤ |support(δ1)| ≤ smax

1

mmin
1 ≤ ‖δ1‖ ≤ mmax

1

∀σ ∈ support(δ1) . pmin
1 ≤ δ1(σ) ≤ pmax

1

If ‖δ1‖ = 0 then normal(δ1) is undefined. Since mmin
1 ≤

‖δ1‖, it must be that mmin
1 = 0 as well, and thus normal(P1)

is likewise undefined.
Let us now assume ‖δ1‖ > 0. Let δ2 = normal(δ1) and

P2 = normal(P1). We have two sub-cases, either mmin
1 = 0

or mmin
1 > 0. In the first sub case, P2 is defined as follows.

pmin
2 = pmin

1 /mmax
1 smin

2 = smin
1

pmax
2 = 1 smax

2 = smax
1

mmin
2 = mmax

2 = 1 C2 = C1

Since support(δ2) = support(δ1), it must be that
support(δ2) ⊆ γC(C2) as C2 = C1. Likewise, the number of
support point is is unchanged in both the concrete operation
and the abstract one, hence the number of support points
condition for soundness are satisfied as well. Also, the
probability per point in any distribution does not exceed
1 hence the pmax

2 condition is satisfied. As for pmin
2 , note

that if σ ∈ support(δ2) = support(δ1), we have δ2(σ) =
δ1(σ)/‖δ1‖ ≥ pmin

1 /‖δ1‖ ≥ pmin
1 /mmax

1 , by assumption.
Finally, ‖δ2‖ = 1 hence the mmin

2 and mmax
2 conditions are

satisfied.
In the other case, we have pmin

1 > 0. Here P2 is defined
as follows.

pmin
2 = pmin

1 /mmax
1 smin

2 = smin
1

pmax
2 = pmax

1 /mmin
1 smax

2 = smax
1

mmin
2 = mmax

2 = 1 C2 = C1

The support, support points, total mass, and pmin
2 con-

ditions are satisfied for the same reason as in the previous
case. For pmax

2 , let σ ∈ support(δ2) = support(δ1) and we
have the following.

δ2(σ) = δ1(σ)/‖δ1‖
≤ pmax

1 /‖δ1‖
≤ pmax

1 /mmin
1

K. Security

Before we prove the security theorem, let us show that
the definition of abstract conditioning on a state is sound.

Lemma 70. If δ ∈ γP(P) and σV ∈ StateV with V ⊆ fv(δ)
then δ|σV ∈ γP(P | σV )

Proof: Recall the definition of P | σV .

P | σV = P | B

With B =
∧
x∈V (x = σV (x)). Let us show that δ|σV =

δ|B , the rest will follow from Lemma 15.
The definition of δ|σV is as follows.

δ|σ = λσ. if σ � V = σV then δ(σ) else 0

Meanwhile, δ|B is defined as follows.

δ|B = λσ. if [[B ]]σ = true then δ(σ) else 0

The correspondence is immediate as [[B ]]σ = true if
and only if σ � V = σV as per construction of B .

Theorem 22. Let δ be an attacker’s initial belief. If δ ∈
γP(P) and tsecuret(S, P), then S is threshold secure for
threshold t when evaluated with initial belief δ.

Proof: Let us consider the contrapositive. That is,
assuming δ ∈ γP(P), if S is not threshold secure for t and
initial belief δ, then it is not the case that tsecuret(S, P).

Let δ2 = [[S]]δ and δ3 = δ2 � L. Since S is not
secure, we have σL ∈ support(δ3) and σ′H ∈ StateH
with (normal((δ2|σL) � H))(σ′H) > t. This implies that
(δ2|σL) � H 6= 0Dist and therefore δ2|σL 6= 0Dist as
projection preserves mass.

If 〈〈S〉〉P is not terminating, then we are done as termi-
nation is a condition for tsecuret(S, P). So let us assume
〈〈S〉〉P is terminating. Let P2 = 〈〈S〉〉P. By Theorem 6, we
have δ2 ∈ γP(P2). By Lemma 70, δ2|σL ∈ γP(P2 | σL).
Therefore not iszero(P | σL) as δ2|σL 6= 0Dist. Continuing,
by Lemma 44, (δ2|σL) � H ∈ γP((P2 | σL) � H) and
finally, by Lemma 19, we have normal((δ2|σL) � H) ∈
γP(normal((P2 | σL) � H)). Let δ4 = normal((δ2|σL) � H)
and P4 = normal((P2 | σL) � H). Since σ′H ∈ support(δ4),
we have δ4(σ′H) ≤ pmax

4 . Since δ4(σ′H) > t, we have
t < pmax

4 .
Also, let P3 = P2 � L. By Lemma 44, we have δ3 ∈

γP(P3) so σL ∈ γC(C3). We already had that not iszero(P |
σL) above. Thus σL is indeed the witness to the failure of
tsecuret(S, P1).

APPENDIX E.
SOUNDNESS PROOFS FOR Pn (P)

A. Useful Lemmas

We begin with some lemmas that give properties of
the concretization function for powersets of probabilistic
polyhedra and addition on sets.

Lemma 71. If ∆ = ∆1 ∪ ∆2 then γPn(P)(∆) =
γPn(P)(∆1) + γPn(P)(∆2).

Proof: From the definition of γPn(P)(∆) we have

γPn(P)(∆) =
∑
P∈∆

γP(P)
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Applying ∆ = ∆1 ∪∆2 and associativity of + allows us to
conclude

γPn(P)(∆) =
∑
P1∈∆1

γP(P1) +
∑
P1∈∆2

γP(P2)

Again applying the definition of γPn(P)(. . .), we have

γPn(P)(∆) = γPn(P)(∆1) + γPn(P)(P2)

Lemma 72. If D1 ⊆ D′1 and D2 ⊆ D′2 then D1 + D2 ⊆
D′1 +D′2.

Proof: According to the definition of addition for sets,
we have

D1 +D2 = {δ1 + δ2 | δ1 ∈ D1 ∧ δ2 ∈ D2}

Consider some δ ∈ D1 + D2. We have δ = δ1 + δ2 with
δ1 ∈ D1 and δ2 ∈ D2. Since D1 ⊆ D′1, we have δ1 ∈ D′1.
Similarly, since D2 ⊆ D′2, we have δ2 ∈ D′2. Since

D′1 +D′2 = {δ′1 + δ′2 | δ′1 ∈ D′1 ∧ δ′2 ∈ D′2}

we have δ = δ1 + δ2 ∈ D′1 +D′2.

B. Bounding Operation

Lemma 26 (Soundness of Bounding Operation).
γPn(P)(∆) ⊆ γPn(P)(b∆cn).

Proof: According to Definition 25, there are two cases
for b∆cn. If |∆| ≤ n then we have b∆cn = ∆ and thus
γPn(P)(∆) = γPn(P)(b∆cn).

If |∆| > n, we reason by induction on |∆|. Since n ≥ 1,
we have that |∆| ≥ 2 and thus we can partition ∆ into
∆1∪{P1, P2}. Applying Definition 25 we then have b∆cn =
b∆1∪{P1 +P2}cn. The inductively-passed set has size one
less than the original, allowing us to apply the inductive
hypothesis to conclude the following.

γPn(P)(∆1 ∪ {P1 + P2}) ⊆ γPn(P)(b∆1 ∪ {P1 + P2}cn)

Our conclusion will follow provided we can show

γPn(P)(∆) ⊆ γPn(P)(∆1 ∪ {P1 + P2})

Lemma 71 allows us to rewrite this to

γPn(P)(∆) ⊆ γPn(P)(∆1) + γPn(P)({P1 + P2}) (74)

We have ∆ = ∆1 ∪ {P1, P2} and thus by Lemma 71 we
have

γPn(P)(∆) = γPn(P)(∆1) + γPn(P)({P1, P2})

By Lemma 72, we will have (74) provided we can show

γPn(P)(∆1) ⊆ γPn(P)(∆1)

which is immediate, and

γPn(P)({P1, P2}) ⊆ γPn(P)({P1 + P2})

The latter is proven by applying the definitions of
γPn(P)({P1, P2}) and γPn(P)({P1 + P2}), resulting in a
goal of

γP(P1) + γP(P2) ⊆ γP(P1 + P2)

which follows directly from Lemma 12.

C. Distributive Operations

The soundness proofs for the majority of the operations on
elements of Pn (P) are sound for exactly the same reason:
the operations distribute over +, allowing us to reduce
soundness for the powerset case to soundness for the case of
a single probabilistic polyhedron. We start with the Lemma
that is used to structure such a proof.

Lemma 73. Consider f : P → P, F : Pn (P) → Pn (P),
and f [ : Dist→ Dist. Suppose the following all hold for all
δi, Pi.

1) f [(δ1 + . . .+ δn) = f [(δ1) + . . .+ f [(δn)

2) F ({P1, . . . , Pn}) = {f(P1), . . . , f(Pn)}
3) δ ∈ γP(P)⇒ f [(δ) ∈ γP(f(P))

Then δ ∈ γPn(P)(∆) implies f [(δ) ∈ γPn(P)(F (∆)).

Proof: Suppose δ ∈ γPn(P)(∆) and ∆ = {P1, . . . , Pn}.
We have the following by definition of γPn(P)(∆).

γPn(P)(∆) = γP(P1) + . . .+ γP(Pn)

Applying the definition of addition on sets, we obtain

γP(P1) + . . .+ γP(Pn) = {δ1 + . . .+ δn | δi ∈ γP(Pi)}

Thus, we have that δ = δ1 + . . . + δn where δi ∈ γP(Pi).
By premise 3 we then have f [(δi) ∈ γP(f(Pi)) for all i.

We now consider γPn(P)(F (∆)). By premise 2 we have
that this is γPn(P)({f(P1), . . . , f(Pn)}). Applying the defi-
nition of γPn(P), this is equal to γP(f(P1))+. . .+γP(f(Pn)).

Expanding the definition of + for sets, we have that

γPn(P)(F (∆)) = {δ1 + . . .+ δn | δi ∈ γP(f(Pi))}

Since f [(δi) ∈ γP(f(Pi)) for all i we have
∑
i(f

[(δi)) ∈
γPn(P)(F (∆)) and thus, by premise 1 we have f [(

∑
i δi) ∈

γPn(P)(F (∆)) and thus f [(δ) ∈ γPn(P)(F (∆)) as desired.

Lemma 74 (Soundness of Forget). If δ ∈ γPn(P)(∆) then
fy(δ) ∈ γPn(P)(fy(∆)).

Proof: We will apply Lemma 73 with f [ = λδ. δ �
(fv(δ)−{y}), f = λP. fy(P), and F = λ∆. fy(∆). Lemma
7 gives us premise 3. The definition of fy(∆) satisfies
premise 2. Let V = fv(δ)−{y}. It remains to show premise
1, which states

(δ1 + . . .+ δn) � V = δ1 � V + . . .+ δn � V

35



We show this for the binary case, from which the n-ary
version above follows.

(δ1 + δ2) � V = δ1 � V + δ2 � V

Expanding the definition of projection, we then obtain the
following goal.

λσV ∈ StateV .
∑

σ′|(σ′�V=σV )

(δ1 + δ2)(σ′) =

λσV ∈ StateV .
∑

σ′|(σ′�V=σV )

δ1(σ′)

+ λσV ∈ StateV .
∑

σ′|(σ′�V=σV )

δ2(σ′)

We can now apply the definition of + for distributions to
the right-hand side to obtain a goal of

λσV ∈ StateV .
∑

σ′|(σ′�V=σV )

(δ1 + δ2)(σ′) =

λσV ∈ StateV .
( ∑
σ′|(σ′�V=σV )

δ1(σ′)+
∑

σ′|(σ′�V=σV )

δ2(σ′)
)

These functions are equal if they give equal results for all
inputs. Thus, we must show the following for all σV .∑

σ′|(σ′�V=σV )

(δ1 + δ2)(σ′) =( ∑
σ′|(σ′�V=σV )

δ1(σ′) +
∑

σ′|(σ′�V=σV )

δ2(σ′)
)

Finally, applying the definition of + for distributions to the
left-hand side of the equality yields∑

σ′|(σ′�V=σV )

(
δ1(σ′) + δ2(σ′)

)
=( ∑

σ′|(σ′�V=σV )

δ1(σ′) +
∑

σ′|(σ′�V=σV )

δ2(σ′)
)

This follows by associativity and commutativity of +.

Lemma 75 (Soundness of Projection). If δ ∈ γPn(P)(∆)
and V ⊆ fv(δ) then δ � V ∈ γPn(P)(∆ � V ).

Proof: Inductive application of Lemma 74 (Soundness
of Forget) as was the case in the base domain.

Lemma 76 (Soundness of Assignment). If δ ∈ γPn(P)(∆)
then δ [x→ E] ∈ γPn(P)(∆ [x→ E]).

Proof: As in Lemma 74, we apply Lemma 73. We have
premises 3 (by Lemma 9) and 2 (by definition) and must
show premise 1. This means showing that

(δ1 + δ2) [x→ E] = δ1 [x→ E] + δ2 [x→ E]
Expanding the definition of assignment, we must show that
the following

λσ.
∑

τ | τ [x→[[E ]]τ ]=σ

(δ1 + δ2)(τ)

is equal to(
λσ.

∑
τ | τ [x→[[E ]]τ ]=σ

δ1(τ)

)
+

(
λσ.

∑
τ | τ [x→[[E ]]τ ]=σ

δ1(τ)

)
Again applying the definition of + for distributions and
using extensional equality for functions yields the following
goal, which follows by associativity and commutativity of
+.

∀σ.

( ∑
τ | τ [x→[[E ]]τ ]=σ

(
δ1(τ) + δ2(τ)

)
=

∑
τ | τ [x→[[E ]]τ ]=σ

δ1(τ) +
∑

τ | τ [x→[[E ]]τ ]=σ

δ1(τ)
)

Lemma 77 (Soundness of Scalar Product). If δ ∈ γPn(P)(∆)
then p · δ ∈ γPn(P)(p ·∆).

Proof: This proof follows the same format as the others
in this section. We apply Lemma 9 with the definition of
scalar product for powersets and Lemma 17. We must show

p · (δ1 + δ2) = p · δ1 + p · δ2

Expanding according to the definition of scalar product and
+ for distributions, we obtain the following as a goal.

λσ. p · (δ1(σ) + δ2(σ)) = λσ. p · δ1(σ) + p · δ2(σ)

The result follows by distributivity of · over +.

Lemma 78 (Soundness of Conditioning). If δ ∈ γPn(P)(∆)
then δ|B ∈ γPn(P)(∆ | B).

Proof: Again we apply Lemma 9, this time using
Lemma 15 to satisfy premise 3. We let f [ = λδ. δ|B,
f = λP. P | B, and F = λ∆. ∆ | B. We must show

(δ1 + δ2)|B = δ1|B + δ2|B

Applying the definition of conditioning and addition for
distributions, we have to show the following for all σ.

if [[B ]]σ then (δ1 + δ2)(σ) else 0 =(
if [[B ]]σ then δ1(σ) else 0

)
+(

if [[B ]]σ then δ2(σ) else 0
)

We proceed via case analysis. If [[B ]]σ = false then we
have 0 = 0 + 0, which is a tautology. If [[B ]]σ = true , we
have to show

(δ1 + δ2)(σ) = δ1(σ) + δ2(σ)

which follows directly from the definition of + on distribu-
tions.
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D. Other Powerset Lemmas
We now show the lemmas for operations in the powerset

domain that do not immediately follow from distributivity
over plus of the operations in the base domain.

Lemma 79 (Soundness of Product). If δ ∈ γPn(P)(∆) and
δ′ ∈ γPn(P)(P ′) and fv(∆) ∩ fv(P ′) = ∅ then δ × δ′ ∈
γPn(P)(∆ × P ′).

Proof: Let ∆ = {P1, . . . , Pn}. We first expand defini-
tions in our goal, obtaining

δ × δ′ ∈ γP(P1 × P ′) + . . .+ γP(Pn × P ′)
Applying the definition of addition for sets, we obtain a goal
of

δ × δ′ ∈
{∑

i

δi | δi ∈ γP(Pi × P ′)
}

This holds provided we can find δi ∈ γP(Pi×P ′) such that
δ×δ′ =

∑
i δi. We have from δ ∈ γPn(P)(∆) that δ =

∑
j δj

for some δj ∈ γP(Pj). We then have from Lemma 13 and
δ′ ∈ γPn(P)(P ′) and fv(∆) ∩ fv(P ′) = ∅ that δj × δ′ ∈
γP(Pj × P ′) for all j. We now show that the δi we were
searching for are these δj× δ′. To do so, we must show that
δ × δ′ =

∑
j(δj × δ′). We have δ =

∑
j δj and thus the

result follows by distributivity of × over +, which we show
now.

Goal: × distributes over +: We want to show the fol-
lowing when domain(δ1) = domain(δ2) and domain(δ1) ∩
domain(δ′) = ∅.

(δ1 + δ2)× δ′ = δ1 × δ′ + δ2 × δ′

Expanding the definition of + and of ×, we obtain

λ(σ, σ′).
(
δ1(σ) + δ2(σ)

)
· δ′(σ′) =

λ(σ, σ′).
(
δ1(σ) · δ′(σ′) + δ2(σ) · δ′(σ′)

)
This holds due to distributivity of · over +.

Lemma 80 (Soundness of Addition). If δ1 ∈ γPn(P)(∆1)
and δ2 ∈ γPn(P)(∆2) then δ1 + δ2 ∈ γPn(P)(∆1 + ∆2).

Proof: First let us take care of the special cases that
occur when iszero(∆1) or iszero(∆2). Without the loss
of generality let us say iszero(∆2). The sum is defined
to be identical to ∆1. Since iszero(∆2), it must be that
γPn(P)(∆2) contains only the zero distribution 0Dist, there-
fore δ2 = 0Dist. Therefore δ1 + δ2 = δ1 and by assumption,
δ1 ∈ γPn(P)(∆1) = γPn(P)(∆1 + ∆2).

In the case where ∆1 and ∆2 are both non-zero, we have
∆1 + ∆2 = b∆1 ∪ ∆2cn. Suppose δ1 ∈ γPn(P)(∆1) and
δ2 ∈ γPn(P)(∆2). By Lemma 71 we have γPn(P)(∆1) +
γPn(P)(∆2) = γPn(P)(∆1 ∪ ∆2). The set γPn(P)(∆1) +
γPn(P)(∆2) is {δ′1 + δ′2 | δ′1 ∈ γPn(P)(∆1) ∧ δ′2 ∈
γPn(P)(∆2)}. Our distributions δ1 and δ2 satisfy these
conditions and thus are in γPn(P)(∆1 ∪ ∆2). It remains to
show that γPn(P)(∆1∪∆2) ⊆ γPn(P)(b∆1∪∆2cn), but this
is exactly Lemma 26.

E. Main Soundness Theorem for Powerset Domain

The main soundness theorem is an identical restatement
of the main soundness theorem in the base domain and
the proof is likewise identical, save for replacement of
the relevant base domain definitions and lemmas with the
powerset ones. The only corresponding lemma which has
not yet been proven follows below.

Lemma 81. Let ∆i be consistent probabilistic polyhedron
sets, that is, γPn(P)(∆i) 6= ∅. Then, ∆1 + ∆2 vP ∆1 iff
iszero(∆2).

Proof: The proof is identical to the Lemma 64, re-
placing the base domain lemmas and definitions with the
powerset ones.

Theorem 24 (Soundness of Abstraction). For all δ, S,∆, if
δ ∈ γPn(P)(∆) and 〈〈S〉〉∆ terminates, then [[S]]δ terminates
and [[S]]δ ∈ γPn(P)(〈〈S〉〉∆).

Proof: The proof is identical to the main soundness
proof for the base domain (Theorem 6), replacing definitions
and lemmas about the base domain abstraction with the
corresponding definitions and lemmas about the powerset
domain.

Lemma 82 (Soundness of Normalization). If δ ∈ γPn(P)(∆)
then normal(δ) ∈ γPn(P)(normal(∆)).

Proof: Whenever ‖δ‖ = 0, the normalization in the
concrete sense is undefined, likewise it is undefined in the
abstract sense. So let us assume ‖δ‖ > 0.

Let m =
∑
i mmin

i and m =
∑
i mmax

i . By assumption
we have δ =

∑
i δi with

δi ∈ γP(Pi) (75)

Thus we have ‖δ‖ =
∑
i ‖δi‖ and we conclude m =∑

i mmin
i ≤ ‖δ‖ ≤

∑
i mmax

i = m via (75).

m ≤ ‖δ‖ ≤ m (76)

Let δ′ = normal(δ) = 1
‖δ‖δ =

∑
i

1
‖δ‖δi, due to

linearity of scalar product. Let us thus show that 1
‖δ‖δi ∈

γP(normal(Pi)(m,m)) = γP(normal(∆)) which would con-
clude the proof. Let us write Pi′ = normal(Pi)(m,m) and
δi′ = 1

‖δ‖δi. We must thus show the following.

support(δi′) ⊆ γC(Ci′) (77)

smin
i′ ≤ |support(δi′)| ≤ smax

i′ (78)

mmin
i′ ≤ ‖δi′‖ ≤ mmax

i′ (79)

∀σ ∈ support(δi′) . pmin
i′ ≤ δi′(σ) ≤ pmax

i′ (80)

Claim (77) holds trivially as support(δi′) = support(δi),
Ci′ = Ci, and (75). Claim (78) holds due to the same
reasoning.
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For (79), in the case where m > 0, we reason, via (76),
as follows.

mmin
i ≤ ‖δi‖ ≤ mmax

i

mmin
i

m
≤ 1
‖δ‖
‖δi‖ ≤

mmax
i

m

mmin
i

m
≤ ‖ 1
‖δ‖

δi‖ ≤
mmax
i

m

mmin
i′ =

mmin
i

m
≤ ‖δi′‖ ≤

mmax
i

m
= mmax

i′

If m = 0, the definition of normalization makes mmax
i′ =

1, which is also sound as all distributions have mass no more
than 1.

The (80) claim is shown using reasoning identical to the
mass claim above.

Lemma 28 (Soundness of Simple Maximal Bound Es-
timate). If δ ∈ γPn(P)({Pi}) and P =

∑
i Pi then

maxσ δ(σ) ≤ pmax.

Proof: By assumption we have δ =
∑
i δi with δi ∈

γP(Pi) thus by Lemma 12 (Soundness of Plus), we have
δ ∈ γP(

∑
i Pi) = γP(P), thus for every σ ∈ support(δ),

δ(σ) ≤ pmax, hence maxσ δ(σ) ≤ pmax.
The above lemma shows soundness of the very simple

method of estimating the maximum probability but in the
implementation we use the method based on poly partition-
ing and the following lemma.

Lemma 32. maxpp (∆) def= maxσ∈R ∆max (σ) =
maxσ ∆max (σ) where L is a poly partition of ∆ and R
is a representative set of L.

Proof: Let L be the poly partition of ∆ = {Ci} as in
the statement of the lemma. Let us first show a claim: if
σ, σ′ ∈ L ∈ L then

A
def= {C ∈ ∆ | σ ∈ γC(C)} = {C ∈ ∆ | σ′ ∈ γC(C)} def= B

(81)
Let C ∈ A. Thus σ ∈ γC(C) so by Definition 31 (2),

we have σ ∈ γC(L′) for some L′ ∈ L. By (1) it must
be that L = L′ and by (3), we have γC(L) = γC(L′) ⊆
γC(C). Therefore σ′ ∈ γC(C) and thus C ∈ B, showing
A ⊆ B. The other direction is identical, concluding A = B
as claimed. .

Now we can get back to the main lemma. Let σ∗ be the
state with ∆max (σ∗) = maxσ ∆max (σ). Thus σ∗ ∈ γC(L)
for some L ∈ L, by Definition 31 (2). Let σL be any
representative of L, that is σL ∈ γC(L).

∆max (σ∗) =
∑
i

Pmax
i (σ∗)

=
∑

i | σ∗∈γC(Ci)

pmax
i

=
∑

i | σL∈γC(Ci)

pmax
i [ by (81) ]

=
∑
i

Pmax
i (σL)

= ∆max (σL)

Now we see that maxσ ∆max (σ) = ∆max (σ∗) =
∆max (σL) = maxpp (∆) as claimed.

Before we prove the security theorem, let us show that
the definition of abstract conditioning on a state is sound.

Lemma 83. If δ ∈ γP(∆) and σV ∈ StateV with V ⊆ fv(δ)
then δ|σV ∈ γPn(P)(∆ | σV )

Proof: Recall the definition of ∆ | σV .

∆ | σV = ∆ | B

With B =
∧
x∈V (x = σV (x)). Let us show that δ|σV =

δ|B , the rest will follow from Lemma 78.
The definition of δ|σV is as follows.

δ|σ = λσ. if σ � V = σV then δ(σ) else 0

Meanwhile, δ|B is defined as follows.

δ|B = λσ. if [[B ]]σ = true then δ(σ) else 0

The correspondence is immediate as [[B ]]σ = true if
and only if σ � V = σV as per construction of B .

Theorem 35 (Soundness for Threshold Security). Let δ
be an attacker’s initial belief. If δ ∈ γPn(P)(∆) and
tsecuret(S,∆), then S is threshold secure for threshold t
when evaluated with initial belief δ.

Proof: Let us consider the contrapositive. That is,
assuming δ ∈ γPn(P)(∆), if S is not threshold secure for t
and initial belief δ, then it is not the case that tsecuret(S,∆).

Let δ2 = [[S]]δ and δ3 = δ2 � L. Since S is not
secure, we have σL ∈ support(δ3) and σ′H ∈ StateH
with (normal((δ2|σL) � H))(σ′H) > t. This implies that
(δ2|σL) � H 6= 0Dist and therefore δ2|σL 6= 0Dist as
projection preserves mass.

If [[S]]∆ is not terminating, then we are done as termi-
nation is a condition for tsecuret(S,∆). So let us assume
〈〈S〉〉∆ is terminating. Let ∆2 = 〈〈S〉〉∆. By Theorem
24, we have δ2 ∈ γPn(P)(∆2). By Lemma 83, δ2|σL ∈
γPn(P)(∆2 | σL). Therefore not iszero(∆2 | σL). Continu-
ing, by Lemma 75, (δ2|σL) � H ∈ γPn(P)((∆2 | σL) � H)
and finally, by Lemma 82, we have δ4

def= normal((δ2|σL) �
H) ∈ γPn(P)(normal((∆2 | σL) � H)). Let ∆4 =
normal((∆2 | σL) � H).

By Remark 30, we have δ4(σ′H) ≤ maxσ ∆max
4 (σ) and

by Lemma 32 we have maxσ ∆max
4 (σ) = maxpp (∆4). But
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δ4(σ′H) > t so maxpp (∆4) > t, a potential failure of
tsecuret(S,∆).

To finish the proof we need to make sure that σL was
indeed a valid witness to the failure of tsecuret(S, P1). Let
∆3 = {P ′′i } = ∆2 � L. By Lemma 75, we have δ3 ∈
γPn(P)(∆3) so δ3 =

∑
i δ
′
i with δ′i ∈ γP(P ′′i ). Since σL ∈

support(δ3) it must be that δ3(σL) > 0 and thus δ′i(σL) > 0
for at least one i. Thus σL ∈ support(δ′i) ⊆ γC(C ′′i ) for at
least one i and therefore σL ∈ γP(C)({C ′′i }). Also, we have
already shown that not iszero(∆2 | σL), thus σL is indeed
the witness as needed.
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