Dynamic Enforcement of Knowledge-based Security Policies'

Piotr Mardziel, Stephen Magill, Michael Hicks
University of Maryland, College Park

Abstract—This paper explores the idea of knowledge-based
security policies, which are used to decide whether to answer
queries over secret data based on an estimation of the querier’s
(possibly increased) knowledge given the results. Limiting
knowledge is the goal of existing information release poli-
cies that employ mechanisms such as noising, anonymization,
and redaction. Knowledge-based policies are more general:
they increase flexibility by not fixing the means to restrict
information flow. We enforce a knowledge-based policy by
explicitly tracking a model of a querier’s belief about secret
data, represented as a probability distribution, and denying any
query that could increase knowledge above a given threshold.
We implement query analysis and belief tracking via abstract
interpretation using a novel probabilistic polyhedral domain,
whose design permits trading off precision with performance
while ensuring estimates of a querier’s knowledge are sound.
Experiments with our implementation show that several useful
queries can be handled efficiently, and performance scales
far better than would more standard implementations of
probabilistic computation based on sampling.

I. INTRODUCTION

Facebook, Twitter, Flickr, and other successful on-line ser-
vices enable users to easily foster and maintain relationships
by sharing information with friends and fans. These services
store users’ personal information and use it to customize the
user experience and to generate revenue. For example, Face-
book third-party applications are granted access to a user’s
“basic” data (which includes name, profile picture, gender,
networks, user ID, and list of friends [1]) to implement
services like birthday announcements and horoscopes, while
Facebook selects ads based on age, gender, and even sexual
preference [2]. Unfortunately, once personal information is
collected, users have limited control over how it is used.
For example, Facebook’s EULA grants Facebook a non-
exclusive license to any content a user posts [3]. MySpace,
another social network site, has recently begun to sell its
users’ data [4].

Some researchers have proposed that, to keep tighter
control over their data, users could use a storage server
(e.g., running on their home network) that handles personal

1 University of Maryland, Department of Computer Science Technical
Report CS-TR-4978. This paper is an extended version of the paper of
the same title appearing in the proceedings of the 24th IEEE Computer
Security Foundations Symposium. This version contains additional discus-
sion (Appendices A and B, Section VI-B), and bits throughout), new and
revised performance experiments (Section VII and Appendix C), and proofs
of theorems (Appendices D and E).

Mudhakar Srivatsa
IBM T.J. Watson Research Laboratory

data requests, and only responds when a request is deemed
safe [5], [6]. The question is: which requests are safe? While
deferring to user-defined access control policies seems an
obvious approach, such policies are unnecessarily restrictive
when the goal is to maximize the customized personal
experience. To see why, consider two example applications:
a horoscope or “happy birthday” application that operates
on birth month and day, and a music recommendation
algorithm that considers birth year (age). Access control at
the granularity of the entire birth date could preclude both
of these applications, while choosing only to release birth
year or birth day precludes access to one application or the
other. But in fact the user may not care much about these
particular bits of information, but rather about what can be
deduced from them. For example, it has been reported that
zip code, birth date, and gender are sufficient information to
uniquely identify 63% of Americans in the 2000 U.S. census
[7]. So the user may be perfectly happy to reveal any one of
these bits of information in its entirety as long as a querier
gains no better than a 1/n chance to guess the entire group,
for some parameter 7.

This paper explores the design and implementation for
enforcing what we call knowledge-based security policies. In
our model, a user U’s agent responds to queries involving se-
cret data. For each querying principal (), the agent maintains
a probability distribution over U’s secret data, representing
Q’s belief of the data’s likely values. For example, to
mediate queries from a social networking site X, user U’s
agent may model X’s otherwise uninformed knowledge of
U’s birthday according to a likely demographic: the birth
month and day are uniformly distributed, while the birth
year is most likely between 1956 and 1992 [8]. Each querier
Q@ is also assigned a knowledge-based policy, expressed
as a set of thresholds, each applying to a different group
of (potentially overlapping) data. For example, U’s policy
for X might be a threshold of 1/100 for the entire tuple
(birthdate, zipcode, gender), and 1/5 for just birth date. U’s
agent refuses any queries that it determines could increase
@’s ability to guess a secret above the assigned threshold. If
deemed safe, U’s agent returns the query’s (exact) result and
updates ()’s modeled belief appropriately. (We touch upon
the risk of colluding queriers shortly.)

To implement our model, we need (1) an algorithm to
check whether answering a query could violate a knowledge-
based policy, (2) a method for revising a querier’s belief

according to the answer that is given, and (3) means to
implement (1) and (2) efficiently. We build on the work of
Clarkson et al. [9] (reviewed in Section III), which works out
the theoretical basis for (2). The main contributions of this
paper, therefore, in addition to the idea of knowledge-based
policies, are our solutions to problems (1) and (3).

Given a means to revise querier beliefs based on prior
answers, it seems obvious how to check that a query does
not reveal too much: U runs the query, tentatively revises
@’s belief based on the result, and then responds with the
answer only if @’s revised belief about the secrets does not
exceed the prescribed thresholds. Unfortunately, with this
approach the decision to deny depends on the actual secret,
so a rejection could leak information. We give an example
in the next section that shows how the entire secret could
be revealed. Therefore, we propose that a query should be
rejected if there exists any possible secret value that could
induce an output whereby the revised belief would exceed
the threshold. This idea is described in detail in Section IV.

To implement belief tracking and revision, our first
thought was to use languages for probabilistic computation
and conditioning, which provide the foundational elements
of the approach. Languages we know of—IBAL [10], Prob-
abilistic Scheme [11], and several other systems [12], [13],
[14]—are implemented using sampling. Unfortunately, we
found these implementations to be inadequate because they
either underestimate the querier’s knowledge when sampling
too little, or run too slowly when the state space is large.

Instead of using sampling, we have developed an imple-
mentation based on abstract interpretation. In Section V we
develop a novel abstract domain of probabilistic polyhedra,
which extends the standard convex polyhedron abstract
domain [15] with measures of probability. We represent
beliefs as a set of probabilistic (as developed in Section VI).
While some prior work has explored probabilistic abstract
interpretation [16], this work does not support belief revi-
sion, which is required to track how observation of out-
puts affects a querier’s belief. Support for revision requires
that we maintain both under- and over-approximations of
the querier’s belief, whereas [16] deals only with over-
approximation. We have developed an implementation of
our approach based on Parma [17] and LattE [18], which
we present in Section VII along with some experimental
measurements of its performance. We find that while the
performance of Probabilistic Scheme degrades significantly
as the input space grows, our implementation scales much
better, and can be orders of magnitude faster.

Knowledge-based policies aim to ensure that an attacker’s
knowledge of a secret does not increase much when learning
the result of a query. Much prior work aims to enforce
similar properties by tracking information leakage quantita-
tively [19], [20], [21], [22], [23]. Our approach is more pre-
cise (but also more resource-intensive) because it maintains
an on-line model of adversary knowledge. An alternative to

knowledge-based privacy is differential privacy [24] (DP),
which requires that a query over a database of individu-
als’ records produces roughly the same answer whether a
particular individual’s data is in the database or not—the
possible knowledge of the querier, and the impact of the
query’s result on it, need not be directly considered. As such,
DP avoids the danger of mismodeling a querier’s knowledge
and as a result inappropriately releasing information. DP also
ensures a high degree of compositionality, which provides
some assurance against collusion. However, DP applies once
an individual has released his personal data to a trusted
third party’s database, a release we are motivated to avoid.
Moreover, applying DP to queries over an individual’s data,
rather than a population, introduces so much noise that the
results are often useless. We discuss these issues along with
other related work in Section VIII.

The next section presents a technical overview of the
rest of the paper, whose main results are contained in
Sections III-VII, with further discussion and ideas for future
work in Sections VIII and IX.

II. OVERVIEW

Knowledge-based policies and beliefs. User Bob would
like to enforce a knowledge-based policy on his data so that
advertisers do not learn too much about him. Suppose Bob
considers his birthday of September 27, 1980 to be relatively
private; variable bday stores the calendar day (a number
between 0 and 364, which for Bob would be 270) and byear
stores the birth year (which would be 1980). To bday he
assigns a knowledge threshold t; = 0.2 stating that he does
not want an advertiser to have better than a 20% likelihood
of guessing his birth day. To the pair (bday, byear) he
assigns a threshold ¢4, = 0.05, meaning he does not want
an advertiser to be able to guess the combination of birth
day and year together with better than a 5% likelihood.

Bob runs an agent program to answer queries about
his data on his behalf. This agent models an estimated
belief of queriers as a probability distribution §, which
is conceptually a map from secret states to positive real
numbers representing probabilities (in range [0, 1]). Bob’s
secret state is the pair (bday =270, byear =1980). The agent
represents a distribution as a set of probabilistic polyhedra.
For now, we can think of a probabilistic polyhedron as a
standard convex polyhedron C' with a probability mass m,
where the probability of each integer point contained in C'
is m/#(C), where #(C) is the number of integer points
contained in the polyhedron C. Shortly we present a more
involved representation.

Initially, the agent might model an advertiser X’s belief
using the following rectangular polyhedron C, where each
point contained in it is considered equally likely (m = 1):

C =0 < bday < 365, 1956 < byear < 1993

Enforcing knowledge-based policies safely. Suppose X
wants to identify users whose birthday falls within the next
week, to promote a special offer. X sends Bob’s agent the
following program.

Example 1.

today := 260;
if bday > today A bday < (today + 7) then
output := True;

This program refers to Bob’s secret variable bday, and also
uses non-secret variables today, which represents the current
day and is here set to be 260, and output, which is set to
True if the user’s birthday is within the next seven days (we
assume output is initially False).

The agent must decide whether returning the result of run-
ning this program will potentially increase X’s knowledge
about Bob’s data above the prescribed threshold. We explain
how it makes this determination shortly, but for the present
we can see that answering the query is safe: the returned
output variable will be False which essentially teaches the
querier that Bob’s birthday is not within the next week,
which still leaves many possibilities. As such, the agent
revises his model of the querier’s belief to be the following
pair of rectangular polyhedra C', C5, where again all points
in each are equally likely (m; ~ 0.726, ms ~ 0.274):

C1 =0 < bday < 260, 1956 < byear < 1993
Cy = 267 < bday < 365, 1956 < byear < 1993

Ignoring byear, there are 358 possible values for bday and
each is equally likely. Thus the probability of any one is
1/358 ~ 0.0028 < t; = 0.2.

Suppose the next day the same advertiser sends the same
program to Bob’s user agent, but with today set to 261.
Should the agent run the program? At first glance, doing so
seems OK. The program will return False, and the revised
belief will be the same as above but with constraint bday >
267 changed to bday > 268, meaning there is still only a
1/357 = 0.0028 chance to guess bday.

But suppose Bob’s birth day was actually 267, rather than
270. The first query would have produced the same revised
belief as before, but since the second query would return
True (since bday = 267 < (261+47)), the querier can deduce
Bob’s birth day exactly: bday > 267 (from the first query)
and bday < 268 (from the second query) together imply
that bday = 267! But the user agent is now stuck: it cannot
simply refuse to answer the query, because the querier knows
that with t4 = 0.2 (or indeed, any reasonable threshold) the
only good reason to refuse is when bday = 267. As such,
refusal essentially tells the querier the answer.

The lesson is that the decision to refuse a query must not
be based on the effect of running the query on the actual
secret, because then a refusal could leak information. In
Section IV we propose that an agent should reject a program
if there exists any possible secret that could cause a program

1992

1982

byear

[e e
byear
[

1972

1962

1956

267 .. 0 259 267 ..
bday bday

(a) output = False (b) output = True

Figure 1. Example 2: most precise revised beliefs

o
|
a
o
]

answer to increase querier knowledge above the threshold.
As such we would reject the second query regardless of
whether bday = 270 or bday = 267.

Full probabilistic polyhedra. Now suppose, having run
the first query and rejected the second, the user agent
receives the following program from X.

Example 2.

age := 2011 — byear;
if age =20V ...V age = 60 then
output = True;

pif 0.1 then output := True;

This program attempts to discover whether this year is a
“special” year for the given user, who thus deserves a special
offer. The program returns True if either the user’s age is
(or will be) an exact decade, or if the user wins the luck
of the draw (one chance in ten), as implemented by the
probabilistic if statement.

Running this program reveals nothing about bday,
but does reveal something about byear. In particular, if
output = False then the querier knows that byear ¢
{1991,1981,1971,1961}, but all other years are equally
likely. We could represent this new knowledge, combined
with the knowledge gained from the first query, as shown
in Figure 1(a), where each shaded box is a polyhedron con-
taining equally likely points. On the other hand, if output =
True then either byear € {1991,1981,1971,1961} or the
user got lucky. We represent the querier’s knowledge in
this case as in Figure 1(b). Darker shading indicates higher
probability; thus, all years are still possible, though some
are much more likely than others. With the given threshold
of tgy = 0.05, the agent will permit the query; when
output = False, the likelihood of any point in the shaded re-
gion is 1/11814; when output = True, the points in the dark
bands are the most likely, with probability 5/13067. Since
both outcomes are possible with Bob’s byear = 1980, the
revised belief will depend on the result of the probabilistic
if statement.

This example illustrates a potential problem with the
simple representation of probabilistic polyhedra mentioned
earlier: when output = False we will jump from using two

probabilistic polyhedra to ten, and when output = True we
jump to using eighteen. Allowing the number of polyhedra
to grow without bound will result in performance problems.
To address this concern, we need a way to abstract our
belief representation to be more concise. Section V shows
how to represent a probabilistic polyhedron P as a seven-
tuple, (07 Smin’ Smax7 pmin’ pmax’ mmin’ mmax) where Smin
and s™®* are lower and upper bounds on the number of
points with non-zero probability in the polyhedron C (called
the support points of C); the quantities p™™" and p™ax
are lower and upper bounds on the probability mass per
support point; and m™" and m™?* give bounds on the total
probability mass. Thus, polyhedra modeled using the simpler
representation (C, m) given earlier are equivalent to ones in
the more involved representation with m™?* = m™in = g,
pmax — pmin — m/#(c)’ and sMaX — smin — #(C)

With this representation, we could choose to collapse
the sets of polyhedron given in Figure 1. For example, we
could represent Figure 1(a) with two probabilistic polyhe-
dra P; and P, containing polyhedra C; and C5 defined
above, respectively, essentially drawing a box around the
two groupings of smaller boxes in the figure. The other
parameters for P, would be as follows:

i = piiex = 9/135050
SIlIllIl — SIlIlaX — 8580
mPin = mmax — 7722 /13505

Notice that st = shax = 8580 < #(Cy) = 9620,
illustrating that the “bounding box” of the polyhedron covers
more area than is strictly necessary. In this representation the
probabilities may not be normalized, which improves both
performance and precision. For this example, P> happens
to have mP® = mPa* = 14553/67525 so we can see
mP? + mP** = (53163/67525) # 1.

If we consider the representation of Figure 1(b) in a
similar manner, using the same two polyhedra C; and Co,
the other parameters for C; are as follows:

PP = 1/135050 pP* = 10/135050
ST = 9620 ST = 9620
mit = 26/185 mP* = 26/185

In this case s = s = #£((C), meaning that all covered
points are possible, but pi" = pMaX ag some points are
more probable than others (i.e., those in the darker band).
The key property of probabilistic polyhedra, and a main
technical contribution of this paper, is that this abstraction
can be used to make sound security policy decisions. To
accept a query, we must check that, for all possible outputs,
the querier’s revised, normalized belief of any of the possible
secrets is below the threshold ¢. In checking whether the
revised beliefs in our example are acceptable, the agent will
try to find the maximum probability the querier could ascribe
to a state, for each possible output. In the case output =
True, the most probable points are those in the dark bands,

Variables T € Var

Integers n e Z

Rationals q e Q

Arith.ops aop = +|x|-—

Rel.ops relop = <|<|=|#]

Arith.exzps FE = x|n|E aop Ey

Bool.exps B = Ej relop Es |
Bl/\B2|Bl\/BQ|—|B

Statements S w= skip|z = E|

if B then Sy else Sz |
pif g then S else S |
S1; Sz | while B do S

Figure 2. Core language syntax

which each have probability mass 10/135050 = p"®* (the
dark bands in P» have the same probability). To find the
maximum normalized probability of these points, we divide
by the minimum possible total mass, as given by the lower
bounds in our abstraction. In our example, this results in
pyaX /(mPin 4 miPin) = (10/135050)/(26,/185+49/925) ~
0.0004 < t4 = 0.05.

As just shown, the bound on minimum total mass is
needed in order to soundly normalize distributions in our
abstraction. The maintenance of such lower bounds on
probability mass is a key component of our abstraction that
is missing from prior work. Each of the components of a
probabilistic polyhedron play a role in producing the lower
bound on total mass. While siPi?, slax pmin -apnd mPax do
not play a role in making the final policy decision, their
existence allows us to more accurately update belief during
the query evaluation that precedes the final policy check.
The choice of the number of probabilistic polyhedra to use
impacts both precision and performance, so choosing the
right number is a challenge. For the examples given in this
section, our implementation can often answer queries in a
few seconds; details are in Sections V-VII.

III. TRACKING BELIEFS

This section reviews Clarkson et al.’s method of revising a
querier’s belief of the possible valuations of secret variables
based on the result of a query involving those variables [9].

A. Core language

The programming language we use for queries is given in
Figure 2. A computation is defined by a statement S whose
standard semantics can be viewed as a relation between
states: given an input state o, running the program will
produce an output state ¢’. States are maps from variables
to integers:

o, T € State < Var — Z
Sometimes we consider states with domains restricted to
a subset of variables V, in which case we write oy €

Statey = V — 7Z. We may also project states to a set
of variables V:

def

oV =Xz e Vary. o(z)

The language is essentially standard. We limit the form
of expressions to support our abstract interpretation-based
semantics (Section V). The semantics of the statement form
pif ¢ then S; else S5 is non-deterministic: the result is that
of §; with probability ¢, and So> with probability 1 — q.

B. Probabilistic semantics for tracking beliefs

To enforce a knowledge-based policy, a user agent must be
able to estimate what a querier could learn from the output
of his query. To do this, the agent keeps a distribution § that
represents the querier’s belief of the likely valuations of the
user’s secrets. More precisely, a distribution is a map from
states to positive real numbers, interpreted as probabilities
(in range [0, 1]).

def

¢ € Dist = State — R+

We sometimes focus our attention on distributions over states
of a fixed set of variables V', in which case we write dy, €
Disty, to mean Statey, — R+-. Projecting distributions onto
a set of variables is as follows:!

5 1V E \oy € Statey . >
o'|(o" IV=0v)

5(a")

The mass of a distribution, written ||J]| is the sum of the
probabilities ascribed to states, > _0(c). A normalized dis-
tribution is one such that ||0|| = 1. A normalized distribution
can be constructed by scaling a distribution according to its

mass:

normal(8) = ”(IS”)

The support of a distribution is the set of states which have
non-zero probability: support(§) = {o | §(c) > 0}.

The agent evaluates a query in light of the querier’s initial
belief using a probabilistic semantics. Figure 3 defines a
semantic function [-] whereby [S]é = ¢’ indicates that,
given an input distribution ¢, the semantics of program S
is the output distribution ¢’. The semantics is defined in
terms of operations on distributions, including assignment
d [v — E] (used in the rule for v := E), conditioning §|B
and addition 6, + o (used in the rule for if), and scaling
q - 9 where ¢ is a rational (used for pif). The semantics is
standard (cf. Clarkson et al. [9]). A brief review is given in
Appendix A.

'The notation Zz‘ﬂ p can be read p is the sum over all x such that
formula 7 is satisfied (where x is bound in p and 7).

[[sklp]]§ = 9
[« [6 = d[z— E]
[if B then S else S]6 = [S1])(8|B) + [S2](6|-B)
[pif g then Sy else So]6 = [S1](g-6) + [S2]((1 —q) - 0)
[S15 SJo = [S]([$1]6)
[while Bdo S] = lfp[Af: Dist — Dist. Ad.
F(IS1001B)) + (3]-B)]

where

6[‘%._)E]dif)\0— Z | T[z—[E]T]—06(7—)
0140 = Xo.d1(0) + 03(0)

B = \o. if [B]o then §(c) else 0
p-6 o, D- 5()

Figure 3. Probabilistic semantics for the core language

C. Belief and security

Clarkson et al. [9] describe how a belief about possible
values of a secret, expressed as a probability distribution,
can be revised according to an experiment using the actual
secret. Such an experiment works as follows.

The values of the set of secret variables H are given by
the hidden state og. The attacker’s initial belief as to the
possible values of oy is represented as a distribution dp.
A query is a program .S that makes use of variables H and
possibly other, non-secret variables from a set L; the final
values of L, after running S, are made visible to the attacker.
Let o1 be an arbitrary initial state of these variables such
that domain(or,) = L. Then we take the following steps:

Step 1. Evaluate S probabilistically using the attacker’s
belief about the secret to produce an output distribution ¢,
which amounts to the attacker’s prediction of the possible
output states. This is computed as ¢’ = [S]J, where 9, a
distribution over variables HW L, is defined as § = g X ..
Here, we make use of the distribution product operator and
point operator. That is, given &1, d2, which are distributions
over states having disjoint domains, the distribution product
is

51 X 52 S)\(01, 0'2). 51(0’1) . 52(02)

where (01,02) is the “concatenation” of the two states,
which is itself a state and is well-defined because the two
states” domains are disjoint. And, given a state o, the point
distribution ¢ is a distribution in which only ¢ is possible:

¥ \r. if 0 =7 then 1 else 0

Thus, the initial distribution § is the attacker’s belief about
the secret variables combined with an arbitrary valuation of
the public variables.

Step 2. Using the actual secret oy, evaluate S “con-
cretely” to produce an output state &, in three steps. First,
we have 8" = [S]4, where 6 = ¢ x . Second, we have
o€ F(§) where I' is a sampling operator that produces a

state o from the domain of a distribution ¢ with probability
d(o)/||0]|. Finally, we extract the attacker-visible output of
the sampled state by projecting away the high variables:
6r=61L.

Step 3. Revise the attacker’s initial belief § 7 according to
the observed output 6, yielding a new belief Sy =0 |6 1
H. Here, &' is conditioned on the output 61, which yields
a new distribution, and this distribution is then projected to
the variables H. The conditioning operation is defined as
follows:

Sloy = Xo. if 0 | V = oy then §(o) else 0

Note that this protocol assumes that S always terminates
and does not modify the secret state. The latter assumption
can be eliminated by essentially making a copy of the state
before running the program, while eliminating the former de-
pends on the observer’s ability to detect nontermination [9].

IV. ENFORCING KNOWLEDGE-BASED POLICIES

When presented with a query over a user’s data oy, the
user’s agent should only answer the query if doing so will
not reveal too much information. More precisely, given a
query S, the agent will return the public output o, resulting
from running S on oy if the agent deems that from this
output the querier cannot guess the secret state oy beyond
some level of doubt, identified by a threshold ¢. If this
threshold could be exceeded, then the agent declines to run
S. We call this security check knowledge threshold security.

Definition 3 (Knowledge Threshold Security). Let §' =
[S]6, where ¢ is the model of the querier’s initial be-
lief. Then query S is threshold secure iff for all oy €
support(6’ | L) and all o) € Statey we have
(normal((¢'|or) | H))(o%) < t for some threshold .

This definition can be related to the experiment protocol
defined in Section III-C. First, ¢’ in the definition is the same
as ¢’ computed in the first step of the protocol. Step 2 in the
protocol produces a concrete output 61, based on executing
S on the actual secret oy, and Step 3 revises the querier’s
belief based on this output. Definition 3 generalizes these
two steps: instead of considering a single concrete output
based on the actual secret it considers all possible concrete
outputs, as given by support(§’ | L), and ensures that the
revised belief in each case for all possible secret states must
assign probability no greater than ¢.

This definition considers a threshold for the whole secret
state op. As described in Section II we can also enforce
thresholds over portions of a secret state. In particular, a
threshold that applies only to variables V' C H requires that
all of, € Statey result in (normal(¢’|or, [V'))(of,) < t.

The two “foralls” in the definition are critical for ensuring
security. The reason was shown by the first example in
Section II: If we used the flawed approach of just running
the experiment protocol and checking if dy(oy) > t

then rejection depends on the value of the secret state and
could reveal information about it. The more general policy
Vor € support($’ | L).(normal(¢’|or | H))(og) < t,
would sidestep the problem in the example, but this policy
could still reveal information because it, too, depends on
the actual secret 0. (An example illustrating the problem
in this case is given in Appendix B.) Definition 3 avoids
any inadvertent information leakage because rejection is not
based on the actual secret: if there exists any secret such
that a possible output would reveal too much, the query is
rejected. Definition 3 resembles, but is stronger than, min-
entropy, as the security decision is based on the most likely
secret from the attacker’s point of view [20]; further details
are given in Section VIII.

V. BELIEF REVISION VIA ABSTRACT INTERPRETATION

Consider how we might implement belief tracking and
revision to enforce the threshold security property given in
Definition 3. A natural choice would be to evaluate queries
using a probabilistic programming language with support
for conditioning; examples are IBAL [10], Probabilistic
Scheme [11], and several others [12], [13], [14]. In these
languages, probabilistic evaluation is achieved by enumer-
ating inputs (sampling). Probabilities are associated with
each input and tracked during execution. As more inputs are
enumerated, a more complete view of the output distribution
emerges. Unfortunately, to get an accurate estimate of the
revised distribution following an output observation, one
must enumerate the entire input space, which could be
quite large. If insufficient coverage is achieved, then the
threshold check in Definition 3 could either be unsound or
excessively conservative, depending in which direction an
implementation errs.

To avoid sampling, we have developed a new means to
perform probabilistic computation based on abstract inter-
pretation. In this approach, execution time depends on the
complexity of the query rather than the size of the input
space. In the next two sections, we present two abstract
domains. This section presents the first, denoted P, where an
abstract element is a single probabilistic polyhedron, which
is a convex polyhedron [15] with information about the
probabilities of its points. Because using a single polyhedron
will accumulate imprecision after multiple queries, in our
implementation we actually use a different domain, denoted
P, (P), for which an abstract element consists of a set of
at most n probabilistic polyhedra (whose construction is
inspired by powersets of polyhedra [25], [26]). This domain,
described in the next section, allows us to retain precision
at the cost of increased execution time. By adjusting n, the
user can trade off efficiency and precision.

A. Polyhedra

We first review convex polyhedra, a common technique
for representing sets of program states. We use the meta-

variables [, 31,32, etc. to denote linear inequalities. We
write fv(3) to be the set of variables occurring in f;
we also extend this to sets, writing fv({31,...,08,}) for

fo(Br) U Ufv(By).

Definition 4. A convex polyhedron C = (B,V) is a
set of linear inequalities B = {f1,...,0m}, interpreted
conjunctively, over dimensions V. We write C for the set
of all convex polyhedra. A polyhedron C' represents a set of
states, denoted ¢ (C'), as follows, where o |= 3 indicates
that the state o satisfies the inequality 3.

e((B,V)) = {0 | domain(c) =V , ¥ € B. o |= 8}

Naturally we require that fv({51, ..., 0,}) C V. We write
fv((B,V)) to denote the set of variables V' of a polyhedron.

Given a state o and an ordering on the variables in
domain(o), we can view ¢ as a point in an N-dimensional
space, where N = |domain(c)|. The set y¢(C) can then
be viewed as the integer-valued lattice points in an N-
dimensional polyhedron. Due to this correspondence, we use
the words point and state interchangeably. We will some-
times write linear equalities z = f(%) as an abbreviation for
the pair of inequalities x < f(%) and = > f(¥).

Let C' = (B,V). Convex polyhedra support the following
operations.

e Polyhedron size, or #(C), is the number of integer points
in the polyhedron, i.e., |yc(C)|. We will always consider
bounded polyhedra when determining their size, ensuring
that #(C') is finite.

e Expression evaluation, ((B)) C returns a convex polyhe-
dron containing at least the points in C' that satisfy B.

e Expression count, C# B returns an upper bound on the
number of integer points in C' that satisfy B. (It may be
more precise than #({(B)) C).)

e Meet, C; Mg O is the convex polyhedron containing ex-
actly the set of points in the intersection of v¢(C4),vc(Ca2).
e Join, Cq Ug Cs is the smallest convex polyhedron
containing both v(C7) and ~(Cy).

e Comparison, C7; C¢ C5 is a partial order whereby
Cy C¢ Cy if and only if v(C) C v(C3).

o Affine transform, C [z — E], where z € fv(C'), computes
an affine transformation of C. This scales the dimension
corresponding to x by the coefficient of x in £ and shifts the
polyhedron. For example, ({z < y,y =2z}, V) [y — 2z + y]
evaluates to ({x <y —z,y — z =2z}, V).

e Forget, f,(C), projects away xz. That is, f,(C) =
Th(c)—{z} (C), where my (C) is a polyhedron C” such that
v(C)={o|o €y(C)No=0" [V} So C' =£,(C)
implies = & fu(C").

We write isempty(C) iff vc(C) = 0.

B. Probabilistic Polyhedra

We take this standard representation of sets of program
states and extend it to a representation for sets of distribu-

tions over program states. We define probabilistic polyhedra,
the core element of our abstract domain, as follows.

Definition 5. A probabilistic polyhedron P is a tuple
(C,smin gmax pmin pmax pmin jmax) We write P for the
set of probabilistic polyhedra. The quantities s™" and s™#*
are lower and upper bounds on the number of support points
in the polyhedron C'. The quantities p™* and p™?* are lower
and upper bounds on the probability mass per support point.
The m™™ and m™?* components give bounds on the total
probability mass. Thus P represents the ser of distributions
~p(P) defined below.

ve(P) = {6 | support(6) C ¢ (C) A
S™ < support(8)] < s™FA
< 8] < m A
Yo € support(§). p™™ < §(0) < p™*}

def

We will write fv(P) = fv(C') to denote the set of variables
used in the probabilistic polyhedron.

max

Note the set yp(P) is singleton exactly when s™* =
gmax — #(C) and pmin — pmax’ and 1,nmin = m™2%_In such
a case vp(P) is the uniform distribution where each state in
7c(C) has probability p™®. Distributions represented by a
probabilistic polyhedron are not necessarily normalized (as
was true in Section III-B). In general, there is a relationship
between p™i", s™" and m™", in that m™i? > pwmin . gmin
(and m™&* < p™a*.g™a) "and the combination of the three
can yield more information than any two in isolation.

Our convention will be to use (1, s’l’“in, s, etc. for the
components associated with probabilistic polyhedron P; and
to use subscripts to name different probabilistic polyhedra.

Distributions are ordered point-wise [9]. That is, d; < d
if and only if Vo. 61(0) < d2(0). For our abstract domain,
we say that P Cp P, if and only if Vé; € p(Py). 395 €
Yp(P2). 81 < 0. Testing P; Cp P, mechanically is non-
trivial, but is unnecessary in our semantics. Rather, we
need to test whether a distribution represents only the zero
distribution Op;st 2 X\0.0 in order to see that a fixed point for
evaluating ((while B do S)) P has been reached. Intuitively,
no further iterations of the loop need to be considered once
the probability mass flowing into the n'" iteration is zero.
This condition can be detected as follows:

ef

iszero(P) =
Smin — gmax _ 0A mmin =0< m™max
Vv mmin — m™ax — oA Smin — 07< gmax
V isempty(C) As™® = 0 < s™ Am™® = (0 < m™>
v pmin — pmax —0A Smin —0< Smax A mmin —0< mmax

If iszero(P) holds, it is the case that yp(P) = {Opjst ;. Note
that having a more conservative definition of this function
(which holds for fewer probabilistic polyhedra) would be
reasonable since it would simply mean our analysis would
terminate less often than it could, with no effect on security.
More details are given in Appendix D.

In a standard abstract domain, termination of the fixed
point computation for loops is often ensured by use of a
widening operator. This allows abstract fixed points to be
computed in fewer iterations and also permits analysis of
loops that may not terminate. In our setting, non-termination
may reveal information about secret values. As such, we
would like to reject queries that may be non-terminating.

We enforce this by not introducing a widening operator.
Our abstract interpretation then has the property that it will
not terminate if a loop in the query may be non-terminating
(and, since it is an over-approximate analysis, it may also
fail to terminate even for some terminating computations).
We then reject all queries for which our analysis fails to
terminate. Loops do not play a major role in any of our
examples, and so this approach has proved sufficient so far.
We leave for future work the development of a widening
operator that soundly accounts for non-termination behavior.

Following standard abstract interpretation terminology, we
will refer to P (Dist) (sets of distributions) as the concrete
domain, P as the abstract domain, and ~p : P — P (Dist)
as the concretization function for P.

C. Abstract Semantics for P

To support execution in the abstract domain just defined,
we need to provide abstract implementations of the basic
operations of assignment, conditioning, addition, and scaling
used in the concrete semantics given in Figure 3. We will
overload notation and use the same syntax for the abstract
operators as we did for the concrete operators.

As we present each operation, we will also state the
associated soundness theorem which shows that the abstract
operation is an over-approximation of the concrete operation.
Proofs are given in Appendix D. The abstract program
semantics is then exactly the semantics from Figure 3, but
making use of the abstract operations defined here, rather
than the operations on distributions defined in Section III-B.
We will write ((S)) P to denote the result of executing S
using the abstract semantics. The main soundness theorem
we obtain is the following.

Theorem 6. For all P,d, if § € vp(P) and {(S)) P termi-
nates, then [S]0 terminates and [S]6 € vp({(S)) P).

When we say [S]d terminates (or ((S)) P terminates)
we mean that only a finite number of loop unrollings are
required to interpret the statement on a particular distribution
(or probabilistic polyhedron). The precise definitions of
termination can be found in Appendix D.

We now present the abstract operations.

1) Forget: We first describe the abstract forget operator
f,(P1), which is used in implementing assignment. When we
forget variable y, we collapse any states that are equivalent
up to the value of y into a single state. To do this correctly,
we must find an upper bound hj** and a lower bound h;ni“
on the number of points that share the same value of other

hmin

Figure 4. Example of a forget operation in the abstract domain P. In this
case, thm =1 and hz‘ax = 3. Note that thax is precise while h;n‘“ is
an under-approximation. If sj*'" = s]"®* = 9 then we have sj"'" = 3,
sgnax =4, pr2nin — pllnin -1, plénax — plénax 4.

dimensions x (this may be visualized of as the min and max
height of C in the y dimension). Once these are obtained,
we have that f,(P;) = P, where the following hold of P.

Cs = fy(cl)

pE™ = P max (B — (#(C) — s, 1}
pIaX = pmax . pip {h;nax, Sllnax}

sPin = [gmin /hrynax" mpin = mpin
P = min {#(5,(C1), SP} | mpe = mpes

Figure 4 gives an exa