
Abstract
We designed, implemented, and evaluated a new concept for
visualizing and searching databases utilizing direct manipulation
called dynamic queries. Dynamic queries allow users to formulate
queries by adjusting graphical widgets, such as sliders, and see the
results immediately. By providing a graphical visualization of the
database and search results, users can find trends and exceptions
easily. User testing was done with eighteen undergraduate students
who performed significantly faster using a dynamic queries interface
compared to both a natural language system and paper printouts. The
interfaces were used to explore a real-estate database and find homes
meeting specific search criteria.

1 Introduction and Background
Most database systems require the user to create and formulate

a complex query, which presumes that the user is familiar with the
logical structure of the database (Larsson, 1986). The queries on a
database are usually expressed in high level query languages such as
SQL. This works well for many applications, but it is not a fully
satisfying way of finding data. For naïve users these systems are
difficult to use and understand, and they require a long training
period (Kim, Korth, & Silberschatz, 1988).

Clearly there is a need for easy to use, quick and powerful
query methods for database and information retrieval. Direct
manipulation has proved to be successful for other applications such
as display editors, spreadsheets, computer aided design/manufacturing
systems, computer games and graphical environments for operating
systems such as the Apple Macintosh (Shneiderman, 1983). Direct
manipulation interfaces support:

 • Continuous visual representation of objects and actions
of interest.

The Dynamic HomeFinder:
Evaluating Dynamic Queries

in a Real-Estate Information Exploration System

Christopher Williamson and Ben Shneiderman

Human-Computer Interaction Laboratory
Center for Automation Research and Computer Science Department

University of Maryland
cwilliam@cs.umd.edu ben@cs.umd.edu

• Physical actions or labeled button presses instead of
complex query syntax.

• Rapid, incremental, reversible operations whose results are
immediately visible.

• Layered or spiral approaches to learning that permit usage
with minimal knowledge.

One of the great advantages of direct manipulation is that it
places the task in the center of what users do. Rutowski (1982)
describes it as: “The user is able to apply intellect directly to the task;
the tool itself seems to disappear.” The success of direct manipulation
can be understood in the context of the syntactic/semantic model
which describes the different levels of understanding that users have.
Objects of interest are displayed so that actions are directly in the
high level semantic domain. Users do not need to decompose tasks
into syntactically complex sequences. Thus each command is a
comprehensible action in the problem domain whose effect is
immediately visible. The closeness of the command action to the
problem domain reduces user problem-solving load and stress.

For information retrieval and database exploration, there have
been several attempts to use direct manipulation and escape some of
the pitfalls of contemporary boolean systems (Zloof, 1975; Kim,
Korth, & Silberchatz, 1988; Williams, 1984). The first two systems
do not provide any visual display of actions. Zloof’s Query-by-
Example relies on users entering values with a keyboard. Even
though Kim, et al.’s PICASSO supports input through mouse and
menus, it requires users to perform a number of operations in each
step. The combination of graphical input/output is not applied in any
of these systems.

Dynamic Queries 2

a physical action - sliding the drag box with a mouse - instead of
entering the value by keyboard. By sliding the drag box back and
forth and getting real-time updates of the query results, it is possible
to do dozens of queries in just a few seconds. The operation is
incremental and, if the query result is not what users expected, the
operation is reversible by just sliding the drag box in the opposite
direction. Error messages are not needed - there is no such thing as
an ‘illegal’ operation or a syntax error.

The interaction between the database visualization and the
query mechanism is important. The sliders have to be placed close to
the visual presentation to reduce eye movement. The highlighting of
elements should be in harmony with the coloring scheme of the
slider. For example the color of the area to the left of the drag box on
the slider bar is the same as the highlighted elements in the
visualization, because the values to the left of the drag box are the
values that satisfy the query.

2 Dynamic Queries Interface to Real-Estate

The program used for the experiment applied dynamic queries
to real-estate. Finding a home is a laborious task for those that have
experienced it. The two most common methods currently used are
paper and SQL-like database systems. Newspaper and printed
listings have survived to still be the most common means for finding
a home. These provide little organization, short of being sorted by
one field, but are easy-to-use for the novice. In the last few decades,
SQL-like systems have appeared to support more complex queries.

Unfortunately, SQL-like systems require training and/or an
intermediary; almost none allow the actual homebuyer to perform
the search. Further, these systems suffer the problems of most
command-line query systems: slow, difficult to use, little feedback,
nonreversible, and too many boolean logic errors. In addition, these
systems offer no easy way to specify locations. The homebuyer must
know neighborhood names, and attempt to figure out if a given
neighborhood is near where they wish to live. Finally, these systems
suffer from the classic all-or-nothing phenomenon. This commonly
occurs when the searcher does not know the contents of the database
(as is usually the case in real-estate) and therefore attempts a query
that is too general or too restrictive. As a result, the homebuyer
alternates between too many and too few results - frantically and
laboriously guessing towards the middle to produce a reasonable set
of homes. Recently, good natural-language query systems, such as
Q&A by Symantec, have been developed in response to complaints
about SQL that instead allow queries to be stated in English. This
should reduce training with syntax and help novice users, but it does
little to correct the other faults of previous query systems.

Other solutions have come about with the invention of natural-
language query systems. Some of these systems (Salton and McGill,
1983; Harman and Candela, 1990), usually using statistical ranking
and/or relevance feedback, do a fine job retrieving textual information.
They are, however, very awkward to apply to graphical information
systems and they have other well-documented problems (Helander,
1988). An alternative database interface utilizing dynamic queries
(Ahlberg, Williamson & Shneiderman, 1991) would:

• represent the query graphically,
• provide visible limits on the query range,
• provide a graphical representation of the database
 and the query result,
• give immediate feedback of the result during every
 query adjustment, and
• allow novice users to begin working with little
 training, but still provide expert users with
 powerful features.

With dynamic queries, the query is represented by a number
of sliders (Figure 1). Each slider consists of a label, a field indicating
its current value, a slider bar with a drag box and a value at each end
of the slider bar indicating minimum and maximum values. Sliding
the drag box with the mouse changes the value of the slider. Clicking
with the mouse on the slider bar increases or decreases the value one
step at a time. The database is represented on the screen in graphical
form. This paper describes a program dealing with real-estate and,
accordingly, the map of the area was chosen as the representation.
The result of the query can then be highlighted by coloring, changing
points of light, marking of regions, or blinking.

Figure 1. A slider from the Dynamic HomeFinder.

The combination of a graphical query and graphical output
fits well into the principles of direct manipulation. The slider serves
as a metaphor for the operation of entering a value for a field in the
query. Norman (1988) promotes the use of sliders since they also
provide a mental model of the range. Changing the value is done by

Dynamic Queries 3

Figure 2. Dynamic HomeFinder (DQ interface) with all homes displayed and A&B markers set. In order to make these snapshots more
readable in print, the pallette has been altered; the actual color scheme used was considerably more readable and pleasing than these snapshots
depict.

The dynamic homefinder interface is best explained through
an example. Take a hypothetical situation where a new professor,
Dr. Jones, has just been hired by the University of Maryland. She
might encounter this tool in a touchscreen kiosk at a real-estate office
or at the student union. She selects the location where she will be
working by dragging the ‘A’ on the map. Next, she selects where her
husband will be working, downtown, near the capitol, by dragging
the ‘B’. Figure 2 shows the interface after Dr. Jones has dragged the
‘A’ and ‘B’ indicators to her desired locations (the indicators are
more visible in Figure 4).

The dynamic queries interface (Figure 2) provides a
visualization of both the query formulation and corresponding
results. This application was built using the C programming language.
A map of the District of Columbia area is displayed on the left. The
homes that fulfill the criteria set by the user’s current query are shown
as yellow dots on the map. Users perform queries, using the mouse,
by setting the values of the sliders and buttons in the control panel to
the right. The query result is determined by ANDing all sliders and
buttons.

Dynamic Queries 4

Dr. Jones would like to ride her bicycle to work, if
possible, so she sets the ‘Distance to A’ slider on the right to 5 miles
or less. This is indicated by the highlighted region of the slider now
indicating from 0-5 miles. Her husband is taking the Metro, so the
distance to his office is not very important. Figure 3 shows how the
screen looks after she has adjusted the 'Distance to A' slider. Note
that this is done instantaneously in a fluid-like manner as she moves
which cannot be captured with snapshots, but which enables her to
quickly see how homes are eliminated as she narrows the distance
requirement.

Figure 4. HomeFinder with all houses within a 5-mile radius
of the ‘A’ marker AND have 4 or more bedrooms AND cost less than
or equal to $140,000.

Figure 3. HomeFinder with all homes within a 5-mile radius
of the ‘A’ marker displayed.

Dr. Jones is only interested in houses, not in apartments or
condominiums so she toggles those buttons off. Finally, she drags
the bedrooms slider down to 4, since she needs at least four bedrooms,
she could have more (for a guest room or study for example), again
indicated by the highlighting in Figure 4 showing that houses with 4-
7 bedrooms are now being displayed. In Figure 4, she also drags the
cost slider to $140,000, a modestly-priced home where she used to
live. Here we encounter the all-or-nothing phenomena as Dr. Jones
has eliminated too many houses with her query. This is easily solved
as she realizes that houses must be more expensive in this area. Dr.
Jones drags the cost slider up to $220,000 in Figure 5, a price that
many more houses in the area fulfill.

Finally, just out of curiousity, Dr. Jones clicks on the 'Garage'
button in Figure 6 only to find that few houses have a garage in the
price range and area she is looking at. Once she has narrowed her
query, it is easy for Dr. Jones to experiment, seeing what services the
homes offer, or what is available if she was willing to pay a little
more, and so on. In this way the interface encourages exploration and
bolsters user confidence.

Although there is no figure depicting it, a mouse click on any
of the homes (represented by the yellow dots) brought up a pop-up
window with detailed information on that specific home.

Figure 5. Closeup of Dynamic HomeFinder with all houses
within a 5-mile radius of the ‘A’ marker AND have 4 or more
bedrooms and cost less than or equal to $220,000.

Dynamic Queries 5

involved querying information on 944 imaginary homes with varying
criteria from real-estate in the Washington D.C. Metropolitan area.
Although using real home-seekers would be ideal, a reasonable
compromise was made by using novices with varying backgrounds.

3.1 Dynamic Queries interface (DQ)
This interface was already described in detail under section

1.2. As shown previously in Figure 4, it is possible to drag the ‘A’
icon to a certain location where the homebuyer might work, for
example. When the distance slider is moved to 5, all houses within
5 miles of that location are then highlighted. However, these distance
sliders and the ‘A’ and ‘B’ icons on the map were not used in the
experiment, since the other two interfaces could not provide this
service.

3.2 Natural language query interface (QA)
The natural language query interface (Figure 7) used was the

‘Intelligent Assistant’ of a popular commercial package from
Symantec, Inc. known as ‘Q&A’. This software allows users to pose
queries using English. The user types the English query, the system
converts it into a logical database query (Figure 7), and then displays
the information requested (Figure 8). A 386 machine with hard disk
was used so the search time was only a few seconds, fast enough that
computation speed was not a significant factor. No graphical output
was provided, a textual listing of the homes that satisfied the query
were displayed as shown in Figure 8.

Figure 6. Dynamic HomeFinder with all houses within a 5-mile
radius of the ‘A’ marker AND have 4 or more bedrooms AND cost
less than or equal to $220,000 AND have a garage.

3 User Experiment
This experiment compared three different interfaces for

database query and visualization: a dynamic queries interface, a
natural language query system known as ‘Q&A’, and a traditional
paper listing sorted by several fields. The alternative interfaces were
chosen to find out how dynamic queries would fare against the two
most common methods currently used to search real-estate databases.
Using a within-subjects counter-balanced design, subjects answered
a series of five types of questions for each of the three interfaces were
presented in random order. The independent variable in the experiment
was the type of interface with three different treatments: dynamic
queries (DQ), natural language retrieval (QA), and paper listings
(Paper). The observed dependent variables were time to find correct
answer for each of five questions and the subjective satisfaction with
each interface.

 The primary hypothesis was that the dynamic queries interface,
providing both a graphical query input and a graphical visualization
of the search result, would give the best user performance results and
would be rated highest in user satisfaction. Performance results were
measured as the time until correct answer for each question.

Eighteen undergraduate psychology students, 9 females and
9 males from the University of Maryland subject pool, participated
voluntarily in the experiment. Only one subject had previous
knowledge of real-estate in the area. Both computer interfaces were
run on an IBM PS/2 model 70 (16 MHz 80386) with a 12-inch VGA
color monitor and mechanical two-button mouse. All interfaces

 Shall I do the following?

 Create a report showing
 the Address and
 the Neighborhood and
 the Cost and
 the Home Type
 from the forms on which
 the Home Type includes "HOUSE" and
 the Fireplace is YES and
 the Cost is maximum

 Yes - Continue No - Cancel Request

DQ.DTF
Esc-Cancel F10-Continue

WHERE ARE THE 3 MOST EXPENSIVE HOUSES WITH A FIREPLACE?

Figure 7. Natural language system (QA interface) processing and
converting English query.

DQ.DTF
Esc-Cancel F10-Continue

WHERE ARE THE 3 MOST EXPENSIVE HOUSES WITH A FIREPLACE?

			 Address Neighborhood Cost Home Type
___________________ _______________ ________ __________
7924 Jones Street	 Chevy Chase, MD $411,950 House
4719 Dorset Ave.						Chevy Chase, MD			$678,235			House
1287 Highland Ct.					Potomac, MD							$782,125			House

Figure 8. Q&A displaying results of converted English query.

Dynamic Queries 6

3.3 Paper interface
There were three sets of laser-printed paper listings in

approximately 11-point Courier font, one sorted by cost, one by the
number of bedrooms, and one alphabetically by the neighborhood
name. Each 10-page listing contained all the information on each of
the 944 homes, one-per-line, as shown in Figure 9.

[Key: Bed=bedrooms, Fp=fireplace, Gr=garage, Ac=central air, Nw=new]

ID Type Address Neighborhood Cost Bed Fp Gr Ac Nw
39 Apt 3792 Campus Drive Beltsville, MD $80,950 3 N N N N
54 Apt 4634 Baltimore Blvd. College Park, MD $90,250 2 N Y N N
230 House 2352 Glass Road Bladensburg, MD $100,230 3 Y Y N N

Figure 9. Sample lines from paper listing.

1122334455
DQ Paper

46.3
(46.2)

30.6
(17.8)

72.5
(78.0)

98.4
(75.3)

57.6
(28.4)

125.1
(72.4)

125.3
(72.4)

193.4
(68.5)

58.8
(16.3)

135.8
(77.0)QUISQUIS 110

(21.5)
84

(12.5)

ANOVA

F(2,51) = 9.72
(p < .005)

F(2,51) = 0.66
(p > .005)

F(2,51) = 11.6
(p < .005)

F(2,51) = 17.4
(p < .005)

F(2,51) = 29.4
(p < .005)

F(2,51) = 19.6
(p < .005)

Scheffe .005 post-hoc showed significant difference favoring indicated interface

QA

93.0
(76.0)

92.8
(83.2)

144.8
(71.1)

227.9
(27.0)

189.9
(67.2)

68
(42.3)

3.4 Experiment procedure and tasks
A counter-balanced within-subjects design was used. The

question sets were always given in the same order, and the interface
order was random. The subjects were given a brief description of the
tasks and were asked to sign a consent form. Each session lasted an
hour and consisted of four phases for each interface condition:

1. Introduction and training: The experimenter set up the
appropriate interface and briefly explained the interface to the
subject. The subject was invited to try-out the system and get
comfortable with it. Subjects were permitted unlimited time to try-
out using the system and were free to ask any questions to the
experimenter about the interface. Actual training time varied from
two to ten minutes for each subject. The QA interface required
significantly more training due to its less obvious querying mechanism.
Subjects were informed on the more complex sorting and set operations
available in the QA interface.

2. Practice task: A practice task (similar to the complex query
question used) was given. During this task, subjects were free to ask
questions about both the task and the interface.

3. Timed tasks: Five questions were given on paper. Subjects
read each question and were asked if they fully understood it. This
was done so as to eliminate variations in subject comprehension
speed. When the subject was ready, the experimenter started timing.
When subjects found the answer, they verbally expressed it. If it was
correct, the experimenter recorded the elapsed time; if not, the
experimenter asked the subject to try again. The interface was
returned to its initial state between each question.

In deciding the tasks, an informal task analysis was done by
asking a local realtor and a few clients what types of questions they
would ask a database. The first two are very general, while the final
three are probably more representative of 'typical' home-searches:

• Simple fact - Find a certain element fulfilling a simple
criteria. An actual question of this type is “What is the cost of the
cheapest apartment in the database?”

• Simple neighborhood fact search - Find the neighborhood
(city) fulfilling a simple criteria. An actual question of this type is
“What neighborhood has the most expensive houses?”

• Complex search - Find one or more elements meeting several
criteria. This is the typical type of question a prospective homebuyer
would likely ask. An actual question of this type is “What is the
address of the cheapest house that has 5 or more bedrooms AND has
both a garage and central air conditioning?”

• Find a trend - Find the trend for some field. This task
requires subjects to create mental picture of how a field changes
through the database. An actual question of this type is “Is there a
general trend (and if so what is it) of house prices from cheapest to
most expensive? (i.e. where are the more expensive houses, and
where are the cheapest houses, do they seem to follow any general
pattern?) Don’t guess, you must find some examples to support your
answer.”

• Find exception to trend/Complex search - Find the exception
to a trend in the database. This is, in fact, often what homebuyers are
looking for. An actual question of this type is “There is a trend of
houses to increase in cost with the number of bedrooms. Find the two
bargain homes with the most bedrooms but are still inexpensive.”

4. Subjective evaluation: Subjects were asked to fill-out a
shortened QUIS (Chin, Diehl, & Norman, 1988) after having
completed each interface. Although results for each of the 20
questions (scored on a 7-point scale) were computed, the sum score
for each interface (out of a maximum possible of 140) is what is
presented in the results section.

4 Experiment results
The results show a statistically significant difference for the

dynamic queries interface over both the other two for all but one task.
Analysis of the timed tasks was done using a factorial analysis of
variance. An ANOVA showed no significant order or questionnaire
difficulty effect (these two were compounded to one factor) with
F(2,51) = 1.17 (p > .05). This, therefore, also shows that there was
no significant difference between the three question sets used.
Observing the mean times to complete each task shows a significant
effect. The mean and standard deviations (in seconds) for each
question and interface are shown in Table 1 along with the ANOVA
and post-hoc analysis. The results for the QUIS are ratings out of a
maximum possible of 140. These means, along with 95% error bars
are graphed for comparison in Figure 10.

Table 1. Means and standard deviations in seconds for each
interface and condition for five tasks and subjective satisfaction (out
of a maximum of 140)

Dynamic Queries 7

5 Discussion and conclusions
The primary hypothesis that the dynamic queries interface

would give the best user performance results is supported in the
results with a significant difference (p < .005) in speed, favoring
dynamic queries, for all but one task. The dynamic queries interface
also scored significantly higher on the satisfaction questionnaire.
Surprisingly, for all but one task, paper was also better than the QA
interface, although often not by a significant amount. The remarks
given by the subjects and comments noted by the experimenter
suggest several reasons why the dynamic queries interface faired
better.

First, the dynamic queries interface was clearly the most
‘fun’, most likely due to its animated graphical nature, and this may
have produced a motivational factor. The QUIS clearly indicated a
preference for DQ (110) over QA (68) and Paper (84), with subjects
rating DQ an average of 6.1 on a range from 1 to 7. Many subjects
became very frustrated with the QA interface, attempting to figure
out how to form a query (this is discussed more later). One subject
remarked: “What the hell does this thing want, anyway?” Subjects
seemed very comfortable with paper and usually attacked the question
in a logical fashion, utilizing the sorted paper listings to their
maximum benefit. The DQ interface was clearly preferred by the
sighs of relief and the relaxed manner with which they formed
queries. One subject said “I don’t want to stop, this is fun!”

R
es

po
ns

e
T

im
e

(i
n

se
co

nd
s)

0

25

50

75

100

125

150

175

200

225

250

Question 2:
Location Fact

Question 3:
Complex Search

Question 4:
Find Trend

Question 5:
Exception to Trend/

Multiple Search

Question 1:
Simple Fact

Paper

Natural Language (QA)

Dynamic Queries (DQ)

Second, the well-known issue of text readability may partially
explain the success of both the DQ and paper interfaces. Although
a VGA monitor was used, several subjects noted that it was easier to
search the laser-printed listings than a listing on-screen using the QA
interface. Subjects using the DQ interface rarely actually looked at
the textual information on a specific home. One subject noted on
their evaluation of QA that it “takes a while for your eyes to adjust
to the small print.”

Third, the subjects clearly had semantic difficulties with the
QA interface. Grammatical, spelling, and typographical errors
where made in query formulation. The QA’s processor often
resulted in unexpected queries. One common error was asking:
“What is the cheaper house?” when the user meant “cheapest house.”
QA did not see the singular house and figure out that cheapest was
actually what was desired, instead producing a listing of all houses
with cost less than the average price. This is even more surprising
since 9 out of the 15 task questions could actually be typed in literally,
word for word, and QA would produce the correct answer. Clearly
subjects spent a lot of mental effort trying to formulate the query,
probably more than was necessary.

Dynamic Queries 8

Fourth, the subjects clearly had problems with the classic
boolean query problems. Specifically, they asked for ANDs which
QA interpreted as a literal AND when OR was actually what the user
wanted. Further, subjects often had problems with inclusion, such as
specifying “more than 5 bedrooms” when they actually wanted “5 or
more bedrooms.”

Fifth, the number of ordinary typos was tremendous. Further,
the editor in QA was quite poor, not allowing the user to edit the
previous query without retyping it in. This led to much of the time
spent typing in queries, which for most non-computer people is a
slow process. Occasionally QA would not even report a typo,
resulting in a query that failed, not due to the logic, but due to a typo.
The subject would therefore think their query had failed and would
consequently try another approach to the question.

Sixth, the QA interface often produced the correct answer but
the subject missed it. Subjects expressed they were unsure if they had
asked the right query to get the result and were unsure if it was
therefore the correct answer. A few subjects tried multiple approaches
and only answered when they got the same answer using each
approach. A possible explanation may be that the subjects get so
caught up in the query formulation they forget exactly what they
were originally looking for. This frustrating feeling of being lost and
unsure was not expressed with either of the other two interfaces.

Finally, the DQ interface’s use of highlighting and display on
one single screen was clearly a benefit for users. They were able to
easily input the query with the sliders. Not one of the subjects
showed any difficulty in using the sliders effectively. One subject
explained the feeling well: “You can see them right up front...they’re
right there.” The display of the results on a map made task 4 (finding
a trend) clearly easier since the relative location could be viewed
directly on the map, instead of having to refer to it from the city, state
information.

The clear benefit of dynamic queries, particularly for trend
and exception to trend questions is clear. The significant differences
(F=29.4 and 19.5 respectively) for tasks 4 and 5 are dramatic. The
fact that a time limit was placed at four minutes, probably reduced the
effect somewhat, since over half the subjects could not answer task
4 using the QA interface in the time allotted. With the DQ interface,
however, all but one subject was able to discern the trend in the time
allotted.

The scores for task 5 showed dramatic differences, with the
DQ interface averaging 58.8 seconds with a standard deviation of
only 16.3 seconds, while the QA interface averaged 189.9 seconds,
with a standard deviation of 67.2 seconds. In fact, all but one subject
answered the question in less than a minute using the DQ interface.
The exception to the trend (or multiple search) question required
combining the results of two or more searches or finding the outlying
point in a set. In this case, the exception was a home that was cheap
for what it offered. These types of questions are often what people
are searching for in a database. They often wish to find the most
stressed part of an airplane, the cheapest car which provides all the
options desired, or the deaths that seem to occur not due to cancer or
other common environmental factors. Since dynamic queries excel
in searching for these outliers, other applications involving this type
of search could clearly benefit from its use.

In all fairness, it is difficult to honestly compare the QA, DQ,
and paper interfaces since the ways user's use each are so different.
QA requires typing with little guidance, while the DQ interface must

be 'custom-made' for the fields the user will search on. Therefore, it
is difficult to specifically identify the advantages or disadvantages;
however, from a usability standpoint, it does seem that the DQ
interface does perform better, overall, than QA for some types of
questions.

This study and others (Ahlberg, Williamson, & Shneiderman,
1992) have shown dynamic queries to have several benefits over
current systems:
 • Queries can be made much faster by sliding the sliders and seeing
rapid feedback directly on the display.
• Novices can learn to use the system quickly with both query-
formulation and result displayed in task domain.
• Intermittent users do not have to remember any syntax. Repeat
users quickly remember how to form a query.
• No error messages are needed since sliders restrict ranges. Also
encourages user to explore.
 • Users can fine-tune their search easily. Simply restricting one field
allows tuning until desired number of hits.
• Actions are incremental and reversible.
• Trends and content of the database are easily inferred.
• Well-suited for geographical information systems and public
access using a touchscreen.
• Display in task-domain is more useful, less intimidating, and speeds
training time.

Although dynamic queries show promise, they are far from
perfect. Many drawbacks limit the range of its applicability or pose
other problems:

• Data must be ordered in some way, in particular textual fields don’t
benefit from the dynamic nature of sliders.
• Limited screen real-estate make it difficult to keep both tools and
display on-screen.
• Difficult to use when a large number of fields are searchable due to
limited screen space and computational issues.
• Data structures to permit more rapid querying (especially for large
databases) are clearly necessary.
• Work best with data which can be displayed in some graphical
fashion.
• Difficult for dynamic queries to offer more complex boolean
queries such as unions and negations.
• Recently we have devloped a range slider with draggable ends,
partially solving some of these limitations.
 • Smarter ways to utilize the limited screen space without sacrificing
simplicity are clearly needed.
 • Perhaps the most major drawback, as of now, they require custom
programming to create an interface. Even adding additional criteria
(such as crime rate or some such) for querying requires significant
adjustment. We are currently designing a DQ toolkit to minimize
this difficulty.

This initial study needs to be replicated with other subjects,
database domains, queries, and with more experienced users to
assess the full range of strengths and weaknesses of dynamic queries.
Despite the drawbacks, dynamic queries clearly have application in
a range of areas. For geographic information systems they show
clear promise. For textual purposes, however, the problems outweigh
the benefits. Since the results of this study suggest users find
dynamic queries more enjoyable to work with and can complete
typical tasks in equal or less time than a traditional natural-language
query system, it seems clear these principles have a place in the
design of future information retrieval systems.

Dynamic Queries 9

Acknowledgements
We appreciate the support of NCR Corporation and Johnson

Controls; as well as the comments from Ben Harper, Christopher
Ahlberg, Donna Harman, Kent Norman and other members of the
Human-Computer Interaction Laboratory at the University of
Maryland.

References
Ahlberg, C., Williamson, C., Shneiderman, B. (1992). Dynamic

Queries for Information Exploration: An Implementation and
Evaluation. Proc. CHI’92: Human Factors in Comp. Systems,
ACM Press.

Chin, J., Diehl, V., Norman, K. (1988). Development of an
instrument measuring user satisfaction of the human-computer
interface. in Proc. CHI’88 Human Factors in Comp. Systems Conf.,
ACM Press, 213-218.

Fowler, R., Fowler, W., Wilson, B. (1991). Integrating
Query, Thesaurus, and Documents through a Common Visual
Representation. in Proc. SIGIR '91. ACM Press, 142-151.

Harman, D., Candela, G. (1990). Bringing natural language
information retrieval out of the closet. SIGCHI Bulletin 22, 42-48.

Kim H., Korth H, Silberschatz A. (1988). PICASSO: A
Graphical Query Language, Software -Practice and Experience. 18,
169-203.

Korfhage, Robert R. (1991). To See, or Not to See - Is That
the Query? in Proc. SIGIR '91. ACM Press, 134-141.

Larsson, James A. (1986). A Visual Approach to Browsing
in a Database Environment. IEEE Computer, 19, 62-71.

Norman, Donald A. (1988). The Psychology of Everyday
Things. Basic Books, Inc., New York.

Helander, M. (1988). Handbook of Human-Computer I
nteraction. Chapter 13. North-Holland, New York.

Rowe, L.A. (1985). Fill-in-the-Form Programming. in Proc.
11th International on Very Large Databases. ACM Press, 394-403.

Rutkowski, Chris. (1982). An Introduction to the Human
Applications Standard Computer Interface. Byte. 7, 291-310.

Salton, G. (1983). Introduction to Modern Information
Retrieval. McGraw-Hill, New York.

Shneiderman, Ben. (1983). Direct Manipulation: A step
beyond programming languages, IEEE Computer, 16, 57-69.

Williams, M. (1984). What makes RABBIT run? Int J. Man-
-Machine Studies, 21, 333-352.

Zloof M. Query-by-Example. (1975). National Computer
Conference. AFIPS Press, 431-437.

